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Resonances of the Square Root of the Pauli
Operator

by

Hiroshi T. Ito

Abstract

We investigate the spectral properties of two relativistic Hamiltonians: one is the square
root of a Pauli operator with an electric potential growing polynomially at infinity, and the
other differs from it only in the sign of the potential. Moreover, we show that resonances
(eigenvalues) of each of them converge to resonances (eigenvalues) of the corresponding
Pauli operators with the same potential in the nonrelativistic limit.
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§1. Introduction

In this paper we consider the following two Hamiltonians L±(c) acting on the

Hilbert space L2(R3)2:

(1.1) L±(c) = ±
√

(cσ ·Db)2 +m2c4 −mc2 + V (x).

Here c > 0 is the speed of light, m > 0 is the rest mass of a relativistic particle,

Db := D − b(x) = −i∇ − b(x) and σ = (σ1, σ2, σ3), where σ1, σ2, σ3 are Pauli

matrices, i.e., (2× 2)-Hermitian matrices satisfying

σjσk + σkσj = 2δjkI2,(1.2)

σ1σ2 = iσ3, σ2σ3 = iσ1, σ3σ1 = iσ2,(1.3)

for j, k = 1, 2, 3, where In is the n×n unit matrix. For example, the following σ1,

σ2, σ3 satisfy (1.2) and (1.3):

σ1 =

(
0 1

1 0

)
, σ2 =

(
0−i
i 0

)
, σ3 =

(
1 0

0−1

)
.
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The square root
√

(cσ ·Db)2 +m2c4 is well defined because the Pauli operator (cσ·
Db)2 +m2c4 is a positive self-adjoint operator under our assumption below. Since

(σ · D)2 = −∆I2 follows from (1.2) and (1.3), L±(c) are relativistic Schrödinger

operators when b = 0. The potential V (x) is an Hermitian (2 × 2)-matrix-valued

function with a scalar principal part v(x)I2 diverging at infinity, and the magnetic

potential b : R3 → R3 is bounded. Moreover, we assume that they are all dilation

analytic as in [1].

Let us state our assumptions more precisely. Conditions (1.4) and (1.5) below

are used in the studies of L+(c) and L−(c), respectively.

Assumption 1.1. The positive constants M , M1, M2 with M1 ≤M2 and a0 are

supposed to satisfy one of the following conditions:

(1.4) a0 <
π

M2 + 2
and a0(M2 −M1) < π

or

(1.5) a0 < min

{
2π

M2 + 2
, π/2

}
and a0(M2 −M1) < π.

Let us define stripes Ω := {θ ∈ C; | Im θ| < a0} and Ω± := {θ ∈ C; 0 <

± Im θ < a0}.
The potential V (x) is decomposed as V (x) = v(x)I2 +W (x), where v(x) and

W (x) are continuous real-valued and Hermitian (2 × 2)-matrix-valued functions,

respectively, and b ∈ C∞(R3,R3). Moreover, they satisfy the following conditions:

(v) For each θ ∈ Ω, there exist a continuous function vθ(x) such that vt(x) = v(etx)

for t ∈ R and (vθf, f) is analytic in θ ∈ Ω for each f ∈ S, the Schwartz space.

Moreover, there exist positive constants R0, K0 and Kα for multiindices α such

that viτ ∈ C∞(|x| > R0) and

|∂αx viτ (x)| ≤ Kα|x|M−|α|, |α| ≥ 0,(1.6)

K−1
0 |x|M ≤ |viτ (x)| ≤ K0|x|M ,(1.7)

τM1 ≤ arg(viτ (x)) ≤ τM2(1.8)

are satisfied uniformly in |x| ≥ R0 and 0 ≤ τ < a0, and

(1.9) sup
|x|≤R0,|τ |<a0

|viτ (x)| <∞.

(W) For each θ ∈ Ω, there exist a (2×2)-matrix-valued continuous function Wθ(x)

such that Wt(x) = W (etx) for t ∈ R and (Wθf, f) is analytic in θ ∈ Ω for each
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f ∈ S2 and that

sup
x∈R3,τ∈[0,a0)

|Wiτ (x)〈x〉−M |M2 <∞,

lim
|x|→∞

|Wiτ (x)〈x〉−M |M2 = 0(1.10)

uniformly in τ ∈ [0, a0) , where 〈x〉 =
√
|x|2 + 1 and | · |M2

denotes the usual

matrix norm.

(b) For each θ ∈ Ω, there exists a C∞-function bθ = t(b1,θ, b2,θ, b3,θ) : R3 → R3

such that bt(x) = b(etx) for t ∈ R and (bj,θf, f), j = 1, 2, 3 is analytic in θ ∈ Ω

for each f ∈ S and that

(1.11) |∂αx biτ (x)| ≤ Kα〈x〉−|α|

is satisfied uniformly in τ ∈ [0, a0) for |α| ≥ 0 with some Kα > 0.

In the sequel we write Vθ(x) := vθ(x)I2 +Wθ(x) and assume c ≥ 1.

Remark 1.2. For sufficiently small a0, condition (1.8) is satisfied for some posi-

tive M1 and M2 if there exists K > 0 such that

x · ∇v(x) ≥ K|x|M

for |x| ≥ R0 (see, e.g., [16, Lemma 2.2]).

Remark 1.3. By the dilation analyticity above we see that

vθ+t(x) = vθ(e
tx)

etc., for all t ∈ R and θ ∈ Ω, and that v−iτ (x) = viτ (x) etc., for all τ ∈ (−a0, a0).

Thus, estimates on vθ, Wθ and bθ for θ ∈ Ω follow from those for θ = iτ , τ ∈ [0, a0).

Remark 1.4. Let us denote by ‖ · ‖∞ the L∞-norm on R3. Then, (v) implies

(1.12) sup
|τ |<a0

‖viτ (·)〈·〉−M‖∞ <∞

and Ω 3 θ → vθ(·)〈·〉−M is analytic in the operator norm. Further, by virtue of

the Cauchy integral formula, the above estimate is valid even when viτ is replaced

by dk

dτk viτ for each positive integer k.

Remark 1.5. A typical example of v(x) is v(x) = q(x/|x|)|x|M with a C∞-

function q on S2, the unit sphere in R3. In this case, M1 = M2 = M and a0

is arbitrarily chosen if it satisfies (1.4) or (1.5).
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Here we make some comments on the notation used in this paper. We denote

by ‖ · ‖ (resp. (·, ·) ) the norm (resp. the scalar product) of the Hilbert space

(L2)2 = L2(R3)2 and also use this notation for other Hilbert spaces if they do not

cause confusion. Moreover, the notation ‖ · ‖ is also used for operator norms. We

denote by S the Schwartz space on R3 and by Hs = Hs(R3) the Sobolev space of

order s. We also defineDM := L2
M∩H1, where L2

M = L2
M (R3) := L2(R3; 〈x〉2Mdx)

is a weighted L2-space. We sometimes write p for pIn, omitting identity matrices

In, when p is a scalar function or an operator acting on L2(R3). We denote the

numerical range of an operator T by Num(T ):

Num(T ) := {(Tu, u);u ∈ D(T ), ‖u‖ = 1},

where D(T ) denotes the domain of T . We denote the spectrum of T by σ(T ), the

discrete spectrum σd(T ), the absolutely continuous spectrum σac(T ), the singular

continuous spectrum σsc(T ) and the resolvent set ρ(T ). The letter K will denote

various constants that may change from line to line. The square root
√
z is defined

to have the branch on the negative real line.

Let m, s ∈ R and denote by Sm,s the space of functions p(x, ξ) ∈ C∞(R3 ×
R3) satisfying

|∂αξ ∂βxp(x, ξ)| ≤ Kαβ〈x〉m−|β|〈ξ〉s−|α| on R3 ×R3,

for all α and β. We denote by Σm,s the set of pseudodifferential operators p(x,D),

p ∈ Sm,s defined by

p(x,D)u(x) =
1

(2π)3

∫∫
ei(x−y)·ξp(x, ξ)u(y) dξ dy.

The Pauli operator (σ·Db)2 is a nonnegative self-adjoint operator with domain

(H2)2 and is written

(1.13) (σ ·Db)2 = (D − b(x))2I2 − σ · (∇× b(x)),

using (1.2) and (1.3). Since (σ ·Db)2 +mc2 is a positive self-adjoint operator, the

square root
√

(cσ ·Db)2 +m2c4 is well defined.

The following theorem is proved in the same way as in [11] (see also [12]) by

using the commutator theorem (see, e.g., [20, Theorem X.36]).

Theorem 1.6. The Hamiltonians L±(c) defined on S2 are essentially self-adjoint.

We also denote the unique self-adjoint extension with the same notation,

L±(c).
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Due to the dilation analyticity of potentials we can define the following dilated

operators for θ:

L±(c, θ) := ±
√

(cσ ·Db
θ)

2 +m2c4 −mc2 + Vθ(x),

where Db
θ = e−θD − bθ(x).

If b = 0, then
√

(cσ ·Db
θ)

2 +m2c4 =
√
−c2e−2θ∆ +m2c4I2 is well defined

for | Im θ| < π/2 as a closed operator with domain (H1)2. However, if b 6= 0 and

Im θ 6= 0, there is a possibility that the spectrum of (cσ ·Db
θ)

2 +m2c4 contains the

zero so that its square root is not well defined in the usual way. But, for each c ≥ 1

we can take a constant τ0(c) ∈ (0, a0] satisfying the following condition: there exist

two small constants δ > 0 and δ′ > 0 independent of c ≥ 1 such that

Cδ ⊂ ρ((cσ ·Db
iτ )2 +m2c4) and Cδ ∩Num((cσ ·Db

iτ )2 +m2c4 − δ′) = φ

are valid for all τ ∈ [0, τ0(c)) , where

Cδ := {z;π − δ ≤ arg z ≤ π + δ},

a sector containing the half-line (−∞, 0]. Then, by the Dunford integral, the square

root of (cσ · Db
θ)

2 + m2c4 is well defined (see (3.4)). Indeed, we show that there

exists τ0 > 0 such that τ0 ≤ τ0(c) for all c ≥ 1 (Lemma 3.1) and that we can

take τ0(c) = a0 for a sufficiently large number c (Lemma 3.2). We also note that

τ0(c) = a0 for all c ≥ 1 if b = 0. We set

Ω(c) := {θ ∈ Ω; | Im θ| < τ0(c)},
Ω+(c) := {θ ∈ Ω; 0 < Im θ < τ0(c)}.

