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Abstract

In this paper we study intertwining functors for twisted D-modules on partial flag varieties
and their relation to the representations of semisimple Lie algebras. We show that certain
intertwining functors give equivalences of derived categories of twisted D-modules. This
is a generalization of a result by Marastoni. We also show that these intertwining functors
from dominant to antidominant direction are compatible with taking global sections.
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§1. Introduction

In this paper we study integral transforms for modules over sheaves of twisted dif-

ferential operators on partial flag varieties, a topic that is also called intertwining

functors or Radon transforms and their relation to the representations of reductive

Lie algebras over C. A sheaf of twisted differential operators (TDOs) on a smooth

algebraic variety is a sheaf of rings that is locally isomorphic to the sheaf of differ-

ential operators. We call modules over a TDO twisted D-modules. Taking global

sections induces a functor from the category of twisted D-modules on partial flag

varietiesG/P to a category of representations of a Lie algebra g := Lie G. Beilinson

and Bernstein [3] established an equivalence of these categories. In [4] they defined

intertwining functors for twisted D-modules on full flag varieties G/B. Intertwin-

ing functors are defined as integral transforms of twisted D-modules along the

orbits of the product of two flag varieties G/B×G/B and are hence parametrized

by the elements of the Weyl group. Intertwining functors change the parameter of
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TDOs by an action of a Weyl group. Beilinson and Bernstein proved that these

intertwining functors are equivalences of categories. Marastoni [26] considered the

integral transform between a partial flag variety G/P and its opposite partial

flag variety G/P op of D-modules and proved that it is an equivalence of derived

categories. We extend the definition of intertwining functors to a certain class of

orbits of the product of two partial flag varieties G/P × G/P ′, where P and P ′

are associate parabolic subgroups, and prove that they give equivalences between

derived categories of holonomic twisted D-modules (Theorem 1.1). Miličić [28]

studied the compatibility between intertwining functors and global section func-

tors and proved that intertwining functors in one direction are compatible with

global section functors. We extend his result to the intertwining functors defined

in this paper (Theorem 1.2).

Let us now explain the preceding results, related results and our results in

more detail.

Let G be a connected reductive algebraic group over C, B be its Borel sub-

group and H be a Cartan subgroup contained in B. We denote their Lie algebras

by g, b and h, respectively. We denote by Π the set of simple roots and by ρ the half

sum of positive roots. We denote the enveloping algebra of g by U(g). Let λ ∈ h∗.

We define the Verma modules by M(λ) := U(g) ⊗U(b) Cλ, where Cλ is regarded

as a b-module by b→ h. We denote by I(λ) := AnnU(g)(M(λ)) the annihilator of

the Verma module.

The theorem of Beilinson and Bernstein relates representations of semisimple

Lie algebras and D-modules on flag varieties. To state their result in full generality

and to explain the results of this paper, we need the notion of sheaves of twisted dif-

ferential operators (TDOs). For the precise definition of TDOs, see Definition 2.1.

The isomorphism classes of TDOs on the flag variety G/B are parametrized by

the elements of h∗. For each λ ∈ h∗, there is a natural way to construct a cor-

responding TDO DλG/B and a homomorphism ψλ : U(g) → Γ(G/B,DλG/B). We

denote by DλG/B-mod the category of quasi-coherent DλG/B-modules. The localiza-

tion theorem of Beilinson and Bernstein ([3]) states the following: The homomor-

phism of algebras ψλ : U(g) → Γ(G/B,DλG/B) factors through an isomorphism

U(g)/I(λ − 2ρ) ∼= Γ(G/B,DλG/B) and if λ is regular and dominant the functor

Γ : DλG/B-mod → U(g)/I(λ − 2ρ)-mod, which assigns to a DλG/B-module M the

space Γ(G/B,M) of all global sections, is an equivalence of categories. For the

definition of regularity and dominance, see Definition 2.24. Note that our choice

of positive roots is the opposite of that of Beilinson and Bernstein. The inverse

functor ∆λ (see Section 2.3.3) is called the localization functor.

This theorem connects the representation theory of semisimple Lie algebras

and the geometry of the flag variety. For example, the results of Kazhdan and
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Lusztig [22] and Lusztig and Vogan [24] on the perverse sheaves on flag varieties can

be applied via the localization theorem and the Riemann–Hilbert correspondence

([9, Chap. VIII]) to the representation theory and yield a formula of multiplicities

of standard modules, one of which is known as the Kazhdan–Lusztig conjecture.

Beilinson and Bernstein in [4] studied the DλG/B-module for a not necessarily

antidominant λ. In this case the functor Γ is not exact. But they proved that the

localization theorem still holds for regular λ if we consider derived categories ([4,

§13. Cor.]).

Backelin and Kremnizer studied the case of nonregular λ and established

a localization theorem ([2]) using the relative enveloping algebra of Borho and

Brylinski ([11]).

An analogue of the localization theorem still holds for the partial flag variety

G/PI , where PI is a parabolic subgroup of G that contains B corresponding to I ⊂
Π. Isomorphism classes of TDOs on the partial flag variety G/PI are parametrized

by (h/hI)
∗, where hI is the subalgebra generated by the coroots α̌, α ∈ I. For

partial flag varieties, the homomorphism ψλI : U(g) → Γ(G/PI ,DλG/PI ) is not

always a surjection. For a regular and antidominant weight λ ∈ (h/hI)
∗ ⊂ h∗, the

following result is known: the homomorphism ψλI is surjective and the functor Γ :

DλG/PI -mod→ Γ(G/PI ,DλG/PI )-mod is an equivalence of categories. This theorem

is proved in [8, Thm. 6.3]. In Proposition 4.4 we show that this theorem still holds

for any regular weight λ ∈ (h/hI)
∗ if we consider derived categories. Bien [8] used

the localization theorem for dominant weight on partial flag varieties to study the

discrete spectrum of the semisimple symmetric space. Kitchen studied the relation

of the global section functor on G/B and that on G/PI under the pullback along

the quotient map G/B → G/PI and proved that the functor Γ commutes with

the pullback [23, Thm. 5.1]. She used this result to study the global sections of

standard twisted D-modules on partial flag varieties.

Beilinson and Bernstein defined an intertwining functor for full flag varieties

G/B in [4, §11]. The intertwining functors are defined as integral transforms of

twisted D-modules along the G-orbit under the diagonal G-action on G/B×G/B.

Thus intertwining functors are parametrized by elements w ∈W of the Weyl group

and changes λ by the action of the Weyl group w(λ − ρ) + ρ, in such a way that

Γ(G/B,DλG/B) are unchanged. Beilinson and Bernstein proved that the intertwin-

ing functors are equivalences of derived categories. They used intertwining functors

to prove Casselman’s submodule theorem ([4, Thm. 1]). Miličić [28] studied the

property of intertwining functors and proved that an intertwining functor in one

direction commutes with the derived functor of the global section functor. In this

paper we generalize this result to partial flag varieties (Theorem 1.2). This is one

of the main results of this paper. The result by Miličić is used to give a classifica-
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tion of irreducible admissible (g,K)-modules. Kashiwara and Tanisaki [21] studied

the case of affine flag varieties. They showed that intertwining functors are equiv-

alences of categories and that an intertwining functor in one direction commutes

with the derived functor RΓ. They used these results to prove the Kazhdan–Lusztig

conjecture for affine flag varieties. Marastoni studied the Radon transform of (non-

twisted) D-modules on Grassmannian varieties ([25, Thm. 1]) and general partial

flag varieties ([26, Thm. 1.1]) in the case that an intertwining functor is given

by the open orbit in G/P × G/P op, where P op is the opposite of P in G. We

generalize his result to intertwining functors given by more general orbits (Main

Theorem 1.1). This is also one of the main results of this paper.

Intertwining functors are studied from different perspectives. We mention

some related results. D’Agnolo and Schapira [15] established the general theory

of integral transforms of D-modules along a correspondence. In [16] they applied

their theory for the n-dimensional projective space P and the dual projective space

P∗ with the correspondence given by the closed orbit of the product P× P∗ under

the diagonal action of the general linear group GL(n+ 1). Marastoni and Tanisaki

[27] treated the Radon transform for two partial flag varieties when the Radon

transform is given by the closed G-orbit. They studied how weakly equivariant

D-modules behave under the Radon transform.

Yun [30] studied integral transforms of perverse sheaves that are constructible

along fixed stratifications. If the stratifications on both sides satisfy some good

properties with respect to the correspondence, he proved that the Radon trans-

form with respect to the correspondence is an equivalence of derived categories and

that the Radon transform sends tilting objects to projective objects. The strat-

ifications of G/P and G/P op with respect to B-orbits and the open G-orbit of

G/P × G/P op satisfy the assumptions of Yun’s theorem and he obtained a cat-

egory equivalence. This equivalence is a special case of Marastoni’s result in the

sense that the category of sheaves constructible along these strata is the category

of D-modules that are smooth along B-orbits by the Riemann–Hilbert correspon-

dence. Yun’s method has the advantage that it allows the weights of mixed perverse

sheaves to be calculated. Yun’s theorem is also applicable to the Radon transform

between an affine flag variety and its opposite thick flag variety.

Arkhipov and Gaitsgory [1] studied the intertwining operators for the category

of twisted D-modules on an affine flag variety and its opposite thick affine flag

variety using D-modules on the moduli stack of principal G-bundles on P1 with

reductions to the Borel subgroup at 0 and∞, that can be regarded as the quotient

stack G\(G/I ×G/Iop) for the algebraic loop group.

Cautis, Dodd and Kamnitzer [14] constructed a categorical sl2 action on⊕
0≤i≤nD

b(DGr(i,n),h-mod), the direct sum of derived categories of filtered D-
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modules on Grassmannian varieties. They showed that the resulting equivalence

of category Db(DGr(i,n),h-mod) ∼= Db(DGr(n−i,n),h-mod) is given by the Radon

transform along the open GL(n)-orbit of the product.

