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Abstract

Thara initiated the study of a certain Galois representation that may be seen as an
arithmetic analogue of the Artin representation of a pure braid group. We pursue the
analogies in Thara theory further and give foundational results, following some issues and
their interrelations in the theory of braids and links such as Milnor invariants, Johnson
homomorphisms, Magnus—Gassner cocycles and Alexander invariants, and study relations
with arithmetic in Ihara theory.
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§1. Introduction

Let [ be a prime number. Let S be a set of ordered r + 1 (r > 2) distinct Q-
rational points on the projective line P! over the rational number field Q, where
Q is an algebraic closure of Q. Let k := Q(S \ {oo}), the finite algebraic number
field generated by coordinates of points in S\ {co}. Note that the absolute Galois
group Galy := Gal(Q/k) is the étale fundamental group of Speck so that it acts
on the geometric fiber IF’}@\ S of the fibration P} \ S — Speck and hence on the

pro-

pro-! étale fundamental group ] l(]}%\ S) ~ Fr, where §, denotes the free pro-I
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group on r generators 1, ...,x,. In [Ihl], Thara began to study this monodromy
Galois representation

(1.1) Thg : Galp, — Aut(F,),

particularly for the case S = {0,1,00} and k& = Q, in connection with deep arith-
metic such as Iwasawa theory on cyclotomy and complex multiplications of Fer-
mat Jacobians. We note that the image of Ihg is contained in the subgroup con-
sisting of ¢ € Aut(g,) such that ¢(z;) ~ z¢ (conjugate) for 1 < ¢ < r and
o(xy - ap) = (z1---2,)* for some a € Z;.

As explained in [Ih3], the Thara representation (1.1) may be regarded as an
arithmetic analogue of the Artin representation of a pure braid group ([Ar]). Let
P, be the pure braid group with r strings (r > 2). Note that P, is the topological
fundamental group of the configuration space D" \ A of ordered r points on a
two-dimensional disk D, where A denotes the hyperdiagonal of D". For Q =
(#1,...,2) € D"\ A, we also write the same @ for the subset {z1,...,2.} of D.
Then P, acts, as the monodromy, on the fiber D\ @ of the universal bundle over a
point @ € D"\ A and hence on the topological fundamental group m1 (D\ Q) ~ F,,

where F). denotes the free group on r generators z1, ..., z,. Thus we have the Artin
representation
(1.2) Arg : P, — Aut(F,),

which is in fact isomorphic onto the subgroup ¢ € Aut(F;) such that p(z;) ~ z;
for 1 <i<rand (- 2,) =21 .

We may see the following analogy between the Thara representation (1.1) and
the Artin representation (1.2):

Absolute Galois group Pure braid group
Galy, P,
(1.3) P, \ S — Speck Universal bundle over D" \ A
’ with geometric fiber ]P’}@\ S with fibers D \ Q
Thara representation of Galy, Artin representation of P,
on W?ro'l(P}@\S) =3Fr onmi(D\ Q)= Fr

The aim of this paper is, based on the above analogy (1.3), to give foundational
results obtained by pursuing pro-/ analogues for the Thara representation of various
objects derived from the Artin representation. To be precise, we shall investigate
arithmetic (pro-l) analogues in Ihara theory of the following issues (I)~(IV) and
their interrelations in the theory of braids and links:
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(I) Milnor invariants of links;

(IT) Johnson homomorphisms for the pure braid group PB;
(ITI) Magnus—Gassner representations of Py;
(IV)

Alexander invariants of links.

Milnor invariants are higher-order linking numbers of a link introduced by Milnor
in [Mi]. For a pure braid link, they are defined as follows. For b € P, and each 4
(1 <i <), we can write Arg(b)(x;) = y;(b)z;y;(b)~! for the unique y;(b) € F,,
where the sum of exponents of z; in the word y;(b) is 0. The Milnor number
p(b; i1+ - -ini) € Z is then defined to be the coefficient of X, - -- X, in the Magnus
expansion of y;(b):

v = > pbiineind) X, o X, (= 14 X)),

1<iy, . in<r

The Milnor invariant ﬁ(i); i1-+-ini) is defined by taking modulo a certain indeter-
minacy A(b; iy - - ini): ﬁ(f); i1 int) = u(b;iq - - ip8) mod A(b;iq - - - ipd). It turns
out that it is an invariant of the link b obtained by closing b. The Milnor invari-
ants are also interpreted in terms of Massey products in the cohomology of the link
group ([Ki], [T]). Johnson homomorphisms are a useful means to study the struc-
ture of the mapping class group of a surface ([J1], [J2], [Mt1], [Mt2]). The main
tools are algebraic and applicable to the study of the automorphism group Aut(F,)
of a free group F, ([Ka], [Sa]). Johnson homomorphisms describe the action of a
certain filtration of Aut(F;.) on the nilpotent quotients F,./F,.(n) for n > 1, where
F.(n) is the nth term of the lower central series of F,.. Since the pure braid group
P, is a subgroup of the mapping class group of the r punctured disk, the theory of
Johnson homomorphisms can also be applied to P,. It was shown in [Kol], [Ko3,
Chap. 1] that the Johnson homomorphisms are described by Milnor invariants of
pure braid links. Magnus cocycles are crossed homomorphisms of P, defined by
using the Fox free derivation ([B, 3.1, 3.2], [F]). The Gassner representation Gass
of P, is a particular case of Magnus cocycles over the Laurent polynomial ring
of r variables and the determinant det(Gass(b) — I) gives the Alexander invariant
which is a polynomial invariant of the link b ([B, 3.3]). The relations of the Gassner
representations with Johnson homomorphisms and Milnor invariants were studied
in [Ko2], [Ko3, Chap. 2].

In this paper, based on the analogy (1.3), we shall study arithmetic analogues
in Thara theory of issues (I)~(IV). The contents of this paper are organized as
follows. In Section 2, we recall the construction of Thara representations and some
basic results. In Section 3, we define I-adic Milnor numbers for each element in
Galy, and l-adic Milnor invariants for certain primes of k({; ), the field obtained by
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adjoining all Ith-power roots of unity to k. We introduce the pro-l link group of
each element of Gal, and give a cohomological interpretation of /-adic Milnor in-
variants in terms of Massey products in the cohomology of the pro-/ link group. In
Section 4, we present a general theory of the pro-I Johnson map and pro-I Johnson
homomorphisms for the absolute Galois group Galg. A similar theory has been de-
veloped in the context of non-abelian Iwasawa theory ([MT]). Among other things,
we describe pro-I Johnson homomorphisms in terms of I-adic Milnor numbers. Sec-
tions 3 and 4 may be regarded as an arithmetic counterpart of [Kol] and [Ko3,
Chap. 1]. In Section 5, we introduce pro-l Magnus cocycles of Galy by using pro-
Fox free calculus, and give a relation with pro-I Johnson homomorphisms. We con-
sider the pro-l (reduced) Gassner cocycle of Galy as a special case and express it
by Il-adic Milnor numbers. Section 5 may be regarded as an arithmetic counterpart
of [Ko2] and [Ko3, Chap. 2]. We note that Oda’s unpublished notes ([O1], [02])
also concern some issues related to Sections 4 and 5. In Section 6, we introduce the
pro-l link module and Il-adic Alexander invariants. In Section 7, we consider the
case that S = {0, 1, 00}. We show that the Thara power series Fy(u1,u2) (g € Galg)
introduced in [Ih1] coincides with our pro-l reduced Gassner cocycle, and give a
formula that expresses Fy(u1,u2) in terms of [-adic Milnor numbers. Accordingly,
using our formula and Thara’s formula, we express the Jacobi sum in Q((;») as a
(¢» — 1)-adic expansion with coefficients {-adic Milnor numbers. Finally, combin-
ing our formula and the result by Thara, Kaneko and Yukinari [IKY], we give some
formulas relating Soulé characters ([So]) with [-adic Milnor numbers.

This paper forms (part of) an elementary and group-theoretical foundation
of arithmetic topology in Thara theory. In forthcoming papers, we shall study some
connections of [-adic Milnor invariants and pro-! Johnson homomorphisms in this
paper with arithmetic of multiple power residue symbols in [Am], [Msl], [Ms2,
Chap. 8] and the works of Wojtkowiak on l-adic iterated integrals and [-adic poly-
logarithms ([NW], [W1], [W2], [W3], [W4], etc). See Remark 3.2.12. We shall also
study arithmetic analogues of some issues in quantum topology such as Habegger—
Masbaum’s theorem on the relation between Milnor invariants and Kontsevich
integrals ([HM]).

Notation. We denote by Z, Q and C the ring of rational integers, the field of
rational numbers and the field of complex numbers, respectively.

Throughout this paper, [ denotes a fixed prime number. We denote by Z; and
Q; the ring of l-adic integers and the field of I-adic numbers, respectively.

For a, b in a group G, a ~ b means that a is conjugate to b in G. For subgroups
A, B of a topological group G, [A, B] stands for the closed subgroup of G generated
by commutators [a,b] := aba='b~! for all a € A, b € B.
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For a positive integer n and a ring R with identity, M(n; R) denotes the ring of
n x n matrices whose entries are in R and GL(n; R) denotes the group of invertible
elements of M(n; R).

82. The TIhara representation

In this section, we recall the setup and some results on the Galois representation
introduced by Thara in [Ih1].

§2.1. The outer Galois representation

Let x1,...,2, be r letters (r > 2) and let F,. denote the free group of rank r
on zi,...,%,. Let .11 be the element of F, defined by z1- - z,2,41 = 1 so
that F, has the presentation F. = (z1,..., %, Trp1 | ®1 - Trzpry1 = 1). Let §,

denote the pro-I completion of F,.. Let Aut(§F,) (resp. Int(F,)) denote the group of
topological automorphisms (resp. inner-automorphisms) of §, with compact-open
topology. We note that any abstract automorphism of §, is bicontinuous ([DDMS,
Cor. 1.22]) and that Aut(F,) is virtually a pro-l group ([DDMS, Thm. 5.6]). Let
H be the abelianization of §,, H = §,./[§-, 5], and let 7 : §. — H be the
abelianization homomorphism. For f € §,, we let [f] := n(f). We set X; = [z]
(1 <4 < r+1) for simplicity so that H is the free Z;-module with basis X1, ..., X,
and we have X1+ -+ X, 4+ X, 11 = 0. Each ¢ € Aut(5F,) induces an automorphism
of the Z;-module H, which is denoted by [¢] € GL(H).

Let Q be the field of algebraic numbers in C. Let S be a given set of ordered
r+1 Q-rational points Py,..., P.,1 on the projective line ]P’(lQ and we suppose that
Py =0,P,=1and P41 =oc0. Let k:= Q(S \ {o0}), the finite algebraic number
field generated over Q by coordinates of Py, ..., P, so that all P;’s are k-rational
points of P!. Let Galy, := Gal(Q/k) be the absolute Galois group of k equipped
with the Krull topology. Note that Galy, is the étale fundamental group 75t (Spec k)

with the base point Spec Q — Speck. Let w{’ro‘l(ﬂ%\ S) denote the maximal pro-I

quotient of the étale fundamental group of IP’}@\S with a base point Spec Q — P}@\S
which lifts Spec@Q — Speck. By [G, XII, Cor. 5.2], ﬂ‘l’m'l(P}@\ S) is the pro-l
completion of the topological fundamental group 7 (P*(C) \ S). We fix once and
for all an identification of F,. with 71 (P'(C) \ S) obtained by associating to each
x; the homotopy class of a small loop around P; and hence an identification of
Pro-t (P5\ ) with §,.

The absolute Galois group Galy, = $(Spec k) acts, as the monodromy, on the

geometric fiber IP%\ S of the fibration Py \ S — Spec k and hence acts continuously
on the pro-l fundamental group W{’TO'Z(IP}@ \ S) = §,. The effect of changing a
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base point of I[% \ S is given as an inner automorphism of §,. Thus we have the
continuous outer Galois representation

(2.1.1) Og : Galp — Out(F,) := Aut(F,)/ Int(Fy).

In terms of the field extensions, the representation ®g is described as follows. Let
t be a variable over k. We regard P' as the t-line and so the function field K of
]P’}@ is the rational function field Q(t). The k-rational points P; are identified with
places of K/Q. Let M be the maximal pro-I extension of K unramified outside P;
(1 <i<r+1). We fix once and for all an identification of §, with Gal(M/K)
obtained by associating to each x; a topological generator of the inertia group of
an extension P} of P, to a place of M. Since the P;’s are k-rational, M /k(t) is a
Galois extension and so we have the exact sequence

15 3, = Gal(M/K) — Gal(M/k(t)) — Gal(K/k(t)) = Galy — 1.

For g € Galy, choose g € Gal(M/k(t)), which lifts g. Consider the action of Galy, on
Gal(M/K) defined by f +— §fg~! and regard it as an automorphism of §,. via the
isomorphism ¢. The effect of changing a lift g is given as an inner automorphism of
3. Thus we obtain the representation ®g. Note further that go PM 0§=1! is a place
of M that coincides with PM on K (1 <4 < r+1). So we have goPMog—toh = PM
for some h € Gal(M/K) so that h='gx;G~'h is a topological generator of the

inertia group of PM. Hence gx;j*

~ x* for some ¢; in Z;, the ring of [-adic
integers. We pass to the abelianization H. Applying the conjugate by ¢ on the
equality X3 + -+ 4+ X,41 = 0in H, we have 1 X1 + -+ + ¢, 41X, 41 = 0. From
these equations, we have ¢; = - -+ = ¢,41. Therefore the action of Gal on §, gives

an element of the subgroup IB(ST) of Aut(F,) defined by
P(F,) = {p € Aut(3,) | o(z;) ~ xﬁv(w) (1 <i<r+1) for some N(p) € Z}.

Here the exponent N(p), called the norm of ¢, gives a homomorphism N :
Aut(F,) — Z;. So each ¢ € P(§,) acts on the abelianization H by the multiplica-
tion by N (), [¢](X:) = N(@)X; for 1 <i < r. It is easy to see Int(§,) C P(F,).
Thus we have the outer Galois representation (2.1.1),

(2.1.2) ®g : Gal, — P(F,)/ Int(F,).
§2.2. The Ihara representation

We will lift ®g to a representation in Aut(F,). For this, consider the subgroup
P(5F,) of P(F,) defined by

(2.2.1) P(3,) = {(p € Aut(3,)

o) ~ 2N (1<i<r=1), p(a,) ~ 2P,
o(Try1) = mf_\cr(f) for some N(p) € Z) ’
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where ~ denotes conjugacy by an element of the subgroup K of §, generated by
(8, 8] and @1, ..., 2,_o. We denote by P'(F,) the kernel of N|p,):

zi)~x; (1<i<r—1 T,) X T,
O(Tri1) = Trp1
The following proposition was proved in [Ih1, Prop. 3, p. 55] for the case r = 2

and stated in [[h3, p. 252] for the general case.

Proposition 2.2.2. The natural homomorphism Aut(F,) — Aut(F,)/ Int(F,) in-
duces the isomorphism P(§,) ~ P(F.)/Int(§,). The representatives in P(§,) of
P(F,.)/Int(,) are called Bely{’s lifts.

