
Publ. RIMS Kyoto Univ. 54 (2018), 89–104
DOI 10.4171/PRIMS/54-1-3

On the Non-vanishing Conjecture and Existence
of Log Minimal Models

by

Kenta Hashizume

Abstract

We prove that the non-vanishing conjecture and the log minimal model conjecture for
projective log canonical pairs can be reduced to the non-vanishing conjecture for smooth
projective varieties such that the boundary divisor is zero.
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§1. Introduction

Throughout this paper we will work over the complex number field, and we denote

Conjecture • with dimX = n (resp. dimX ≤ n) by Conjecture •n (resp. Conjec-

ture •≤n).

In this paper we deal with the following two conjectures.

Conjecture 1.1 (Non-vanishing). Let (X,∆) be a projective log canonical pair.

If KX + ∆ is pseudo-effective, then there is an effective R-divisor D such that

KX + ∆ ∼R D.

Conjecture 1.2 (Existence of a log minimal model). Let (X,∆) be a projective

log canonical pair. If KX + ∆ is pseudo-effective, then (X,∆) has a log minimal

model.

Birkar [B1] proved that Conjecture 1.1n implies Conjecture 1.2n. On the other

hand, Gongyo [G] proved that Conjecture 1.1n for Kawamata log terminal pairs

with boundary Q-divisors implies Conjecture 1.1n for log canonical pairs with
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boundary R-divisors, assuming the abundance conjecture for d-dimensional log

canonical pairs with d ≤ n − 1 . Today, Conjectures 1.1≤3 and 1.2≤4 are proved

(Conjecture 1.24 was first proved by Shokurov [S] and another proof was given by

Birkar [B3]) but Conjectures 1.1 and 1.2 are still open in higher dimensions.

In this paper we study the relation between the above two conjectures and

the following special case of Conjecture 1.1.

Conjecture 1.3 (Non-vanishing for smooth varieties). Let X be a smooth projec-

tive variety. If KX is pseudo-effective, then there is an effective Q-divisor D such

that KX ∼Q D.

The following theorem is the main result of this paper.

Theorem 1.4. Conjecture 1.3n implies Conjectures 1.1≤n and 1.2≤n.

We remark that in Theorem 1.4 we do not have any assumptions about the

abundance conjecture. The proof of Theorem 1.4 heavily depends on the arguments

in [H]. A key ingredient is construction of fibrations with relatively trivial log

canonical divisors. More precisely, for a given log canonical pair (X,∆) and a

general ample divisor A, we observe behavior of the pseudo-effective threshold

τ(X, t∆;A) as a function of t. When KX+∆ is pseudo-effective and t moves in [ε, 1]

for an ε > 0 sufficiently close to 1, we see that τ(X, t∆;A) is a linear function of t

(see Remark 3.3). By using this observation, we construct the fibrations mentioned

above. For details, see the proof of Theorem 1.4 in Section 3.

From Theorem 1.4 we immediately obtain the following corollaries.

Corollary 1.5. Conjectures 1.1n and 1.3n are equivalent.

Corollary 1.6. Conjecture 1.3n implies Conjecture 1.2n.

Corollary 1.5 is a generalization of [G, Thm. 1.5] and [DHP, Thm. 8.8], and

Corollary 1.6 is a generalization of [B1, Thm. 1.4]. We emphasize that by Corol-

lary 1.6 we can reduce the log minimal model conjecture for log canonical pairs to

the non-vanishing conjecture in a very simple situation.

The contents of this paper are as follows: In Section 2, we collect some notation

and definitions, and we recall two important theorems (i.e., Theorems 2.7 and 2.8).

In Section 3 we prove Theorem 1.4 and Corollaries 1.5 and 1.6.

§2. Preliminaries

In this section we collect some notation and definitions. We will freely use the

notation and definitions in [BCHM].
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Definition 2.1 (Maps). Let f : X → Y be a morphism of normal projective

varieties. Then f is a contraction if f is surjective and it has connected fibers.

Let f : X 99K Y be a birational map of normal projective varieties. Then

f is a birational contraction if f−1 does not contract any divisors. Let D be an

R-divisor on X. Unless otherwise stated, we mean f∗D by denoting DY .

Definition 2.2 (Singularities of pairs). A pair (X,∆) consists of a normal variety

X and a boundary R-divisor ∆, that is, an R-divisor whose coefficients belong to

[0, 1], on X such that KX + ∆ is R-Cartier.

Let (X,∆) be a pair and f : Y → X be a log resolution of (X,∆). Then we

can write

KY = f∗(KX + ∆) +
∑
i

a(Ei, X,∆)Ei,

where Ei are prime divisors on Y and a(Ei, X,∆) is a real number for any i.

Then we call a(Ei, X,∆) the discrepancy of Ei with respect to (X,∆). The pair

(X,∆) is called Kawamata log terminal (klt, for short) if a(Ei, X,∆) > −1 for any

log resolution f of (X,∆) and any Ei on Y . We call (X,∆) log canonical (lc, for

short) if a(Ei, X,∆) ≥ −1 for any log resolution f of (X,∆) and any Ei on Y .

Finally, (X,∆) is called divisorial log terminal (dlt, for short) if there exists a log

resolution f : Y → X of (X,∆) such that a(E,X,∆) > −1 for any f -exceptional

prime divisor E on Y .

Next we introduce the definition of some models. For some remarks on the

models, see [H, Rem. 2.4].