Then, from (3.4) it is easily seen that
√

(cσ ·Db
θ)

2 +m2c4 is an analytic family of

type (A) in θ ∈ Ω(c) (see, e.g., [17, VII], [21, XII]).

Now let us state our results on the spectral properties of L±(c) for fixed c ≥ 1.

Let {U(t)}t∈R be the dilation group on R3,

(U(t)f)(x) = e(3t/2)f(etx),

and write U2(t) = U(t)I2. We will see that {L+(c, θ)}θ∈Ω(c) is an analytic family

of type (A) with compact resolvent, and satisfies

(1.14) U2(t)L+(c, θ)U2(t)−1 = L+(c, θ + t), t ∈ R, θ ∈ Ω(c)

(see Proposition 3.4). Thus L+(c, θ) has a purely discrete spectrum and, since

L+(c) = L+(c, 0), the standard argument on the dilation analyticity gives the

following theorem.
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Theorem 1.7. Suppose Assumption 1.1 with (1.4) and fix c ≥ 1:

(a) The discrete spectrum σd(L+(c, θ)) is independent of θ ∈ Ω(c), denoted by

Σ+(c), and coincides with σp(L+(c)). Moreover, the multiplicity of each eigen-

value is independent of θ ∈ Ω(c).

(b) L+(c) has a purely discrete spectrum.

We shall see that {L−(c, θ)}θ∈Ω+(c) is an analytic family of type (A) only in

Ω+(c) (not in Ω(c)) and that each L−(c, θ) also has compact resolvent for each

θ ∈ Ω+(c) and satisfies

(1.15) U2(t)L−(c, θ)U2(t)−1 = L−(c, θ + t), t ∈ R, θ ∈ Ω+(c).

Thus, the spectrum of L−(c, θ) (also consisting of a discrete spectrum only) is

independent of θ ∈ Ω+(c). On the other hand, it will be proved that the resolvent

(L−(c) − z)−1, Im z < 0 is the strong limit of (L−(c, θ) − z)−1 as Ω+(c) 3 θ → 0

(Proposition 3.4). Namely, L−(c) is obtained as the limit of L−(c, θ). However, the

spectral properties of L−(c) and L−(c, θ) are quite different. Indeed, we have the

following theorem.

Theorem 1.8. Suppose Assumption 1.1 with (1.5) and fix c ≥ 1:

(a) The discrete spectrum σd(L−(c, θ)) is independent of θ ∈ Ω+(c), denoted by

Σ−(c), and satisfies

Σ−(c) ⊂ C+, Σ−(c) ∩R = σp(L−(c)),

where C+ := {z ∈ C; Im z ≥ 0} is the closed upper half-plane. Moreover, the

multiplicity of each eigenvalue is independent of θ ∈ Ω+.

(b) L−(c) has at most finitely many eigenvalues, and the multiplicity of each of

them is finite.

(c) σ(L−(c)) = R and σsc(L−(c)) = φ. In particular, σ(L−(c)) \ σp(L−(c)) ⊂
σac(L−(c)).

Remark 1.9. We emphasize that, even though the spectra of L+(c) and L−(c)

are quite different, they can be treated in the same framework (Theorem 2.3).

Indeed, they are regarded as boundary values of analytic families {L+(c, θ)}θ∈Ω−(c)

and {L−(c, θ)}θ∈Ω−(c), respectively (see Section 2 for the definition of a boundary

value of an analytic family). In [16] we proved that self-adjoint operators T defined

as boundary values of a certain analytic family are classified into two categories:

type (I) where σ(T ) = σd(T ), and type (II) where σ(T ) = (−∞,+∞), σsc(T ) = ∅
(Theorem 2.3). In Section 3, we shall show that L+(c) is of type (I) and L−(c) is

of type (II).
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Under some conditions, there is no embedded eigenvalue of L−(c) in σ(L−(c))

= R.

Corollary 1.10. In addition to Assumption 1.1 with (1.5), suppose b = 0 and

there exists θ1 ∈ Ω+ such that ImVθ1(x) := (2i)−1(Vθ1(x)−V ∗θ1(x)) is a nonnegative

Hermitian matrix for each x ∈ R3. Then, σp(L−(c)) = φ. Moreover, there exists

λ0 > 0 independent of c ≥ 1 such that Σ−(c) ⊂ {Im z ≥ λ0}.

Remark 1.11. (i) Each element of Σ−(c) is called a resonance of L−(c).

(ii) As far as the author knows there are only a few studies on the relativistic

Schrödinger operator
√
−∆ + 1−v(x) with a potential v(x) satisfying v(x)→

∞ as |x| → ∞ (e.g., [11, 12, 16]).

Now we investigate a resonance-free region for each c ≥ 1. Let us denote by

N (C, d), d ≥ 0 the d-neighborhood of a set C:

N (C, d) = {z; dist(z, C) ≤ d},

and let us define a sector

C(w, τ1, τ2) := {z ∈ C; τ1 ≤ arg(z − w) ≤ τ2}

for w ∈ C and −π ≤ τ1 ≤ τ2 ≤ π.

Theorem 1.12. Suppose Assumption 1.1 with (1.5) and fix c ≥ 1. Then, for any

ε > 0 there exists d ≥ 0 such that

(1.16) Σ−(c) ⊂ N (C(−2mc2,Θ1(c)− ε,Θ2(c) + ε), d) ∩C+,

where

Θ1(c) := min

{
M1

M1 + 2
π,M1τ0(c)

}
,

Θ2(c) := max

{
M2

M2 + 1
π, π − τ0(c)

}
.

Moreover, (1.16) is valid for ε = 0 if b = 0 and W = 0.

Remark 1.13. Let b = 0, W = 0 and v(x) = κ0|x|M for some κ0 > 0 and M ≥ 2.

Then, we can see that M1 = M2 = M and ε = d = 0 so that the resonances of

L−(c) + 2mc2 are contained in the sector (5.2). In the final section we show that

the result of this theorem is optimal in this case.

We next consider two Pauli operators P± acting on (L2)2,

(1.17) P± = ± 1

2m
(σ ·Db)2 + v(x)I2 +W (x),
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and their dilated operators

(1.18) P±(θ) = ± 1

2m
(σ ·Db

θ)
2 + vθ(x)I2 +Wθ(x)

for θ ∈ Ω. Here we assume (1.4) and θ ∈ Ω for P+(θ), and (1.5) and θ ∈ Ω+ for

P−(θ), respectively. We will show that both P+(θ) and P−(θ) are closed operators

with domain (H2)2 ∩ (L2
M )2 and that P+ is self-adjoint with the same domain

and that S2 is its core. But, the essential self-adjointness of P− defined on S2 is

guaranteed only for M ≤ 2 (e.g., [13]). Indeed, the Schrödinger operator −∆−|x|s,
s > 0, defined on S2, is essentially self-adjoint if and only if 0 < s ≤ 2 (see, e.g.,

[7], [20]).

Proposition 1.14. Suppose Assumption 1.1 with (1.4):

(a) P+ (= P+(0)) defined on S2 is essentially self-adjoint and its self-adjoint ex-

tension, also denoted by P+, is bounded from below and has compact resolvent.

In particular, it has a purely discrete spectrum with its eigenvalues accumulat-

ing at infinity.

(b) For θ ∈ Ω, P+(θ) defined on S2 has a unique closed extension, also denoted by

P+(θ), with domain (H2)2 ∩ (L2
M )2, and its spectrum σd(P+(θ)) consists only

of eigenvalues with finite multiplicity. Moreover, σd(P+(θ)) is independent of

θ, i.e., σ(P+(θ)) = σd(P+(θ)) = σd(P+) = σ(P+), and the multiplicity of each

eigenvalue is independent of θ ∈ Ω.

Proposition 1.15. Suppose Assumption 1.1 with (1.5) . Let θ ∈ Ω+.

(a) P−(θ) defined on S2 has a unique closed extension, also denoted by P−(θ), with

domain (H2)2∩(L2
M )2. Also, P−(θ) has compact resolvent, and so its spectrum

σ(P−(θ)) = σd(P−(θ)) consists only of eigenvalues with finite multiplicity.

Moreover, σd(P−(θ)) is independent of θ, and satisfies σd(P−(θ)) ⊂ C+, and

the multiplicity of each eigenvalue is independent of θ ∈ Ω+.

(b) If M ≤ 2, then P− defined on S2 is essentially self-adjoint and its self-adjoint

extension, also denoted by P−, has at most finitely many eigenvalues, and the

multiplicity of each of them is finite. Moreover,

σd(P−(θ)) ∩R = σp(P−)

for θ ∈ Ω+, and σ(P−) = R, σsc(P−) = φ. In particular, σ(P−) \ σp(P−) ⊂
σac(P−).

We call an eigenvalue of P−(θ) a resonance of P−, and the multiplicity of the

resonance is defined to be the algebraic multiplicity of the eigenvalue.
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Remark 1.16. Let us consider a typical case: v(x) = |x|M , b = 0, W = 0 and

m = 1/2, i.e., P∓ = ±∆+|x|M . Denote by {νj}∞j=1 the eigenvalues of P+ and β0 :=

π(2+M)−1. Then {−e−2iβ0νj}∞j=1 is the set of resonances of P− (see [16, p. 1335]).

In particular, the resonances of P− = ∆ + |x|2 lie on the positive imaginary axis

when M = 2.

Now we state our results on the nonrelativistic limits of L±(c). We denote by

Bε(λ) the disc with center λ and radius ε > 0:

Bε(λ) := {z ∈ C; |z − λ| ≤ ε}.

Theorem 1.17. Suppose Assumption 1.1 with (1.4). Fix L > 0 and denote by

{λj}N+

j=1 the set of all eigenvalues of P+ in the interval (−∞, L), and denote by

mj the multiplicity of λj. Then, for any small ε > 0 there exists c0 > 0 such that

if c ≥ c0, there are mj eigenvalues of L+(c) in Bε(λj) for each j = 1, . . . , N+.

Moreover, there is no eigenvalue in (−∞, L) \
(
∪N+

j=1 Bε(λj)
)
.

