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Connections on Parahoric Torsors over Curves

by

Vikraman Balaji, Indranil Biswas and Yashonidhi Pandey

Abstract

We define parahoric G-torsors for a certain class of Bruhat–Tits group schemes G on a
smooth complex projective curve X when the weights are real, and also define connections
on them. We prove that a G-torsor is given by a homomorphism from π1(X \ D) to a
maximal compact subgroup of G, where the finite subset D ⊂ X is the parabolic divisor,
if and only if the G-torsor is polystable.
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§1. Introduction

Let X be an irreducible smooth projective curve defined over the field of complex

numbers. Let G be a simple and simply connected affine algebraic group defined

over C. Fix a finite subset D ⊂ X. Let G be a Bruhat–Tits group scheme with

parabolic points at D (see Definition 3.3).

In [BS], an analogue of the Mehta–Seshadri theorem in [MS] was proved re-

lating stable parahoric torsors under Bruhat–Tits group schemes with irreducible

homomorphisms of certain Fuchsian groups into a maximal compact subgroup of

G. This was done under the assumption that the parabolic weights are rational, or

equivalently, the fixed points of the Fuchsian group are all elliptic. Recall that in

[BS] it is shown that if the weights are chosen to be rational then one can recover

the G-torsors as invariant direct images of orbifold principal bundles with respect

to suitable ramified covers of X ramified over the parabolic points.
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An obstruction to covering real weights in the setting of parahoric torsors

is that the classical Bruhat–Tits group scheme is defined on spectra of discrete

valuation rings, while the phenomenon of parabolic bundles with real weights nat-

urally lies in the setting of an analytic neighborhood of the origin. Further, the

notion of invariant direct image fails to generalize directly to the analytic setting

when the covering map is no longer algebraic. We address this issue by working

with a natural analogue of Deligne extensions to the parahoric torsor setting: to

a pair (E, d̂) of a principal G-bundle E equipped with a flat connection d̂ on the

punctured disc, we give a canonical extension to a torsor under the Bruhat–Tits

group scheme on the compact Riemann surface (see Section 10.2). We use this to

construct the parahoric torsor associated to a representation of the fundamental

group of the punctured Riemann surface.

Another obstruction in the case of real weights is the notion of stability for

parahoric torsors. Filling the lacuna in [BS], we have a definition of stability for

parahoric torsors (6.2) that covers real weights as well. Then, following the ap-

proach in the paper of Mehta–Seshadri ([MS, p. 217]), in Section 7 we develop the

theme of variation of weights in the setting of parahoric torsors, where the notions

of (semi)stability for the case of real weights are shown to coincide for “nearby”

rational weights. Although the broad lines are the same, this generalization is not

entirely straightforward.

We then go on to define the notion of a connection on a G-torsor over a smooth

projective curve over C and prove the analogue of the Donaldson–Uhlenbeck–Yau

correspondence in the parahoric setting when the weights are real. The basic idea

is to use the Tannakian formalism and the argument reduces to the case of the

associated parabolic Lie algebra bundle. The more general reductive group case is

then an easy generalization.

§1.1. Origins

In the early 1960s, Mumford defined the notion of stability for vector bundles

on curves as a tool to get Hausdorff moduli spaces; using geometric-invariant

theory, he then constructed the moduli space of stable vector bundles. In [NS],

Narasimhan and Seshadri gave an alternative characterization of stability using

flat connections; more precisely, they proved that a holomorphic vector bundle E

on a compact Riemann surface is stable if and only if E arises from an irreducible

projective unitary representation of the fundamental group of the Riemann surface.

This correspondence between flat projective unitary connections and stable vector

bundles has been generalized in several directions. Ramanathan ([Ra]) extended

the correspondence to the case of holomorphic principal G-bundles, where G is a

complex reductive affine algebraic group ([Ra]). On the other hand, Mehta and
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Seshadri ([MS]) generalized the Narasimhan–Seshadri construction to include uni-

tary logarithmic connections; more precisely, they identified the irreducible unitary

representations of general Fuchsian groups with fixed conjugacy classes as stable

parabolic bundles with fixed parabolic data determined by the conjugacy classes.

These logarithmic connections are those that have regular singularity at finitely

many points and were already apparent in the early work of Weil ([We]); their im-

portance was emphasized by Deligne in [De]. The objects replacing stable bundles

in the Mehta–Seshadri correspondence are stable parabolic vector bundles. Fol-

lowing Donaldson’s reinterpretation of the Narasimhan–Seshadri correspondence,

Biquard ([Biq]) gave a differential geometric interpretation of this Mehta–Seshadri

correspondence.

It is a very natural problem to generalize the Mehta–Seshadri correspondence

from the setting of parabolic vector bundles to that of principal G-bundles, where

G is a complex reductive affine algebraic group. On the side of representations, the

objects were easy to define: they were homomorphisms of Fuchsian groups taking

values in a maximal compact subgroup of G such that, for each puncture of the

Riemann surface, the associated conjugacy class in the fundamental group of the

surface is mapped to a fixed conjugacy class of the maximal compact subgroup

of G. Similarly, on the side of connections, the corresponding objects have been

quite well understood since the work of Deligne. The central problem was to gen-

eralize the notion of a stable parabolic vector bundle to the setting of principal

G-bundles. From a Tannakian perspective ([BBN1]) it became apparent that a

naive generalization in terms of parabolic G-bundles, i.e., principal G bundles with

parabolic structures, was insufficient for setting up a comprehensive analogue of

the Mehta–Seshadri correspondence.

At a technical level, it was not clear what the correct notion of weight should

be in the general setting. A breakthrough came in the work of Boalch ([Bo])

and Balaji–Seshadri ([BS]). These papers introduced the correct and very natural

notion of weight, namely, as a point in the affine apartment of G. As a consequence

of this viewpoint, the reason for the inadequacy of parabolicG-bundles also became

clear. It was realized that instead of parabolic G-bundles, one should consider

torsors or principal homogeneous spaces under parahoric group schemes in the

sense of Bruhat and Tits. Balaji and Seshadri ([BS]) extended the Mehta–Seshadri

theorem to the case of parahoric torsors with rational weights.

Prior to these works, there were at least two partial approaches to generalize

the Mehta–Seshadri theorem, both around the turn of the millennium. The ap-

proach in [BBN1] was Tannakian in spirit and followed the method of Nori ([No]);

this Tannakian approach identified the basic problem, namely that the object as-

sociated to a representation of a Fuchsian group into the maximal compact of G,
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such that for each puncture of the Riemann surface the associated conjugacy class

in the fundamental group of the surface is mapped to a fixed conjugacy class of

the maximal compact subgroup of G, in general will not be a principal G-bundle

on the Riemann surface. The approach in [TW] again gave a partial solution to

the problem; in the language of Weyl alcoves, the solution was for weights in the

interior of the Weyl alcove that corresponds to the subclass of parabolic G-bundles.

Parahoric group schemes G and G-torsors over smooth projective curves were

first defined and studied by Pappas–Rapoport ([PR1]). Subsequently, in [PR2],

they made several conjectures on the moduli stacks of G-torsors. Most of these

conjectures were answered by Heinloth ([He1]) providing a precise setting for the

study of these moduli stacks. The paper of Seshadri ([Se2]) takes up the ques-

tion of the analogue of the Mehta–Seshadri theorem; the main emphasis in [Se2]

was again to point out that for a solution to the problem of obtaining analogues

of the Mehta–Seshadri theorem, one has to go beyond the category of principal

G-bundles. Evidence of the role of Bruhat–Tits theory was also given in a few

illustrative examples. The paper of Boalch ([Bo]) studies logarithmic connections

on G-bundles and the notion of parahoric torsors comes along with the first ap-

pearance of the notion of weights for these torsors. Around the same time and

independently in [BS], a similar notion of weights was defined towards providing

a satisfactory analogue of the Mehta–Seshadri theorem in the general setting for

semisimple groups G, thereby completing the broad picture outlined in [Se2]. The

notion of “invariant direct images” of torsors in [BS] plays a key role analogous to

the one in [MS] for the case of vector bundles.

§2. Preliminaries

In this section we collect together some standard notions and notation that will

be used throughout this paper. See [BT1], [BT2], [BS], [He1] for this section and

the next one. The base field will always be C.

Define

(2.1) A := C[[t]] and K := C((t)),

where t denotes a uniformizing parameter. Let G be a semisimple simply connected

affine algebraic group defined over C. The Lie algebra of G will be denoted by g. Fix

a maximal torus T ⊂ G; let Y (T ) = Hom(Gm, T ) be the group of all holomorphic

one-parameter subgroups of T .

§2.1. Apartment of G

For each maximal torus T of G, we have the standard affine apartment A
T

. It is

an affine space under Y (T ) ⊗Z R. In general, there is no origin in the apartment
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(cf. [BT1]), but for purposes of this paper, we shall identify A
T

with Y (T ) ⊗Z R
(see [BS, §2]).

Let V be a real affine space. A function f : V −→ R is said to be an affine

functional if

f(rx+ (1− r)y) = rf(x) + (1− r)f(y)

for all x, y ∈ V and r ∈ R. Thus, for a root α of G and an integer n ∈ Z there is

the affine functional

α+ n : A
T
−→ R, x 7−→ α(x− 0) + n.

