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Abstract

Ihara initiated the study of a certain Galois representation that may be seen as an
arithmetic analogue of the Artin representation of a pure braid group. We pursue the
analogies in Ihara theory further and give foundational results, following some issues and
their interrelations in the theory of braids and links such as Milnor invariants, Johnson
homomorphisms, Magnus–Gassner cocycles and Alexander invariants, and study relations
with arithmetic in Ihara theory.
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§1. Introduction

Let l be a prime number. Let S be a set of ordered r + 1 (r ≥ 2) distinct Q-

rational points on the projective line P1 over the rational number field Q, where

Q is an algebraic closure of Q. Let k := Q(S \ {∞}), the finite algebraic number

field generated by coordinates of points in S \ {∞}. Note that the absolute Galois

group Galk := Gal(Q/k) is the étale fundamental group of Spec k so that it acts

on the geometric fiber P1
Q \ S of the fibration P1

k \ S → Spec k and hence on the

pro-l étale fundamental group πpro-l
1 (P1

Q \S) ' Fr, where Fr denotes the free pro-l
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group on r generators x1, . . . , xr. In [Ih1], Ihara began to study this monodromy

Galois representation

(1.1) IhS : Galk −→ Aut(Fr),

particularly for the case S = {0, 1,∞} and k = Q, in connection with deep arith-

metic such as Iwasawa theory on cyclotomy and complex multiplications of Fer-

mat Jacobians. We note that the image of IhS is contained in the subgroup con-

sisting of ϕ ∈ Aut(Fr) such that ϕ(xi) ∼ xαi (conjugate) for 1 ≤ i ≤ r and

ϕ(x1 · · ·xr) = (x1 · · ·xr)α for some α ∈ Z×l .
As explained in [Ih3], the Ihara representation (1.1) may be regarded as an

arithmetic analogue of the Artin representation of a pure braid group ([Ar]). Let

Pr be the pure braid group with r strings (r ≥ 2). Note that Pr is the topological

fundamental group of the configuration space Dr \ ∆ of ordered r points on a

two-dimensional disk D, where ∆ denotes the hyperdiagonal of Dr. For Q =

(z1, . . . , zr) ∈ Dr \∆, we also write the same Q for the subset {z1, . . . , zr} of D.

Then Pr acts, as the monodromy, on the fiber D \Q of the universal bundle over a

point Q ∈ Dr \∆ and hence on the topological fundamental group π1(D\Q) ' Fr,
where Fr denotes the free group on r generators x1, . . . , xr. Thus we have the Artin

representation

(1.2) ArQ : Pr −→ Aut(Fr),

which is in fact isomorphic onto the subgroup ϕ ∈ Aut(Fr) such that ϕ(xi) ∼ xi
for 1 ≤ i ≤ r and ϕ(x1 · · ·xr) = x1 · · ·xr.

We may see the following analogy between the Ihara representation (1.1) and

the Artin representation (1.2):

(1.3)

Absolute Galois group Pure braid group

Galk Pr

P1
k \ S → Spec k Universal bundle over Dr \ ∆

with geometric fiber P1
Q \ S with fibers D \Q

Ihara representation of Galk Artin representation of Pr

on πpro-l
1 (P1

Q \ S) = Fr on π1(D \Q) = Fr

The aim of this paper is, based on the above analogy (1.3), to give foundational

results obtained by pursuing pro-l analogues for the Ihara representation of various

objects derived from the Artin representation. To be precise, we shall investigate

arithmetic (pro-l) analogues in Ihara theory of the following issues (I)∼(IV) and

their interrelations in the theory of braids and links:
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(I) Milnor invariants of links;

(II) Johnson homomorphisms for the pure braid group Pr;

(III) Magnus–Gassner representations of Pr;

(IV) Alexander invariants of links.

Milnor invariants are higher-order linking numbers of a link introduced by Milnor

in [Mi]. For a pure braid link, they are defined as follows. For b ∈ Pr and each i

(1 ≤ i ≤ r), we can write ArQ(b)(xi) = yi(b)xiyi(b)
−1 for the unique yi(b) ∈ Fr,

where the sum of exponents of xi in the word yi(b) is 0. The Milnor number

µ(b; i1 · · · ini) ∈ Z is then defined to be the coefficient of Xi1 · · ·Xin in the Magnus

expansion of yi(b):

yi(b) =
∑

1≤i1,...,in≤r

µ(b; i1 · · · ini)Xi1 · · ·Xin (xj = 1 +Xj).

The Milnor invariant µ(b̂; i1 · · · ini) is defined by taking modulo a certain indeter-

minacy ∆(b; i1 · · · ini): µ(b̂; i1 · · · ini) := µ(b; i1 · · · ini) mod ∆(b; i1 · · · ini). It turns

out that it is an invariant of the link b̂ obtained by closing b. The Milnor invari-

ants are also interpreted in terms of Massey products in the cohomology of the link

group ([Ki], [T]). Johnson homomorphisms are a useful means to study the struc-

ture of the mapping class group of a surface ([J1], [J2], [Mt1], [Mt2]). The main

tools are algebraic and applicable to the study of the automorphism group Aut(Fr)

of a free group Fr ([Ka], [Sa]). Johnson homomorphisms describe the action of a

certain filtration of Aut(Fr) on the nilpotent quotients Fr/Fr(n) for n ≥ 1, where

Fr(n) is the nth term of the lower central series of Fr. Since the pure braid group

Pr is a subgroup of the mapping class group of the r punctured disk, the theory of

Johnson homomorphisms can also be applied to Pr. It was shown in [Ko1], [Ko3,

Chap. 1] that the Johnson homomorphisms are described by Milnor invariants of

pure braid links. Magnus cocycles are crossed homomorphisms of Pr defined by

using the Fox free derivation ([B, 3.1, 3.2], [F]). The Gassner representation Gass

of Pr is a particular case of Magnus cocycles over the Laurent polynomial ring

of r variables and the determinant det(Gass(b)− I) gives the Alexander invariant

which is a polynomial invariant of the link b̂ ([B, 3.3]). The relations of the Gassner

representations with Johnson homomorphisms and Milnor invariants were studied

in [Ko2], [Ko3, Chap. 2].

In this paper, based on the analogy (1.3), we shall study arithmetic analogues

in Ihara theory of issues (I)∼(IV). The contents of this paper are organized as

follows. In Section 2, we recall the construction of Ihara representations and some

basic results. In Section 3, we define l-adic Milnor numbers for each element in

Galk and l-adic Milnor invariants for certain primes of k(ζl∞), the field obtained by
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adjoining all lth-power roots of unity to k. We introduce the pro-l link group of

each element of Galk and give a cohomological interpretation of l-adic Milnor in-

variants in terms of Massey products in the cohomology of the pro-l link group. In

Section 4, we present a general theory of the pro-l Johnson map and pro-l Johnson

homomorphisms for the absolute Galois group Galk. A similar theory has been de-

veloped in the context of non-abelian Iwasawa theory ([MT]). Among other things,

we describe pro-l Johnson homomorphisms in terms of l-adic Milnor numbers. Sec-

tions 3 and 4 may be regarded as an arithmetic counterpart of [Ko1] and [Ko3,

Chap. 1]. In Section 5, we introduce pro-l Magnus cocycles of Galk by using pro-l

Fox free calculus, and give a relation with pro-l Johnson homomorphisms. We con-

sider the pro-l (reduced) Gassner cocycle of Galk as a special case and express it

by l-adic Milnor numbers. Section 5 may be regarded as an arithmetic counterpart

of [Ko2] and [Ko3, Chap. 2]. We note that Oda’s unpublished notes ([O1], [O2])

also concern some issues related to Sections 4 and 5. In Section 6, we introduce the

pro-l link module and l-adic Alexander invariants. In Section 7, we consider the

case that S = {0, 1,∞}. We show that the Ihara power series Fg(u1, u2) (g ∈ GalQ)

introduced in [Ih1] coincides with our pro-l reduced Gassner cocycle, and give a

formula that expresses Fg(u1, u2) in terms of l-adic Milnor numbers. Accordingly,

using our formula and Ihara’s formula, we express the Jacobi sum in Q(ζln) as a

(ζln − 1)-adic expansion with coefficients l-adic Milnor numbers. Finally, combin-

ing our formula and the result by Ihara, Kaneko and Yukinari [IKY], we give some

formulas relating Soulé characters ([So]) with l-adic Milnor numbers.

This paper forms (part of) an elementary and group-theoretical foundation

of arithmetic topology in Ihara theory. In forthcoming papers, we shall study some

connections of l-adic Milnor invariants and pro-l Johnson homomorphisms in this

paper with arithmetic of multiple power residue symbols in [Am], [Ms1], [Ms2,

Chap. 8] and the works of Wojtkowiak on l-adic iterated integrals and l-adic poly-

logarithms ([NW], [W1], [W2], [W3], [W4], etc). See Remark 3.2.12. We shall also

study arithmetic analogues of some issues in quantum topology such as Habegger–

Masbaum’s theorem on the relation between Milnor invariants and Kontsevich

integrals ([HM]).

Notation. We denote by Z, Q and C the ring of rational integers, the field of

rational numbers and the field of complex numbers, respectively.

Throughout this paper, l denotes a fixed prime number. We denote by Zl and

Ql the ring of l-adic integers and the field of l-adic numbers, respectively.

For a, b in a group G, a ∼ b means that a is conjugate to b in G. For subgroups

A, B of a topological group G, [A,B] stands for the closed subgroup of G generated

by commutators [a, b] := aba−1b−1 for all a ∈ A, b ∈ B.
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For a positive integer n and a ring R with identity, M(n;R) denotes the ring of

n×n matrices whose entries are in R and GL(n;R) denotes the group of invertible

elements of M(n;R).

§2. The Ihara representation

In this section, we recall the setup and some results on the Galois representation

introduced by Ihara in [Ih1].

§2.1. The outer Galois representation

Let x1, . . . , xr be r letters (r ≥ 2) and let Fr denote the free group of rank r

on x1, . . . , xr. Let xr+1 be the element of Fr defined by x1 · · ·xrxr+1 = 1 so

that Fr has the presentation Fr = 〈x1, . . . , xr, xr+1 | x1 · · ·xrxr+1 = 1〉. Let Fr
denote the pro-l completion of Fr. Let Aut(Fr) (resp. Int(Fr)) denote the group of

topological automorphisms (resp. inner-automorphisms) of Fr with compact-open

topology. We note that any abstract automorphism of Fr is bicontinuous ([DDMS,

Cor. 1.22]) and that Aut(Fr) is virtually a pro-l group ([DDMS, Thm. 5.6]). Let

H be the abelianization of Fr, H := Fr/[Fr,Fr], and let π : Fr → H be the

abelianization homomorphism. For f ∈ Fr, we let [f ] := π(f). We set Xi := [xi]

(1 ≤ i ≤ r+1) for simplicity so that H is the free Zl-module with basis X1, . . . , Xr

and we have X1+· · ·+Xr+Xr+1 = 0. Each ϕ ∈ Aut(Fr) induces an automorphism

of the Zl-module H, which is denoted by [ϕ] ∈ GL(H).

Let Q be the field of algebraic numbers in C. Let S be a given set of ordered

r+1 Q-rational points P1, . . . , Pr+1 on the projective line P1
Q and we suppose that

P1 = 0, P2 = 1 and Pr+1 =∞. Let k := Q(S \ {∞}), the finite algebraic number

field generated over Q by coordinates of P1, . . . , Pr, so that all Pi’s are k-rational

points of P1. Let Galk := Gal(Q/k) be the absolute Galois group of k equipped

with the Krull topology. Note that Galk is the étale fundamental group πét
1 (Spec k)

with the base point SpecQ→ Spec k. Let πpro-l
1 (P1

Q \S) denote the maximal pro-l

quotient of the étale fundamental group of P1
Q\S with a base point SpecQ→ P1

Q\S
which lifts SpecQ → Spec k. By [G, XII, Cor. 5.2], πpro-l

1 (P1
Q \ S) is the pro-l

completion of the topological fundamental group π1(P1(C) \ S). We fix once and

for all an identification of Fr with π1(P1(C) \ S) obtained by associating to each

xi the homotopy class of a small loop around Pi and hence an identification of

πpro-l
1 (P1

Q \ S) with Fr.

The absolute Galois group Galk = πét
1 (Spec k) acts, as the monodromy, on the

geometric fiber P1
Q \S of the fibration P1

k \S → Spec k and hence acts continuously

on the pro-l fundamental group πpro-l
1 (P1

Q \ S) = Fr. The effect of changing a
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base point of P1
Q \ S is given as an inner automorphism of Fr. Thus we have the

continuous outer Galois representation

(2.1.1) ΦS : Galk −→ Out(Fr) := Aut(Fr)/ Int(Fr).

In terms of the field extensions, the representation ΦS is described as follows. Let

t be a variable over k. We regard P1 as the t-line and so the function field K of

P1
Q is the rational function field Q(t). The k-rational points Pi are identified with

places of K/Q. Let M be the maximal pro-l extension of K unramified outside Pi
(1 ≤ i ≤ r + 1). We fix once and for all an identification of Fr with Gal(M/K)

obtained by associating to each xi a topological generator of the inertia group of

an extension PMi of Pi to a place of M . Since the Pi’s are k-rational, M/k(t) is a

Galois extension and so we have the exact sequence

1→ Fr = Gal(M/K)→ Gal(M/k(t))→ Gal(K/k(t)) = Galk → 1.

For g ∈ Galk, choose g̃ ∈ Gal(M/k(t)), which lifts g. Consider the action of Galk on

Gal(M/K) defined by f 7→ g̃f g̃−1 and regard it as an automorphism of Fr via the

isomorphism ι. The effect of changing a lift g̃ is given as an inner automorphism of

Fr. Thus we obtain the representation ΦS . Note further that g◦PMi ◦ g̃−1 is a place

of M that coincides with PMi on K (1 ≤ i ≤ r+1). So we have g◦PMi ◦g̃−1◦h = PMi
for some h ∈ Gal(M/K) so that h−1g̃xig̃

−1h is a topological generator of the

inertia group of PMi . Hence g̃xig̃
−1 ∼ xcii for some ci in Zl, the ring of l-adic

integers. We pass to the abelianization H. Applying the conjugate by g̃ on the

equality X1 + · · · + Xr+1 = 0 in H, we have c1X1 + · · · + cr+1Xr+1 = 0. From

these equations, we have c1 = · · · = cr+1. Therefore the action of Galk on Fr gives

an element of the subgroup P̃ (Fr) of Aut(Fr) defined by

P̃ (Fr) := {ϕ ∈ Aut(Fr) | ϕ(xi) ∼ xN(ϕ)
i (1 ≤ i ≤ r + 1) for some N(ϕ) ∈ Z×l }.

Here the exponent N(ϕ), called the norm of ϕ, gives a homomorphism N :

Aut(Fr)→ Z×l . So each ϕ ∈ P̃ (Fr) acts on the abelianization H by the multiplica-

tion by N(ϕ), [ϕ](Xi) = N(ϕ)Xi for 1 ≤ i ≤ r. It is easy to see Int(Fr) ⊂ P̃ (Fr).

Thus we have the outer Galois representation (2.1.1),

(2.1.2) ΦS : Galk −→ P̃ (Fr)/ Int(Fr).

§2.2. The Ihara representation

We will lift ΦS to a representation in Aut(Fr). For this, consider the subgroup

P (Fr) of P̃ (Fr) defined by

(2.2.1) P (Fr) :=

{
ϕ ∈ Aut(Fr)

∣∣∣∣ ϕ(xi) ∼ xN(ϕ)
i (1≤ i≤ r−1), ϕ(xr) ≈ xN(ϕ)

r ,

ϕ(xr+1) = x
N(ϕ)
r+1 for some N(ϕ) ∈ Z×l

}
,
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where ≈ denotes conjugacy by an element of the subgroup K of Fr generated by

[Fr,Fr] and x1, . . . , xr−2. We denote by P 1(Fr) the kernel of N |P (Fr):

P 1(Fr) :=

{
ϕ ∈ Aut(Fr)

∣∣∣∣ ϕ(xi) ∼ xi (1≤ i≤ r−1) ϕ(xr) ≈ xr,
ϕ(xr+1) = xr+1

}
.

The following proposition was proved in [Ih1, Prop. 3, p. 55] for the case r = 2

and stated in [Ih3, p. 252] for the general case.

Proposition 2.2.2. The natural homomorphism Aut(Fr)→ Aut(Fr)/ Int(Fr) in-

duces the isomorphism P (Fr) ' P̃ (Fr)/ Int(Fr). The representatives in P (Fr) of

P̃ (Fr)/ Int(Fr) are called Bely̆ı’s lifts.

Proof. Although the proof is similar to that for r = 2, we give a concise proof for

the sake of readers. First, we note that the centralizer of xi in Fr is 〈xi〉 = xZl
i for

1 ≤ i ≤ r + 1.

Injectivity: Suppose ϕ ∈ P (Fr) and ϕ = Int(f) with f ∈ Fr. Then fxr+1f
−1 =

x
N(ϕ)
r+1 . Passing to H, we see N(ϕ) = 1 and so f is in the centralizer of xr+1. Hence

f = xar+1 for some a ∈ Zl. Since ϕ ∈ P (Fr), fxrf
−1 = ϕ(xr) = gxrg

−1 for some

g ∈ K and hence g−1f = xbr for some b ∈ Zl. Passing to the abelianization H, we

find a = b = 0. Hence f = 1 and ϕ = 1.

Surjectivity: Take ϕ ∈ P̃ (Fr). Multiplying ϕ by an element of Int(Fr), we may

assume ϕ(xr+1) = x
N(ψ)
r+1 . Set ϕ(xr) = gxrg

−1 with g ∈ Fr. Write [g] = c1X1 +

· · ·+crXr in H (ci ∈ Zl) and let ϕ1 := Int(x
−cr−1

r−1 x−crr )◦ϕ. Then ϕ1(xr) = g1xrg
−1
1

and g1 := x
−cr−1

r−1 x−crr g ∈ K. Hence ϕ1 ∈ P (Fr) and ϕ ≡ ϕ1 mod Int(Fr).