Theorem 1.18. Suppose Assumption 1.1 with (1.5). Let O be a bounded open set

in C and denote by {µk}N−
k=1 the set of all resonances of P− in it, and denote by

nk the (algebraic) multiplicity of µk. Then, for any small ε > 0 there exists c0 > 0

such that if c ≥ c0, there are nk resonances of L−(c) + 2mc2 in Bε(µk) ∩C+ for

each k = 1, . . . , N−. Moreover, there is no resonance in O \
(
∪N−
k=1 Bε(µk)

)
.

Remark 1.19. The resonances of L−(c) locate in its numerical range. It is known

that the resolvent of a non-self-adjoint operator is hard to handle if the spectrum

parameter belongs to the numerical range. Indeed, in the one-dimensional case,

the norm ∥∥∥∥∥
(
−e−it d

2

dx2
+ eitx2 − reiτ

)−1
∥∥∥∥∥

diverges as r →∞ if |τ | < |t|, even though the spectrum of the −e−itd2/dx2+eitx2

is a subset of R ([6, Thm. 14.5.4]). Taking account of this fact, we cannot expect

to obtain a useful uniform estimate of ‖(L−(c, θ) − z)−1‖ when z belongs to the

numerical range even though z is not near the spectrum. Since our approach

depends heavily on uniform resolvent estimates of L±(c, θ), it is difficult for us

to eliminate the boundedness condition on O in Theorem 1.18.

In [14] the spectral property and the nonrelativistic limit of resonances of the

Dirac operator with the magnetic and electric potentials b and v, respectively, are

studied by using the result obtained in the present work. Here we briefly explain

a relation between L±(c) and the Dirac operator. See [14] (but [16] for the case

b = 0) for the details.
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Let us consider the Dirac operator with a magnetic potential b and an electric

potential v:

H(c) = cα ·Db +mc2β + vI4

in (L2)4, where α = (α1, α2, α3), αj and β are the Dirac matrices

αj =

(
σj 0

0 σj

)
, β =

(
I2 0

0 −I2

)
,

and denote L±(c, θ) with W = 0 by L±1(c, θ). A resonance of H(c) is defined by

an eigenvalue of the dilated Dirac operator

H(c, θ) = cα ·Db
θ +mc2β + vθI4

for θ ∈ Ω+(c) with assumption (1.4). There exists an invertible bounded operator

U(c, θ) such that U(c, θ)(H(c, θ)−mc2)U(c, θ)−1 = L1 +Q1, where

L1 :=

(
L+1(c, θ)I2 0

0 L−1(c, θ)I2

)
,

Q1 := U(c, θ)vθI4U(c, θ)−1 − vθI4.

Roughly speaking, Q1〈x〉−M+1 is bounded and its norm goes to zero as c →
∞. Namely, L1 is the principal term and Q1 is its perturbation, and hence the

analysis of L±1(c, θ) is necessary for investigating the resonances of H(c). See

[14] (but [16] for b = 0) to know how we use results on L±(c, θ) to study the

Dirac operator. When θ = 0, this transformation by U(c, θ) is called the Foldy–

Wouthuysen transformation.

This work is closely related to the nonrelativistic limit of Dirac operators,

and there are many papers on the subject (see [23], [15], [16]). However, relativis-

tic Schrödinger operators and, more generally, the square root of Pauli operators

themselves, are interesting subject to study. Though there are many studies on

relativistic Schrödinger operators (see, e.g., [3], [18], and see also [9] for semirel-

ativistic Pauli–Fierz Hamiltonians), as far as the author knows there is no study

on the spectral property and resonances of the square root of a Pauli operator (or

a Schrödinger operator) with a potential diverging to −∞ as |x| → ∞, except for

[11, 12, 16]. In [11, 12] the essential self-adjointness is investigated, and in [16] sev-

eral results, as in the present work, are obtained for b = 0 and W = 0. The spectral

properties of Schrödinger operators with a similar potential are studied by several

authors (see, e.g., [5, 26]). But, they do not discuss the resonances. We impose

the dilation analyticity on the potentials to discuss the resonances. The dilation

analytic method, which dates back to [1], has been applied to many Schrödinger
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operators and Dirac operators (e.g., [2, 4, 8, 10, 16, 22, 25]). In particular, Amour,

Brummelhuis and Nourrigat [2] used the method to study the nonrelativistic limit

of resonances of Dirac operators with an electric potential diverging at infinity (see

also [24]). Inspired by their work, the author and Yamada [16] studied the same

problem by introducing two relativistic Schrödinger operators, and in this work

the study of the relativistic Schrödinger operators plays a crucial role. However,

Dirac operators have no magnetic potentials in [2, 16]. In [14] their results are

extended to Dirac operators with a magnetic potential.

Finally, we compare the present results with those in [16], in which Dirac

operators and relativistic Schrödingers are considered. In [16] the same results as

Theorems 1.7, 1.8 and Propositions 1.14 and 1.15 have been proved under the

assumption b = 0 and W = 0, and Theorems 1.17 and 1.18 in the case of b = 0

and W = 0 follow immediately from results obtained in [16]. However, there is no

result in [16] on a resonance-free region, such as Theorem 1.12.

The plan of this paper is as follows. In Section 2 we prepare an abstract

theorem (Theorem 2.3) without proof, since it has already been proved in [16]. In

Section 3 we study L±(c, θ) in detail to give the proofs of Theorems 1.7 and 1.8,

Corollary 1.10 and Theorem 1.12. In Section 4 we investigate P±(θ) in detail

and show that P+(θ) and P−(θ) are the nonrelativistic limits of L+(c, θ) and

L−(c, θ) + 2mc2, respectively. In Section 5 we show that Theorems 1.17 and 1.18

follow immediately from results in the previous section and that the result of

Theorem 1.12 is optimal in some cases.

§2. Abstract results

In this section we state an abstract result on the self-adjoint operators defined as

boundary values of some kind of operator-valued analytic functions. This result

is used to determine the spectral properties of several operators appearing in this

work. See [16] for the proof.

Let T be a self-adjoint operator and {T (θ)}θ∈Ω+
a family of closed operators

in a Hilbert space H, where Ω+ = {θ ∈ C; 0 < Im θ < a} for some a > 0. We

assume the following:

(A1) {T (θ)}θ∈Ω+ is an analytic family in the sense of Kato (see [17, VII], [21, XII]).

(A2) Each T (θ) has compact resolvent.

(A3) There is a strongly continuous one-parameter unitary group {U(t)}t∈R such

that

(2.1) U(t)T (θ)U(t)∗ = T (θ + t)

for t ∈ R and θ ∈ Ω+.
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By (A1) and (A2), each T (θ) has a purely discrete spectrum and the eigen-

values are analytic functions or branches of one or several analytic functions, and

(A3) implies that the eigenvalues of T (θ) are invariant when θ is changed to θ+t if

t is real. Thus, each eigenvalue is a constant function of θ ∈ Ω+ (see, e.g., [1, 21]).

Therefore we obtain the following result.

Proposition 2.1. Suppose (A1)∼(A3). Then there is a discrete set Σ in C such

that σ(T (θ)) = σd(T (θ)) = Σ for all θ ∈ Ω+.

Let C± = {z ∈ C;± Im z > 0}. A self-adjoint operator T is supposed to be

related to the analytic family {T (θ)}θ∈Ω+
in the following sense:

(A4) There is a nonempty open set O0 ⊂ C− \ Σ such that

w − lim
t→+0

(T (it)− z)−1 = (T − z)−1 (weakly)

for each z ∈ O0.

For each s ∈ R define a self-adjoint operator T (s) by T (s) := U(s)TU(s)∗.

Then T (0) = T and

w − lim
t→+0

(T (s+ it)− z)−1 = w − lim
t→+0

U(s)(T (it)− z)−1U(s)∗

= U(s)(T − z)−1U(s)∗ = (T (s)− z)−1

by (A3). Thus the self-adjoint operators T (s), s ∈ R are regarded as boundary

values of the operator-valued function T (θ) defined on Ω+. The following proposi-

tion shows that the eigenvalues of T (θ) are located in the closed upper half-plane

C+.

Proposition 2.2. Suppose (A1)∼(A4). Then Σ ⊂ C+.

For E ∈ R, let γ be a positively oriented small circle |z −E| = ε enclosing E

with {z ∈ C; 0 < |z − E| ≤ ε} ∩ Σ = φ and let

Pθ(E) = − 1

2πi

∫
γ

(T (θ)− z)−1 dz.

Then this operator is the eigenprojection associated with E ∈ σd(T (θ)) = Σ if

E ∈ Σ and Pθ(E) = 0 otherwise. Moreover, for each E ∈ Σ the projection-valued

function Pθ(E) is analytic in θ ∈ Ω+. In particular, the dimension of the range of

Pθ(E) is independent of θ for each E. Let Ps(·) be the spectral projection of T (s)

for s ∈ R.
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Theorem 2.3. Suppose (A1)∼(A4).

(a) σd(T (θ)) ∩ R = σp(T ) for all θ ∈ Ω+. Moreover, for each E ∈ σp(T ) and

s ∈ R, we have

(2.2) lim
Ω+3θ→s

‖Pθ(E)−Ps({E})‖ = 0.

In particular, the eigenvalues of T are discrete and each eigenvalue has finite

multiplicity.

(b) Either

(I) T has a purely discrete spectrum, i.e., σ(T ) = σd(T )

or

(II) σ(T ) = R, σsc(T ) = φ

holds. In particular, we have σ(T ) \ σp(T ) ⊂ σac(T ) in case (II).

(c) If Σ ∩ (C \R) 6= φ or Σ = φ, then case (II) holds. Thus, Σ = σp(T ) in case

(I).

(d) Suppose case (I) above holds and fix z 6∈ σd(T ). Then the resolvent (T (θ)−z)−1

has an analytic continuation of θ from Ω+ to Ω := {θ ∈ C; | Im θ| < a}.

§3. Relativistic Pauli operators

We define a dilated Pauli operator Sb(c, θ) by

Sb(c, θ) := (cσ ·Db
θ)

2 +m2c4

= c2
(
(e−θD − bθ(x))2I2 − σ · e−θ∇× bθ(x)

)
+m2c4(3.1)

for θ ∈ Ω, which is a closed operator with domain (H2)2 and a core S2. We also

write

Sb(c, θ) = S0(c, θ)(3.2)

+ c2
(
(−2e−θbθ ·D + ie−θ∇ · bθ + b2θ)I2 − σ · e−θ∇× bθ(x)

)
,

where S0(c, θ) = (−c2e−2θ∆ +m2c4)I2.