Let us now explain the results in this paper.

Let I and J be subsets of the set of simple roots Π of G. We have corre-

sponding parabolic subgroups PI and PJ of G. The G-orbits of G/PJ ×G/PI are

parametrized by double cosets in WI\W/WJ of the Weyl group by the parabolic

subgroups WI and WJ . We denote by Ow the orbit corresponding to w. It is possi-

ble to define an integral transform for any G-orbit on the product, but to consider

twisted D-modules we restrict to the case of w for which the projections from Ow
to G/PI and G/PJ are affine space fibrations, i.e., w for which wJ = I holds

(condition (∗)).
We define the intertwining functors Rw,µ+ and Rw,µ! for w ∈W and µ ∈ X∗(PI)

by first pulling back the twisted D-modules from G/PI to Ow, then tensoring

by the invertible sheaf Lµ ⊗ det(Θpw1
), and then pushing it forward to G/PJ

(Definition 3.3). Here det Θpw1
is the determinant invertible sheaf of the relative

tangent sheaf of the projection pw1 : Ow → G/PJ and Lµ is the G-equivariant

invertible sheaf associated to µ. The intertwining functors Rw,µ+ and Rw,µ! send

Db(DλG/PI -mod) to Db(Dw
−1(λ−ρ)+ρ+w−1µ

G/PJ
-mod). The first main result of this pa-

per is that the intertwining functors for these w give equivalences of derived cate-

gories.

Theorem 1.1 (Theorem 3.7). The functors Rw,µ+ and Rw
−1,−w−1µ

! are mutually

inverse equivalences.

If we set λ = 0, µ = ρ− wρ and w to be the minimal coset representative of

the longest element of W , this theorem specializes to the result of Marastoni [26,

Thm. 1.1].

Next we consider the compatibility of the intertwining functor for µ = 0 and

the global section functors. We denote by Rw+ and Rw! the intertwining functors

for µ = 0.

We denote by RΓλI the composition of the derived functor of taking global sec-

tion Db(DλG/PI -mod) → Db(Γ(G/PI ,DλG/PI )-mod) and the pullback along Uλ
I :=

U(g)/Ker(ψλI ) → Γ(G/PI ,DλG/PI ). We have natural morphisms of functors Iw+ :

RΓλI → RΓw
−1∗λ

J ◦ Rw+ and Iw! : RΓλI ◦ Rw! → RΓw
−1∗λ

J (Proposition 4.5). We give

a sufficient condition for Iw+ , Iw! to be isomorphisms. We need some notation. We

define v[α, I] ∈ W for α ∈ Π \ I by v[α, I] = w
I∪{α}
0 wI0 , where wI0 is the longest

element of WI . Take α1, . . . , αr in Proposition 2.23 and let I0 = I = v[α1, I1]I1,

I1 = v[α2, I2]I2, . . . , Ir−1 = v[αr, Ir]Ir, Ir = J . We define the (scalar) gener-
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alized Verma module by Mg
pI (µ) := U(g) ⊗U(pI) Cµ for a character µ of pI . For

K1 ⊂ K2 ⊂ Π, we denote by lK1
the Levi subalgebra of g corresponding to K1

containing h and by pK2

K1
the parabolic subalgebra lK2 ∩ pK1 of lK2 .

The second main result of this paper is the following.

Theorem 1.2 (Theorem 4.7). Let λ0 = λ ∈ (h/hI)
∗ and λi := v[αi, Ii]

−1 ∗
λi−1. Assume that λ is regular and for each i the generalized Verma module

M
lIi∪{αi}

p
Ii∪{αi}
Ii

(v[αi, Ii]
−1λi−1) of the Levi subalgebra is irreducible. Then the morphisms

Iw+ : RΓλI → RΓw
−1∗λ

J ◦ Rw+ and Iw! : RΓλI ◦ Rw! → RΓw
−1∗λ

J are isomorphisms of

functors.

The generalized Verma modules appearing in this theorem are tensor products

of generalized Verma modules induced from a maximal parabolic subalgebra and

a one-dimensional representation. It is irreducible if v[αi, Ii]
−1λi−1 is antidomi-

nant. A criterion of the irreducibility of generalized Verma modules induced from

a maximal parabolic subalgebra is given by Jantzen [18]. He, Kubo and Zierau

gave a complete list of reducible parameters for scalar generalized Verma mod-

ules associated to maximal parabolic subalgebras of simple Lie algebras ([17]). For

complete flag varieties G/B, this theorem coincides with the result of Miličić [28,

Thm. L.3.23]

Let us briefly outline this paper. In Section 2.2 we recall the general proper-

ties of sheaves of twisted differential operators on smooth algebraic varieties. In

Section 2.3 we recall basic facts on partial flag varieties and representations of

semisimple Lie algebras that are needed in this paper. In Section 3 we define in-

tertwining functors (Radon transforms) for a class of orbits in a product of partial

flag varieties and prove that they are equivalences of derived categories (Theo-

rem 3.7). In Section 4 we study the compatibility of global section functors and

intertwining functors. We prove a localization theorem (Proposition 4.4) and use

this to prove the compatibility of global section functors and intertwining functors

from dominant to antidominant direction (Theorem 4.7).

§2. Preliminary

§2.1. Notation

We always work over the field C of complex numbers.

For a ring A, we denote by A-mod the category of left A-modules. For a

morphism of rings f : A → B, we denote by f∗ the pullback functor B-mod →
A-mod.
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For the algebraic groups G, B, PI , . . . , we denote their Lie algebras by g, b,

pI , . . . . We denote by Rep(G) the category of rational representations of G. We

denote by X∗(G) the group of characters of G. For a character λ of G or g, we

denote by Cλ the corresponding one-dimensional representation.

We always denote by id the identity functor on a category. For an abelian

category C, we denote by Db(C) the bounded derived category of C and by D−(C)
the derived category consisting of bounded-above complexes.

Let f be a continuous map between topological spaces. We denote by f−1 the

pullback of sheaves and by f∗ the pushforward of sheaves. We denote by f! the

proper pushforward. For a sheaf F on a topological space X, we denote by Γ(F)

the set of all sections of F on X instead of Γ(X,F).

Let f : X → Y be a morphism of algebraic varieties X and Y . We denote

by f∗ the pullback that is defined by f∗(M) = OX ⊗f−1(OY ) f
−1(M) for an

OY -module M and by f∗ the pushforward.

We denote by {?} the reduced algebraic variety consisting of only one point

and by ? its point. For an algebraic variety X, we denote by aX the unique mor-

phism from X to {?}. For a locally free OX -module V, we denote by det(V) the

determinant invertible sheaf. For a smooth algebraic variety X, ΘX is its tangent

sheaf, ΩX is its cotangent sheaf and T ∗X is the cotangent bundle. Let f : X → Y

be a morphism of smooth algebraic varieties. Then we denote by ωf the relative

canonical sheaf of f . Let f : X → Y be a smooth surjective morphism of smooth

algebraic varieties X and Y . We denote by Θf the relative tangent sheaf and by

Ωf the relative cotangent sheaf.

§2.2. Sheaves of twisted differential operators

In this subsection we recall the definition and properties of sheaves of twisted

differential operators following Kashiwara and Tanisaki [20, 21]. Note that in [21]

they use right modules while we use left modules and that our notation is different

from theirs.

2.2.1. Definition of sheaves of twisted differential operators. Let X be a

smooth algebraic variety. We denote by OX the sheaf of regular functions on X

and by DX the sheaf of differential operators on X.

Definition 2.1. A sheaf of rings A on X with a homomorphism ι : OX → A and

an increasing filtration (FmA)m∈N of A by coherent OX -submodules is called a

sheaf of twisted differential operators (TDOs) on X if following properties hold:

(1) The homomorphism ι induces an isomorphism OX ∼= F 0A.

(2) Fm1A · Fm2A ⊂ Fm1+m2A.
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(3) [Fm1A, Fm2A] ⊂ Fm1+m2−1A.

Property (3) allows us to define a homomorphism of OX -modules σ : gr1
F A → ΘX

by gr1
FA 3 ā 7→ (f 7→ [a, f ]) ∈ ΘX .

(4) σ is an isomorphism.

(5) Sym•ΘX → gr•F A induced by σ−1 is an isomorphism.

For a coherent A-module, we define its characteristic variety Ch(M) which is

a closed conic subset of the cotangent space T ∗X using good filtrations in the same

way as for D-modules. A coherent A-module is called holonomic if its characteristic

variety is a Lagrangian subvariety of T ∗X. We denote by A-mod the category of

quasi-coherent A-modules, by Db(A-mod) its bounded derived category and by

Db
hol(A-mod) a full subcategory consisting of complexes whose cohomology in each

degree is holonomic.

There is a natural bijection between the set of all isomorphism classes of

TDOs and H2(X,σ≥1Ω•X) ([20, Thm. 2.6.1]), where Ω•X is the de Rham complex

of X and σ≥1 is the brutal truncation, i.e., replacing the degree ≤ 0 term of the

complex by 0. Denote the cohomology class corresponding toA under this bijection

by c(A) ∈ H2(X,σ≥1Ω•X).

For each x ∈ X, we have an A-module A⊗OX Cx, where Cx is the skyscraper

sheaf supported on x with one-dimensional fiber, which has a canonical structure

of an OX -module. This is a holonomic A-module. We denote this A-module by

A(x).

2.2.2. Operations on sheaves of twisted differential operators and on

their modules. Let X and Y be smooth algebraic varieties, f : X → Y a

morphism, A, A1, A2 be TDOs on Y and L be an invertible sheaf on Y . We

denote by c1(L) ∈ H2(Y ;C) the first Chern class of L defined below. We have

a homomorphism of abelian groups dlog : O∗Y → Ω1
Y defined by f → f−1df .