By Proposition 2.2.2, we can lift ΦS of (2.1.2) to the representation in P (Fr),

denoted by IhS :

(2.2.3) IhS : Galk −→ P (Fr),

which we call the Ihara representation associated to S. Let ΩS denote the subfield

of Q corresponding to the kernel of IhS so that IhS factors through the Galois

group Gal(ΩS/k):

(2.2.4) IhS : Gal(ΩS/k) −→ P (Fr).

We recall some arithmetic properties on the ramification in the Galois ex-

tension ΩS/k. For this, let us prepare some notation. Let ζln be a primitive lnth

root of unity for a positive integer n such that (ζln+1)l = ζln for n ≥ 1. We set

k(ζl∞) := ∪n≥1k(ζln). The l-cyclotomic character χl : Galk → Z×l is defined by

g(ζln) = ζ
χl(g)
ln for g ∈ Galk. Finally, we define the set RS of finite primes of k
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associated to S as follows: Let si be the coordinate of Pi for 1 ≤ i ≤ r, and let OS
be the integral closure of Z[l−1, (si − sj)−1(1 ≤ i 6= j ≤ r)] in k. We then define

RS by the maximal spectrum

(2.2.5) RS := SpmOS .

Theorem 2.2.6. With notation as above, the following assertions hold:

(1) ([Ih1, Prop. 2, p. 53]). N ◦ IhS : Galk → Z×l coincides with χl. In particular,

the restriction of ϕS to Galk(ζl∞ ) := Gal(Q/k(ζl∞)), denoted by Ih1
S, gives the

representation

Ih1
S : Galk(ζl∞ ) −→ P 1(Fr)

and we have k(ζl∞) ⊂ ΩS.

(2) ([AI, Prop. 2.5.2, Thm. 3]). The Galois extension ΩS/k is unramified over

RS and ΩS/k(ζl) is a pro-l extension.

Remark 2.2.7 (Cf. [Ih2]). By Artin’s theorem ([Ar], [B, Thm. 1.9]), the Artin

representation ArQ of the pure braid group Pr in Section 1 induces the isomorphism

ArQ : Pr
∼−→ {ϕ ∈ Aut(Fr) | ϕ(xi) ∼ xi (1 ≤ i ≤ r), ϕ(x1 · · ·xr) = x1 · · ·xr} .

So the representation Ih1
S : Galk(ζl∞ ) → P 1(Fr) (resp. IhS : Galk → P (Fr)) may be

seen as an (resp. extended) arithmetic analogue of the Artin representation ArQ.

§3. l-adic Milnor invariants and pro-l link groups

§3.1. Pro-l Magnus expansions

Let {Fr(n)}n≥1 be the lower central series of Fr defined by

Fr(1) := Fr, Fr(n+ 1) := [Fr(n),Fr] (n ≥ 1).

Note that each Fr(n) is a closed normal subgroup of Fr so that Fr(n)/Fr(n + 1)

is central in Fr/Fr(n+ 1), and that each Fr(n) is a finitely generated pro-l group

([DDMS, 1.7, 1.14]). As in Section 2, let H denote the abelianization of Fr:

H := gr1(Fr) = H1(Fr,Zl),

which is the free Zl-module with basis X1, . . . , Xr, where Xi is the image of xi
in H. Let T (H) be the tensor algebra of H over Zl defined by

⊕
n≥0H

⊗n, where

H⊗0 := Zl and H⊗n := H ⊗Zl
· · · ⊗Zl

H (n times) for n ≥ 1. It is nothing but

the noncommutative polynomial algebra Zl〈X1, . . . , Xr〉 over Zl with variables

X1, . . . , Xr:

T (H) =
⊕
n≥0

H⊗n = Zl〈X1, . . . , Xr〉.
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Let T̂ (H) be the completion of T (H) with respect to the mT -adic topology,

where mT is the maximal two-sided ideal of T (H) generated by X1, . . . , Xr and l.

It is the infinite product
∏
n≥0H

⊗n, which is nothing but the Magnus algebra

Zl〈〈X1, . . . , Xr〉〉 over Zl, namely, the algebra of noncommutative formal power

series (called the Magnus power series) over Zl with variables X1, . . . , Xr:

T̂ (H) =
∏
n≥0

H⊗n = Zl〈〈X1, . . . , Xr〉〉.

For n ≥ 0, we set T̂ (n) :=
∏
m≥nH

⊗m. The degree of a Magnus power series Φ,

denoted by deg(Φ), is defined to be the minimum n such that Φ ∈ T̂ (n). We note

that H⊗n is the free Zl-module on monomials Xi1 · · ·Xin (1 ≤ i1, . . . , in ≤ r) of

degree n and T̂ (n) consists of Magnus power series of degree ≥ n.

Let Zl[[Fr]] be the complete group algebra of Fr over Zl and let εZl[[Fr]] :

Zl[[Fr]] → Zl be the augmentation homomorphism with the augmentation ideal

IZl[[Fr]] := Ker(εZl[[Fr]]). The correspondence xi 7→ 1 +Xi (1 ≤ i ≤ r) gives rise to

the isomorphism of topological Zl-algebras

(3.1.1) Θ : Zl[[Fr]]
∼−→ T̂ (H),

which we call the pro-l Magnus isomorphism. Here InZl[[Fr]] corresponds, under Θ,

to T̂ (n) for n ≥ 0. For α ∈ Zl[[Fr]], Θ(α) is called the pro-l Magnus expansion of

α. In the following, for a multiindex I = (i1 · · · in), 1 ≤ i1, . . . , in ≤ r, we set

|I| := n and XI := Xi1 · · ·Xin .

We call the coefficient of XI in Θ(α) the l-adic Magnus coefficient of α for I and

denote it by µ(I;α). So we have

(3.1.2) Θ(α) = εZl[[Fr]](α) +
∑
|I|≥1

µ(I;α)XI .

Restricting Θ to Fr, we have an injective group homomorphism, denoted by the

same Θ:

(3.1.3) Θ : Fr ↪→ 1 + T̂ (1),

which we call the pro-l Magnus embedding of Fr into 1 + T̂ (1).

Here are some basic properties of l-adic Magnus coefficients:

Property 3.1.4. For α, β ∈ Zl[[Fr]] and a multiindex I, we have

µ(I;αβ) =
∑
I=AB

µ(A;α)µ(B;β),
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where the sum ranges over all pairs (A,B) of multiindices such that AB = I, and

we understand that µ(A;α) = εZl[[Fr]](α) (resp. µ(B;β) = εZl[[Fr]](β)) if |A| = 0

(resp. |B| = 0).

Property 3.1.5 (Shuffle relation). For f ∈ Fr and multiindices I, J with |I|, |J |
≥ 1, we have

µ(I; f)µ(J ; f) =
∑

A∈Sh(I,J)

µ(A; f),

where Sh(I, J) denotes the set of the results of all shuffles of I and J ([CFL]).

Property 3.1.6. For f ∈ Fr and d ≥ 2, we have

µ(I; f) = 0 for |I| < d, i.e., deg(Θ(f − 1)) ≥ d⇐⇒ f ∈ Fr(d)

⇐⇒ f − 1 ∈ IdZl[[Fr]].

An automorphism ϕ of the topological Zl-algebra Zl[[Fr]] (resp. T̂ (H)) is

said to be filtration preserving if ϕ(InZl[[Fr]]) = InZl[[Fr]] (resp. ϕ(T̂ (n)) = T̂ (n))

for all n ≥ 1. Let Autfil(Zl[[Fr]]) (resp. Autfil(T̂ (H))) be the group of filtration-

preserving automorphisms of the topological Zl-algebras Zl[[Fr]] (resp. T̂ (H)). The

pro-l Magnus isomorphism Θ in (3.1.1) induces the isomorphism

(3.1.7) Autfil(Zl[[Fr]])
∼−→ Autfil(T̂ (H)), ϕ 7→ Θ ◦ ϕ ◦Θ−1.

In the following we set

(3.1.8) ϕ∗ := Θ ◦ ϕ ◦Θ−1.

We note by (3.1.6) that any automorphism ϕ of Fr can be extended uniquely to

a filtration-preserving topological automorphism of Zl[[Fr]], which is also denoted

by ϕ. It is easy to see by (3.1.8) that for ϕ ∈ Autfil(Zl[[Fr]]), α ∈ Zl[[Fr]], we have

(3.1.9) Θ(ϕ(α)) = ϕ∗(Θ(α)).

§3.2. l-adic Milnor invariants

Let IhS : Galk → P (Fr) be the Ihara representation associated to S in (2.2.3).

Lemma 3.2.1. Let g ∈ Galk. For each 1 ≤ i ≤ r, there exists uniquely yi(g) ∈ Fr
satisfying the following properties:

(1) IhS(g)(xi) = yi(g)x
χl(g)
i yi(g)−1, where χl is the l-cyclotomic character.

(2) In the expression [yi(g)] = c
(i)
1 X1 + · · ·+ c

(i)
r Xr (c

(i)
j ∈ Zl), c(i)i = 0.
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Proof. Although the proof is standard, we give it for the sake of readers because

this lemma is basic in the theory of Milnor invariants.

Existence: By the definition (2.2.1) of P (Fr) and Theorem 2.2.6(1), there is zi ∈ Fr
such that IhS(g)(xi) = zix

χl(g)
i z−1

i for each i. Let [zi] = a
(i)
1 X1 + · · · + a

(i)
r Xr,

(a
(i)
j ∈ Zl). We set yi := zix

−a(i)i
i . Then conditions (1) and (2) are satisfied for yi.

Uniqueness: Suppose that yi and zi in Fr satisfy conditions (1) and (2). Since

z−1
i yi is in the centralizer of x

χl(g)
i , z−1

i yi = xbii for some bi ∈ Zl. Comparing the

coefficients of Xi in [z−1
i yi] and [xbii ], we have bi = 0 and hence yi = zi.

We call yi(g) ∈ Fl in Lemma 3.2.1 the ith (preferred) longitude of g ∈ Galk
for S. By Lemma 3.2.1, IhS(g) for g ∈ Galk is determined by the l-cyclotomic

value χl(g) and the r-tuple y(g) := (y1(g), . . . , yr(g)) of longitudes of g for S.

We note that IhS(g) acts on the abelianization H of Fr by the multiplication by

χl(g), [IhS(g)](Xi) = χl(g)Xi for 1 ≤ i ≤ r. We also note that yi : Galk → Fr is

continuous, since IhS is continuous.

Following the case for pure braids ([Ko1], [Ko3, Chap. 1], [MK, Chaps. 6,

4]), we will define the l-adic Milnor numbers of g ∈ Galk by the l-adic Magnus

coefficients of the ith longitude yi(g): Let I = (i1 · · · in) be a multiindex, where

1 ≤ i1, . . . , in ≤ r and |I| = n ≥ 1. The l-adic Milnor number of g ∈ Galk for I,

denoted by µ(g; I) = µ(g; i1 · · · in), is defined by the l-adic Magnus coefficient of

yin(g) for I ′ := (i1 · · · in−1):

(3.2.2) µ(g; I) := µ(I ′; yin(g)).

Here we set µ(g; I) := 0 if |I| = 1. We note that the map µ( ; I) : Galk → Zl is

continuous for each I, since yi : Galk → Fr is continuous. We define a(g) to be the

ideal of Zl generated by χl(g) − 1. Note that a(g) = 0 when g ∈ Galk(ζl∞ ). We

then define the indeterminacy ∆(g; I) by

(3.2.3) ∆(g; I) :=

{
the ideal of Zl generated by a(g) and µ(J ; yj(g)), where J

ranges over proper subsequence I ′ and j = in or j is in J

}
We also write ∆(I ′; yin(g)) for ∆(g; I) for later convenience. We then set

(3.2.4) µ(g; I) := µ(g; I) mod ∆(g; I),

which we call the l-adic Milnor invariant of g ∈ Galk for I.

We will show that the l-adic Milnor invariant µ(g; I) for g ∈ Galk is unchanged

when g is replaced by its conjugate hgh−1 for h ∈ Galk(ζl∞ ). To prove this, we

prepare some lemmas. Formulas (1) and (2) of the next lemma were proved by

Wojtkowiak in terms of torsors of paths. See [W1, Prop. 1.0.7, Cor. 1.0.8 and

Prop. 2.2.1].
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Lemma 3.2.5. For g, h ∈ Galk and 1 ≤ i ≤ r, we have

(1) yi(h
−1) = IhS(h−1)(yi(h)−1);

(2) yi(hg) = IhS(h)(yi(g))yi(h) (cocycle property);

(3) yi(hgh
−1) = IhS(hg)(yi(h

−1)) IhS(h)(yi(g))yi(h).

Proof. (1) By Lemma 3.2.1, we have

xi = IhS(h−1) IhS(h)(xi)

= IhS(h−1)(yi(h)x
χl(h)
i yi(h)−1)

= IhS(h−1)(yi(h))yi(h
−1)xiyi(h

−1)−1 IhS(h−1)(yi(h)−1),

from which we find IhS(h−1)(yi(h))yi(h
−1) = xaii for some ai ∈ Zl. Passing to the

abelianization H of Fr and comparing the coefficients of Xi, we find ai = 0 and

hence we obtain (1).

(2) By Lemma 3.2.1, we have

(3.2.5.1) IhS(hg)(xi) = yi(hg)x
χl(hg)
i yi(hg)−1.

On the other hand, we have

IhS(hg)(xi) = IhS(h) IhS(g)(xi)

= IhS(h)(yi(g)x
χl(g)
i yi(g)−1)

= IhS(h)(yi(g)) IhS(h)(x
χl(g)
i ) IhS(h)(yi(g)−1)

= IhS(h)(yi(g))yi(h)x
χl(hg)
i yi(h)−1 IhS(h)(yi(g)−1).

(3.2.5.2)

Comparing (3.2.5.1) and (3.2.5.2), we have yi(hg)−1 IhS(h)(yi(g))yi(h) = xbii for

some bi ∈ Zl. Passing to the abelianization and comparing the coefficients of Xi,

we find bi = 0 and hence we obtain (2).

(3) By (2), we have

yi(hgh
−1) = IhS(hg)(yi(h

−1))yi(hg) = IhS(hg)(yi(h
−1)) IhS(h)(yi(g))yi(h).

For ρ ∈ Galk and a multiindex J with |J | ≥ 1, we define ΘJ(ρ) by

(3.2.6) ΘJ(ρ) := IhS(ρ)∗(XJ)− χl(ρ)|J|XJ .

Since IhS(ρ)∗ is filtration preserving, we note deg(ΘJ(ρ)) ≥ |J |.
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Lemma 3.2.7. With notation as above, the following assertions hold.

(1) ΘJ(ρ) is a Magnus power series
∑
|A|≥|J|mA(J ; ρ)XA satisfying the following

properties:

(i) If mA(J ; ρ) 6= 0, then A contains J as a proper subsequence. So we may

write ΘJ(ρ) =
∑
J$AmA(J ; ρ)XA.

(ii) Any coefficient mA(J ; ρ) is a multiple of µ(B; yj(ρ)) by an l-adic integer,

where B is some proper subsequence of A and j is in J .

(2) For y ∈ Fr, we have

Θ(IhS(ρ)(y)) = 1 +
∑
|J|≥1

χl(ρ)|J|µ(J ; y)XJ +
∑
|J|≥1

µ(J ; y)ΘJ(ρ)

≡ Θ(y) +
∑
|J|≥1

µ(J ; y)ΘJ(ρ) mod a(ρ).

Proof. (1) Let 1 ≤ j ≤ r and write Θ(yj(ρ)) = 1 + Yj(ρ). By (3.1.9) and

Lemma 3.2.1, we have

IhS(ρ)∗(Xj) = IhS(ρ)∗(Θ(xj − 1))

= Θ(IhS(ρ)(xj − 1))

= Θ(yj(ρ)x
χl(ρ)
j yj(ρ)−1)− 1

= Θ(yj(ρ))Θ(xj)
χl(ρ)Θ(yj(ρ)−1)− 1

= (1 + Yj(ρ))(1 +Xj)
χl(ρ)(1− Yj(ρ) + Yj(ρ)2 − · · · )− 1

= χl(ρ)Xj + Θj(ρ),

(3.2.7.1)

where Θj(ρ) is the sum of terms of the form uYj(ρ)aXb
jYj(ρ)c for some a, c ≥ 0

with a + c ≥ 1, b ≥ 1 and u ∈ Zl. Write Θj(ρ) =
∑
|A|≥2mA(j; ρ)XA. It is

easy to see that if mA(j; ρ) 6= 0, then A must contain j. Moreover, since Yj(ρ) =∑
|B|≥1 µ(B; yj(ρ))XB , then mA(j; ρ) is a multiple of µ(B; yj(ρ)) by an l-adic

integer, where B is some proper subsequence of A. Let J = (j1 · · · jn). By (3.2.7.1),

we have∑
|A|≥|J|

mA(J ; ρ)XA := ΘJ(ρ)

:= IhS(ρ)∗(XJ)− χl(ρ)|J|XJ

= IhS(ρ)∗(Xj1) · · · IhS(ρ)∗(Xjn)− χl(ρ)|J|XJ

= (χl(ρ)Xj1 + Θj1(ρ)) · · · (χl(ρ)Xjn + Θjn(ρ))− χl(ρ)|J|XJ

= Φj1(ρ) · · ·Φjn(ρ),
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where Φj(ρ) is χl(ρ)Xj or Θj(ρ) and at least one Θj(ρ) is involved for some j.

Hence, by the properties of coefficients of Θj(ρ) =
∑
|A|≥2mA(j; ρ)XA proved

above, we obtain properties (i) and (ii).

(2) By (3.1.9) and (3.2.6), we have

Θ(IhS(ρ)(y)) = IhS(ρ)∗(Θ(y))

= IhS(ρ)∗

(
1 +

∑
|J|≥1

µ(J ; y)XJ

)

= 1 +
∑
|J|≥1

µ(J ; y) IhS(ρ)∗(XJ)

= 1 +
∑
|J|≥1

µ(J ; y)(χl(ρ)|J|XJ + ΘJ(ρ))

= 1 +
∑
|J|≥1

χl(ρ)|J|µ(J ; y)XJ +
∑
|J|≥1

µ(J ; y)ΘJ(ρ)

≡ Θ(y) +
∑
|J|≥1

µ(J ; y)ΘJ(ρ) mod a(ρ).