We note that these are called the affine roots of G. The zero locus of α + n will

be denoted by Hα+n; it is called an affine wall. The set of affine walls is known to

be locally finite, meaning any compact subset of A
T

intersects only finitely many

affine walls. For any point x ∈ A
T

, let Zx denote the set of affine functionals

vanishing on x. For an integer n ≥ 0, define

Hn = {x ∈ A | |Zx| = n},

which is the set of all points where n of the affine functionals vanish. A facet Ω of

A
T

is defined to be a connected component of Hn for some n. The dimension of

a facet is its dimension as a real manifold. We then have a decomposition of the

apartment,

(2.2) A
T

=
⊔
n

Hn.

Although, as mentioned above, almost always Θ will be a point of A
T

, some-

times Θ will also be a facet of A
T

.

§3. Parahoric group scheme and torsors

§3.1. Invariant direct image

The base field is C. Let p : W −→ U be a finite flat surjective morphism of normal,

integral Noetherian schemes that is Galois. So the Galois group Gal(p), which we

will denote by Γ, acts on W with U = W/Γ being the quotient. Such a morphism

p is called a Galois covering with Galois group Γ.

Let G be an affine group scheme over W . For the above Galois covering map

p, the direct image p∗G is defined as follows: for each U -scheme S, set

(3.1) (p∗G )(S) = Hom
W

(S ×U W,G );

this is representable by a group scheme ([BLR, Thm. 4 and Prop. 6]). Assume that

the group scheme G is equipped with an action of the Galois group Γ that lifts the
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action of Γ on W ; in particular, the “multiplication map” and the “inverse map”

on G are Γ-equivariant. Such a G will be called a Γ-group scheme over W .

There is a left action of Γ on S ×U W induced by the action of Γ on W . This

and the left action of Γ on G together induce the following right action of Γ on

(p∗G )(S):

(3.2) (f.γ)([s, w]) := γ−1.f(γ.[s, w]), [s, w] ∈ S ×U W, γ ∈ Γ.

Consider the fixed point subscheme under the above action of Γ on p∗G . The

general results on fixed point subschemes given in [Ed, Sect. 3] can be applied

to our situation since the characteristic is 0. Consequently, a canonically defined

smooth closed X-subgroup scheme

pΓ
∗
G := (p∗G )

Γ

⊂ p∗G

is obtained. This pΓ
∗
G is representable because p∗G is representable.

Definition 3.1 (Invariant direct image). Let p : W −→ U be as above, and let

Γ = Gal(W/U). Let G be a smooth affine Γ-group scheme over W . Define the

invariant direct image of G to be

(3.3) pΓ
∗
(G ) := (p∗G )Γ,

so (pΓ
∗
G )(S) = G (S ×U W )Γ for any U -scheme S.

More generally, if E is any affine scheme over W with a lift of the Γ-action

on W , then define the invariant direct image of E to be

pΓ
∗
E := (p∗E)Γ.

§3.2. Parahoric torsors

The notation of Section 2.1 will be followed. Let R = R(T,G) denote the root sys-

tem of G (cf. [Sp, p. 125]). Thus, for every r ∈ R, there is the root homomorphism

ur : Ga −→ G ([Sp, Prop. 8.1.1]).

For any nonempty subset Θ ⊂ AT , the parahoric subgroup P
Θ
⊂ G(K),

(3.4) P
Θ

:= 〈T (A), {ur(tmr(Θ)A)}r∈R〉,

is the subgroup generated by T (A) and {ur(tmr(Θ)A)}r∈R, where

mr = mr(Θ) = −
[

inf
θ∈Θ

(θ, r)

]
,

and A is defined in (2.1) ([BS, p. 8]). Moreover, by [BT2, Sect. 1.7] we have an affine

flat smooth group scheme GΘ −→ Spec(A) corresponding to Θ. The set ofK-valued
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(respectively, A-valued) points of G
Θ

is identified with G(K) (respectively, P
Θ

).

The group scheme G
Θ

is uniquely determined by its A-valued points. Here we will

often take Θ to be just a point of A
T

.

Remark 3.2. We remark that the notion of a parahoric subgroup is defined in

the greatest generality in the basic papers of Bruhat and Tits. For our purposes,

the definition given above is sufficient.

Let X be a smooth complex projective curve. We fix once and for all a

nonempty finite set of closed points

(3.5) D = {x
j
}mj=1 ⊂ X.

These will play the role of parabolic points. Let A
j

:= Ô
X,x

j
be the complete

discrete valuation ring with function field Kj ' C((t)) and residue field C, obtained

by completing the local rings OX,xj . We shall denote Spec(Aj) by Dj .

Definition 3.3. Let G be a flat, affine group scheme on X of finite type. We call

G a Bruhat–Tits group scheme with parabolic points D, if

(1) restricted to X \D, it is isomorphic to the split group scheme G × (X \D),

and

(2) G|
Dj
−→ Dj is a Bruhat–Tits group scheme for each j.

We shall denote G by GΩ, where Ω = {Ωj}mj=1 is a collection of facets of the

Bruhat–Tits building with G|Dj corresponding to Ωj .

By the general theory due to Bruhat and Tits, one has an affine flat smooth

group scheme GΘ on Spec(A) corresponding to Θ. The set of K-valued (respec-

tively, A-valued) points of G
Θ

is identified with G(K) (respectively, P
Θ

). The

group scheme GΘ is uniquely determined by its A-valued points. These notions

were defined and the moduli stack of G
Θ

-torsors studied extensively in the papers

of Pappas–Rapoport (cf. [PR1], [PR2]) and Heinloth ([He1]). To construct one

on the whole of X one can proceed as in [BS, 5.2]. The existence of such group

schemes also follows from the invariant direct images constructed above (see also

[BS, Thm. 5.2.7]).

Definition 3.4 ([BS, Sect. 6]). A quasi-parahoric torsor E is a G
Ω,X

-torsor on X.

Definition 3.5 ([BS, Sect. 6], [Bo]). A parahoric torsor is a pair (E ,θ) consisting

of

(1) a G
Ω,X

-torsor E −→ X, and
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(2) weights, meaning elements θ = {θi}mi=1 ∈ (Y (T )⊗ R)m in the interior of Ωi.

Remark 3.6. The above notion of weight is the precise analogue of the classical

weight for a parabolic vector bundle with multiplicity (cf. [MS, p. 211, Def. 1.5]).

Remark 3.7. It should be noted that as in [BS], the theory of Bruhat–Tits group

schemes that are used here assumes that the group G is semisimple and simply

connected. On the other hand, for the case of GL(V ), which satisfies neither of

these conditions, the parabolic bundles are classic (cf. [Se1], [MS], [Bis]). In [BS,

Exa. 2.3.4] and [BS, Rem. 6.1.5], it is noted that the torsors under Bruhat–Tits

group schemes for GL(V ) are the same as the parabolic vector bundles. Let us

spell this out for the convenience of the reader: Let GL(V ) be a Bruhat–Tits group

scheme on Spec(A) with generic fiber GL(V ). Fix a maximal torus T (V ) ⊂ GL(V ).

Let E be a GL(V )-torsor, and let θ(V ) ∈ Al(T (V ))R be a weight as a point in the

so-called Weyl alcove (see [BS, p. 9]). Then, the associated vector bundle gets a

canonical parabolic structure with quasi-parabolic type determined by the group

scheme GL(V ) while the parabolic weights are given by θ(V ). We observe that

in the case of GL(n,C), or SL(n,C), giving a point θ(V ) ∈ Al(T (V ))R in the

Weyl alcove is equivalent to giving n-tuples (α1 , α2 , . . . , αn) ∈ Rn

, such that every

α
i
≥ 0 and α

i
≤ α

i+1
, for 1 ≤ i ≤ n− 1; in the case of SL(n,C), the condition of

the determinant translates to the further condition

n∑
i=1

αi ∈ Z.

By a Weyl group conjugation, we can also arrange the αi ’s in increasing order,

i.e., 0 ≤ α
1
≤ α

2
≤ · · · ≤ α

n
< 1. Once the parahoric subgroup is chosen, this

determines a flag type and hence we may even order the parabolic weights in a

strictly increasing sequence.

§3.3. Rational weights

Starting with a m-tuple of weights θ ∈ (Y (T ) ⊗ Q)m, following the proof of the

converse in [BS, Thm. 2.3.1], we get positive integers d1, d2, . . . , dm such that

di · θi ∈ Y (T ). By choosing these di to be smallest with this property, we see that

a choice of θ entails a choice of ramification index dx at each point x ∈ D.

There exists a ramified Galois cover of curves p : Y −→ X that is

• unramified over X \D, and

• the ramification index over x ∈ D is dx,

if and only if exactly one of the following conditions holds:
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(1) the genus of X is nonzero;

(2) X = P1 and #D ≥ 3;

(3) X = P1, #D = 2 and dx = dy, where D = {x, y}.

(See [Na, p. 26, Prop. 1.2.12].)

When we consider parahoric torsors as invariant direct images of (Γ, G) bun-

dles, it will always be with respect to such a Galois cover. See also [Bis].

