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Mather Discrepancy as an Embedding Dimension
in the Space of Arcs

by

Hussein MOURTADA, and Ana J. REGUERA

Abstract

Let X be a variety over a field k and let X, be its space of arcs. We study the complete
local ring A= OX/OO,\peE, where P.p is the stable point defined by an integer e > 1
and a divisorial valuation vg on X. Assuming chark = 0, we prove that embdim A =
e(kg + 1), where kg is the Mather discrepancy of X with respect to vg. We also obtain
that dim A has as lower bound e(ams(E; X)), where any(E; X) is the Mather-Jacobian
log-discrepancy of X with respect to vg. For X normal and a complete intersection, we
prove as a consequence that if P has codimension 1 in X then the discrepancy kg < 0.
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81. Introduction

In 1968, Nash introduced the space of arcs X, of an algebraic variety X in order
to study the singularities of X. More precisely, he wanted to understand what the
various resolutions of singularities have in common, his work being established
just after the proof of resolution of singularities in characteristic zero by Hironaka.
Nash’s work was popularized by Hironaka and later by Lejeune-Jalabert.

The development of motivic integration gave powerful tools for studying finite-
ness properties in the (not of finite type) k-scheme X,. Two main ideas in Denef
and Loeser’s article [2] appear in this work: the change of variables formula in
motivic integration, due to Kontsevich for smooth X, and the stability property,
which had already appeared in Kolchin’s work on differential algebra. More pre-
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cisely, based on this stability property, in [16] and [17] (see also [18]) we introduced
stable points of X, which are certain fat points of finite codimension in X,. We
proved that, if P is stable then the complete local ring (9/X: p is a Noetherian
ring. From this result we proved a curve selection lemma ending at stable points
of X,. Stable points form a natural framework whenever induced morphisms
Moo * Yoo — X are considered, where 1 : Y — X is of finite type and locally
dominant ([17] and [18]).

Mori theory is also related to the study of the space of arcs. The recent work
of de Fernex and Docampo [7] has confirmed this relationship. In fact, a divisorial
valuation v = vg on X defines a stable point Pr on X, and, assuming the
existence of a resolution of singularities and applying the previous curve selection

lemma, we can characterize dim Ox = 1 in terms of a property of lifting

o, PE
wedges centered at Pg ([18]). Then, de Fernex and Docampo’s result, which gives
an approach to Nash’s project, can be understood as follows: assuming char k = 0,
we have that if vy is a terminal valuation then dimOx_ p, = dim (’);.::E =1.
On the other hand, several examples of a normal hypersurface X and an essential
valuation vg, for which the property of lifting wedges centered at Pg does not
hold, have been studied ([11], [6], [12]). One of the key points in producing such
examples is to require kg > 1, where kg is the discrepancy of X with respect to E.
This suggests a connection between dim Ox__ p,, or dim O?;E, and geometric
invariants of (X, vg).

Understanding the algebraic properties of the rings O/X:p and Ox__ p, where
P is stable, is an important problem; it leads towards the study of nonconstant fam-
ilies of arcs in X. In particular, one of our main goals is to compute dim Ox__ p.
In general, for any stable point P, an upper bound on the dimension of Ox_ p
follows from the stability property: expressed in terms of cylinders, stable points
are precisely the generic points of the irreducible cylinders in X, and dimOx_ p
is bounded above by the codimension as cylinder of the closure of P in X, (see
(2.2)). If X is nonsingular at the center of P in X, then the ring Ox_ p is regular
and the dimension is equal to the above upper bound, but in general the inequality
in the bound is strict. From the change of variables formula in motivic integration,
it follows that the codimension as cylinder of the set N.g of arcs with contact
e > 1 with an exceptional divisor E is equal to e(EE +1). Here EE is the Mather
discrepancy of X with respect to E, introduced in [8] (see also [10]). Hence, for
the generic point P.g of Neg we have dimOx__ p,, < e(EE +1).

In this article we study the embedding dimension of O(x We prove

oo )red,Per
that, assuming char k = 0, we have

(1.1) embdim Ox_ p.,, = embdim O(x_)._, p.,, = (kg + 1),
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that is, the embedding dimension of Ox is equal to the codimension as

o )red,PeE
cylinder of N.g. Moreover, we describe exp;icitly a minimal system of coordinates
of (Xoo)red at Pegp (Theorem 3.4 in this article), that is, we give a finite set of
elements of the prime ideal P.g of O(x_),., whose classes modulo (P.g)? define a
basis of k(P,g)-vector space P.p/(P.g)?. Here k(P.g) is the residue field of P.g
on X, and the reason why the system is finite is our finiteness property of stable
points ([17, Thm. 4.1]; see (viii) below). Applying this description of minimal
coordinates, we obtain the lower bound

(1.2) dim Ox__ p., > e(kp — ve(Jacx) + 1),

where Jacy is the Jacobian ideal of X (Theorem 4.1). In particular, if X is normal
and a complete intersection then dim OZ;E > e(kg + 1). Hence, in this case,
dim Ox_ p, =1, or dim O;;C;E =1, implies kg < 0 (Corollary 4.2).

The graded algebra associated to the divisorial valuation vg plays an essential
role in this study. The natural coordinates of (Xoo)rea at Pogp are obtained by
specialization techniques to the graded algebra of vy adapted from Teissier ([22],
[9], [21]). These techniques are applied to a general projection X — A% and the
induced valuation on A?. Such coordinates are introduced in [19]. In Section 3
of this paper we prove that they also provide minimal coordinates of (Xoo)red at
P.g and we conclude (1.1). The way we obtain this proof is, with the language
n [21], by embedding X in a complete intersection X’ which is an overweight
deformation of an affine toric variety associated to the divisorial valuation vg. In
Section 4 we prove the lower bound for dim OX/O.TEE in (1.2); for this we embed
X in a general complete intersection X’. The important fact used here is that X
can be substituted by X’ in order to compute the local rings OX/O.EE ([18]; cf. (ii)
and (ix) of Section 2 in this paper). All these results extend to arbitrary stable
points P of X, (Remark 3.5).

§2. Preliminaries

In this section we will set the notation and recall some properties of the space of
arcs and their stable points. For more details see [2], [5], [11], [18].

Let k£ be a perfect field and let X be a k-scheme. Given a field extension
k C K, a K-arcon X is a k-morphism Spec K[[t]] = X. The K-arcs on X are the
K-rational points of a k-scheme X, called the space of arcs of X. More precisely,
X = liin X,,, where, for n € N, X,, is the k-scheme of n-jets whose K-rational
points are the k-morphisms Spec K[t]/(t)"** — X. In fact, the projective limit
is a k-scheme because the natural morphisms X, — X,,, for n’ > n, are affine
morphisms. We denote by j, : Xoo — X, n > 0 the natural projections.
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For every k-algebra A, we have a natural isomorphism
(2.1) Homy (Spec 4, X ) = Homy (Spec A[[t]], X).

Given P € X, with residue field x(P), we denote by hp : Spec k(P)[[t]] = X the
k(P)-arc on X corresponding by (2.1) to the x(P)-rational point of X, defined by
P. The image in X of the closed point of Spec x(P)[[t]], or equivalently, the image
Py of P by jo: Xoo — X = X is called the center of P. Then, we denote by vp the
order function ordthgg : Ox.p, = NU{oo}. It also follows from (2.1) that a K-arc
on X is equivalent to a K-wedge, i.e., a k-morphism ® : Spec K[[¢, t]] — X.

The space of arcs of the affine space AY = Speck[z1,...,zn] is (AN ) =
Speck[Xy, X;,...,X,,,...] where forn > 0, X,, = (X1,n,..., Xn:n) is an N-tuple
of variables. For any f € k[z1,...,an], let Y .7 F,t" be the Taylor expansion
of f(3°, X,,t"), hence F, € k[X,,...,X,]. Equivalently, >~ , F,,t" is the image
of f by the morphism of k-algebras Oyn — Oy [[t]] induced in (2.1) by the
identity map in (AY)oo. If X C AV is affine, and Ix C k[x1,...,2n] is the ideal
defining X in Ag , then we have

Xoo = SpeCk[XO;Xla cee 7&»@7 .. -]/({Fn}nzo,felx)~

Analogously, if X = Speck[[z1,...,2n]]/Ix then we have

Xoo = Speck[[Xl[ Xy, - Xy, J/({Fn}nz0 serx)-

Let X be a separated k-scheme that is locally of finite type over some Noethe-
rian complete local ring Ry with residue field k. Note that X may be a reduced
separated k-scheme of finite type, and it may also be a k-scheme Spec ﬁ, where R
is the completion of a local ring R which is a k-algebra of finite type. In [18] the
stable points of X, were defined as follows:

First, if X is affine and irreducible and P is a point of X, i.e., a prime ideal
of Ox__, then the following conditions are equivalent:

(a) There exist n; € Nand G € Ox_ \ P, G € Ox, such that, for n > ny, the
map X, 411 — X, induces a trivial fibration

In+1(Z(P)) N (Xni1)a — jn(Z(P)) N (Xn)a

with fiber A¢, where d = dim X, (X,,)¢ is the open subset X,, \ Z(G) of X,
and j,(Z(P)) is the closure of j,(Z(P)) in X,, with the reduced structure.

(b) There exists G € Ox_ \ P such that the ideal P(Ox_ )¢ is the radical of a
finitely generated ideal of (Ox_)¢.
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We say that the point P is stable if the above conditions hold ([16, Lem. 3.1], [17,
Def. 3.1] and [18, Def. 3.6]). For the stability property on the maps j,+1(Xoo) —
Jn(Xso), see Denef-Loeser [2, Lem. 4.1] and Lejeune-Jalabert [13].

In general, i.e., for X not necessarily irreducible, the set of stable points of
Xoo is the union of the sets of stable points of the irreducible components of X.
Besides, this union is disjoint (see (i) below).

Recall that a subset C of X, is a cylinder if it is of the form C' = j, 1(S)
for some n and some constructible subset S C X,, ([5, Sect. 5]). Hence, from (b)
above it follows that the stable points of X, are precisely the generic points of
the irreducible cylinders.

The following properties of stable points will be used in the next sections. The
first ones, (i) to (iv), are direct consequences of the definition of stable points and
of the stability property in [2]. Property (v) uses well-known facts of the theory of
valuations:

[18, Prop. 3.7]. Let P be a stable point of X ; then the following properties
hold:

(i) Let Xo be an irreducible component of X such that P € (X()o. Then, the
arc hp : Spec k(P)][[t]] = X defined by P is a dominant morphism.