Hence, c−2(Sb(c, θ) − S0(c, θ)) is −∆I2 bounded with bound 0 uniformly in

c ≥ 1, and so Sb(c, 0) is self-adjoint.

Lemma 3.1. Suppose assumption (b) with 0 < a0 < π/2. Then, {Sb(c, θ)}θ∈Ω is

an analytic family of type (A) for each c ≥ 1. Moreover, there exist K > 0 and

small τ0 > 0 such that Sb(c, θ) is a strictly m-accretive operator and Num(Sb(c, θ))

is contained in the sector C(m2c4/2,−K| Im θ|,K| Im θ|) for θ ∈ Ω with | Im θ| <
τ0 and c ≥ 1. In particular, the spectrum of Sb(c, θ) is contained in this sector.
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Proof. It follows from assumption (b) and (3.2) that Sb(c, θ), θ ∈ Ω is an analytic

family of type (A). For the next statement it suffices to prove the lemma for

Re θ = 0, because

(3.3) U2(Re θ)Sb(c, i Im θ)U2(Re θ)−1 = Sb(c, θ).

Let θ = iτ , τ being small. Then, by (3.1) we can write Sb(c, iτ) = Sb(c, 0) + r(iτ),

where r(iτ) satisfies ‖Sb(c, 0)−1/2r(iτ)Sb(c, 0)−1/2‖ ≤ K0|τ | uniformly in c ≥ 1 for

some K0 > 0, and so

|(r(iτ)f, f)| ≤ K0|τ |(Sb(c, 0)f, f)

for any f ∈ (H2)2 with ‖f‖(L2)2 = 1. Let w = (Sb(c, iτ)f, f) and z = (Sb(c, 0)f, f).

Then, |w − z| ≤ K0|τ‖z|. Therefore, since z ≥ m2c4 we have

w ∈ N
(
C(m2c4,− sin−1(K0|τ |), sin−1(K0|τ |)),m2c4K0|τ |

)
and so Num(Sb(c, iτ)) ⊂ C((1/2)m2c4,−K1|τ |,K1|τ |) for some K1 > 0 indepen-

dent of τ if |τ | is small enough. Thus, Sb(c, iτ) is a strictly m-accretive operator

with the spectrum contained in the sector (e.g., in [19, Thm. VIII.17]). This com-

pletes the proof.

Lemma 3.2. Suppose assumption (b) with 0 < a0 < π/2. Then, for any ε > 0

there exists d ≥ 0 independent of θ ∈ Ω and c ≥ 1 such that Num(Sb(c, θ))

is contained in the set N (C(m2c4,−2τ − ε,−2τ + ε), c2d), where τ = Im θ. In

particular, there is c0 > 0 such that eiτSb(c, θ) is a strictly m-accretive operator

for θ ∈ Ω and c ≥ c0.

Proof. We prove the lemma for Re θ = 0 as in the previous lemma. Write Ŝb :=

eiτ c−2(Sb(c, iτ)−m2c4) and Ŝ0 := eiτ c−2(S0(c, iτ)−m2c4) = −e−iτ∆ for simplic-

ity, and set w = (Ŝbf, f) and z = (Ŝ0f, f) with ‖f‖(L2)2 = 1. Then, the lemma

follows from Num(Ŝ0) = {e−iτ t; t ≥ 0} and the fact, which follows immediately

from (3.2), that for any ε′ > 0 there is K > 0 such that |w−z| ≤ ε′|z|+K. Indeed,

we obtain the lemma by putting ε′ = sin ε.

We know that S1/2 = Sb(c, θ)
1/2, for θ ∈ Ω(c), is represented as

(3.4) S1/2f =
1

π

∫ ∞
0

λ−1/2(S + λ)−1Sf dλ, f ∈ D(S).

Since it is not easy to analyze Sb(c, θ)
1/2 directly, the following lemma is useful in

the sequel because S0(c, θ)1/2, i.e., b = 0, is the pseudodifferential operator with

symbol
√
−c2e−2θ|ξ|2 +m2c4.
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Lemma 3.3. Let θ ∈ Ω(c) and c ≥ 1. Then, the operator

Eθ(c) := Sb(c, θ)
1/2 − S0(c, θ)1/2(3.5)

− 1

2
(Sb(c, θ)− S0(c, θ))(S0(c, θ))−1/2

defined on S2 can be extended to a bounded operator on (L2)2 with ‖Eθ(c)‖ ≤ K

uniformly in θ and c. In particular, D(Sb(c, θ)
1/2) = D(S0(c, θ)1/2) = (H1)2 and

the difference Sb(c, θ)
1/2 − S0(c, θ)1/2 is bounded.

Proof. We may assume Re θ = 0 and τ = Im θ ∈ (−τ0(c), τ0(c)). To begin with let

us set

S̃ = c−2Sb(c, θ) = (σ ·Db
θ)

2 +m2c2,

S̃0 = c−2S0(c, θ) = (σ ·D0
θ)

2 +m2c2,

Vb = S̃ − S̃0 and r = m2c2/2 for simplicity. Then, by (3.2), Vb(−∆ + 1)−1/2 is

bounded. We also have ‖(T + λ)−1‖ ≤ K(λ + r)−1, λ > 0 for T = S̃ and S̃0 (see

the definition of τ0(c) and Lemma 3.2). By the resolvent equation we have

(S̃ + λ)−1 − (S̃0 + λ)−1 = −(S̃ + λ)−1Vb(S̃0 + λ)−1

= −(S̃0 + λ)−1Vb(S̃0 + λ)−1

+ (S̃ + λ)−1Vb(S̃0 + λ)−1Vb(S̃0 + λ)−1

for λ > 0. Since ‖(−∆ + 1)1/2(S̃0 +λ)−1‖ ≤ K(r+λ)−1/2, the norm of the second

term is bounded by K(r + λ)−2. The first term is written

−Vb(S̃0 + λ)−2 − (S̃0 + λ)−1[Vb, S̃0](S̃0 + λ)−2.

Since ‖[Vb, S̃0](S̃0 + λ)−1‖ is uniformly bounded in λ > 0, the norm of the second

term is bounded by K(r + λ)−2. Thus, on S2 we can write

S̃1/2 − S̃1/2
0 = − 1

π

∫ ∞
0

λ1/2[(S̃ + λ)−1 − (S̃0 + λ)−1] dλ

=
1

π

∫ ∞
0

λ1/2Vb(S̃0 + λ)−2 dλ− 1

π

∫ ∞
0

λ1/2R̃(λ) dλ

= I + II,

where R(λ) satisfies ‖R̃(λ)‖ ≤ K(r+λ)−2. Hence, II can be extended to a bounded

operator with ‖II‖ ≤ Kr−1/2. Since limλ→∞ λ1/2Vb(S̃0 + λ)−1f = 0 for each

f ∈ S2, we have

If =
1

2π

∫ ∞
0

λ−1/2Vb(S̃0 + λ)−1f dλ =
1

2
VbS̃

−1/2
0 f,
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by partial integration. Hence, I can be extended to a bounded operator, whose

norm is uniformly bounded in c ≥ 1. Since Eiτ (c) = c(S̃1/2−S̃1/2
0 )−cI, by keeping

track of τ dependence we have obtained the desired result.

Now, denoting Tb(c, θ) := Sb(c, θ)
1/2 we consider the two operators

(3.6) L±(c, θ) := ±Tb(c, θ)−mc2 + vθ(x)I2 +Wθ

defined on S2. Note that if t is a real number, they are written

(3.7) L±(c, t) = U2(t)L±(c)U2(t)−1

on S2.

The following proposition is the main result in this section.

Proposition 3.4. In the following, we suppose Assumption 1.1 with (1.4) for (a)

and (b), and (1.5) for (c)∼(f).

(a) For each θ ∈ Ω(c), L+(c, θ) defined on S2 is closable, and its closure (also

denoted by L+(c, θ)) has domain DM . Moreover, its resolvent set is nonempty

and, in particular, L+(c, θ) has compact resolvent.

(b) For each c ≥ 1 the family of closed operators {L+(c, θ)}θ∈Ω(c) is an analytic

family of type (A) with property (1.14).

(c) For each θ ∈ Ω+(c), L−(c, θ) defined on S2 is closable and its closure (also

denoted by L−(c, θ)) has domain DM . Moreover, its resolvent set is nonempty

and, in particular, L−(c, θ) has compact resolvent.

(d) The family of closed operators {L−(c, θ)}θ∈Ω+(c) is an analytic family of type

(A) with property (1.15).

(e) There is a constant r0 > 0 independent of c and θ ∈ Ω+(c) such that {z ∈
C; Im z < −r0} ⊂ ρ(L−(c, θ)).

(f) Let c ≥ 1 and Im z < −r0. Then the resolvent (L−(c, θ) − z)−1 converges to

(L−(c)− z)−1 strongly as θ → 0:

(3.8) s− lim
Ω+(c)3θ→0

(L−(c, θ)− z)−1 = (L−(c)− z)−1.

To prove this proposition we prepare several lemmas.

Since

(3.9) L±(c, θ) = U2(Re θ)L±(c, i Im θ)U2(Re θ)−1,

we have only to study the case Re θ = 0. To begin with we fix a2 ∈ (0, π/2) and set

p(c, τ, ξ) :=
√
e−2τic2|ξ|2 +m2c4 −mc2

for |τ | < π/2, i.e., p(c, τ,D) = T0(c, iτ)−mc2.
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Lemma 3.5. (a) For k = 1, 2, 3,

|∂ξkp(c, τ, ξ)| ≤ K|ξk|,(3.10)

|∂ξk Im p(c, τ, ξ)| ≤ Kτ |ξk|.(3.11)

(b) For |α| ≥ 2,

|∂αξ p(c, τ, ξ)| ≤ Kαc(|ξ|+ c)1−|α| ≤ Kα(|ξ|+ c)2−|α|,(3.12)

|∂αξ Im p(c, τ, ξ)| ≤ Kα|τ |c(|ξ|+ c)1−|α| ≤ Kα|τ |(|ξ|+ c)2−|α|.(3.13)

Here constants K > 0 and Kα > 0 are uniformly in c ≥ 1 and τ ∈ [−a2, a2].