§3.4. Rational weights and parahoric G-torsors as (Γ, G)-bundles

Let (X,D) be as above, and let G −→ X be a Bruhat–Tits group scheme over X.

By [BS, Thm. 5.3.1], there exists a (possibly ramified) finite Galois cover p : Y −→
X branched over D, and a principal G-bundle F over Y (cf. [BS, Notn. 5.1.0.1])

equipped with a lift of the action of the Galois group Γ := Gal(p), such that the

following statements hold:

(1) Let FG := IsomY (F, F ) be the twisting of the constant group scheme G −→ Y

by F . The invariant direct image satisfies the condition

(3.6) pΓ
∗FG = G.

(2) Let DY := p−1(D) ⊂ Y denote the ramification points of the covering p.

For each y ∈ DY , let Γy ⊂ Γ be the isotropy subgroup that fixes y. Let

τy : Γy −→ Aut(Fy) be the action of Γy on the fiber Fy. Its conjugacy class is

called the local type of F at y; this local type will be denoted by [τy]. By the

type τ of F , we mean the set of conjugacy classes [τy] of τy:

τ := {[τy] | y ∈ DY }.

Let Mτ
Y (Γ, G) denote the moduli stack of (Γ, G) bundles over Y of type τ ,

and let MX(G) denote the moduli stack of G torsors on X. Then there is an

isomorphism of moduli stacks

(3.7) αF :Mτ
Y (Γ, G) −→MX(G),

given by the (Γ, G) bundle F as follows: Denote by F op the left G-bundle

defined by gf := fg−1, where g ∈ G and f ∈ F . The above group scheme FG

acts on the right of F op. The isomorphism in (3.7) is

(3.8) E 7−→ pΓ
∗ (E ×Y,G F op) = pΓ

∗ (IsomY (E,F )).

The inverse of the map in (3.7) is given by

(3.9) E 7−→ p∗E ×p∗G F.
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(3) Let y ∈ DY , and x := p(y). Let Ny = Spec(B), where B = ÔY,y, and also

Dx = Spec(A) with A = ÔX,x. Let Uy denote the group of local Γy–G auto-

morphisms of F |Ny (cf. [BS, Def. 2.2.7]). Then by [BS, Prop. 5.1.2] we have

(3.10) G|Dx(A) = Uy.

For the equality in (3.10), we need the existence of the (Γ, G) bundle F only

locally on Ny and not on the entire Y .

A different (Γ, G) bundle F ′ of type τ will, in general, provide a different

(cf. (3.7)) isomorphism αF ′ :Mτ
Y (Γ, G) −→MX(G).

§4. Change of weights under a homomorphism

§4.1. The local homomorphism problem

Consider the following problem. Let A be an arbitrary discrete valuation ring

with quotient field K. Let G be a semisimple and simply connected group. Let

ρ : G −→ H be a homomorphism. Fix a maximal torus T ⊂ G. Then fix a weight

θ in the affine apartment A
T

for T . It should be emphasized that θ may not

be a rational point, meaning it may not lie in the image of Y (T ) ⊗Z Q. Fix a

maximal torus TH ⊂ H such that ρ(T ) ⊂ TH . Via the identification between A
T

and Y (T )⊗Z R mentioned in Section 2.1, we have a linear map

(4.1) A
T
−→ A

TH

between the apartments. Let θH denote the image of θ under this map. We wish to

construct, through ρ, a canonical homomorphism of group schemes over Spec(A):

from Gθ corresponding to θ to GθH corresponding to θH .

§4.2. Facets of a homomorphism

Let ρ : G −→ H be a homomorphism. The affine roots of H give affine func-

tionals on A
TH

(cf. Section 2). These functionals are defined over the rationals.

By (4.1) it follows that the linear map of apartments A
T
−→ A

TH
corresponding

to ρ is also defined over the rationals. Indeed, it is induced by the algebraic map

ρ|T : T −→ TH . Via A
T
−→ A

TH
, we view the above affine functionals on A

TH
,

associated to the affine roots of H, as affine functionals on A
T

. Take the union of

these affine functionals with the usual affine functionals on A
T

corresponding to

the affine roots of G. Note that all these functionals are defined over rationals. We

shall call them ρ-functionals.
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Definition 4.1. An affine wall of ρ is the zero locus of a ρ-functional. For any

x ∈ A
T

, define Zx to be the set of all affine functionals onA
T

vanishing at x. Define

Hn := {x ∈ A | |Zx| = n}.

A facet of ρ is a connected component of Hn for some n ≥ 0.

Notice that for the identity homomorphism G −→ G, we have just got the

usual facets. By the theory of buildings, one knows that the usual affine walls of

G provide a decomposition of A
T

(cf. (2.2)).

We claim that more generally, the facets of a homomorphism ρ : G −→ H

provide an even finer decomposition of

A
T

=
⊔
n

Hn;

here n varies over a finite set. To prove this claim, first note that the set of all

ρ-affine walls corresponding to ρ-functionals forms a locally finite set. Indeed, this

follows because any compact set C of A
T

meets finitely many usual affine walls

in A
T

. Now under the map A
T
−→ A

TH
, the image of C being compact, meets

finitely many affine walls of A
TH

. Thus, C meets only finitely many walls of ρ.

Proposition 4.2. Let ρ : G −→ H be a homomorphism of algebraic groups. Given

a weight θ ∈ A
T

, there exists a rational weight η ∈ A
T

lying in the same facet as

θ such that ηH and θH also lie in a common facet of A
TH

.

Proof. It can be shown that if the element θ ∈ A
T

lies in a zero-dimensional

facet, then it must be a rational point. Indeed, this follows from that fact that

we are looking at a common zero locus of a set of rational functionals. Taking the

contrapositive of the last statement, if θ is not rational then a ρ-facet of θ cannot

be zero-dimensional. So we can find a rational weight η in it.

Now, by construction, both η and θ lie in the same facet of A
T

, and also θH
and ηH lie in a common facet of A

TH
.

Remark 4.3. Henceforth, when we say that a rational weight η is close to θ with

respect to ρ : G −→ H, we mean a rational weight in the sense of Proposition 4.2.

The constructions in the proof of Proposition 4.2 can be extended to the

context of a finite set of representations {ρi : G −→ GL(Vi)}i≤n of G.

Now further assume that η and θ are actually interior points of one ρ-facet.

This assumption implies that they define isomorphic Bruhat–Tits group schemes

with generic fiber G and also group schemes with generic fiber H. There are

canonical homomorphisms between them by the following proposition.
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Proposition 4.4. Let ρ : G −→ H be given. Let θ ∈ A
T

be a weight with im-

age θH under the map of apartments A
T
−→ A

TH
. Then there is a canonical

homomorphism of group schemes G
θ
−→ G

θH
over Spec(A).

Proof. Let us recall a characterization of parahoric groups when the weight η lies

in AQ ([BS, Thm. 2.3.1]). In this case, by (3.10), there exists a ramified Galois

cover

p : Spec(B) −→ Spec(A)

with Galois group say Γ, and a (Γ, G) bundle F −→ Spec(B), such that

(4.2) G
Ω(A)

= G
η
(A) = Aut

(Γ,G)
(F ).

Choose a rational weight η close to θ with respect to ρ. This gives an element

ηH close to θH . Further, let

F (H) := F ×G H

be the (Γ, H) bundle obtained by extending the structure group using ρ. Via

the natural homomorphism Aut
(Γ,G)

(F ) −→ Aut
(Γ,H)

(F (H)) and the equalities

G
η
(A) = Aut

(Γ,G)
(F ) and G

ηH
(A) = Aut

(Γ,H)
(F (H)), we obtain a map of parahoric

groups

ρK : G
η
(A) −→ G

ηH
(A).

Now the characterizing property of the Bruhat–Tits group schemes is that they are

étoffé, which means that any morphism at the level of group schemes over Spec(A)

is determined completely by the A-valued points alone (cf. [BT2, Def. 1.7.1]).

Thus, we get a morphism over Spec(A) of group schemes

(4.3) G
η
−→ G

ηH

extending (4.2). Since ηH is close to θH , it follows that GηH (A) = G
θH

(A), and

hence we have an induced isomorphism of group schemes G
ηH
−→ G

θH
on Spec(A),

which gives the homomorphism ρ
θ

: G
θ
−→ G

θH
.

To the best of our knowledge, Proposition 4.4 is not available in the papers

of Bruhat and Tits. Alternatively it can be proved using the general framework of

functoriality of buildings as in [La, Thm. 2.1.8] and [La, Thm. 2.2.1].

§5. Associated constructions

As before, G is semisimple and simply connected. Let ρ : G −→ GL(V ) be a

rational representation. Fix a maximal torus T ⊂ G, and also fix a maximal

torus TV ⊂ GL(V ) containing ρ(T ). Let E be a parahoric G
θ,X

-torsor on X with

weights θ.
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§5.1. The construction

As in (3.5), fix a finite subset D = {xj}mj=1 ⊂ X. For each parahoric group scheme

G
j
−→ D

j
= Spec(A

j
), 1 ≤ j ≤ m, we get a facet Ω

j
in the Bruhat–Tits building

B(G). Any weight θ ∈ Am
T

induces a weight θV in Am
T (V )

(see Section 4.2).