(ii) Let U be any irreducible open affine subscheme of X that contains the
generic point of the image of hp; then

O(Xoo)red>P = O(voo)redvp'

Moreover, there exists X’ C AkN a complete intersection scheme that con-
tains U and of dimension dim U and, for any such X', we have
O(Xoo)rechP = O(Uoo)redap = O(Xéo)redap’

where we also denote by P the point induced by P in (Xso)rea and in
(X..)red- Therefore X, is irreducible at P, i.e., the nilradical of the ring
Ox_, p is a prime ideal.

(iii) The residue field k(P) of P on X is a countably pure transcendental
extension of a finite extension of k. This implies that x(P) is a separably
generated field extension of k ([18, Prop. 3.7(v)]).

(iv) The quantity dim O5xy.p, is constant for n > 0, where jy, (Xoo) is the
closure of j,(Xs) in X,, with the reduced structure, and P, is the prime
ideal PN Om. Since

(2.2) dim Ox, p < supdim O 5 p

this implies that dim Ox_ p < o0.
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(v) Let vp be the valuation on the function field K(Xjy) of Xy defined by the
arc hp, where X is the irreducible component of X such that P € (X)oo
Then, either P, is the generic point of X and in this case vp is trivial, or
vp is a divisorial valuation.

Property (i) is equivalent to the statement in [5, Lem. 5.1] for cylinders. In
property (iv), the right-hand-side term in (2.2) is the definition of the codimension
of the cylinder Z(P) (see [5, Sect. 5]); but the inequality in (2.2) may be strict.
For property (v) in the setting of cylinders, see [8] and also [4]. The next property
compares the local rings at stable points of the space of arcs of X = Spec R, where
R is a local ring which is a k-algebra of finite type, and of X = SpecR where R
is the completion of R:

(vi) Let P be a stable point of X, where X = Spec R is as before, whose center
in X is the maximal ideal of R. Then P induces a stable point in X, that
we also denote by P, and we have

Ox_.p

eSE)

—_—
=0%..r

The following finiteness property of the stable points, which is the main result
in [17], is expressed in terms of the local ring Ox_ p, or more precisely, its formal
completion. It implies a curve selection lemma in X, ending at a stable point P
([17, Cor. 4.8]). Property (viii) below helps understand this local ring.

Finiteness property of the stable points ([17, Thm. 4.1]). Let P be a stable
point of X.; then the following properties hold:

(vii) The formal completion Ox p of the local ring of (X )rea at a stable

oo)redv
point P is a Noetherian ring.

(viii) Moreover, if X is affine, then there exists G € Ox_ \ P such that the ideal
P ((’)(Xw)red)c is a finitely generated ideal of (O(Xoo)red)g-

—

(ix) ([18, Thm. 3.13]. if char k = 0) Moreover, we have (’;m\,p = O(Xo)rea, P

From this it follows that, if P is a stable point of X, then the maximal ideal
of Ox_, pis POx_, p, and even more,

(2.3) embdim (’X:p =embdim O(x_) .. p

(see [1, Cap. III, Sect. 2, No. 12, Cor. 2]).

Stable points behave well under birational proper k-morphisms and, if we
assume that char k = 0, then also under k-morphisms locally of finite type which
are locally dominant:
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(x) ([18, Prop. 4.1]). Let 7 : Y — X be a birational and proper k-morphism;
then the morphism 7, : Yoo = X induces a one-to-one map between the
stable points of Y, and the stable points of X,. Besides, if @ is a stable
point of Y, and P its image, then the induced morphism (’f(;o\ p— (m
is surjective and induces an isomorphism on the residue fields k(P) = k(Q).

(xi) ([18, Prop. 4.5]). Suppose that chark = 0. Let 7 : Y — X be a k-morphism
of finite type that is locally dominant; then the morphism 7, : Yoo — Xoo
induces a map from the set of stable points of Y, to the set of stable points
of X. Besides, if () is a stable point of Y, and P its image by the above
map, then the induced morphism (Ox_ p),..q = (Oyv..,Q),eq 15 an injective
local morphism.

Moreover, if 7 is finite and dominant, then (9/)(: p— @ is unramified
at Q@, that is, P@ = Q@, and it induces a finite extension
k(P) C k(Q) on the residue fields.

(xii) ([19, Prop. 2.5]). Let n : Y — X be an étale k-morphism. Then Y is
étale over X, and, if @) is a stable point of Y., and P its image, then

—

Oyv...q 2 Ox...p ®xp) Q).

Suppose that there exists a resolution of singularities 7 : Y — X of X, i.e., a
proper, birational k-morphism, with Y smooth, such that the induced morphism
Y \ 77 1(Sing X) — X \ Sing X is an isomorphism. Let E be a divisor on Y and
let Y.Z be the inverse image of E by the natural projection ji : Yo, — Y. Then
YE is an irreducible subset of Y., whose generic point Pg is a stable point of
Y- Besides, the image Pg of Pg by the morphism 7, : Yoo — X is a stable
point of X, (see (x) above). We will denote Pj by Pg if there is no possible
ambiguity. Note that Pr depends only on the divisorial valuation vg defined by
E; more precisely, if 7/ : Y/ — X is another resolution of singularities such that
the center E' of vg in Y’ is a divisor, then the stable point Pgs defined by E’
coincides with Pg. Note also that the order function vp, is equal to the restriction
of the divisorial valuation vg to the local ring of X at the generic point of 7(E).

The set Y.Z is also denoted by Cont=!(E). More generally,

Cont®(E) :=={Q' € Yoo /v (Ig) = €} for every e > 1,

where I is the ideal defining F in an open affine subset of Y. We also have that
the closure of Cont®(FE) is an irreducible subset of Y., whose generic point PY; is
a stable point of Y., and the image Pe)é (also denoted by P.g) of Pg;; by T is a
stable point of X .
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Example 2.1. Note that there are stable points that are not of the type P.g
where v is a divisorial valuation on X. For instance, let X = A! and let P be the
prime ideal (Xg, X2) of Ox__ = k[Xo, X1,...]. Then, given a polynomial ¢(z) in
k[z] of multiplicity m, we have vp(q(z)) = ords(q(X1t + X3t2 + Xytt +---)) = m.
That is, vp is the multiplicity in k[z], i.e., the divisorial valuation vg defined by
ve(x) =1. But Pg = (Xy), hence P # Pg.

If 7: Y — X is a resolution of singularities dominating the Nash blowing up
of X, then the image of the canonical homomorphism dr : 7*(A9Qx) — A9Qy is
an invertible sheaf (recall that d = dim X). That is, there exists an effective divi-
sor IA(YZ x with support in the exceptional locus of 7 such that dn(7*(A%Qx)) =
Oy (—Ky,x)(A%Qy). For any prime divisor E on Y, we define the Mather discrep-
ancy to be

kp = ordE(IA(y/X).
Note that EE # 0 implies that E is contained in the exceptional locus of ,
and that EE depends only on the divisorial valuation vg defined by E. We have
sup,, dim O—— = e(kg + 1) (12, Lem. 3.1], [8, Thm. 3.9]). Hence the

jn(Xoo)7(PeE)7L
inequality (2.2) states that

dimOx__ p., < B(EE +1).

On the other hand, if X is normal and Q-Gorenstein (for instance, X is a normal
complete intersection), the discrepancy of X with respect to F is defined to be
the coefficient of E in the divisor Ky, x with exceptional support that is linearly
equivalent to Ky — 7*(Kx). If X is nonsingular then kg = kg ([5, Appendix]).
Moreover, we have the following property:

(xiii) ([18, Prop. 4.2] and [19, Cor. 2.9]). If X is nonsingular at the center P,
of a stable point P of X, then Ox_ p is a regular ring of dimension
dim Ox__ p = sup,, dim Om,&' In particular, taking P = P.p, we have
dimOXoc7PeE = e(k:E + 1).

In Theorem 3.4, we will prove that, also in the case that X is singular at Py, we
have that e(kg + 1) is the embedding dimension of O(x_)

red,PeE "
Example 2.2. Let X be an irreducible formal plane curve over a field & of char-

acteristic zero. Let us consider a (primitive) Puiseux parametrization

x:uﬂo,

y= > N,

Bo<i
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where \; € k for every ¢ > By. Set eg := By and

Bri1:=min{i/A\; #0 and ged{Po,...,Lr,i} < ey},
ery1 = ged{fo, ..., Bri1},

for 1 <r < g—1, where g is such that e; = 1. Let ny = 1 and n, := e,_1/e, for
1<r<g,andlet 3, =3 and 3,, 1 <r < g+ 1 be defined by

(2.4) ﬁr — nr—lBr_l = By — Br—1;

hence we have

B, >np 1B,y for1<r<g, and B, >n,By;

n,3, belongs to the semigroup generated by Bg,..., 53,1, 1<r<g-+1.

Let us consider qo,q1,--.,q94 € klz,y] and gg+1 € k[x,y]] such that gg41
defines an equation of the branch, i.e., X = Speck[[z,y]]/(¢g+1), and q1,..., ¢y

are its approximate roots (see [22, Appendix]). More precisely, go, . . ., gg+1 can be
defined as _
o=z, qa=y— 3 Na ",
i<By
with ord,(q;) = B, and, for 1 <r < g,
b, b .
(25) @1 =q —eqp™ gy = Y e’ g, 1<r <y,
=0, 7r)

with ordy(gr+1) = B, (resp. co) for 1 < r < g (vesp. r = g), where {b.;}/

are the unique nonnegative numbers satisfying b,; < n; for 1 < i < r —1 and
n.B3, = Y o<icr bm-Bi, for each sequence 7 of nonnegative integers in the right-
hand side we have 1,5, < S_o7iB; < By4q (vesp. 0, B, < S0 viB;)if 1 <r<g
(resp. if r = g+ 1) and ¢,, ¢y € k and ¢, # 0. For more details on approximate
roots and the space of arcs of a plane branch see [15] and [14].

Let v = vg be the divisorial valuation on X given by ord,, and let P = Pg
be the stable point in X, defined by v. Considering the projection n : X — A}C,
(z,y) — x, and applying [18, Prop. 4.5] ((xi) above), we conclude that

POx_.p=(Xo,...,X3,-1)Ox_ p-

We will next describe the ring O/X-oo\ p, and we will see that embdim (’f(;o\ p =
Bo, which is equal to the multiplicity of X (see [18, Cor. 5.7]).

First note that POx_ p is generated by Q := {Q"”}Oﬁrég,nrflﬁr,lévxﬁr;
moreover, there exists G € Ox__ \ P such that P(Ox_)g = (Q)(Ox_. )¢ (we may
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take G := HOSTSg Q.3 ). More precisely, (Q) defines a prime ideal in (O(x2y_)a
(see [19, Prop. 4.5]) whose extension to (Ox_ )g is P(Ox., )a. Note that, setting
f = qg+1 € k[[z,y]], the following hold:

(i) We have v(Jac(f)) = V(%) = nng — By. Set € := nng — By.