The homomorphism dlog induces a homomorphism H1(Y,O∗Y )→ H1(Y,Ω1
Y ). We

define c1(L) as the image of the class of L in H1(Y,O∗Y ) under the composition of

dlog with H1(Y,Ω1
Y )→ H2(Y, σ≥1Ω•Y ).

First we recall operations on TDOs.

Definition 2.2. We denote by Aop the opposite ring of A.

The sheaf of rings Aop is a TDO and we have c(Aop) = −c(A) + c1(ΩY ) ([20,

§2.7.1]).

Definition 2.3 ([20, after the first Rem. 2.6.5]). Let a be a complex number.

There is a TDO ALa with the property c(ALa) = c(A) + ac1(L).
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When a is an integer, then DLa is the sheaf of differential operators Endfin
C (La)

acting on La defined below.

LetR be a sheaf of rings on Y andM be a left OY - rightR-module. We define

a sheaf of filtered rings Endfin
R (M) as follows: First we define F 0Endfin

R (M) to be the

image of the homomorphism OY → EndR(M). We define FnEndfin
R (M) for n ∈ N

recursively by FnEndfin
R (M) := {r ∈ EndR(M) | [OY , r] ⊂ Fn−1Endfin

R (M)}.
Finally we define a sheaf of rings Endfin

R (M) by
⋃
i∈N F

iEndfin
R (M).

Definition 2.4. We define a TDO A1#A2 by Endfin
A1⊗CA2

(A1⊗OY A2), where the

tensor product is taken using left OY -module structures of A1 and A2.

We have c(A1#A2) = c(A1) + c(A2) ([21, Lem. 1.1.1]).

Definition 2.5. We define a TDO A−# by (Aop)Ω−1
Y .

We have an isomorphism of TDOs A#A−# ∼= DY .

Definition 2.6. We define a TDO f#A on X by Endfin
f−1(A)(f

∗(A)).

Proposition 2.7 ([21, Lem. 1.1.5]). We have the following isomorphisms of TDOs

on X:

(1) f#DY ∼= DX ;

(2) f#(A1#A2) ∼= f#A1#f#A2;

(3) f#ALa ∼= (f#A)(f∗L)a .

Next we recall operations on modules over TDOs.

Definition 2.8. (1) Let N1 ∈ Db
hol(A1-mod) and N2 ∈ Db

hol(A2-mod). We say

that N1 and N2 are noncharacteristic if Ch(N1) ∩ Ch(N2) ⊂ T ∗Y Y .

(2) Let N ∈ Db(A-mod). We say that N is noncharacteristic with respect to f

if the inclusion (X ×Y Ch(N )) ∩ T ∗XY ⊂ X ×Y T ∗Y Y holds, where T ∗XY :=

Ker(X ×Y T ∗Y → T ∗X).

Proposition 2.9. The tensor product ⊗OY induces a functor

#
⊗ : Db(A1-mod)×Db(A2-mod)→ Db(A1#A2-mod).

This functor sends a complex with holonomic cohomologies to one with holonomic

cohomologies.

Definition 2.10. The duality functor D : Db
hol(A-mod) → Db

hol(A−#-mod) is

defined by assigning M 7→ RHomA(M,A)⊗ ω−1
Y [dimY ].
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The following propositions state basic properties of the duality functor.

Proposition 2.11 ([21, Prop. 1.2.1]). We have an isomorphism of functors D ◦
D ∼= id on Db

hol(A-mod).

Proposition 2.12 ([21, Prop. 1.2.2]). Assume that N1 ∈ Db
hol(A1-mod) and N2 ∈

Db
hol(A2-mod) are noncharacteristic. Then we have an isomorphism

D(N1)
#
⊗D(N2) ∼= D(N1

#
⊗N2).

Definition 2.13 (Pullback). The functor f ! : Db(A-mod) → Db(f#A-mod) is

defined by

M 7→ f !M := f∗(A)⊗L
f−1(A) f

−1(M).

This functor preserves holonomicity.

We define the functor f+ : Db
hol(A-mod)→Db

hol(f
#A-mod) by f+:=D ◦ f ! ◦ D.

Note that we have a canonical isomorphism f !M∼= f∗M of OX -modules.

Definition 2.14 (Pushforward). We define the functor f+ : Db(f#A-mod) →
Db(A-mod) by

M 7→ Rf∗((f !(Aop)
#
⊗ ωf )⊗L

f#A (M)).

This functor preserves holonomicity.

We define the functor f! : Db
hol(f

#A-mod)→ Db
hol(A-mod) by f! := D◦f+◦D.

Proposition 2.15 ([21, Prop. 1.2.4]). (i) Let N ∈ Db(A-mod) be noncharac-

teristic with respect to f . Then we have f+N ∼= f !N .

The noncharacteristic assumption holds automatically if f is smooth.

(ii) There is a morphism of functors f! → f+.

For M ∈ Db
hol(f

#A) such that Supp(M) → Y is projective, the morphism

of functors induces an isomorphism f!(M) ∼= f+(M).

If f is projective then the assumption holds automatically.

Proposition 2.16 (Monoidal property and projection formula [21, Prop. 1.2.5]).

(i) For N1 ∈ Db
hol(A1-mod), N2 ∈ Db

hol(A2-mod), we have an isomorphism

f !(N1

#
⊗N2) ∼= f !(N1)

#
⊗ f !(N2).

(ii) ForM∈ Db
hol(f

#A1-mod) and N ∈ Db
hol(A2-mod), we have f+(M

#
⊗ f !(N ))

∼= (f+(M)
#
⊗N ).
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Proposition 2.17 (Base change isomorphism [21, Prop. 1.2.6]). Let

X ′
f ′ //

g′

��

Y ′

g

��
X

f // Y

be a Cartesian diagram of smooth varieties. Then for M ∈ Db
hol(g

#A-mod), we

have isomorphisms g′!(f
′+(M)) ∼= f+(g!(M)), g′+(f ′!(M)) ∼= f !(g+(M)).

2.2.3. Sheaves of twisted differential operators on homogeneous spaces.

Let G be an algebraic group and X be a smooth G-variety. We denote by µ

the action G × X → X and by p the projection G × X → X. Recall that a

quasi-coherent OX -module F with an isomorphism β : µ∗F → p∗F is called G-

equivariant if β satisfies the compatibility conditions [20, (4.4.2) and (4.4.3)]. We

denote by QCohG(X) the category of G-equivariant quasi-coherent OX -modules.

A TDO A with an isomorphism of TDO α : µ#A → p#A is called a G-equivariant

TDO if the compatibility conditions [20, (4.6.1) and (4.6.2)] are satisfied. Let A
be a G-equivariant TDO. An A-moduleM that is a G-equivariant quasi-coherent

OX -module with β is weakly G-equivariant if β is a homomorphism of p∗A-modules.

Now let X be a homogeneous G-variety. The action gives rise to a homomor-

phism of Lie algebras g→ Γ(ΘX). Fix a point x ∈ X. Let Gx be the stabilizer of

x in G and gx be its Lie algebra. For a quasi-coherent sheaf F on X, F(x) denotes

its fiber over x. We have the following equivalence of categories.

Proposition 2.18 ([20, Thm. 4.8.1]). The functor QCohG(X)→ Rep(Gx), which

sends F ∈ QCohG(X) to F(x), is an equivalence of abelian categories.

We denote the inverse of this equivalence by (•)X . The invertible sheaf on X

associated to a character λ of Gx by this equivalence is denoted by LλX .

The morphism of Lie algebras g → Γ(ΘX) given by the action of G on X

induces gX a structure of a Lie algebroid (for the definition of Lie algebroids, see

[5, §1.2]). We denote by U(gX) the enveloping algebra of the Lie algebroid gX . The

kernel of the structure map gX → Γ(ΘX) is denoted by IX . We have an isomor-

phism IX ∼= (gx)X as Lie algebroids. Let λ ∈ (g∗x)Gx be a Gx-invariant functional.

We note that if Gx is connected then (g∗x)Gx is isomorphic to (gx/[gx, gx])∗, the

set of all characters of the Lie algebra gx. The character λ induces a character

λX : IX → OX .

Definition 2.19. We define a sheaf of rings by DλX := U(gX)/〈A − λX(A) |
A ∈ IX〉.
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This is a G-equivariant TDO. We call DλX a G-equivariant TDO associated to

λ. If λ comes from a character λ of Gx, then we have an identity c(DλX) = c1(LλX)

and hence an isomorphism of TDOs DλX ∼= D
LλX
X .

This construction is compatible with the pullback along a morphism of ho-

mogeneous spaces.

Proposition 2.20 ([20, Prop. 4.14.1]). Let ι : H1 ↪→ H2 be closed subgroups of

G. Let p : G/H1 → G/H2 be the quotient morphism and λ ∈ (h∗2)H2 . Then we

have an isomorphism of G-equivariant TDOs p#DλG/H2

∼= Ddι
∗λ

G/H1
.

In the following we suppress dι∗ from the notation and instead write DλG/H1

∼=
p#DλG/H2

.

Fix λ ∈ (g∗x)Gx . A twisted (g, Gx)-module M with the twist λ is a g-module

with a Gx-module structure on Cλ ⊗M satisfying [20, (4.10.1) and (4.10.2)]. We

have the following equivalence of categories.

Proposition 2.21 ([20, Thm. 4.10.2 (1)]). The functor in Proposition 2.18 in-

duces an equivalence between the category of weakly equivariant DλX-modules and

the category of twisted (g, Gx)-modules with the twist λ.

§2.3. Partial flag varieties and TDOs on partial flag varieties

The notation in this section is used throughout this paper.