Definition 2.3 (Weak lc models and log minimal models). Let (X,∆) be a pro-

jective log canonical pair and φ : X 99K X ′ be a birational map to a normal

projective variety X ′. Let E be the reduced φ−1-exceptional divisor on X ′, that

is, E =
∑
Ej where Ej are φ−1-exceptional prime divisors on X ′. Then the pair

(X ′,∆′ = φ∗∆ + E) is called a log birational model of (X,∆). A log birational

model (X ′,∆′) of (X,∆) is a weak log canonical model (weak lc model, for short)

if

• KX′ + ∆′ is nef, and

• for any prime divisor D on X which is exceptional over X ′, we have

a(D,X,∆) ≤ a(D,X ′,∆′).

A weak lc model (X ′,∆′) of (X,∆) is a log minimal model if

• X ′ is Q-factorial, and

• the above inequality on discrepancies is strict.
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A log minimal model (X ′,∆′) of (X,∆) is called a good minimal model if KX′ +∆′

is semi-ample.

Definition 2.4 (Mori fiber spaces). Let (X,∆) be a projective log canonical pair

and (X ′,∆′) be a log birational model of (X,∆).

Then (X ′,∆′) is called a Mori fiber space if X ′ is Q-factorial and there is a

contraction X ′ →W with dimW < dimX ′ such that

• the relative Picard number ρ(X ′/W ) is 1 and −(KX′ + ∆′) is ample over W ,

and

• for any prime divisor D over X, we have

a(D,X,∆) ≤ a(D,X ′,∆′)

and strict inequality holds if D is a divisor on X and exceptional over X ′.

Note that our definition of log minimal models is slightly different from that of

[B2]. The difference is that we do not assume that log minimal models are dlt. But

this difference is intrinsically not important (cf. [H, Rem. 2.4]). In our definition,

any weak lc model (X ′,∆′) of a Q-factorial lc pair (X,∆) constructed with the

(KX + ∆)-MMP is a log minimal model of (X,∆) even though (X ′,∆′) may not

be dlt.

Finally, we introduce the definition of log canonical thresholds and pseudo-

effective thresholds, and two important theorems which are proved by Hacon,

McKernan and Xu [HMX].

Definition 2.5 (Log canonical thresholds; cf. [HMX]). Let (X,∆) be a log ca-

nonical pair and let M 6= 0 be an effective R-Cartier R-divisor. Then the log

canonical threshold of M with respect to (X,∆), denoted by lct(X,∆;M), is

lct(X,∆;M) = sup{t ∈ R | (X,∆ + tM) is log canonical}.

Definition 2.6 (Pseudo-effective thresholds). Let (X,∆) be a projective log ca-

nonical pair and M be an effective R-Cartier R-divisor such that KX + ∆ + tM

is pseudo-effective for some t ≥ 0. Then the pseudo-effective threshold of M with

respect to (X,∆), denoted by τ(X,∆;M), is

τ(X,∆;M) = inf{t ∈ R≥0 | KX + ∆ + tM is pseudo-effective}.

Theorem 2.7 (ACC for log canonical thresholds; cf. [HMX, Thm. 1.1]). Fix a

positive integer n, a set I ⊂ [0, 1] and a set J ⊂ R>0, where I and J satisfy

the DCC. Let Tn(I) be the set of log canonical pairs (X,∆), where X is a variety
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of dimension n and the coefficients of ∆ belong to I. Then the set

{lct(X,∆;M) | (X,∆) ∈ Tn(I), the coefficients of M belong to J}

satisfies the ACC.

Theorem 2.8 (ACC for numerically trivial pairs; cf. [HMX, Thm. D]). Fix a pos-

itive integer n and a set I ⊂ [0, 1] that satisfies the DCC.

Then there is a finite set I0 ⊂ I with the following property: If (X,∆) is a log

canonical pair such that

(i) X is projective of dimension n,

(ii) the coefficients of ∆ belong to I, and

(iii) KX + ∆ is numerically trivial,

then the coefficients of ∆ belong to I0.

§3. Proof of Theorem 1.4 and corollaries

In this section we prove Theorem 1.4 and Corollaries 1.5 and 1.6.

First we recall the following theorem proved by Birkar, which plays a crucial

role in the proof of Theorem 1.4.

Theorem 3.1 (cf. [B1, Cor. 1.7]). Fix a positive integer d, and assume Conjec-

ture 1.2≤d−1. Let (X,∆) be a d-dimensional projective log canonical pair such that

KX +∆ ∼R D for an effective R-divisor D. Then Conjecture 1.2 holds for (X,∆).

The following lemma is known to the experts, but we write details of the proof

for the reader’s convenience.

Lemma 3.2. Conjecture 1.3n implies Conjecture 1.3≤n.

Proof. Assume Conjecture 1.3n and pick any d ≤ n. Let X be a smooth projective

variety of dimension d such that KX is pseudo-effective. Let W be the product of X

and an (n− d)-dimensional abelian variety, and let f : W → X be the projection.

Then KW = f∗KX and KW is pseudo-effective. Since we assume Conjecture 1.3n,

Conjecture 1.3 holds for W , and therefore Conjecture 1.3 holds for X. So we are

done.

From now on we prove Theorem 1.4. We fix n in Theorem 1.4.

Proof of Theorem 1.4. By Lemma 3.2, we may assume Conjecture 1.3≤n. Pick

any positive integer d ≤ n. We prove that Conjectures 1.1d and 1.2d hold un-

der the assumption that Conjectures 1.1≤d−1 and 1.2≤d−1 hold. If we can prove
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this then Theorem 1.4 immediately follows. By Theorem 3.1, we see that Conjec-

tures 1.2≤d−1 and 1.1d imply Conjecture 1.2d. Therefore it is sufficient to prove

that Conjectures 1.1≤d−1 and 1.2≤d−1 imply Conjecture 1.1d.