We are ready to prove the following result.

Theorem 3.2.8. For a multiindex I, the l-adic Milnor invariant µ(g; I) for g ∈
Galk is unchanged when g is replaced with its conjugate by an element of Galk(ζl∞ ).

To be precise, let I be a multiindex with |I| ≥ 1. Let g ∈ Galk and h ∈ Galk(ζl∞ ).

Then we have ∆(hgh−1; I) = ∆(g; I) and

µ(hgh−1; I) = µ(g; I).

Proof. Let I be a multiindex with |I| ≥ 1 and 1 ≤ i ≤ r. For g ∈ Galk and

h ∈ Galk(ζl∞ ), we will show

(3.2.8.1) µ(I; yi(hgh
−1)) ≡ µ(I; yi(g)) mod ∆(I; yi(g)).

By Lemma 3.2.5(3), we have

(3.2.8.2) Θ(yi(hgh
−1)) = Θ(IhS(hg)(yi(h

−1)))Θ(IhS(h)(yi(g)))Θ(yi(h)).

For simplicity, we set, for a multiindex J with |J | ≥ 1,

aJ := µ(J ; IhS(hg)(yi(h
−1))), bJ := µ(J ; IhS(h)(yi(g))), cJ := µ(J ; yi(h)).
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Then, from (3.2.8.2) or (3.1.4), we have

µ(I; yi(hgh
−1)) = aI + bI + cI

+
∑
AB=I

aAbB +
∑
BC=I

bBcC +
∑
AC=I

aAcC +
∑

ABC=I

aAbBcC ,

(3.2.8.3)

where A, B, C are multiindices with |A|, |B|, |C| ≥ 1.

First, we look at bB for a subsequence B of I. By Lemma 3.2.7(1), (2) and as

h ∈ Galk(ζl∞ ), we have

bB = µ(B; yi(g)) + µ(J ; yi(g))(an l-adic integer)

for some proper subsequence J of B. Therefore, by (3.2.8.3) and the definition of

∆(I; yi(g)), we have

(3.2.8.4) µ(I; yi(hgh
−1))− µ(I; yi(g)) ≡ aI + cI +

∑
AC=I

aAcC mod ∆(I; yi(g)).

Here we note that the right-hand side of (3.2.8.4) is the coefficient of XI of

Θ(IhS(hg)(yi(h
−1)))Θ(yi(h)).

So, next we look at Θ(IhS(hg)(yi(h
−1)))Θ(yi(h)). By (3.1.9), Lemma 3.2.5(1)

and Lemma 3.2.7(2), we have

Θ(IhS(hg)(yi(h
−1))) = IhS(hg)∗(Θ(yi(h

−1)))

= IhS(h)∗ IhS(g)∗(Θ(yi(h
−1)))

≡ IhS(h)∗(Θ(yi(h
−1)) +

∑
|J|≥1

µ(J ; yi(h
−1))ΘJ(g)) (mod a(g))

= Θ(IhS(h)(yi(h
−1))) +

∑
|J|≥1

µ(J ; yi(h
−1)) IhS(h)∗(ΘJ(g))

= Θ(yi(h)−1) +
∑
|J|≥1

µ(J ; yi(h
−1)) IhS(h)∗(ΘJ(g)).

(3.2.8.5)

Here let us write ΘJ(g) =
∑
J$AmA(J ; g)XA as in Lemma 3.2.7(1). Then we

have, as h ∈ Galk(ζl∞ ),

IhS(h)∗(ΘJ(g)) =
∑
J$A

mA(J ; g) IhS(h)∗(XA)

=
∑
J$A

mA(J ; g)(XA + ΘA(h))

=
∑
J$A

mA(J ; g)(XA +
∑
A$A′

mA′(A;h)XA′).

(3.2.8.6)
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By (3.2.8.5) and (3.2.8.6), we have

Θ(IhS(hg)(yi(h
−1)))

≡ Θ(yi(h)−1) +
∑
|J|≥1

∑
J$A

µ(J ; yi(h
−1))mA(J ; g)

×

(
XA +

∑
A$A′

mA′(A;h)XA′

)
(mod a(g))

and hence

Θ(IhS(hg)(yi(h
−1))Θ(yi(h))

≡ 1 +
∑
|J|≥1

∑
J$A

µ(J ; yi(h
−1))mA(J ; g)

×

(
XA +

∑
A$A′

mA′(A;h)XA′

)
Θ(yi(h)) (mod a(g)).

(3.2.8.7)

Here we note that by Lemma 3.2.7(2), mA(J ; g) is a multiple of µ(B; yj(g)) by an

l-adic integer for some proper subsequence B of A and j in J . By the definition

(3.2.3) of ∆(I; yi(g)), the coefficient of XI in the right-hand side of (3.2.8.7) must

be congruent to 0 mod ∆(I; yi(g)). By (3.2.8.4), we obtain (3.2.8.1).

Finally, we show that ∆(I; yi(hgh
−1)) = ∆(I; yi(g)) by induction on |I|. When

|I| = 1, this is obviously true (both sides are a(g) = a(hgh−1)) by the definition.

Assume that ∆(I; yi(hgh
−1)) = ∆(I; yi(g)) for all I with |I| ≤ n (n ≥ 1). Then,

by (3.2.8.1), we have, for all I with |I| ≤ n and 1 ≤ i ≤ r,

(3.2.8.8) µ(I; yi(hgh
−1)) ≡ µ(I; yi(g)) mod ∆(I; yi(g)) (= ∆(I; yi(hgh

−1)).

Using (3.2.8.8) and the definition (3.2.3) of ∆(I; yi(ρ)) for ρ = hgh−1, g, we have

∆(I; yi(hgh
−1)) = ∆(I; yi(g)) for I with |I| = n+ 1.

Remark 3.2.9. It is known that a braid β and its conjugate γβγ−1 give rise

to the same link as their closures (β 7→ γβγ−1 is one of Markov’s transforms;

cf. [B, 2.2], [MK, Chap. 9]). In particular, they have the same Milnor invariants.

So Theorem 3.2.8 may be seen as an arithmetic analogue of this known fact for

braids.

As a property of l-adic Milnor invariants, we have the following shuffle relation.
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Proposition 3.2.10. Let g ∈ Galk. For multiindices I, J with |I|, |J | ≥ 1 and

1 ≤ i ≤ r, we have∑
H∈PSh(I,J)

µ(g;Hi) ≡ 0 mod g.c.d{∆(Hi) | H ∈ PSh(I, J)},

where PSh(I, J) denotes the set of results of all proper shuffles of I and J ([CFL]).

Proof. By (3.1.5), we have

µ(g; Ii)µ(g; Ji) =
∑

A∈Sh(I,J)

µ(g;Ai).

Taking mod g.c.d{∆(Hi) | H ∈ PSh(I, J)}, the left-hand side is congruent to 0

and any term µ(g;Ai) with A /∈ PSh(I, J) is also congruent to 0. So the assertion

follows.

Let R∞S be the set of primes of k(ζl∞) lying over RS in (2.2.5). For p∞ ∈ R∞S ,

choose a prime P of ΩS lying over p∞. Since P is unramified in the Galois extension

ΩS/k by Theorem 2.2.6(2), we have the Frobenius automorphism σP ∈ Gal(ΩS/k)

of P. By Theorem 3.2.8, µ(σP; I) is independent of the choice of P lying over p∞.

So we define the l-adic Milnor invariant of p∞ for a multiindex I by

(3.2.11) µ(p∞; I) := µ(σP; I).

We also set ∆(p∞; I) := ∆(σP; I) so that µ(p∞; I) ∈ Zl/∆(p∞; I). Let p be the

prime of k lying below p∞. Since χl(σP) = Np (the norm of p), in order to have

Zl/∆(p∞; I) 6= 0, it is necessary that primes p∞ in R∞S lie over

R1
S := {p ∈ RS | Np ≡ 1 mod l}.

For p ∈ R1
S , let e(p) denote the maximal integer such that

Np ≡ 1 mod le(p).

It means that p is completely decomposed in k(ζle(p))/k and any prime of k(ζle(p))

lying over p is inert in k(ζl∞)/k(ζle(p)). Hence σP ∈ Gal(ΩS/k(ζle(p))). Then the in-

determinacy ∆(p∞; I) is an ideal of Z/le(p)Z. We note that if µ(σP; I) ≡ 0 mod le(p)

for all |I| ≤ n, then µ(p∞; I) is well defined in Z/le(p)Z for |I| = n+ 1.

Remark 3.2.12. In [Ms1] and [Ms2, Chap. 8], the arithmetic Milnor invariants

for certain primes of a number field were introduced as multiple generalizations of

power residue symbols and the Rédei triple symbol ([R]). See also [Am]. They are

arithmetic analogues for primes of Milnor invariants of links. It is known ([Ko1],

[Ko3, Chap. 1]) that Milnor invariants for a pure braid coincide with those for
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the link obtained by closing the pure braid. Recently, we found a relation between

l-adic Milnor invariants, Wojtkowiak’s l-adic iterated integrals and l-adic polylog-

arithms ([NW], [W1], [W2], [W3], [W4]) and multiple power residue symbols (in

particular, Rédei symbols), which will be discussed in a forthcoming paper.

Finally, we introduce a filtration on Galk using l-adic Milnor numbers. We set

GalMil
k [0] := Galk. For each integer n ≥ 1, we define a subset GalMil

k [n] of Galk by

GalMil
k [n] := {g ∈ Galk(ζl∞ ) | µ(g; I) = 0 for |I| ≤ n}

= {g ∈ Galk(ζl∞ ) | deg(Θ(yi(g))− 1) ≥ n for 1 ≤ i ≤ r}.
(3.2.13)

We then have the descending series

Galk = GalMil
k [0] ⊃ GalMil

k [1] ⊃ · · · ⊃ GalMil
k [n] ⊃ · · ·

and we call it the Milnor filtration of Galk.

Proposition 3.2.14. For n ≥ 0, GalMil
k [n] is a closed normal subgroup of Galk.

Proof. This proposition is an immediate consequence of the coincidence of the Mil-

nor filtration and the Johnson filtration which will be proved in Proposition 4.3.3.

So we give herewith a direct and brief proof.

We may assume n ≥ 1. Since µ( ; I) : Galk → Zl is continuous for each I

and GalMil
k [n] =

⋂
|I|≤n µ( ; I)−1(0), then GalMil

k [n] is closed in Galk. Let g, h ∈
GalMil

k [n] and so deg(Θ(yi(ρ)) − 1) ≥ n for ρ = g, h and each 1 ≤ i ≤ r.

Then we can easily show deg(Θ(yi(g
−1)) − 1) ≥ n, deg(Θ(yi(gh)) − 1) ≥ n and

deg(Θ(yi(hgh
=1))−1) ≥ n by using Lemma 3.2.5(1), (2) and (3), respectively.

§3.3. Pro-l link groups and Massey products

Following the analogy with the link group of a pure braid link ([Ar],[B, Thm. 2.2]),

we define the pro-l link group of each Galois element g ∈ Galk associated to IhS
by

ΠS(g)

:=
〈
x1, . . . , xr | y1(g)x

χl(g)
1 y1(g)−1 = x1, . . . , yr(g)xχl(g)

r yr(g)−1 = xr

〉
=
〈
x1, . . . , xr | x1−χl(g)

1 [x−1
1 , y1(g)−1]= · · ·=x1−χl(g)

r [x−1
r , yr(g)−1]=1

〉
:= Fr/NS(g),

(3.3.1)

where NS(g) denotes the closed subgroup of Fr generated normally by the pro-l

words x
1−χl(g)
1 [x−1

1 , y1(g)−1], . . . , x
1−χl(g)
r [x−1

r , yr(g)−1]. We will give a cohomolog-

ical interpretation of l-adic Milnor invariants of g ∈ Galk by Massey products in
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the cohomology of the pro-l link group ΠS(g). In the following, we let g ∈ Galk
and a be an ideal of Zl such that a 6= Zl and χl(g) ≡ 1 mod a. We may write

a = laZl for some 1 ≤ a ≤ ∞ (la := 0 if a = ∞). When g ∈ Galk(ζ∞l ), we have

a =∞ and a = 0.

Let Ci(ΠS(g),Zl/a) be the Zl/a-module of continuous i-cochains (i ≥ 0)

of ΠS(g) with coefficients in Zl/a, where ΠS(g) acts on Zl/a trivially. We con-

sider the differential graded algebra (C•(ΠS(g),Zl/a), d), where the product on

C•(ΠS(g),Zl/a) =
⊕

i≥0 C
i(ΠS(g),Zl/a) is given by the cup product and the

differential d is the coboundary operator. Then we have the cohomology ring

H∗(ΠS(g),Zl/a) :=
⊕

i≥0H
i(C•(ΠS(g),Zl/a)) of the pro-l group ΠS(g) with co-

efficients in Zl/a. In the following, we deal with only one- and two-dimensional

cohomology groups. For the sign convention, we follow [Dw]. For c1, . . . , cn ∈
H1(ΠS(g),Zl/a), an nth Massey product 〈c1, . . . , cn〉 is said to be defined if there

is an array

W = {wij ∈ C1(ΠS(g),Zl/a) | 1 ≤ i < j ≤ n+ 1, (i, j) 6= (1, n+ 1)}

such that 
[ωi,i+1] = ci (1 ≤ i ≤ n),

dwij =

j−1∑
a=i+1

wia ∪ waj (j 6= i+ 1).

Such an arrayW is called a defining system for 〈c1, . . . , cn〉. The value of 〈c1, . . . , cn〉
relative to W is defined by the cohomology class represented by the 2-cocycle

n∑
a=2

w1a ∪ wa,n+1,

and denoted by 〈c1, . . . , cn〉W . A Massey product 〈c1, . . . , cn〉 itself is taken to

be the subset of H2(ΠS(g),Zl/a) consisting of elements 〈c1, . . . , cn〉W for some

defining system W . By convention, 〈c〉 = 0. The following lemma is a basic fact

([Kr]).

Lemma 3.3.2. We have 〈c1, c2〉 = c1 ∪ c2. For n ≥ 3, 〈c1, . . . , cn〉 is defined and

consists of a single element if 〈cj1 , . . . , cja〉 = 0 for all proper subsets {j1, . . . , ja}
(a ≥ 2) of {1, . . . , n}.

Next, we recall a relation between Massey products and the Magnus coeffi-

cients for our situation. Let ψ : Fr → ΠS(g) = Fr/NS(g) be the natural homo-

morphism. We denote by γi the image of xi under ψ, γi := xi modNS(g), for

1 ≤ i ≤ r. By the definition (3.3.1) of ΠS(g) and our assumption, π induces the

isomorphism Fr/F
la

r Fr(2)
∼→ ΠS(g)/ΠS(g)l

a

[ΠS(g),ΠS(g)] ' (Zl/a)⊕r and so we
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have the isomorphism H1(ΠS(g),Zl/a) ' H1(Fr,Zl/a). Therefore the Hochschild–

Serre spectral sequence yields the isomorphism

tg : H1(NS(g),Zl/a)ΠS(g) → H2(ΠS(g),Zl/a).

Here tg is the transgression defined as follows. For a ∈ H1(NS(g),Zl/a)ΠS(g),

choose a 1-cochain b ∈ C1(Fr,Zl/a) such that b|NS(g) = a. Since the value

db(f1, f2), fi ∈ Fr depends only on the cosets fi modNS(g), there is a 2-cocyle

c ∈ Z2(ΠS(g),Zl/a) such that ψ∗(c) = db. Then tg(a) is defined to be the class of

c. The dual to tg is called the Hopf isomorphism:

tg∨ : H2(ΠS(g),Zl/a)
∼→ H1(NS(g),Zl/a)ΠS(g) = NS(g)/NS(g)l

a

[NS(g),Fr].

Then we have the following proposition (cf. [St, Lem. 1.5], [Ms1, Thm. 2.2.2]).

Proposition 3.3.3. With notation as above, let c1, . . . , cn ∈ H1(ΠS(g),Zl/a) and

W = (wij) be a defining system for the Massey product 〈c1, . . . , cn〉. Let f ∈ NS(g)

and set r := (tg∨)−1(f modNS(g)l
a

[NS(g),Fr]). Then we have

〈c1, . . . , cn〉W (r)

=

n∑
j=1

(−1)j+1
∑

e1+···+ej=n

∑
I=(i1···ij)

w1,1+e1(γi1) · · ·wn+1−ej ,n+1(γij )µ(I; f)a,

where e1, . . . , ej run over positive integers satisfying e1 + · · ·+ ej = n and µ(I; f)a
:= µ(I; f) mod a.

Now, let γ∗1 , . . . , γ
∗
r ∈ H1(ΠS(g),Zl/a) be the Kronecker dual to γ1, . . . , γr,

namely, γ∗i (γj) = δij for 1 ≤ i, j ≤ r. Let ri := (tg∨)−1(x
1−χl(g)
i [x−1

i , yi(g)−1]

modNS(g)l
a

[NS(g),Fr]) for 1 ≤ i ≤ r. Let I = (i1 · · · in) be a multiindex such

that |I| = n ≥ 2. Let g ∈ Galk. We assume the following conditions:

(3.3.4)



(1) µ((j1 · · · ja);x
1−χl(g)
i ) ≡ 0 mod a for any subset

{j1, . . . , ja} of {i1, . . . , in} and 1 ≤ i ≤ r,
(2) i1, . . . , in are distinct from each other, and

µ(g; (j1 · · · ja)) ≡ 0 mod a for any proper subset

{j1, . . . , ja} of {i1, . . . , in}.