2.3.1. Partial flag varieties. Let G be a connected reductive algebraic group

over C, B be its Borel subgroup, U the unipotent radical of B and H be a maximal

torus in B. We denote by W the Weyl group NG(H)/H, by ∆ the set of roots of

g := Lie G, by ∆+ the set of positive roots determined by B and by Π the set of

simple roots. We denote by ` the length function of W .

To each subset I ⊂ Π, one associates a parabolic subgroup PI of G in the

way that P∅ = B holds, its Levi subgroup LI containing H, the unipotent radical

UI of PI , HI the subgroup of H generated by the image of α̌ : Gm → H for all

α ∈ I, ∆I the set of roots in lI and the parabolic subgroup WI of W . We denote

by wI0 the longest element of WI . We denote by P̄I the opposite parabolic of PI
and by ŪI its unipotent radical. Let I ⊂ J ⊂ Π. We denote by P JI the parabolic

subgroup of LJ defined by LJ ∩ PI . For α ∈ Π we denote by $α the fundamental

weight corresponding to α.

We always identify (h/hI)
∗ with a subspace of h∗ via the natural inclusion

and identify X∗(B) ∼= X∗(H) with a subgroup of h∗ and X∗(PI) ∼= X∗(H/HI)

with a subgroup of (h/hI)
∗ via the differential.

The partial flag variety G/PI decomposes into the finite union of B-orbits

(Bruhat decomposition): we have G/PI =
∐
w∈W/WI

BwPI . We denote the Bruhat
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cell BwPI by Cw. Each cell Cw is an affine space with dimension the length of the

minimal coset representative of w. We denote by iw the inclusion Cw ↪→ G/PI .

Since G/PI is projective and has the Bruhat decomposition, by the Hodge theory

we have following isomorphisms [7, Thm. 5.5]:

H2(G/PI , σ
≥1Ω•G/PI )

∼= H2(G/PI ;C) ∼= (pI/[pI , pI ])
∗ ∼= (h/hI)

∗.

In the following we identify (h/hI)
∗ with (pI/[pI , pI ])

∗. Note that the equality

c(DλG/PI ) = c1(LλG/PI ) holds for any λ ∈ X∗(PI).

Remark 2.22 ([12, Thm. V]). The G-module Γ(G/PI ,Lλ) is isomorphic to the

finite-dimensional irreducible G-module of lowest weight λ or 0.

Let I, J be subsets of Π. The G-orbits of G/PJ×G/PI are parametrized by the

set WI\W/WJ . The correspondence is given by assigning to w ∈ WI\W/WJ the

orbit Ow := G(w, e) ⊂ G/PJ ×G/PI . Let pw1 : Ow → G/PJ and pw2 : Ow → G/PI
be restrictions of the first and second projections fromG/PJ×G/PI and jw : Ow →
G/PJ×G/PI be the inclusion. The G-orbit Ow is isomorphic to G/(PI ∩wPJw−1)

as a G-variety. Under this isomorphism, pw1 : G/(PI ∩ wPJw−1) → G/PI is the

quotient morphism and pw2 : G/(PI ∩ wPJw−1)→ G/PJ is given by g 7→ gw.

In this paper we always consider w ∈W satisfying the following condition (∗):

(∗) There exist I, J ⊂ Π such that wJ = I holds.

For such a w we have wLJw
−1 = LI and the morphism pw1 and pw2 are affine space

fibrations with the fibers over identity cosets isomorphic to PJ/(w
−1PIw ∩ PJ) ∼=

UJ/(w
−1UIw ∩ UJ) and PI/(PI ∩ wPJw−1) ∼= UI/(UI ∩ wUJw−1), which are of

dimension `(w). From this fact we see that there is an isomorphism det(Θpw1
) ∼=

pw∗2 L
wρ−ρ
G/PI

.

Let w ∈W satisfy condition (∗). For such a w we have a “reduced expression”

in the following sense: To each α ∈ Π \ I one associates v[α, I] = w
I∪{α}
0 wI0 ∈W .

Proposition 2.23 ([13, Prop. 2.3]). Let I, J ⊂ Π and w ∈ W satisfy I = wJ .

Then there exist α1, . . . αr ∈ Π satisfying following conditions:

(1) I = v[α1, I1]I1, I1 = v[α2, I2]I2, . . . , Ir−1 = v[αr, Ir]Ir, Ir = J ;

(2) αi /∈ Ii;
(3) w = v[α1, I1] · · · v[αr, Ir];

(4) `(w) =
∑

1≤i≤r `(v[αi, Ii]).

The element v[α, I] ∈ W may be thought of as a simple reflection in the

parabolic case.
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2.3.2. Representations of semisimple Lie algebras. Let I ⊂ Π. We denote

by ρ the half sum of positive roots of g, by ρI the ρ for lI and by ρnI the difference

ρ− ρI .

Definition 2.24. A weight λ ∈ h∗ is called regular if 〈λ− ρ, α̌〉 6= 0 holds for any

root α ∈ ∆. A weight λ ∈ h∗ is called antidominant if 〈λ − ρ, α̌〉 /∈ Z≥1 for all

α ∈ ∆+.

Note that the definition of regularity is different from the usual one because

we use ∗-action defined in Definition 3.1.

We define the (scalar) generalized Verma module of highest weight λ ∈ (h/hI)
∗

by Mg
pI (λ) := U(g)⊗U(pI) Cλ. We denote by IpI (λ) the annihilator of the general-

ized Verma module Mg
pI (λ). We denote by Uλ

I the quotient U(g)/IpI (λ− 2ρnI ). If

I is empty, we denote by Uλ the quotient U(g)/Ib(λ − 2ρ). We use the following

result of Jantzen.

Proposition 2.25 ([19, Cor. 15.27]). Assume that J = w−1I ⊂ Π holds. For any

λ ∈ (h/hI)
∗, the ideals IpI (λ) and IpJ (w−1(λ+ ρ)− ρ) coincide.

Let V1, V2 be g-modules. We define a g-bimodule L(V1, V2) to be the g-sub-

bi-module of HomC(V1, V2) consisting of all g-finite elements under the diagonal

g-action.

The homomorphism U(g) → EndC(Mg
pI (λ − 2ρnI )) factors through a homo-

morphism U(g)→ L(Mg
pI (λ− 2ρnI ),M

g
pI (λ− 2ρnI )). This homomorphism factors

through an injection aλ : Uλ
I → L(Mg

pI (λ − 2ρnI ),M
g
pI (λ − 2ρnI )). In general

aλ is not surjective. An example of nonsurjectivity is given in [29, §8.2]. For an

“antidominant regular” weight λ, it is known that aλ is surjective.

Proposition 2.26 ([19, Cor. 15.23]). If λ ∈ (h/hI)
∗ satisfies 〈λ+ρ, β̌〉 /∈ Z≥1 for

all β ∈ ∆+ \∆I , then the homomorphism aλ is surjective.

2.3.3. Sheaves of twisted differential operators on partial flag varieties.

By the isomorphism H2(G/PI , σ
≥1Ω•G/PI )

∼= (pI/[pI , pI ])
∗, we see that every TDO

on partial flag varieties is a G-equivariant TDO.

We have a homomorphism of Lie algebras g → Γ(DλG/PI ) and an induced

homomorphism of algebras ψλ : U(g)→ Γ(DλG/PI ).
We first recall the fundamental result of Beilinson and Bernstein. Let λ ∈ h∗

be antidominant.

Proposition 2.27 ([3, Lem.]). The homomorphism ψλ induces an isomorphism

Uλ → Γ(DλG/B).
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Theorem 2.28 ([3, Thm. principal]). Assume furthermore that λ is regular. The

functor Γ : DλG/B-mod → Uλ-mod that associates to a DλG/B-module its global

sections is an equivalence of categories.

This is the famous Beilinson–Bernstein localization theorem. An inverse to the

functor Γ is described as follows. Let M be a Uλ-module. To each open subset V of

G/B, we associate Γ(V,DλG/B)⊗UλM . The sheafification of this presheaf is aDλG/B-

module ∆λ(M). This construction gives a functor ∆λ : Uλ-mod→ DλG/B-mod.

If λ is not antidominant, the exactness of the functor Γ fails. In this case,

for regular λ we have the following equivalence between derived categories, due to

Beilinson and Bernstein.

Theorem 2.29 ([4, §13, Cor.]). Assume that λ ∈ h∗ is regular. The functor RΓ :

Db(DλG/B-mod)→ Db(Uλ-mod) is an equivalence of categories. Its inverse is given

by L∆λ.

We now turn to the case of partial flag varieties. Let I be a subset of Π and

λ ∈ (h/hI)
∗. We first consider the general property of the global section functor.

Taking global sections induces a functor Γ : DλG/PI -mod → Γ(DλG/PI )-mod. Let

∆I be the localization functor DλG/PI ⊗Γ(Dλ
G/PI

) (•). The localization functor ∆I is

left adjoint to Γ, i.e., we have a functorial isomorphism HomDλ
G/PI

(∆I(N),M) ∼=
HomΓ(Dλ

G/PI
)(N,Γ(M)) for N ∈ Γ(DλG/PI )-mod andM∈ DλG/PI -mod. We denote

its counit and unit by ε : ∆I ◦ Γ → id and η : id → Γ ◦ ∆I . We use the same

symbols ε and η for unit and counit for derived functors.

The following theorem is stated in [3]. A proof is explained in [8, Thm. 6.3].

Proposition 2.30. Assume that λ is regular and antidominant. Then the functor

Γ : DλG/PI -mod→ Γ(DλG/PI )-mod is an equivalence of categories.

Next we recall properties of TDO DλG/PI . The higher cohomology of TDO

itself vanishes.

Proposition 2.31 ([10, Lem. 1.4]). For any λ ∈ (h/hI)
∗ and for any i > 0, we

have an isomorphism Hi(G/PI ,DλG/PI )
∼= Hi(T ∗G/PI ,OT∗G/PI ) ∼= 0.