(ii) For all n > 0, the class of 85;,*" in Ox_ p is a unit and, for n’ > n, the class

of 881;;7*/" in Ox_,p belongs to POx__ p.
(111) Fb7 . ,F€_1 belong to (Q)QO(A@OC .
From this it follows that

KOP) 2 (X1, X ) (W Y] [ ({ W = e cowl ),

—

where W, is the class of QT;B,.' We consider the embedding x(P) — Ox_ p,
which sends X,,, n > By (resp. Wy) to X,, € @p (resp. Xg, € (9/X:p) and
recursively, for 1 < r < g, sends W,. to a n,th root of the image in O/X:p of
CTVVOb“'O - Wrb:‘{_l, that exists by Hensel’s lemma. In particular, for each n > 0
we have defined Y\ € k(P) such that Y, — v e (Q). Arguing recursively on
m > 1 and n > 0, with the lexicographical order on (m,n), from {Feip}tn>o0,
applying (ii) and Hensel’s lemma, and reasoning as in [18, Cor. 5.6], it follows
that, for m,n > 0, there exists Y™ € k(P)[Xo,...,Xz,-1] such that

Fpn=L(Y, —=Y™) mod (Q)""!

in the ring Ou2)_ (@), Where [ := %Z; hence L. is a unit. Therefore, the above
equalities define series Y, € k(P)[[Xo, ... ,Xg,—1]], » > 0, and we conclude that

—

Oxp 2 K(P) [[Xo. - Xgo-a)] / ({Futozazen)
where, for 0 < n < e—1, ﬁn is obtained from F,, by substituting Y, by }7"/,
0 <n <mn. Since, for 0 < r < g,nr_lﬁr_l <n< BT, the series obtained from
@, by substituting Y, by f”n/, 0 < n’ < n belongs to (Xo,...,Xg,—1), then
from (iii) it follows that F, € (Xo,...,Xg,_1)2 for 0 < n < e — 1. Therefore
embdim Ox_ p = fo.

Remark 2.3. Let X be an algebraic plane curve over a field k of characteristic
zero, and suppose that it is analytically irreducible. Then, there exists an étale
morphism X’ — X such that the curve X’ has a Puiseux parametrization

o = @y,

Bo<i<m
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where X, € k for Sy < i < m, i.e., the image of ¢’ has a finite number of terms.
Equivalently, the element g; , ; obtained as in (2.5) from the above parametrization,
which defines an equation of the curve X', is a polynomial.

Indeed, consider a Puiseux parametrization z = u%0, y = > Bo<i Aiut of X
and keep the notation in Example 2.2. Note that the series Bo<i Aiu? belongs to
the henselization k{u) of k[u].,) and also that the element g, in (2.5) belongs
to k{x,y). Since X is analytically irreducible, there exists a unit v € k(z,y) such
that ygg+1 is a polynomial in k[x, y]. Then taking z’ = (NYBrz, y = (7)/Poy and
w' = ()Y/PoP1y, we obtain (2.6). Recall that ny3, is the least common multiple of
By and f3;. Since char k = 0, adding a n;3;th root of y defines an étale morphism
X = X.

Example 2.4. Let X C Az be the hypersurface singularity in [11], defined by
3 +ai+ad+ai+x8=0 over a field of characteristic /A2, 3. The blowing up X’ of X
at the origin has a unique singular point, and its exceptional locus Fj is irreducible
and defines an essential valuation v (i.e., the center of vg on any resolution of
singularities p : X—X is an irreducible component of the exceptional locus of p).
The blowing up Y of X’ at its singular point is nonsingular, and its exceptional
locus is irreducible and defines an essential valuation v, v, Avg. Let m: Y =X
be the induced resolution of singularities. Let P,, Pg be the stable points of X
defined by v, and vg respectively, and set No:={P,}, Ng:={Ps} and X3¢ the
inverse image of Sing X by jo : Xeo—X. We have N, CNg=X5"8 ([11, Thm. 4.3]).

Let T : Z — A? be the embedded resolution of singularities of X whose
restriction to X is m. There exists a divisor £ on Z whose intersection with Y’

is Eg. Note that bz := ordEKZ~/AS is equal to 4 and ap := ordzII*(X) is equal
to 3. Since, by the adjunction formula, kg, = by — ag, we have kg, = 1. Hence,
/k\Eﬁ =kp, +vg(Jacyx) =142 =3 (see [5, Rem. 9.6]).

On the other hand, we have

Ps(Ox. ) x,, = (X1:0, X0, X530, Xa30, X500) (Ox0) x,, -

In fact, (Xy,0,...,X5,0) is the prime ideal in O,s)  defined by v, hence its
minimal number of generators is bz + 1 = 5 (see (xiii)). In addition, the ring
Ox..,p; has been described in [18, Rem. 5.16] as

('3)(90,&j = 15(P3)[[X1,0, X2:0, X3,0, X1:0, X5:0]]/ (Fo, F1, Fo),

where, letting f = 23 + 23 + 23 + 23 + 28 and letting F,, be the class of F,, modulo
(X1,0,-.,X5,0), we have that 3 = a is the minimal n such that F,, #0; in fact
F3 = X:13;1 + X‘13’;2 + X%;3 + X13;4 and

#(Pp) = k({Xi1s s Xim, - - Joi<a)[X1:1]/ (F3).
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In addition, we have Fy, Fy € (X1.0,...,Xs50)% and the initial form in(Fy) of
Fy in 5(Ps)[X1s0, - -, Xsio]] 18 3X 5,1 X0 + 3X21 Xayo + 3X2, X0 + 3X2, Xao,
where X1.; is the class of X;.; in k(Pg). Note that vg(Jacy) = 2; furthermore,
for 1 <i < 4,if fi .= % then vg(f%) = 2, ie., F§, F} € Pg, Fi € Ps, and the
coefficient in X;.o of il’l(ﬁg) is the class of F§ in x(Ps). From this it follows that

embdimoaﬁ =bgz+1— (a5 —vp(Jacx))

=kp, +1+vg(Jacy) = EEB +1,
which equals 4. Moreover, in this case,
dimOx_ p, =bp+1—ap =kg, +1=2.

The argument to compute embdim O;_::ﬁ given in Example 2.4 can be gen-
eralized to monomial valuations restricted to a normal hypersurface over a perfect
field of any characteristic. But, although, given a variety X and a divisorial valu-
ation vg, there always exists a complete intersection X’ containing X of the same
dimension and we have OZ;E = OZ::E (see (ii) and (ix)), X’ is not normal
in general. So, there is no hope of extending the result embdim O;;E = EE +1
by applying this argument. For dim O;.;:E, even if X is a normal hypersurface,
it is not true in general that dim Ox_ p, equals kg + 1, but we will show that
dim Ox_ p, > kg + 1.

83. Defining minimal coordinates at stable points of the space of arcs

Let X be a (singular) reduced separated scheme of finite type over a field k of
characteristic zero. Let v be a divisorial valuation on an irreducible component X
of X whose center lies in Sing X and let e € N.

Let us consider the stable point P.p of X, defined by v and e, ie., we
consider any resolution of singularities 7 : Y — X such that the center of v on
Y is a divisor E, and define P,y = PX; to be the image by 7o of the generic
point PY; of the closure of Cont®(E) (see Section 2). In order to study the ring
Ox_,,p.5, Or its completion OX/m\peE, we may suppose that X is affine; let X C
Aiv = Speck[y1,...,yn]. We may also suppose that 7 : ¥ — X dominates the
Nash blowing up of X and that, if z; denotes the class of y; in Ox, 1 < i < N,
then, after reordering the x;’s, we have

(3.1) ordgm™(dzy A -+ - ANdxg) = kg,

where d = dim X.
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Let p: X — A¢ be the projection on the first d coordinates, let n: ¥ — A4
be the composition = p o7 and let Pfg be the image of P)Y; by 7s. Then
the discrepancy kg(A%) of A{ with respect to the valuation induced by vp is

equal to kg by (3.1). Besides, we know that the local ring O a1 a regular
e B

(AM) oo, P}
ring of dimension e(kg(A¢) + 1) (see (xiii) in Section 2). From this, and applying
[18, Prop. 4.5] (see (xi) in Section 2), it follows that, if Q is a regular system of

parameters of O(Ad)x,Pﬁg (hence #Q = e(kg + 1)) then we have

PepOx, p.p = (QO0x.. Py

(3.2)
and PEEO(Xoo)rechPeE = (Q)O(Xoo)x-ed7PeE;

in fact, the last assertion follows from the first one by Nakayama’s lemma. There-
fore, embdim Ox_ ) =embdim Ox__ p,, <e(kg + 1) ([19, Cor. 4.10]).

red7P€E

Remark 3.1. The above reasoning does not ensure an analogous statement to
(3.2) for ijEOXOO)P:% since, in general, the P-X.-adic topology on Ox_..px 1snot
separated (see [18, Exa. 3.16 and Thm. 3.13]).

The regular case. Moreover, in [19] we described a regular system of pa-

rameters Q of O( 4. We will next recall how we proceeded.

A)oo, Pl
(I) First, since char k = 0, there exists an open subset U of Y with nonempty inter-
section with E, an étale morphism U — U and {u,...,uq} C Op, {z1,..., 24} C
Oy, where V' is an open subset of X, such that the following holds: for all closed
points yg in an open subset of the strict transform Eof EinU , after a possible re-
placement of u; by u; +¢;, ¢; € k, 2 <i < d, we may suppose that {us,...,uq} and
{z1,...,xq} are regular systems of parameters in yo and in 7o ¢(yo). In addition,
the local morphism 7 : Ov,n(yo) = Of],yo is given by

A T
7 mo
o ad E )\gﬂlul + Uy “uUz,
1<i<ma

1 me
xr3 — E )\371‘(’11,2)1“ + uy Sug,
1§i§m3

[ m
T5 > E As,i(Ug, . us—1)u] + ulCus,
1§i§m5

T541 > Us+1,

Tq — Uqg,
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where § = COdimAd@, my <ordy, 25, 2 <5 <d, 0<mg <mp <o <myg,
and, for 2 < j <6 and 0 < i < my, Aj;(ug,...,uj_1) belongs to the henselization
k(ug,...,uj_1) of the local ring kfug, ..., Uj—1](us,...u;_,), and, if i <mys, j" < 7,
then A;; belongs to k(us,...,uj_1). Moreover, with no loss of generality, we may
also suppose that \j m,; (uz,...,u;_1) is a unit for 2 < j <6 ([19, (4)]; see also [18,
Proof of Prop. 4.5]).

