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Free and Nearly Free Curves vs. Rational
Cuspidal Plane Curves

by

Alexandru Dimca and Gabriel Sticlaru

Abstract

We define a class of plane curves that are close to the free divisors in terms of the local
cohomology of their Jacobian algebras and such that, conjecturally, any rational cuspidal
curve C is either free or belongs to this class. We prove this conjecture when the degree
of C is either even or a prime power, or when the group of C is abelian.
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§1. Introduction

Let f be a homogeneous polynomial in the polynomial ring S = C[x, y, z] and

denote by fx, fy, fz the corresponding partial derivatives. Let C be the plane

curve in P2 defined by f = 0 and assume that C is reduced and not a union of

lines passing through one point. We denote by Jf the Jacobian ideal of f , i.e.,

the homogeneous ideal of S spanned by the partial derivatives fx, fy, fz, and let

M(f) = S/Jf be the corresponding graded ring, called the Jacobian (or Milnor)

algebra of f . Let If denote the saturation of the ideal Jf with respect to the

maximal ideal m = (x, y, z) in S and recall the relation with the 0-degree local

cohomology If/Jf = H0
m(M(f)). Consider the graded S-submodule AR(f) ⊂ S3

of all Jacobian relations involving the derivatives of f , namely

ρ = (a, b, c) ∈ AR(f)m,

if and only if afx + bfy + cfz = 0 and a, b, c are in Sm.
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One says that C : f = 0 is a free curve, and uses the notation f ∈ F , if the

graded S-module AR(f) is free; see Definition 2.2. Freeness in the local analytic

setting was introduced by K. Saito in [29] and has attracted a lot of interest in

recent decades; see for instance [5], [27] or the long reference list in [35]. For a

discussion of free curves in the projective setting, see for instance [33], [34], [35],

[14]. Note that the projective curve C : f = 0 is free if and only if the surface

singularity given by the cone over C at the origin, i.e., (f−1(0), 0), is free as a

divisor in C3.

We say that C : f = 0 is a nearly free curve, and use the notation f ∈ NF , if

the Hilbert function of the graded module If/Jf takes only the values 0 and 1; see

Definition 2.4 for an equivalent property stated in terms of minimal resolutions

for the S-module AR(f). The nearly free curves have many properties similar to

the free ones. Here are some examples.

(1) If we fix the minimal degree r = mdr(f) of a Jacobian syzygy for f (see

Definition 2.1(iii) below), then the global Tjurina number τ(C) satisfies the

inequality

τ(C) ≤ φ(d, r) := (d− 1)2 − r(d− 1− r),

and equality holds if and only if f ∈ F ; see [21]. Moreover, one has

τ(C) = φ(d, r)− 1

if and only if f ∈ NF ; see [9].

(2) Both the free curves and the nearly free curves can be constructed using pencils

of curves or points of high multiplicity on a given curve; see [23], [10]. These

constructions can lead to families of nearly free curves degenerating to a free

curve, exactly as a secant degenerates to a tangent.

(3) There is an efficient algorithm computing the Alexander polynomial of a plane

curve C : f = 0, as soon as f ∈ F ∪NF ; see [16].

The study of free and nearly free surfaces in P3 can be done along similar

lines, and has led to a number of interesting results, in spite of additional technical

difficulties; see [8], [17].

In this paper we consider the relation between the free and nearly free curves,

and the rational cuspidal curves, i.e., rational curves having only unibranch sin-

gularities. This latter class of curves is extremely rich, as the classification results

show, both from the algebraic point of view (see [25], [26], [31]) and from the topo-

logical viewpoint (see [24]). This richness makes the following conjecture rather

surprising in our opinion.
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Conjecture 1.1. Any rational cuspidal curve C in the plane is either free or

nearly free.

In [19] we showed that a large number of the rational cuspidal curves as

classified in [24], [25], [26], [31] give examples of irreducible free divisors. The

class of nearly free curves seems to be the smallest class defined by homological

properties similar to those enjoyed by a free curve, such that Conjecture 1.1 holds.

Indeed, we have checked that this class contains all the nonfree rational cuspidal

curves listed in the papers mentioned above; see [20]. Using deep Hodge-theoretic

results by M. Saito [30] and Walther [39], we prove Conjecture 1.1 for all curves of

even degree; see Theorem 3.1, which is our main result. The proof also implies that

this conjecture holds for a curve C with an abelian fundamental group π1(P2 \C)

or having a prime power as degree; see Corollary 3.2.

Moreover, any unicuspidal rational curve with a unique Puiseux pair is shown

to be either free or nearly free (see Corollary 3.5), except the curves of odd degree

in one case of the classification of such unicuspidal curves obtained in [24] and

recalled in Theorem 3.4 below. In this case our methods do not apply, since we

need, when the degree is odd, an additional topological assumption on the cusps

which is not always fulfilled. A very interesting discussion of Conjecture 1.1 can

be found in [30].

The present paper is a major revision and updating of our preprint [20],

which contains more examples and additional conjectures, disproved in the recent

paper by Artal Bartolo, Gorrochategui, Luengo and Melle-Hernández [3]. This

paper [3] contains many interesting new examples of free and nearly free curves,

with arbitrarily high genera and a large numbers of singularities. A code written in

SINGULAR, which can be used to decide whether a given homogeneous polynomial

defines a free or a nearly free curve in the projective plane P2, is available at

http://math1.unice.fr/~dimca/singular.html.