The identity coset ePI ∈ G/PI is the unique closed B-orbit. The fiber of DλG/PI at

ePI is an irreducibleDλG/PI -module supported on the point ePI . The vector space of

sections of DλG/PI (ePI) has the structure of a g-module through the homomorphism

ψλ : U(g)→Γ(DλG/PI ). This g-module is isomorphic to a generalized Verma module.

Proposition 2.32 ([29, Prop. 4]). The g-module Γ(DλG/PI (ePI)) is isomorphic to

the generalized Verma module Mg
pI (λ− 2ρnI ).
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Note that DλG/PI (ePI) is irreducible as a DλG/PI -module, but it is not neces-

sarily irreducible as a g-module, even if ψλ is surjective. Using this proposition,

the kernel of ψλ is described as follows.

Proposition 2.33 ([29, Prop. 14]). The kernel of ψλ coincides with IpI (λ−2ρnI ).

We denote the induced homomorphism Uλ
I → Γ(DλG/PI ) also by ψλ. We have a

natural homomorphism of algebras Γ(DλG/PI ) → EndCΓ(DλG/PI (ePI)). By Propo-

sition 2.32 we obtain a homomorphism of algebras Γ(DλG/PI ) → EndC(Mg
pI (λ −

2ρnI )), which is g-equivariant with respect to the adjoint g-action on both sides.

Since the adjoint g-action on Γ(DλG/PI ) is locally finite, this homomorphism factors

through the αλ : Γ(DλG/PI )→ L(Mg
pI (λ− 2ρnI ),M

g
pI (λ− 2ρnI )).

Soergel proved that this homomorphism is always an isomorphism.

Proposition 2.34 ([29, Cor. 7]). The homomorphism αλ is an isomorphism.

By the construction we have aλ = ψλ ◦ αλ. This equality and the above

proposition indicate that aλ is an isomorphism if and only if ψλ is an isomorphism.

Thus for λ ∈ (h/hI)
∗ satisfying the assumption of Proposition 2.26, ψλ is an

isomorphism. For some good parabolic subgroups, a stronger statement holds.

Proposition 2.35 ([10]). If the moment map T ∗G/PI → g∗ is birational onto

the image and the image is normal, then αλ is an isomorphism.

As a special case of this proposition, we have that ψλ is an isomorphism for full

flag varieties. In Lemma 4.1, we prove that if λ ∈ (h/hI)
∗ is regular the morphism

ψλ is an isomorphism.

Finally we state a result due to Kitchen, which states that taking pullbacks

to a flag variety is compatible with global sections. We denote by pI the quotient

morphism G/B → G/PI . We have a pullback functor p!
I : Db(DλG/B-mod) →

Db(DλG/PI -mod). Since αλ : Uλ → Γ(DλG/B) is an isomorphism, the homomorphism

ψλ induces a homomorphism qI : Γ(DλG/B)→ Γ(DλG/PI ).

Proposition 2.36 ([23, Cor. 5.2]). We have an isomorphism of functors RΓ(G/B,

−) ◦ p!
I
∼= q∗I ◦ RΓ(G/PI ,−) : Db(DλG/PI -mod)→ Db(Γ(DλG/B)-mod):

Db(DλG/PI -mod)
RΓ(G/PI ,−) //

p!I
��

�

Db(Γ(DλG/PI )-mod)

q∗I

��
Db(DλG/B-mod)

RΓ(G/B,−)
// Db(Γ(DλG/B)-mod).
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§3. Radon transforms for partial flag varieties

We define an affine action of the Weyl group on h∗, which appears many times in

this paper.

Definition 3.1. For w ∈W and λ ∈ h∗, we define w ∗λ by w ∗λ := w(λ− ρ) + ρ.

Note that this action differs from the dot action that is defined in [19, §2.3].

Let I ⊂ Π. In this paper we consider only w ∈W satisfying I = wJ for some

J ⊂ Π. In this case pw1 and pw2 are affine space fibrations. This assumption has the

following drawback.

Lemma 3.2. Let I, J ⊂ Π and w ∈W satisfy wJ = I:

(1) The pullbacks pw∗1 : H∗(G/PJ ,C) → H∗(Ow,C) and pw∗2 : H∗(G/PI ,C) →
H∗(Ow,C) are isomorphisms.

(2) Under the identification H2(G/PI ,C) ∼= (h/hI)
∗ and H2(G/PJ ,C) ∼= (h/hJ)∗,

the linear map (pw∗1 )−1 ◦ pw∗2 coincides with w−1.

Proof. (1) This follows from the fact that pw1 and pw2 are affine space fibrations

and hence have contractible fibers.

(2) Pick λ ∈ X∗(PJ) ⊂ (h/hJ)∗. Then we have an isomorphism pw∗1 LλG/PJ
∼=

LwλOw
∼= pw∗2 LwλG/PI . Since (h/hJ)∗ is generated by X∗(PJ) as a C-vector space, we

have an equality (pw∗1 )−1 ◦ pw∗2 = w−1.

We consider integral transforms arising from G-orbits Ow of G/PJ × G/PI
for w satisfying condition (∗).

Definition 3.3 (Intertwining functor or Radon transform). For each w ∈W sat-

isfying wJ = I and each µ ∈ X∗(PI), we define the intertwining functor or the

Radon transform Rw,µ? for ? =! or + associated to w and µ by

Rw,µ? (−) := pw1?(det Θpw1

#
⊗LµOw

#
⊗ pw!

2 (−)) :

Db
hol(DλG/PI -mod)→ Db

hol(D
w−1∗λ+w−1µ
G/PJ

-mod).

The functor Rw,µ+ is also defined on the category Db(DλG/PI -mod). If µ = 0,

we omit µ and denote it by Rw? .

The previous lemma and the isomorphism det Θpw1
∼= L−ρ+wρOw explain the

twist in the codomain of the intertwining functor.

Intertwining functors are given by kernels on the product G/PJ ×G/PI . Let

jw : Ow ↪→ G/PJ × G/PI be the inclusion. We have the following description of

the intertwining functor using a kernel.
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Lemma 3.4. Let M ∈ Db(DλG/PI -mod). We have the following isomorphism for

? =!, ∗:

Rw? (M) ∼= p1+(jw?(det Θp1

#
⊗LµOw)

#
⊗ p!

2(M)).

Proof. This follows immediately from the projection formula (Proposition 2.16(ii)):

Rw? (M) ∼= pw1?(det Θpw1

#
⊗LµOw

#
⊗ pw!

2 (M))

∼= p1+(jw?(det Θpw1

#
⊗LµOw)

#
⊗ p!

2(M)).

Here jw? is a functor Db(D−ρ+wρ+µOw -mod)→Db(p#
1 Dw

−1λ
G/PJ

#p#
2 D
−λ−ρ+wρ+µ
G/PI

-mod).

Note that both p1 and p2 are smooth and proper morphisms.

Definition 3.5. Let w ∈ W and λ ∈ (h/hI)
∗. For ? =!, ∗, we define the kernel of

the intertwining functor by

Kw,µ
? := jw?(det Θpw1

#
⊗LµOw) ∈ Db(p#

1 Dw
−1λ

G/PJ
#p#

2 D
−λ−ρ+wρ+µ
G/PI

-mod).

For the composition of intertwining functors, the following holds.

Proposition 3.6. Let I, J , K ⊂ Π, µ1 ∈ X∗(PI), µ2 ∈ X∗(PJ) and w1, w2 ∈W
satisfy w2K = J , w1J = I and `(w1w2) = `(w1) + `(w2). Then for ? = + and

? =!, we have

Rw1w2,µ1+w1µ2

?
∼= Rw2,µ2

? ◦Rw1,µ1

? .

Proof. Let q1 : Ow1w2
→ Ow2

and q2 : Ow1w2
→ Ow1

be natural morphisms. We

have the following diagram:

Ow1w2

q1{{
q2 ##

p
w1w2
1





p
w1w2
2

��

�Ow2

p
w2
1

{{

p
w2
2

##

Ow1

p
w1
1

{{

p
w1
2

##
G/PK G/PJ G/PI .

The square is Cartesian because of the equality `(w1w2) = `(w1) + `(w2).
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We have det Θp
w1
1

∼= L−ρ+w1ρ
Ow1

and det Θp
w2
1

∼= L−ρ+w2ρ
Ow2

. From this we

obtain

q∗1(det Θp
w2
1
⊗ Lµ2

Ow2
)⊗ q∗2(det Θp

w1
1
⊗ Lµ1

Ow1
) ∼= L−ρ+w1w2ρ+w1µ2+µ1

Ow1w2

∼= det Θp
w1w2
1

⊗ Lw1µ2+µ1

Ow1w2
,

which by base change gives an isomorphism Kw2,µ2

? ∗ Kw1,µ1

?
∼= Kw1w2,µ1+w1µ2

? .

This isomorphism gives Rw1w2,µ1+w1µ2

?
∼= Rw2,µ2

? ◦ Rw1,µ1

? . Here we denote by

p12, p23, p13 the projection from G/PK × G/PJ × G/PI to the product of two

of the three factors and define the convolution of kernels by Kw2,µ2

? ∗ Kw1,µ1

? :=

p13+(p!
12(Kw2,µ2

? )
#
⊗ p!

23(Kw1,µ1

? )).

This proposition and Proposition 2.23 due to Brink and Howlett allow us to

study the intertwining functor by reduction to the maximal parabolic cases.

Intertwining functors for w satisfying wJ = I is an equivalence of categories.

This is one of the main results in this paper.

Theorem 3.7. The intertwining functors Rw,µ+ and Rw
−1,−w−1µ

! are mutually in-

verse equivalences.

This theorem is a generalization of the result of Marastoni [26, Thm. 1.1].