We note that condition (1) is unnecessary when g ∈ Galk(ζl∞ ). The following

theorem gives a cohomological interpretation of µ(g; I)a := µ(g; I) mod a by the

Massey product in the cohomology of ΠS(g).
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Theorem 3.3.5. With notation and assumptions as above, the Massey product

〈γ∗i1 , . . . , γ
∗
in
〉 in H2(ΠS(g),Zl/a) is uniquely defined and we have

µ(g; I)a = (−1)n〈γ∗i1 , . . . , γ
∗
in〉(rin).

Proof. First, we compute µ(J ;x
1−χl(g)
i [x−1

i , yi(g)−1]) for a multiindex J =

(j1 · · · ja), where {j1, . . . , ja} is a subset of {i1, . . . , in}. We note that

Θ(x
1−χl(g)
i [x−1

i , yi(g)−1])

= Θ(x
1−χl(g)
i )(1 + Θ(x−1

i )Θ(yi(g)−1)(Θ(xiyi(g))−Θ(yi(g)xi))).

By our assumption (3.3.4)(1), we have

µ(J ;x
1−χl(g)
i [x−1

i , yi(g)−1])

≡ µ(J ;xiyi(g))− µ(J ; yi(g)xi)

+
∑
A

(µ(A;xiyi(g))− µ(A; yi(g)xi))νA mod a,

(3.3.5.1)

where A runs over some proper subsequences of J and νA ∈ Zl. By straightforward

computation, we have

µ(J ;xiyi(g)) =

{
µ(g; (Ji)) (i 6= j1),

µ(g; (Jj1)) + µ(g; (j2 · · · jaj1)) (i = j1),

and

µ(J ; yi(g)xi) =

{
µ(g; (Ji)) (i 6= ja),

µ(g; (Jja)) + µ(g; J) (i = ja).

Hence we have

µ(J ;xiyi(g))− µ(J ; yi(g)xi)

=


µ(g; (j2 · · · jaj1))− δj1,jaµ(g; J) (i = j1),

µ(g; (j2 · · · jaj1))δj1,ja − µ(g; J) (i = ja),

0 (otherwise).

(3.3.5.2)

Now, let n = 2. Then we have 〈γ∗i1 , γ
∗
i2
〉 = γ∗i1∪γ

∗
i2

. By Proposition 3.3.3, (3.3.4)(2),

(3.3.5.1) and (3.3.5.2), we have

〈γ∗i1 , γ
∗
i2〉(ri2) = −µ(I; [xi2 , yi2(g)])a = µ(g; I)a.

Suppose n ≥ 3 and let {j1, . . . , ja} be a proper subset of {i1, . . . , in}. Then, by

our assumption (3.3.4)(2), (3.3.5.1) and (3.3.5.2), we have

µ(J ;x
1−χl(g)
i [x−1

i , yi(g)−1]) ≡ 0 mod a
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for J = (j1 · · · ja) and 1 ≤ i ≤ r. So, by Proposition 3.3.3, we have

〈γ∗j1 , . . . , γ
∗
ja〉(ri) = 0

for 1 ≤ i ≤ r. Since H2(Π(g),Zl/a) is generated by x
1−χl(g)
i [xi, yi(g)] for 1 ≤ i ≤ r,

we have

〈cj1 , . . . , cja〉 = 0.

Therefore, by Lemma 3.3.2, the Massey product 〈ci1 , . . . , cin〉 is uniquely defined.

By Proposition 3.3.3, (3.3.4)(2), (3.3.5.1) and (3.3.5.2) again, we have

〈γ∗i1 , . . . , γ
∗
in〉(rin) = (−1)n+1µ(I;x1−χl(g)

n [xin , yin(g)])a = (−1)nµ(g; I)a.

§4. Pro-l Johnson homomorphisms

§4.1. Some algebras associated to lower central series

For each integer n ≥ 1, we let

grn(Fr) := Fr(n)/Fr(n+ 1),

which is a free Zl-module whose rank `r(n) is given by the Witt formula ([MKS,

5.6, Thm. 5.11], [Se, Chap. IV, 4, 6]):

`r(n) =
1

n

∑
d|n

µ(d)rn/d,

where µ(d) is the Möbius function. The graded Zl-module

gr(Fr) :=
⊕
n≥1

grn(Fr)

has the structure of a graded free Lie algebra over Zl: For a = smodFr(m+ 1) ∈
grm(Fr) and b = tmodFr(n+ 1) ∈ grn(Fr) (s ∈ Fr(m), t ∈ Fr(n)), the Lie bracket

on gr(Fr) is defined by

[a, b] := [s, t] modFr(m+ n+ 1).

We consider the graded associative algebra over Zl defined by

gr(Zl[[Fr]]) :=
⊕
n≥0

grn(Zl[[Fr]]), grn(Zl[[Fr]]) := InZl[[Fr]]/I
n+1
Zl[[Fr]].

The map f 7→ f − 1 (f ∈ Fr(n)) defines an injective Zl-linear map

(4.1.1) grn(Fr) ↪→ grn(Zl[[Fr]])
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for n ≥ 1 and the injective Lie algebra homomorphism over Zl,

gr(Fr) ↪→ gr(Zl[[Fr]]),

where gr(Zl[[Fr]]) is shown to be the universal enveloping algebra of the Lie algebra

gr(Fr). Moreover, by the correspondence xi−1 mod I2
Zl[[Fr]] ∈ gr1(Zl[[Fr]]) 7→ Xi ∈

H, we have the isomorphism of Zl-modules

(4.1.2) Θn : grn(Zl[[Fr]]) ' H⊗n

for each n ≥ 0 and so gr(Zl[[Fr]]) is identified with the tensor algebra T (H):

gr(Zl[[Fr]]) = T (H) = Zl〈X1, . . . , Xr〉.

The composition of the map of (4.1.1) with Θn in (4.1.2), denoted also by Θn :

grn(Fr) ↪→ H⊗n, is the degree-n part of the pro-l Magnus embedding in (3.1.3):

(4.1.3) Θn = (Θ− 1)|Fr(n) mod T̂ (n+ 1).

Here we may note that Θ is multiplicative, Θ(f1f2) = Θ(f1)Θ(f2) for f1, f2 ∈ Fr,

while Θn is additive, Θn([f1f2]) = Θn([f1] + [f2]) = Θn([f1]) + Θn([f2]), where [ · ]
stands for the class modFr(n+ 1).

Let S(H) be the symmetric algebra of H over Zl and let q : T (H)→ S(H) be

the natural map. We let Sm(H) := q(H⊗m) and ui := q(Xi) for 1 ≤ i ≤ r so that

S(H) is the graded algebra
⊕

m≥0 S
m(H) which is nothing but the commutative

polynomial algebra over Zl of variables u1, . . . , ur:

S(H) =
⊕
m≥0

Sm(H) = Zl[u1, . . . , ur].

§4.2. The pro-l Johnson map

This subsection concerns the pro-l Johnson map associated to the Ihara represen-

tation, which is a pro-l analogue of the Johnson map introduced by Kawazumi

([Ka]). Overall, we follow Kazazumi’s arguments in [Ka] in our pro-l setting.

For ϕ ∈ Autfil(T̂ (H)), we denote by [ϕ] the induced Zl-endomorphism of

H = T̂ (1)/T̂ (2) = Z⊕rl .

Lemma 4.2.1. A Zl-algebra endomorphism ϕ of T̂ (H) is a filtration-preserving

automorphism of T̂ (H), ϕ ∈ Autfil(T̂ (H)) if and only if the following conditions

are satisfied:

(1) ϕ(T̂ (n)) ⊂ T̂ (n) for all n ≥ 0.

(2) the induced Zl-endomorphism [ϕ] on T̂ (1)/T̂ (2) = H is an isomorphism.
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Proof. Suppose ϕ ∈ Autfil(T̂ (H)). Since ϕ is filtration preserving, condition (1)

holds. To show condition (2), consider the following commutative diagram for

vector spaces over Zl with exact rows:

0 // T̂ (2)

ϕ|T̂ (2)

��

// T̂ (1)

ϕ|T̂ (1)

��

p
// H

[ϕ]

��

// 0

0 // T̂ (2) // T̂ (1) // H // 0.

Since ϕ(T̂ (n)) = T̂ (n) for all n ≥ 0, we have Coker(ϕ|T̂ (i)) = 0 for i = 1, 2,

in particular. Since ϕ is an automorphism, we have Ker(ϕ) = 0, in particular,

Ker(ϕ|T̂ (i)) = 0 for i = 1, 2. By the snake lemma applied to the above diagram,

we obtain Ker([ϕ]) = 0 and Coker([ϕ]) = 0, hence condition (2).

Suppose that a Zl-algebra endomorphism ϕ of T̂ (H) satisfies conditions (1)

and (2). Let z = (zm) be any element of T̂ (H) with zm ∈ H⊗m for m ≥ 0. To

show that ϕ is an automorphism, we have only to prove that there exists uniquely

y = (ym) ∈ T̂ (H) such that

(4.2.1.1) z = ϕ(y).

Note by conditions (1) and (2) that ϕ induces a Zl-linear automorphism of T̂ (m)/

T̂ (m+ 1) = H⊗m, which is nothing but [ϕ]⊗m. Then, writing ϕ(yi)j for the com-

ponent of ϕ(yi) in H⊗j for i < j, equation (4.2.1.1) is equivalent to the following

system of equations:

(4.2.1.2)



z0 = ϕ(y0) = y0,

z1 = [ϕ](y1),

z2 = [ϕ]⊗2(y2) + ϕ(y1)2,

· · ·
zm = [ϕ]⊗m(ym) + ϕ(y1)m + · · ·+ ϕ(ym−1)m,

· · · .

Since [ϕ]⊗m is an automorphism, we can find the unique solution y = (ym) of

(4.2.1.2) from the lower degree. Therefore ϕ is an Zl-algebra automorphism. Fur-

thermore, we can see easily that if z0 = · · · = zn−1 = 0, then y0 = · · · = yn−1 = 0

for n ≥ 1. This means that ϕ−1(T̂ (n)) ⊂ T̂ (n) and so ϕ is filtration preserving.

By Lemma 4.2.1, each ϕ ∈ Autfil(T̂ (H)) induces a Zl-linear automorphism

[ϕ] of H = T̂ (1)/T̂ (2) and so we have a group homomorphism

[ ] : Autfil(T̂ (H)) −→ GL(H),
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where GL(H) denotes the group of Zl-linear automorphisms of H. We then define

the induced automorphism group of T̂ (H) by

IA(T̂ (H)) := Ker([ ])

= {ϕ ∈ Aut(T̂ (H)) | ϕ(h) ≡ hmod T̂ (2) for any h ∈ H}.

We note that there is a natural splitting s : GL(H) → Autfil(T̂ (H)) of [ ], which

is defined by

s(P )((zn)) := (P⊗n(zn)) for P ∈ GL(H).

In the following, we also regard [P ] ∈ GL(H) as an element of Autfil(T̂ ) through

the splitting s. Thus we have the following lemma.

Lemma 4.2.2. We have a semidirect decomposition

Autfil(T̂ (H)) = IA(T̂ (H)) o GL(H); ϕ = (ϕ ◦ [ϕ]−1, [ϕ]).

Let ϕ ∈ IA(T̂ (H)). Then we have ϕ(h)−h ∈ T̂ (2) for any h ∈ H, and so we

have a map

(4.2.3) E : IA(T̂ (H)) −→ HomZl
(H, T̂ (2)); ϕ 7→ ϕ|H − idH ,

where HomZl
(H, T̂ (2)) denotes the Zl-module of Zl-homomorphisms H → T̂ (2).

The following proposition will play a key role in our discussion.

Proposition 4.2.4. The map E is bijective.

Proof. Injectivity: Suppose E(ϕ) = E(ϕ′) for ϕ,ϕ′ ∈ IA(T̂ (H)). Then we have

ϕ|H = ϕ′|H . Since a Zl-algebra endomorphism of T̂ (H) is determined by its re-

striction on H, we have ϕ = ϕ′.

Surjectivity: Take any φ ∈ HomZl
(H, T̂ (2)). We can extend φ + idH : H →

T̂ (2) uniquely to a Zl-algebra endomorphism ϕ of T̂ (H). Then we have obviously

ϕ(T̂ (n)) ⊂ T̂ (n) for all n ≥ 0. Since T̂ (1)/T̂ (2) = H and we see that

[ϕ](hmod T̂ (2)) = ϕ(h) mod T̂ (2) = h+ φ(h) mod T̂ (2) = hmod T̂ (2),

we have [ϕ] = idH . By Lemma 4.2.1, we have ϕ ∈ IA(T̂ (H)) and E(ϕ) = φ.

By Lemma 4.2.2 and Proposition 4.2.4, we have the following result.

Corollary 4.2.5. We have a bijection

Ê : Autfil(T̂ (H)) ' HomZl
(H, T̂ (2))×GL(H)

defined by Ê(ϕ) = (E(ϕ ◦ [ϕ]−1), [ϕ]).
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Now, let IhS : Galk → P (Fr) be the Ihara representation associated to S in

(2.2.3). We recall that the correspondence ϕ 7→ ϕ∗ := Θ ◦ ϕ ◦Θ−1 in (3.1.8) gives

the injective homomorphism Aut(Fr) → Autfil(T̂ (H)) and hence the inclusion

P (Fr) ↪→ Autfil(T̂ (H)) which satisfies [ϕ] = [ϕ∗] in GL(H). Composing IhS with

this inclusion, we have the homomorphism η̂S : Galk → Autfil(T̂ (H)) defined by

η̂S(g) := IhS(g)∗ = Θ ◦ IhS(g) ◦Θ−1.

We then define the map ηS : Galk → IA(T̂ (H)) by composing η̂S with the projec-

tion on IA(T̂ (H)):

ηS(g) := η̂S(g) ◦ [IhS(g)]−1 = IhS(g)∗ ◦ [IhS(g)]−1

= Θ ◦ IhS(g) ◦Θ−1 ◦ [IhS(g)]−1.
(4.2.6)

Thus, we have η̂S(g) = (ηS(g), [IhS(g)]) for g ∈ Galk under the semidirect decom-

position Autfil(T̂ (H)) = IA(T̂ (H)) o GL(H) of Lemma 4.2.2.

Now, we define the pro-l Johnson map

τS : Galk −→ HomZl
(H, T̂ (2))

by composing ηS with E in (4.2.3), and define the extended pro-l Johnson map

τ̂S : Galk −→ HomZl
(H, T̂ (2)) o GL(H)

by composing η̂S with Ê of Corollary 4.2.5. So we have, for g ∈ Galk,

τS(g) := E(ηS(g)) = ηS(g)|H − idH

= IhS(g)∗ ◦ [IhS(g)]−1|H − id|H
= Θ ◦ IhS(g) ◦Θ−1 ◦ [IhS(g)]−1|H − id|H ,

τ̂S(g) := (τS(g), [IhS(g)]).

(4.2.7)

For m ≥ 1, let HomZl
(H,H⊗(m+1)) denote the Zl-module of Zl-homomorphisms

H → H⊗(m+1), and we define the mth pro-l Johnson map

τ
(m)
S : Galk −→ HomZl

(H,H⊗(m+1))

by the mth component of τS :

(4.2.8) τS(g) :=
∑
m≥1

τ
(m)
S (g) (g ∈ Galk).

We note that the pro-l Johnson map τS is no longer a homomorphism. In fact,

we have the following proposition.
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Proposition 4.2.9. For g1, g2 ∈ Galk, we have

ηS(g1g2) = ηS(g1) ◦ [IhS(g1)] ◦ ηS(g2) ◦ [IhS(g1)]−1.

Proof. By (4.2.6), we have

ηS(g1g2) = IhS(g1g2)∗ ◦ [IhS(g1g2)]−1

= Θ ◦ IhS(g1g2) ◦Θ−1 ◦ [IhS(g1g2)]−1

= Θ ◦ IhS(g1) ◦ IhS(g2) ◦Θ−1 ◦ [IhS(g2)]−1 ◦ [IhS(g1)]−1

= Θ ◦ IhS(g1) ◦Θ−1 ◦ [IhS(g1)]−1 ◦ [IhS(g1)] ◦Θ ◦ IhS(g2) ◦Θ−1

◦ [IhS(g2)]−1 ◦ [IhS(g1)]−1

= ηS(g1) ◦ [IhS(g1)] ◦ ηS(g2) ◦ [IhS(g1)]−1.

Proposition 4.2.9 yields coboundary relations among τ
(m)
S . Here we give the

formulas only for τ
(1)
S and τ

(2)
S .

Proposition 4.2.10. For g1, g2 ∈ Galk, we have

τ
(1)
S (g1g2) = τ

(1)
S (g1) + [IhS(g1)]⊗2 ◦ τ (1)

S (g2) ◦ [IhS(g1)]−1,

τ
(2)
S (g1g2) = τ

(2)
S (g1) + (τ

(1)
S (g1)⊗ idH + idH ⊗ τ (1)

S (g1)) ◦ [IhS(g1)]⊗2

◦ τ (1)
S (g2) ◦ [IhS(g1)]−1 + [IhS(g1)]⊗3 ◦ τ (2)

S (g2) ◦ [IhS(g1)]−1.

Proof. By definition (4.2.8), we have

(4.2.10.1) τS(g1g2) =
∑
m≥1

τ
(m)
S (g1g2).

On the other hand, by Proposition 4.2.9 and (4.2.7), we have, for h ∈ H,

τS(g1g2)(h) = −h+ ηS(g1g2)(h)

= −h+ (ηS(g1) ◦ [IhS(g1)] ◦ ηS(g2) ◦ [IhS(g1)]−1)(h)

= −h+ (ηS(g1) ◦ [IhS(g1)] ◦ (idH + τS(g2)))([IhS(g1)]−1(h))

= −h+ (ηS(g1) ◦ [IhS(g1)])

×

(
[IhS(g1)]−1(h) +

∑
m≥1

(τ
(m)
S (g2) ◦ [IhS(g1)]−1)(h)

)

= −h+ ηS(g1)

(
h+

∑
m≥1

([IhS(g1)]⊗m+1 ◦ τ (m)
S (g2) ◦ [IhS(g1)]−1)(h)

)
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= −h+ ηS(g1)(h)

+ ηS(g1)(([IhS(g1)]⊗2 ◦ τ (1)
S (g2) ◦ [IhS(g1)]−1)(h))

+ ηS(g1)(([IhS(g1)]⊗3 ◦ τ (2)
S (g2) ◦ [IhS(g1)]−1)(h)) mod T̂ (4).