The group scheme G
θ,X

on X is obtained by gluing G
θ
j
, for every 1 ≤ j ≤ m,

with G|
X\D ' (X \D)×G.

Using the same gluing data via the representation ρ one immediately gets a

Bruhat–Tits group scheme GLθV ,X , and using locally Proposition 4.4, we see that

ρ gives a natural global homomorphism of group schemes over X:

(5.1) ρ
X

: G
θ,X
−→ GLθV ,X .

Using ρ
X

one gets the standard construction of extension of structure groups.

By Remark 3.7, via ρ one obtains an associated parabolic vector bundle

EV,θV := (E(V ),θV )

with parabolic weights θV . We will mostly need to apply associated constructions

under the adjoint homomorphism Ad : G −→ GL(g).

§5.2. Tensor product of parabolic vector bundles

Assume that we have homomorphisms ρ1 : G −→ GL(V ) and ρ2 : G −→ GL(W ),

and let
ρ1 ⊗ ρ2 : G −→ GL(V ⊗W )

be their tensor product. Therefore, for a parahoric torsor (E , θ) we get parabolic

vector bundles EV,θV , EW,θW and EV⊗W,θV⊗W .

When the weights θ are rational numbers then, by (Γ, G) bundle theory, we

have a canonical isomorphism of parabolic vector bundles ([MY]):

EV,θV ⊗p EW,θW ' EV⊗W,θV⊗W ,

where ⊗p is a parabolic tensor product. The following proposition, which extends

this isomorphism to the case of real weights, is immediate by observing that the

quasi-parabolic bundle for a parabolic tensor product does not change under a

sufficiently small change of the parabolic weights of the factors, while the parabolic

weights of the parabolic tensor product are given by the parabolic weights of the

factors using a standard algebraic formula.

Proposition 5.1. Let θ ∈ A
T

be arbitrary. Then there is a canonical isomorphism

EV,θV ⊗p EW,θW ' EV⊗W,θV⊗W

of parabolic vector bundles.
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Let V and W be two representations of G and ψ : V −→ W a G-equivariant

homomorphism. Let (E ,θ) be a parahoric torsor. By identifying the G-module

Hom(V,W ) with W ⊗ V ∗ it follows that ψ induces a homomorphism

(5.2) (E ,θ)(ψ) : EV,θV −→ EW,θW .

§5.3. Lie algebra bundle of a G-torsor

Consider a parahoric Gθ-torsor (E ,θ), where θ is a system of real weights. We define

a parabolic Lie bracket operation on E(g) as follows. The Lie bracket [, ] : g⊗g −→ g

is a G-equivariant homomorphism for the adjoint action of G, and hence by (5.2)

we have a homomorphism of parabolic vector bundles

E[,] : E(g⊗ g) −→ E(g).

Now Proposition 5.1 gives an isomorphism

E(g)⊗p E(g)
∼−→ E(g⊗ g)

of parabolic vector bundles. Combining with E[,], the Lie bracket can be defined

as the parabolic homomorphism

(5.3) [., .] : E(g)⊗pX E(g) −→ E(g).

§6. Semistability and stability of torsors

Let G
Ω,X

be a Bruhat–Tits group scheme on X as in Definition 3.3, and let θ be

such that G
Ω,X
' G

θ,X
. Let (E ,θ) be a parahoric G

θ,X
-torsor with arbitrary real

weights θ ∈ Am
T

.

Remark 6.1. Let G
K

be a split group scheme over a field K. Let E
K

be a G
K

-

torsor. Consider the twisted group scheme E(G)
K

. Then giving a parabolic sub-

group scheme

P
K
⊂ E(G)

K

(of fiber type P ) is equivalent to giving a reduction of structure group of E
K

to P

(cf. [DG, Exp. XXVI, Cor. 3.6]).

§6.1. First definition

Let E(G) denote the group scheme of automorphisms of E obtained by taking the

quotient E ×X G by the left G-action on E and the right G-action on itself by

conjugation. Let Lie(E(G)) denote the Lie algebra bundle of E(G). One has the

following well-known identification of Lie algebra bundles:

(6.1) Lie(E(G)) = E(g).
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Since (E ,θ) is a parahoric torsor, by Section 5.3, the above Lie algebra bundle

E(g) gets a natural parabolic Lie algebra bundle structure (E(g), θg). Thus, via the

isomorphism (6.1) the bundle Lie(E(G)) gets a parabolic vector bundle structure

with a Lie bracket operation compatible with the parabolic structure:

(6.2) (Lie(E(G)), θg, [., .]).

By Remark 6.1, giving a generic parabolic reduction is equivalent to giving a

parabolic subgroup scheme

P
K
⊂ E(G

K
).

For each 1 ≤ j ≤ m, we take the flat closure of P
K

in E(G
A
j
). This will give

a subgroup scheme P ⊂ E(G).

The extended subgroup scheme P also gives a Lie subalgebra bundle

Lie(P) ⊂ Lie(E(G)) ' E(g).

Then endow the bundle Lie(P) with the canonical induced parabolic structure on

the divisor D and denote this parabolic subbundle by Lie(P)∗ .

Definition 6.2. We say that the parahoric torsor

(E ,θ)

with arbitrary real weights θ ∈ Am
T

is semistable (respectively, stable) as a G
θ,X

-

torsor if for every generic parabolic reduction datum as above,

par.deg(Lie(P)∗) ≤ 0 (respectively, par.deg(Lie(P)∗) < 0).

§6.2. Second definition

Now assume that (E ,θ) is a parahoric torsor with rational weights. Let PK ⊂
GK be a maximal parabolic subgroup of the generic fiber GK of G

Ω,X
. Let χ :

PK −→ Gm,K be a strictly antidominant character of the parabolic subgroup PK .

Therefore, the associated line bundle on GK/PK is ample. Since the quotient map

EK −→ EK/PK defines a principal PK-bundle, it follows that χ defines a line

bundle Lχ on EK/PK = EK(GK/PK). For any reduction of structure group

sK : X \D −→ EK(GK/PK),

we have the pulled-back line bundle s∗K(Lχ) on X \ D. This line bundle s∗K(Lχ)

extends X by the following proposition.

Proposition 6.3 ([BS, Prop. 6.3.1]). Let (E ,θ) be a parahoric torsor with ratio-

nal weights. Let sK be a generic reduction of structure group of EK to PK . Then
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the line bundle s∗K(L
χ
) on X \D has a canonical extension Lθ

χ
to X as a parabolic

line bundle.

Definition 6.4 ([BS, Def. 6.3.4]). A parahoric torsor (E ,θ) with rational weights

is called stable (respectively, semistable) if for every maximal parabolic PK ⊂ GK ,

for all strictly antidominant characters χ of PK and for every reduction of structure

group sK as above,

par.deg(Lθ
χ
) < 0 (respectively, par.deg(Lθ

χ
) ≤ 0).

We observe that the two definitions, namely Definitions 6.2 and 6.4, are equiv-

alent when the weights are rational; the proof is identical to the proof of [Ra,

Lem. 2.1].

Remark 6.5. In a recent paper, Heinloth ([He2]) studies the Hilbert–Mumford

criterion in terms of algebraic stacks. The viewpoint developed there allows natural

choices of test objects for the verification of stability, leading to criteria for the

existence of separated coarse moduli spaces.

Let E be a G-torsor for a parahoric group scheme G and let B ⊂ AutG (E). Let

EB be a reduction of structure group to B. To a character χ of B, one can then

associate a line bundle EB(λ) on X. In the language of Section 6.2 this will be a

parabolic line bundle. In [He2, Sect. 3.5] the classical notion of a parabolic degree

of EB(λ) is recovered in the new setting, which leads to the definition of stability

as in Section 6.2. An advantage with this new definition is that it works in positive

characteristics as well and moreover, the parahoric group scheme G need not be

assumed to be generically split as in the present paper.

§7. (Semi)stability and polystability under variation of weights

Let V be the category of all quasi-parahoric G
θ,X

-torsors along D with weights

θ varying in Am
T

. For convenience, we shall work with a single parabolic point

P ∈ X. The generalization to finitely many points follows without any difficulty.

Let r be the rank of E(g)∗. The degree of the underlying vector bundle is

denoted by d1. Note that its parabolic degree is 0 because g = g∗ as G-modules.

Let Vg denote the space of all parabolic vector bundles such that

• the rank is the fixed integer r,

• the quasi-parabolic structure at P is given by that of E(g)∗,

• the degree of the underlying vector bundle is d1,

• the parabolic degree is zero, and
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• the parabolic weights 0 ≤ α1 < α2 < · · · < αr′ < 1 are not fixed, but the

length r′ and the multiplicities m1, . . . ,mr′ are fixed.

Take any V∗ ∈ Vg. For a subbundle W of V , if nk for each 1 ≤ k ≤ r′

denotes the multiplicity of αk for the parabolic structure on W induced by Vg, the

condition for α∗-stability of V∗ is

(7.1) degree(W ) +
∑
k≤r′

nikαik < 0

for all subbundles W of V ; for semistability the strict inequality is replaced by

inequality. Let χ(V,W,α) denote the left-hand side of (7.1).