Recall that O(Ad)oo,ng is a regular local ring of dimension e(kg(A%) + 1) (see

(xiii)). Note that e(kg(Ag)+1) =e 2321 m;. Thus, if in (3.3) we have \;; = 0 for
2 <j<90,1 <0< my, then the set { X} 1<j<s0<n<m, generates Pﬁ; and has
cardinal e(kg(A%) + 1); hence it is a regular system of parameters of O(Ad) pad-
" e B
On the other hand, if 4 = 2, we may consider a generating sequence {qi}fiol for the
valuation v and 3, = v(g;), 0 < i < g+ 1, which define the minimal generating se-
quence for the semigroup of v (see [20]). Then Q = {Qi§”}0§i§g+1,eni71ﬁi,l§n<eBi
is a regular system of parameters of (9( Ad) PAL Here the n;’s are defined as in
oot e B
Example 2.2; hence the cardinal of Q is e(m; + ms2) by (2.4). Next we will use
these techniques of the theory of plane curves to determine a regular system of

parameters of (’)( pad in a similar way as before. Indeed, we have that the

Ad)xn e
local ring at the generic point of E has dimension one. We will consider plane

projections of the curve it defines.

(IT) Now we consider the following situation: let j, 2 < j < d+1, let vo,...,vj_1
be such that u1,va, ..., vj_1,u5,...,uq € O define a regular system of parameters
of Oﬁ,yo for all closed points yg in an open subset of E (more precisely, there exist
(ci)i € k%' such that (uy, {v; + ¢;} o, {vi + ci}s, ;) is a regular system of

parameters of O yo)' Let 8 : U — Specklvg, ..., vj_1]n]z1,y] be the k-morphism
given by
x1 — ult,
T Z Ai(vg, ... ,vj_l)ui +uo mod (uy)™H,
mi1<i<m

where h € kfvg,...,vj_1] \ (v2,...,v-1), m > mq, Ai(va,...,vj—1) € Rj_1 :=
k(ve,...,vj_1), 0 € Oy, and one of the following conditions holds:
(a) o is transcendental over k(u1,v2,...,v5-1),
(b) o=0.

Set ¢ := ged({m1} U {i/\; # 0}) and define 5y := ey := my, and Bry1 =
min{i/A; # 0 and ged{fo,...,0r i} < er}, erp1 :=ged{Bo,...,Brp1} for 1 <r <
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g, where g is such that e; = ¢, and Bg41 :=m. Let n, = e,_1/e,, 1 <r <g—1
We define {5, }9, from {8,}92) as in (2.4).

Next we will proceed as in Example 2.2. In case (b) (resp. case (a)) we deal
with the formal plane curve (resp. the divisorial valuation) defined over the integral
closure of k(vs,...,v;—_1) by the Puiseux expansion above. In fact, the polynomials
we obtain (see (2.5)) belong to a suitable étale extension of k[va, ..., v;_1]s. More
precisely, let B be a domain that is an étale extension of k[vs,...,v;_1], and
contains A;(ve,...,vj-1), m1 < i < m. Let ¥ be the order function on Blz1,y]
extending v and such that 7(¢) = 0 for all £ € B (note that v is a valuation if
there is no nonzero element h with 7(h) = oo, for instance in case (a)). As in
Example 2.2, we define qo, . .., gy € Blz1,y] such that 7(q,) = B, for 0 <r < g+1
as follows: let {bm}:;é be the unique nonnegative integers satisfying b,,; < n;,
1<i<r—1,and n.3, = Zogi<r brifB; Let o = x1,q1 =y — Zi<31 Ni(Go)?/Po
and, for 1 <r <y,

= o bro b - .
B4) G =TGR @ - Y &@ -G, 1<r<y,

where 7(qg° -+ q)") > n,f, for each sequence « of nonnegative integers on the
right-hand side, and ¢,, ¢y € B, ¢, # 0 and ¢4 # 0 only for a finite number of v’s.
In case (a), we also define ;11 as in (3.4); then we have that {3,191} is the minimal
generating sequence for the semigroup 7(Blz1, y]\{0}) and qo, . .., gg+1 € Blz1,y]
is a minimal generating sequence for ¥ ([20, Thm. 8.6]). In case (b), gg4+1 € Blz1, 9],
also defined as in (3.4), defines the kernel of Blz1,y] — Op.

In case (a), by induction on r, 1 < r < g+ 1, we will define elements {q;}g+1

r=1
in k(va,...,vj-1,21,y); more precisely,

r—1
q. € H T,;lk,‘[’l}g, Ce V-1, 2, Y,
r’'=0

where T, is the multiplicative system generated by ¢.., satisfying the following:
¢ := z1 and, for 1 <r < g+ 1, the image of ¢ in the fraction field K(Oy,y,) of
Oy,y, belongs to Oy, and, if we identify ¢, with its image, then

q. = pr(va, ... ,vj_l)ugf‘ mod (u)grJrl for1<r<g,
(8:5) / B Byiatl
Qgy1 = Hg+1(v2, ... vj1)u st 0 mod (u) s+,
where fi,(ve,...,vj_1) is a unit in R;_;. In fact, once ¢, ..., q. are defined, the
element ;. is defined as follows: let

-7 I \Np
h R /br,O / br,rfl /’[/’I‘,l(q’l‘) !
r1 =4 " qr_q 1 b V2 Y-l |
q .o s
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where the integers {b,,~}7,_, are as in (3.4), P = uli“ ~-~ul;T1’1 is a unit and
P.1 € klz,va,...,v;_1] is such that

oP,
(3.6) Pra(pyr,ve,...,vj-1) =0, TZI(//T”,UQ, ...,0j_1) is a unit in R;_;.

Then we have n,8, < v(hi) < B,,1. If v(h1) = B,,1, we set ¢\, := hy. If not,
we define recursively

s s . h
. bg b :u'ms r,s—1
hrs=q¢ 4, 1 Prs <b5b3171}2,...,1)j1 ,
0 r—
@0 0

where {b%,}",}, are the unique nonnegative integers satisfying b3, < n,,, 1 <1/ <

- b v, .
r =1, and v(hys-1) = Dgcpcp 105080 Tys = pp' - g1, i a unit, and

P, s € klz,v2,...,vj_1] is such that

aPr,s
0z

where A;_1 € R;_; is the initial form of h, —1. We have v(h, s—1) < v(hys) <

(37) PT’S()\S,hUQ, ce 71)]',1) = 0, ()\571,’02, ‘e ,’Uj,l) is a unit in ijl,

B,41; hence, after a finite number of steps we obtain s such that v(h,s) = 8,4,
and we set ¢y11 := h, s (for more details see [19, Lem. 3.1]).

The elements ¢, and g, are related. In fact, for 0 < r < g+1, ¢, and ¢, define
the same initial form in an étale covering of a localization of the graded algebra
gr klva, ..., vj_1,%1,Y)(a, y)- More precisely, there exist ZE € H0<7,/<7_TT_,1B[331, Y],
¢ a unit and 7(h) > B,, such that ¢/, = g, - £ + h.

(ITI) Recall the expression in (3.3). We fix j, 2 < j < ¢ and apply the previous

study to
xy = uy't,
Tj > Z )\j7i(u2,...,uj_1)ui—|—u§njuj.
1§i§mj
Let Bj_1 be a domain that is an étale extension of k[ug,...,u;—1] and contains
Aji(ug, ... uj-1), mi <4 < mj. Let U; be the valuation on B;_1[z1,x;] extend-

ing v and let {Bj’r}fj:—gl be the minimal generating sequence for the semigroup
vj(Bj_1]z1,x;] \ {0}). Let {g;., ‘Z]':—Sl € Bj_1[x1,x;] be a minimal generating se-
quence for 7;, and define {q;, ﬁ’:{)l € k(ug,...,uj—1,21,2;) as in (II).

Consider the following sets with the lexicographical order

T ={(LOU{(ir)/2 < i <81 <r<g}. J=J"0{G.g+1)/2<j <0}
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Applying the argument in (II) and arguing by induction on (j,r) € J, we can
define elements {q;,}(j.res,

(3.8) gr€ ] Tiaklan... ],

(4'r)eg”

(" <@r)
where T}, is the multiplicative system generated by g;/ ,, satisfying the following:
q1,0 := x1 and, for (j,r) € J, the image of g;, in the fraction field K(Oy,y,) of
Oy, belongs to Oy, and, if we identify g;, with its image, then

(3.9) Qjr = pjr(uz, ..., uj_1)u?ir mod (uw)?irtl for 1 <r < gj,
3.9 B -
9 S|
jgy+1 = Hig;+1(uz, ... Juj_)u oty mod (u)?re
where g - (ug, . .., uj_1) is aunit in k(uz, ..., u;_1). In addition, if b; o, . . ., bj 4, are

the unique nonnegative integers satisfying b; , < n;,, 1 <r < g5, and Bj,gj+1 =
Eogiggj bj,TBjm, and if we set g;0 = qi1,0 = x1, then, identifying ¢;, with its
image in Oy, we have

4j,9;+1

bj.g.
3,95

(3.10)
bJ'O “ e
950 " ,g;

= 0j € Oy

Here v; = y;u; mod (u), where ; is a unit in k(us,...,u;_1). In particular, note
that k(uz,...,u;) = k(va,...,v;). Note also that g;, is obtained from g¢;, by

b'/
bir o 951

replacing v;, by qj/7g].,+1/(qj770 "'qu,éj/ ), for 1 < 5/ < j. We will denote by
{Pjrs}s the polynomials in k[z,v2,...,v;_1] defined in order to obtain ¢},
from ¢} ,., hence satisfying (3.6) (resp. (3.7)) for s =1 (resp. s > 1). The elements
{4j,r}(jryes are called a system of transverse generators for n : Y — AY with
respect to E.