We note that

ηS(g)|H⊗m = (idH + τS(g))⊗m : H⊗m −→ H × T̂ (2m)

for any g ∈ Galk and so we have the following congruences mod T̂ (4):

ηS(g1)(h) ≡ h+ τ
(1)
S (g1)(h) + τ

(2)
S (g1)(h),

ηS(g1)(([IhS(g1)]⊗2 ◦ τ (1)
S (g2) ◦ [IhS(g1)]−1)(h))

≡ ([IhS(g1)]⊗2 ◦ τ (1)
S (g2) ◦ [IhS(g1)]−1)(h)

+ ((τ
(1)
S (g1)⊗ idH + idH ⊗ τ (1)

S (g1)) ◦ [IhS(g1)]⊗2 ◦ τ (1)
S (g2)

◦ [IhS(g1)]−1)(h),

ηS(g1)(([IhS(g1)]⊗3 ◦ τ (1)
S (g2) ◦ [IhS(g1)]−1)(h))

≡ ([IhS(g1)]⊗3 ◦ τ (2)
S (g2) ◦ [IhS(g1)]−1)(h).

Therefore we have

τS(g1g2)(h) ≡ τ (1)
S (g1)(h) + τ

(2)
S (g1)(h)

+ ([IhS(g1)]⊗2 ◦ τ (1)
S (g2) ◦ [IhS(g1)]−1)(h)

+ ((τ
(1)
S (g1)⊗ idH + idH ⊗ τ (1)

S (g1)) ◦ [IhS(g1)]⊗2

◦ τ (1)
S (g2) ◦ [IhS(g1)]−1)(h)

+ ([IhS(g1)]⊗3 ◦ τ (2)
S (g2) ◦ [IhS(g1)]−1)(h) mod T̂ (4).

(4.2.10.2)

Comparing (4.2.10.1) and (4.2.10.2), we obtain the assertions.

§4.3. Pro-l Johnson homomorphisms

For n ≥ 0, let πn : Fr → Fr/Fr(n+ 1) be the natural homomorphism. Since each

Fr(n) is a characteristic subgroup of Fr, πn induces the natural homomorphism

πn∗ : P (Fr) ↪→ Aut(Fr) → Aut(Fr/Fr(n + 1)). Let Ih
(n)
S denote the composite of

IhS with πn∗:

Ih
(n)
S : Galk −→ Aut(Fr/Fr(n+ 1)).
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In particular, Ih
(1)
S (g) = [IhS(g)] for g ∈ Galk. Let GalJoh

k [n] denote the kernel of

Ih
(n)
S :

GalJoh
k [n] := Ker(Ih

(n)
S )

= {g ∈ Galk | IhS(g)(f)f−1 ∈ Fr(n+ 1) for all f ∈ Fr}.
(4.3.1)

We then have a descending series of closed normal subgroups of Galk:

Galk = GalJoh
k [0] ⊃ GalJoh

k [1] ⊃ · · · ⊃ GalJoh
k [n] ⊃ · · ·

and we call it the Johnson filtration of Galk associated to the Ihara representation

ϕS (cf. [Aa], [J1], [J2]). We note by Theorem 2.2.6(1),

(4.3.2) GalJoh
k [1] = Ker(Ih

(1)
S : Galk → GL(H)) = Galk(ζl∞ ) .

The relation with the Milnor filtration defined in (3.2.13) is given as follows.

Proposition 4.3.3. The Johnson filtration coincides with the Milnor filtration,

namely, for each n ≥ 0, we have

GalJoh
k [n] = GalMil

k [n].

Proof. We may assume n ≥ 1 and hence g ∈ Galk(ζl∞ ). Then we have

g ∈ GalJoh
k [n]⇔ IhS(g)(xi)x

−1
i ∈ Fr(n+ 1) for all 1 ≤ i ≤ r

⇔ yi(g)xiyi(g)−1x−1
i ∈ Fr(n+ 1) for all 1 ≤ i ≤ r

⇔ yi(g) ∈ Fr(n) for all 1 ≤ i ≤ r
⇔ deg(Θ(yi(g)− 1)) ≥ n for all 1 ≤ i ≤ r
⇔ g ∈ GalMil

k [n].

Note that Proposition 4.3.3 yields Proposition 3.2.14. In the following, we

simply write Galk[n] for the nth term of the Johnson (or Milnor) filtration for

n ≥ 0 and we denote by k[n] the Galois subextension of k in Q corresponding to

Galk[n]. By (4.3.2), we have k[1] = k(ζl∞).

We give some basic properties of the Johnson filtration. The following Lemma

4.3.4, Proposition 4.3.5 and Theorem 4.3.6(2) were shown by Ihara for the case

r = 2. See [Ih1, Prop. 7, p. 59] and also [O1]. We give, herewith, concise proofs for

the sake of readers.

Lemma 4.3.4. For g ∈ Galk[m] (m ≥ 0) and f ∈ Fr(n) (n ≥ 1), we have

IhS(g)(f)f−1 ∈ Fr(m+ n).
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Proof. We fix m ≥ 0 and g ∈ Galk[m]. We prove the assertion by induction on n.

For n = 1, the assertion IhS(g)(f)f−1 ∈ Fr(m+1) is true by the definition (4.3.1).

Assume that

(4.3.4.1) IhS(g)(f)f−1 ∈ Fr(m+ i) if f ∈ Fr(i) and 1 ≤ i ≤ n.

Let [Fr(n),Fr]abst denote the abstract group generated by [a, b] (a ∈ Fr(n), b ∈ Fr).

Since IhS(g) is continuous and [Fr(n),Fr]abst is dense in Fr(n + 1), it suffices to

show that

IhS(g)(f)f−1 ∈ Fr(m+ n+ 1) for f ∈ [Fr(n), Fr]abst.

For this, we have only to show

(4.3.4.2) IhS(g)([b, c])[b, c]−1 ∈ Fr(m+ n+ 1) if b ∈ Fr(n), c ∈ Fr.

For simplicity, we shall use the notation [ϕ, x] := ψ(x)x−1 and [x, ϕ] := xϕ(x)−1

for x ∈ Fr and ϕ ∈ Aut(Fr). By the “three subgroup lemma” and the induction

hypothesis (4.3.4.1), we have

IhS(g)([b, c])[b, c]−1 = [IhS(g), [b, c]]

∈ [IhS(g), [Fr(n),Fr]]

⊂ [[IhS(g),Fr(n)],Fr][[Fr, IhS(g)],Fr(n)]

⊂ [Fr(m+ n),Fr][Fr(m+ 1),Fr(n)]

= Fr(m+ n+ 1)

and our claim (4.3.4.2) follows.

Lemma 4.3.4 yields the following proposition.

Proposition 4.3.5. For m,n ≥ 0, we have

[Galk[m],Galk[n]] ⊂ Galk[m+ n] for m,n ≥ 0.

In particular, the Johnson (or Milnor) filtration is a central series.

Proof. With the same notation as in the proof of (4.3.4.2) and Lemma 4.3.4, we have

[[Galk[n],Fr],Galk[m]] ⊂ [Fr[n+ 1],Galk[m]] ⊂ Fr[m+ n+ 1],

[[Fr,Galk[m]],Galk[n]] ⊂ [Fr(m+ 1),Galk[n]] ⊂ Fr(m+ n+ 1).

By the three subgroup lemma, we have

[[Galk[m],Galk[n]],Fr] ⊂ [[Galk[n],Fr],Galk[m]][[Fr,Galk[m]],Galk[n]]

⊂ Fr(m+ n+ 1),

which yields the assertion by the definition (4.3.1).
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For n ≥ 0, let

grn(Galk) := Galk[n]/Galk[n+ 1],

which is a Zl-module. Then, by Proposition 4.3.5, the graded Zl-module

gr(Galk) :=
⊕
n≥0

grn(Galk)

has the structure of a graded Lie algebra over Zl, where the Lie bracket is defined

by the commutator: For a = gmod Galk[m + 1], b = hmod Galk[n + 1] (g ∈
Galk[m], h ∈ Galk[n]),

[a, b] := [g, h] mod Galk[m+ n+ 1].

Now, for m ≥ 1, we let τ
[m]
S denote the restriction of the mth l-adic Johnson

map τ
(m)
S in (4.2.8) to Galk[m]:

τ
[m]
S := τ

(m)
S |Galk[m] : Galk[m] −→ HomZl

(H,H⊗(m+1)).

The following theorem asserts that τ
[m]
S describes the action of Galk[m] on Fr/

Fr(m+ 2).

Theorem 4.3.6. With notation as above, the following assertions hold.

(1) For g ∈ Galk[m] and f ∈ Fr, we have

τ
[m]
S (g)([f ]) = Θm+1(IhS(g)(f)f−1),

where Θm+1 : grm+1(Fr) ↪→ H⊗(m+1) is the degree-(m+1) part of the Magnus

embedding in (4.1.3).

(2) The map τ
[m]
S is a Zl-homomorphism and Ker(τ

[m]
S ) = Galk[m+1]. Hence τ

[m]
S

induces the injective Zl-homomorphism grm(Galk) ↪→ HomZl
(H,H⊗(m+1)). In

particular, we have

grm(Galk) ' Z⊕rml

for some integer rm ≥ 0.

Proof. (1) We need to show that for g ∈ Galk[m],

(4.3.6.1) τ
(m)
S (g)(Xi) = Θm+1(IhS(g)(xi)x

−1
i ) 1 ≤ i ≤ r.

By (4.2.7) and [IhS(g)] = idH , we have

τS(g)(Xi) = (Θ ◦ IhS(g) ◦Θ−1)(Θ(xi)− 1)− (Θ(xi)− 1)

= Θ(IhS(g)(xi))−Θ(xi).
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Therefore, by (4.2.8), we have

(4.3.6.2) τ
(m)
S (g)(Xi) = the component in H⊗(m+1) of Θ(IhS(g)(xi))−Θ(xi).

On the other hand, since IhS(g)(xi)x
−1
i ∈ Fr(m+ 1), we have

Θ(IhS(g)(xi)x
−1
i ) ≡ 1 + Θm+1(IhS(g)(xi)x

−1
i ) mod T̂ (m+ 2).

Multiplying the above equation by Θ(xi) from the right, we have

(4.3.6.3) Θ(IhS(g)(xi)) ≡ Θ(xi) + Θm+1(IhS(g)(xi)x
−1
i ) mod T̂ (m+ 2).

By (4.3.6.2) and (4.3.6.3), we obtain (4.3.6.1).

(2) By (1), for g, h ∈ Galk[m] and f ∈ Fr, we have

τ
[m]
S (gh)([f ]) = Θm+1(IhS(gh)(f)f−1)

= Θm+1(IhS(g)(IhS(h)(f))f−1)

= Θm+1(IhS(g)(IhS(h)(f)f−1) IhS(g)(f)f−1).

Since IhS(h)(f)f−1 ∈ Fr(m + 1), we have IhS(g)(IhS(h)(f)f−1) ≡ IhS(h)(f)f−1

modFr(2m+ 1) (⊂ Fr(m+ 2)) by Lemma 4.3.4, and hence

τ
[m]
S (gh)([f ]) = Θm+1(IhS(g)(f)f−1) + Θm+1(IhS(h)(f)f−1)

= (τ
[m]
S (g) + τ

[m]
S (h))([f ])

for any f ∈ Fr. Since IhS is continuous, we see that τ
[m]
S is a Zl-homomorphism.

By (1) and (4.3.1), Ker(τ
[m]
S ) = Galk[m+ 1], and hence τ

[m]
S induces the injective

Zl-homomorphism grm(Galk) ↪→ HomZl
(H,H⊗(m+1)). Since HomZl

(H,H⊗(m+1))

is a free Zl-module of finite rank, the last assertion follows.

By Theorem 4.3.6(1), τ
[m]
S factors through HomZl

(H, grm+1(Fr)),

τ
[m]
S : Galk[m] −→ HomZl

(H, grm+1(Fr)); g 7→ ([f ] 7→ IhS(g)(f)f−1)

followed by the map HomZl
(H, grm+1(Fr)) → HomZl

(H,H⊗(m+1)) induced by

Θm+1. We call τ
[m]
S : Galk[m] −→ HomZl

(H,H⊗(m+1)) (m ≥ 1) or the induced

injective Zl-homomorphism grm(Galk) ↪→ HomZl
(H,H⊗(m+1)), denoted by the

same τ
[m]
S , the mth pro-l Johnson homomorphism.

A relation between the mth pro-l Johnson homomorphisms and l-adic Milnor

numbers in Section 3 is given as follows.

Theorem 4.3.7. For g ∈ Galk[m] (m ≥ 1), we have

τ
[m]
S (g)(Xi) = −

∑
|J|=m+1

µ(J)XJ ,
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where for J = (j1 · · · jm+1),

µ(J) =


µ(g; j2 · · · jm+1j1)− δj1,jm+1µ(g; J) (i = j1),

µ(g; j2 · · · jm+1j1)δj1,jm+1
− µ(g; J) (i = jm+1),

0 (otherwise).

Proof. By Theorem 4.3.6(1), we have

τ
[m]
S (g)(Xi) = Θm+1(IhS(g)(xi)x

−1
i ) = Θm+1(yi(g)xiyi(g)−1x−1

i )

= −Θm+1([xi, yi(g)])

= −
∑

|J|=m+1

µ(J ; [xi, yi(g)])XJ .

(4.3.7.1)

By the computation in the proof of Proposition 3.3.3 we have, for |J |=(j1 · · · jm+1),

µ(J ; [xi, yi(g)]) = µ(J ;xiyi(g))− µ(J ; yi(g)xi)

=


µ(g; j2 · · · jm+1j1)− δj1,jm+1

µ(g; J) (i = j1),

µ(g; j2 · · · jm+1j1)δj1,jm+1 − µ(g; J) (i = jm+1),

0 (otherwise).

(4.3.7.2)

By (4.3.7.1) and (4.3.7.2), the assertion follows.

Remark 4.3.8. A correspondence between Johnson invariants and Milnor invari-

ants was given by Habegger in a topological framework ([Ha]). Our treatment in

this paper is group theoretical and similar to that given in [Ko1], [Ko3, Chap. 1]

for pure braids.

We compute the pro-l Johnson homomorphisms on commutators.

Proposition 4.3.9. For g ∈ Galk[m], h ∈ Galk[n] (m,n ≥ 0) and f ∈ Fr, we

have

τ
[m+n]
S ([g, h])([f ]) = Θm+n+1(IhS(g)(IhS(h)(f)f−1)(IhS(h)(f)f−1)−1

− IhS(h)(IhS(g)(f)f−1)(IhS(g)(f)f−1)−1).

Proof. For simplicity, we set ψ := IhS(g), φ := IhS(h). By a straightforward com-

putation using [g, h] ∈ Galk[m+ n] (Proposition 4.3.5) and ψ(f)f−1 ∈ Fr(m+ 1)

(Lemma 4.3.4), we obtain

[ψ, φ](f)f−1

= [ψ, φ]((φ(f)f−1)−1) · (ψφψ−1)((ψ(f)f−1)−1) · ψ(φ(f)f−1) · ψ(f)f−1

≡ (φ(f)f−1)−1 · φ((ψ(f)(f−1))−1) · ψ(φ(f)f−1)

· ψ(f)f−1 modFr(m+ n+ 2).
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Since ψ(f)f−1 ∈ Fr(m + 1), φ(f)f−1 ∈ Fr(n + 1) and [Fr(m + 1),Fr(n + 1)] ⊂
F(m+ n+ 2), we have

[ψ, φ](f)f−1 ≡ (φ(f)f−1)−1 · ψ(φ(f)f−1) · φ((ψ(f)f−1)−1)

· ψ(f)f−1 modFr(m+ n+ 2).

Since we easily see that{
(φ(f)f−1)−1ψ(φ(f)f−1) ≡ ψ(φ(f)f−1)(φ(f)f−1)−1 modFr(m+ n+ 2),

φ((ψ(f)f−1)−1) · ψ(f)f−1≡(φ(ψ(f)f−1) · (ψ(f)f−1)−1)−1 modFr(m+ n+ 2),

we obtain the assertion.

By Proposition 4.3.9, the direct sum of Johnson homomorphisms τ
[m]
S over all

m ≥ 1 defines a graded Lie algebra homomorphism from gr(Galk) to the derivation

algebra of gr(Fr) as follows. Recall that a Zl-linear endomorphism δ of gr(Fr) is

called a derivation on gr(Fr) if it satisfies

δ([x, y]) = [δ(x), y] + [x, δ(y)] (x, y ∈ gr(Fr)).

Let Der(gr(Fr)) denote the associative Zl-algebra of all derivations on gr(Fr) which

has a Lie algebra structure over Zl with the Lie bracket defined by [δ, δ′] := δ ◦
δ′ − δ′ ◦ δ for δ, δ′ ∈ Der(gr(Fr)). For m ≥ 0, we define the subspace Derm(gr(Fr))

of Der(gr(Fr)), the degree-m part, by

Derm(gr(Fr)) := {δ ∈ Der(gr(Fr)) | δ(grn(Fr)) ⊂ grm+n(Fr) for n ≥ 1}

so that Der(gr(Fr)) is a graded Lie algebra over Zl:

Der(gr(Fr)) =
⊕
m≥0

Derm(gr(Fr)).

A derivation δ ∈ Derm(gr(Fr)) is called a special derivation if there are Yi ∈
grm(Fr) such that δ(Xi) = [Yi, Xi] (1 ≤ i ≤ r) and moreover if the condition∑r
i=1[Yi, Xi] = 0 is satisfied, a special derivation is said to be normalized ([Ih4, §2]).