We prove this theorem in two steps. First we prove this theorem for the

maximal parabolic case, i.e., the case when the set Π \ I consists of the unique

element α. In this case, w satisfying condition (∗) is the identity of W or w =

wI0w
Π
0 . We set v := wI0w

Π
0 and J := v−1I ⊂ Π. The G-orbit Ov is open in

G/PJ ×G/PI .

Lemma 3.8. Assume that G is a simple algebraic group and Π \ I = {α}. Let

v := wI0w
Π
0 and J := v−1I. Let λ ∈ (h/hI)

∗ and µ ∈ X∗(PI).

Then the intertwining functors Rv,µ+ and Rv
−1,−v−1µ

! are mutually inverse

equivalences.

Proof. We shall prove the isomorphism Rv
−1,−v−1µ

! ◦Rv,µ+
∼= id. The isomorphism

Rv,µ+ ◦Rv
−1,−v−1µ

!
∼= id is proved similarly.

We consider the following diagram where we denote by p1 and p2 (resp. p′1
and p′2, p′′1 and p′′2) the first and second projection from G/PJ × G/PI (resp.

G/PI × G/PJ , G/PI × G/PI). We denote by p12, p23, p13 the projection from

G/PI ×G/PJ ×G/PI to the product of two of the three factors. These morphisms
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are all smooth and proper morphisms:

G/PI ×G/PI

p
′′
1

��

p
′′
2

��

G/PI ×G/PJ ×G/PI

p13

OO

p12

uu

p23

))
G/PI ×G/PJ

p′1

xx

p′2

))

G/PJ ×G/PI
p1

uu

p2

&&
G/PI Ov−1

pv
−1

1oo pv
−1

2 //

jv−1

OO

G/PJ Ov
pv1oo pv2 //

jv

OO

G/PI .

Using Lemma 3.4 the kernel that gives Rv
−1,−v−1µ

! ◦ Rv,µ+ is calculated using

a base change:

Rv
−1,−v−1µ

! ◦Rv,µ+ (M)

∼= p′1!(K
v−1,−v−1µ
!

#
⊗ p′!2 ◦ p1+(Kv,µ

+

#
⊗ p!

2(M)))(1)

∼= p′1!(K
v−1,−v−1µ
!

#
⊗ p12+ ◦ p!

23(Kv,µ
+

#
⊗(p2 ◦ p23)!(M)))(2)

∼= (p′1◦p12)!(p
!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )

#
⊗(p2◦p23)+(M))(3)

∼= p′′1+(p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ ))

#
⊗ p′′!2 (M)).(4)

The isomorphism (2) follows from the base change isomorphism (2.17). The iso-

morphisms (3) and (4) follow from the projection formula (Proposition 2.16(ii)).

We interchanged ∗ and ! for smooth and proper morphisms.

Thus we see that the composition of intertwining functors is given by the

convolution Kv−1,−v−1µ
! ∗ Kv,µ

+ := p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ )). Let ∆ :

G/PI → G/PI ×G/PI be the diagonal immersion. It is enough to show that there

is an isomorphism Kv−1,−v−1µ
! ∗Kv,µ

+
∼= ∆+(OG/PI×G/PI ), since the latter kernel

gives the identity functor. To construct this isomorphism it is enough to prove the

following two isomorphisms:

(Kv−1,−v−1µ
! ∗Kv,µ

+ )
∣∣∣
G/PI×G/PI\∆(G/PI)

∼= 0,(5)

∆!(Kv−1,−v−1µ
! ∗Kv,µ

+ ) ∼= OG/PI [dimG/PI ].(6)

Proof of (5). Let x1, x2 be two distinct points of G/PI . We define two open

subsets of G/PJ by U1 := p1(p−1
2 (x1) ∩ Ov) and U2 := p′2(p′−1

1 (x2) ∩ Ov−1) ==

p1(p−1
2 (x2) ∩ Ov). We denote by s1 and s2 the closed immersions of U1 and U2
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into Ov and Ov−1 , compatible with p23 ◦ x̃ and p12 ◦ x̃ and by i1 and i2 the open

immersions of U1 and U2 into G/PJ .

We consider the following diagrams. We denote by x the morphism {?} →
G/PI × G/PI that sends ? to (x1, x2) and by x̃ the morphism G/PJ → G/PI ×
G/PJ ×G/PI that sends y ∈ G/PJ to (x1, y, x2):

y_

��

G/PJ∈
aG/PJ //

x̃

��

{?} 3

x

��

?_

��
(x1, y, x2) G/PI ×G/PJ ×G/PI∈

p13 // G/PI ×G/PI 3 (x1, x2),

U2
s2 //

i2

��

Ov−1

jv−1

��

Ov

jv

��

U1

i1

��

s1oo

G/PJ
p12◦x̃ // G/PI ×G/PJ , G/PJ ×G/PI G/PJ .

p23◦x̃oo

We denote by j1 and j2 the open immersion of U1 ∩ U2 into U1 and U2:

U1 ∩ U2
j1 //

j2

��

U1

i1

��
U2

i2
// G/PJ .

It is enough to show the isomorphism x!(Kw−1

! ∗Kw
+) ∼= 0.

x!(Kv−1,−v−1µ
! ∗Kv,µ

+ ) ∼= x! ◦ p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ ))(7)

∼= aG/PJ+ ◦ x̃!(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ ))(8)

∼= aG/PJ+((p12 ◦ x̃)!(Kv−1,−v−1µ
! )

#
⊗(p23 ◦ x̃)!(Kv,µ

+ ))(9)

∼= aG/PJ+(i2! ◦ s!
2(det Θp′1

#
⊗L−v

−1µ
Ov−1

)
#
⊗ i1+

◦ s!
1(det Θp1

#
⊗LµOv ))

(10)

∼= aG/PJ+(i2!(OU2
)

#
⊗ i1+(OU1

))(11)

∼= aG/PJ+ ◦ i1+ ◦ i!1 ◦ i2!(OU2
)(12)

∼= aU1+(j1!(OU1∩U2)).(13)

The isomorphism (8) follows from the base change, (9) follows from the fact that x̃

is a monoidal functor (Proposition 2.16 (i)) and (10) follows from the base change.

The isomorphism (11) is a consequence of the fact that the locally free sheaves
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Θp′1
, Θp1 and invertible sheaves L−v

−1µ
Ov−1

and LµOv are trivial on affine spaces U1 and

U2. The isomorphism (12) follows from the projection formula. The isomorphism

(13) follows from i!1
∼= i+1 because i1 is an open immersion, and from the base

change theorem we have i+1 ◦ i2!
∼= j1! ◦ j+

2 .

The last term is a (nontwisted) regular holonomic D-module. We use the

compatibility of six operations of D-modules on smooth algebraic varieties and

six operations of constructible sheaves on associated complex manifolds under the

de Rham functor DR(−) := RHomDX (OX ,−) (known as the Riemann–Hilbert

correspondence).

By the compatibility of the direct image functor and the de Rham functor [9,

§14.5.(1)], we have

aU1+j1!OU1∩U2
∼= RΓ DR(j1!OU1∩U2

) ∼= RΓj1!(CU1∩U2
).

Here, for an algebraic variety X we denote by CX the constant sheaf on the

associated complex manifold Xan. Let Z := U1 \ (U1 ∩ U2) be a closed subset of

U1 and iZ : Z ↪→ U1 be the closed immersion.

We have the following distinguished triangle of complexes of vector spaces:

RΓ(j1!CU1∩U2)→ RΓ(CU1)→ RΓ(iZ∗CZ)
+1→ .

Since U1 is an affine space the second term in this distinguished triangle is iso-

morphic to C concentrated in degree 0. By the lemma below, the third term in

this distinguished triangle is isomorphic to C concentrated in degree 0 and the

morphism is nonzero. From this we obtain RΓ(j1!CU1∩U2) ∼= 0.

Lemma 3.9. Let G be a semisimple algebraic group over C and P be a parabolic

subgroup containing a Borel subgroup B. Let C be the unique open B-orbit in G/P

and Y be its complement. Then for any g ∈ G, the closed subvariety C ∩ gY of C

is contractible.

Proof. Since C and Y are B-stable, it is enough to consider the case when g is a

representative of some Weyl group element w. The subvariety wY of G/PJ is T -

stable. Since C contracts to a point by Gm-action induced by a dominant regular

coweight of T , the closed T -stable subset C ∩ wY also contracts to a point.

Proof of (6).

We consider following diagrams, where we denote by τ : G/PI × G/PI →
G/PI ×G/PI and by τ̃ : G/PI ×G/PJ → G/PJ ×G/PI the permutation and by
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∆̃ and by ∆̃′ the product of identity and ∆:

G/PI

∆

��
G/PI ×G/PI

τ OO

G/PI ×G/PJ ×G/PI

p13

OO

G/PI ×G/PJ

∆̃′
55

p′1

@@

τ̃ // G/PJ ×G/PI ,

∆̃

ii

p2

^^

Ov

jv

��

Ov−1
τ̃ |O

v−1

∼oo

jv−1

��
G/PJ ×G/PI G/PI ×G/PJ .

τ̃

∼oo

We have

∆!(Kv−1,−v−1µ
! ∗Kv,µ

+ )

∼= ∆! ◦ p13+(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ ))(14)

∼= p′1+ ◦ ∆̃′!(p!
12(Kv−1,−v−1µ

! )
#
⊗ p!

23(Kv,µ
+ ))(15)

∼= p′1+(∆̃′! ◦ p!
12(Kv−1,−v−1µ

! )
#
⊗ ∆̃′! ◦ p!

23(Kv,µ
+ ))(16)

∼= p′1+(Kv−1,−v−1µ
!