There exists a constant C2 ≥ 0 such that if degree(W ) > C2, then

χ(V,W,α) ≥ 0

for all α. Thus, for any V ∈ Vg, if the underlying vector bundle V admits a

subbundle W with degree(W ) ≥ C2, then V∗ can never be parabolic semistable

for any choice of weights α∗. We note that the quasi-parabolic structure of V ∈ Vg

alone determines such bundles.

§7.1. Facets of a quasi-parahoric torsor

As before, G is simple and simply connected.

In this subsection we shall consider only parahoric torsors E ∈ V such that

the quasi-parabolic bundle E(g) admits no subbundle of degree greater than C2:

(7.2) Vg(C2) := {V∗ ∈ Vg | V has no subbundle of degree greater than C2}.

Proposition 7.1. The set of inequalities required to verify the (semi)stability of

any bundle in Vg(C2) has finite cardinality.

Proof. From (7.1) we see that there exists a constant C1 ≤ 0 such that

degree(W ) ≤ d1 + C1 =⇒ χ(V,W,α) < 0.

In other words, subbundles of degree at most C1 will never be destabilizing with re-

spect to any inequality. Thus, to check (semi)stability of (E(g), θg) we may restrict

ourselves to subbundles W of E(g) such that

(7.3) C1 ≤ degree(W ) ≤ C2.

The ranks of subbundles W vary between 1 and r−1. Let m1, . . . ,mr′ be the

multiplicities of the quasi-parabolic structure on Vg. The multiplicities ni1 , . . . , nik
of the induced parabolic structure are positive integers. Thus, as one varies over

Vg, only finitely many inequalities appear.
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If E(g) ∈ Vg(C2), it follows that to check the (semi)stability of (E ,θ) we need

to consider only finitely many inequalities corresponding to a (possibly proper)

subset of the set of inequalities seen in Proposition 7.1. This is because we need

to check these inequalities for subbundles that are Lie algebra bundles of certain

subgroup schemes (see Definition 6.2).

We fix a maximal torus T of G and also fix a maximal torus Tg of GL(g) such

that Ad(TG) ⊂ Tg.

For every inequality,

degree(W ) +
∑
k≤r′

nikαik < 0 (respectively, ≤ 0)

in (7.1) and for every integer c between C1 (as in the proof of Proposition 7.1) and

C2, we associate a functional

`c : A
Tg
−→ R

as follows: for any η = (α1, . . . , αr) ∈ ATg ,

`c(η) =
c

rank(W )
+

∑
k≤r′ nikαik
rank(W )

.

Define f : A
T
−→ R by f(θ) = `c(θ(g)). These are finitely many in number.

We denote the set of these functionals by SET (or ST for notational convenience).

Further, they are defined over rationals, since clearly the definition of f involves

only rational numbers and the map A
T
−→ A

Tg
is defined over rationals and is

linear. For any functional f in ST , define the f -wall in A
T

as

Wf := {x ∈ A
T
| f(x) = 0}.

The collection {Wf}f∈SET will be called the walls of E .

Definition 7.2. Fix a quasi-parahoric torsor E . For any θ ∈ A
T

, let

Sθ1 = {f ∈ SET | x ∈Wf}.

Let Hn = {x ∈ A
T
| |Sθ1 | = n}. Define a facet of E to be a connected component

of Hn for some n ≥ 0.

Thus, the facets of E provide a decomposition

A
T

=
⊔
n

Hn

of A
T

. Note that only finitely many n appear here.

For any weight θ ∈ A
T

there is a unique n ≥ 0 such that θ ∈ Hn. Thus, for

any θ ∈ A
T

, the following three conditions are equivalent:
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(1) θ does not belong to any E-wall,

(2) Sθ1 is empty, and

(3) θ ∈ H0.

The facet of θ is the unique facet of E containing it.

The following propositions generalize [MS, Sect. 2, p. 217]. We note that the

quasi-parabolic bundles E(g) cannot admit any subbundle of degree greater than

C2 (cf. (7.2)).

Proposition 7.3. Let θ lie in A
T

= Y (T ) ⊗ R. Then there exists an element θ′

in the rational apartment AQ = Y (T )⊗Q such that for all E ∈ V , the pair (E , θ)
is semistable (respectively, stable) if and only if (E , θ′) is semistable (respectively,

stable).

Proof. Let Sθ2 be the complement of Sθ1 in ST .

We note that θ has a strictly positive distance from each Wf , where f ∈ Sθ2 .

Let d be the minimum distance if Sθ2 is nonempty and set d to be∞ if Sθ2 is empty.

Thus, in all cases d > 0. Let U be the ball in the alcove of radius d around θ.

Let I denote the E-facet of θ. Let I1 be a connected component of I ∩ U
containing θ, where U is the above ball. Now if I1 is not reduced to a single point,

then we can take a rational weight θ′ in it. If I1 is just a point, then θ must be

rational because d > 0 and all the functionals are defined over Q. In this case, we

take θ′ to be θ itself.

Let us check that the (semi)stability conditions for θ and θ′ coincide. For each

functional J in ST ,

(1) if J ∈ Sθ1 then J(θ′) = J(θ), because θ′ ∈ I1 ⊂ I, and

2. if J ∈ S2 then sign(J(θ′)) = sign(J(θ)), because θ′ ∈ I1 ⊂ U .

So for E , one has that θ′-(semi)stability is equivalent to θ-(semi)stability.

We return to the setting of m-marked points on X noting that the above

discussion immediately goes through for multiple marked points.

Lemma 7.4. Let θ ∈ Am
T

. Let ρi : G −→ GL(Vi) for i ≤ m be finitely many

representations. Then there exists θ′ ∈ AmQ such that for any E ∈ V , and any

i ≤ m, the parahoric torsor (E ,θ(Vi)) is stable (respectively, semistable) if and

only if (E ,θ′(Vi)) is stable (respectively, semistable).

Proof. This is immediate from Proposition 7.3.
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The following proposition is a generalization of [MS, Prop. 2.1].

Proposition 7.5. Given any θ
0
∈ Am

T
, there exists a neighborhood U of θ

0
in

Am
T

with the property that for all E ∈ V such that (E ,θ
0
) is stable, the pair (E ,θ)

is stable for all θ ∈ U .

Proof. Now θ may as well be rational. Owing to the stability condition, f(θ) < 0

for all f ∈ ST . Thus, we have Sθ2 = ST . Let d be the minimum distance between

θ and any f -wall. Now we take U to be the ball around θ with radius d.

Definition 7.6. A parahoric torsor (E ,θ) for the linear parahoric group scheme

GL(V ) is called polystable if the associated parabolic vector bundle E(V )∗ is

polystable (i.e., a direct sum of stable parabolic bundles of parabolic degree 0).

It is straightforward to check that Lemma 7.4 remains valid if stability in the

lemma is substituted by polystability.

Corollary 7.7. Let ρ : G −→ GL(V ) be a representation and ρ
X

: G −→ GL(V )

the induced homomorphism of parahoric group schemes as in (5.1). Let E be a G-

torsor. Then, for a weight θ ∈ Am
T

such that (E ,θ) is stable, the pair (E(V )∗ ,θ(V ))

is polystable.

Proof. By Proposition (7.5), we can assume θ is rational. For a stable equivariant

principal G-bundle, the associated bundles are polystable. Consequently, in view

of the equivalence of categories in Section 3.4, The stability of (E ,θ) implies that

(E(V ),θ(V )) is polystable.

§8. Connections on parahoric G-torsors

The main aim of this section is to define connections on a parahoric G
θ,X

-torsor.

§8.1. DX-modules

We briefly recall the definition of DX -modules.

Definition 8.1. Let X −→ S be an S-scheme. Let dx denote the image of x

under the canonical de Rham differentiation map d : OX −→ Ω1
X/S . Let F be a

coherent sheaf of OX -modules over X. By a DX -module structure on F we mean

an OS-linear homomorphism of a sheaf of abelian groups ∇ : F −→ F ⊗OX Ω1
X/S

satisfying the Leibniz rule which says that

(8.1) ∇(xf) = f ⊗ dx+ x∇(f),

where f and x are local sections of F and OX respectively.
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Definition 8.2. Let ∇F : F −→ F ⊗ Ω1
X/S and ∇E : E −→ E ⊗ Ω1

X/S be two

connections over F and E respectively. Define their tensor product ∇F ⊗ ∇E :

F ⊗ E −→ F ⊗ E ⊗ Ω1
X/S to be

(8.2) ∇F⊗E(f ⊗ e) = ∇F (f)⊗ e+ f ⊗∇E(e),

where f and e are local sections of F and E respectively.

Similarly define ∇Hom : Hom(E ,F) −→ Hom(E ,F)⊗ Ω1
X/S to be

(8.3) ∇Hom(E,F)(Φ)(e) = ∇F (Φ(e))− Φ(∇E(e)),

where Φ and e are local sections of Hom(E ,F) and E respectively.

§8.2. Logarithmic connections on curves

The canonical line bundle of the smooth complex projective curve X will be de-

noted by KX . Fix a finite subset D = {xi}1≤i≤m ⊂ X; define

KX(logD) = KX ⊗OX(D).

A logarithmic connection on a vector bundle V −→ X singular on D is a first-order

algebraic differential operator∇ : V −→ V ⊗KX(logD) satisfying the Leibniz rule.