Proof. We write p(c, τ, ξ) + mc2 = mc2g(ξ/(mc)), where g(ξ) :=
√
e−2τi|ξ|2 + 1.

Since 0 < a2 < π/2, we see that |g(ξ)| ≥ K1(1 + |ξ|) for some K1 > 0 uniformly in

|τ | ≤ a2. Thus, (3.10) and (3.12) follow from the estimates

|∂ξkg(ξ)| ≤ K|ξk|(1 + |ξ|)−1, k = 1, 2, 3,

|∂αξ g(ξ)| ≤ Kα(1 + |ξ|)1−|α|, |α| ≥ 2.

Next we put G(ξ) = |ξ|2/(g(ξ) + g(ξ)). Then, g(ξ)− g(ξ) = −2i sin 2τG(ξ), and

|∂ξkG(ξ)| ≤ K|ξk|(1 + |ξ|)−1, k = 1, 2, 3,

|∂αξ G(ξ)| ≤ Kα(1 + |ξ|)1−|α|, |α| ≥ 2.

Thus, (3.11) and (3.13) follow immediately.

Lemma 3.6. There exists K0 > 0 such that

(3.14) K0s(c, ξ) ≤ |p(c, τ, ξ)| ≤ K−1
0 s(c, ξ)

and

−2τ ≤ arg p(c, τ, ξ) ≤ −τ, τ ∈ [0, a2],(3.15)

−τ ≤ arg p(c, τ, ξ) ≤ −2τ, τ ∈ [−a2, 0](3.16)

for c ≥ 1 and ξ ∈ R3, where

(3.17) s(c, ξ) :=
c|ξ|2√
|ξ|2 + c2

.

Proof. We give the proof for τ ∈ [0, a2] only. Let us write

(3.18) p(c, τ, ξ) = mc2e−2τiq

(
|ξ|2

m2c2

)
,
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where q(s) := e2τi(
√
e−2τis+ 1− 1) for s ≥ 0. We note that q′(s) = 2−1(e−2τis+

1)−1/2 and q(0) = 0, q′(0) = 1/2. Hence, since 0 ≤ arg(e−2τis + 1)−1/2 ≤ τ for

s > 0 because of −2τ ≤ arg(e−2τis+ 1) ≤ 0, we get

(3.19) 0 ≤ arg q′(s) ≤ τ

and so 0 ≤ arg q(s) ≤ τ for s ≥ 0. Thus, (3.15) follows. Furthermore, we have

d|q(s)|2/ds = 2 Re q(s)q′(s) > 0 for s > 0, which implies that |q(s)| is strictly

increasing. Writing q(s) = s(
√
e−2τis+ 1 + 1)−1, we see that there exists K1 > 0

independent of τ ∈ [0, a2] such that |q(s)| ≤ K1s(s
1/2 +1)−1 for all s > 0 and that

there exists s1 > 0 and K2 > 0 independent of τ ∈ [0, a2] such that |q(s)| ≥ K1s
1/2

for s ≥ s1. On the other hand, since q(s) = s/2 + O(s2) as s → +0, we see

that there exists s2 > 0 independent of τ such that |q(s)| ≥ s/4 for s ∈ [0, s2].

Consequently, since |q(s)| is strictly increasing, we see that there exists K2 > 0

such that |q(s)| ≥ K2s(1 + s1/2)−1 uniformly in τ ∈ [0, a2] and s ≥ 0. Thus, by

(3.18) we have the desired result.

If τ ∈ [0, π/2), we see −τ ≤ arg(
√
c2e−2τit+m2c4) ≤ 0 for any t ≥ 0. Thus,

setting

N0(τ, c) := {z; Im z ≥ tan(−τ)(Re z +mc2)},

we have a corollary:

Corollary 3.7. We have

Num(T0(c, iτ)−mc2) ⊂ C(0,−2τ,−τ) ∩N0(τ, c)

for τ ∈ [0, a2]. Similarly,

Num(T0(c, iτ)−mc2) ⊂ C(0,−τ,−2τ) ∩N0(−τ, c)

for τ ∈ [−a2, 0].

By Lemma 3.3 we can write

(3.20) Tb(c, iτ)−mc2 = T0(c, iτ)−mc2 + E1(c, τ) + E2(c, τ),

where E1(c, τ) := −c2biτ (x)·e−iτDS0(c, iτ)−1/2, and ‖E2(c)‖ is uniformly bounded

in c ≥ 1 and |τ | < τ0(c).

Lemma 3.8. For any ε > 0 there exists Kε > 0 such that

(3.21) |(E1(c, τ)f, f)| ≤ ε|((T0(c, iτ)−mc2)f, f)|+Kε‖f‖2

holds for f ∈ S2, c ≥ 1 and |τ | < τ0(c).
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Proof. First we show that for any ε > 0 there exists Kε > 0 independent of c ≥ 1

and τ ∈ (−τ0(c), τ0(c)) such that

(3.22) |(E1(c, τ)f, f)| ≤ ε|(S(c,D)f, f)|+Kε‖f‖2, f ∈ S2.

Since 0 < a0 < π/2, we see that there exists δ0 > 0 such that

|e−2τiξ2 +m2c2|2 ≥ δ0(ξ2 +m2c2)2, ξ ∈ R3,

for |τ | ≤ τ0(c) and c ≥ 1. Thus, for any ε > 0 we have

|(E1(c, τ)f, f)| = c|(D(−e−2τi∆ +m2c2)−1/4f, (−e2τi∆ +m2c2)−1/4b−iτf)|
≤ c
{
ε‖D(−e−2τi∆ +m2c2)−1/4f‖2

+ (4ε)−1‖(−e2τi∆ +m2c2)−1/4b−iτf‖2
}

≤ cδ1ε(D2(−∆ +m2c2)−1/2f, f) +K ′ε‖f‖2

for some δ1 > 0 and K ′ε > 0, which implies (3.22). Write

Re
(
e2τi((T0(c, iτ)−mc2)f, f)

)
=

∫
|p(c, τ, ξ)| cos θ|f̂(ξ)|2 dξ,

where θ = arg(p(c, τ, ξ)) + 2τ and f̂ is the Fourier transform of f . Then, since

cos θ ≥ cos a0 > 0 by (3.15), it follows from (3.14) that |((T0(c, iτ)−mc2)f, f)| ≥
K(s(c,D)f, f) for some K > 0 independent of c ≥ 1 and τ ∈ (−τ0(c), τ0(c)).

Hence, combining this with (3.22) we complete the proof.

Lemma 3.9. For any small ε > 0 there exists dε > 0 such that

Num(Tb(c, iτ)−mc2) ⊂ N (C(0,−2τ − ε,−τ + ε), dε), τ ∈ [0, τ0(c)),

Num(Tb(c, iτ)−mc2) ⊂ N (C(0,−τ − ε,−2τ + ε), dε), τ ∈ (−τ0(c), 0]

for c ≥ 1.

Proof. We consider only the case τ ≥ 0. Set z = ((Tb(c, iτ) − mc2)f, f) and

w = ((T0(c, iτ) − mc2)f, f) for f ∈ S2 with ‖f‖ = 1. Then, it follows from

(3.20) and Lemma 3.8 that for any small ε > 0 there exists dε > 0 such that

|z − w| ≤ (sin ε)|w| + dε, and w ∈ C(0,−2τ,−τ) by Corollary 3.7. Hence, the

desired result follows immediately.

Lemma 3.10. Let Viτ = viτ + Wiτ be the multiplication operator with domain

S2. Then, for any ε > 0 there exists dε > 0 such that

Num(Viτ ) ⊂ N (C(0,M1τ − ε,M2τ + ε), dε), τ ∈ [0, a0),

Num(Viτ ) ⊂ N (C(0,M2τ − ε,M1τ + ε), dε), τ ∈ (−a0, 0].

If W = 0, then ε = 0 is allowed in the above.
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Proof. We give the proof only for τ ≥ 0. Let f ∈ S2 with ‖f‖ = 1 and set

w = (Viτf, f) and z = (viτχf, f), where χ is the characteristic function of the disk

|x| ≥ R0. Obviously, z ∈ C(0,M1τ,M2τ). It follows from (v) that∣∣ arg
(
viτ (x)e−i(M2+M1)τ/2

)∣∣ ≤ (M2 −M1)τ/2 < π/2

for |x| ≥ R0 and

|(viτχf, f)| ≥ Re(e−i(M2+M1)τ/2viτχf, f)

≥ K0(|x|Mχf, f) ≥ K0(|x|Mf, f)−K1,

for some K0 > 0 and K1 > 0. Moreover, it follows from the condition (W) that

for any ε > 0 there exists Kε > 0 such that |Wiτ (x)| ≤ ε|x|M + Kε. Hence, by

virtue of (1.9) we see that for any ε > 0 there exists K ′ε > 0 such that |w − z| ≤
ε|z| + K ′ε. Using the same strategy as in the proof of Lemma 3.9, we have the

desired result.

For τ ∈ (0, a0) and ε ≥ 0 we define a sector

(3.23) C−(c, τ, ε) := C(0, θ3(τ)− ε, θ4(τ) + ε),

where θ3(τ) := min {M1τ, π − 2τ} and θ4(τ) := max {π − τ,M2τ}. It is easily

seen that C−(c, τ, 0) is the smallest sector containing both C(0, π− 2τ, π− τ) and

C(0,M1τ,M2τ). If we assume (1.5) and fix small t0 > 0 , then we can verify

(3.24) 0 ≤ θ4(τ)− θ3(τ) ≤ θ0 < π

for all τ ∈ (t0, a0) with some constant θ0.

Combining Lemmas 3.9 and 3.10, we have the following result.

Lemma 3.11. Let L±(c, iτ) be defined on S2:

(a) Suppose Assumption 1.1 with (1.4) and let ε > 0 be small. Then there exists

d
(+)
ε ≥ 0 such that

Num(L+(c, iτ)) ⊂ N (C(0,−2τ − ε,M2τ + ε), d(+)
ε ), τ ∈ [0, τ0(c)),(3.25)

Num(L+(c, iτ)) ⊂ N (C(0,M2τ − ε,−2τ + ε), d(+)
ε ), τ ∈ (−τ0(c), 0],(3.26)

for c ≥ 1.