It is easy to see that normalized special derivations form a graded Lie subalgebra

Dern.s(gr(Fr)) =
⊕
m≥0

Dern.s
m (gr(Fr))

of Der(gr(Fr)). Since a derivation on gr(Fr) is determined by its restriction on

H = gr1(Fr), we have a natural inclusion, for each m ≥ 1,

Derm(gr(Fr)) ⊂ HomZl
(H, grm+1(Fr)); δ 7→ δ|H .
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Hence we have the inclusions

Dern.s
+ (gr(Fr)) ⊂ Der+(gr(Fr)) ⊂

⊕
m≥1

HomZp
(H, grm+1(Fr)),

where Der+(gr(Fr)) (resp. Dern.s
+ (gr(Fr))) is the Lie subalgebra of Der(gr(Fr))

(resp. Dern.s(gr(Fr))) consisting of positive degree part. Although we make use

of the arithmetic pro-l Johnson homomorphisms, the following proposition was

essentially proved by Ihara in [Ih4, §2].

Proposition 4.3.10. The direct sum of τ
[m]
S over m ≥ 1 defines the Lie algebra

homomorphism

gr(τ) :=
⊕
m≥1

τ
[m]
S : gr(Galk) −→ Dern.s

+ (gr(Fr)).

Proof (Cf. [Da, Prop. 3.18]). By Theorem 4.3.6(1), it suffices to show that for

g ∈ Galk[m], the map f 7→ IhS(g)(f)f−1 is indeed a special derivation on gr(Fr).

This was shown in [Ih4, §2] for the case r = 2. We give, herewith, a proof for the

sake of readers. Let g ∈ Galk[m] (m ≥ 1) and s ∈ Fr(i), h ∈ Fr(j). By using the

commutator formulas

[ab, c] = a[b, c]a−1 · [a, c], [a, bc] = [a, b] · b[a, c]b−1 (a, b, c ∈ G),

we have

IhS(g)([s, t])[s, t]−1

= [IhS(g)(s), IhS(g)(t)][s, t]−1

= [ss−1 IhS(g)(s), IhS(g)(t)t−1t][s, t]−1

= s[s−1 IhS(g)(s), IhS(g)(t)t−1] · (IhS(g)(t)t−1)[s−1 IhS(g)(s), t]

· (IhS(g)(t)t−1)−1s−1[s, IhS(g)(t)t−1](IhS(g)(t)t−1)[s, t]

· (IhS(g)(t)t−1)−1[s, t]−1

= s[s−1 IhS(g)(s), IhS(g)(t)t−1] · (IhS(g)(t)t−1)[s−1 IhS(g)(s), t]

· (IhS(g)(t)t−1)−1s−1[s, IhS(g)(t)t−1][IhS(g)(t)t−1, [s, t]].

Since s−1 IhS(g)(s) ∈ Fr(i + m), IhS(g)(t)t−1 ∈ Fr(j + m) by Lemma 4.3.4, we

have

[s−1 IhS(g)(s), IhS(g)(t)t−1] ∈ Fr(i+ j + 2m),

[IhS(g)(t)t−1, [s, t]] ∈ Fr(i+ 2j +m).
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By these claims together, we obtain

IhS(g)([s, t])[s, t]−1 ≡ s IhS(g)(t)t−1[s−1 IhS(g)(s), t](s IhS(g)(t)t−1)−1

· [s, IhS(g)(t)t−1] modFr(i+ j +m+ 1).

Noting that x[s−1 IhS(g)(s), t]x−1 ≡ [s−1 IhS(g)(s), t] modFr(i+j+m+1) for x ∈
Fr, we proved that f 7→ IhS(g)(f)f−1 is a derivation. That it is special and normal-

ized follows from IhS(g)(xi) = yi(g)xiyi(g)−1 (1 ≤ i ≤ r) and IhS(g)(x1 · · ·xr) =

x1 · · ·xr for g ∈ Galk[m] (m ≥ 1).

Finally we introduce an analogue of the Morita trace map ([Mt1, 6]). For

each m ≥ 1, we identify HomZl
(H,H⊗(m+1)) with H∗ ⊗Zl

H⊗(m+1), where H∗ :=

HomZl
(H,Zl) is the dual Zl-module, and let

cm+1 : HomZl
(H,H⊗(m+1)) = H∗ ⊗Zl

H⊗(m+1) −→ H⊗m

be the contraction at the (m+ 1)-component defined by

(4.3.11) cm+1(φ⊗ h1 ⊗ · · · ⊗ hm+1) := φ(hm+1)h1 ⊗ · · · ⊗ hm

for φ ∈ H∗, hi ∈ H. We then define the mth pro-l Morita trace map

(4.3.12) Tr[m] : HomZl
(H,H⊗(m+1)) −→ Sm(H)

by the composite map q ◦ cm+1.

§5. Pro-l Magnus–Gassner cocycles

§5.1. Pro-l Fox free derivation

The pro-l Fox free derivative ∂
∂xj

: Zl[[Fr]] → Zl[[Fr]] (1 ≤ j ≤ r) is a continuous

Zl-linear map satisfying the following property: For any α ∈ Zl[[Fr]],

(5.1.1) α = εZl[[Fr]](α) +

r∑
j=1

∂α

∂xj
(xj − 1).

We note by (5.1.1) that ∂α
∂xj
∈ In−1

Zl[[Fr]] if α− εZl[[Fr]](α) ∈ InZl[[Fr]] for n ≥ 1.

Here are some basic rules for the pro-l free calculus:

(i)
∂xi
∂xj

= δij .

(ii)
∂αβ

∂xj
=

∂α

∂xj
εZl[[Fr]](β) + α

∂β

∂xj
(α, β ∈ Zl[[Fr]]).

(iii)
∂f−1

∂xj
= −f−1 ∂f

∂xj
(f ∈ Fr).
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(iv)
∂fα

∂xj
= β

∂f

∂xj
(f ∈ Fr, α ∈ Zl), where β is any element of Zl[[Fr]] such that

β(f − 1) = fα − 1 exists.

(v)
∂ϕ(α)

∂ϕ(xj)
= ϕ

( ∂α
∂xj

)
(ϕ ∈ Aut(Fr), α ∈ Zl[[Fr]]). (Note that ϕ(x1), . . . , ϕ(xr)

are free generators of Fr.)

(vi) If F′ is an open free subgroup of Fr with free generators y1, . . . , ys, we have

the chain rule:
∂α

∂xj
=

s∑
i=1

∂α

∂yi

∂yi
∂xj

(α ∈ Zl[[F′]]).

The higher derivatives are defined inductively and the l-adic Magnus coeffi-

cient µ(I;α) of α ∈ Zl[[Fr]] for I = (i1 · · · in) is expressed by

µ(I;α) = εZl[[Fr]]

(
∂nα

∂xi1 · · · ∂xin

)
so that the pro-l Magnus expansion (3.1.4) is written as

Θ(α) = εZl[[Fr]](α) +
∑

1≤i1,...,in≤r

εZl[[Fr]]

(
∂nα

∂xi1 · · · ∂xin

)
Xi1 · · ·Xin .

§5.2. Pro-l Magnus cocycles

Let IhS : Galk → P (Fr) ⊂ Aut(Fr) be the Ihara representation associated to S in

(2.2.3). Let ¯ : Zl[[Fr]] → Zl[[Fr]] denote the anti-automorphism induced by the

involution Fr 3 f 7→ f−1 ∈ Fr. We define the pro-l Magnus cocycle MS : Galk →
M(r;Zl[[Fr]]) associated to IhS by

(5.2.1) MS(g) :=

(
∂ IhS(g)(xj)

∂xi

)

for g ∈ Galk. In fact, we have the following lemma.

Lemma 5.2.2. The map MS is a 1-cocycle of Galk with coefficients in GL(r;

Zl[[Fr]]) with respect to the action IhS. To be precise, for g, h ∈ Galk, we have

MS(gh) = MS(g) IhS(g)(MS(h)),

where IhS(g)(MS(h)) is the matrix obtained by applying IhS(g) to each entry of

MS(h).

Proof. Let yj := IhS(h)(xj) for 1 ≤ j ≤ r. Then we have

(5.2.2.1)
∂ IhS(gh)(xj)

∂xi
=
∂ IhS(g)(yj)

∂xi
.
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Using the basic rules (v), (vi) of the pro-l Fox derivatives, we have

∂ IhS(g)(yj)

∂xi
=

r∑
a=1

∂ IhS(g)(yj)

∂ IhS(g)(xa)

∂ IhS(g)(xa)

∂xi

=

r∑
a=1

IhS(g)

(
∂yj
∂xa

)
∂ IhS(g)(xa)

∂xi
.

(5.2.2.2)

By (5.2.2.1) and (5.2.2.2), we have

∂ IhS(gh)(xj)

∂xi
=

r∑
a=1

∂ IhS(g)(xa)

∂xi
· IhS(g)

(
∂yj
∂xa

)
.

Since IhS(g) and ¯ are commutative operators, we obtain the desired equality of the

matrices. Taking h = g−1, we see that MS(g) ∈ GL(r;Zl[[Fr]]) for g ∈ Galk.

For m ≥ 1, we let M
[m]
S be the composite of MS restricted to Galk[m] with

the natural homomorphism GL(r;Zl[[Fr]])→ GL(r;Zl[[Fr]]/Im+1
Zl[[Fr]]),

M
[m]
S : Galk[m] −→ GL(r;Zl[[Fr]]/Im+1

Zl[[Fr]]).

A relation between M
[m]
S and the mth pro-l Johnson homomorphism is given as

follows. First, recall the identification Θn : grn(Fr) ' H⊗n by the degree-n part

of the Magnus isomorphism in (4.1.2). We then have a matrix representation of

HomZl
(H,H⊕(m+1)) for m ≥ 1,

‖ ‖ : HomZl
(H,H⊕(m+1)) −→ M(r; grm(Zl[[Fr]]))

by associating to each element τ ∈ HomZl
(H,H⊕(m+1)) the matrix

(5.2.3) ‖τ‖ :=

(
∂(Θ−1

m+1 ◦ τ)(Xj)

∂xi

)
∈ M(r; grm(Zl[[Fr]])).

Proposition 5.2.4. For g ∈ Galk[m], we have

M
[m]
S (g) = I + ‖τ [m]

S (g)‖.

Proof. By Theorem 4.3.6, we have

(Θ−1
m+1 ◦ τ

[m]
S (g))(Xj) = IhS(g)(xj)x

−1
j

and so

∂(Θ−1
m+1 ◦ τ

[m]
S )(Xj)

∂xi
=
∂ IhS(g)(xj)x

−1
j

∂xi

=
∂ IhS(g)(xj)

∂xi
− IhS(g)(xj)x

−1
j δij .
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Since IhS(g)(xj)x
−1
j ∈ Fr(m+1), we have IhS(g)(xj)x

−1
j δij ≡ δij mod Im+1

Zl[[Fr]] and

hence the assertion is proved.

In terms of ‖ · ‖, the mth pro-l Morita trace Tr[m](τ) in (4.3.12) is, in fact,

written as the trace of the matrix ‖τ‖ .

Proposition 5.2.5. For m ≥ 1 and τ ∈ HomZl
(H,H⊗(m+1)), we have

Tr[m](τ) = qm(tr(Θm(‖τ‖))),

where qm : H⊗m → Sm(H) is the natural map.

Proof. We identify HomZl
(H,H⊗(m+1)) with H∗ ⊗ H⊗m. Let τ = φ ⊗ Xi1 ⊗ · · ·

⊗Xim+1 (φ ∈ H∗). By (5.2.3), we have

tr(‖τ‖) =

r∑
i=1

∂(Θ−1
m+1 ◦ τ)(Xi)

∂xi

=

r∑
i=1

φ(Xi)
∂Θ−1

m+1(Xi1 ⊗ · · · ⊗Xim+1)

∂xi
.

(5.2.5.1)

We note that any element Y of H⊗(m+1) can be written uniquely as

Y = Y1 ⊗X1 + · · ·+ Yr ⊗Xr, Yi ∈ H⊗m

and then we have, by (5.1.1),

∂Θ−1
m+1(Y )

∂xi
= Θ−1

m (Yi).

Therefore we have

∂Θ−1
m+1(Xi1 ⊗ · · · ⊗Xim+1

)

∂xi
= δi,im+1

Xi1 ⊗ · · · ⊗Xim

and hence, by (5.2.5.1),

tr(Θm(‖τ‖)) = φ(Xim+1)Xi1 ⊗ · · · ⊗Xim ,

where the right-hand side is cm+1(τ) by (4.3.11). By the definition (4.3.12), the

assertion is proved.

Now, for an application later on, we extend the construction of the pro-l

Magnus cocycle to a relative situation. Let G be a pro-l group and let ψ : Fr →
G be a continuous surjective homomorphism. We also denote by ψ the induced

surjective homomorphism Zl[[Fr]] → Zl[[G]] of complete group algebras over Zl.
Let N := Ker(ψ) so that Fr/N ' G. We assume that N is stable under the action
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of Galk through IhS , namely IhS(g)(N) ⊂ N for all g ∈ Galk (this is certainly

satisfied if N is a characteristic subgroup of Fr). Then we have a homomorphism

IhS,ψ : Galk → Aut(Zl[[G]]) defined by

(5.2.6) IhS,ψ(g)(ψ(α)) := ψ(IhS(g)(α)) (α ∈ Zl[[Fr]]).

Let Galk[ψ] be the subgroup of Galk defined by

Galk[ψ] := Ker(IhS,ψ)

= {g ∈ Galk | ψ ◦ IhS(g) = ψ}
(5.2.7)

and let k[ψ] denote the subfield of Q/k corresponding to Galk[ψ]. Now we define

the pro-l Magnus cocycle MS,ψ : Galk → GL(r;Zl[[G]]) associated to IhS and ψ

by

MS,ψ(g) := ψ(MS(g)) (g ∈ Galk),

where the right-hand side is the matrix obtained by applying ψ to each entry of

MS(g). For m ≥ 1, let M
[m]
S,ψ be the composite of M

[m]
S with the natural homomor-

phism GL(r;Zl[[Fr]]/Im+1
Zl[[Fr]])→ GL(r;Zl[[G]]/Im+1

Zl[[G]]) induced by ψ. Lemma 5.2.2

and Proposition 5.2.4 are extended to the following proposition.

Proposition 5.2.8. With notation as above, the following assertions hold:

(1) For g, h ∈ Galk, we have

MS,ψ(gh) = MS,ψ(g) IhS,ψ(g)(MS,ψ(h)).

(2) For g ∈ Galk, we have

M
[m]
S,ψ(g) = I + ψ(‖τ [m]

S (g)‖).

(3) The restriction of MS,ψ to Galk[ψ], denoted by the same MS,ψ,

MS,ψ : Galk[ψ] −→ GL(r;Zl[[G]/Im+1
Zl[[G]]),

is a homomorphism and factors through the Galois group Gal(ΩS/k[ψ]), where

ΩS is the subfield of Q corresponding to Ker(IhS) as in (2.2.4). We call it the

pro-l Magnus representation of Galk[ψ] associated to IhS and ψ.

Proof. (1) The formula is obtained by applying ψ to the both sides of the formula

in Lemma 5.2.2.

(2) This is also obtained by applying ψ to the matrices of the both sides of the

formula in Proposition 5.2.4.
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(3) Suppose g, h ∈ Galk,ψ. Since ψ ◦ IhS(g) = ψ, we have IhS,ψ(g)(MS,ψ(h)) =

MS,ψ(h) and so MS,ψ(gh) = MS,ψ(g)MS,ψ(h). Since MS,ψ(g) = I for g ∈ Ker(IhS),

we have Ker(MS,ψ) ⊃ Ker(IhS) and hence MS,ψ factors through Gal(ΩS/k[ψ]).

For n ≥ 0, let πn : Fr → Fr/Fr(n+1) be the natural homomorphism. We con-

sider the case that ψ = πn and so IhS,ψ = Ih
(n)
S . By (4.3.1) and Proposition 4.3.3,

we have

Galk[πn] = {g ∈ Galk | πn ◦ IhS(g) = πn}
= {g ∈ Galk | IhS(g)(f) ≡ f modFr(n+ 1) for all f ∈ Fr}
= Galk[n].

Then we have a family of pro-l Magnus cocycles

(5.2.9) MS,πn
: Galk −→ GL(r;Zl[[Fr/Fr(n+ 1)]]),

and the pro-l Magnus representation

(5.2.10) MS,πn
: Galk[n] −→ GL(r;Zl[[Fr/Fr(n+ 1)]])

associated to IhS and πn for n ≥ 0.

§5.3. Pro-l Gassner cocycles

This subsection concerns the pro-l (reduced) Gassner cocycles as special cases of

the Magnus cocycles. For the construction of the pro-l reduced Gassner cocycles,

we follow Oda’s arguments [O2]. We also refer to [N, II] for Magnus–Gassner

matrices.

The pro-l Gassner cocycle is defined by MS,π1 in (5.2.9). To be precise, let

Λr := Zl[[u1, . . . , ur]] denote the algebra of commutative formal power series over

Zl of variables u1, . . . , ur, called the Iwasawa algebra of r variables. The corre-

spondence xi modFr(2) 7→ 1 + ui (1 ≤ i ≤ r) gives the abelianized pro-l Magnus

isomorphism

θ : Zl[[Fr/Fr(2)]]
∼−→ Λr.

We let π := π1 and

(5.3.1) χΛr
:= IhS,θ◦π : Galk → Aut(Λr),

which is defined by (5.2.6) with ψ = θ ◦ π. In fact, by Lemma 3.2.1, χΛr
is given

by

(5.3.2) χΛr (g)(ui) = (θ ◦ π)(IhS(g)(xi − 1)) = (1 + ui)
χl(g) − 1 (1 ≤ i ≤ r).
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Then the pro-l Gassner cocycle of Galk associated to IhS ,

GassS : Galk −→ GL(r; Λr),

is defined by

(5.3.3) GassS(g) :=

(
(θ ◦ π)

(
∂ IhS(g)(xj)

∂xi

))
(g ∈ Galk),

where we note that we do not need to take the anti-automorphism ¯ in (5.3.3) to

obtain the 1-cocycle relation

GassS(gh) = GassS(g)χΛr
(g)(GassS(h)) (g, h ∈ Galk),

since Λr is commutative. Here χΛr
(g)(GassS(h)) is the matrix obtained by apply-

ing χΛr (g) to each entry of GassS(h). We can express GassS(g) in terms of l-adic

Milnor numbers as follows.