Let (X,∆) be a d-dimensional lc pair. By taking a dlt blow-up, we can assume

that (X,∆) is a Q-factorial dlt pair. We can write ∆ = S + B, where S is the

reduced part of ∆ and B = ∆− S. Then we have following two cases.

Case 1. S 6= 0 and τ(X,B ;S) = 1, where τ(X,B ;S) is the pseudo-effective

threshold of S with respect to (X,B).

Case 2. S 6= 0 and τ(X,B ;S) < 1, or S = 0.

Proof of Case 1. We prove it with several steps.

Step 1. From this step to step 5, we prove that Conjecture 1.2 holds for (X,∆).

We run the (KX + ∆)-MMP with scaling of an ample divisor H,

(X,∆) 99K · · · 99K (Xi,∆Xi) 99K · · · .

Then for any i, the birational map X 99K · · · 99K Xi is also a sequence of finitely

many steps of the (KX + ∆ − tS)-MMP for any sufficiently small t > 0. Since

KX + ∆ − tS is not pseudo-effective by hypothesis, we see that SXi 6= 0 and

τ(Xi, BXi ;SXi) = 1 for any i. Therefore we can replace (X,∆) with (Xi,∆Xi)

for some i � 0 and we may assume that there is a big divisor H such that

KX + ∆ + δH is movable for any sufficiently small δ > 0.

Step 2. Fix A ≥ 0, a general ample Q-divisor such that (X,∆+A) is lc, (X,B+A)

is klt and (1/2)A+KX +B and (1/2)A+ S are both nef. Then

KX + tS +B +A =
(
1
2A+KX +B

)
+ t
(
1
2A+ S

)
+ 1

2 (1− t)A

is nef for any 0 ≤ t ≤ 1. Let τt = τ(X, tS+B ;A) be the pseudo-effective threshold

of A with respect to (X, tS + B) for any 0 ≤ t < 1. By construction, we have

0 < τt ≤ 1 for any t. In this step we prove that there is 0 < ε < 1 such that the

divisor

KX + (1− t(1− ε))S +B + tτεA = (1− t)(KX + ∆) + t(KX + εS +B + τεA)

is not big for any 0 ≤ t ≤ 1.

The idea is similar to [H, steps 2 and 3 in the proof of Prop. 5.3] (see also

the proof of [DHP, Prop. 8.7] or [G, Lem. 3.1]). Let {uk}k≥1 be a strictly increas-

ing infinite sequence of positive real numbers such that uk < 1 for any k and

limk→∞ uk = 1. For each k, we run the (KX + ukS +B)-MMP with scaling of A.
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Then we get a Mori fiber space (X,ukS + B) 99K (Xk, ukSXk
+ BXk

) → Zk. By

the basic property of the log MMP with scaling, KXk
+ukSXk

+BXk
+ τuk

AXk
is

trivial over Zk. By replacing {uk}k≥1 with its subsequence, we may assume that

dimZk is constant.

We note that SXk
6= 0 and SXk

is ample over Zk by construction. Since

limk→∞ uk = 1, by the ACC for log canonical thresholds (cf. Theorem 2.7), there

are infinitely many indices k such that lct(Xk, BXk
;SXk

) = 1. Therefore, by re-

placing {uk}k≥1 with its subsequence, we may assume that (Xk,∆Xk
) is lc for any

k. Moreover, by applying the ACC for numerically trivial pairs (cf. Theorem 2.8)

to the general fibers of Mori fiber spaces (Xk, ukSXk
+ BXk

) → Zk, we can find

an index k such that KXk
+ ∆Xk

is numerically trivial over Zk. In particular,

KXk
+ ∆Xk

is trivial over Zk.

Set ε = uk for this k. Then

(1− t)(KXk
+ ∆Xk

) + t(KXk
+ εSXk

+BXk
+ τεAXk

)

is trivial over Zk for any 0 ≤ t ≤ 1. Since dimZk < dimXk, we see that KX +

(1− t(1− ε))S +B + tτεA is not big. Note that 0 < τε ≤ 1.

Step 3. Set G = (1 − ε)S − τεA. Then (X,∆ − tG) is klt and ∆ − tG is big for

any 0 < t ≤ 1 because ∆− tG = (1− t(1− ε))S +B + tτεA. In this step we show

that there is an infinite sequence {ak}k≥1 of positive real numbers such that

(i) ak < 1 for any k and limk→∞ ak = 0, and

(ii) there are sequences of finitely many steps of the (KX + ∆ − akG)-MMP to

a good minimal model

(X,∆− akG) 99K (X ′k,∆X′
k
− akGX′

k
)

such that (X ′k,∆X′
k
) is lc and there is a contraction X ′k → Yk to a normal

projective variety Yk such that

(ii-a) dimYk < dimX ′k, and

(ii-b) KX′
k

+ ∆X′
k
− akGX′

k
is R-linearly equivalent to the pullback of an

ample R-divisor on Yk and KX′
k

+ ∆X′
k
∼R, Yk

0.