Proof. Although the proof is similar to that for r = 2, we give a concise proof for
the sake of readers. First, we note that the centralizer of z; in §, is (z;) = xZZ’ for
1<e<r+1.
Injectivity: Suppose ¢ € P(3,) and ¢ = Int(f) with f € F,. Then fx, 1 f! =
Tﬁf) Passing to H, we see N(¢) = 1 and so f is in the centralizer of x,. Hence
f = ¢, for some a € Z;. Since p € P(§F,), fo, [~ = ¢(z,) = gx,g~" for some
g € R and hence g~ f = z¥ for some b € Z;. Passing to the abelianization H, we
find a=b=0. Hence f =1 and ¢ = 1.

Surjectivity: Take ¢ € P(g,). Multiplying ¢ by an element of Int(§,), we may

assume ©(Tp41) = Tff) Set p(z,) = g:vrgf1 with g € §,. Write [g] = a1 X3 +
cte,. X, in H (cl € Z;) and let 1 := Int(z, ") 'z, " )op. Then p;(z,) = glxrgl
and g ==z, 'z, g € R Hence ¢; € P(ST) and ¢ = 1 mod Int(F,). O

By Proposition 2.2.2; we can lift &g of (2.1.2) to the representation in P(F,),
denoted by Ihg:

(2.2.3) Ihg : Galy — P(3,),

which we call the Thara representation associated to S. Let (g denote the subfield
of @ corresponding to the kernel of Thg so that Ihg factors through the Galois
group Gal(Qg/k):

(2.2.4) Thg : Gal(Qs/k) — P(3,).

We recall some arithmetic properties on the ramification in the Galois ex-
tension Qg /k. For this, let us prepare some notation. Let (;» be a primitive {"th
root of unity for a positive integer n such that ((ni1)! = (n for n > 1. We set
E((eo) = Un>1k‘(Qn) The I-cyclotomic character x; : Galy, — Z;° is defined by
g(Gm) = Y @) for g € Galg. Finally, we define the set Rg of finite primes of &
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associated to S as follows: Let s; be the coordinate of P; for 1 < i < r, and let Og
be the integral closure of Z[I™1, (s; — s;)7*(1 < i # j <r)] in k. We then define
Rgs by the maximal spectrum

(2.2.5) Rs := Spm Og.
Theorem 2.2.6. With notation as above, the following assertions hold:

(1) ([In1, Prop. 2, p. 53]). N oIhg : Galy, — Z; coincides with x;. In particular,
the restriction of o5 to Galy(¢e) = Gal(Q/k(¢;=)), denoted by Ih}g, gives the
representation

Thg : Galg(gee) — P (Fr)
and we have k() C Qg.

(2) ([AIL, Prop. 2.5.2, Thm. 3]). The Galois extension Qg/k is unramified over
Rs and Qs/k((;) is a pro-l extension.

Remark 2.2.7 (Cf. [Th2]). By Artin’s theorem ([Ar], [B, Thm. 1.9]), the Artin
representation Arg of the pure braid group P, in Section 1 induces the isomorphism

Arg: P {pe Aut(F) | (i) ~z; (1 <i<r), p(zy--2p) =21 20}

So the representation Thg : Galy(¢,e) — P1(S,) (resp. Ihg : Gal, — P(§,)) may be
seen as an (resp. extended) arithmetic analogue of the Artin representation Arg.

83. [-adic Milnor invariants and pro-/ link groups
83.1. Pro-I Magnus expansions

Let {Fr(n)}n>1 be the lower central series of §, defined by
Sr(l) = 8’7‘; Sr(n‘i’l) = [Sr(n)agr] (7742 1)

Note that each §,(n) is a closed normal subgroup of §, so that §,.(n)/F,(n+ 1)
is central in §,/F,(n + 1), and that each §.(n) is a finitely generated pro-I group
([DDMS, 1.7, 1.14]). As in Section 2, let H denote the abelianization of §,:

H:=gr(F,) = Hi (5, Z),

which is the free Z;-module with basis Xi,...,X,, where X; is the image of x;
in H. Let T(H) be the tensor algebra of H over Z; defined by @,,~, H®", where
H®Y := 7, and H®" := H ®g, -+ @z, H (n times) for n > 1. It is nothing but
the noncommutative polynomial algebra Z;(Xi,...,X,) over Z; with variables
Xl, e ,Xr:
T(H) =P H®" = Zi(X3,..., X,).
n>0
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Let f(H ) be the completion of T(H) with respect to the mp-adic topology,
where my is the maximal two-sided ideal of T'(H) generated by X1,..., X, and [.
It is the infinite product [], -, H®™, which is nothing but the Magnus algebra
Zy((X1,...,X,)) over Z;, namely, the algebra of noncommutative formal power
series (called the Magnus power series) over Z; with variables X1,..., X,

T(H) =[] H®" =Z((X3,.... X,)).

For n > 0, we set f(n) = HmZn H®™ . The degree of a Magnus power series @,

denoted by deg(®), is defined to be the minimum n such that ® € T(n). We note
that H®" is the free Z;-module on monomials X;, -+ X; (1 <'iy,...,4, < 1) of
degree n and T(n) consists of Magnus power series of degree > n.

Let Z[[§+]] be the complete group algebra of §, over Z; and let ez, [z,] :
Zi[[§r]] — Z; be the augmentation homomorphism with the augmentation ideal
Iz,113.11 := Ker(ez,13,77)- The correspondence z; — 14+ X; (1 <1 < r) gives rise to
the isomorphism of topological Z;-algebras

(3.1.1) 0 : Z[[§,)) = T(H),

which we call the pro-l Magnus isomorphism. Here Igl[[&” corresponds, under O,

to T(n) for n > 0. For a € Z[[3,]], ©(«) is called the pro-l Magnus expansion of
a. In the following, for a multiindex I = (i1 - +4,), 1 <iy,...,4, <7, we set

[I|:=n and X;:=X; ---X; .

We call the coefficient of X in ©(«) the I-adic Magnus coefficient of o for I and
denote it by p(I; ). So we have

(3.1.2) O(a) = ez z,9() + D> ull;0) X,
1121

Restricting © to §,, we have an injective group homomorphism, denoted by the
same O:

(3.1.3) 0:F. = 1+T(1),

which we call the pro-l Magnus embedding of §, into 1 + f(l)

Here are some basic properties of [-adic Magnus coefficients:

Property 3.1.4. For «, 8 € Z;[[§,]] and a multiindex I, we have

p(laB) = > u(A;a)u(B; ),

I=AB
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where the sum ranges over all pairs (A, B) of multiindices such that AB = I, and
we understand that u(A;a) = ez,z,7(a) (vesp. u(B;B) = ez,5,(8)) if [A] =0
(resp. |B| = 0).

Property 3.1.5 (Shuffle relation). For f € §, and multiindices I, J with |I|,|J]
> 1, we have

DT = Y. w4 ),

A€Sh(I,J)
where Sh(I, J) denotes the set of the results of all shuffles of I and J ([CFL]).

Property 3.1.6. For f € §, and d > 2, we have

w(I; f)y =0 for [I| < d, ie., deg(O(f —1)) > d <= f € F.(d)
= f-1elfz

An automorphism ¢ of the topological Z-algebra Z;[[§,]] (resp. T(H)) is
said to be filtration preserving if ¢(I7, 5 ) = 17,5, (vesp. o(T(n)) = T(n))
for all n > 1. Let Aut™(Z[[§,]]) (resp. Aut™(T(H))) be the group of filtration-
preserving automorphisms of the topological Z;-algebras Z;[[3,]] (resp. T(H)). The
pro-l Magnus isomorphism O in (3.1.1) induces the isomorphism

(3.1.7) Aut™(Z[[3.]]) = Awt™(T(H)), ¢~ Oo0poO !
In the following we set
(3.1.8) ©*:=0opoO L

We note by (3.1.6) that any automorphism ¢ of §, can be extended uniquely to
a filtration-preserving topological automorphism of Z;[[§]], which is also denoted
by ¢. It is easy to see by (3.1.8) that for ¢ € Aut™(Z[[F,]]), @ € Zi[[3+]], we have

(3.1.9) O(p(a)) = ¢"(0(a)).
83.2. [-adic Milnor invariants

Let Thg : Galy, — P(J,) be the Thara representation associated to S in (2.2.3).

Lemma 3.2.1. Let g € Galg. For each 1 <i <1, there exists uniquely y;(g) € T
satisfying the following properties:

(1) Thg(g)(z;) = yi(g)xxl(g)yi(g)fl, where x; is the l-cyclotomic character.

7

(2) In the expression [y;(g)] = cgi)Xl FotdVX, (cg-i) €, cl(-i) =0.
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Proof. Although the proof is standard, we give it for the sake of readers because
this lemma is basic in the theory of Milnor invariants.

Existence: By the definition (2.2.1) of P(§;) and Theorem 2.2.6(1), there is z; € §.

such that Thg(g)(z;) = 292" for each i. Let [z] = a{" Xy + -+ + oV X,
) —a(.i') o .

(a;l) € Z;). We set y; := zxz; * . Then conditions (1) and (2) are satisfied for y;.

Uniqueness: Suppose that y; and z; in §, satisfy conditions (1) and (2). Since
xi(9)

z; Ly; is in the centralizer of x; " 2 Ly = xf for some b; € Z;. Comparing the

coefficients of X; in [z, 1yi] and [xf}, we have b; = 0 and hence y; = z;. O

We call y;(g) € §; in Lemma 3.2.1 the ith (preferred) longitude of g € Gal,
for S. By Lemma 3.2.1, Thg(g) for ¢ € Galy is determined by the I-cyclotomic
value x;(g) and the r-tuple y(g9) := (y1(9),...,y-(g)) of longitudes of g for S.
We note that Thg(g) acts on the abelianization H of §, by the multiplication by
x1(9), [Ths(9)](X;) = xi(g)X; for 1 < i < r. We also note that y; : Gal, — §, is
continuous, since Thg is continuous.

Following the case for pure braids ([Kol], [Ko3, Chap. 1], [MK, Chaps. 6,
4]), we will define the l-adic Milnor numbers of g € Galy by the l-adic Magnus
coefficients of the ith longitude y;(g): Let I = (i1 ---4,) be a multiindex, where
1<i1,...,ip <rand |I| =n > 1. The l-adic Milnor number of g € Galy, for I,
denoted by u(g;I) = p(g;i1 -+ -in), is defined by the l-adic Magnus coefficient of
yi, (g) for I' := (i1 -+ ip_1):

(3.2.2) (g 1) = (I’ i, (9))-

Here we set u(g;I) := 0 if |[I| = 1. We note that the map pu( ;1) : Galy, — Z; is
continuous for each I, since y; : Galp, — §,- is continuous. We define a(g) to be the
ideal of Z; generated by x;(g) — 1. Note that a(g) = 0 when g € Galy ). We
then define the indeterminacy A(g;I) by

(3.2.3) A(g:]) = {the ideal of Z; generated by a(g) and u(J;y;(g)), where J}

ranges over proper subsequence I’ and j =i, or j is in J
We also write A(I';y;, (g)) for A(g; I) for later convenience. We then set

(3.2.4) f(g; I) := p(g; I) mod A(g; 1),

which we call the [-adic Milnor invariant of g € Galy, for I.

We will show that the I-adic Milnor invariant fi(g; I) for g € Galy, is unchanged
when ¢ is replaced by its conjugate hgh™! for h € Galy(¢,)- To prove this, we
prepare some lemmas. Formulas (1) and (2) of the next lemma were proved by
Wojtkowiak in terms of torsors of paths. See [W1, Prop. 1.0.7, Cor. 1.0.8 and
Prop. 2.2.1].
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Lemma 3.2.5. For g,h € Galy and 1 <i <r, we have

(1) yi(h™") = Ths(h~ ") (ys(h)™");
(2) yi(hg) = Ihs(h)(yi(9))yi(h) (cocycle property);
(3) yi(hgh™') = Thg(hg)(y;(h~*)) Ihs(h)(yi(g))yi(h).

Proof. (1) By Lemma 3.2.1, we have

from which we find Thg(h™1)(yi(h))y;(h™1) = 2§ for some a; € Z;. Passing to the
abelianization H of §, and comparing the coefficients of X;, we find a; = 0 and
hence we obtain (1).

(2) By Lemma 3.2.1, we have
(3.2.5.1) Ths (hg)(zi) = yi(hg)zX "Dy (hg) L.

7

On the other hand, we have

(3.2.5.2)

Comparing (3.2.5.1) and (3.2.5.2), we have y;(hg) " Ths(h)(yi(9))yi(h) = «%' for
some b; € Z;. Passing to the abelianization and comparing the coefficients of X,
we find b; = 0 and hence we obtain (2).

(3) By (2), we have

yi(hgh™") = Ths(hg)(ys(h™"))yi(hg) = Ths(hg)(y:(h~")) Ths(h)(yi(g))yi ().

For p € Galy and a multiindex J with |J| > 1, we define © ;(p) by

(3.2.6) 0.,(p) :=Ths(p)*(X,) — x(p)1X ;.

Since Thg(p)* is filtration preserving, we note deg(©;(p)) > |J|.
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Lemma 3.2.7. With notation as above, the following assertions hold.

(1) ©5(p) is a Magnus power series ZIAIZ\J\ ma(J; p) X a satisfying the following
properties:

(i) If ma(J;p) #0, then A contains J as a proper subsequence. So we may
write ©7(p) = 32 camalJ;p)Xa.

(11) Any coefficient ma(J; p) is a multiple of 1(B;y;(p)) by an l-adic integer,
where B is some proper subsequence of A and j is in J.

(2) Fory € §,, we have

O(ths(p)(¥) =1+ > xilp)" u(J;9) X5+ D u(J;9)0.(p)
MY 71
=0(y)+ Y n(J;4)0,(p) moda(p).
7>1

Proof. (1) Let 1 < j < r and write ©(y;(p)) = 1+ Y;(p). By (3.1.9) and
Lemma 3.2.1, we have

Ths(p)*(X;) = Ihs(p)* (O (x; — 1))
= O(Ihs(p)(z; — 1))
= 0(y; (p)xX" Wy (p) ) —
= 0(y;(p)O(;) PO (y;(p) ") — 1
= (1+Y;(p) (1 + X)X (1= Y;(p) + Y;(p)* — ) — 1
=x1(p)X; +O;(p),

(3.2.7.1)

where O;(p) is the sum of terms of the form qu(p)aXJ’-’Y}(,o)C for some a,c > 0
with a +¢ > 1, b > 1 and u € Z;. Write ©;(p) = > 450 malf; p)Xa. It is
easy to see that if m4(j;p) # 0, then A must contain j. Moreover, since Y;(p) =
>ipi>1 M(Biy;(p))Xp, then ma(j;p) is a multiple of pu(B;y;(p)) by an l-adic
integer, where B is some proper subsequence of A. Let J = (ji - - - j,). By (3.2.7.1),
we have

Y. ma(J;ip)Xa = 0,(p)
[A|>]T]
= Ths(p)*(X) — x(p) "1 X,
=Ths(p)*(X;,) - Ths(p)*(X;,) = xi(p)' X,
= (xi(p) X5, +05,(p) -+ (i (p) X5, + ©5,(p)) — xu(p) /1 X
®;,(p) - 25, (p),
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where ®,(p) is xi(p)X; or ©;(p) and at least one ©;(p) is involved for some j.
Hence, by the properties of coefficients of ©;(p) = > 452 ma(j; p)Xa proved
above, we obtain properties (i) and (ii).