(IV) Finally, for every element ¢ € Oy, that is the image of an element in the
fraction field of k[z1,...,z4], i.e., we can write ¢ = [/g where I, g € k[x1,...,24),

we can define {Q,, }n>0 in O a such that, in the ring Oy pv , we have

(Ad)oo, Plg

(3.11) Q. =Q, mod P,

More precisely, since Pe’% is a stable point and the image of g in Oy, is nonzero,
there exists ¢ € N such that Go,...,G.—1 € P}y, G, ¢ P);. Hence we have

GQn+- +GpicQc =Ly mod Pg;; forn >0

([18, Proof of Prop. 4.1, (14)]) and we can define recursively @, € S™'Oua ,
where S is the multiplicative system generated by G., satisfying (3.11) (see also
[19, Lem. 4.1]).
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Applying this to each ¢;,, we obtain Q. e O n > 0 such that

Jirin (A?) o, PALs
Qjrin = Qj ., modulo Peg. More precisely,

— ——1
Qj,r;n S H Tj/,,r/k[xl,...,xj]oo7
(4'r)eg”
(") <(G:r)
where k[r1,...,7j]e denotes O(speckfes,....z;]) a0 T is the multiplicative
system generated by @, it 1By . Then, let

Q:= {Qjm;n}(j,r)ej,enj,rflg-

j,r—1 Sngegj,r71

It is clear (see (3.9)) that (Q)O(Ad) pd - Png(Ad)
applying (2.4), (3.3) and, for the last equahty, also (3. 1) we have

prd- In addition, note that,

s
1Q =emq + Z 85] L +e(B 2 —miaBia) + o+ e(Bg 1 — n]’vgjﬁj,gj))
j=2

é
(312)  =emited (Bi+(Bja—Bi)+ -+ (Big1— Big,))
j=2

5 4
—emi+ed By =ed m; = elkp(Af) +1) = e(kp(X) + 1),

j=2 j=1

Recall that O(Ad) phd

(xiil) in Section 2). In [19] we proved that Q is a regular system of parameters

o is a regular local ring of dimension e(kg(Af) 4+ 1) (see

(A) oo,
sociated to {q;r}(jryes- The proof is based on the study of the graded algebra

of O «a; then Q is called a regular system of parameters of O, ad QS-
Per (A oo, P

gr, k[z1,...,24). In fact, the main idea in the proof is to show that (Q)O(M) phd
is a prime ideal and it follows from the following: it is proved that, modulo étale
extension, O(Ad)x,Pﬁg/(Q) is isomorphic to a polynomial ring in countably many
variables over a certain localization of gr, _k[z1,...,z4]. Since gr, _k[z1,...,z4] is
a domain because vp is a valuation, it follows that O . pd /(Q) is a domain

(see [19, Thm. 4.8]).

_ More generally, let Qo5+ qg+1 € B[a:lzvy] be as in (II), and let us deﬁngé =
{Qrinto<r<gen,, 1B, <n<cB, —1> Where Qry € Bl21, Yoo and L = r=0 @ricB,
Then (Q) is a prime ideal of (B[z1,y]s )z ([19, Prop. 4.5]).

In order to study the ring OX/o;\e »» we will embed X in a complete inter-
section scheme X’ C AkM of dimension d = dim X, (recall the notation at the
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beginning of the section). For any such X’ we have

—

OXo)reaPer = OX )rearper @ad Ox) Pop = O(x1 ) Pops

where we also denote by P.p the point induced by PX; in X/ or in (X[ )req (see
(ii) and (x) in Section 2).

Proposition 3.2. Assume that chark = 0. Let Xy be an integral separated k-
scheme of finite type. Let v = vg be a divisorial valuation on Xg and let e € N.
Then, there exist a complete intersection scheme

X, = SpeCk[ylv"'7yN]/(fd+1a"'7fN) g A;{;V

that contains Xo, and of dimension d=dim X, and elements {2 s fa+1<i<N,1<s<g
in kly1,...,yn| such that, if for an element g € kly1,...,yn] we denote by v(g)
the v-value of the class of g in Ox,, then the following hold:

(a) Ford+1<I<N,1<s<g,letays:=v(z;) and let

N
Z=Ulg1Z1 where 2 := {Zz,s;n}0<1§s§g, :
<n<eqi,s

where Zjrm € k[Y1,...,YN]oo- Then there evists G € O~y such that
(QU Z)(Owny . )a is a prime ideal and
P50y, px =(QUZ) Oy, px.

(b) FOT’d+ 1 S l S N; fl = fl(yla"'7yd7yl) € k[yla'-'7ydayl] satisﬁes the
following:

(i) v(Jac(fi)) = v(§L); set e := v(Jac(f1)).

.. OF.cc,+n - . .
(i) For alln >0, the class of al'yl_” in Ox:_ p.p is a unit and, for n'>n,

OF;. . . .
the class of % in Ox:_ p., belongs to PepOx/_ p,.,,. Besides, if we
n

define f;, = 2—52 then the class of M;L;;%;lnﬂ — F}.ce, 1 Ox1_ P, belongs
to P.g.

(ii) There evists L € Oga = k[z1,...,Taloo, L & PeAEd such that the elements
Fro,... Flee,—1 belong to (QU ZZ)Q(O(A{;’)OO)L-

Proof. Let7:Y — Xq, p: Xo — A{ and n = por : Y — A{ be as in the beginning
of this section. Let us consider an étale morphism U — U as in (I) and keep the
notation in (I). From the discussion in (I), (IT) and (III), it follows that there
exist {u,v2,...,v4} € Oy and {x1,...,24,%ay1,...,2n} € Ox such that, after
replacing v; by v; +¢;, where ¢; € k, 2 < i < d, the following property holds for the
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points 7o in an open subset of E: {u,va,...,vq} (resp. {x1,...,zq}) is a regular
system of parameters of Of},yo (resp. OAZ>VI(ZJO)) and {z1,...,24,Td41,---, TN}
generate the maximal ideal of Ox, r(y,)- In addition, we have

(i) the local expression for 1 in (3.3) holds for the regular system of parameters
{u,v2,...,va} of Oy and {z1,..., x4} of Opa y(yy (ie., in (3.3) replace uy
by u, u; by v; for 2 <1 < 9§ and set v; = u; for § < i < d);

(ii) there exists a system of transverse generators {q;,}(jres for n: Y — A
with respect to F, hence satisfying (3.8), (3.9) and (3.10);

(iii) for d4+1 <1 < N, the image of z; in Oy, is expressed as

(3.13) T = Z Ai(v)u’,

mlgi
where v := (va,...,v4) and

ALi(v) € k(v) N Og

(3.14)
ALi(v) € kv, ..., v—1) N Oﬁ,yo ifi <mjfor2<j<$é

(recall (3.1) for the second assertion in (3.14)).

Fixl,d+1 <1< N. Let Bl,m e ,Bl’gl be a minimal system of generators of
the semigroup defined by the restriction v; of vg to k(v) [$17xl](m1,x,)~ Let ¢, =
ged{B1gs- -, B1, 1, 0 < < g,y = er1/ery, 1 <7 < g, and let Bio, ..., By,
be defined by 8;, — ny,r—18,,_1 = Bir — Bir—1 as in (2.4). Consider h € k[v]
such that k[v], is contained in the ring Oy and consider the morphism 6; : U —
Spec k[v]n[z1, y] given by

x1 > u™y

Y Z )\M(g)ui.

mlgi

There exists a domain B; such that B;[z1,y] is an étale extension of k[v][z1,y]
and there exist 2, ¥’ € B[z1,y] with

Ty =mmw, Yy =y, wherev1,7 € Bi[z1,y] are units,

and v = pu, where y is a unit in an étale extension of k[v]x[u], such that the
induced morphism 0,:U — Spec Bi[x},y'], where U — U is étale, is given by
= (W)™,

y, = Z A;,i(ul)ia

my<i<m



MATHER DISCREPANCY IN THE SPACE OF ARCS 125

where X;; € By for m; < i < m (see Remark 2.3). Let Gio,--.,G1,9,,Ql,9+1 €
B[z}, y'] be the elements defined as in (II) applied to the above expression; hence
we are in case (b) in (II). Hence ¢ g,+1 defines the kernel of B;[z1,y] — Oz, ie,

Bi[xy, 2] = Bi[w1,y]/(q1,g,+1)-

Thus §j 4,41 defines the equation of a plane curve in Spec L;[z},y’], where L,
is a field extension of k containing /\;ﬂ. for m; < i < m, which is analytically
irreducible, and ¢ 1,...,q; 4 are its approximate roots. Let us also consider the
following elements in k[v]p[z1, y]: let f§:= @0 =21 and, for 1 <r < g+ 1, let us
define f;, to be an irreducible polynomial in k[v];[z1,y] defining the contracted
ideal of (q;,»)Bi[z1,y] to k[v]n[z1,y]. Set f] := fi,4,+1 and note that we have

(3.15) fz/(y,éﬂl,y) = Ejl,g;ﬂ 'Ea

where h € B, [z1,y] and ¢; 4,41 does not divide h. Indeed, if g g,+1 divides h then

%—];l/ belongs to the contracted ideal of (¢;,g,4+1)Bi[x1, y], contradicting the definition
!/
of f]. Let

Ci:= Speck[ulnlwr,yl/ (), Ci = Spec Bilr1, 4}/ (@gi+1)-

We consider now the spaces of arcs of Cj, CN'l. Let v be a divisorial valuation
on By[z1,y]/(q1,g,+1) extending v; (recall that v;(v;) =0, 2 < j < d) and let P/
(resp. }31) be the stable point of O(c,)  (resp. (’)(él)oo) defined by v; and e (resp. v
and e). Note that we have

O(Cl)ooapll = 0(51)00,1317

i.e., the ring on the right-hand side dominates the ring on the left-hand side.
Following (IV), let Q; := {ler?n}ogrggl,enj,r,15 <n<eB,,—1- Lhen (Qq) defines

~ . Jyr—1=
a prime ideal P; in (Bj[z1,yloc) 7, where L =]7_, Q, ref, » and we have

(Ql)o(az)ooﬁl = Plo(az)oo,ﬁz

(this argument has already been applied in Example 2.2; it is based on [19,
Prop. 4.5]; see also (IV)). In addition, P; is a stable point of Bj[x1, Y], since
Q; is a finite set. Let P} be the image of P; in (Speck[v]n[21,y])so. Since the

morphism E[v]n (21, Y]z, ) = Bil*1,Y](a,,y) s étale, P} is a stable point and we

T1,Y
have
(3.16) (Biler, yloo)p, = (k[0lnlw1, Yoo )y @nery £(PY)

([19, Prop. 2.5]; see (xii)). Let Fj = {F] ., Yo<r<g 0<n<ev(s;,) and let L' =
Hy - 1%, Fl/,r;eV(f{,r)' Then (F]) (k[v, z1,Y]);, is a prime ideal ([19, Proof of
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Prop. 4.5]; see (IV)) and we have

(3.17) () (k[ulnl21, Yloo) = Py (K[u]nl21, Ylo) 1
and
(F)Ocn..rp = PlO(cy) .y
Now, for g 4,41, the following properties hold:
- ~ 91,4 ~ 9T =
(a.1) We haveiz/(Jac(ql,gljl)) = y(‘ﬂT;H) — u( jgy,,/ﬂ) = (g —1)Bug + -+
(nia=1)B11 = 11,81, = Brg,- Set €:=n1g,8; 4 = Brg-

(b.1) For all n > 0, the class of W in O, p, is equal to the class of
) ni,g, — o Ama—l . aél,gl+l;eg+n . s
Nyg Ny, 1Q ’gl)e,@l ., Ql,l;eﬁl ) modulo Pl, hence —%y— Is a unit in
O(émwﬁl-

(c.1) For n' > n, the class of w in O(C) , belongs to PlO(él)oonl
(d-1) Qugi41:05---»Qugt1:e6-1 belong to (Qz)2Bz[[SU1, Yoo

In fact, to prove (d.1) we argue by induction, and prove that, for 1 <r < g, + 1,

~ ~ 2
(3.18) Qirin € <{Q17T'§n}0§r’Sr—l,OgnSegl’r/—1) Bilz1,y]

for 0 < n < e((nr—1—1)B, 1+ +(u1 —1)B1) = e(nir—18,-1 — Bir-1)-
Now, from (3.16) and (3.17) we obtain that Fjg,...,Fj . , belong to

(F)? (k[@ml,y]oo)ﬂpg, where € = ﬁ(%) J’_nl,ngl,gl — [, Therefore (recall (3.15)),
we obtain the following conclusions:

(a.2) We have v;(Jac(f])) = yl(afl ) =+ 0(h). Let € := ¢+ (h).