For a point x ∈ D, the fiber KX(logD)x is identified with C using the Poincaré

adjunction formula. For a logarithmic connection (V,∇), the composition

V
∇−→ V ⊗KX(logD) −→ (V ⊗KX(logD))x −→ Vx,

which is a C-linear endomorphism of Vx, is called the residue of ∇ at x ([De, p. 53]),

and it is denoted by Res(∇, x). The monodromy of ∇ around x is conjugate to

(8.4) exp(−2π
√
−1 Res(∇, x))

([De, p. 53, Thm. 1.17]).

§8.3. Connection on parabolic vector bundles

Let V −→ X be a vector bundle on X. A quasi-parabolic structure on V over D

is a filtration, for each x ∈ D, of subspaces

(8.5) Vx = F x1 ) F x2 ) · · · ) F xax ) F xax+1 = {0}.

A parabolic structure on V over D is a quasi-parabolic structure as above together

with real numbers

0 ≤ αx1 < · · · < αxi < · · · < αxax < 1

associated to the quasi-parabolic flags. We shall often abbreviate a parabolic vector

bundle (V, {F x∗ , αx∗}x∈D) by V∗.
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Definition 8.3. A connection on V∗ is a logarithmic connection ∇ on V such that

for all x ∈ D,

• the residue Res(∇, x) is semisimple and preserves the quasi-parabolic flag at

x, meaning Res(∇, x)(F xi ) ⊆ F xi for all i, and

• Res(∇, x)(F xi /F
x
i+1) = αxi IdFxi /Fxi+1

.

A connection on V∗ induces a connection on the dual parabolic vector bundle

V ∗∗ . To see this, given a logarithmic connection∇ on V defining a connection on V∗,

consider the logarithmic connection on V ∗⊗OX(D) induced by∇. This logarithmic

connection preserves the subsheaf of V ∗⊗OX(D) identified with the vector bundle

underlying the parabolic vector bundle V ∗∗ . The logarithmic connection on this

subsheaf obtained this way defines a connection on V ∗∗ .

Let V 1
∗ and V 2

∗ be parabolic vector bundles with underlying vector bundles

V 1 and V 2 respectively. Let ∇1 and ∇2 be connections on V 1
∗ and V 2

∗ respectively.

Consider the logarithmic connection on V 1 ⊗ V 2 ⊗ OX(D) induced by ∇1 and

∇2. It preserves the subsheaf of V 1⊗V 2⊗OX(D) corresponding to the parabolic

tensor product V 1
∗ ⊗p V 2

∗ . The logarithmic connection on this subsheaf obtained

this way defines a connection on V 1
∗ ⊗p V 2

∗ .

§8.4. Lie connection on a principal G-bundle

For a principal G-bundle E −→ X, let E(g) = EG×G g be its adjoint bundle. The

fibers of E(g) are equipped with a Lie bracket structure [., .] : E(g)⊗E(g) −→ E(g)

induced by the Lie algebra structure of g.

Definition 8.4. A Lie connection on E is a connection

∇ : E(g) −→ E(g)⊗ Ω1
X

such that following diagram is commutative:

(8.6)

E(g)⊗ E(g)
[.,.] //

∇⊗
��

E(g)

∇
��

E(g)⊗ E(g)⊗ Ω1
X

[.,.]⊗Id
Ω1
X // E(g)⊗ Ω1

X ,

where ∇⊗ is the connection on E(g)⊗ E(g) induced by ∇.

The above commutativity condition means that the section of E(g)⊗ (E(g)⊗
E(g))∗ given by the Lie bracket operation on E(g) is flat with respect to the

connection on E(g)⊗ (E(g)⊗ E(g))∗ induced by ∇.
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A connection on EG produces a Lie connection on EG. Therefore, we get a map

from the space of all connections on EG to the space of all Lie connections on EG.

Since G is semisimple, the adjoint homomorphism G −→ GL(g) has finite kernel

and its image is the connected component, containing the identity element, of the

group of all automorphisms of the Lie algebra g. From this it follows that the above

map from the space of all connections on EG to the space of all Lie connections on

EG is a bijection. This fact motivates the definition of a connection on a parahoric

torsor.

§8.5. Connection on parahoric G-torsors

We refer to Section 5.3 for the notation. Take any G = G
θ,X

.

Definition 8.5. A connection on a G-torsor E is a logarithmic parabolic connec-

tion (see Definition 8.3) ∇ on E(g) satisfying the condition that the section of

Homp(E(g)⊗p E(g), E(g)) given by the homomorphism in (5.3) is flat with respect

to the connection ∇hom on the parabolic vector bundle Homp(E(g)⊗p E(g), E(g))

induced by ∇.

§8.6. A Tannakian description of connection

Let M be a smooth complex variety. Let G be a complex reductive algebraic group

and EG −→M a principal G-bundle. Take any pair (H, f), where H is a complex

algebraic group and f : G −→ H an algebraic homomorphism such that the

corresponding homomorphism of Lie algebras df : Lie(G) −→ Lie(H) is injective.

Let EH := EH ×f H −→M be the principal H-bundle obtained by extending the

structure group of EG using f . Let

f̃ : EG −→ EH

be the natural morphism. A connection on EG induces a connection on EH . The

converse is also true. To see this, fix a G-equivariant splitting

σ : Lie(H) −→ Lie(G),

meaning σ ◦ df = IdLie(G) (such a splitting exists because G is reductive). If D

is a Lie(H)-valued 1-form on EH defining a connection on H, then σ ◦ f̃∗D is

a connection on EG. If D0 is a connection on EG and D the connection on EH
induced by D0, then the connection σ ◦ f̃∗D on EG coincides with D0. Indeed,

this follows immediately from the fact that σ ◦ df = IdLie(G).

Therefore, the map from connections on EG to connections on EH is injec-

tive. The image of this map from connections on EG admits a group-theoretic

description. This will be explained below.
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We remove the assumption that the algebraic group G is reductive. As before,

f : G −→ H is any algebraic homomorphism such that df is injective.

A theorem of Chevalley (see [Hu, p. 80]) says that there is a finite-dimensional

left H-module

ρ : H −→ GL(W )

and a complex line ` ⊂W such that f(G) is exactly the isotropy subgroup, of the

point in the projective space P (W ) representing the line `, for the action of H on

the projective space P (W ) of lines in W induced by the action of H on W . Let

EW := EH ×H W −→M

be the vector bundle associated to EH for the H-module W . For a connection D

on EH , the connection on EW induced by D will be denoted by DW . Note that

EW is identified with the vector bundle associated to EG for the action ρ ◦ f of

G on W . The condition on ` implies that the action of G on W preserves it. Let

E` ⊂ EW be the line subbundle associated to the G-submodule ` ⊂W .

A connection D on EH is induced by a connection on EG if and only if the

corresponding connection DW on EW preserves the above-line subbundle E` ⊂
EW . This characterizes the connections on EH that are induced by connections

on EG.

We recall that Tannakian theory involves describing properties of principal

bundles in terms of properties of associated vector bundles. For a Tannakian de-

scription of connections on EG, take H = GL(V ), so V is a finite-dimensional

G-module. Let

EV := EG ×f V −→M

be the vector bundle associated to EG for the G-module V . From the above obser-

vation we know that a connection on EG is a connection D on the vector bundle

EV such that the connection on the vector bundle EW induced by D preserves the

line subbundle E` ⊂ EW .

§9. Connections on (Γ, G)-bundles and rational weights

Let F be a principal G-bundle on a curve Y with adjoint bundle

(9.1) Ad(F ) = F (G) = F ×G G,

where G acts on itself by conjugation. Given a principal G-bundle E on Y , define

the “twisting” by F ,

E ×G F op := (E ×Y F )/ ∼,
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where the equivalence relation identifies all pairs (e, f), (ez, fz) ∈ E ×Y F , with

z ∈ G. Consider the map

ξ : E ×Y F ×Y F ×G −→ E ×Y F, (e, f, fz, z1) 7−→ (ezz1, fz),

where (e, f) ∈ E ×Y F and z, z1 ∈ G. There is a unique map

ξ̂ : (E ×G F op)×Y F (G) −→ E ×G F op

such that the following diagram is commutative:

(E ×Y F )×Y (F ×G)
ξ−→ E ×Y Fy y

(E ×G F op)×Y F (G)
ξ̂−→E ×G F op;

recall that E ×G F op and F (G) are quotients of E ×Y F and F ×G respectively.

This map ξ̂ makes E ×G F op an F (G)-torsor on Y . Let αF be the map from

the space of principal G-bundles to the space of F (G)-torsors on Y defined by

E 7−→ E ×G F op. This αF is an equivalence of categories.

Consider the adjoint action of G on Lie(G) = g. Let ad(F ) = F ×G g −→ Y

be the associated adjoint vector bundle. We note that ad(F ) is the Lie algebra

bundle associated to the group scheme F (G).

Let ∇0 be a connection F . Using ∇0 we will define connections on an F (G)-

torsor.

The connection ∇0 induces a connection on every fiber bundle associated to

F . In particular, it produces a connection on F (G); this connection on F (G) given

by ∇0 will be denoted by ∇G0 . The kernel of the differential dπ : TF (G) −→ π∗TY

of the map π in (9.1) is identified with π∗ ad(F ). So the above connection ∇G0 on

F (G) gives a homomorphism

(9.2) ∇G0 : TF (G) −→ π∗ ad(F ).