(2) By (3.1.9) and (3.2.6), we have

O(Ihs(p)(y)) = Ths(p)*(©(y))

=Thg(p <1+Z )

|J|>1

_1—1—2 (J;y) The(p)*(Xy)

|7]>1
=14+ > w(T:y)0ae)1 X, +0.,(p)
[J|>1
=14+ > xi"ulT9) X+ D wlJ;9)0.(p)
|7]>1 [J]>1
=0(y)+ Y u(J;4)0,(p) moda(p).
[J|>1

We are ready to prove the following result.

Theorem 3.2.8. For a multiindex I, the l-adic Milnor invariant T(g; I) for g €
Galy, is unchanged when g is replaced with its conjugate by an element of Galy(¢,o)-
To be precise, let I be a multiindex with |I| > 1. Let g € Gal, and h € Galy(¢,oe ).
Then we have A(hgh™Y 1) = A(g; I) and

f(hgh™" 1) = fi(g; I).

Proof. Let I be a multiindex with [I| > 1 and 1 < ¢ < r. For g € Gal, and
h € Galy (¢, ), we will show

(3.2.8.1) (L yi(hgh™")) = u(L;3i(9)) mod A(1; i(g))-

By Lemma 3.2.5(3), we have

(3.282)  O(yi(hgh™")) = O(Ihg(hg)(y:(h~")))O(Ths (h)(yi(9)))O(yi(h)).
For simplicity, we set, for a multiindex J with [J| > 1,

ay = pu(JiIhg(hg)(yi(h™Y)), by = pu(J;Ths(h)(yi(9))), cs = pu(J;yi(h)).
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Then, from (3.2.8.2) or (3.1.4), we have

(3.2.8.3)
(L5 yi(hgh™")) = ag + br + ¢r
+ Z aabp + Z bpce + Z ascc + Z aabpcco,
AB=I BC=I AC=I ABC=I

where A, B, C are multiindices with |4|, |B|, |C| > 1.
First, we look at bp for a subsequence B of I. By Lemma 3.2.7(1), (2) and as
h € Galy(¢,), we have

be = u(B;yi(g)) + 1(J;yi(g))(an l-adic integer)

for some proper subsequence J of B. Therefore, by (3.2.8.3) and the definition of
A(L;yi(g)), we have

(3284)  u(T;yi(hgh™)) — w(T;yi9)) = ar +cr+ Y, ascc mod A(I;4i(g))-
AC=T
Here we note that the right-hand side of (3.2.8.4) is the coefficient of X of
O (Ths (hg)(yi(h~1)))O (i (h)).
So, next we look at ©(Thg(hg)(y:(h~1)))O(y;:(h)). By (3.1.9), Lemma 3.2.5(1)
and Lemma 3.2.7(2), we have

O(Ihs(hg)(yi(h™"))) = Ths(hg)*(O(y: (1))
= Ths(h)"Ths(g)"(©(yi(h™")))
=Ths(h)* (O (h™") + Y u(Ji9i(h™"))Os(9)) (moda(g))

(3.2.8.5) 7121
= O(Ths(h) (i (h ™)) + D sl Jsys(h ")) Ths(h)*(O.4(9))

[J]>1

=O(yi(h)™ )+ > ulJ3y:(h 1)) Ths(h)*(©(9))-

[J1>1

Here let us write © ;(g) = ZJgA ma(J;9)X 4 as in Lemma 3.2.7(1). Then we
have, as h € Galy(¢,o )5

Ths(h)*(©.4(9)) = > _ ma(J;9)Ths(h)*(Xa)
JGA

(3.2.8.6) = J;Amws 9)(Xa+©a(h))

=Y malJ;9)(Xa+ > ma(A;h)Xa).

JgA AgA’
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By (3.2.8.5) and (3.2.8.6), we have

O(Ihg(hg)(yi(h™1)))
=0(w(h)™ )+ > > ul;u(h)ma(J;g)

[71>17CA

x <XA+ Z mA’(A;h)XA’> (mod a(g))

AGA/
and hence

O(Ths (hg)(yi(h™"))O(yi(h))
=1+ ) > i ))ma(Jsg)

(3.2.8.7) [71>17CA

X (XA+ > mA/(A;h)XA'>@(yi(h)) (moda(g))-

AgA’

Here we note that by Lemma 3.2.7(2), ma(J; g) is a multiple of p(B;y;(g)) by an
l-adic integer for some proper subsequence B of A and j in J. By the definition
(3.2.3) of A(I;yi(g)), the coefficient of X in the right-hand side of (3.2.8.7) must
be congruent to 0mod A(I;y;(g)). By (3.2.8.4), we obtain (3.2.8.1).

Finally, we show that A(I;y;(hgh™!)) = A(I;v:(g)) by induction on |I|. When
|I| = 1, this is obviously true (both sides are a(g) = a(hgh™!)) by the definition.
Assume that A(;y;(hgh™)) = A(I;y:(g)) for all T with |I| < n (n > 1). Then,
by (3.2.8.1), we have, for all I with |[I| <n and 1 <i <r,

(3.2.88)  u(l;yi(hgh™)) = p(I;yi(9)) mod A(L;4i(9)) (= A(L;yi(hgh™")).

Using (3.2.8.8) and the definition (3.2.3) of A(I;y;(p)) for p = hgh™!, g, we have
A(I;y;(hgh™)) = A(I;yi(g)) for I with [I| =n + 1. O

Remark 3.2.9. It is known that a braid § and its conjugate y8y~! give rise
to the same link as their closures (8 — y3vy~! is one of Markov’s transforms;
cf. [B, 2.2], [MK, Chap. 9]). In particular, they have the same Milnor invariants.
So Theorem 3.2.8 may be seen as an arithmetic analogue of this known fact for

braids.

As a property of [-adic Milnor invariants, we have the following shuffle relation.
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Proposition 3.2.10. Let g € Galy. For multiindices I, J with |I|, |J| > 1 and
1<i<r, we have

> filg; Hi) =0 mod g.c.d{A(Hi) | H € PSh(I,J)},
HePSh(1,J)

where PSh(I, J) denotes the set of results of all proper shuffles of I and J ([CFL]).

Proof. By (3.1.5), we have

p(gi Tipu(g; Ji) = Y plg; Ai).
AESh(I,J)
Taking mod g.c.d{A(Hi) | H € PSh(I,J)}, the left-hand side is congruent to 0
and any term p(g; Ai) with A ¢ PSh(I,J) is also congruent to 0. So the assertion
follows. O

Let RZ be the set of primes of k((;) lying over Rg in (2.2.5). For po, € RZ,
choose a prime P of g lying over p,. Since B is unramified in the Galois extension
Qg/k by Theorem 2.2.6(2), we have the Frobenius automorphism oz € Gal(Q2s/k)
of . By Theorem 3.2.8, fi(owp; I) is independent of the choice of *B lying over po.
So we define the [-adic Milnor invariant of p, for a multiindex I by

(3.2.11) i(poci I) i= Filogs D).

We also set A(poo; I) := A(ogp;I) so that G(poo;I) € Z;/A(poo; I). Let p be the
prime of k lying below po.. Since x;(oy) = Np (the norm of p), in order to have
Zi/A(poo; I) # 0, it is necessary that primes po, in R lie over

RY:={p € Rs|Np=1modi}.
For p € RY, let e(p) denote the maximal integer such that
Np = 1mod 1¢®¥).

It means that p is completely decomposed in k((je(»))/k and any prime of k((jecr))
lying over p is inert in k((je )/ k(e ). Hence op € Gal(2g/k((jery)). Then the in-
determinacy A(poo; 1) is an ideal of Z/1°®)Z. We note that if u(osp; I) = 0 mod ()
for all |I| < n, then Ti(poo; I) is well defined in Z/1°P)Z for |I| = n + 1.

Remark 3.2.12. In [Msl] and [Ms2, Chap. 8], the arithmetic Milnor invariants
for certain primes of a number field were introduced as multiple generalizations of
power residue symbols and the Rédei triple symbol ([R]). See also [Am]. They are
arithmetic analogues for primes of Milnor invariants of links. It is known ([Kol],
[Ko3, Chap. 1]) that Milnor invariants for a pure braid coincide with those for
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the link obtained by closing the pure braid. Recently, we found a relation between
l-adic Milnor invariants, Wojtkowiak’s [-adic iterated integrals and [-adic polylog-
arithms ([NW], [W1], [W2], [W3], [W4]) and multiple power residue symbols (in
particular, Rédei symbols), which will be discussed in a forthcoming paper.

Finally, we introduce a filtration on Galg using [-adic Milnor numbers. We set
Gal?[0] := Galy. For each integer n > 1, we define a subset Gal}![n] of Gal, by
Galy"'[n] :={g € Galy(oo) | u(g; 1) = 0 for |I| < n}

(3.2.13)
={g € Galy((,oe) | deg(O(yi(g)) — 1) > nfor 1 <i <r}.

We then have the descending series
Galy, = GalY™0] © Gal}"'[1] o --- > Gal}"![n] O - --
and we call it the Milnor filtration of Galy.
Proposition 3.2.14. Forn >0, Gal})!![n] is a closed normal subgroup of Galy,.

Proof. This proposition is an immediate consequence of the coincidence of the Mil-
nor filtration and the Johnson filtration which will be proved in Proposition 4.3.3.
So we give herewith a direct and brief proof.

We may assume n > 1. Since p( ;1) : Galy — Z; is continuous for each [
and Gal)'[n] = Niz1<n 4 :1)71(0), then Gal}™[n] is closed in Galy. Let g, h €
Gal"'n] and so deg(O(yi(p)) — 1) > n for p = g,h and each 1 < i < 7.
Then we can easily show deg(O(y;(g71)) — 1) > n, deg(O(yi(gh)) — 1) > n and
deg(O(y;(hgh='))—1) > n by using Lemma 3.2.5(1), (2) and (3), respectively. [

83.3. Pro-/ link groups and Massey products

Following the analogy with the link group of a pure braid link ([Ar],[B, Thm. 2.2]),
we define the pro-l link group of each Galois element g € Galy associated to Thg

= <z1’ oty |y Py (9) T = as Ly ()2 Dy ()t = Ir>

1- - - - _ _
1, |2 P () M= =2t O [y, () 7=

where 9g(g) denotes the closed subgroup of §, generated normally by the pro-
—xu(9),.—1 -1 1—x1(9)
[.1?1 7y1(9) ]7"'7$T‘ [

ical interpretation of l-adic Milnor invariants of g € Galy by Massey products in

words z; 7,71, y,.(g)71]. We will give a cohomolog-
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the cohomology of the pro-I link group IIg(g). In the following, we let g € Gal,
and a be an ideal of Z; such that a # Z; and y;(g) = 1moda. We may write
a = 1% for some 1 < a < oo (I*:=0if a = 00). When g € Galk(qoo), we have
a=o0 and a=0.

Let C%(Ils(g),Z;/a) be the Z;/a-module of continuous i-cochains (i > 0)
of Tg(g) with coefficients in Z;/a, where IIg(g) acts on Z;/a trivially. We con-
sider the differential graded algebra (C*(Ilg(g),Z;/a),d), where the product on
C*(Ils(9), Zi/a) = B;50C*(Ils(g),Zi/a) is given by the cup product and the
differential d is the coboundary operator. Then we have the cohomology ring
H*(ILs(9), Zi/a) := @B,~c H(C*(Ils(g), Z;/a)) of the pro-l group Ig(g) with co-
efficients in Z;/a. In the following, we deal with only one- and two-dimensional
cohomology groups. For the sign convention, we follow [Dw]. For ¢1,...,¢, €
H'(Ils(g),Zi/a), an nth Massey product (c1, ..., cy,) is said to be defined if there
is an array

W= {wlj € Ol(HS(g)vzl/a) | 1<i<j<n+l, (17.]) 7é (1’n+1)}

such that
[wiit1] = ¢ (1<i<n),
j—1
dwij: Z mewaj (‘77&24*1)
a=1+1
Such an array W is called a defining system for {c1, ..., c,). The value of (¢, ..., c,)

relative to W is defined by the cohomology class represented by the 2-cocycle

n
E Wig U Wq nt1,
a=2

and denoted by {(c1,...,cn)w. A Massey product (ci,...,c,) itself is taken to

be the subset of H?(Ils(g),Z;/a) consisting of elements {(ci,...,c,)w for some
defining system W. By convention, (¢) = 0. The following lemma is a basic fact

([Kx]).

Lemma 3.3.2. We have {(c1,c2) = ¢y Ucy. Forn >3, {c1,...,¢,) is defined and
consists of a single element if (c;j,,...,c;,) =0 for all proper subsets {ji,...,ja}
(a>2) of {1,...,n}.

Next, we recall a relation between Massey products and the Magnus coeffi-
cients for our situation. Let ¢ : §, — Ils(g) = §r/Ns(g) be the natural homo-
morphism. We denote by +; the image of x; under v, v; := z; modMg(g), for
1 < i < r. By the definition (3.3.1) of IIs(g) and our assumption, 7 induces the
isomorphism §,/F §-(2) = Is(g)/Ts(9)" Ms(g), Ts(g)] =~ (Zi/a)®" and so we
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have the isomorphism H*(Ils(g), Z;/a) ~ H'(F,,Z;/a). Therefore the Hochschild—
Serre spectral sequence yields the isomorphism

tg s H' (Ms(g), Zi/a)"'*\9) — H*(Ts(g), Zi/a).

Here tg is the transgression defined as follows. For a € H'(Ms(g),Z;/a)'s9),
choose a l-cochain b € C'(§,,Z;/a) such that blny,) = a. Since the value
db(f1, f2), fi € §» depends only on the cosets f; mod9g(g), there is a 2-cocyle
c € Z*(lls(g),Z;/a) such that 1*(c) = db. Then tg(a) is defined to be the class of
c. The dual to tg is called the Hopf isomorphism:

tg" : Hy(Ils(g), Zi/a) = Hi(Ms(9), Zi/a)ng(q) = Ns(9)/Ns(9)" [Ms(g), §r)-
Then we have the following proposition (cf. [St, Lem. 1.5], [Ms1, Thm. 2.2.2]).

Proposition 3.3.3. With notation as above, let ¢y, ..., c, € H*(Ils(g),Z;/a) and
W = (w;j;) be a defining system for the Massey product (ci,...,cyn). Let f € Ng(g)
and set v := (tg¥)~'(f mod Ms(g)" [Ns(9),Fr]). Then we have

(e1,- -y enyw(t)

- Z(_l)j+1 Z Z W1,1+4e, (’721) e wn+lfej,n+l (’721 )M(Ia f)m
j=1

e1t-te;j=n I=(i1---ij)

where eq, ..., e; run over positive integers satisfying e1 +---+e; =n and p(I; f)q
= u(I; f)mod a.