Since τε > 0 and A is ample, by applying [BCHM, Cor. 1.1.5] (see also [DHP,

Thm. 8.9]), there are countably many birational maps X 99K X ′k and contractions

X ′k → Yk (k = 1, 2, . . .) to normal projective varieties Yk such that for any 0 <

α ≤ 1, there is an index k satisfying the following:

(♣) (X,∆ − αG) 99K (X ′k,∆X′
k
− αGX′

k
) is a sequence of finitely many steps of

the (KX + ∆−αG)-MMP to a good minimal model and KX′
k

+ ∆X′
k
−αGX′

k

is R-linearly equivalent to the pullback of an ample divisor on Yk.
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Renumbering X ′k and Yk if necessary, we can find an infinite sequence {ak}k≥1 of

positive real numbers such that

(1) ak < 1 for any k and limk→∞ ak = 0, and

(2) for any k and any α > 0 sufficiently close to ak, the birational map (X,∆ −
αG) 99K (X ′k,∆X′

k
− αGX′

k
) and the contraction X ′k → Yk satisfy (♣).

By construction, lct(X ′k, BX′
k

;SX′
k
) ≥ 1 − ak(1 − ε). Since limk→∞ ak = 0, by

the ACC for log canonical thresholds (cf. Theorem 2.7), there are infinitely many

indices k such that lct(X ′k, BX′
k
;SX′

k
) = 1. Therefore, by replacing {ak}k≥1 with

its subsequence, we may assume that (X ′k,∆X′
k
) is lc for any k.

We show that {ak}k≥1, (X,∆− akG) 99K (X ′k,∆X′
k
− akGX′

k
) and X ′k → Yk

satisfy all the conditions stated at the start of this step. By construction, it is

sufficient to check that the contraction X ′k → Yk satisfies conditions (ii-a) and

(ii-b) for any k. First we recall that KX + ∆− akG is not big by step 2. Therefore

dimYk < dimX ′k and thus the contraction X ′k → Yk satisfies condition (ii-a)

for any k. Next, by condition (2), we can find a positive real number α̃ 6= ak
sufficiently close to ak such thatKX′

k
+∆X′

k
−α̃GX′

k
∼R, Yk

0. Because KX′
k
+∆X′

k
is

represented by a linear combination ofKX′
k
+∆X′

k
−akGX′

k
andKX′

k
+∆X′

k
−α̃GX′

k
,

we have KX′
k
+∆X′

k
∼R, Yk

0. Therefore X ′k → Yk satisfies condition (ii-b) for any k.

In this way we see that {ak}k≥1, (X,∆ − akG) 99K (X ′k,∆X′
k
− akGX′

k
) and

X ′k → Yk satisfy all the conditions stated at the start of this step. Thus we complete

this step.

Step 4. In this step we prove that Conjecture 1.2 holds for (X ′k,∆X′
k
) for any k,

where (X ′k,∆X′
k
) was constructed in step 3. By Theorem 3.1, we may show that

Conjecture 1.1 holds for (X ′k,∆X′
k
) for any k. In this step we fix k.

Since KX′
k

+ ∆X′
k
∼R, Yk

0 and KX′
k

+ ∆X′
k
−akGX′

k
∼R, Yk

0, we have GX′
k

=

(1 − ε)SX′
k
− τεAX′

k
∼R, Yk

0. Since AX′
k

is big, we see that SX′
k

is big over Yk.

Therefore SX′
k
6= 0 and some component of SX′

k
dominates Yk because dimYk <

dimX ′k by condition (ii-a) in step 3. Let f : (V,Γ)→ (X ′k,∆X′
k
) be a dlt blow-up

and let T be a component of f−1∗ SX′
k

dominating Yk. Then we haveKV +Γ ∼R, Yk
0.

Let M be an R-divisor on Yk such that KV + Γ is R-linearly equivalent to the

pullback of M . Then M is pseudo-effective. By the adjunction, (T,Diff(Γ− T )) is

dlt, and KT +Diff(Γ−T ) is pseudo-effective. Since we assume Conjecture 1.1≤d−1,

Conjecture 1.1 holds for (T,Diff(Γ − T )). Then there is an effective R-divisor E

on Yk such that M ∼R E. Therefore Conjecture 1.1 holds for (V,Γ), and hence

Conjecture 1.1 holds for (X ′k,∆X′
k
).

In this way we see that Conjecture 1.2 holds for (X ′k,∆X′
k
).

Step 5. In this step we show that Conjecture 1.2 holds for (X,∆).
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We continue the track of [H, step 4 in the proof of Prop. 5.1]. By replacing

{ak}k≥1 with its subsequence, we can assume that X ′i and X ′j are isomorphic in

codimension one for any i and j. Indeed, any prime divisor P contracted by the

birational map X 99K X ′k is a component of Nσ(KX + ∆ − akG). But since we

have

Nσ(KX + ∆− akG) ≤ (1− ak)Nσ(KX + ∆) + akNσ(KX + ∆−G),

P is also a component of Nσ(KX + ∆)+Nσ(KX + ∆−G), which does not depend

on k. Thus we can assume that X ′i and X ′j are isomorphic in codimension one by

replacing {ak}k≥1 with its subsequence.