Proposition 5.3.4. The (i, j)-entry of GassS(g) (g ∈ Galk) is expressed by

GassS(g)ij

=



χΛr
(g)(ui)

ui

(
1 +

∑
n≥1

∑
1≤i1,...,in≤r

in 6=i

µ(g; i1 · · · ini)ui1 · · ·uin

)
(i = j),

−χΛr
(g)(uj)

(
µ(g; ij) +

∑
n≥1

∑
1≤i1,...,in≤r

µ(g; i1 · · · inij)ui1 · · ·uin

)
(i 6= j).

Proof. By Lemma 3.2.1 and a straightforward computation, we have

∂ IhS(g)(xj)

∂xi
=
∂yj(g)x

χl(g)
j yj(g)−1

∂xi

= yj(g)
x
χl(g)
j − 1

xj − 1
δij +

(
1− yj(g)x

χl(g)
j yj(g)−1

) ∂yj(g)

∂xi

and hence, by (5.3.2),

(θ ◦ π)

(
∂ IhS(g)(xj)

∂xi

)
= (θ ◦ π)(yj(g))

(1 + uj)
χl(g) − 1

uj
δij

+ (1− (1 + uj)
χl(g))(θ ◦ π)

(
∂yj(g)

∂xi

)
=
χΛr

(g)(uj)

uj
(θ ◦ π)(yj(g))δij − χΛr

(g)(uj)(θ ◦ π)

(
∂yj(g)

∂xi

)
.

(5.3.4.1)
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Here we have

(5.3.4.2) (θ ◦ π)(yj(g)) = 1 +
∑
|I|≥1

µ(g; Ij)uI ,

where we set uI := ui1 · · ·uin for I = (i1 · · · in), and (5.1.1) yields

(5.3.4.3) (θ ◦ π)

(
∂yj(g)

∂xi

)
=
∑
|I|≥0

µ(g; Iij)uI .

By (5.3.3), (5.3.4.1), (5.3.4.2) and (5.3.4.3), we have

GassS(g) = (θ ◦ π)

(
∂ IhS(g)(xj)

∂xi

)
= δij

χΛr (g)(uj)

uj

(
1 +

∑
|I|≥1

µ(g; Ij)uI

)
− χΛr

(g)(uj)
∑
|I|≥0

µ(g; Iij)uI .

By µ(g; ii) = 0 and a simple observation, we obtain the assertion.

By (5.2.10), when GassS is restricted to Galk[1], we have a representation

GassS : Galk[1] −→ GLr(Λr),

which we call the pro-l Gassner representation of Galk[1] associated to IhS . It

factors through the Galois group Gal(ΩS/k[1]) by Proposition 5.2.8(3).

In the following, for simplicity, we let

F′r := Fr(2), F′′r := [F′r,F
′
r], and Lr := F′r/F

′′
r = H1(F′r,Zl).

We consider L as a Λr-module by conjugation: For f ∈ Fr and f ′ ∈ F′r, we set

[f ].(f ′modF′′r ) := ff ′f−1 modF′′r

and extend it by the Zl-linearity and continuity. The structure of the Λr-module Lr
can be described by means of the pro-l Crowell exact sequence ([Ms2, Chap. 9]).

Attached to the surjective homomorphism π : Fr −→ Fr/F
′
r, the pro-l Crowell

exact sequence reads as the exact sequence of Λr-modules:

0 −→ Lr
ν1−→ Λ⊕rr

ν2−→ IΛr
−→ 0,

where IΛr
is the (augmentation) ideal of Λr generated by u1, . . . , ur, and ν1, ν2

are Λr-homomorphisms defined by

(5.3.5) ν1(f ′modF′′r ) :=

(
(θ ◦ π)

(
∂f ′

∂xi

))
(f ′ ∈ F′r); ν2((λi)) :=

r∑
i=1

λiui.
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(Convention: An element (λi) of Λ⊕rr is understood as a column vector.) Hence we

have the isomorphism of Λr-modules induced by ν1, called the Blanchfield–Lyndon

isomorphism:

(5.3.6) ν1 : Lr
∼−→
{

(λi) ∈ Λ⊕rr |
∑r
i=1 λiui = 0

}
.

We define the action MetaS of Galk on Lr through the Ihara representation

IhS : For g ∈ Galk and f ′ ∈ F′r,

MetaS(g)(f ′modF′′r ) := IhS(g)(f ′) modF′′r .

It is easy to see that MetaS(g) is a χΛr -linear automorphism of Lr, namely, a

Zl-linear automorphism and satisfies

MetaS(g)(λ.(f ′modF′′r )) = χΛr
(g)(λ).(f ′modF′′r )

for λ ∈ Λr and f ′ ∈ F′r. When MetaS is restricted to Galk[1], we have the repre-

sentation, which we call the pro-l meta-abelian representation of Galk[1] associated

to IhS ,

MetaS : Galk[1] −→ GLΛr
(Lr),

where GLΛr
(Lr) is the group of Λr-module automorphisms of Lr. Regarding Lr

as a Λr-submodule of Λ⊕rr by the isomorphism (5.3.6), MetaS and GassS has the

following relation.

Proposition 5.3.7. For g ∈ Galk and f ′ ∈ F′r, we have

(ν1 ◦MetaS(g))(f ′modF′′r ) = GassS(g)(χΛr
(g) ◦ ν1)(f ′modF′′r ).

When MetaS and GassS |Lr
are restricted to Galk[1], they are equivalent represen-

tations over Λr.

Proof. The first assertion follows from direct computation: By (5.3.1), (5.3.3) and

(5.3.5), we have, for any g ∈ Galk and f ′ ∈ F′r,

(ν1 ◦MetaS(g))(f ′modF′′r )

= ν1(IhS(g)(f ′) modF′′r )

=

(
(θ ◦ π)

(
∂ IhS(g)(f ′)

∂xi

))
=

(
(θ ◦ π)

(
r∑
a=1

∂ IhS(g)(f ′)

∂ IhS(g)(xa)

∂ IhS(g)(xa)

∂xi

))

=

(
r∑
a=1

(θ ◦ π)

(
∂ IhS(g)(xa)

∂xi

)
(θ ◦ π ◦ IhS(g))

(
∂f ′

∂xa

))
= GassS(g)χΛr

(g)(ν1(f ′modF′′r )).
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When MetaS and GassS are restricted to Galk[1], by the first assertion, we have

the commutative diagram of Λr-modules for any g ∈ Galk[1]:

Lr

MetaS(g)

��

� � ν1 // Λ⊕rr

GassS(g)

��
Lr
� � ν1 // Λ⊕rr ,

from which the latter assertion follows.

Next, we introduce the pro-l reduced Gassner cocycle associated to the Ihara

representation IhS . For this, we follow Oda’s arguments ([O2]). We first define a

certain Λr-submodule Lprim
r of Lr, which Oda calls the primitive part of L, as

follows. For 1 ≤ i ≤ r, let Ni be the closed subgroup generated normally by xi and

let F
(i)
r := Fr/Ni. Let Λ

(i)
r := Zl[[u1, . . . , ûi, . . . , ur]] ' Zl[[F(i)

r /(F
(i)
r )′]] (ûi means

deleting ui) with augmentation ideal I
Λ

(i)
r

, and let δi : Λr → Λ
(i)
r be the Zl-algebra

homomorphism defined by δi(uj) := uj if j 6= i and δi(ui) := 0. Note that any

Λ
(i)
r -module is regarded as a Λr-module via δi. Let L

(i)
r := (F

(i)
r )′/(F

(i)
r )′′ and let

ξi : Lr → L
(i)
r be the Λr-homomorphism induced by the natural homomorphism

Fr → F
(i)
r . Then the primitive part Lprim

r of Lr is defined by

(5.3.8) Lprim
r :=

r⋂
i=1

Ker(ξi).

We set w := u1 · · ·ur. The following theorem and the proof are due to Oda.

Theorem 5.3.9 ([O2]). With notation as above, the following assertions hold.

(1) The Blanchfield–Lyndon isomorphism ν1 in (5.3.6) restricted to Lprim
r induces

the following isomorphism of Λr-modules

Lprim
r '

{
(λj

w
uj

) ∈ Λ⊕rr | λj ∈ Λr,
∑r
j=1 λj = 0

}
.

In particular, Lprim
r is the free Λr-module of rank r − 1 on the basis

v1 := t
(
− w

u1
, wu2

, 0, . . . , 0
)
, . . . ,vr−1 := t

(
0, . . . , 0,− w

ur−1
, wur

)
.

(2) Lprim
r is stable under the action of Galk through MetaS and defines the 1-

cocycle

Gassred
S : Galk −→ GLr−1(Λr)

with respect to the basis v1, . . . ,vr−1 and the action χΛr
in (5.3.1). We call

Gassred
S the pro-l reduced Gassner cocycle of Galk associated to IhS.
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Proof. (1) We define the Λr-homomorphism ξ̃i : Λ⊕rr → (Λ
(i)
r )⊕(r−1) by

ξ̃i(
t(λ1, . . . , λr)) := t(δi(λ1), . . . , δi(λi−1), δi(λi+1), . . . , δi(λr)).

Then we have ξi = ξ̃i|Lr
for 1 ≤ i ≤ r and the commutative diagram of Λr-modules:

0 // Lr

ξi
��

// Λ⊕rr

ξ̃i
��

// IΛr

δi

��

// 0

0 // L(i)
r

// (Λ(i)
r )⊕(r−1) // I

Λ
(i)
r

// 0,

where two rows are the pro-l Crowell exact sequences. It is easy to see that Ker(ξ̃i)

is given by

Ker(ξ̃) = { t(λ1ui, . . . , λi−1ui, λi, λi+1ui, . . . , λrui) | λj ∈ Λr (1 ≤ j ≤ r)}

and hence, by (5.3.6) and (5.3.8), we have

Lprim
r =

{
(λj) ∈ Λ⊕rr |

∑r
j=1 λjuj = 0, λj ≡ 0 modui if i 6= j

}
.

Since Λr is a regular local ring, it is factorial. Therefore we have the first assertion,

Lprim
r =

{
(λj) ∈ Λ⊕rr |

∑r
j=1 λjuj = 0, λj ≡ 0 mod w

uj
(1 ≤ j ≤ r)

}
.

The assertion for a basis of Lprim
r is clear.

(2) Since IhS(g)(xi) is conjugate to x
χl(g)
i for g ∈ Galk and 1 ≤ i ≤ r, definition

(5.3.8) implies that Lprim
r is Galk-stable under the action MetaS . So we may write,

for 1 ≤ j ≤ r − 1,

(5.3.9.1) IhS(g)(vj) =

r−1∑
i=1

Gassred
S (g)ijvi,

where Gassred
S (g)ij ∈ Λr is the (i, j)-entry of the representation matrix of IhS(g)

with respect to v1, . . . ,vr−1. Then we have, for g, h ∈ Galk,

IhS(gh)(vj) = IhS(g)(IhS(h)(vj))

= IhS(g)

(
r−1∑
i=1

Gassred
S (h)ijvi

)

=

r−1∑
i=1

χΛr (Gassred
S (h)ij) IhS(g)(vi) (by (5.3.1))

=

r−1∑
t=1

(
r−1∑
i=1

Gassred
S (g)tiχΛr

(g)(Gassred
S (h)ij)

)
vt,
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which means the cocycle relation

Gassred
S (gh) = Gassred

S (g)χΛr
(g)(Gassred

S (h)).

Hence the assertion is proved.

When we restrict Gassred
S to Galk[1], we have a representation

Gassred
S : Galk[1] −→ GL(r − 1; Λr),

which we call the pro-l reduced Gassner representation of Gal[1] associated to IhS .

Let Γ be a free pro-l group of rank 1 generated by x so that Zl[[Γ]] is identified

with the Iwasawa algebra Λ := Zl[[u]] (x ↔ 1 + u). Let z : Fr → Γ be the

homomorphism defined by z(xi) := x for 1 ≤ i ≤ r. Let χΛ be the action of Galk
on Λ defined by χΛ(g)(u) := (1 + u)χl(g) − 1 for g ∈ Galk Then we have the pro-l

Magnus cocycle associated to IhS and z,

BurS : Galk −→ GL(r; Λ),

which we call the pro-l Burau cocycle of Galk associated to IhS . It is the 1-cocycle

of Galk with coefficients in GL(r; Λ) with respect to the action χΛ. By definition,

we have

BurS(g) = GassS(g)|u1=···=ur=u.

Similarly, we have the pro-l reduced Burau cocycle associated to IhS ,

Burred
S : Galk −→ GL(r − 1; Λ),

defined by

Burred
S (g) := Gassred

S (g)|u1=···=ur=u.

Since (z ◦ IhS(g))(xi) = z(yi(g)xiyi(g)−1) = z(xi) for g ∈ Galk[1], we have

z ◦ IhS(g) = z (g ∈ Galk[1]).

So, when we restrict BurS and Burred
S to Galk[1], we have representations

BurS : Galk[1]→ GLr(Λ), Burred
S : Galk[1]→ GLr−1(Λ),

which are called the pro-l Burau representation and the pro-l reduced Burau rep-

resentation of Galk[1] associated to IhS , respectively.
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§6. l-adic Alexander invariants

§6.1. Pro-l link modules

Let g ∈ Galk. As in (3.3.1), let ΠS(g) be the pro-l link group of g associated to

the Ihara representation IhS :

ΠS(g) =
〈
x1, . . . , xr | y1(g)x

χl(g)
1 y1(g)−1x−1

1 = · · · = yr(g)xχl(g)
r yr(g)−1x−1

r = 1
〉

= Fr/NS(g),

where NS(g) is the closed subgroup of Fr generated normally by the pro-l words

y1(g)x
χl(g)
1 y1(g)−1x−1

1 , . . . , yr(g)x
χl(g)
r yr(g)−1x−1

r . Let ψ : Fr → ΠS(g) be the nat-

ural homomorphism and let γi := ψ(xi) (1 ≤ i ≤ r). Recall that a(g) denotes the

ideal of Zl generated by χl(g)− 1. Then we have

ΠS(g)/ΠS(g)′ = Zl/a(g)[γ1]⊕ · · · ⊕ Zl/a(g)[γr] ' (Zl/a(g))⊕r,

where [γi] := γi mod ΠS(g)′ (1 ≤ i ≤ r). The correspondence γi 7→ ui induces the

Zl-algebra isomorphism

θ(g) : Zl[[ΠS(g)/ΠS(g)′]] ' Λr/((1 + u1)χl(g)−1 − 1, . . . , (1 + ur)
χl(g)−1 − 1).

We denote the right-hand side by Λr(g):

Λr(g) := Λr/((1 + u1)χl(g)−1 − 1, . . . , (1 + ur)
χl(g)−1 − 1),

and by IΛr(g) the augmentation ideal of Λr(g).

We define the pro-l link module LS(g) of g associated to IhS by

LS(g) := ΠS(g)′/ΠS(g)′′,

which is considered as a Λr(g) = Zl[[ΠS(g)/ΠS(g)′]]-module. It may be seen as an

analogue of the classical link module in link theory (cf. [Hi], [Ms2, Chap. 9]).

Let $ : ΠS(g)→ ΠS(g)/ΠS(g)′ be the abelianization map. We define the pro-

l Alexander module AS(g) of g associated to IhS by the pro-l differential module

associated to $, namely the quotient module of the free Λr(g)-module on symbols

dγ for γ ∈ ΠS(g) by the Λr(g)-submodule generated by d(γ1γ2)− dγ1 −$(γ1)dγ2

for γ1, γ2 ∈ ΠS(g) ([Ms2, 9.3]):

AS(g) :=
⊕

γ∈ΠS(g)

Λr(g)dγ/〈d(γ1γ2)− dγ1 −$(γ1)dγ2 (γ1, γ2 ∈ ΠS(g))〉Λr(g).

We define the l-adic Alexander matrix QS(g) by the Jacobian matrix of the relators

of ΠS(g):

(6.1.1) QS(g) :=

(
(θ(g) ◦$ ◦ ψ)

(
∂ yj(g)x

χl(g)
j yj(g)−1x−1

j

∂xi

))
.
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Proposition 6.1.2. With notation as above, the following assertions hold.

(1) The correspondence dγ 7→ ((θ(g) ◦$ ◦ ψ)( ∂f∂xi
)) gives the isomorphism

AS(g)
∼−→ Coker(QS(g) : Λr(g)⊕r → Λr(g)⊕r),

where f is any element of Fr such that γ = ψ(f).

(2) (Pro-l Crowell exact sequence). We have the following exact sequence of Λr(g)-

modules:

0 −→ LS(g)
ν1−→ AS(g)

ν2−→ IΛr(g) −→ 0,

where ν1, ν2 are given by

ν1(γ′mod ΠS(g)′′) := dγ (γ′ ∈ ΠS(g)′);

ν2(dγ) := (θ(g) ◦$)(γ)− 1 (γ ∈ ΠS(g)).

Proof. We refer to [Ms2, Thms. 9.3.6, 9.4.2].

Let φg : Λr → Λr(g) be the natural Zl-algebra homomorphism.

Proposition 6.1.3. We have

QS(g) = φg(GassS(g)− I)

and its (i, j)-entry is given by

QS(g)ij

=



φg

(∑
n≥1

∑
1≤i1,...,in≤r

in 6=i

µ(g; i1 · · · ini)ui1 · · ·uin

)
(i = j),

φg

(
− uj

(
µ(g; ij) +

∑
n≥1

∑
1≤i1,...,in≤r

µ(g; i1 · · · inii)ui1 · · ·uin

))
(i 6= j).

Proof. By definition (6.1.1), we have

QS(g)ij := (θ(g) ◦$ ◦ ψ)

(
∂ yj(g)x

χl(g)
j yj(g)−1x−1

j

∂xi

)
.

By the basic rules of pro-l Fox free derivatives, we have

∂ yj(g)x
χl(g)
j yj(g)−1x−1

j

∂xi
=
∂ yj(g)x

χl(g)
j yj(g)−1

∂xi
− δijyj(g)x

χl(g)
j yj(g)−1x−1

j .