Now, let 75,...,v: € H'(Ils(g9),Z;/a) be the Kronecker dual to 71,...,7:,
namely, 77 (7;) = 8 for 1 < i,j < 7. Let v; = (tg¥) " (2, " [a;7 5i(g) "]
mod Ng(9)" [Ns(g),§]) for 1 < i < r. Let I = (iy---i,) be a multiindex such
that |I| = n > 2. Let g € Gal,. We assume the following conditions:

(1) w((Gr-ja)izr XY = 0moda for any subset

{j1y---yJa} of {i1,.. . intand 1 <i <,
(3.3.4) (2) i1,...,i, are distinct from each other, and
1(g; (41 -+ ja)) = Omod a for any proper subset
{J1,-+ s Ja} of {i1, ... in}

We note that condition (1) is unnecessary when g € Galy,). The following

theorem gives a cohomological interpretation of u(g; 1), := p(g;I) moda by the
Massey product in the cohomology of IIg(g).
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Theorem 3.3.5. With notation and assumptions as above, the Massey product
(Vo)) in H*(Is(g), Zy/a) is uniquely defined and we have

(g Da = (=1)"(Vi 55700 (v,)-

Proof. First, we compute ,u(J;xg_X’(g)[xfl,yi(g)_l]) for a multiindex J =

7

(1 Ja), where {j1,...,7a} is a subset of {i1,...,%,}. We note that

O; e yilg) ™)

= O(z; D)1+ O )Owi(9) ) (O(@ii(9)) — Owi(g)w:))):
By our assumption (3.3.4)(1), we have
w3 D[ yi(g) ™)
(3.3.5.1) = u(J;29i(9)) — n(J;yi(g9)w:)
+ > (1 As 2ii(9)) — (A yi(g)i))va mod a,
A

where A runs over some proper subsequences of J and v4 € Z;. By straightforward
computation, we have

(s 2yilg)) = {u(g; (J7)) (i # j1),

1(g; (Jj1)) + plg; (G2 -+ Jasn)) (i = j1),

and
Jiyi(g)z;) = w(g; (Ji)) (07 Ja),
,U( Y (g) ) {,u(g7 (J]a)) + u(g’ J) (’L = ja).

Hence we have

w(J;w5yi(g)) — w(J;yi(g)ws)

(3.3.5.2) wlg: (22 a ‘{a?_l)) = G5y ju (93 ) (Z, = ;1),
- 'u(g; (-]2"'ja.71))5j17ja_U(g;‘]) (Z:.]a)y
0 (otherwise).

Now, let n = 2. Then we have (v} ,7;,) = 7;, Uv;,. By Proposition 3.3.3, (3.3.4)(2),
(3.3.5.1) and (3.3.5.2), we have

(Vi Yin) (Vi) = =L [y, Yin (9)])a = 11(g5 D

Suppose n > 3 and let {j1,...,7.} be a proper subset of {ij,...,i,}. Then, by
our assumption (3.3.4)(2), (3.3.5.1) and (3.3.5.2), we have

(T3} P27 () 1) = Omod a
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for J = (41 -+ ja) and 1 <4 < 7. So, by Proposition 3.3.3, we have
<7;1v s ’7;a>(ti) =0

for 1 < ¢ <. Since Ho(II(g), Z;/a) is generated by mifx"(g) [, yi(g) for 1 <i <,
we have

(Cjyse-scj,) =0.
Therefore, by Lemma 3.3.2, the Massey product (¢;,,...,¢;, ) is uniquely defined.
By Proposition 3.3.3, (3.3.4)(2), (3.3.5.1) and (3.3.5.2) again, we have

(i) ) = (D) (L a0 Dl g (9)])a = (—1)" (g5 a-

84. Pro-l Johnson homomorphisms
84.1. Some algebras associated to lower central series

For each integer n > 1, we let

grn(gr) = gr(n)/{gr(n + 1)7

which is a free Z;-module whose rank ¢,.(n) is given by the Witt formula ([MKS,
5.6, Thm. 5.11], [Se, Chap. IV, 4, 6]):

1
_ = n/d
= nE pu(d)r™’<,
d|n

where p(d) is the Mobius function. The graded Z;-module

r(§r) = @ grn(Sr)

n>1

has the structure of a graded free Lie algebra over Z;: For a = smod §,(m +1) €
gr,(§r) and b =tmodF,(n+1) € gr,,(§r) (s € Fr(m),t € Fr(n)), the Lie bracket
on gr(F,) is defined by

[a,b] := [s,t]mod §F-(m +n+ 1).
We consider the graded associative algebra over Z; defined by

er(Z[[3.]) @gr (Z[[3+1) g (Z[[87]]) = Iz, 15,0/ 17, [ér

n>0

The map f— f—1 (f € §-(n)) defines an injective Z;-linear map

(4.1.1) gr, () = g, (Z[[3:])
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for n > 1 and the injective Lie algebra homomorphism over Z;,

gr(gr) — gr(Zl[[ng),

where gr(Z;[[,]]) is shown to be the universal enveloping algebra of the Lie algebra
gr(§r). Moreover, by the correspondence x; — 1 mod I%z[[&]] € gri(Z[[3r]]) — X; €

H, we have the isomorphism of Z;-modules

(4.1.2) O« gr, (Zu[[§r]]) = H®"

for each n > 0 and so gr(Z[[§,]]) is identified with the tensor algebra T'(H):
gr(Z[[§:]]) = T(H) = Zu( X1, ..., Xy).

The composition of the map of (4.1.1) with ©,, in (4.1.2), denoted also by ©,, :
gr, (§r) — H®", is the degree-n part of the pro-l Magnus embedding in (3.1.3):

(4.1.3) On = (0 — 1)[5,(ny mod T(n + 1).

Here we may note that © is multiplicative, O(f1 f2) = ©(f1)O(f2) for fi1, f2 € §»,
while ©,, is additive, ©,([f1./2]) = On (/1] + [fo]) = ©n([f1]) + On(([fo]), where [-]
stands for the class mod §,(n + 1).

Let S(H) be the symmetric algebra of H over Z; and let ¢ : T(H) — S(H) be
the natural map. We let S™(H) := ¢(H®™) and u; := q(X;) for 1 <4 < r so that
S(H) is the graded algebra @,,~, S (H) which is nothing but the commutative

polynomial algebra over Z; of variables w1, ..., u,:
S(H) = P §™(H) = Zufus, ... uy].
m>0

84.2. The pro-/ Johnson map

This subsection concerns the pro-I Johnson map associated to the Ihara represen-
tation, which is a pro-l analogue of the Johnson map introduced by Kawazumi
([Kal). Overall, we follow Kazazumi’s arguments in [Ka] in our pro-l setting.

For ¢ € Aut™(T(H)), we denote by [¢] the induced Zj-endomorphism of
H=T(1)/T(2)=7Z%".

Lemma 4.2.1. A Z;-algebra endomorphism ¢ of f(H) s a filtration-preserving
automorphism of T(H), ¢ € Autﬁl(T(H)) if and only if the following conditions
are satisfied:

(1) o(T(n)) C T(n) for all n > 0.

(2) the induced Z;-endomorphism [ on T(1)/T(2) = H is an isomorphism.
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Proof. Suppose ¢ € Aut™(T(H)). Since ¢ is filtration preserving, condition (1)
holds. To show condition (2), consider the following commutative diagram for
vector spaces over Z; with exact rows:

0 T(2) T(1) ——H 0
ltpf(z) iﬂﬂl) l[%’]
0 T(2) T(1) H 0.

~

Since p(T'(n)) = T(n) for all n > 0, we have Coker(gp\f(i)) =0 fori = 1,2,
in particular. Since ¢ is an automorphism, we have Ker(¢) = 0, in particular,
Ker(<p|f(i)) = 0 for 4 = 1,2. By the snake lemma applied to the above diagram,
we obtain Ker([¢]) = 0 and Coker([¢]) = 0, hence condition (2).

Suppose that a Z;-algebra endomorphism ¢ of T(H) satisfies conditions (1)
and (2). Let z = (z,) be any element of T(H) with 2, € H®™ for m > 0. To
show that ¢ is an automorphism, we have only to prove that there exists uniquely
y = (ym) € T(H) such that

(4.2.1.1) z = o(y).

Note by conditions (1) and (2) that ¢ induces a Z;-linear automorphism of 7'(m)/
T(m+1) = H®™, which is nothing but [¢]®™. Then, writing ¢(y;); for the com-
ponent of p(y;) in H®J for i < j, equation (4.2.1.1) is equivalent to the following

system of equations:

20 = #(y0) = o,
21 = [el(),
— [,]®2
= + ,
(4.2.1.2) 22 = [@]?*(y2) + @(y1)2
Zm = [@]®m(ym) + @(yl)m +e @(ym—l)ma
Since [¢]®™ is an automorphism, we can find the unique solution y = (y,,) of

(4.2.1.2) from the lower degree. Therefore ¢ is an Z;-algebra automorphism. Fur-
thermore, we can see easily that if zp =---=2,_1=0,thenyg=---=y,_1 =0
for n > 1. This means that ¢~1(T'(n)) C T(n) and so ¢ is filtration preserving. [

By Lemma 4.2.1, each ¢ € Aut™(T(H)) induces a Z;-linear automorphism
[¢] of H=T(1)/T(2) and so we have a group homomorphism

[ ]: Auwt™(T(H)) — GL(H),
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where GL(H) denotes the group of Z;-linear automorphisms of H. We then define
the induced automorphism group of T(H) by

TA(T(H)) = Ker([ ])
= {p € Aut(T(H)) | ¢(h) = hmod T(2) for any h € H}.

We note that there is a natural splitting s : GL(H) — Autﬁl(f(H)) of [ ], which
is defined by
s(P)((zn)) := (P®"(zn)) for P € GL(H).

In the following, we also regard [P] € GL(H) as an element of Aut™(T’) through
the splitting s. Thus we have the following lemma.

Lemma 4.2.2. We have a semidirect decomposition
Aut®(T(H)) = TA(T(H)) » GL(H); ¢ = (po[¢] ™", [¢o])-

Let ¢ € IA(f(H)) Then we have o(h)—h € T(2) for any h € H, and so we
have a map

(4.2.3) E:IA(T(H)) — Homg, (H,T(2)); ¢ — ¢|u —idy,

where Homg, (H, T(2)) denotes the Z;-module of Z;-homomorphisms H — T(2).
The following proposition will play a key role in our discussion.

Proposition 4.2.4. The map E is bijective.

Proof. Injectivity: Suppose E(p) = E(¢') for ¢, ¢ € IA(T(H)). Then we have
wlg = ¢'|g. Since a Z;-algebra endomorphism of T(H) is determined by its re-
striction on H, we have p = ¢'.

Surjectivity: Take any ¢ € Homg, (H, JA“(Q)) We can extend ¢ + idyg : H —
T'(2) uniquely to a Z;-algebra endomorphism ¢ of T'(H). Then we have obviously
©(T(n)) C T'(n) for all n > 0. Since T'(1)/T(2) = H and we see that

[p](hmod T(2)) = ¢(h) mod T(2) = h + ¢(h) mod T(2) = hmod T(2),
we have [g] = idy. By Lemma 4.2.1, we have ¢ € IA(T(H)) and E(p) = ¢. O
By Lemma 4.2.2 and Proposition 4.2.4, we have the following result.
Corollary 4.2.5. We have a bijection
E: Aut™(T(H)) ~ Homg, (H,T(2)) x GL(H)

defined by E(¢) = (E(po [¢]7), [¢)).
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Now, let Thg : Galy — P(F,) be the Thara representation associated to S in
(2.2.3). We recall that the correspondence ¢ — ¢* := Qoo O~ ! in (3.1.8) gives
the injective homomorphism Aut(§,) — Aut™(T(H)) and hence the inclusion

P(§.) = Aut™(T(H)) which satisfies [i¢] = [¢*] in GL(H). Composing Thg with
this inclusion, we have the homomorphism g : Galy, — Aut™(7'(H)) defined by

is(g) == Ihs(g)* = ©oThs(g) o O

We then define the map ng : Gal, — IA(T(H)) by composing 7jg with the projec-
tion on IA(T(H)):

ns(g) :=Ns(g) o [Ihs(g)] " =Ths(g)* o [Ths(g)] "

(4.2.6) - -
= 0O oThg(g) oO® ! o[Ths(g)] "

Thus, we have 7s(g) = (ns(g), [Ths(g)]) for g € Galy under the semidirect decom-
position Aut™(T'(H)) = IA(T(H)) x GL(H) of Lemma 4.2.2.
Now, we define the pro-l Johnson map

g : Galy — Homy, (H,T(2))
by composing ng with F in (4.2.3), and define the extended pro-l Johnson map
#g : Galy, — Homg, (H,T(2)) x GL(H)
by composing g with E of Corollary 4.2.5. So we have, for g € Gal,

7s(9) == E(ns(9)) = ns(9)|g — idn

= Thg(g)* o [Ths(9)] ™' m — id|a

=0 oThs(g) 00 ' o[lhs(9)] ™' m — id|,
7s(9) = (1s(9), [Ths(9)])-

For m > 1, let Homg, (H, H®(™+1) denote the Z;-module of Z;-homomorphisms
H — H®m+D and we define the mth pro-l Johnson map

(4.2.7)

Tém) : Gal, — Homy, (H, H®(m+1))
by the mth component of 7g:

(4.2.8) =3 " (9) (g€ Galy).

m>1

We note that the pro-l Johnson map 7g is no longer a homomorphism. In fact,
we have the following proposition.
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Proposition 4.2.9. For g1, g2 € Galy, we have

ns(9192) = ns(g1) © [Ths(g1)] 0 ns(g2) o [Ths(g1)] "

Proof. By (4.2.6), we have

15(9192) = Ths(g192)" o [Ths(g192)] "
= 0O olhg(g1g2) 0O o [Ths(g1g2)]
=0 olhg(g1) oThs(gz) 0O ' o[lhg(g)] * o [Ths(g1)] "
=0 olhg(g1) 0O " o[lhs(g1)] ™" o [Ihs(g1)] 0 © o Ths(gz) 0 O

o [Ths(g2)] ™" o [Ths(g1)] ™"
=1ns(g1) o [Ths(g1)] 0 1s(g2) o Ths(g1)] "
O

Proposition 4.2.9 yields coboundary relations among Tém). Here we give the

formulas only for Tél) and (2).

Proposition 4.2.10. For g1, g2 € Galy, we have

7 (g192) = 787 (g1) + [Ths(91)]%% 0 757 (g2) o [Ths(g1)] Y,

78 7 (g1) + (157 (91) @ idpr +idy © 757 (91)) 0 [Ths(g1)]*?
M (g2) o [Ths(g1)] " + [Ths(g1)]%% 0 757 (g2) o [Ths(g1)] L.