(b) Suppose Assumption 1.1 with (1.5) and let ε > 0 be small. Then there exists

d
(−)
ε ≥ 0 such that

(3.27) Num(L−(c, iτ) + 2mc2) ⊂ N (C−(c, τ, ε), d(−)
ε ), τ ∈ (0, τ0(c)),

for c ≥ 1.
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If b = 0 and W = 0, then ε = 0 is allowed in (3.25), (3.26) and (3.27).

We write L0
±(c, θ) for L±(c, θ) with b = 0 and W = 0:

L0
±(c, θ) = ±

(√
−c2e−2θ∆ +m2c4 −mc2

)
I2 + vθ(x)I2.

Lemma 3.12. Suppose Assumption 1.1 with (1.4) and fix a small δ > 0. Then

there exist positive constants K̃1, K̃2 such that

‖(L0
+(c, iτ)− z)f‖2 + K̃1‖f‖2

≥ K̃2(‖s(c,D)f‖2 + ‖〈x〉Mf‖2 + |z|2‖f‖2)
(3.28)

is valid for all z ∈ C(0,−2τ − δ,M2τ + δ)c, c ≥ 1, τ ∈ [0, a0) and f ∈ S2. The

same estimate holds for τ ∈ (−a0, 0] if z ∈ C(0,M2τ − δ,−2τ + δ)c.

Proof. We prove the lemma only for τ ≥ 0. Take χ ∈ C∞(R3) with 0 ≤ χ(x) ≤ 1,

χ(x) = 0 for |x| ≤ R0 and χ(x) = 1 for |x| ≥ 2R0, and set v
(∞)
iτ (x) = χ(x)viτ (x).

Then, v
(∞)
iτ (x) ∈ C∞ and Num(v

(∞)
iτ ) ⊂ C(0,M1τ,M2τ). Thus,

L := e−i(M2−2)τ/2(T0(c, iτ)−mc2 + v
(∞)
iτ ) + γ

satisfies Num(L) ⊂ C(0,−(M2 + 2)τ/2, (M2 + 2)τ/2), where γ > 0 is a fixed con-

stant, since both Num(e−i(M2−2)τ/2(T0(c, iτ)−mc2)) and Num(e−i(M2−2)τ/2v
(∞)
iτ )

are contained in this sector. Since the operator norm ‖viτ − v
(∞)
iτ ‖ is bounded

uniformly in τ , the proof of (3.28) is reduced to that of a similar inequality with

L0
+(c, iτ) replaced by L and C(0,−2τ − δ,M2τ + δ) replaced by C(0,−(M2 +

2)τ/2− δ, (M2 + 2)τ/2 + δ), respectively. Let z = x1 + ix2 6∈ C(0,−(M2 + 2)τ/2−
δ, (M2 + 2)τ/2 + δ) and f ∈ S2 with ‖f‖ = 1. Then, by the equality

(L− z)∗(L− z)
= (ReL)2 + (ImL)2 − 2(x1 ReL+ x2 ImL) + |z|2 + i[ReL, ImL]

and by the inequality

(2(x1 ReL+ x2 ImL)f, f) = 2{(x1(ReLf, f) + x2(ImLf, f)}
≤ 2(cos δ)|z|((ReLf, f)2 + (ImLf, f)2)1/2

≤ (cos δ)(|z|2 + ‖ReLf‖2 + ‖ ImLf‖2)

≤ (cos δ)((|z|2 + (ReL)2 + (ImL)2)f, f),

we arrive at

(L− z)∗(L− z) ≥ (1− cos δ)((ReL)2 + |z|2) + i[ReL, ImL]
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as the form sense on S2. Write

P := Re(e−i(M2−2)τ/2(T0(c, iτ)−mc2)),

Q := Re(e−i(M2−2)τ/2v
(∞)
iτ + γ),

i.e., ReL = P +Q. Then, since P ≥ K1s(c,D) and Q ≥ K1〈x〉M for some K1 > 0

by Lemma 3.6 and (M2 + 2)a0 < π, we have

(ReL)2 = P 2 +Q2 + 2Q1/2PQ1/2 +R ≥ P 2 +Q2 +R

≥ K2
1s(c,D)2 +K2

1 〈x〉2M +R,(3.29)

where R := [P,Q1/2]Q1/2 +Q1/2[Q1/2, P ] ∈ Σ1,M−1 and

K2 := sup
τ∈[0,a0),c≥1

‖〈D〉−1R 〈x〉−(M−1)‖ <∞

by Lemma 3.5. Thus,

|(Rf, f)| ≤ K3‖〈x〉M−1f‖ ‖〈D〉f‖
≤ (K3/2)(ε1(〈D〉2f, f) + ε−1

1 (〈x〉2M−2f, f))

for any ε1 > 0. Here we note that for any ε > 0 there exists K ′ε > 0 such that

〈x〉2M−2 ≤ ε〈x〉2M +K ′ε and that s(c, ξ)2 +(1/4) ≥ |ξ|2/4 because s(c, ξ)2 ≥ |ξ|2/4
for |ξ| ≥ 1 and c ≥ 1. Hence, we see that for any small ε > 0 there exists Kε > 0

such that

(3.30) R ≥ −ε(s(c,D)2 + 〈x〉2M )−Kε.

Similarly, we have

sup
τ∈[0,a0),c≥1

‖〈D〉−1[ReL, ImL]〈x〉−(M−1)‖ <∞,

and so we see that for any ε > 0 there exists K ′ε > 0 such that

(3.31) i[ReL, ImL] ≥ −ε(s(c,D)2 + 〈x〉2M )−K ′ε.

Consequently, we have proved the lemma.

Lemma 3.13. Suppose Assumption 1.1 with (1.5) and fix small δ > 0 and t0 > 0.

Then there are positive constants K1, K2 such that

‖(L0
−(c, iτ) + 2mc2 − z)f‖2 +K1‖f‖2

≥ K2(‖s(c,D)f‖2 + ‖〈x〉Mf‖2 + |z|2‖f‖2)
(3.32)

is valid for all z ∈ C−(c, τ, δ)c, c ≥ 1, τ ∈ [t0, a0) and f ∈ S2.
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Proof. The proof is carried out in a similar way to that of the previous lemma.

Let

L̃ := e−i(θ3(τ)+θ4(τ))/2(−T0(c, iτ) +mc2 + v
(∞)
iτ ) + γ

with a fixed constant γ > 0. Then,

Num(L̃) ⊂ C(0,−(θ4(τ)− θ3(τ))/2, (θ4(τ)− θ3(τ))/2)

since Num(−T0(c, iτ) +mc2) ⊂ C(0, π − 2τ, π − τ), and it suffices to prove (3.32)

with L0
−(c, iτ) replaced by L̃ and C−(c, τ, δ) by C(0,−(θ4(τ)−θ3(τ))/2−δ, (θ4(τ)−

θ3(τ))/2+δ). For z = x1 +ix2 6∈ C(0,−(θ4(τ)−θ3(τ))/2−δ, (θ4(τ)−θ3(τ))/2+δ),

we have in the same way as in the proof of Lemma 3.12,

(L̃− z)∗(L̃− z) ≥ (1− cos δ)((Re L̃)2 + |z|2) + i[Re L̃, Im L̃].

Write

P̃ := Re(e−i(θ3(τ)+θ4(τ))/2(−T0(c, iτ) +mc2)),

Q̃ := Re(e−i(θ3(τ)+θ4(τ))/2v
(∞)
iτ + γ).

Since P̃ ≥ K̃0s(c,D) > 0 and Q̃ ≥ K̃0〈x〉M > 0 for some K̃0 > 0 due to (3.24), we

get

(Re L̃)2 ≥ P̃ 2 + Q̃2 + R̃ ≥ K1(s(c,D)2 + 〈x〉2M ) + R̃

for some K1 > 0, where R̃ := [P̃ , Q̃1/2]Q̃1/2 + Q̃1/2[Q̃1/2, P̃ ]. The rest of the proof

is done in the same way as that of the previous lemma.

We next prove the same results for L±(c, iτ) by using (3.20) and (W). Write

‖E1(c, iτ)f‖2 ≤ K
(

c2|ξ|2

|ξ|2 + c2
f̂ , f̂

)
≤ K ′

{(
1

ε

c2

|ξ|2 + c2
f̂ , f̂

)
+

(
ε
c2|ξ|4

|ξ|2 + c2
f̂ , f̂

)}
≤ K ′(ε−1‖f‖2 + ε‖s(c,D)f‖2)

for any ε ∈ (0, 1) and f ∈ S2. Moreover, for any ε > 0 there exists Kε > 0 such

that

‖Wiτf‖ ≤ ε‖〈x〉Mf‖+Kε‖f‖
for any f ∈ S2, ε ∈ (0, 1), τ ∈ [0, τ0(c)). Therefore, we obtain the following.

Lemma 3.14. Suppose Assumption 1.1 with (1.4) and fix a small δ > 0. Then

there exist positive constants K̃1, K̃2 such that

‖(L+(c, iτ)− z)f‖2 + K̃1‖f‖2

≥ K̃2(‖s(c,D)f‖2 + ‖〈x〉Mf‖2 + |z|2‖f‖2)
(3.33)
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is valid for all z ∈ C(0,−2τ−δ,M2τ+δ)c, c ≥ 1, τ with τ ∈ [0, τ0(c)) and f ∈ S2.

The same estimate holds for τ ∈ (−τ0(c), 0] if z ∈ C(0,M2τ − δ,−2τ + δ)c.

Lemma 3.15. Suppose Assumption 1.1 with (1.5) and fix small δ > 0 and t0 > 0.

Then there are positive constants K1, K2 such that

‖(L−(c, iτ) + 2mc2 − z)f‖2 +K1‖f‖2

≥ K2(‖s(c,D)f‖2 + ‖〈x〉Mf‖2 + |z|2‖f‖2)
(3.34)

is valid for all z ∈ C−(c, τ, δ)c, c ≥ 1, f ∈ S2 and τ ∈ [t0, τ0(c)).