#
⊗ τ̃ !(Kv,µ

+ ))(17)

∼= p′1+ ◦ jv−1+(det Θ
pv
−1

1

#
⊗L−v

−1µ

O−1
v

#
⊗(τ̃ |Ov−1 )∗ det Θpv1

#
⊗Lv

−1µ

O−1
v

)(18)

∼= OG/PI [dimG/PI ].(19)

The isomorphism (15) follows from the base change. The isomorphism (16) follows

from the fact that the !-pullback is monoidal. The isomorphism (18) follows from

the projection formula. The isomorphism (19) follows from the fact that det Θ
pv
−1

1

and (τ̃ |Ov−1 )∗ det Θpv1
are mutually inverse invertible sheaves, that L−v

−1µ

O−1
v

and

Lv
−1µ

O−1
v

are mutually inverse and the fact that pv
−1

1 = p′1 ◦ jv−1 is an affine space

fibration.



620 K. Yahiro

Proof of Theorem 3.7. We shall prove the isomorphism Rw
−1,−w−1µ

! ◦ Rw,µ+
∼= id.

The isomorphism Rw,µ+ ◦Rw
−1,−w−1µ

!
∼= id is proved similarly.

By Propositions 2.23 and 3.6, it is enough to prove the theorem for w =

v[α, J ] := w
J∪{α}
0 wJ0 for some α ∈ Π and I = v[α, J ]J . We assume this.

We denote by α′ the element of Π such that I ∪ {α′} = J ∪ {α}. We have the

following diagram:

G/PJ
pw1← Ow

pw2→ G/PI .

We consider the P̄J∪{α}-orbits of ePI and ePJ . These orbits are isomorphic

to LI∪{α′}/P
I∪{α′}
I × ŪI∪{α′} and LJ∪{α}/P

J∪{α}
J × ŪJ∪{α} as algebraic vari-

eties respectively. The pullbacks of these orbits coincide and are isomorphic to

OLI∪{α′}w × ŪI∪{α′}, where OLI∪{α′}w is Ow for LI∪{α′}.

By Lemma 3.8, we have an isomorphism Rw
−1,−w−1µ

! ◦ Rw,µ+ (M) ∼= M on

LI∪{α′}/P
I∪{α′}
I × ŪI∪{α′}. Take any x ∈ G/PI . Take the parabolic subgroup of G

corresponding to x and take B, Π, . . . compatibly. Then we have an isomorphism

Rw
−1,−w−1µ

! ◦Rw,µ+ (M) ∼=M near x.

§4. Intertwining functors and global sections

§4.1. Global sections

In this subsection we prove general properties of the global section functor RΓ :

D−(DλG/PI -mod) → D−(Γ(DλG/PI )-mod) and L∆I : D−(Γ(DλG/PI )-mod) →
D−(DλG/PI -mod) in the case of partial flag varieties and for not necessarily an-

tidominant λ using results cited in Section 2.3.3. In this section we consider

bounded-above complexes because we do not know whether the algebra Γ(DλG/PI )
is of finite global dimension.

Lemma 4.1. Assume that λ is regular. Then ψλ : Uλ
I := U(g)/IpI (λ − 2ρnI ) →

Γ(DλG/PI ) is an isomorphism.

Proof. When λ is antidominant, this is proved by Bien [8, Prop. I.5.6]. This is also

proved by combining Propositions 2.26 and 2.34.

By Proposition 2.31, we have an isomorphism Γ(DλG/PI )
∼= Γ(grDλG/PI )

∼=
Γ(OT∗G/PI ) as a G-module for any λ. Hence the multiplicity of each finite-dimen-

sional G-module in Γ(DλG/PI ) is finite and independent of λ.

For general regular λ, pick w ∈ W such that I = wJ and w−1 ∗ λ is anti-

dominant. Since ψλ is injective, it is enough to show that both sides have the same

finite multiplicity. By the result of Jantzen (Proposition 2.25) and the equality

ρ−wρ =
∑
α∈∆+,w−1α<0 α = ρnI −wρnJ , we see that the equality IpI (λ−2ρnI ) =
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IpJ (w−1 ∗ λ − 2ρnJ ) holds. Since w−1 ∗ λ is dominant, this implies U(g)/IpI (λ −
2ρnI )

∼= U(g)/IpJ (w−1∗λ−2ρnJ ) ∼= Γ(OT∗G/P ) as G-modules and hence they have

the same finite multiplicity for any finite-dimensional representation of G. Hence

we see that U(g)/IpI (λ−2ρnI ) and Γ(DλG/PI ) have the same finite multiplicity.

To prove a localization theorem for partial flag varieties, we need the following

two lemmas.

Lemma 4.2. The counit η : RΓ ◦ L∆I → id is an isomorphism.

Proof. Let M ∈ D−(Γ(DλG/PI )-mod). Take a free resolution L of M . By Proposi-

tion 2.31 we have RΓ ◦ L∆I(M) ∼= RΓ ◦∆I(L)
η(L)−→ L ∼= M . It is enough to show

that Γ ◦ ∆I(L)
η(L)−→ L ∼= M is an isomorphism. Since L is a complex consisting

of free Γ(DλG/PI )-modules ∆I(L) consists of free DλG/PI -modules. From this we

deduce that η(L) is an isomorphism.

Lemma 4.3. Assume that λ is regular. Then the functor RΓ is faithful.

Proof. We use the result of Kitchen (Proposition 2.36). The functor RΓ(G/B,−)

is an equivalence (Theorem 2.28). We can prove that the functor pI+ ◦ p!
I has id

as a direct summand in the same way as in [6, Lem. 3.5.4]. This implies that the

functor p!
I is faithful. Since the composition functors RΓ(G/B,−) ◦ p!

I
∼= q∗I ◦ RΓ

are faithful, we conclude that RΓ : D−(DλG/PI -mod) → D−(Γ(DλG/PI )-mod) is

faithful.

We now prove a localization theorem for DλG/PI -modules for not necessarily

antidominant λ.

Proposition 4.4. Assume that λ is regular. Then the functor RΓ is an equiva-

lence of categories. An inverse functor is given by L∆I .

Proof. By Lemma 4.2, η is an isomorphism. We prove that ε is an isomorphism.

Let M∈ Db(DλG/P -mod). Consider the distinguished triangle

M ε(M)−→ L∆I ◦ RΓ(M)→ Cε(M)
+1−→,

where Cε(M) is the mapping cone of the morphism ε(M).

Apply RΓ to this triangle. We then obtain a distinguished triangle

RΓ(M)
RΓ(ε(M))−→ RΓ ◦ L∆I ◦ RΓ(M)→ RΓ(Cε(M))

+1−→ .

Since L∆I is a left adjoint of RΓ, we have RΓ(ε(M)) = η(RΓ(M)). Since η is an

isomorphism, we have RΓ(Cε(M)) = 0. By Lemma 4.3, we have Cε(M) = 0, which

is equivalent to the statement that ε(M) is an isomorphism.
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By Lemma 4.1, this proposition yields an equivalence D−(DλG/P -mod) ∼=
D−(Uλ

I -mod).

§4.2. Global sections and intertwining functors

In this subsection we study how the space of global sections behaves under inter-

twining functors. In this section we treat only Rw? , i.e., we set µ = 0.

Let λ ∈ (h/hI)
∗. We have functors Γ : DλG/PI -mod → Γ(DλG/PI )-mod and

Γ : Dw−1∗λ
G/PJ

-mod → Γ(Dw−1∗λ
G/PJ

)-mod. The algebras Γ(DλG/PI ) and Γ(Dw−1∗λ
G/PJ

) are

a priori not comparable. Here we consider their restriction to the quotient of

enveloping algebras using ψλ and ψw
−1∗λ in Section 2.3.3. We denote by ΓλI :

DλG/PI -mod→ Uλ
I -mod the composite ψλ∗◦Γ. As we saw in the proof of Lemma 4.1,

the codomains of functors RΓλI and RΓw
−1∗λ

J ◦ Rw+ coincide. The subject of this

section is a comparison of the functors RΓw
−1∗λ

J ◦Rw+, RΓw
−1∗λ

J ◦Rw! and RΓλI .

We construct a morphism of functors RΓλI → RΓw
−1∗λ

J ◦Rw+.

Let M∈ Db
hol(DλG/PI -mod):

Rw+(M) = pw1+

(
det(Θpw1

)
#
⊗ pw!

2 (M)
)

= Rpw1∗
((
pw∗1 D

w−1∗λ,op
G/PJ

#
⊗det(Ωpw1 )

)
⊗L
Dλ−ρ+wρOw

(
det(Θpw1

)
#
⊗ pw!

2 (M)
))

∼= Rpw1∗
(
pw∗1 D

w−1∗λ,op
G/PJ

⊗L
DλOw

pw!
2 (M)

)
.

Since Dw−1∗λ,op is a sheaf of rings, it has the section 1. Also, its pullback

pw!
1 D

w−1∗λ,op
G/PJ

has a section induced from 1. This section induces a morphism pw!
2 M

→ pw!
1 (Dw−1∗λ,op)⊗L

DλOw
pw!

2 M.

We have the following sequence of morphisms of complex of vector spaces:

RΓ(M) := RΓ(G/PI ,M)

→ RΓ(Ow, pw∗2 M)

= RΓ(Ow, pw!
2 M)

∼= RΓ(G/PJ , p
w
1∗ ◦ pw!

2 M)

→ RΓ
(
G/PJ , p

w
1∗((p

w!
1 Dw

−1∗λ,op)⊗L
DλOw

pw!
2 M)

)
∼= RΓ(Rw+M).

We denote by Iw+(M) the homomorphism given by the composition of these ho-

momorphisms. Each of these maps is compatible with a g-action. Thus we obtain

a morphism of functors Iw+ : RΓλI → RΓw
−1∗λ

J ◦ Rw+. Since the functor Rw
−1

! is

inverse to Rw+, we have RΓλI ◦Rw
−1

! → RΓw
−1∗λ

J ◦Rw+ ◦Rw
−1

!
∼= RΓw

−1∗λ
J .
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Summarizing the above argument, we obtain the following proposition.