By (5.3.3) and θ(g) ◦$ ◦ ψ = φg ◦ θ ◦ π, we have

(θ(g) ◦$ ◦ ψ)

(
∂ yj(g)x

χl(g)
j yj(g)−1

∂xi

)
= φg(GassS(g)ij),
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and we also have

(θ(g) ◦$ ◦ ψ)(yj(g)x
χl(g)
j yj(g)−1x−1

j ) = θ(g)(γ
χl(g)−1
j ) = (1 + uj)

χl(g)−1 = 1.

Therefore we have

QS(g)ij = φg(GassS(g)ij − δij).
The second assertion follows from Proposition 5.3.4 and

φg(χΛr
(g)(uj)) = φg((1 + uj)

χl(g) − 1) = φg(uj).

Corollary 6.1.4. For g, h ∈ Galk[1], we have the following isomorphisms of Λr-

modules:

AS(hgh−1) ' AS(g), LS(hgh−1) ' LS(g).

Proof. Since GassS : Galk → GL(r; Λr) is a representation, we have

QS(hgh−1) = φg(GassS(hgh−1)− I) = φg(GassS(h))QS(g)φg(GassS(h))−1

by Proposition 6.1.3. Then the first assertion follows from Proposition 6.1.2(1).

The second assertion follows from Proposition 6.1.2(2).

§6.2. l-adic Alexander invariants

For n ≥ 0, we define the nth l-adic Alexander ideal ES(g)(n) of g ∈ Galk associated

to IhS by the nth Fitting ideal of the pro-l Alexander module AS(g) over Λr(g).

The nth l-adic Alexander invariant AS(g)(n) is then defined by a generator of the

divisorial hull of ES(g)(n). By Proposition 6.1.2(1), ES(g)(n) is the ideal generated

by all (r−n)-minors of QS(g) if r−n > 0 and ES(g)(n) := Λr(g) if r−n ≤ 0, and

AS(g)(n) is the greatest common divisor of all (r−n)-minors of QS(g) if r−n > 0

and AS(g)(n) := 1 if r − n ≤ 0:

AS(g)(n) :=

{
g.c.d of all (r − n)-minors of QS(g) (r − n > 0),

1 (r − n ≤ 0).

We note that AS(g)(n) is defined up to multiplication of a unit of Λr(g). We write

ES(g) (resp. AS(g)) for ES(g)(0) (resp. AS(g)(0)) and call ES(g) (resp. AS(g)) the

l-adic Alexander ideal (resp. l-adic Alexander invariant) of g associated to IhS .

From Proposition 6.1.3, the following proposition is immediate.

Proposition 6.2.1. For g ∈ Galk, we have

AS(g) = φg(det(GassS(g)− I)).

When g ∈ Galk[1], AS(g) = 0 if and only if GassS(g) has the eigenvalue 1.
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Moreover, since the l-adic Alexander matrix QS(g) is described by l-adic Mil-

nor numbers as in Proposition 6.1.3, nth l-adic Alexander invariants are also de-

scribed by l-adic Milnor numbers (cf. [Ms2, Chap. 10], [Mu]).

§7. The Ihara power series

In this section, we suppose that S = {0, 1,∞} and so k = Q. In the following, we

will omit S in the notation. The Ihara representation in this case is

Ih : GalQ −→ P (F2),

which factors through the Galois group Gal(Ωl/Q) by Theorem 2.2.6(2), where Ωl
denotes the maximal pro-l extension of Q[1] = Q(ζl∞) unramified outside l.

§7.1. The Ihara power series

The following lemma is a restatement of [Ih1, Thm. 2(i)]. See also [Ih2, §1(D)

Example 2]. For the sake of readers, we give a proof using Theorem 5.3.9.

Lemma 7.1.1. We have L2 = Lprim
2 with basis t(−u2, u1) over Λ2, and t(−u2, u1)

= ν1([x1, x2]).

Proof. By Theorem 5.3.9(1), Lprim
2 is the free Λ2-module with basis t(−u2, u1).

On the other hand, we note that λ1u1 + λ2u2 = 0 implies λ1 = −au2, λ2 = au1

for some a ∈ Λ2, because Λ2 is a unique factorization domain. Therefore L2 is

also the free Λ2-module with basis t(−u2, u1) by (5.3.6). Hence L2 = Lprim
2 . The

second assertion follows from

(θ ◦ π)

(
∂[x1, x2]

∂x1

)
= −u2, (θ ◦ π)

(
∂[x1, x2]

∂x2

)
= u1.

Thanks to Lemma 7.1.1, Ihara introduced a power series Fg(u1, u2) ∈ Λ2,

called the Ihara power series, by the following equality in L2:

(7.1.2) IhS(g)([x1, x2]) ≡ Fg(u1, u2)[x1, x2] modF′′2 .

The following theorem gives an arithmetic topological interpretation of the Ihara

power series Fg(u1, u2). For a multiindex I = (i1 · · · in) with ij = 1 or 2, we denote

by |I|1 (resp. |I|2) the number of j’s (1 ≤ j ≤ n) such that ij = 1 (resp. ij = 2).

For integers n1, n2 ≥ 0 with n1 + n2 ≥ 1 and g ∈ GalQ, we let

µ(g;n1, n2) :=
∑

|I|1=n1−1
|I|2=n2

µ(g; I12) +
∑
|I|1=n1

|I|2=n2−1

µ(g; I21).
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We recall the pro-l Gassner and the pro-l reduced Gassner cocycles in (5.3.3) and

(5.3.9.1):
Gass : GalQ −→ GL(2; Λ2); Gassred : GalQ −→ Λ×2 .

Theorem 7.1.3. With notation as above, we have, for g ∈ GalQ,

Fg(u1, u2) = Gassred(g)

=
χΛ2

(g)(u1u2)

u1u2

(
1 +

∑
n≥1

∑
1≤i1,...,in≤2
in 6=in+1

µ(g; i1 · · · inin+1)ui1 · · ·uin

)

=
χΛ2(g)(u1u2)

u1u2

(
1 +

∑
n1,n2≥0
n1+n1≥1

µ(g;n1, n2)un1
1 un2

2

)
.

Proof. Applying the Λ2-homomorphism ν1 to (7.1.2), we have, for g ∈ Galk,

ν1(Ih(g)([x1, x2])) = Fg(u1, u2)ν1([x1, x2]) = Fg(u1, u2)

(
−u2

u1

)
.

On the other hand, by the definition of Gassred
S (g) (cf. (5.3.9.1)), we have

ν1(Ih(g)([x1, x2])) = Gassred(g)

(
−u2

u1

)
.

Hence we have

Fg(u1, u2) = Gassred(g).

By Proposition 5.3.7 and Lemma 7.1.1, we have

ν1(Ih(g)([x1, x2])) = Gass(g)χΛ2
(g)(ν1([x1, x2]))

= Gass(g)

(
−χΛ2

(g)(u2)

χΛ2(g)(u1)

)
.

A straightforward calculation using Proposition 5.3.4 yields

Gass(g)

(
−χΛ2(g)(u2)

χΛ2
(g)(u1)

)

=
χΛ2(g)(u1u2)

u1u2

(
1 +

∑
n≥1

∑
1≤i1,...,in≤2
in 6=in+1

µ(g; i1 · · · inin+1)ui1 · · ·uin

)(
−u2

u1

)

=
χΛ2

(g)(u1u2)

u1u2

(
1 +

∑
n1,n2≥0
n1+n1≥1

µ(g;n1, n2)un1
1 un2

2

)(
−u2

u1

)
.

Getting these together, we obtain the assertion.
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Ihara also interpreted L2 in terms of Fermat Jacobians. For a positive integer

n, let Cn be the nonsingular, projective curve over Q defined by

X ln + Y l
n

= Zl
n

and let Jacn be the Jacobian variety of Cn. Let T(Jacn) be the l-adic Tate module

of Jacn:

T(Jacn) := Hom(Ql/Zl, Jacn(Q)) ' Hsing
1 (Cn(C),Z)⊗ Zl,

and let

T := lim←−
n

T(Jacn),

where the inverse limit is taken with respect to the maps T(Jacn+1) → T(Jacn)

induced by the morphisms Cn+1 → Cn; (X,Y, Z) 7→ (X l, Y l, Zl). Let gX,n, gY,n
be the automorphisms of Cn := Cn ×SpecQ SpecQ over P1

Q defined by

gX,n : (X,Y, Z) 7→ (ζlnX,Y, Z), gY,n : (X,Y, Z) 7→ (X, ζlnY,Z)

and set gX := lim←− gX,n, gY := lim←− gY,n. Then Gal(Cn/P1
Q) = (Z/lnZl)gX,n⊕

(Z/lnZ)gY,n and so lim←− Zl[Gal(Cn/P1
Q)] ' Λ2 by the correspondence gX 7→

1 + u1, gY 7→ 1 + u2. Thus T is regarded as a Λ2-module. Then we have the

isomorphism of Λ2-modules

L2 ' T.

For an explicit construction of the basis of T corresponding to [x1, x2], we consult

[Ae, §13].

Now, the main results in [Ih1] are arithmetic descriptions of

• values of Fg(u1, u2) at lth-power roots of unity in terms of the Jacobi sums

which arise from the Galois action on T(Jacn), and

• coefficients of Fg(u1, u2) in terms of l-adic Soulé cocycles which are defined by

the Galois action on higher cyclotomic l-units.

We will describe these, using Theorem 7.1.3, from the viewpoint of arithmetic

topology.

§7.2. Values of the Ihara power series

Let p be a rational prime that is in RS of (2.2.5) and let p be a prime of Q lying

over p. By Theorem 2.2.6(2), p is unramified in ΩS/Q and so we have the Frobenius

automorphism σp ∈ Gal(ΩS/Q). Let n be a fixed positive integer. Let pn be the

prime of Q(ζln) lying below p and let
(
x
pn

)
ln

denote the lnth-power residue symbol
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at pn for x ∈ (Z[ζln ]/pn)×. For a, b ∈ Z/lnZ \ {0} with (a, b, l) = 1, we define the

Jacobi sum by

Jln(pn)(a,b) =
∑

x,y∈(Z[ζln ]/pn)×

x+y=−1

(
x

pn

)a
ln

(
y

pn

)b
ln
.

For l = 2, Jln(pn)(a,b) must be multiplied by
(−1
pn

)a
. Let f be the order of p in

(Z/lnZ)×. We note that σfp ∈ Gal(ΩS/Q(ζln)). By using Weil’s theorem, Ihara

showed the following theorem.

Theorem 7.2.1 ([Ih1, Thm. 7]). Let a, b ∈ Z/lnZ \ {0} such that a + b 6= 0 and

(a, b, a+ b, l) = 1. Then we have

Fσf
p
(ζaln − 1, ζbln − 1) = Jln(pn)(a,b).

Combining Theorems 7.1.3 and 7.2.1, we obtain the following l-adic expansion

of the Jacobi sum Jln(pn)(a,b) with coefficients l-adic Milnor numbers.

Theorem 7.2.2. With notation as above, we have

Jln(pn)(a,b) = 1 +
∑

n1,n2≥0
n1+n2≥1

µ(σfp ;n1, n2)(ζaln − 1)n1(ζbln − 1)n2 .

Proof. Since we have ζ
χl(σ

f
p )

ln = ζp
f

ln = ζln by pf ≡ 1 mod ln, the formula follows

from Theorems 7.1.3 and 7.2.1.

§7.3. Coefficients of the Ihara power series

We will combine Theorem 7.1.3 with the result of Ihara, Kaneko and Yukinari

on the Ihara power series ([IKY]) and deduce some formulas relating our l-adic

Milnor numbers with the Soulé cocycles ([So]). As in Section 2.2, let ζln be a

primitive lnth root of unity for a positive integer n such that (ζln+1)l = ζln for

n ≥ 1. For a ∈ Z/lnZ, let 〈a〉ln denote the integer such that 0 ≤ 〈a〉ln < ln and

a = 〈a〉ln mod ln. For a positive integer m, we let

ε
(m)
ln :=

∏
a∈(Z/lnZ)×

(ζln − 1)〈a
m−1〉ln ,

which is an l-unit in Q(ζln), called a cyclotomic l-unit. Then we define the mth

l-adic Soulé cocycle χ(m) : GalQ → Zl by the Kummer cocycle attached to the

system of cyclotomic l-units {ε(m)
ln }n≥1,

ζ
χ(m)(g)
ln = {(ε(m)

ln )1/ln}g−1 (n ≥ 1, g ∈ GalQ).
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It is easy to see the cocycle relation

χ(m)(gh) = χ(m)(g) + χl(g)χ(m)(h) (g, h ∈ GalQ)

and hence the restriction of χ(m)|GalQ[1]
is a character. Let Ωab

l be the maximal

abelian subextension of Ωl/Q[1]. Since Q(ζln , (ε
(m)
ln )1/ln) is a cyclic extension of

Q(ζln) unramified outside l, we have (ε
(m)
ln )1/ln ∈ Ωab

l and so the Soulé character

χ(m)|GalQ[1] factors through the Galois group Gal(Ωab
l /Q[1]). We note by Propo-

sition 5.2.8(3) that the pro-l reduced Gassner representation Gassred also factors

through Gal(Ωab
l /Q[1]).

We set

κm(g) :=
χ(m)(g)

1− lm−1
(g ∈ GalQ),

and introduce new variables U1, U2 defined by

1 + ui = exp(Ui) =

∞∑
n=0

Uni
n!
∈ Ql[[Ui]] (i = 1, 2)

and set

Fg(U1, U2) := Fg(u1, u2)|ui=exp(Ui)−1.

Theorem 7.3.1 ([IKY, Thm. A2]). With notation as above, we have, for g ∈
Gal(Ωab

l /Q[1]),

Fg(U1, U2) = exp

{
−
∑
m≥3
odd

κm(g)

( ∑
m1,m2≥1
m1+m2=m

Um1
1 Um2

2

m1!m2!

)}
.

Combining Theorems 7.1.3 and 7.3.1, we can deduce relations between l-adic

Milnor numbers and l-adic Soulé characters. For this, we prepare the following

lemma.

Lemma 7.3.2. Let a(n1, n2) and c(m1,m2) be given l-adic numbers for integers

m1,m2, n1, n2 ≥ 0 with m1 +m2, n1 + n2 ≥ 1. Let

A(u1, u2) := 1 +
∑

n1,n2≥0
n1+n2≥1

a(n1, n2)un1
1 un2

2 ∈ Ql[[u1, u2]]

and set

B(U1, U2) := A(u1, u2)|ui=exp(Ui)−1

= 1 +
∑

N1,N2≥0
N1+N2≥1

b(N1, N2)UN1
1 UN2

2 ∈ Ql[[U1, U2]].
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Then we have

b(N1, N2) =
∑

n1+n2≥1
0≤n1≤N1,0≤n2≤N2

a(n1, n2)an1(N1)an2(N2),

where for j = 1, 2,

anj
(Nj) :=


1 (nj = 0),∑
e1,...,enj

≥1

e1+···+enj
=Nj

1

e1! · · · enj
!

(nj ≥ 1).

Let

C(U1, U2) :=
∑

m1,m2≥0
m1+m2≥1

c(m1,m2)Um1
1 Um2

2 ∈ Ql[[U1, U2]]

and set

D(U1, U2) := exp(C(U1, U2))

= 1 +
∑

N1,N2≥0
N1+N2≥1

d(N1, N2)UN1
1 UN2

2 ∈ Ql[[U1, U2]].

Then we have

d(N1, N2) =
∑

1≤n≤N1+N2

1

n!

∑
c(m

(1)
1 ,m

(1)
2 ) · · · c(m(n)

1 ,m
(n)
2 ),

where the second sum ranges over integers m
(1)
1 , . . . ,m

(n)
1 ,m

(1)
2 , . . . ,m

(n)
2 ≥ 0 satis-

fying m
(i)
1 +m

(i)
2 ≥ 1 (1 ≤ i ≤ n), m

(1)
1 +· · ·+m(n)

1 = N1 and m
(1)
2 +· · ·+m(n)

2 = N2.

Proof. Formulas for both b(N1, N2) and d(N1, N2) follow from straightforward

computations.

We apply Lemma 7.3.2 to the case that A(u1, u2) = Gassred(g), where

a(n1, n2) = µ(g;n1, n2)

and C(U1, U2) = log(Fg(U1, U2)), where

c(m1,m2) =

−
κm1+m2(g)

m1!m2!
(m1 +m2 ≥ 3, odd),

0 otherwise.

Then, by comparing the coefficients of UN1
1 UN2

2 in Gassred(g)|ui=exp(Ui)−1 =

Fg(U1, U2), we obtain the following theorem.
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Theorem 7.3.3. With notation as above, we have the following equality for g ∈
GalQ[1]: ∑

n1+n2≥1
0≤n1≤N1, 0≤n2≤N2

µ(g;n1, n2)an1(N1)an2(N2)

=
∑

1≤n≤N1+N2

(−1)n

n!

∑ κ
m

(1)
1 +m

(1)
2

(g)

m
(1)
1 !m

(1)
2 !

· · ·
κ
m

(n)
1 +m

(n)
2

(g)

m
(n)
1 !m

(n)
2 !

,

where the last sum ranges over integers m
(1)
1 , . . . ,m

(n)
1 ,m

(1)
2 , . . . ,m

(n)
2 ≥ 0 satisfy-

ing m
(i)
1 +m

(i)
2 ≥ 3; odd (1 ≤ i ≤ n), m

(1)
1 +· · ·+m(n)

1 = N1 and m
(1)
2 +· · ·+m(n)

2 =

N2.

For example, lower terms are given by

µ(g; (12)) = µ(g; (21)) = 0, µ(g; (212)) + µ(g; (121)) = 0,

µ(g; (221)) + µ(g; (2212)) + µ(g; (1221)) + µ(g; (2121)) = −κ3(g)

2
,

µ(g; (112)) + µ(g; (1121)) + µ(g; (2112)) + µ(g; (1212)) = −κ3(g)

2
.
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