Proof of Theorem 1.6. By Lemma 3.3 we may assume b = 0. In this case the

theorem has been proved in [11] when W = 0 (the dilation analyticity of v is not

supposed in [11]) . Thus, we give only an outline of the proof. Since both v(x)

and W (x) are smooth for |x| > R0, we may assume both of them are smooth on

R3. We first note that L00 =
√
−c2∆ +m2c4 + v(x) in L2(R3) is essential self-

adjoint on S (see [11, Thm. 2.1]) due to assumption (v) and that the domain is

DM by Lemma 3.12. Thus, W is L00I2-bounded with bound 0, and so L+(c) is

essential self-adjoint on S2. We next consider L−(c). The proof is carried out by

using the commutator theorem (e.g., [20, Thm. X.37]) as in [11]. Let A := L−(c)

with b = 0 defined on S2 and N := A + 2κ〈x〉MI2 for a large κ > 0 such that

−v(x)I2 + 2κ〈x〉MI2 ≥ κ〈x〉MI2. Then, by the same argument as above, N is self-

adjoint with domain DM . We have N ≥ 1 for large κ > 0, and it is not difficult to

prove that there exists K > 0 such that ‖Af‖ ≤ K‖Nf‖ and

|(Af,Nf)− (Nf,Af)| ≤ K‖N1/2f‖2

for all f ∈ S2. Then, [20, Thm. X.37] implies that A is essential self-adjoint

on S2.

Taking account of (3.9) and using the results obtained above, we can give the

proof of Proposition 3.4.

Proof of Proposition 3.4.

(a) It follows from Lemma 3.14 that L+(c, θ) defined on S2 is closable and the

domain of the closure is DM . Thus, since ρ(L+(c, θ)) 6= φ by Lemma 3.11, it

has compact resolvent by Rellich’s criterion.

(b) It is easy to see that {Sb(c, θ)}θ∈Ω is an analytic family of type (A), and

so is {Tb(c, θ)}θ∈Ω(c) due to (3.4). Therefore, according to our assumptions,

{L+(c, θ)}θ∈Ω(c) is also an analytic family of type (A).

(c), (d), (e) In the same way as above we obtain the desired results by Lemmas 3.11

and 3.15.
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(f) By the resolvent equation we have for Im z < −r0 with large r0 > 0,

(L−(c, θ)− z)−1 − (L−(c)− z)−1

= −(L−(c, θ)− z)−1(L−(c, θ)− L−(c))(L−(c)− z)−1.
(3.35)

We have that (L−(c) − z)S2 is dense in L2 since S2 is core of L−(c), and

‖(L−(c, θ) − z)−1‖ is uniformly bounded in θ by Lemma 3.11. We also see

that L−(c, θ)f → L−(c)f strongly as Ω+(c) 3 θ → 0 for f ∈ S2. Hence, (3.8)

follows from (3.35). This completes the proof.

Now we are in a position to prove Theorems 1.7 and 1.8 with the help of

Theorem 2.3 as follows: H = L2(R3)2, Ω+ = Ω+(c), T = L±(c), T (θ) = L±(c, θ),

U(t) = U2(t). Indeed, Proposition 3.4 shows that (A1)∼(A4) are satisfied in this

case. It will be shown below that L+(c) is of type (I) and L−(c) is of type (II) in

the sense of Theorem 2.3.

Proof of Theorem 1.7. Taking account of Proposition 3.4, we have the theorem as

an immediate consequence of Theorem 2.3.

Proof of Theorem 1.8. Since Proposition 3.4 shows that L−(c) is a boundary

value of {L−(c, θ)}θ∈Ω+(c), we have only to prove that L−(c) is of type (II). By

Lemma 3.11, Num(L−(c, iτ)) ∩R is bounded. But, if L−(c) is of type (I), the set

contains all of the eigenvalues of L−(c), which is impossible. Thus, L−(c) is of

type (II).

Proof of Corollary 1.10. We may consider the case θ1 = iτ1 with τ1 ∈ (0, τ0(c)).

Denote T 0 := −T0(c, iτ1) − mc2 for simplicity. Then, by Lemma 3.6 we have

ImT 0 ≥ K1s(c,D) ≥ K1s(1, D) > 0 for some K1 > 0, and so ImT 0 + ImViτ1 > 0.

Thus, there is no eigenvalue of L−(c). Since K1s(1, D) + ImViτ1 is positive and

has compact resolvent, if we denote by λ0 > 0 the lowest eigenvalue of it, then

ImT 0 + ImViτ1 ≥ λ0. Thus, we have proved the corollary.

Proof of Theorem 1.12. First of all we note that the set of eigenvalues of L−(c, iτ)+

2mc2 are contained in Num(L−(c, iτ) + 2mc2) and that it is independent of τ ∈
(0, τ0(c)). Thus, according to (3.27), for any ε > 0 there exists d ≥ 0 such that it

is contained in the set⋂
0≤τ<τ0(c)

N (C−(c, τ, ε), d) =
⋂

t0≤τ<τ0(c)

N (C−(c, τ, ε), d)

for small t0 > 0, where the equality follows from the fact that C−(c, τ2, ε) is

contained in C−(c, τ1, ε) if 0 < τ1 < τ2 are small. Here we remark that M1τ and
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π−2τ are increasing and decreasing, respectively, in τ , and so θ3(τ) has a maximum

when M1τ = π−2τ if 0 < τ < τ0(c). Thus

sup
t0≤τ<τ0(c)

θ3(τ) = Θ1(c),

and similarly

inf
t0≤τ<τ0(c)

θ4(τ) = Θ2(c).

Hence, we have the desired result.

§4. Dilated Pauli operators

In this section we study the dilated Pauli operator P±(θ) defined by (1.18) for

θ ∈ Ω. First of all we consider P+(θ).

Proposition 4.1. (a) P+(θ) defined on S2 is closable, and its closure (also de-

noted by P+(θ)) has domain D(P+(θ)) = (H2 ∩ L2
M )2.

(b) P+(θ) has compact resolvent. In particular, P+(θ) has a purely discrete spec-

trum.

(c) {P+(θ)}θ∈Ω is an analytic family of type (A), and

U2(t)P+(θ)U2(t)−1 = P+(θ + t)

for all θ ∈ Ω and t ∈ R.

(d) The spectrum of P+(θ) is independent of θ and, in particular, coincides with

that of P+(0), denoted by P+.

(e) P+ is self-adjoint.

Remark 4.2. This proposition shows that the Pauli operator P+ = P+(0) is a

boundary value of {P+(c, θ)}θ∈Ω+
and of type (I) in Theorem 2.3.

Outline of the proof. Writing P0(θ) := (2m)−1(σ·Db
θ)

2 we have, on S2, the equality

(Tb(c, θ) +mc2)2(Tb(c, θ)−mc2 − P0(θ)) = −2mc2P0(θ)2,

and hence

(4.1) Tb(c, θ)−mc2 − P0(θ) = ((Tb(c, θ) +mc2)−1)2(−2mc2P0(θ)2).

Thus, because the estimate

(4.2) ‖(Tb(c, θ) +mc2)−1‖ ≤ Kc−2
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follows from Lemma 3.9, we see that L+(c, θ)f → P+(θ)f as c → ∞ for each

f ∈ S2 and θ ∈ Ω. Thus, since s(c, ξ)→ |ξ|2 as c→∞, we have by Lemma 3.14,

(4.3) ‖(P+(θ)− z)f‖2 + ‖f‖2 ≥ K1(‖∆f‖2 + ‖〈x〉Mf‖2), f ∈ S

for some K1 > 0. Using this estimate and arguments similar to those in the proof of

Proposition 3.4, we can obtain (a) ∼ (d). In particular, D(P+(θ)) = (H2)2∩(L2
M )2

follows from (4.3). It is well known that S00 := (−(2m)−1∆ + v(x))I2 on S2 is

essentially self-adjoint in (L2)2, and it follows that P+(0) − S00 is S00-bounded

with relative bound zero, and so P+ is essentially self-adjoint on S2.

Proof of Proposition 1.14. Proposition 1.14 follows from the above proposition

and Theorem 2.3 immediately.

To study the nonrelativistic limit of L+(c, θ), we first consider Tb(c, θ)−mc2.

Lemmas 3.2 and 3.9 guarantee that we can take a bounded open set B0 contained

in ρ(P0(θ)) and ρ(Tb(c, θ)) for all θ ∈ Ω and large c ≥ 1.

Lemma 4.3. Let B0 be as above. Then, there is a constant K > 0 such that

(4.4) sup
z∈B0

‖(Tb(c, θ)−mc2 − z)−1 − (P0(θ)− z)−1‖ ≤ Kc−2

for θ ∈ Ω and large c ≥ 1.

Proof. According to (4.1), we can write (Tb(c, θ)−mc2 − z)−1 − (P0(θ)− z)−1 =

F1F2F3. Here, F1 = (Tb(c, θ)+mc
2)(Tb(c, θ)−mc2−z)−1, F2 = c2(Tb(c, θ)+mc

2)−1

and F3 = 2mP0(θ)2(Tb(c, θ)+mc2)−2(P0(θ)−z)−1. By the use of (4.2), we observe

that ‖F1‖, ‖F2‖ and c4‖F3‖ are uniformly bounded in θ ∈ Ω, large c ≥ 1 and

z ∈ B0, which proves the lemma.

Since the numerical range of L+(c, θ) is contained in a sector independent of

c (Lemma 3.11) and since L+(c, θ)f converges to P+(θ)f strongly for each f ∈ S2,

the numerical range of P+(θ)f is contained in the same sector. Thus, we can find

a bounded open set B1 contained in ρ(P+(θ)) and ρ(L+(c, θ)) for all θ ∈ Ω and

large c ≥ 1. Using the above lemma we can prove that L+(c, θ) converges to P+(θ)

in the norm resolvent sense.

Lemma 4.4. Let B1 be as above. Then there is a constant K > 0 such that

sup
z∈B1

‖(L+(c, θ)− z)−1 − (P+(θ)− z)−1‖ ≤ Kc−2

for large c ≥ 1.
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Proof. Let z ∈ B1. Then the following resolvent equation holds:

(L+(c, θ)− z)−1 − (P+(θ)− z)−1

= −(L+(c, θ)− z)−1(L+(c, θ)− P+(θ))(P+(θ)− z)−1
(4.5)

on (P+(θ) − z)S2. Since S2 is a core of P+(θ) it holds on the whole space (L2)2.