Take any F (G)-torsor ϕ : E −→ Y . Consider the action E × F (G) −→ E of

F (G) on E. Let

(9.3) δ : TE ⊕ ϕ∗TF (G) −→ TE

be the differential of this map giving the action. Consider the differential of ϕ,

dϕ : TE −→ ϕ∗TY.

Let

Tϕ := kernel(dϕ) ⊂ TE
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be the relative tangent bundle for the projection ϕ. The action of F (G) on E

identifies Tϕ with ϕ∗ ad(F ).

A connection on an F (G)-torsor ϕ : E −→ Y is a holomorphic homomorphism

of vector bundles over Y ,

β : TE −→ ϕ∗ ad(F ) = ad(ϕ∗F )

such that

(1) the restriction of β to Tϕ coincides with the above identification of Tϕ with

ϕ∗ ad(F ), and

(2) for the homomorphism δ in (9.3),

δ(kernel(β)⊕ ϕ∗ kernel(∇G0 )) ⊂ kernel(β),

where ∇G0 is the homomorphism in (9.2).

Note that the above definition of a connection on E depends on ∇0.

If F is the trivial principal G-bundle Y × G, then F (G) = Y × G, and an

F (G)-torsor is in fact a principal G-bundle on Y . If we choose ∇0 to be the

trivial connection on Y ×G, then connections on an F (G)-torsor are the same as

connections on the corresponding principal G-bundle.

The following lemma is straightforward to check.

Lemma 9.1. Given an F (G)-torsor ϕ : E −→ Y , a homomorphism

β : TE −→ ϕ∗ ad(F ) = ad(ϕ∗F )

defines a connection on E if and only if

δ∗β = β ⊕∇G0

on TE⊕ϕ∗TF (G), where δ is constructed in (9.3) and ∇G0 is the homomorphism

in (9.2).

Proposition 9.2. Twisting by F defines an equivalence between principal G-bun-

dles equipped with a connection and F (G)-torsors equipped with a connection.

Proof. Let E be a principal G-bundle on Y . Let D be a connection on E. Consider

D as a g-valued 1-form on E. LetD′ denote the g-valued 1-form on F corresponding

to the connection ∇0 on F . So (D,D′) is a g-valued 1-form on the fiber product

E ×Y F . The pullback of ad(F ) to F is identified with the trivial vector bundle

F × g −→ F . Therefore, (D,D′) defines a 1-form with values in the pullback of

ad(F ) to E ×Y F . This form on E ×Y F descends to the quotient F (G)-torsor
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E ×G F op as a 1-form with values in the pullback of ad(F ) to E ×G F op. It is

straightforward to check that this form defines a connection on the F (G)-torsor

corresponding to E.

Conversely, let β be a connection on an F (G)-torsor ϕ : E −→ Y . Consider

the pullback β′ of β to E ×Y F as a 1-form with values in the pullback of ad(F ).

As noted above, the pullback of ad(F ) to E ×Y F is identified with the trivial

vector bundle with fiber g. So β′ is a 1-form on E ×Y F with values in g. Let D′

be the pullback of the connection form D to E ×Y F . Then β′−D′ descends to E

by the projection E×Y F −→ E, and this descended form defines a connection on

the principal G-bundle E.

The above two constructions are evidently inverses of each other.

Assume that Y is equipped with the action of a finite group Γ. A Γ-connection

on a (Γ, G)-bundle E on Y is a connection on E that is preserved by the action

of Γ.

Proposition 9.3. Let E −→ Y be a (Γ, G)-bundle on some Galois cover p : Y −→
X with Galois group Γ. Let E be the parahoric torsor on X with rational weights

corresponding to E. Then there is a natural bijection between the connections on

E and the Γ-connections on E.

Proof. This follows from the fact that the connections on a Γ-equivariant vector

bundle on Y are in bijection with the connections on the corresponding parabolic

vector bundle on X.

§10. Flat unitary connections on parahoric torsors and stability

§10.1. Polystable parahoric torsors

Lemma 10.1. Let V∗ be a polystable parabolic vector bundle of parabolic degree 0

with real weights θ. Then the parabolic vector bundle (V∗)
⊗m ⊗p ((V∗)

∗)⊗n is also

polystable.

Proof. A parabolic vector bundle of parabolic degree 0 is polystable if and only if it

is given by a unitary representation of π1(X \D), where D is the parabolic divisor

([MS], [Biq]). Since V∗ is polystable, it is given by a representation ρ of π1(X \D).

The parabolic vector bundle (V∗)
⊗m ⊗p ((V∗)

∗)⊗n is given by the representation

ρ⊗m ⊗ (ρ)⊗n. This implies that (V∗)
⊗m ⊗p ((V∗)

∗)⊗n is polystable.

Corollary 10.2. Take V∗ as in Lemma 10.1. Take any homomorphism

ρ : GL(r,C) −→ GL(N,C),
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where r is the rank of V∗. Let W∗ be the parabolic vector bundle associated to V∗
for ρ. Then W∗ is also polystable.

Proof. Consider CN as a GL(r,C)-module using ρ and the standard representation

of GL(N,C). This GL(r,C)-module CN is a direct summand of a direct sum of

GL(r,C)-modules of the form (Cr)⊗mi((Cr)∗)⊗ni ([DMOS, p. 40, Prop. 3.1(a)]).

Therefore, from Lemma 10.1 we conclude that W∗ is a direct summand of a

polystable parabolic vector bundle of parabolic degree 0. Hence W∗ is polystable.

We define polystability for parahoric torsors.

Definition 10.3. Let G
θ,X
−→ X be a Bruhat–Tits group scheme with generic

fiber G. A parahoric G
θ,X

-torsor E with real weights θ is said to be polystable if for

every representation ρ : G −→ GL(V ), the corresponding parabolic vector bundle

(E ,θ(V )) is polystable in the sense of Definition 7.6.

§10.2. Polystable parahoric torsors from unitary representations

In this subsection we will first assume that D = {x} is a single point. The multi-

point case is actually a straightforward generalization.

The complement X \ {x} will be denoted by Y . For a base point y0 ∈ Y ,

set Γ = π1(Y, y0). Choose an analytic disc U ⊂ X around x such that y0 ∈ U .

The inclusion of U \ {x} in Y produces an inclusion π1(U \ {x}, y0) ↪→ Γ. Using

the orientation of U \ {x}, the group π1(U \ {x}, y0) gets identified with Z. The

element of π1(U \ {x}, y0) corresponding to 1 ∈ Z will be denoted by γ.

We now recall a description of the set of conjugacy classes in a compact

semisimple and simply connected group in terms of the Weyl alcove (see [BS,

p. 9]). Let KG ⊂ G be a fixed maximal compact subgroup and T a fixed maximal

torus in KG. The corresponding Weyl group is the quotient NG(T )/T . The set

of conjugacy classes of elements in KG gets identified with the T/W , which is in

fact the Weyl alcove because any element of KG is conjugate to an element in the

maximal torus up to an element of the Weyl group (cf. [Mor, p. 151]). Given any

t ∈ KG, let θt denote the point in the Weyl alcove corresponding to t.

Given any homomorphism

ρ : Γ −→ KG,

let Eρ be the flat principal G-bundle on Y associated to it. To construct Eρ, let

(Ỹ , ỹ0) be the pointed universal cover of Y corresponding to the base point y0;

note that Γ acts on Ỹ . Identify two points (y1, g1), (y2, g2) ∈ Ỹ × G if there is

an element γ ∈ Γ such that (y2, g2) = (y1γ, ρ(γ−1)g2). The quotient of Ỹ × G is
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a principal G-bundle on Y , and is denoted by Eρ; the right-translation action of

G on Ỹ × G produces an action of G on Eρ. The flat connection on the trivial

principal G-bundle Ỹ × G −→ Ỹ descends to a flat connection on Eρ. For any

h ∈ KG, the map

Ỹ ×G −→ Ỹ ×G, (y, z) 7−→ (y, ρ(h)z)

descends to an isomorphism

(10.1) Ehρh−1
∼−→ Eρ

as flat principal G-bundles on Y .

Let

t = ρ(γ) ∈ KG

be the image of γ. Since h.ρ.h−1(γ) = hth−1 for all h ∈ KG, there is the map

Hom(Γ,KG)/KG −→ A, ρ 7−→ θt.

After conjugating ρ by an element of KG, we may assume that t belongs to a fixed

maximal torus T of KG.

Let t ∈ Lie(T ) be such that

(10.2) exp(−2π
√
−1 t) = t,

where exp denotes the exponential map on the Lie algebra Lie(T ). Consider the

trivial principal G-bundle (U \ {x})×G over U \ {x}. The trivial connection on it

given by this trivialization will be denoted by d0. On (U \ {x})×G, we now have

the flat connection

(10.3) d̂ = d0 +
t dz

z
,

where z is a holomorphic coordinate function on U with z(x) = 0.