By step 4, (X ′1,∆X′
1
) has a log minimal model. Therefore, by [B2, Thm. 4.1

(iii)], we can run the (KX′
1
+∆X′

1
)-MMP with scaling of an ample divisor and get a

log minimal model (X ′1,∆X′
1
) 99K (X ′′,∆X′′). Then we can check that (X ′′,∆X′′−

tGX′′) is klt and ∆X′′−tGX′′ is big for any sufficiently small t > 0. Fix a sufficiently

small positive real number t� a1. By [BCHM, Cor. 1.4.2] and running the (KX′′ +

∆X′′ − tGX′′)-MMP with scaling of an ample divisor, we can get a log minimal

model (X ′′,∆X′′−tGX′′) 99K (X ′′′,∆X′′′−tGX′′′). Since t > 0 is sufficiently small,

by the standard argument of the length of extremal rays (cf. [B1, Prop. 3.2]),

KX′′′ + ∆X′′′ is nef. Now we get the following sequence of birational maps

X 99K X ′1 99K X ′′ 99K X ′′′,

where X 99K X ′1 (resp. X ′1 99K X ′′, X ′′ 99K X ′′′) is a sequence of finitely many

steps of the (KX + ∆ − a1G)-MMP (resp. the (KX′
1

+ ∆X′
1
)-MMP, the (KX′′ +

∆X′′ − tGX′′)-MMP) to a log minimal model.

We can show that X ′1 and X ′′′ are isomorphic in codimension one. To see

this, we may show that X ′1 99K X ′′ and X ′′ 99K X ′′′ contain only flips. Recall that

there is a big divisor H such that KX + ∆ + δH is movable for any sufficiently

small δ > 0, which is stated in step 1. Since X 99K X ′1 is a birational contraction,

KX′
1

+ ∆X′
1

+ δHX′
1

is movable for any sufficiently small δ > 0. Then Nσ(KX′
1

+

∆X′
1
) = 0 and thus X ′1 99K X ′′ contains only flips. Furthermore we see that

Nσ(KX′′ + ∆X′′ − a1GX′′) = 0 since KX′
1

+ ∆X′
1
− a1GX′

1
is semi-ample, which

is condition (ii) in step 3. Now we have Nσ(KX′′ + ∆X′′) = 0, which follows since

KX′′ + ∆X′′ is nef. From these facts we have

Nσ(KX′′ + ∆X′′ − tGX′′)

≤
(

1− t

a1

)
Nσ(KX′′ + ∆X′′) +

t

a1
Nσ(KX′′ + ∆X′′ − a1GX′′) = 0

and hence X ′′ 99K X ′′′ contains only flips. In this way we see that X ′1 and X ′′′ are

isomorphic in codimension one.
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Since limk→∞ ak = 0, we have t ≥ ak for any k � 0. Then KX′′′ + ∆X′′′ −
akGX′′′ is nef for any k � 0 because KX′′′ + ∆X′′′ and KX′′′ + ∆X′′′ − tGX′′′ are

nef. Moreover, X ′′′ and X ′k are isomorphic in codimension one since X ′k and X ′1 are

isomorphic in codimension one and X ′1 and X ′′′ are isomorphic in codimension one.

We recall that (X ′k,∆X′
k
−akGX′

k
) is a log minimal model of (X,∆−akG), which is

condition (ii) in step 3. From these facts, we see that (X ′′′,∆X′′′−akGX′′′) is a log

minimal model of (X,∆− akG) for any k � 0. Let p : W → X and q : W → X ′′′

be a common resolution of X 99K X ′′′. Then for any k � 0, we have

p∗(KX + ∆− akG)− q∗(KX′′′ + ∆X′′′ − akGX′′′) ≥ 0.

By considering the limit k →∞, we have

p∗(KX + ∆)− q∗(KX′′′ + ∆X′′′) ≥ 0.

Since KX′′′ + ∆X′′′ is nef, we see that (X ′′′,∆X′′′) is a weak lc model of (X,∆).

Therefore, by [B2, Cor. 3.7], (X,∆) has a log minimal model.

Step 6. Finally we prove that Conjecture 1.1 holds for (X,∆). By running the

(KX + ∆)-MMP with scaling of an ample divisor and replacing (X,∆) with the

resulting log minimal model, we can assume that KX + ∆ is nef. Note that after

this process S 6= 0 and the equation τ(X,B ;S) = 1 still holds. Pick a sufficiently

small positive real number t and run the (KX + ∆− tS)-MMP with scaling of an

ample divisor. Then we get a Mori fiber space

(X,∆− tS) 99K (X ′,∆X′ − tSX′)→ Z.

Moreover, since t is sufficiently small, KX′ + ∆X′ is trivial over Z and Con-

jecture 1.1 for (X,∆) is equivalent to Conjecture 1.1 for (X ′,∆X′) (see [B1,

Prop. 3.2]). We also see that there is a component of SX′ dominating Z because

SX′ is ample over Z. By the same arguments as in step 4, we can prove that Con-

jecture 1.1 holds for (X ′,∆X′) with the adjunction and Conjecture 1.1≤d−1. Thus

Conjecture 1.1 holds for (X,∆) and so we are done.

Proof of Case 2. In this case we can assume that (X,∆) is klt since we have to

prove only that Conjecture 1.1 holds for (X,∆). Taking a log resolution of (X,∆),

we can assume that X is smooth. We put τ = τ(X, 0 ; ∆). Then we may assume

that ∆ 6= 0 and τ > 0 because otherwise Conjecture 1.1 for (X,∆) is obvious from

Conjecture 1.3≤n. Moreover we may assume that τ = 1 by replacing (X,∆) with

(X, τ∆).
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We prove Case 2 with several steps. The proof is very similar to the proof of

Case 1 except for step 4. In the rest of the proof we will use the fact that (X,∆)

is Q-factorial klt but we will not use the assumption that X is smooth.

Step 1. From this step to step 5, we prove that Conjecture 1.2 holds for (X,∆).