O TS
Proof. By definition (4.2.8), we have

9192)

(4.2.10.1) s(g102) = Y 78 (9192)-

m>1

On the other hand, by Proposition 4.2.9 and (4.2.7), we have, for h € H,

75(9192)(h) = —h + ns(g192)(h)
= —h+ (ns(g1) o [Ths(g1)] 0 ns(g2) o [Ths(g1)] ") (h)
= —h+ (ns(g1) o [Ths(g1)] o (ida + 75(g2)))([Ths(92)] ' (h))
= —h+ (ns(g1) o [Ths(g1)])

QMm B+ S5 (9) Immww)

m>1

= —h+ns(g1) (h + 3 ([ths(g0)] ™+ 0 8™ (g2) o [IhS(gl)]l)(h)>

m>1
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= —h+ns(g91)(h)
+ns(91) (([Ths(91)]%% 0 75" (g2) © [Ths (g1)] 1) ()
+15(91) ([T (91)]%% 0 757 (g2) © [Ths (91)] 1) (h)) mod T(4).

We note that
ns(9) mrem = (idg +75(9)®™ « H®™ — H x T(2m)

for any g € Galg and so we have the following congruences mod f(4):

ns(g1)(h) = h+ 757 (1) (R) + 757 (91) (R),

ns(g1) ((Ths (g1)]%2 0 757 (g2) © [hs (g1)] ") (1)
= ([ths(g1)]%2 0 78" (92) © [Ths(g1)] 1) ()
+ (787 (91) ®idpr +idy © 75 (91)) © [hs(91)]%2 0 75 (g2)
o [Ths(g1)] 1) (),

15(91)(([Ths (g1)]%% 0 75" (g2) o [Ths(g1)] ™) ()
= ([Ihs(g1)]%° 0 757 (g2) o [Ths(g1)] ~)(R).

Therefore we have

7s(g192) () = 787 (g1)(B) + 757 (91) (B)
+ ([ths(g1)]%2 0 78 (g2) © [Ths (g1)] 1) (h)
(4.2.10.2) + (P (g1) ®@idy +idg @ 7 (g1)) o [Th(g1)] 2
o5 (g2) o [Ths(g1)] ) (h)
+ ([hs(g1)]®* 0 78 (g2) o [Ths (g1)] 1) (h) mod T(4).

Comparing (4.2.10.1) and (4.2.10.2), we obtain the assertions. O

84.3. Pro-/ Johnson homomorphisms

For n > 0, let 7, : § — &/Fr(n + 1) be the natural homomorphism. Since each
§r(n) is a characteristic subgroup of §,, 7, induces the natural homomorphism
Tns : P(Fr) = Aut(S,) — Aut(F,/Fr(n+1)). Let Ihé.") denote the composite of
Thg with 7,,:

h{" : Gal, — Aut(F, /S (n+1)).
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In particular, Ih(sl)(g) = [Ths(g)] for g € Galg. Let Gal}°"[n] denote the kernel of
Ih(sn):
Gal{°"[n] := Ker(Ihfg"))

={g € Galy | Ths(g)(f)f ' €Fr(n+1) forall feF,.}.

We then have a descending series of closed normal subgroups of Galy:

(4.3.1)

Cal, = Gal{°"[0] D Gal{"[1] > --- > Gal}*"[n] > ---

and we call it the Johnson filtration of Galy associated to the Ihara representation
s (cf. [Aa], [J1], [J2]). We note by Theorem 2.2.6(1),

(4.3.2) Gall®'[1] = Ker(Th{ : Galy — GL(H)) = Galy(c) -
The relation with the Milnor filtration defined in (3.2.13) is given as follows.

Proposition 4.3.3. The Johnson filtration coincides with the Milnor filtration,
namely, for each n > 0, we have

Gall®"[n] = Gal}™[n).
Proof. We may assume n > 1 and hence g € Galy(¢,.). Then we have

g € Galj*"[n] « Ths(g)(xi)z; ' € Sr(n+ 1) forall 1 <i<r
S yi(9)riyi(g) tryt €Fr(n+1) forall 1 <i<r
< yi(g) € 3r(n )foralll<z<r
& deg(O(yi(g) —1)) =nforall1<i<r
& g € Gal"[n).

O

Note that Proposition 4.3.3 yields Proposition 3.2.14. In the following, we
simply write Galg[n] for the nth term of the Johnson (or Milnor) filtration for
n > 0 and we denote by k[n] the Galois subextension of k in Q corresponding to
Galg[n]. By (4.3.2), we have k[1] = k({j~).

We give some basic properties of the Johnson filtration. The following Lemma
4.3.4, Proposition 4.3.5 and Theorem 4.3.6(2) were shown by Thara for the case
r = 2. See [Ih1, Prop. 7, p. 59] and also [O1]. We give, herewith, concise proofs for
the sake of readers.

Lemma 4.3.4. For g € Galg[m] (m >0) and f € §-(n) (n > 1), we have

Ths(g)(f)f " € Fr(m +n).
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Proof. We fix m > 0 and g € Galg[m]. We prove the assertion by induction on n.
For n = 1, the assertion Thg(g)(f)f~" € §r(m+1) is true by the definition (4.3.1).
Assume that

(4.3.4.1) Ths(9)(f)ft €Fr(m+i) if feF(i)and 1 <i<n.

Let [§,(n), §r]abst denote the abstract group generated by [a, ] (a € F-(n),b € F\).
Since Thg(g) is continuous and [§,(n), Fr|abst is dense in §,(n + 1), it suffices to
show that

IhS(g)(f)f_l € 37(771 +n+ 1) for f € [gr(n)a 37']abst-
For this, we have only to show

(4.3.4.2) Ths(g)([b, )b, ]t € Fr(m+n+1) ifbeF.(n), c€F

For simplicity, we shall use the notation [p, 2] := ¥ (z)z~! and [z, ¢] := xp(x) !

for z € §, and ¢ € Aut(F,). By the “three subgroup lemma” and the induction
hypothesis (4.3.4.1), we have

Ths (g)([b, c])[b. ] =" = [Ths(g). [b, <]]
€ [Ths(g), [8+(n), T+ ]]
C [[Ths(g), §r(n)], 8] [[8r, Ths(g)], §r(n)]
C [8r(m +n),8r][8r(m + 1), 51 (n)]
=F-(m+n+1)
and our claim (4.3.4.2) follows. O
Lemma 4.3.4 yields the following proposition.
Proposition 4.3.5. For m,n > 0, we have
[Gali[m], Galg[n]] C Galg[m +n] for m,n > 0.
In particular, the Johnson (or Milnor) filtration is a central series.
Proof. With the same notation as in the proof of (4.3.4.2) and Lemma 4.3.4, we have
[[Galg[n], §r], Galg[m]] C [§r[n + 1], Galg[m]] C Fr[m +n + 1],
[, Galy[m]], Galg[n]] C [§.(m + 1), Galp[n]] C F(m +n +1).
By the three subgroup lemma, we have
[[Galg[m], Galg[n]],§r] C [[Galg[n], §:], Galg[m]][[§r, Galg[m]], Gali[n]]
C8r(m+n+1),
which yields the assertion by the definition (4.3.1). O
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For n > 0, let
r,, (Galy) := Galg[n]/ Galg[n + 1],

which is a Z;-module. Then, by Proposition 4.3.5, the graded Z;-module

gr(Galy) : @ gr,, (Galg)

n>0

has the structure of a graded Lie algebra over Z;, where the Lie bracket is defined
by the commutator: For a = gmod Galg[m + 1], b = hmod Galg[n + 1] (g €
Galg[m], h € Galg[n]),
[a, b] := [g, h] mod Galg[m + n + 1].
Now, for m > 1, we let Té. ™} denote the restriction of the mth l-adic Johnson
map Té m | in (4.2.8) to Galg[m]:

[m] .

Tg = TS ‘Galk : Galg[m] — Homg, (H, H®(m+1)).

The following theorem asserts that Tém] describes the action of Galg[m| on §,/
Fr(m+2).

Theorem 4.3.6. With notation as above, the following assertions hold.

(1) For g € Galg[m] and f € §,, we have

I ) ([f]) = Omir (s () ()7,

where O 11 ¢ 8,41 (§r) < HE™HY s the degree-(m+1) part of the Magnus
embedding in (4.1.3).

(2) The map Té ™ s 0 7,- homomorphism and Ker(TS ) Galg[m+1]. Hence Tém]
induces the injective Zj-homomorphism gr,, (Galy) — Homg, (H, H®(m+1). In
particular, we have

gr,,(Galy,) ~ Z7"

for some integer r,, > 0.
Proof. (1) We need to show that for g € Galg[m],
(4.3.6.1) 7T (9)(X) = Opmar (Thg(g) (wi)a; ) 1<i<r.
y (4.2.7) and [Thg(g)] = idy, we have

75(9)(Xi) = (© o Thg(g) 0 O 1) (O(;) — 1) — (O(;) — 1)
= O(Ihs(g)(z:)) — O(xi).
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Therefore, by (4.2.8), we have
(4.3.6.2) Tém)(g)(Xi) = the component in H®M*Y of O(Ths(g)(x;)) — O(x;).
On the other hand, since Thg(g)(z;)z;* € F.(m + 1), we have

O(Ths(g)(x:)z; ") = 1 + Opp1 (Thg(g) (z:)z; ) mod T(m + 2).

2

Multiplying the above equation by ©(x;) from the right, we have
(4.3.6.3) O(Ihs(g) (1)) = O(x:) + Omy1(Ihs(g)(zi)z; Y) mod T(m + 2).

By (4.3.6.2) and (4.3.6.3), we obtain (4.3.6.1).
(2) By (1), for g, h € Galg[m] and f € §,, we have

T (gh)([f]) = Omsa (Ths(gh) () )
= Omt1(Ths(g) (Ths(R)(f) f )
= Om11(Ths(g)(Ths (R)(f)f~1) Ths(g)(f)f ).
Since Thg(h)(f)f~! € r(m + 1), we have Ths(g)(Ihs(h)(f)f~") = Ihs(h)(f)f~*
mod §,(2m + 1) (C §r(m + 2)) by Lemma 4.3.4, and hence
7 (P ([f)) = Om1 (Ths(9)(£)f ) + Omya (Ths () () 7)
= (75" (9) + 75" (W) (1))
for any f € §,. Since Ihg is continuous, we see that Tém] is a Z;-homomorphism.
By (1) and (4.3.1), Ker(Tém]) = Galg[m + 1], and hence Tém] induces the injective

Z;-homomorphism gr,, (Galy,) < Homgz, (H, H®(™+1). Since Homg, (H, H®(m+1))
is a free Z;-module of finite rank, the last assertion follows. O

By Theorem 4.3.6(1), Tgm] factors through Homg, (H, gr,, .1 (3:)),

74" Galy[m] — Homz, (H,gr,,41(8,): g+ ([f] = Ths(9)(f)f )

followed by the map Homg, (H,gr,,,(§,)) — Homg, (H, H®(™*+1) induced by
Omi1. We call Tgm] . Galg[m] — Homg, (H, H®(m*t1D) (m > 1) or the induced
injective Zj-homomorphism gr,, (Galy) < Homg, (H, H®(™+1)  denoted by the
same ngm], the mth pro-l Johnson homomorphism.

A relation between the mth pro-I Johnson homomorphisms and Il-adic Milnor

numbers in Section 3 is given as follows.

Theorem 4.3.7. For g € Galy[m] (m > 1), we have

Xy =— Y wJ)Xy,
|J|=m-+1
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where for J = (j1 - jm+1),

p(g; J2 -+ Gma1d1) = Ojy g (g5 J) (@ = J1),
/U'(J) = N(g;j2"'jm+1j1)5j1,jm+1 *ﬂ(‘g? J) (Z :j7n+1)’
0 (otherwise).

Proof. By Theorem 4.3.6(1), we have
75" (9)(X0) = O (s (9) (20)a; ) = O (wil9)ii(9) "7
(4.3.7.1) = =Omi1([zi,1i(9)])
== > [ vi(9) X

|J|=m+1
By the computation in the proof of Proposition 3.3.3 we have, for |J|=(j1 - - jm+1),
w(J; [z, 9:(9)]) = u(J; wayi(g)) — w(J;yi(g)xi)
w(g; g2 - Jma1d1) = Ogy g (g5 J) (3= 1),

(4.3.7.2) 2 Imnd =/
= g gz Gmard1)85 g — Mg ) (0= Gmta),
0 (otherwise).
By (4.3.7.1) and (4.3.7.2), the assertion follows. O

Remark 4.3.8. A correspondence between Johnson invariants and Milnor invari-
ants was given by Habegger in a topological framework ([Ha]). Our treatment in
this paper is group theoretical and similar to that given in [Kol], [Ko3, Chap. 1]
for pure braids.

We compute the pro-I Johnson homomorphisms on commutators.

Proposition 4.3.9. For g € Galg[m|,h € Galg[n] (m,n > 0) and f € §,, we
have
5 (g, AD(FD) = Omtna (Ths (9) (s () () F ) (Ths (M) (F)f ) !
— Ths(h)(Ths(g)(f)f 1) (Ths(g) (f)f ) 7).

Proof. For simplicity, we set ¢ := Ihg(g), ¢ := Thg(h). By a straightforward com-
putation using [g, h] € Galg[m + n] (Proposition 4.3.5) and ¥ (f)f~* € F.(m + 1)
(Lemma 4.3.4), we obtain
[, l(f)f
= [, @l (@D - o™ )W - ()
= (N7 (NN - w(e(H)F )
() f P mod . (m +n + 2).
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Since Y(f)f~" € Fr(m +1),0(f)f " € Fr(n+ 1) and [§r(m + 1),r(n +1)] C
F(m + n+ 2), we have

[, dl(F)f = (@) (o) - s((w(HF ™
(f)f T modFp(m+n +2).

Since we easily see that

(WA DN =0E N - () ™)™ mod§r(m+n+2),

we obtain the assertion. O

{(¢(f)f1)l¢(¢(f)f1) =Y(e(Nf DB mod §(m +n + 2),

By Proposition 4.3.9, the direct sum of Johnson homomorphisms ngm] over all

m > 1 defines a graded Lie algebra homomorphism from gr(Galy) to the derivation
algebra of gr(F,) as follows. Recall that a Z;-linear endomorphism ¢ of gr(F,) is
called a derivation on gr(F,) if it satisfies

5[z, y]) = [6(z), y] + [,6(y)] (z,y € gr(S7))-

Let Der(gr(F,)) denote the associative Z;-algebra of all derivations on gr(§,) which
has a Lie algebra structure over Z; with the Lie bracket defined by [§,4’] := 0 o
§' — 0" 0 for 6,0" € Der(gr(§,)). For m > 0, we define the subspace Der,, (gr(F:))
of Der(gr(§,)), the degree-m part, by

Der (g1(5,)) = {6 € Der(gr(§,)) | 5(er, (§)) C 84 (§:) for n > 1}

so that Der(gr(F,)) is a graded Lie algebra over Z;:

Der(gr(3,)) = @D Der(x(3.)).

m>0

A derivation § € Der,,(gr(F,)) is called a special derivation if there are Y; €
gr,.(§r) such that §(X;) = [V;, X;] (1 < 4 < r) and moreover if the condition
i 11Vi, X;i] = 0is satisfied, a special derivation is said to be normalized ([Ih4, §2]).
It is easy to see that normalized special derivations form a graded Lie subalgebra

Der™®(gr(g,)) = @ Der,"(gr($r))

m>0

of Der(gr(F,)). Since a derivation on gr(F,) is determined by its restriction on
H = gr,(F,), we have a natural inclusion, for each m > 1,

Derm(gr(gr)) C HOHIZL (H> grm—i—l(ST)); o 6|H
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Hence we have the inclusions

Der;®(gr(§r)) C Dery (gr(S,)) C @ Homgz,, (H, gr,, 1(8r)),

m>1

where Dery (gr(§,)) (resp. Der}®(gr(§,))) is the Lie subalgebra of Der(gr(g;))
(resp. Der™®(gr(F,))) consisting of positive degree part. Although we make use
of the arithmetic pro-l Johnson homomorphisms, the following proposition was
essentially proved by Ihara in [Th4, §2].