Proposition 4.5. We have a natural morphism of functors Iw+ : RΓλI → RΓw
−1∗λ

J ◦
Rw+ and Iw! : RΓλI ◦Rw

−1

! → RΓw
−1∗λ

J .

In the following we study the case that the morphism Iw+ is an isomorphism.

We first study the case where pI is a maximal parabolic subalgebra of g.

The set Π \ I consists of the unique element α and (h/hI)
∗ is a vector space of

dimension 1 spanned by the fundamental weight $α. In this case, w is either the

identity of W or w = wI0w
Π
0 . We set v := wI0w

Π
0 and J := v−1I. The G-orbit Ov is

open in G/PJ ×G/PI . We have ρ− vρ = 2ρnI .

Lemma 4.6. Assume that G is a simple algebraic group and Π\ I consists of one

element. Let v := wI0w
Π
0 and J := v−1I.

If Mg
pJ (v−1λ) is irreducible, then we have an isomorphism Dv−1∗λ

G/PJ
∼=

Rv+(DλG/PI ).

Proof. Since both are weakly G-equivariant Dv−1∗λ
G/PJ

-modules, by Proposition 2.21

it is enough to check that their fibers are isomorphic to each other at the point

ePJ .

By Proposition 2.32, we have an isomorphism Dv−1∗λ
PJ

(ePJ) ∼= Mg
pJ (v−1 ∗ λ−

2ρnJ ) = Mg
pJ (v−1λ).

We consider the following diagram:

ePJ

ie

��

ePJ × Cv−1

iev−1

��

poo

G/PJ Ov
pv1

oo
pv2

// G/PI .

Taking a fiber at ePJ is equivalent to applying i!e. We have

Rv+DλG/PI (ePJ) ∼= i!ep
v+
1 (det Θpv!

#
⊗ pv!

2 DλG/PI )(20)

∼= p+i
!
ev−1(det Θpv!

#
⊗ pv!

2 DλG/PI )(21)

∼= p+(det ΘCv−1

#
⊗ i!v−1DλG/PI )(22)

= p∗(det ΩCv−1 ⊗L
i#
v−1D

λ−ρ+vρ
G/PI

(det ΘCv−1

#
⊗ i!v−1DλG/PI ))(23)

∼= Γ(Cv−1 ,OCv−1 ).(24)
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The isomorphism (21) follows from the base change and the isomorphism (22)

follows from monoidal property of pullback. The isomorphism (24) follows from

the fact that det ΩCv−1 and det ΘCv−1 are mutually dual invertible sheaves.

In the last term, the action of g on OCv−1 is via i#v−1DλG/PI . This g-module is

pJ -finite. The section 1 is of weight v−1wI0(λ− ρ)− ρ = v−1λ and the character of

this module coincides with that of Mg
pJ (v−1λ). By the assumption, Mg

pJ (v−1λ) is

irreducible and thus it is isomorphic to Mg
pJ (v−1λ).

Now we consider general G and I ⊂ Π.

Let I, J ⊂ Π and w ∈W satisfy I = wJ . We fix α1, . . . , αr in Proposition 2.23

and let I0 = I = v[α1, I1]I1, I1 = v[α2, I2]I2, . . . , Ir−1 = v[αr, Ir]Ir, Ir = J . By

Proposition 3.6 we have an isomorphism of functors Rw+
∼= R

v[αr,Ir]
+ ◦ · · · ◦Rv[α1,I1]

+ .

Theorem 4.7. Let λ ∈ (h/hI)
∗. Let λ0 := λ and λi := v[αi, Ii]

−1 ∗λi−1. Also, as-

sume that λ is regular and that for each i the generalized Verma module

M
lIi∪{αi}

p
Ii∪{αi}
Ii

(v[αi, Ii]
−1λi−1) is irreducible. Then the morphisms Iw+ : RΓλI →

RΓw
−1∗λ

J ◦Rw+ and Iw! : RΓλI ◦Rw! → RΓw
−1∗λ

J are isomorphisms of functors.

Note that each of the generalized Verma modules in the theorem is a tensor

product of a generalized Verma module for some simple Lie algebra induced from

a maximal parabolic subalgebra and a one-dimensional representation. He, Kubo

and Zierau give in [17] a complete list of reducible parameters for such generalized

Verma modules. Thus, given λ ∈ (h/hI)
∗ we can determine whether λ satisfies the

assumption of the theorem by explicit computation.

Proof. Since the functor Rw
−1

! is an inverse of Rw+, it is enough to show that

Iw+ : RΓλI → RΓw
−1∗λ

J ◦Rw+ is an isomorphism.

We first prove that Rw+DλG/PI is isomorphic to Dw−1∗λ
G/PJ

using an argument

similar to the one in Theorem 3.7.

Let i be an integer satisfying 1 ≤ i ≤ r. Then, over the open subvariety

LIi∪{αi}/P
Ii∪{αi}
Ii

×ŪIi∪{αi} ofG/PIi , the diagram of the Radon transformR
v[αi,Ii]
+

is isomorphic to

LIi∪{αi}/P
Ii∪{αi}
Ii

× ŪIi∪{αi} ← (p
v[αi,Ii]
1 )−1(LIi∪{αi}/P

Ii∪{αi}
Ii

× ŪIi∪{αi})

= (p
v[αi,Ii]
2 )−1(LIi−1∪{α′i}/P

Ii−1∪{α′i}

Ii−1
× ŪIi−1∪{α′i})

→ LIi−1∪{α′i}/P
Ii−1∪{α′i}

Ii−1
× ŪIi−1∪{α′i}.

Here α′i is the simple root such that {α′i} = (Ii ∪ {αi}) \ Ii−1 holds.



Radon Transforms of Twisted D-Modules 625

We have the following isomorphism of TDOs:

Dλi−1

G/PIi−1
|
LIi−1∪{α′i}

/P
Ii−1∪{α′i}
Ii−1

×ŪIi−1∪{α′i}

∼= D
〈λi−1,α̌

′
i〉$α′

i

LIi−1∪{α′i}
/P

Ii−1∪{α′i}
Ii−1

�DŪIi−1∪{α′i}
,

DλiG/PIi |LIi∪{αi}/P
Ii∪{αi}
Ii

×ŪIi∪{αi}
∼= D〈λi,α̌i〉$αi

LIi∪{αi}/P
Ii∪{αi}
Ii

�DŪIi∪{αi} .

Applying the intertwining functor, we obtain

R
v[αi,Ii]
+ Dλi−1

G/PIi−1
|
LIi−1∪{α′i}

/P
Ii−1∪{α′i}
Ii−1

×ŪIi−1∪{α′i}

∼= R
v[αi,Ii]
+ D

〈λi−1,α̌
′
i〉$α′

i

LIi−1∪{α′i}
/P

Ii−1∪{α′i}
Ii−1

�DŪIi−1∪{α′i}
.

By Lemma 4.6, we have an isomorphism R
v[αi,Ii]
+ Dλi−1

G/PIi−1

∼= DλiG/PIi on the open

subset of G/PIi . By the weak equivariance of both sides and Proposition 2.21, we

see that they are isomorphic to each other on the whole of G/PIi .

Let M ∈ Db(DλG/PI -mod) and take a free resolution M of RΓ(M) in

D−(Γ(DλG/PI )-mod). Then by Proposition 4.4, we have an isomorphism ∆I(M) ∼=
M in D−(DλG/PI -mod). The morphism Iw+(DλG/PI ) : RΓλIDλG/PI → RΓw

−1∗λ
J ◦

Rw+DλG/PI
∼= RΓw

−1∗λ
J Dw−1∗λ

G/PJ
is an isomorphism by Proposition 2.31, Lemma 4.1

and Proposition 2.25. This implies that Iw+(∆I(M)) is an isomorphism. We con-

clude that Iw+(M) : RΓλIM ∼= RΓλI ◦ ∆I(M) → RΓw
−1∗λ

J ◦ Rw+ ◦ ∆I(M) ∼=
RΓw

−1∗λ
J ◦Rw+M is an isomorphism.
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et représentations, III, Astérisque No. 173-174 (1989), 9, 55–109. http://www.kurims.

kyoto-u.ac.jp/~kenkyubu/kashiwara/rims622.pdf Zbl 0705.22010 MR 1021510

[21] M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie algebras with
negative level. II. Nonintegral case, Duke Math. J. 84 (1996), 771–813. Zbl 0929.17027
MR 1408544

[22] D. Kazhdan and G. Lusztig, Schubert varieties and Poincaré duality, Geometry of the
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Quotienten von universellen Einhüllenden halbeinfacher Lie-Algebren, Math. Ann. 284
(1989), 177–198. Zbl 0649.17012 MR 1000106

[30] Z. Yun, Weights of mixed tilting sheaves and geometric Ringel duality, Selecta Math. (N.S.)
14 (2009), 299–320. Zbl 1197.14016 MR 2480718

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1302.22009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2945222
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0544.14035&format=complete
http://www.ams.org/mathscinet-getitem?mr=0689649
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0947.32004&format=complete
http://www.ams.org/mathscinet-getitem?mr=1634083
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1272.35012&format=complete
http://www.ams.org/mathscinet-getitem?mr=3078714
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1037.35040&format=complete
http://www.ams.org/mathscinet-getitem?mr=1958154
https://www.math.utah.edu/~milicic/Eprints/book.pdf
https://www.math.utah.edu/~milicic/Eprints/book.pdf
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0649.17012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1000106
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1197.14016&format=complete
http://www.ams.org/mathscinet-getitem?mr=2480718

	Introduction
	Preliminary
	Notation
	Sheaves of twisted differential operators
	Partial flag varieties and TDOs on partial flag varieties

	Radon transforms for partial flag varieties
	Intertwining functors and global sections
	Global sections
	Global sections and intertwining functors

	References