We run the (KX + ∆)-MMP with scaling of an ample divisor H,

(X,∆) 99K · · · 99K (Xi,∆Xi) 99K · · · .

By the same argument as in step 1 in the proof of Case 1, we can replace (X,∆)

with (Xi,∆Xi) for some i � 0 and we may assume that there is a big divisor H

such that KX + ∆ + δH is movable for any sufficiently small δ > 0. Note that

∆ 6= 0 and τ(X, 0 ; ∆) = 1 still hold after this process.

Step 2. Fix A ≥ 0 a general ample Q-divisor such that (X,∆ + A) is klt and

(1/2)A+KX and (1/2)A+ ∆ are both nef. Then

KX + t∆ +A =
(
1
2A+KX

)
+ t
(
1
2A+ ∆

)
+ 1

2 (1− t)A

is nef for any 0 ≤ t ≤ 1. We put τt = τ(X, t∆ ;A) for any 0 ≤ t < 1. By

construction, we have 0 < τt ≤ 1 for any t. In this step we prove that there is

0 < ε < 1 such that the divisor

KX + (1− t(1− ε))∆ + tτεA = (1− t)(KX + ∆) + t(KX + ε∆ + τεA)

is not big for any 0 ≤ t ≤ 1.

Pick a strictly increasing infinite sequence {uk}k≥1 of positive real num-

bers such that uk < 1 for any k and limk→∞ uk = 1. For each k, run the

(KX +uk∆)-MMP with scaling of A. Then we get a Mori fiber space (X,uk∆) 99K
(Xk, uk∆Xk

) → Zk. By the basic property of the log MMP with scaling, KXk
+

uk∆Xk
+τuk

AXk
is trivial over Zk. Now we follow the same arguments as in step 2

in the proof of Case 1, and we can find an index k such that (Xk,∆Xk
) is lc and

KXk
+ ∆Xk

is numerically trivial over Zk by the ACC for log canonical thresholds

(cf. Theorem 2.7) and the ACC for numerically trivial pairs (cf. Theorem 2.8). Set

ε = uk for this k. Then we see that

(1− t)(KXk
+ ∆Xk

) + t(KXk
+ ε∆Xk

+ τεAXk
)

is not big, and therefore KX+(1−t(1−ε))∆+tτεA is not big. Note that 0 < τε ≤ 1.

Step 3. Set G = (1 − ε)∆ − τεA. Then (X,∆ − tG) is klt and ∆ − tG is big for

any 0 < t ≤ 1 because ∆− tG = (1− t(1− ε))∆ + tτεA. In this step we show that

there is an infinite sequence {ak}k≥1 of positive real numbers such that
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(i) ak < 1 for any k and limk→∞ ak = 0, and

(ii) there are sequences of finitely many steps of the (KX + ∆ − akG)-MMP to

a good minimal model

(X,∆− akG) 99K (X ′k,∆X′
k
− akGX′

k
)

such that (X ′k,∆X′
k
) is lc, and there is a contraction X ′k → Yk to a normal

projective variety Yk such that

(ii-a) dimYk < dimX ′k, and

(ii-b) KX′
k

+ ∆X′
k
− akGX′

k
is R-linearly equivalent to the pullback of an

ample R-divisor on Yk and KX′
k

+ ∆X′
k
∼R, Yk

0.

The arguments are very similar to step 3 in the proof of Case 1. Since τε > 0

and A is ample, by applying [BCHM, Cor. 1.1.5] (see also [DHP, Thm. 8.9]),

there are countably many birational maps X 99K X ′k and contractions X ′k → Yk
(k = 1, 2, . . .) to normal projective varieties Yk such that for any 0 < α ≤ 1, there

is an index k satisfying the following:

(♣) (X,∆ − αG) 99K (X ′k,∆X′
k
− αGX′

k
) is a sequence of finitely many steps of

the (KX + ∆−αG)-MMP to a good minimal model and KX′
k

+ ∆X′
k
−αGX′

k

is R-linearly equivalent to the pullback of an ample divisor on Yk.

Renumbering X ′k and Yk if necessary, we can find an infinite sequence {ak}k≥1 of

positive real numbers such that

(1) ak < 1 for any k and limk→∞ ak = 0, and

(2) for any k and any α > 0 sufficiently close to ak, the birational map (X,∆ −
αG) 99K (X ′k,∆X′

k
− αGX′

k
) and the contraction X ′k → Yk satisfy (♣).

By construction, lct(X ′k, 0 ; ∆X′
k
) ≥ 1 − ak(1 − ε). Since limk→∞ ak = 0, by the

ACC for log canonical thresholds (cf. Theorem 2.7), there are infinitely many

indices k such that lct(X ′k, 0 ; ∆X′
k
) = 1. Therefore, by replacing {ak}k≥1 with its

subsequence, we may assume that (X ′k,∆X′
k
) is lc for any k.

Furthermore, by the same arguments as in step 3 in the proof of Case 1, we

can check that the contraction X ′k → Yk satisfies conditions (ii-a) and (ii-b) for

any k. Note that KX + ∆− akG is not big by step 2. In this way we see that the

sequence {ak}k≥1, the birational maps (X,∆− akG) 99K (X ′k,∆X′
k
− akGX′

k
) and

contractions X ′k → Yk satisfy all the conditions stated at the start of this step.

Thus we complete this step.