(b.2) For all n > 0, the class of & in O(c,)_p; is a unit. In addition, if
h; == 8fl then the class of M Hiee in O(c,)__ p; belongs to P/

(c.2) For n' > n, the class of % in O(c,)__,p; belongs to P/O(c,)__ Py

(d-2) Flg,-- F.eor 1 belong to (F'1)? (k[v, 21, Yloo) gy, -

Now, let b be the smallest nonnegative integer such that g, := hb f] belongs
to k[v, z1,y] and let {b;,}(;es+ be a minimal sequence of nonnegative integers
such that

fl(ﬂfla-~-7$d7yl)

bjr / 42,95+1 45,g5+1
H qj b2.0 b2.gy "7 bso 65,957$5+1a"'axd7x17yl

(Jr)eg- 1,0 " 42,9, 450 " 4s,g5
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belongs to k[z1,..., x4, yi], where y; is an indeterminate (recall (3.8) and (3.10)).
Therefore we have

(319) fl(:cl,...,xd,xl) =0.
From (3.1) and (a.2) it follows that

0 ‘
(3.20) e =v(Jac(f))) =v (85/2) =v H q?f;fhb + €,
(Gr)egx

i.e., (i) in the statement of the proposition holds. From (b.2) and (c.2) we obtain
that (ii) also holds.
For 0 < s < g+ 1, let b(l, s) be the smallest nonnegative integer such that
/

9s = hb(l’s)fl’ys belongs to k[v,z1,y] and let {b;,(l,5)}( ey be a minimal
sequence of nonnegative integers such that

(3.21)
. bjr(lys) s 42,g:+1 45,95+1
2,5 = H q],Jr ‘9i,s bs.o bags’ 0 bso bs qd7x5+1a"'7xd7$1ayl
(Jr)eT* 92,0 *" 92,9, 95,0 " 45,95
belongs to k[x1,...,zq4,y1]. Set @ := v(z1s), where x4 is the class of z, ¢ in

Ox,, and Zp := {Z} s;n}1<s<g;,0<n<eca .- Then, from (d.2) and applying the second
assertion in (3.14), we conclude that

——1
Fl;07-'-aFl;66171 S (QUZZ)2 H Tj7rk[m1a---7xdayl]oo 5

(Gr)eg* o
where, if we consider h as an element of k(z1,...,z4), i.e., we replace v; by
. bigs
q]’,gj+1/(q?f(’)°-~-qjgjj) (resp. z;), for 2 < j < § (resp. 6 + 1 < j < d), then

Hy € [ner T;:k[xl,...7xd}oo satisfies Hy = Ho mod P)g, as in (IV). In
particular, if L := Hy - H(j,r)ej* Qj,r;eﬁj_,,v we obtain that Fi.o,..., Fleq—1 €
(Q U Z)? (k[xy, .. STy Ylloo) - Setting Gi = L Hg’zl 2 s;em.,, and applying
(3.17) and that Q is a regular system of parameters of O(Ad)m,Pfg’ we have that
(QU Z)(k[z1,...,2d,Y1)oo)q, 18 & prime ideal.

Finally, applying (3.19) we conclude that

X/ = SpeCk[xl’-~-,xd,yd+17~-~,yN]/(fd+1’-- 7fN)

is a d-dimensional complete intersection scheme in ALY containing Xy and satisfying
(i) to (iil) in (b). If we set G = L - Hi\idﬂ [1%-, Zi s, . then we conclude that
(QU Z)(k[x1, ..., Zdy Yd+1s-- - YN]oo)c 18 a prime ideal such that

X/
(QU Zl)OX{,o,PeXE' =P OX;C,P(:,XE/'
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Thus, the proposition is proved. O

Remark 3.3. Keep the notation in Proposition 3.2, and fix [, d+1 <[ < N.

Define Y := (Yisn, ..., Yain, Yim), n > 0, and f/ ; == g—g je{l,...,d,1}. Then,

applying Taylor’s formula it follows that, for n > e¢,

d e€ €€]
/ /
(322) Finyea+1 = Hintee+1+ E E Fj.iYjmtea+1—i + E Fri.iYintee+1-is

where Hypiet1 € k[Xél), . ,x;”] is the coefficient of t"*te+1l in (37" Y@ti)

=0 =—1i

(see [16, Proof of Lem. 3.2]). In particular, since ¢ := v(Jac(f;)) = V(%), it

follows that, for n > ee;,

a-Fl'n+ee +1 /

Yil = ‘Fl,l;eel g PeEv

lin+1

8E§n+€€z+1 _ {F}/,l;eel—(n’—71) € PeE' for n +1 < n' <n+ e,
0

Y41 for n +ee < n'.

This idea, generalized to complete intersection schemes (see [17, Proof of Lem. 4.2])
is a key point in [17, Proof of Thm. 4.1] (see (vii) and (viii) in Section 2). The
statement in Proposition 3.2(b)(ii) is an improvement of the previous assertion.
Indeed, it states that for n > 0 (in particular, also for 0 < n < e¢) in the ring

OFr.. OFntec
—eatt = F .., mod P and — = (0 mod Pep for

Oxéc,ch, we have Yl;n’+1

Yiin+1
n' > n.

Theorem 3.4. Assume that chark = 0. Let X be a reduced separated k-scheme
of finite type, let v = vg be a divisorial valuation on an irreducible component Xg
of X, and let e € N. Then

(3.23) embdim O(x_ )., p., = embdim O(X:)T:pw =e(kp + 1),

where EE is the Mather discrepancy of X with respect to E.
Moreover, if p: X — Aﬁ, where d = dim Xy, is a general projection, more pre-
cisely a projection that satisfies (3.1), and Q:{Qj,r;n}(j,r)ej,enj,,\,lﬁj,r,lgngeﬁm—l

is a regular system of parameters of O(Ad) pad s then Q is a minimal system of
k/o°" eE

coordinates of ((Xoo)reds Pox;), that is, we have Q = e(ig\E +1) and
PO s = () Ox )Py

Proof. First recall that, since Q is a regular system of parameters of (9( Ad), PhE

([19, Thm. 4.8]) and p: X — A¢ is a dominant morphism, we have

-

PXOy ox =(Q)O
eE XOO,PC’E_( ) Xoo,PX,



MATHER DISCREPANCY IN THE SPACE OF ARCS 129

([18, Prop. 4.5]; see (xi)). From this and Nakayama’s lemma, the second assertion
of the theorem follows (see also (3.12)). Therefore, we have to prove (3.23) only,
or equivalently, the independence of the elements of Q in P, /(PX;)2.

Let X’ be the d-dimensional complete intersection scheme containing Xj,
defined in Proposition 3.2, and keep ‘ﬂe\notation in /t_h;at proposition. We have
OXoo)oa,Pop = O(Xgo)rcd,PeXE/ and Ox_ ), p.p = O(X(;o),P:g (see (ii) and (ix)).
Therefore, in order to prove (3.23) we may suppose that X = X'. We will next
describe the ring (’)X/w\peE, where X = X’ and P.p = P%,. We will follow the
ideas in Example 2.2 (or [18, Cor. 4.6]), where an analogous description is given.

The residue field of Pﬁ; is

k(Plg) =k <{X1;n}n>em1 U {Xj;n}2§j<d_> (Wit Gimea=] /7,

where we set m; := 0 for 6 +1 < j < d (see (3.3)), W, is the class of @j,r;eﬁ. _
and J is the ideal generated by 7

_ . _

3.24) P 11 (Wi )" Wa,g, 41 Wi-1., 141

( . ) 7,71 ij)o ijm71 ’ Wb2v0 Wb2’572 gee ey bj71 o bjfl’gjil
10 i1, Wig 2,02 Wio 7w Wilig

(recall (II) and (III)). From property (3.6) satisfied by P; .1 and Hensel’s lemma,
it follows that we can define an embedding x(A{) — O
Xj;n S O(Ad)w,Pﬁg s
to X1;em, and, recursively, for (j,7) € J* \ {(1,0)}, sending W; , to a root of the
polynomial obtained from (3.24) by replacing Wy ,», (j',7') < (j,r) by its image
in O

(A) oo
for j = 1,n > emy, and 2 < j < d,n > emy, sending W1 o

P sending X., to

(Ad)o, PAL this root exists by Hensel’s lemma. Then we have
st eE

— d
O(Ad)oo,Peg = K(PﬁE)

[{Xj,r;n} Gr)EeT H ,

enjr—18; ,—1<n<eB; .

(ATi)\PAd is Q, jim- Besides, C’)X/\Pg is a quotient
0 Plp 5] 5 oo 7
of k(PX;) [[{Xjﬂ“%"}(j,r)ej,enj,r_ﬁjﬂ_lSn<83j,r]}’ where the residue field x(PZX;) of

P23, is a finite field extension of H(Pf];).