Proposition 4.3.10. The direct sum of Tém] over m > 1 defines the Lie algebra
homomorphism

[m]

gr(r) := Tg @ gr(Galy) — Der®(gr(3)).
m>1

Proof (Cf. [Da, Prop. 3.18]). By Theorem 4.3.6(1), it suffices to show that for
g € Galg[m], the map f + Ths(g)(f)f ! is indeed a special derivation on gr(g,).
This was shown in [Ih4, §2] for the case r = 2. We give, herewith, a proof for the
sake of readers. Let g € Galgy[m] (m > 1) and s € §,.(i),h € §,(j). By using the
commutator formulas

[ab,c] = a[b,cla™" - [a,c], [a,bc] = [a,b]-bla, b (a,b,c € G),

we have

= [ths(g)(s), Ihs(g)(®)][s,1] "

= [ss™ ' Ths(g)(s), Ths(g) (t)t~t][s,¢] "

= s[s~" Ths(g)(s), Ihs(g)()t™"] - (Ths(g) (t)t~")[s~" Ths(g)(s). 1]
- (Ihs(g) ()t~ s~ s, Ths(g) ()t ] (Ths () (t)t ™) [s. 1]
- (Ths(g) ()t~ 1) s, 1]~

= s[s™ " Ths(g)(s), Ths(g)()t™"] - (Ths(g)(t)t™)[s™" Ths(g)(s), 1]
- (Ths(g) ()t~ 1) ~'s™ s, Ths (g) ()t~ ][Ths(g) (t)¢ ", [s, 1]].

Since s !Thg(g)(s) € &»(i + m),Ihg(g)(t)t™ € F.(j + m) by Lemma 4.3.4, we
have

[s7 ' Ths(g)(s), Ths(g) ()t '] € §pl(i + j + 2m),
[Ths(g) ()t ", [s,t]] € §r(i + 25 +m).
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By these claims together, we obtain

Ths (g)([s,t])[s, 8] = sThs(g) ()t~ [s~" Ths(g)(s), ] (s Ths(g) ()t~ ")~
: [S,Ihs(g)(t)t_l] modF,(i +j5+m+1).

Noting that z[s ™1 Thg(g)(s),tjz~! = [ “!hs(g)(s),tmod Fp(i+j+m+1) for z €
§r, we proved that f — Thg(g)(f ) !is a derivation. That it is special and normal-
ized follows from Thg(g)(z;) = vi(9)wiyi(g)~' (1 <i <r) and Thg(g)(xy---x,) =
x1 - -, for g € Galg[m] (m > 1). O

Finally we introduce an analogue of the Morita trace map ([Mtl, 6]). For
each m > 1, we identify Homg, (H, H®("+V) with H* @7, H®("+1) where H* :=
Homy, (H,Z;) is the dual Z;-module, and let

em+1 : Homg, (H, H®" ) = H* @7, HE™ D —, gom
be the contraction at the (m + 1)-component defined by
(4.3.11) Cmt1(@®h1 ® -+ @ hiny1) 1= @(hmy1)h1 @ - @ ha
for ¢ € H*, h; € H. We then define the mth pro-l Morita trace map
(4.3.12) Tel™ : Homg, (H, H®™+Y)) — S™(H)

by the composite map q o ¢,41.

85. Pro-I Magnus—Gassner cocycles
85.1. Pro-/ Fox free derivation

The pro-l Fox free derivative M 28] — Za][§-]] (1 <4 <r)is a continuous
Z;-linear map satisfying the followmg property: For any « € Z;[[§,]],

", da
(5.1.1) a=egz (@) + Y m—(x;—1).

We note by (5.1.1) that §& € I} o o if @ — egi5,))(a) € I, 5 o forn > L.
Here are some basic ruleb for the pro-l free calculus:

1 axi — 4.
0 5ot =
. 0 0 0
(1) G = Senn(8) +ogy (o8 € BF)
-1
O _ 2L (res.

(iii) aa?j oz,
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% = % (f € §r, € Zy), where 8 is any element of Z;[[§,]] such that
5(f]— 1) = ]J“‘ — 1 exists.

) )

(v) 85((5.)) = go(a%) (¢ € Aut(3,), o € Z[[§,]]). (Note that ¢(z1), . .., o(x,)

are free generators of §,.)

(iv)

(vi) If § is an open free subgroup of §, with free generators y1,...,ys, we have

801 S 804 3yi (a c Zl[[&’”)

the chai le: — =
e chain rule Dz, £ Dy, O

The higher derivatives are defined inductively and the [-adic Magnus coeffi-
cient u(I; ) of a € Zi[[Fr]] for I = (iy---1iy) is expressed by

Mo
I ) = ezy3,) <M)
11 in

so that the pro-I Magnus expansion (3.1.4) is written as

"«
@(a) = €Zz[[5r]](0‘) + E €7,[[3,]] <8£B‘ or ) Xil in
11 In

1<iy,...,in<r
85.2. Pro-/ Magnus cocycles

Let Thg : Galp, — P(F,) C Aut(F,) be the Ihara representation associated to S in
(2.2.3). Let ~ : Zy[[§r]] — Zi[[T+]] denote the anti-automorphism induced by the
involution §, 3 f — f~! € §,. We define the pro-l Magnus cocycle Mg : Gal;, —
M(r; Z;[[$+]]) associated to Thg by

(5.2.1) Mg(g) = (W)

for g € Galg. In fact, we have the following lemma.

Lemma 5.2.2. The map Mg is a 1-cocycle of Galy with coefficients in GL(r;
Z,[[3+]]) with respect to the action Ihg. To be precise, for g,h € Galy, we have

Ms(gh) = Ms(g) Ihs(g)(Ms(R)),

where Thg(g)(Mg(h)) is the matriz obtained by applying Thg(g) to each entry of
Mg(h).

Proof. Let y; :=Ihg(h)(z;) for 1 < j <r. Then we have

O1hs(gh)(x;) _ 91hs(g)(y;) '

(5.2.2.1) B .
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Using the basic rules (v), (vi) of the pro-l Fox derivatives, we have

8Ihs Z 8Ih5 g 8Ih5( )( )
81'1 thS g Ox;

- Oy; \ 91hs(g)(wa)
= ;Ihs(g) ( 8%) RO
By (5.2.2.1) and (5.2.2.2), we have

01Ths(gh)(x; "~ 0Ths(g)(z, dy;
Sé.il)( ) _ Z Sa(il)( ) IhS(g) (aza)

(5.2.2.2)

a=1

Since Thg(g) and ~ are commutative operators, we obtain the desired equality of the
matrices. Taking h = g~1, we see that Mg(g) € GL(r; Z[[S,]]) for g € Gal,. O

For m > 1, we let Mg"] be the composite of Mg restricted to Gal,[m] with

the natural homomorphism GL(r; Z;[[§,]]) — GL(r; Zl[[gr]]/lg%lr ),

MY Galym] — GL(m Zu[8 1)/ 13 ).

A relation between Mgn] and the mth pro-l Johnson homomorphism is given as
follows. First, recall the identification ©,, : gr, (§,) ~ H®™ by the degree-n part
of the Magnus isomorphism in (4.1.2). We then have a matrix representation of
Homg, (H, H®("+1) for m > 1,

Il : Homg, (H, H®(" D) — M(r; gr,, (Zi[[3]]))

by associating to each element 7 € Homg, (H, H®("+1)) the matrix

Iri = (22225 e 5.1

(5.2.3)

Proposition 5.2.4. For g € Gali[m], we have

Mg (g) = 1+ 7 (g)])-
Proof. By Theorem 4.3.6, we have

(O541 05 (9))(X;) = Ths(g)(x)z;
and so
00, oty (X;)  0Ths(g)(xj)a; !
o0x; o o0x;

_ 0lhs(g)(z;)
6IZ‘

— Ihs(g)(xj)xjfléij.
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Since Ihs(g)(xj)xj_l € §r(m+1), we have Ihg(g)(xj):z:j_léij = 0;; mod IZ[ET” and

hence the assertion is proved.

In terms of || - ||, the mth pro-I Morita trace Trl™(7) in (4.3.12) is, in fact,
written as the trace of the matrix ||7|| .

Proposition 5.2.5. Form > 1 and 7 € Homg, (H, H®("+1) we have
Tel") (7) = g (62(Orm (II711))),
where g, : H®™ — S™(H) is the natural map.

Proof. We identify Homg, (H, H®("+D) with H* @ H®™. Let 7 = ¢ ® X;, @ - - -

® Xi,.., (¢ € H*). By (5.2.3), we have
~ (0,41 °7) (X))
(il = 35 ==
(5.2.5.1) =

- 00, (Xi, ® X, )
_ X, m—+1 11 Tm+41 )

1=1
We note that any element Y of H®(™+1) can be written uniquely as
Y=Y10X|+ - +Y, X, Y,cH®

and then we have, by (5.1.1),

90,,11(Y)
—mil 7 — 9y,
S~ 0,1(1)
Therefore we have
00 L (X;, ® - ®X;
+1( 1 axi m+1) — 5i7im+1Xi1 R ® Xim

and hence, by (5.2.5.1),

tr(Om([|7])) = ¢(Xi, ) Xiy ®@ - @ X

where the right-hand side is ¢;,+1(7) by (4.3.11). By the definition (4.3.12), the
assertion is proved. O

Now, for an application later on, we extend the construction of the pro-I
Magnus cocycle to a relative situation. Let & be a pro-l group and let ¢ : §, —
® be a continuous surjective homomorphism. We also denote by v the induced
surjective homomorphism Z;[[§,]] — Z;[[®]] of complete group algebras over Z;.
Let 91 := Ker(¢)) so that §,/91 ~ &. We assume that 91 is stable under the action
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of Galy through Thg, namely Ihg(g)(Dt) C 0N for all g € Galy (this is certainly
satisfied if M is a characteristic subgroup of §,.). Then we have a homomorphism
Ihsw : Galk — Aut(Zl[[ﬁ]D defined by

(5.2.6) Ths,y(9) (¥ (@) = ¥(Ths(g)(a)) (o € Zi[[3,])-
Let Galg[¢)] be the subgroup of Galy defined by

Galk [w] = Ker(IhS,w)
= {g € Galyg | P Olhs(g) = ¢}
and let k[¢] denote the subfield of Q/k corresponding to Galg[1)]. Now we define

the pro-l Magnus cocycle Mgy, : Galp — GL(r;Z;[[®]]) associated to Thg and v
by

(5.2.7)

Mg,y (9) =¥ (Ms(g)) (g € Galy),

where the right-hand side is the matrix obtained by applying ¢ to each entry of
Ms(g). For m > 1, let M[m] be the composite of Mgn] with the natural homomor-

phism GL(r; Z;[[]] /IZ[*.;T”) — GL(r; 4 [[®]] /I%”[J[Fé”) induced by ¢. Lemma 5.2.2

and Proposition 5.2.4 are extended to the following proposition.

Proposition 5.2.8. With notation as above, the following assertions hold:

(1) For g,h € Galy, we have

Mg 4 (gh) = Mg (g) Ths 4 (9)(Ms ¢ (h)).

(2) For g € Galy, we have

M g) = T+ v (I @),
(8) The restriction of Mg to Galg[y)], denoted by the same Mg,

Mg,y : Galg[1)] — GL(?";Zl[[@]/Ién[J[ré]])

is a homomorphism and factors through the Galois group Gal(Qs/k[v]), where
Qg is the subfield of Q corresponding to Ker(Ihg) as in (2.2.4). We call it the
pro-l Magnus representation of Galg[¢)] associated to Thg and 1.

Proof. (1) The formula is obtained by applying ¢ to the both sides of the formula
in Lemma 5.2.2.

(2) This is also obtained by applying 1 to the matrices of the both sides of the
formula in Proposition 5.2.4.
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(3) Suppose g,h € Galgy. Since ¢ o Ihg(g) = 9, we have Ihg,(g)(Mg ¢ (h)) =
Mgﬂ/,(h) and so Msﬂ/) (gh) = Msvw(g)M&w(h). Since Mng(g) =1 for g < Ker(IhS),
we have Ker(Mg ) D Ker(Ihg) and hence Mg 4 factors through Gal(Qg/k[¢]). O

Forn >0, let m, : §» — §,/&r(n+1) be the natural homomorphism. We con-
sider the case that ¢ = m,, and so Thg , = Ih(Sn). By (4.3.1) and Proposition 4.3.3,

we have

Galy[m,] = {g € Galg | m, oThg(g) = 7}
= {g € Galy, | Thg(g9)(f) = fmod F,(n + 1) for all f € F.}
= Galk[n].

Then we have a family of pro-I Magnus cocycles

(5.2.9) Mg, : Galy — GL(r; Z[[3,/3r(n + 1)])),
and the pro-l Magnus representation

(5.2.10) Mg, : Galg[n] — GL(r; Z[[r/Sr(n + 1)]])
associated to Ihg and m,, for n > 0.

85.3. Pro-/ Gassner cocycles

This subsection concerns the pro-l (reduced) Gassner cocycles as special cases of
the Magnus cocycles. For the construction of the pro-I reduced Gassner cocycles,
we follow Oda’s arguments [O2]. We also refer to [N, II] for Magnus—Gassner

matrices.

The pro-l Gassner cocycle is defined by Mg, in (5.2.9). To be precise, let
A, :=7Z[[u1, ..., u.]] denote the algebra of commutative formal power series over
Z; of variables uq,...,u,, called the Iwasawa algebra of r variables. The corre-

spondence x; mod §.(2) — 1+ u; (1 < i < r) gives the abelianized pro-I Magnus
isomorphism

0: Z[[S:/3r(2)]] = A,

We let 7 := 7 and
(5.3.1) XA, = Ihg gor : Galy — Aut(A,),

which is defined by (5.2.6) with ) = 6 o 7. In fact, by Lemma 3.2.1, x4, is given
by

(532)  xa, (9)(w) = (60 m)(Ihs(g) (i — 1)) = (L+u)"@ —1 (1 <i<r).
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Then the pro-l Gassner cocycle of Galy associated to Thg,
Gassg : Gal, — GL(r; A,),
is defined by

(5.3.3) Gassg(g) = ((9 o) <W)> (g € Galy),

where we note that we do not need to take the anti-automorphism ~ in (5.3.3) to
obtain the 1-cocycle relation

Gassg(gh) = Gassg(g)xa, (9)(Gassg(h)) (g,h € Galy),

since A, is commutative. Here x4, (g)(Gassg(h)) is the matrix obtained by apply-
ing xa,.(g) to each entry of Gassg(h). We can express Gassg(g) in terms of l-adic
Milnor numbers as follows.