Step 4. In this step we prove that Conjecture 1.2 holds for (X ′k,∆X′
k
) for any

k, where (X ′k,∆X′
k
) was constructed in step 3. We note that (X,∆) is klt but
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(X ′k,∆X′
k
) may not be klt. By Theorem 3.1, we have to show only that Conjec-

ture 1.1 holds for (X ′k,∆X′
k
) for any k. In this step we fix k.

If (X ′k,∆X′
k
) is klt, by applying Ambro’s canonical bundle formula (cf. [FG,

Cor. 3.2]) to X ′k → Yk and since we assume Conjecture 1.1≤d−1, Conjecture 1.1

holds for (X ′k,∆X′
k
). Therefore we may assume that (X ′k,∆X′

k
) is not klt.

Let f : (V,Γ) → (X ′k,∆X′
k
) be a dlt blow-up of (X ′k,∆X′

k
) and we write

Γ = SV + BV , where SV is the reduced part of Γ and BV = Γ − SV . Then

SV 6= 0 by our assumption. We may prove that Conjecture 1.1 holds for (V,Γ). If

τ(V,BV ;SV ) = 1, then Conjecture 1.1 holds for (V,Γ) by Case 1. Therefore we

may assume that τ(V,BV ;SV ) < 1. Note that KV + Γ ∼R, Yk
0 by construction.

Since KX′
k

+ ∆X′
k
∼R, Yk

0 and KX′
k

+ ∆X′
k
−akGX′

k
∼R, Yk

0, we have GX′
k

=

(1 − ε)∆X′
k
− τεAX′

k
∼R, Yk

0. Since AX′
k

is big, we see that ∆X′
k

is big over

Yk. Then Γ is also big over Yk because Γ contains f−1∗ ∆X′
k

and all f -exceptional

prime divisors. We pick a sufficiently small positive real number t < 1 so that

τ(V,BV ;SV ) ≤ 1 − t and Γ − tSV is big over Yk. Then (V,Γ − tSV ) is klt and

KV + Γ− tSV is pseudo-effective. Moreover, we see that KV + Γ− tSV is not big

over Yk because KV + Γ− tSV ∼R, Yk
−tSV and dimYk < dimV . By construction,

it is sufficient to prove that Conjecture 1.1 holds for (V,Γ− tSV ).

We run the (KV + Γ − tSV )-MMP over Yk with scaling of an ample divisor.

By [BCHM, Cor. 1.4.2], we get a good minimal model (V,Γ− tSV ) 99K (V ′,ΓV ′ −
tSV ′) over Yk, where SV ′ is the birational transform of SV on V ′. Then there is a

contraction V ′ → Ỹ to a normal projective variety Ỹ over Yk such that KV ′ +ΓV ′−
tSV ′ ∼R, Ỹ 0. We can check that (V ′,ΓV ′ − tSV ′) is klt, and furthermore dim Ỹ <

dimV ′ since KV ′ + ΓV ′ − tSV ′ is not big over Yk. Therefore, applying Ambro’s

canonical bundle formula (cf. [FG, Cor. 3.2]) to V ′ → Ỹ and since we assume

Conjecture 1.1≤d−1, Conjecture 1.1 holds for (V ′,ΓV ′−tSV ′). Then Conjecture 1.1

holds for (V,Γ− tSV ), and thus Conjecture 1.1 holds for (V,ΓV ).

In this way we see that Conjecture 1.2 holds for (X ′k,∆X′
k
) for any k, and we

complete this step.

Step 5. In this step we show that Conjecture 1.2 holds for (X,∆). The arguments

are very similar to step 5 in the proof of Case 1.

By replacing {ak}k≥1 with its subsequence, we can assume that X ′i and X ′j
are isomorphic in codimension one for any i and j. Indeed, any prime divisor P

contracted by the birational map X 99K X ′k is a component of Nσ(KX +∆−akG).

But since we have

Nσ(KX + ∆− akG) ≤ (1− ak)Nσ(KX + ∆) + akNσ(KX + ∆−G),

P is also a component of Nσ(KX + ∆)+Nσ(KX + ∆−G), which does not depend
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on k. Thus we can assume that X ′i and X ′j are isomorphic in codimension one by

replacing {ak}k≥1 with its subsequence.

Since (X ′1,∆X′
1
) has a log minimal model, by [B2, Thm. 4.1(iii)], we can run

the (KX′
1

+ ∆X′
1
)-MMP with scaling of an ample divisor and get a log minimal

model (X ′1,∆X′
1
) 99K (X ′′,∆X′′). Then we can check that (X ′′,∆X′′ − tGX′′) is

klt and ∆X′′ − tGX′′ is big for any sufficiently small t > 0. Fix a sufficiently small

positive real number t � a1. By [BCHM, Cor. 1.4.2] and running the (KX′′ +

∆X′′ − tGX′′)-MMP with scaling of an ample divisor, we can get a log minimal

model (X ′′,∆X′′−tGX′′) 99K (X ′′′,∆X′′′−tGX′′′). Since t > 0 is sufficiently small,

by the standard argument of the length of extremal rays (cf. [B1, Prop. 3.2]), we

see that KX′′′ +∆X′′′ is nef. Now we get the following sequence of birational maps:

X 99K X ′1 99K X ′′ 99K X ′′′,

where X 99K X ′1 (resp. X ′1 99K X ′′, X ′′ 99K X ′′′) is a sequence of finitely many

steps of the (KX + ∆ − a1G)-MMP (resp. the (KX′
1

+ ∆X′
1
)-MMP, the (KX′′ +

∆X′′ − tGX′′)-MMP) to a log minimal model.