Now, fix [, d+ 1 <1 < N. Arguing analogously we obtain
ki i= A(PLg) (Wi Y] [ = w(P2).

where the image of Xj ., in O

where W, 5 is the class of Zi,s;em, , and J; is the ideal generated by the relations

g s / _ _ < < . .
on (Wi} induced by G 25 < g (see (321)
Applying Hensel’s lemma recursively to these relations, we can define an embed-

—

ding x; — OXOO,P’,‘E sending X, to Xj., € OXWP)%, for j = 1,n > emy and
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2 <j <d,n> emj, and sending Wi o to Xiem, € OZO?;E. In particular, for
each n > 0 we have defined Ylfg) € K such that Y;,, — Ylfg) € (QU Z;). Arguing
recursively on m > 1 and n > 0, with the lexicographical order on (m,n), from
{Fliee,+n n>0, applying property (ii) in Proposition 3.2(b) and Hensel’s lemma,
and reasoning as in [18, Cor. 5.6], it follows that, for m,n > 0, there exists

(m)
Yi;n € Iﬂ[{X‘j’r;n}(jvT)EJ&Hj,rflEj,r,lS7L<€Ejyr] such that
3.25 F = mn)y, _ym) d (QUZ m+1
(3.25) cartn = Lo ™ (Yin = Yy,7)  mod ( )
in the ring (k[x1, ..., 4, yl]oo)(guzl), where LSJ!}’”) is a unit. More precisely, L((;Z}’")
e, € (QU Z;) where we recall that fl = %.

Therefore, Yl(mﬂ) - Yl(;n) € (QU Z)™"" by (3.25). Hence we have defined

n
series Y., € Ky [[{va'“?"}(j,r)GJ,enj,r_lﬁm,l§n<ij,,,,”’ Yin = limy, Yl(:?) We con-
clude that

N
K(Plp) = K(P) [{Wl,s}d+1§zsz\f,1§s§gz]/ >
l=d+1
and

(3.26) Ox_ px = K(PJ)

[{ij;n} (Gyr)eT H/({Fl;n}dJrKKN),
enjr 1By, 1<n<eB, . Osn<eq

where, for d4+1 < I < N,0<n < e — 1, ﬁl;n is obtained from Fj, by sub-
stituting Y7, by }N/lm/, 0 < n < n (see [18, (25)]). In fact, we have applied
the definition OX/O-:»\PJE = lim Ox_.px /(PXp)™"" and also that POy px =
(Q U Z)(’)Xompe)% and Ox__ = k[1,...,Zd, Yd+1, - - - 7yN]oo/({-Fl;n}d+1§l§N,n20)~
If Z,Sm denotes the series obtained from Z; ., by substituting Y;., by fﬁm/,
0 < n’/ <n, we have

(3.27) Ziwn € ({ij} Gred ) ford+1<1<N,0<n<eq.,.

€7lj,rr713j,r—1§n<eﬁj,r

Since Fiyo, . .- Fiieq—1 € (QUZI)Q"‘@(Pﬁ;)H{Xjﬂ“;n}(j,r)ej,enm_lﬁwfl§n<ijmH by
property (iii) in Proposition 3.2(b), applying (3.27) we conclude that

2
Fin € <{X,yr;n} Gired ) for d+1<I1<N,0<n<eq—1.

enjr—18; _1<n<ef; .

Therefore, the images of {Xjﬂ“m}(j,r)ej,enj,r_lﬁ-‘7.,1§n<eﬁj,,,, define a basis of

PgEOX/m?g/(PeXéOX/O;;%)Q. Thus we obtain (3.23), and this finishes the proof.
O



MATHER DISCREPANCY IN THE SPACE OF ARCS 131

Remark 3.5. Let X be a reduced separated scheme of finite type over a field
k of characteristic zero. Let P be any stable point of X, and suppose that the
center Py of P is not the generic point of X. There exists a birational and proper
morphism 7 : Y — X such that the center of vp on Y is a divisor F, and e € N
such that vp = evg ([18, Prop. 3.7(vii)]; see (v) in Section 2). Let PY € Y, whose
image by 7o is P, let p : X — A% be a general pI‘OJeCthIl and let PA* be the
image of P in (A%),. Then k;E(Ad) = kg, where kg is the Mather discrepancy
of X with respect to F/, and we have dim O (Ao, PAd = ekE + dim Oy, pv (see

(xiii) in Section 2). Recall that P O P, hence pA D pA e ° and, if Q is a regular
system of parameters of O(Ad) P then @ C P. Note that, since vp = evg, the
proof of Proposition 3.2 extends to this case, and we obtain that the complete
intersection scheme X’ and the set Z defined in Proposition 3.2 for the valuation
vg and e also satisfy the properties obtained replacing P.g by P in (i) to (iii) in
Proposition 3.2(b). Then from the proof of Theorem 3.4 it follows that

embdim O(x_y.., p = embdim Ox_) ., p = ekp + dim Oy__pr.

84. A lower bound for the dimension

Recall that, given a divisorial valuation v = vy on X, the Mather—Jacobian log-
discrepancy of X with respect to F is defined to be

CLMJ(E;X) = EE — Z/E(JaCX) + 1,
where Jacx is the Jacobian ideal of X (see [10], [3]).

Theorem 4.1. Assume that chark = 0. Let X be a reduced separated k-scheme
of finite type, let v = vg be a divisorial valuation on an irreducible component Xg
of X, and let e € N. Then we have

dim(’)X/OC:\P;% > eanms(F; X).
In particular, if X is normal and a complete intersection then
dim Oy px > e(kp +1).

Proof. Tt is always possible to embed X in a complete intersection scheme X'
such that kg (X) = kp(X') and vg(Jacx) = ve(Jacx/). Hence, since O(x_ ) p,, =
O(Xéo)ij‘E/ (see (ii) and (ix) in Section 2), it suffices to prove the result for X'.
That is, we may assume that X is a complete intersection; more precisely, we may

suppose that
X = Speck[zy,... 7331\;]/(]"1, ey fN—d)-
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We may also suppose that (3.1) holds, i.e.,
(3.1) ordpm*(day A -+ Adag) = k.

For simplicity in the notation we will prove the result when e = 1; the proof when
e > 1 follows in the same way. Let p : X — Ag be the projection on the first d
coordinates, let n : Y — Az be the composition n = po, let P%d be the image of

PEY by Moo and let Q = {7j,r;n}(j,r)€.j7,nj,rfl

B <n<B, . -1 be a regular system of
2 r—1 =10 =g e
pid associated to {Qj,r?(jf)ej’ as in (IV) in Section 3. We

parameters of O(Ad)oo

have

« (=
(4.1) Pg O(xm)red,Pg = ({Qj,r;n}(j,r)ej,njﬁrilﬁjmilSnggjmil) O(Xoo)red,Péf

(see Theorem 3.4).
Let us consider the following (N — d) x (N — d)-matrix with coefficients in

A= (afl

O+, ) 1<i,j<N—d

k‘[xl,...,xN]:

)

and let dﬁgr denote the determinant of the X r-minor of A defined by the rows
i1,...,4 and the columns jq,...,j.. After reordering {xdﬂ-};\;d we may assume
that

Jj=i

(2w () =it {vp (@) fr1<i<n-d

1,...,i—1,5

For 1 <i< N —d set

1 i . afz N=d : 3 N-d
0; := Vg (dljijjii) , €; = inf {Z/E ( >} = inf {I/E (d})}jzl

O d+; j=1

and note that 0; = €¢; and dy_q = vg(Jacx) by (3.1). It can be proved by
induction that, for 1 <I < N —d, 1 <i,57 < N —d, we have

Lol=1,0  gl,..0=2  1,..01—-24 1,..,0-1 1,..,0—2,i 1,..,0-2,1—1

(4-3) dl,...,l—l,j ‘d1,...,l—2 - d1,...,l—2,j 'd1,...,l—1 - d1,...,l—2,l—1 'dl,...,l—2,j :
._ 0 ; . _ g1 .

Let f{, = g0, 1 < i < Njthus fi,; = df, 1 < i< N—d Let

/ T1yeenslp . / Bl yeeeslp ) 2

Dm0 Flint™ (vesp. 30,50 Dy 5 t") denote the image of f ; (vesp. dj)""7) in

klz1,...,ZN]eo. Given a3 > € and n > (a3 — €), if we apply Taylor’s

formula to fi(wo + t"~(@1=w,;), where wy = Z?;O(alfq)*lgiti and w; =

ZD”_((M_Q)giti’("*(‘“*q)), we obtain that for n > ny := 2a; — € (i.e., 2(n —
(a1 —€1)) > n+ €1) we have

N aq
F1;€1+n = H{;n(zm s ’Xn—(al—el)—l) + Z Z Fll,i;rXi;TH‘Gl—T?

i=1r=0



MATHER DISCREPANCY IN THE SPACE OF ARCS 133

where Hi , € k[Xg,...,X 1] (see [17, Proof of Thm. 4.1,] or equality
(3.22) in Remark 3.3, where the same argument is applied). Hence, there exists a

n—(al—el)—

p01yn0mial Hl;n € k[&m s 7Xn—(a1—61)—1’ {Xj;n’}lgjgd;n—(al—el)Sn’§n+61] such
that
Flie4n = Hin (107 s X (a1 X} 1<j<a )
n’Sn—i—el
(4.4) N—d a1
+ 3> DiXatinse,—r mod <{Di1;s}1§i§N—d) :
- — 0<s<ey
i=1 r=e; S

It follows that, for n > ny, there exists

1
X ek X} 1zizd U{Xartm Yo<n <nn U{Xarim bo<isn—d
0<n/ <n+e; 0<n/<n Dl

1iep

such that

F1;61+’ﬂ = D%;el (Xd+1;7l - Xg(lir)lm) mod <{Di1;s}1§’iSN—d U {F1§61+n'}n1<’ﬂ'<n>

<s<er
in the ring (k[xl,...,a:N}oo)Diq. It can be proved by induction that, for n >
n+a —€,2<i1<N-—-dand 0 <r <a; — e we have
(1) T pl
49 gt =3 et med (Do)
where
B,_ = Z (—Ubb 1 b!b v(Di61+kl)bl -i.(lzhﬁkm)bm’
By b1 e sbim Lot Ume (Drie,)
with k1,...,km,b1,...,b, running over all positive integers satisfying k1 < ko <

coo <kpoand Y0 bk =1 —s,and b= " b;.