Restrict the representation ρ to the subgroup π1(U \ {x}, y0). This produces

a flat principal G-bundle Eρ(∞) −→ U \ {x}. Note that

(10.4) E
ρ
|U\{x} ' Eρ(∞)

as flat principal G-bundles. Both the flat principal G-bundles in (10.4) are isomor-

phic to the flat principal G-bundle ((U \{x})×G, d̂) constructed in (10.3). This is

because all of them have the same residue, namely t, at x. Recall that the residue

determines the conjugacy class of the monodromy (see (8.4)).

To the element t ∈ KG ∩ T , we have the associated conjugacy class θt ∈ A,

and hence by Bruhat–Tits theory have a group scheme G
θt

on a formal neigh-

borhood Û = SpecC[[t]] of x. This group scheme G
θt

is the trivial group scheme
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SpecC((t)) × G over Û \ x = SpecC((t)). Therefore, we can extend G
θt

uniquely

to X by setting it to be the trivial group scheme Y × G over Y ([BS, Sect. 5.2,

p. 28]). We denote this group scheme on X by Gt,X .

We observe that there is a morphism Û ↪→ U , where one identifies the formal

power series ring with the completion of the convergent power series ring. Consider

the trivial G
θt

-torsor on Û , which we denote by P
t
. Note that the connection on

Eρ(∞) restricts to a natural connection on Pt |Û\{x}.
We now patch together (using, e.g., [BS, 5.2.3]) the trivial G

θt
-torsor P

t
on Û

and the principal G-bundle Eρ over Y along the intersection

Û \ {x} = SpecC((t))

such that the patching is connection preserving; as noted above, on SpecC((t)),

both the principal G-bundles are the trivial principal G-bundle SpecC((t)) × G
equipped with the connection d̂.

The above construction is summarized in the following proposition.

Proposition 10.4. Given any homomorphism ρ : Γ −→ KG, and any t ∈ Lie(T )

satisfying (10.2), the flat principal G-bundle on Y has a canonical extension to a

Gt,X-torsor over X.

It should be clarified that the Gt,X -torsor in Proposition 10.4 depends on

the choice of t (a branch of the logarithm), while the isomorphism class of the

Bruhat–Tits group scheme Gt,X depends only on the conjugacy class [t] of t. For

G = GL(r,C), if the logarithm t is chosen as in [MS] (meaning t is semisimple

and eigenvalues are nonnegative and less than 1), then the construction in Proposi-

tion 10.4 coincides with the construction in [MS] of a parabolic vector bundle from

a homomorphism Γ −→ U(r). This follows by comparing the two constructions.

The Gt,X -torsor in Proposition 10.4 will be denoted by Eρ(t).

We mention that we may restrict the connection d̂ in (10.3) to Û \ {x} ⊂
U \ {x}, where Û as before is the formal completion along x. A Gt,X -torsor on X

can be trivialized over both Y and Û . Conversely, given Gt,X -torsors on Y and

Û , and an isomorphism between them over Û \ {x}, we get a Gt,X -torsor on X.

Therefore, the connection over Û \{x} is enough to construct the Gt,X -torsor Eρ(t).

§10.3. Polystable parahoric torsors and unitary representations

As before, fix a maximal compact subgroup KG of G.

Theorem 10.5. Let (E ,θ) be a parahoric G
θ,X

-torsor on X with arbitrary real

weights θ ∈ Am
T

. Then (E ,θ) is polystable if and only if (E ,θ) is given by a homo-

morphism from π1(X \D) to KG as described in Section 10.2.
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Proof. First assume that (E ,θ) is given by a homomorphism

β : π1(X \D) −→ KG.

Let ρ : G −→ GL(V ) be any homomorphism. Fix a maximal compact subgroup

KGL(V ) of GL(V ) such that β(KG) ⊂ KGL(V ). Then the parabolic vector bundle

W∗ associated to (E ,θ) for ρ is given by the homomorphism

ρ ◦ β : π1(X \D) −→ KGL(V ).

Therefore, this associated parabolic vector bundle W∗ is polystable.

To prove the converse, assume that (E ,θ) is polystable. Let E(g) and E(g⊗g)

be the parabolic vector bundles associated to (E ,θ) for the G-modules g and

g ⊗ g respectively. From Definition 10.3 we know that both E(g) and E(g ⊗ g)

are polystable of parabolic degree 0. If E(g) is given by a homomorphism β from

π1(X \ D) to a maximal compact subgroup of GL(g), then E(g ⊗ g) is given by

β ⊗ β.

For any two parabolic vector bundles given by unitary representations of

π1(X \ D), any homomorphism between them is given by a homomorphism of

π1(X \D)-modules. Let

γ : E(g⊗ g) −→ E(g)

be the homomorphism of parabolic vector bundles given by the Lie bracket g ⊗
g −→ g. From the above statement we conclude that γ is given by a homomor-

phism of π1(X \D)-modules. This implies that the connection on E(g) is induced

by a connection on (E , θ) (see Definition 8.5). Therefore, (E ,θ) is given by a ho-

momorphism from π1(X \D) to KG.

A homomorphism ρ : π1(X \D) −→ KG is called irreducible if ρ(π1(X \D))

is not contained in some proper parabolic subgroup of G. A homomorphism ρ

is irreducible if and only if the space of invariants in g for the adjoint action of

ρ(π1(X \D)) is the zero element.

Corollary 10.6. Let (E ,θ) be a parahoric G
θ,X

-torsor on X with arbitrary real

weights θ ∈ Am
T

. Then (E ,θ) is stable if and only if (E ,θ) is given by an irreducible

homomorphism from π1(X \D) to KG as described in Section 10.2.

Proof. Assume that (E ,θ) is stable. Therefore, (E ,θ) is polystable. If the homo-

morphism ρ : π1(X \ D) −→ KG corresponding to (E ,θ) has the property that

ρ(π1(X \ D)) is contained in a proper parabolic subgroup P of G, then the re-

duction of E to P over X \ D contradicts the stability of (E ,θ). Therefore, ρ is

irreducible.
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Conversely, for a polystable (E ,θ), if the corresponding homomorphism ρ :

π1(X \D) −→ KG is irreducible, then the polystable parabolic vector bundle E(g)

does not admit any holomorphic section ([Si, p. 744, Thm. 3]). Consequently, the

polystable torsor (E ,θ) is stable.

Remark 10.7. We note that the Corlette–Donaldson–Hitchin–Simpson corre-

spondence between flat G-bundles and G-Higgs bundles also extends to the para-

horic case. When G = GL(n,C) this was proved by Simpson in [Si]. This result

of [Si] is the key ingredient in this extension for general G. Using this result the

question for G is reduced to one on vector bundles using the adjoint representation

of G. The approach in the present paper then goes through without any essential

difficulty.

Remark 10.8. The paper [BGM] considers the problem of parabolic Higgs G-

bundle and the Corlette–Donaldson–Hitchin–Simpson correspondence on curves

from a somewhat different perspective and also consider real representations.

Remark 10.9. The Atiyah–Weil criterion ([At], [We], [AB]) for the existence of

a holomorphic connection on a holomorphic principal G-bundle generalizes to G-

torsors. The proof in [AB] has a straightforward generalization. Similarly, the

Atiyah–Krull–Schmidt reduction of a holomorphic principal G-bundle )[BBN2])

generalizes to G-torsors.

Remark 10.10. Theorem 10.5 evidently generalizes to the situation where G

is a product of simple and simply connected groups. The more general case of

semisimple groups G that are not simply connected is covered by using twisted

bundles as in [BLS]. For a reductive group G, the natural map G −→ G/Z0(G)×
(G/[G,G]) is surjective with finite kernel, where Z0(G) is the connected component

of the center of G containing the identity element. Since G/Z0(G) is semisimple

and /[G,G] is a product of copies of Gm, to prove Theorem 10.5 it suffices to prove

it for Gm. But this was done in [Si].

§10.4. The reductive case

We now indicate briefly how to extend the consideration of (semi)stability of tor-

sors in the case when the structure group G is a connected reductive algebraic

group and identify it with the space of homomorphisms from π to KG. However,

the corresponding relationship with parahoric torsors for reductive G needs a closer

analysis of Bruhat–Tits theory for reductive groups.

Let S = [G,G] be the derived group, i.e., the maximal connected semisimple

subgroup of G. Let Z0 be the connected component of the center of G (which is a
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torus) and one knows that S and Z0 together generate G. Let H = Z0×S. Then in

fact, H −→ G is a finite covering map. It is easy to see (following [Ra, p. 145]) that

(Γ, H)-bundles give rise to (Γ, G)-bundles and the stability and semistability of the

associated (Γ, G)-bundles follow immediately from those of the (Γ, H)-bundles.

Thus, the problem of handling the reductive group H reduces to the problem

of handling the semisimple group G that is not simply connected. On the side of

Bruhat–Tits group schemes and parahoric group schemes, for a general connected

reductive G the existence of Bruhat–Tits group schemes are well known and would

give the existence of similar group schemes on the whole of X. There are several

technical issues, which we have avoided, in the setting of the Bruhat–Tits buildings.

Canonical choices of apartments and alcoves that give a transparent meaning to

the association of conjugacy classes with weights in the alcove would need technical

modifications leading us too far afield; future considerations would therefore need

a careful discussion of a “canonical” choice of apartment as, for example, indicated

in [Tits, p. 32].
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