We can show that X ′1 and X ′′′ are isomorphic in codimension one. To see

this, we may show that X ′1 99K X ′′ and X ′′ 99K X ′′′ contain only flips. Recall that

there is a big divisor H such that KX + ∆ + δH is movable for any sufficiently

small δ > 0, which is stated in step 1 in this proof. Since X 99K X ′1 is a birational

contraction, KX′
1

+ ∆X′
1

+ δHX′
1

is movable for any sufficiently small δ > 0. Then

Nσ(KX′
1

+ ∆X′
1
) = 0 and thus X ′1 99K X ′′ contains only flips. Furthermore we

see that Nσ(KX′′ + ∆X′′ − a1GX′′) = 0 since KX′
1

+ ∆X′
1
− a1GX′

1
is semi-ample,

which is condition (ii) in step 3. Now we have Nσ(KX′′ + ∆X′′) = 0, which follows

since KX′′ + ∆X′′ is nef. From these facts, we have

Nσ(KX′′ + ∆X′′ − tGX′′)

≤
(

1− t

a1

)
Nσ(KX′′ + ∆X′′) +

t

a1
Nσ(KX′′ + ∆X′′ − a1GX′′) = 0

and hence X ′′ 99K X ′′′ contains only flips. In this way we see that X ′1 and X ′′′ are

isomorphic in codimension one.

Since limk→∞ ak = 0, we have t ≥ ak for any k � 0. Then KX′′′ + ∆X′′′ −
akGX′′′ is nef for any k � 0 because KX′′′ + ∆X′′′ and KX′′′ + ∆X′′′ − tGX′′′ are

nef. Moreover, X ′′′ and X ′k are isomorphic in codimension one since X ′k and X ′1
are isomorphic in codimension one and X ′1 and X ′′′ are isomorphic in codimension

one. We recall that (X ′k,∆X′
k
− akGX′

k
) is in particular a log minimal model of

(X,∆ − akG), which is condition (ii) in step 3. From these facts, we see that

(X ′′′,∆X′′′ − akGX′′′) is a log minimal model of (X,∆− akG) for any k � 0. Let

p : W → X and q : W → X ′′′ be a common resolution of X 99K X ′′′. Then for any
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k � 0 we have

p∗(KX + ∆− akG)− q∗(KX′′′ + ∆X′′′ − akGX′′′) ≥ 0.

By considering the limit k →∞, we have

p∗(KX + ∆)− q∗(KX′′′ + ∆X′′′) ≥ 0.

Since KX′′′ + ∆X′′′ is nef, we see that (X ′′′,∆X′′′) is a weak lc model of (X,∆).

Therefore, by [B2, Cor. 3.7], (X,∆) has a log minimal model.

Step 6. Finally we prove that Conjecture 1.1 holds for (X,∆). By running the

(KX + ∆)-MMP with scaling of an ample divisor and replacing (X,∆) with the

resulting log minimal model, we can assume that KX +∆ is nef. Pick a sufficiently

small positive real number t and run the (KX + (1 − t)∆)-MMP with scaling of

an ample divisor. Since KX + (1− t)∆ is not pseudo-effective we get a Mori fiber

space

(X, (1− t)∆) 99K (X ′, (1− t)∆X′)→ Z.

Moreover, since t is sufficiently small, KX′ + ∆X′ is trivial over Z and Con-

jecture 1.1 for (X,∆) is equivalent to Conjecture 1.1 for (X ′,∆X′) (see [B1,

Prop. 3.2]). Now we can easily check that Conjecture 1.1 for (X ′,∆X′) holds by

Ambro’s canonical bundle formula (cf. [FG, Cor. 3.2]) and Conjecture 1.1≤d−1. So

we are done.

Therefore we complete the proof of Theorem 1.4.

Remark 3.3. Let (X,∆) be a projective Q-factorial log canonical pair such that

(X, 0) is Kawamata log terminal, and let A be a general sufficiently ample divisor.

Suppose that KX + ∆ is pseudo-effective and KX + t∆ is not pseudo-effective

for any t < 1. Then as in step 2 in the proof of Case 1 (or Case 2), we see that

the pseudo-effective threshold τ(X, t∆;A) is a linear function of t when t ∈ [ε, 1]

for some ε > 0 sufficiently close to 1. In the proof of Theorem 1.4 we construct

lc-trivial fibrations by using this property.

We introduce a simple application of the above property. With notation as

above, assume that ∆ and A are Q-divisors. Then

E = {(a, b) ∈ [0, 1]× [0, 1] | KX + a∆ + bA is pseudo-effective}

is a rational polytope in [0, 1] × [0, 1]. Indeed, if we set τε = τ(X, ε∆;A), where

ε ∈ Q is as above, then τε ∈ Q (cf. [DHP, Prop. 8.7]) and

E ∩
(
[ε, 1]× [0, 1]

)
= {(a, b) | (1− ε)b ≥ τε(1− a)}
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by the above property. On the other hand, if we pick a positive rational number

ε′ < τε, then KX + ε∆ + ε′A is not pseudo-effective. Thus

E ∩
(
[0, ε]× [0, 1]

)
= {(a, b+ ε′) | KX + (a∆ + bA) + ε′A is pseudo-effective}

is a rational polytope by [BCHM, Cor. 1.1.5]. In this way we see that E is a rational

polytope in [0, 1]× [0, 1].

Proof of Corollary 1.5. It immediately follows from Theorem 1.4.

Proof of Corollary 1.6. It immediately follows from Theorem 1.4.
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