Analogously, taking as > €9, applying Taylor’s formula to fs and then replac-

ing Xgq1,n by Xc(ll+)1;n’ for n’ > ny, i.e., considering the image F2(}6)2+n

k {Xgmh<izaozn <earn U{Xarimtogn <n UlXarimbacisv-dosw <catnlpy
we obtain that forn > 0,2 <i < N—d, 0 <r <inf{(a; —€1), (az —€2)}, we have
(4.6)
OFsY "Dy )
Wejni => — P By, mod ({Dil;s}1<i<Nd U {Di;s}1<i<Nd> :

s=0 1;e1 0<s<e1 0<s<e2

of Fy.cpin in

In fact, to conclude (4.6), we have to apply Taylor’s expansion as in (4.4) and also
the identities (4.5). Hence, if (a1 —€1) and (ag — €2) are bigger than (d2 — &1 — €2),
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forn > 0,0 <r < inf{(a; —€1) — (02 — 01 — €32), (az — €2) — (02 — 01 — €2)} and
2 <i< N —d, we have

(1) r 1,2
8F2;62—61+n _ Z Dl 4302+s Bl
OXarin—r = Di., 7
mod ({Dl sh<isn—a U{D} J1<icn—a U (D} i S}1<1<N d)
0<s<e; 0<s<ea <s<d2
In particular,
aFQ ;02 —81+n _ D1,2,52 d aFZ ;02—01+n __ O for n/ >n
0Xd+in Di., OX dtin/

This implies that there exists ny such that for n > no there exists

X0 €8 |{Xsm} 1<jcd U{Xapim h<ico U{Xagim ba<i<n
n'<n463—61 n'<n; n'<n Dl .pl2

1ieq 71,2569

such that

1,2

1,2;8 1

F2§52—51+7l = D! ? (Xd+2;" - Xa(l-l-)2,n)
1;e1
(6281 —
mod <{Dz .69 1 i 52} 1<11<J1;]2 a U {Fl S }n,_(n21+11 €2)
s<€j,50<02
U {F2§52€1+n’}n2<n’<n>
in the ring (k[z1,...,2N]oc)p1 .p12  and
Tre1 11,2564
8‘Xd a 5
—_aEn Z 1’2’ 2+§BQ mod {Dz 5}1<1<N aU {D1 i 5}1<1<N d
aXd«H;nf'r‘ 1 2 5 <j5<2 <s<d2
2 0<_9<e,
for2<i< N—dand0 <r < inf{(a;—€)—(6;——1—€;)—-- ~—((52—51—€2)}1§l§2,
where we set dp := 0 and
1,2 1,2 -
5 b b! (D1,2;52+k1)b1 T (D1,2;52+km)b
B o= Z (71)(,1...() 1 DEZ o '
Kt ook b1 rrrrome (D12:5,)

with k1,...,km,b1, ..., b, positive integers such that k1 < --- < k,;, and 2111 bik;
=r—s,and b:= > 1" b
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Now let
1,2, , —d—1,N—d
= {D! h1<ijen—aU{Dy7}, s}1<1<N aU-UL{D S TN Cas1liss S 1<isSN—d
0<s<e; 0<5<d2 0<s5<dN—4a
1,2,...,N—d .
and Dy := Dy, D1 sy o Dial U N_disy_,- Recall that, by (4.2) and since

0; = VE(dl’ z), we have that, for each element in D, its class in Oxwpéc is in
P# and also that the class of Dy is a unit in O Xoo.PX - Proceeding as before, we
obtain that, for 1 <47 < N —d, given a; > ¢;, there exists n; such that for n > n;

there exists

1

X((i—i-)z m € H{ X} 1g<a U{Xarim} 1< U{Xavgm bivi<i<n—d

0<n'<n+8;—6;_1 Ognlgnj 0<n’'<n Do
satisfying

Dl,...,;'
1. ,6 1
Fi;6i—5i,1+n = 1,. : (Xd-i-i;n - X¢§+)zn)
D i— 1 304 ’
7 i) i—1
4.7
(47) mod (D U{Fjs, 6, _1tn' } 1<<i
nj<n'<4+n+(8;—8i—1—€;)
U {Fi;5i*5i71+n’}ni<n’<n)
in the ring (k[z1, ... 7QCN]OO)DO. In addition, we have
aXC(ll) i—1,4
4.8 il ”“’J“SBz mod (D),
(4.8) ) T Z =N (D)
fori <j< N-—dandr <inf{(a;—¢)— (51 —0_1—€)— - —(6;—8i—1 _€i)}1§l§i,
where
1o b 1y b
4 o b b! (Dl,...,zl';5i+k1> Lo (D1,...,;;5i+km)
B = Z (=1) byl b | DLt b
Kt ook b1 eesbim L ime (D1 Vi)

Here ki,...,km,b1,..., b, run over all positive integers such that ky < --- < ky,

and Y " bjk; =7 —s, and b:= > " b;. Note that from (4.8) and applying the
equalities (4.3) it follows that for n > 0, the image FZ(JF)1 Sir1—bitn of Fif1:501—5,4n

in
{Xjm}  1<j<a U{Xapjim } 1<i<i U{Xatjm bivi<j<n—a
0<n'<ejp1+n Ofnlgnj 0<n’'<n Do
satisfies W
1
OF. byt
i+1;68; 8;i+n 1,. ,z, dit1t+s
———i—f—E J“ B! _, mod (D),
aXd—i—j,n—r ,z 5
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fori+1<j<N-dandr < inf{(a; —¢)— (0 — -1 —€) — -+ — (di+1 —
d; — €i)}1<i<it1. This is used in the inductive reasoning. Therefore, taking a; >
e+ 0 —0_1—€)+ -+ (On—ad—On—g—1—€n—q) for 1 <1< N —d, we conclude
the existence of n;, 1 <7 < N —d, and X{g?im, 1<i< N —d, n > n;, satisfying
(4.7) and (4.8).

From the above discussion and arguing by induction on (m,i,n), m > 1,1 <
i < N —d,n >n;+ 1, with the lexicographical order, we obtain

XC(ITZ-);” €k l{Xg‘m’}lstd U {Xd+j;n'}1§j§N—d]
D,

n’'>0 0<n’<n;
satisfying
1,
Dyt
_ 1,...,i50; (m)
Fi;6¢—6i71+n = DL,,T(XdH;n - Xd+i;n)
1,i=136;—1
mod (D)™ + | {Fjs;-6,_ 14+ }1<j<N—d
nj<n'
in (k[z1,...,2N]e) p,- Thus we have

’
n;<n

m—+1 m m
Xy - xg e o™+ <{Fj;5j—ajl+n'}1§j§1v—d> :

Recall (4.1) and that the image of D in Ox_ px is in P . Fix an embedding
K(PE) < O@g sending Xj.,, to Xj,, € OZ.;%, for 1 < j <d,n>m; (see
the proof of Theorem 3.4). Then, for 1 <i < N — d and n > n;, the polynomials
{Xg]:g;n}mzl define a series

Xavim € 6(P)

{ X} Gmes U {Xagjm — Xd+j;n’}1§j§/N—d]] ,
njr—1B5r_1<n<B; . 0<n’<n;

where we identify Xj ., with as in the proof of Theorem 3.4, and where

Jirimo

Xatjm € O;O.;g is the image of the class of Xg4 . in k(PJ ), for 1 <j < N —
d,0 <n' <nj. Settiig\Ydﬂ-m/ = Xayjm — Xatjm, L <j<N—=d,0<n' <nj,

we conclude that Oy__ px is isomorphic to
/({ij} 1<j<N—d )
ngéj—6j71+nj

where for 1 < j < N —d,0<n<6§; —6;-1 +nj, Fj,, is obtained from Fj,, by
substituting Xg4i;n' by Xayim, for 1 <i < N —dand n; <n’ <n, and X4

K(Plg)

{Xjrin} (Gr)ed U {Yd+j;n'}1§j§1v—d]

= — /
Njr—1B;r_1<n<B; n<ng
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by Ydﬂ-m/ +Yyyjn for 1 <j <N —d, 0<n’ <n,;. Applying Krull’s theorem we
obtain that

N—d N—d
dimOx_ px > kp+1+ Z(m +1)— 2(51 —0;i_1+mn;+1)

i=1 i=1

=kp+1—6y_g= amy(E)

Finally, if X is normal and a complete intersection, we have anj(F) = kg +1 ([5,
Appendix]). Hence we conclude the result. O

Recall that, given an extension of fields ¥ C K, a K-wedge on X is a k-
morphism Spec K[[¢,t]] — X; equivalently, it is a K-arc on X, (see (2.1)). Given
a birational and proper k-morphism p : ¥ — X and a stable point P of X,
we say that p satisfies the property of lifting wedges centered at P if, for any
field extension K of the residue field x(P) of P in X, and for any K-wedge
¢ : Spec K[[¢,t]] — X on X whose special arc is P (i.e., P is the image in X, of
the closed point of Spec K[[¢]]), there exists a K-wedge ¢ : Spec K[[¢,t]] = Y on
Y such that po q~5: ®.

In [18, Cor. 5.12], it is proved that, if v = v is an essential divisorial valuation
on X, then, the following are equivalent:

(i) dim OX/w;g =1 and Spec O;.o,\Pg is irreducible.
(iii) For every resolution of singularities p : ¥ — X, p satisfies the property of
lifting wedges centered at Pp .

(iii") There exists a resolution of singularities p : ¥ — X that satisfies the condi-
tion in (iii), and such that the center of ¥ on Y has codimension 1.

De Fernex and Docampo [7] have proved that, if vg is a terminal valuation
then condition (iii) above holds. In fact, this follows from [7, Proof of Thm. 1.1].
Note that their statement in Thm. 1.1 is weaker than condition (iii) (see [17,
Thm. 5.1] or [18, Sect. 5]). Terminal valuations are the divisorial valuations defined
by the exceptional divisors of a minimal model of X, hence they are essential (see
7).

From this and Theorem 4.1 above, Corollaries 4.2 and 4.4 below follow.

Corollary 4.2. Let X be a reduced separated scheme of finite type over a field k
of chark = 0. Let v = vg be an essential divisorial valuation on an irreducible
component Xy of X. Consider the following conditions:
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(1) vg is a terminal valuation.

(2) dimOx_ px = 1.

(3) ami(E; X) < 1, in particular kg(X) < 0 if X is normal and a complete
intersection.

We have that (1) implies (2) and (2) implies (3).

The following example shows that (2) does not imply (1). It has been pointed
out to us by M. Mustata.

Remark 4.3. In [7, Exa. 6.3], the toric variety X defined by the cone o in R3
spanned by the vectors (1,0, 0), (0,1,0) and (1, 1, 2) is considered, and the divisorial
valuation vg defined by (1,1, 1), which is not a terminal valuation. It can be proved
that dim O@g = 1. In this case we have EE(X) = 2 and vg(Jacx) = 3, hence
amy(F; X) = 0.

Corollary 4.4. Let X be a reduced separated scheme of finite type over a field k
of char k = 0. Suppose that X is normal and a complete intersection. Let v = vg
be an essential divisorial valuation on an irreducible component Xy of X and
suppose that kg > 1. Then, for every resolution of singularities p : Y — X such
that the center of v on Y has codimension 1, p does not satisfy the property of
lifting wedges centered at Pg, i.e., there exist a field extension K of k(Pg) and a
K -wedge ¢ : Spec K|[[&,t]] = X on X whose special arc is Pg and which does not
liftto Y.
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