Proposition 5.3.4. The (i, j)-entry of Gasss(g) (g € Galy) is expressed by
Gasss(9)i;
xa, (9)(u;) 1 y o .
T w +Z Z p(gsdn - i), o, (i =J),

n>1 1<iy,...,i, <7
_ inFL

_XA,‘(Q)(UJ')<H(9§Z.J.)+Z > U(g§i1"'7;n7;j)ui1"'uin> (1 # J).
n>1 1<t in<r

Proof. By Lemma 3.2.1 and a straightforward computation, we have

dhs(g)(x;) _ Fyi(9)x) " y;(9) 7!

axi a.’Iji
,fCXl(g)_l O
(VT s oale), -1 995(9)
= y;(9) P 5m+(1 yi(9)z;" " y;(9) ) oz,

and hence, by (5.3.2),
(6om) <8Ihs;51;<xj>>
w)xi(9) —
= (0 om () Ty,

u;
9y;(9)

(5.3.4.1)
+ (1= (1 +u))X@)(@or) (8% )

= X090 (g o )y (6))65 — o, (9) () (0 0 7) (ayf(g)> .

U 633%
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Here we have

(5.3.4.2) (O om)(yi(9) =1+ > plg: Ij)ur,
|11>1

where we set uy := u;, -+ - u;, for I = (i1 ---iy), and (5.1.1) yields
;i) _ oy
(5.3.4.3) (fom) (8:01 = |”Z>O,u(g,h])u1

y (5.3.3), (5.3.4.1), (5.3.4 ) and (5.3.4.3), we have

OThg
G
asss(g < 8901 )
xa, (9)(u;) o
= 05 L+ Y g Ii)ur | = xa, (9)(ws) > ulgs Tig)us
i 171>1 1710
By p(g;ii) = 0 and a simple observation, we obtain the assertion. O

By (5.2.10), when Gassg is restricted to Galg[1], we have a representation
Gassg : Galg[1] — GL,(A;),

which we call the pro-l Gassner representation of Galg[l] associated to Ihg. It
factors through the Galois group Gal(Qgs/k[1]) by Proposition 5.2.8(3).
In the following, for simplicity, we let

=52, = [FLF) and £ = F/F = Hi(3.2).
We consider £ as a A,-module by conjugation: For f € §, and f’ € §.., we set
[f].(f mod §) := ff'f~' mod F

and extend it by the Z;-linearity and continuity. The structure of the A,-module £,
can be described by means of the pro-I Crowell exact sequence ([Ms2, Chap. 9]).
Attached to the surjective homomorphism 7 : §. — §,/F.., the pro-l Crowell
exact sequence reads as the exact sequence of A,-modules:

V2

0— £, 25 AP 1y — 0,

where Iy, is the (augmentation) ideal of A, generated by uy,...,u,, and vy, vy
are A,-homomorphisms defined by

6:35) nifmods) = (00m) (55)) (7w w((&))zzgxiui.
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(Convention: An element ()\;) of AP is understood as a column vector.) Hence we
have the isomorphism of A,-modules induced by v4, called the Blanchfield-Lyndon
isomorphism:

(536) vy L, = {(/\z) € A?r | Z::l AU = O} .
We define the action Metag of Galy on £, through the Ihara representation
Thg: For g € Galy, and f' € §.,
Metag(g)(f modF)) := Thg(g)(f") mod F.

It is easy to see that Metag(g) is a xa,-linear automorphism of £,, namely, a
Z;-linear automorphism and satisfies

Metas(g)(A.(f mod §7)) = x4, (9)(A)-(f mod §')

for A € A, and f’ € F,.. When Metag is restricted to Galy[1], we have the repre-
sentation, which we call the pro-l meta-abelian representation of Galy[1] associated
to Thg,

Metag : Galg[1] — GL4 (£,.),
where GLj, (£,) is the group of A,-module automorphisms of £,. Regarding £,

as a A,-submodule of A®" by the isomorphism (5.3.6), Metag and Gassg has the
following relation.

Proposition 5.3.7. For g € Gal, and [’ € F.., we have
(v1 o Metas(g))(f mod §) = Gasss(g)(xa, (9) o v1)(f' mod ).

When Metag and Gassg |g, are restricted to Galg[1], they are equivalent represen-
tations over A,.

Proof. The first assertion follows from direct computation: By (5.3.1), (5.3.3) and
(5.3.5), we have, for any g € Galy, and f’ € F,,

(11 0 Metag(g))(f' mod §;')
= 1 (Ths(g)(f") mod 8”>

=(0en (F50))
( (ZSIIES (( 1) ths8<9>(xa)>>
5(9)(7a) z;
(;(9071') (W) (0 omolhg(g)) (Si:) )

= Gasss(g)xa, (9)(v1(f mod F)).
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When Metag and Gassg are restricted to Galg[l], by the first assertion, we have
the commutative diagram of A,-modules for any g € Galg[1]:

QTCL> A;Br

Metas(g)l lGaSSS(g)
£, AP

from which the latter assertion follows. O

Next, we introduce the pro-I reduced Gassner cocycle associated to the Thara
representation Thg. For this, we follow Oda’s arguments ([O2]). We first define a
certain A,-submodule £P™ of £, which Oda calls the primitive part of £, as
follows. For 1 <1 < r, let 9; be the closed subgroup generated normally by x; and
let o= F, /M. Let AY = Zy[[uy, .. s, ow] ~ Z[[3 /(Y]] (1i; means
deleting ;) with augmentation ideal IA&“? and let 6; : A, — AY be the Z;-algebra
homomorphism defined by 6;(u;) := u; if j # ¢ and 0;(u;) := 0. Note that any
AP module is regarded as a A,-module via §;. Let e = (s&“)’/(s&”’)" and let
& L — Eﬁi) be the A,-homomorphism induced by the natural homomorphism
5 — Sq(j). Then the primitive part Sﬁrim of £, is defined by

(5.3.8) gprim ﬂ Ker(&;).
=1

We set w := uy - - - u,.. The following theorem and the proof are due to Oda.

Theorem 5.3.9 ([02]). With notation as above, the following assertions hold.

(1) The Blanchfield-Lyndon isomorphism vy in (5.3.6) restricted to £P™™ induces
the following isomorphism of A.-modules

Sgrim o] {()‘j%) S A?T | )‘j S AT, Z;:l >‘j = 0}
In particular, £P"™ is the free A.-module of rank r — 1 on the basis

vi= (=2, 20,...,0),...,0_1:= (0,...,0,— 2, L)

w1’ ug’ Up—1 ) Up

(2) £prim s stable under the action of Galy through Metas and defines the 1-
cocycle

Gassw? : Galp — GL,_1(A,)

with respect to the basis v1,...,v,—1 and the action xa, in (5.3.1). We call

Gassfged the pro-I reduced Gassner cocycle of Galy associated to Ihg.
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Proof. (1) We define the A,-homomorphism & : A" — (A{?)®—1) by

£i<t()\17 ey Ar)) = t(éi()\l), . ,61‘()\2‘,1), (Si()\i+1)7 ey 61()\r))

Then we have §; = £i|gr for 1 < i < r and the commutative diagram of A,-modules:

0 £, AT Iy, 0
\L& \Lfl i&‘,
0——> e~ (AD)yat-1 I 0,

where two rows are the pro-I Crowell exact sequences. It is easy to see that Ker(é)
is given by

Ker(€) = { *(Mttiy -+ oy N 1is Niy Nip1tis - - Aet) | A € Ap (1< 5 < 7))
and hence, by (5.3.6) and (5.3.8), we have
Lo — {(N) € AZT | Y00 Ajuy =0, Aj =0 moduw, if i # j}.
Since A, is a regular local ring, it is factorial. Therefore we have the first assertion,
errim = f();) € AP | Z;Zl Ajuj =0, Aj =0 mod 3 (1<j<nr)}.

The assertion for a basis of Sp“m is clear.

(2) Since Ihg(g)(z;) is conjugate to 2X'? for g € Galy and 1 < i < r, definition
(5.3.8) implies that £P'™ is Galg-stable under the action Metag. So we may write,
for1<j<r—1,

(5.3.9.1) Ths(g Z Gassred 9)ij Vi,

where Gass¥4(g)i; € A, is the (i, j)-entry of the representation matrix of Thg(g)
with respect to v1,...,v,_1. Then we have, for g, h € Galy,

Ths(gh)(v;) = Ihs(g)(Ihs(h)(v;))

=Ths(g (ZGass,md ”'ui>
r—1
Xa, (Gass§?(h)i;) Ths(g)(v;) (by (5.3.1))

|
‘3@
I
H»—A

( Z_: Gasss®(9)uixa, (g )(Gabser(h)z‘j)> vy,

t=1 i=1
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which means the cocycle relation
Gassyd(gh) = Gassw(g)xa, (9)(Gass¥(h)).

Hence the assertion is proved. O

When we restrict Gassiy® to Galg[1], we have a representation

Cassiwd : Galg[1] — GL(r — 1;A,.),

which we call the pro-l reduced Gassner representation of Gal[l] associated to Thg.

Let T be a free pro-I group of rank 1 generated by z so that Z,;[[T']] is identified
with the Iwasawa algebra A := Zi[[u]] (z + 1+ u). Let 3 : § — T be the
homomorphism defined by 3(z;) := « for 1 <i < r. Let xa be the action of Galy
on A defined by x(g)(u) := (1 +u)X!(9) —1 for g € Gal, Then we have the pro-I
Magnus cocycle associated to Thg and 3,

Burg : Galy, — GL(r; A),

which we call the pro-l Burau cocycle of Galy, associated to Ihg. It is the 1-cocycle
of Galy, with coefficients in GL(r; A) with respect to the action y . By definition,
we have

Burg(g) = Gasss(9)|uy=—u,—u-
Similarly, we have the pro-l reduced Burau cocycle associated to Thg,
Burrse<i : Galp, — GL(r — 1; A),
defined by
Bur¥d(g) := Gassw(9)|uy=...—u, —u-
Since (5 0 Ths(g))(xi) = 3(yi(9)ziyi(9) ") = 3(ws) for g € Galg[1], we have

30lhs(g) =3 (g9 € Galg[l]).

So, when we restrict Burg and BurrsEd to Galg[1], we have representations
Burg : Gali[1] = GL,.(A), Burs?: Galg[1] — GL,_;(A),

which are called the pro-l Burau representation and the pro-l reduced Burau rep-
resentation of Gal[1] associated to Thg, respectively.
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§6. [-adic Alexander invariants
§6.1. Pro-/ link modules

Let g € Galg. As in (3.3.1), let IIs(g) be the pro-l link group of g associated to
the Thara representation Thg:

Hs(g) = (w1, -2 | y1(9)al Dyi(g) tart = - = ()20 @y, (9) oyt = 1)
= 8’7"/9’15(.9)7

where Mg (g) is the closed subgroup of §, generated normally by the pro-I words

y1(9)2X () ety (9)2X Pya(9)Mar . Let 4 1 §, — Tls(g) be the nat-
ural homomorphism and let 7; := ¥(x;) (1 <4 <r). Recall that a(g) denotes the
ideal of Z; generated by x;(g) — 1. Then we have

Is(9)/Ms(9) = Zifa(g)ln] @ -~ & Zi/alg)lve] = (Zi/a(9))*",

where [y;] := v, modIg(g)’ (1 <4 < r). The correspondence 7; — u; induces the
Z,-algebra isomorphism

0(9)  Zal[s(9)/Ms(9)' T = Ar /(1 + un ) @71 =1, (L )97 1),
We denote the right-hand side by A,(g):
Ar(g) == A /(1 a1 — 1 (1 4w, )@~ 1),

and by I (4 the augmentation ideal of A.(g).
We define the pro-l link module £5(g) of g associated to Thg by

Ls(g) :==s(g)' /s (g)",

which is considered as a A-(g) = Z;[[IIs(g)/I15(g)’]]-module. It may be seen as an
analogue of the classical link module in link theory (cf. [Hi], [Ms2, Chap. 9]).

Let w : IIg(g) — s(g)/Is(g)’ be the abelianization map. We define the pro-
I Alexander module As(g) of g associated to Ihg by the pro-l differential module
associated to w, namely the quotient module of the free A, (g)-module on symbols
dry for v € IIg(g) by the A, (g)-submodule generated by d(v17y2) — dy1 — w(y1)dy2
for v1,v2 € IIg(g) ([Ms2, 9.3]):

As(g) = P Ar(9)dv/(d(mr2) — dy — @(1)dyz (11,72 € s (9))a, (g)-
v€ls(g)

We define the l-adic Alexander matriz Qs(g) by the Jacobian matrix of the relators
of IIg(g):

Oui (X Doy (g) 11
(6.1.1) Qs(g) = <(9(9)0wO¢)< yi(9)z; a:i](g) : ))
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Proposition 6.1.2. With notation as above, the following assertions hold.

(1) The correspondence dry — ((0(g) o w o z/))(%)) gives the isomorphism
As(g) — Coker(Qs(g) : Ar(9)®" = Ar(9)®"),

where [ is any element of §, such that v = (f).
(2) (Pro-l Crowell exact sequence). We have the following exact sequence of A,.(g)-

modules:
0— Eg(g) i> le(g) ﬁ) IAT(g) — 0,
where v1, vy are given by
vi(y' modIls(g)”) := dvy (v € Is(g)");
va(dy) := (0(g) o @)(7) =1 (v € Ts(g))-
Proof. We refer to [Ms2, Thms. 9.3.6, 9.4.2]. O
Let ¢4 : A, — A.(g) be the natural Z;-algebra homomorphism.

Proposition 6.1.3. We have

Qs(g) = d4(Gasss(g) — 1)
and its (i, j)-entry is given by
Qs(9)i

¢g<z Z ﬂ(g;il"'ini)uil"'uin> (i =3j),

n>1 1<iy,...,in, <r
— in FL

Pg <_ u; </~L(9§ij) + Z Z p(gsin - indi)ug, - uz)) (i # 7).
n>1 1<iq,..., i, <r

Proof. By definition (6.1.1), we have

0y, 2X1(9) i(g) ot
Qs(o)s = <e<g>owow>< COLRETORS )

By the basic rules of pro-I Fox free derivatives, we have
xi(9) -1 xi(9)

0y;(g9)xi" " yi(g) " ayt _ Oy(g)ai " yi(9) 7 @) (o) -1p=1
J Ox; = Jaxl —0ijy;(9) "y (g) ey

By (5.3.3) and 0(g) ow 09 = ¢4 0 0 o m, we have

Dy;(g)z}' Wy,
al’i

(0(g) oo t) l9)” ) = ¢y(Gasss(g)ij),
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and we also have

(6(9) 0 @ 0 ) (s (9)x} Vs (9) ;) = 0(9) ()T = (L g = 1.
Therefore we have
Qs(9)ij = dg(Gasss(g)i; — dij)-
The second assertion follows from Proposition 5.3.4 and
030, (9) 1)) = B4((1+ 1) — 1) = ().
O

Corollary 6.1.4. For g,h € Galg[l], we have the following isomorphisms of A,-
modules:
As(hgh™') ~As(g),  Ls(hgh™) ~ Ls(g).