Similarly, we have

(P+(θ)− z)−1 = (P0(θ)− z)−1

− (P0(θ)− z)−1(vθI2 +Wθ)(P+(θ)− z)−1,
(4.6)

(L+(c, θ)− z)−1 = (Tb(c, θ)−mc2 − z)−1

− (L+(c, θ)− z)−1(vθI2 +Wθ)(Tb(c, θ)−mc2 − z)−1.
(4.7)

Now it follows from

(L+(c, θ)− z)−1(vθI2 +Wθ) ⊂ ((vθI2 +Wθ)(L+(c, θ)− z)−1)∗

and D(L+(c, θ)) = DM ⊂ D(vθ) that (L+(c, θ) − z)−1(vθI2 + Wθ) can be con-

sidered a bounded operator, and so it follows from Lemma 3.14 that ‖(L+(c, θ)−
z)−1(vθI2 +Wθ)‖ is uniformly bounded for θ ∈ Ω and large c ≥ 1. Thus substitut-

ing (4.6) and (4.7) into the right-hand side of (4.5) and using the inequality

‖(P0(θ)− z)−1(L+(c, θ)− P+(θ))(Tb(c, θ)− z)−1‖ ≤ Kc−2

due to (4.4) , we arrive at the desired result.

Proposition 4.5. Let B be an arbitrary compact set in ρ(P+) and fix θ ∈ Ω. Then

there are constants c0 > 0 and K > 0 such that B ⊂ ρ(L+(c, θ)) for c ≥ c0 and

sup
z∈B
‖(L+(c, θ)− z)−1 − (P+(θ)− z)−1‖ ≤ Kc−2

for c ≥ c0.

Proof. Lemma 4.4 implies that L+(c, θ) converges to P+(θ) in the generalized

sense and so the proposition follows immediately from [17, Thm. 2.25 and (3.10)

in Chap. IV], since ρ(P+) = ρ(P+(θ)).

This result implies that for each eigenvalue λ (with multiplicity n) of P+ there

exist n eigenvalues (counting multiplicity) λj(c), j = 1, . . . , n of L+(c) near λ for

large c and λj(c)→ λ as c→∞.
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We next consider P−(θ).

Proposition 4.6. Let θ ∈ Ω+.

(a) P−(θ) defined on S is closable and its closure (also denoted by P−(θ)) has the

domain D(P−(θ)) = (H2 ∩ L2
M )2.

(b) The resolvent set of P−(θ) is not empty and its resolvent is compact. In par-

ticular, P−(θ) has a purely discrete spectrum.

(c) {P−(θ)}θ∈Ω+
is an analytic family of type (A), and

U(t)P−(θ)U(t)−1 = P−(θ + t)

for all θ ∈ Ω+ and t ∈ R.

(d) The spectrum of P−(θ) is independent of θ, denoted by Σ̃.

Remark 4.7. We call an element of Σ̃ a resonance of P− even if P− defined on

S2 does not necessarily have a unique self-adjoint extension.

Outline of the proof. We see that (L−(c, θ)+2mc2)f → P−(θ)f as c→∞ for each

f ∈ S2 and θ ∈ Ω+. Thus, since s(c, ξ)→ |ξ|2 as c→∞, we have by Lemma 3.15,

(4.8) ‖(P−(θ)− z)f‖2 + ‖f‖2 ≥ K1(‖∆f‖2 + ‖〈x〉Mf‖2), f ∈ S2,

for some positive constants K1. Using the estimate we can prove the proposition

in the same way as Proposition 3.4.

Moreover, as in the proof of Proposition 4.5 we can prove the next result:

Proposition 4.8. Let B be a compact set in C \ Σ̃ and fix θ ∈ Ω+. Then there

are constants c0 > 0 and K > 0 such that B ⊂ ρ(L−(c, θ) + 2mc2) for c ≥ c0 and

sup
z∈B
‖(L−(c, θ) + 2mc2 − z)−1 − (P−(θ)− z)−1‖ ≤ Kc−2

for c ≥ c0.

By Propositions 4.6 and 4.8 we have the following corollary:

Corollary 4.9. (a) Σ̃ ⊂ C+.

(b) If P− defined on S2 is an essentially self-adjoint operator, then the self-adjoint

extension (also denoted by S̃) is of type (II) as a boundary value of the analytic

family {P−(θ)}θ∈Ω+
.

Proof. (a) If there exists an eigenvalue of Σ̃ in C−, then Proposition 4.8 implies

that there exist eigenvalues of L−(c, θ) + 2mc2 near it for large c > 0. But, this
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contradicts the fact that the eigenvalues of L−(c, θ) are all in C+. Hence we have

proved (a).

(b) Taking account of the fact that the numerical range of P−(θ) is contained in

the cone {w ∈ C;A1 Im θ < arg(w − w0) < π − A1 Im θ} for some w0 ∈ C and

A1 > 0, we can prove, as in the proof of Proposition 3.4(f), that (P−(θ) − z)−1f

converges to (P− − z)−1f strongly as Ω+ 3 θ → 0 for all f ∈ L2(R3) and for all

z with (− Im z) > 0 sufficient large. Hence we can prove (b) as in the proof of

Theorem 1.8.

Remark 4.10. If b = 0 and W = 0, then P− = −(−(2m)−1∆ − v(x))I2. The

essential self-adjointness and the absolute continuity of the spectrum of −∆−v0(x)

with v0(x) → ∞ and v0(x) = O(|x|M ) as |x| → ∞ under the condition M ≤ 2

have been studied by many papers (see, e.g., [26] and its references). In the case of

P− the essential self-adjointness can be proved in the same way as [20, Thm. X.38]

(see also [13]).

Hence, we omit the proof of the following:

Proposition 4.11. If M ≤ 2, then P− defined on S2 is essentially self-adjoint.

Proof of Proposition 1.15. Proposition 1.15 follows from Corollary 4.9, Proposi-

tion 4.11 and Theorem 2.3.

§5. Nonrelativistic limits

Proofs of Theorems 1.17 and 1.18. We give the proof for Theorem 1.18 only. We

already proved Theorem 1.17 after the proof of Proposition 4.5. Let ε > 0 be small.

Then, it follows from Proposition 4.8 that there is no resonance of L−(c, θ)+2mc2

in O \
(
∪N−
k=1 Bε(µk)

)
for large c.

Let

Pk(A) :=
−1

2πi

∫
|z−µk|=ε

(A− z)−1 dz

be the eigenprojection for an operator A associated with the eigenvalues in the

open disc |z − µk| < ε. Then, by Proposition 4.8, we have

(5.1) lim
c→∞

‖Pk(L−(c, θ) + 2mc2)− Pk(P−(θ))‖ = 0.

Thus, since dimPk(P−(θ)) = dimPk(P−), we have dimPk(L−(c, θ) + 2mc2) = nk
if c is large, and hence we have proved the theorem.
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We discuss the result of Theorem 1.12 for a simple case. To do so we prepare

an elementary lemma.

Lemma 5.1. Fix a2 ∈ (0, π/2). Then, for | Im θ| ≤ a2,∥∥∥√−c2e−2θ∆ +m2c4 − ce−θ
√
−∆

∥∥∥ ≤ mc2

cos a2
.

Proof. It suffices to prove

sup
ξ∈R3

∣∣∣√e−2iτ c2|ξ|2 +m2c4 − ce−iτ |ξ|
∣∣∣ ≤ mc2

cos a2

for |τ | ≤ a2. We write∣∣∣√e−2iτ c2|ξ|2 +m2c4 − ce−iτ |ξ|
∣∣∣ =

m2c4

|eiτp(c, τ, ξ) + eiτmc2 + c|ξ| |

and use Lemma 3.6 to have Re[eiτp(c, τ, ξ)] ≥ 0. Then, we have the desired result.

Let b = 0, W = 0 and v(x) = κ0|x|M with M ≥ 2 and κ0 > 0. Then, M1 =

M2 = M and 2π(M + 2)−1 ≤ π/2. In this case we write L−(c, θ) = L0−(m, c, θ),

where

L0−(m, c, θ) := −
√
−c2e−2θ∆ +m2c4 −mc2 + κ0e

Mθ|x|M .

Here we consider the mass m > 0 as a parameter. Since a0 can be arbitrarily chosen

if 0 < a0 < 2π(M + 2)−1 is satisfied, we choose a0 sufficiently near 2π(M + 2)−1,

so that Θ1(c) = Mπ/(M + 2) and Θ2(c) = Mπ/(M + 1). We may set ε = 0 and

d = 0 in Theorem 1.12. Thus, the resonances of L−(c) + 2mc2 are contained in the

sector

(5.2) C
(

0,
Mπ

M + 2
,
Mπ

M + 1

)
.

The corresponding P− is P0− := (2m)−1∆ + κ0|x|M and its resonances are on the

half-line eiM(M+2)−1π[0,∞) (see Remark 1.16). Since each resonance of L0−(m, c,

0) + 2mc2 converges to some resonance of P0− as c → ∞, there exist many reso-

nances of L0−(m, c, 0) + 2mc2 near the half-line for large c. We next define

S±(θ) := ±ce−θ
√
−∆ + κ0e

Mθ|x|M .

Then, according to the above lemma, S±(θ) have similar properties as L±(c, θ).

Indeed, S+(θ) is a closed operator with domain D(S+(θ)) = DM for | Im θ| <
π/(M + 1) and S−(θ) is also a closed operator with the same domain D(S−(θ)) =

DM for 0 < Im θ < 2π/(M + 1). Moreover, they are analytic families of type (A)
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in θ. Further, S+(0) is a positive self-adjoint operator with compact resolvent, and

the eigenvalues are independent of θ. Here we observe that the following equality

is valid:

S−(θ) = eiMπ(M+1)−1

S+(θ − iπ/(M + 1))

for | Im θ| < 2π/(M + 1). Thus, the eigenvalues of S−(θ) are on the half-line

eiMπ(M+1)−1

[0,∞). By the previous lemma we can also see that L0−(m, c, θ)+2mc2

converges to S−(θ) = −ce−θ
√
−∆+eMθ|x|M in the norm-resolvent sense asm→ 0.

Thus, there exist many resonances of L−(c) + 2mc2 near the half-line for each c if

m is small. Consequently, we know that the complement of the sector (5.2) is an

optimal resonance-free region in this case.
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