Proof. Since Gassg : Galy — GL(7; A,.) is a representation, we have

Qs(hgh™") = ¢4(Gasss(hgh™") — I) = ¢,4(Gasss(h))Qs(g)dy(Gasss(h)) ™"

by Proposition 6.1.3. Then the first assertion follows from Proposition 6.1.2(1).
The second assertion follows from Proposition 6.1.2(2). O

86.2. [-adic Alexander invariants

For n > 0, we define the nth I-adic Alexander ideal €g(g)™ of g € Galy associated
to Thg by the nth Fitting ideal of the pro-I Alexander module 2Ag(g) over A,.(g).
The nth I-adic Alezander invariant Ag(g)™ is then defined by a generator of the
divisorial hull of €g(g)™. By Proposition 6.1.2(1), €s(g)(™ is the ideal generated
by all (r —n)-minors of Qg(g) if r —n > 0 and €g(g)™ := A,(g) if r —n < 0, and
Ag(g9)™ is the greatest common divisor of all (r —n)-minors of Qg(g) if r—n >0
and Ag(g)™ :=1ifr —n <0:

g.c.d of all (r — n)-minors of Qs(g) (r—mn > 0),
As(g)t =
1 (r—n <0).

We note that Ag(g)™ is defined up to multiplication of a unit of A,.(g). We write

Es(g) (resp. As(g)) for €5(g)® (resp. Ag(g)®) and call E5(g) (resp. As(g)) the
l-adic Alexander ideal (resp. l-adic Alexander invariant) of g associated to IThg.
From Proposition 6.1.3, the following proposition is immediate.

Proposition 6.2.1. For g € Galy, we have

As(g) = ¢g(det(Gasss(g) — 1))
When g € Galg[1], As(g) = 0 if and only if Gassg(g) has the eigenvalue 1.
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Moreover, since the l-adic Alexander matrix Qg (g) is described by l-adic Mil-
nor numbers as in Proposition 6.1.3, nth [-adic Alexander invariants are also de-
scribed by [l-adic Milnor numbers (cf. [Ms2, Chap. 10], [Mu]).

87. The Ihara power series

In this section, we suppose that S = {0, 1,00} and so k = Q. In the following, we
will omit S in the notation. The Ihara representation in this case is

Ih : Gal(@ — P(Sg),

which factors through the Galois group Gal(2;/Q) by Theorem 2.2.6(2), where €
denotes the maximal pro-l extension of Q[1] = Q((;=) unramified outside .

§7.1. The Thara power series

The following lemma is a restatement of [Thl, Thm. 2(i)]. See also [Ih2, §1(D)
Example 2|. For the sake of readers, we give a proof using Theorem 5.3.9.

Lemma 7.1.1. We have £3 = £Srim with basis '(—ugz,u1) over Ay, and t(—uz,uy)
= v1([z1, 22]).

Proof. By Theorem 5.3.9(1), £8""™ is the free Ay-module with basis *(—ug,u;).
On the other hand, we note that Aju; + Asus = 0 implies Ay = —aug, Ao = auy
for some a € As, because Ay is a unique factorization domain. Therefore £o is

also the free Ay-module with basis *(—ug,u;) by (5.3.6). Hence £5 = £5"™. The
second assertion follows from

wor () -y o (Yml) o,

Thanks to Lemma 7.1.1, Thara introduced a power series Fy(uj,us) € Ag,

O

called the Thara power series, by the following equality in £o:
(7.1.2) Ths(g)([z1, x2]) = Fy(u, u2)[x1, x2] mod 5.

The following theorem gives an arithmetic topological interpretation of the Ihara
power series Fy(u1,u2). For a multiindex I = (41 - - - 4,,) with 4; = 1 or 2, we denote
by |I]1 (resp. |I]2) the number of j’s (1 < j < n) such that i; = 1 (resp. i; = 2).
For integers n1,no > 0 with ny +ny > 1 and g € Galg, we let

plging,ne) = > plg:112)+ Y plg;I21).

‘I‘lz’nl—l |I|1:n1
[]2=n2 [T]a=na—1
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We recall the pro-l Gassner and the pro-I reduced Gassner cocycles in (5.3.3) and

(5.3.9.1):
Gass : Galg — GL(2; A2); Gass™? : Galg — AJ.

Theorem 7.1.3. With notation as above, we have, for g € Galg,
F,(u1,us) = Gass™(g)

XAZ( (u1ug . ..
U iz ( E E (9511 Infng1)ti, u n>

n>1 1<iy,...,in <2

1n7étn+1
_ X (9)(uaue) () S ulginn na)ult
Uq Uz ) s 102 )y 2 .
n1,m22>0
ni+n1>1

Proof. Applying the As-homomorphism v; to (7.1.2), we have, for g € Galy,

Uy

v1(Ih(g)([z1, 22])) = Fg(ur, ua)vi([z1, 22]) = Fy(ui, u2) <_U2> .

On the other hand, by the definition of Gassi¥®(g) (cf. (5.3.9.1)), we have
—u
(Ih(g) (1, 22])) = Cass™(g) ( u) .
Hence we have

red (

Fy(u1,u2) = Gass™(g).

By Proposition 5.3.7 and Lemma 7.1.1, we have

vi(Th(g)([z1, 2])) = Gass(g)xa, (9)(v1([z1, 22]))
_ Gasslg) (—m (g)(w)) |

XA, (9)(u1)
A straightforward calculation using Proposition 5.3.4 yields

Gass(g) <_XA2 (g)(u;))

XA, (9) (w1

XAQ( U1U2 . .. — U2
ity < + E E w(g;i1 -+ lnlng1 )iy un> <u1 )

n>1 1<ip,...,i,<2

in?éin+1
XA \g)lurtu —Uu
= Xa(0)ltrra) <1+ > u(g,nl,nz)ullu’;?)( )
UL U U
ni,n2>0
ni+ni>1

Getting these together, we obtain the assertion. O



ARITHMETIC TOPOLOGY IN IHARA THEORY 681

Thara also interpreted £9 in terms of Fermat Jacobians. For a positive integer
n, let C,, be the nonsingular, projective curve over QQ defined by

X"yt =2"

and let Jac,, be the Jacobian variety of C,,. Let T(Jac, ) be the l-adic Tate module
of Jacy,:

T(Jac,) := Hom(Q;/Z;, Jac,(Q)) ~ HI"8(C,,(C),Z) @ Zi,

and let
T :=lim T(Jac,),
plits

where the inverse limit is taken with respect to the maps T(Jacp4+1) — T(Jacy,)
induced by the morphisms C,, 11 — Cy; (X,Y,Z) = (X, Y, ZY). Let gxn, 9yn
be the automorphisms of C,, := C,, X Spec @ Spec Q over IE% defined by

9X . ¢ (X,Ya Z) = (Clanyaz)a gy : (X,Y, Z) — (XaCl"Y7Z)

and set gx := lim, _ gx n, gy := lim._ gy,. Then Gal(a/P}@) = (Z/1" L)) gxn @
(z/1"Z)gy,n and so lim, Zl[Gal(a/P}@)] ~ Ay by the correspondence gx
14+ ui,gy — 1+ ug. Thus T is regarded as a Az-module. Then we have the
isomorphism of Ag-modules
Lo ~T.
For an explicit construction of the basis of T corresponding to [z, 23], we consult
[Ae, §13].
Now, the main results in [Th1] are arithmetic descriptions of

o values of Fy(u1,u2) at lth-power roots of unity in terms of the Jacobi sums
which arise from the Galois action on T(Jac,), and

o coefficients of F;(u1,u2) in terms of [-adic Soulé cocycles which are defined by
the Galois action on higher cyclotomic [-units.

We will describe these, using Theorem 7.1.3, from the viewpoint of arithmetic
topology.

§7.2. Values of the Thara power series

Let p be a rational prime that is in Rg of (2.2.5) and let p be a prime of Q lying
over p. By Theorem 2.2.6(2), p is unramified in 25/Q and so we have the Frobenius
automorphism o5 € Gal(Qs/Q). Let n be a fixed positive integer. Let p,, be the
prime of Q({;») lying below p and let ( pi) ;n denote the ["th-power residue symbol
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at p,, for © € (Z[(in]/pn)*. For a,b € Z/I"Z \ {0} with (a,b,l) = 1, we define the

Jacobi sum by
a b
x
Jln (pn)(a’b) = Z <p> (py) .
n/ n n/ n

z,y€(Z[Gn]/pn)™
rz+y=—1

For I = 2, Jin(p,)@? must be multiplied by (;—j)a. Let f be the order of p in
(Z/1"Z)*. We note that 0% € Gal(Q2s/Q(¢n)). By using Weil’s theorem, Thara
showed the following theorem.

Theorem 7.2.1 ([Th1l, Thm. 7]). Let a,b € Z/I"Z \ {0} such that a +b # 0 and
(a,b,a+b,1) = 1. Then we have

Fos (G =1, = 1) = Jin ().

Combining Theorems 7.1.3 and 7.2.1, we obtain the following l-adic expansion
of the Jacobi sum Jn (p,)(®®) with coefficients I-adic Milnor numbers.

Theorem 7.2.2. With notation as above, we have

T ()0 =14 37 poding, na) (G — )™ (¢ — 1)

1'7,1,71220
ni+nz>1
o'i
Proof. Since we have Cﬁl( P _ Clpnf = ¢ by p/ = 1mod ™, the formula follows
from Theorems 7.1.3 and 7.2.1. O

87.3. Coefficients of the Ihara power series

We will combine Theorem 7.1.3 with the result of Thara, Kaneko and Yukinari
on the Thara power series ([IKY]) and deduce some formulas relating our I-adic
Milnor numbers with the Soulé cocycles ([So]). As in Section 2.2, let (;n be a
primitive ["th root of unity for a positive integer n such that ((ns1)! = (n for
n > 1. For a € Z/I"Z, let {(a);» denote the integer such that 0 < (a);» < ™ and
a = (a);» mod ™. For a positive integer m, we let

El(;in) = H (<ln — 1)<am*1>ln7
a€(Z)1n7) %

which is an l-unit in Q({), called a cyclotomic l-unit. Then we define the mth
l-adic Soulé cocycle x\™) : Galg — Z; by the Kummer cocycle attached to the
system of cyclotomic [-units {sl(ln)}nzl,

(m) m n _
¢ = (MY (0> 1, g € Galg).
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It is easy to see the cocycle relation

X" (gh) = x"(g) + xi(g)x™ (h) (g, h € Galg)

and hence the restriction of y (m |Ga1Q ] is a character. Let Qlab be the maximal

abelian subextension of §;/QI[1]. Since Q({», (Eln )1/l ) is a cyclic extension of
Q(¢n) unramified outside I, we have (el(ff ))1/ " € Q" and so the Soulé character
X("‘)\GMQD] factors through the Galois group Gal(Q?b/(@[l]). We note by Propo-

red

sition 5.2.8(3) that the pro-I reduced Gassner representation Gass™ also factors

through Gal(Q/QJ[1]).
We set

(m)
X" (g
km(9) = Tt l"(t—)l (9 € Galg),

and introduce new variables Uy, Uy defined by

o0 71

14 u; = exp(U, Z Ul (=1,2)

and set
]:g(Ul,UQ) = Fg(ul,uz)

ui=exp(U;)—1

Theorem 7.3.1 ([IKY, Thm. As]). With notation as above, we have, for g €
Gal(Qp"/Q[1]),

]:g(Ul,UQ):eXp{— Zﬁm(9)< Z UM)}

m2>3 mi,ma>1
odd mi+mao=m

Combining Theorems 7.1.3 and 7.3.1, we can deduce relations between [-adic
Milnor numbers and l-adic Soulé characters. For this, we prepare the following
lemma.

Lemma 7.3.2. Let a(ny,n2) and c(my, ma) be given l-adic numbers for integers
my, Mo, ny,ng > 0 with m1 +mo,ny +ng > 1. Let

Alur,ug) =1+ Z a(ni,n2)uiuy® € Qf[ur, usl]

M
and set
B(Uy,Us) == A(u1, u2)|u,—exp(U;)—1
=14+ > bN,N)UNMUS? € Q[Uy, Ua]].

N1,N2>0
Ni1+Ny>1
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Then we have

b(Nl,NQ) = Z a(nlan)anl(Nl)anz(NQ)’

ni+no>1
0<n1<N;,0<na<N>

where for j =1,2,

€15-5€n; >1
e+ +€n =Nj;

Let
C(Ul,UQ) = Z C(ml,mg)U{nl um e Ql[[Ul,UQH
o
and set

D(Uy,Us) := exp(C(Uy, Us))
=1+ Y AN N)UN UL € QiU U]

N1,N2>0
Ni1+Nzx>1
Then we have
1 1 1
d(N1,N2)= Z Ezc(mg)ﬂné ))...C(mgn)7mén))7
1<n<Ni+N2
where the second sum ranges over integers m(ll), . mgn), mél), co,m (") > 0 satis-

Jying m( )erg) >1(1<i<n), 51)4». . .erg") Ny and m( )+ + (n) =N,

Proof. Formulas for both b(N7i, N2) and d(N7, N3) follow from straightforward
computations. O

We apply Lemma 7.3.2 to the case that A(u,us) = Gass™%(g), where
a(nla T'LQ) = lu(g? ni, TLQ)

and C(Uy,Us) = log(Fy4 (U, Usz)), where

_Fmitms (9) (m1 +ma > 3, odd),
c(my,mg) = my!ms!
0 otherwise.
Then, by comparing the coefficients of UNlUN2 in Gass™(g) wimexp(U;)—1 =

F4(Uy,Us), we obtain the following theorem.
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Theorem 7.3.3. With notation as above, we have the following equality for g €

Gal(@[l]:
Z N(g;n17n2)an1(N1)an2(N2)
ni+n2>1
0S7L1§N1, OS"LQSNZ
N
1<n<N1+Na ! ! my" 1 my" !
where the last sum ranges over integers mgl) mgn), mél), o ,mgn) > 0 satisfy-

ing mgi)—kmg) >3;0dd (1 <i<n), mgl)—k-- +m§n) = N; and mgl)+~ . -—|—mé") =

No.

For example, lower terms are given by

1(g; (12)) = u(g; (21)) =0,  w(g;(212)) + pu(g; (121)) =0,

p(g; (221)) + u(g; (2212)) + p(g; (1221)) + p(g; (2121)) = /-z32(g) ’
u(g (112)) + p(g; (1121)) + p(g; (2112)) + p(g; (1212)) = K32<9>
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