§2. The definition and the first properties of nearly free divisors

With the notation from introduction, we set m(f)k = dimM(f)k for any integer

k. We recall the definition of some invariants associated with a Milnor algebra

M(f); see [15].

Definition 2.1. For a reduced plane curve C : f = 0 of degree d, three integers

are defined as follows:

(i) the coincidence threshold

ct(f) = max{q : dimM(f)k = dimM(fs)k for all k ≤ q},

http://math1.unice.fr/~dimca/singular.html
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with fs a homogeneous polynomial in S of degree d such that Cs : fs = 0 is

a smooth curve in P2;

(ii) the stability threshold st(f) = min{q : dimM(f)k = τ(C) for all k ≥ q};
(iii) the minimal degree of a nontrivial (or essential) syzygy,

mdr(f) = min{q : H2(K∗(f))q+2 6= 0},

where K∗(f) is the Koszul complex of fx, fy, fz with natural grading.

Note that one has, for j < d− 1, the equality

(2.1) AR(f)j = H2(K∗(f))j+2.

It is known that one has

(2.2) ct(f) = mdr(f) + d− 2.

Let T = 3(d− 2) denote the degree of the socle of the Gorenstein ring M(fs).

Definition 2.2. The reduced curve C : f = 0 is a free divisor if the graded S-

module AR(f) is free of rank 2, i.e., there is an isomorphism of graded S-modules

AR(f) = S(−d1)⊕ S(−d2)

for some positive integers d1 ≤ d2.

One has the following well-known result.

Proposition 2.3. For a reduced curve C : f = 0 in P2, the following conditions

are equivalent:

(1) The curve C : f = 0 is a free divisor.

(2) The minimal resolution of the Milnor algebra M(f) has the form

(2.3) 0→ S(−d1 − d+ 1)⊕ S(−d2 − d+ 1)→ S3(−d+ 1)
(fx,fy,fz)−−−−−−→ S,

for some positive integers d1, d2.

(3) The Jacobian ideal Jf is saturated, i.e.,

(2.4) If/Jf = H0
m(M(f)) = 0.

Proof. Since AR(f) is the kernel of the morphism S3(−d + 1)
(fx,fy,fz)−−−−−−→ S, it

follows that (1) is equivalent to (2). Let T 〈C〉 (resp. J ) be the coherent sheaf on

P2 associated to the graded S-module AR(f)(1) (resp. to the ideal Jf ). Then we
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have an exact sequence of sheaves on P2 as in [14, Sect. 3], induced by the sequence

(2.3) above,
0→ T 〈C〉 → O3

P2(1)→ J (d)→ 0.

If C is free, then the vector bundle T 〈C〉 is the sum of two line bundles, and it

follows as in [34, Prop. 2.1] that

(If/Jf )k = H0
m(M(f))k = H1(P2, T 〈C〉(k − d)) = 0,

for any integer k. Conversely, the above vanishing implies that T 〈C〉 is the sum

of two line bundles using Horrocks’ theorem as explained in [14, Rem. 4.7]. Since

T 〈C〉 is the sum of two line bundles exactly when AR(f) is a free S-module, this

shows that (2) is equivalent to (3).

When C is a free divisor, the integers d1 ≤ d2 in Definition 2.2 are called the

exponents of C, and clearly mdr(f) = d1. They satisfy the relations

(2.5) d1 + d2 = d− 1 and τ(C) = (d− 1)2 − d1d2,

where τ(C) is the total Tjurina number of C, i.e., τ(C) =
∑p
i=1 τ(C, xi), the xi’s

being the singular points of C; see for instance [14], [19].

The S-graded quotient module N(f) = If/Jf is called the Jacobian module

in [39]. The class of curves introduced in this article is defined by imposing the

condition that the Jacobian module N(f) is nonzero, but as small as possible

degree by degree.

Definition 2.4. A reduced plane curve C : f = 0 is said to be nearly free if

N(f) 6= 0 and dimN(f)k ≤ 1 for any k.

Remark 2.5. In the local analytic setting, Damon introduced the notion of an

almost free divisor; see [5]. It seems that there is no direct relation between this

notion and nearly free curves. Indeed, the line arrangement C : f = xyz(x+y+z) =

0 discussed in Example 2.14 is nearly free, and the corresponding cone singularity

(f−1(0), 0) is almost free; see [27]. On the other hand, a smooth curve of degree > 2

is not nearly free, but the corresponding surface singularity (f−1(0), 0) is almost

free by [27, Defn. 2.1].

The first result says that a nearly free divisor has a minimal resolution of

M(f) slightly more complicated than that of a free divisor.

Theorem 2.6. The reduced curve C : f = 0 is a nearly free divisor if and only if

the minimal resolution of the Milnor algebra M(f) has the form

0→ S(−d− d2)→ S(−d− d1 + 1)⊕ S2(−d− d2 + 1)→ S3(−d+ 1)
(fx,fy,fz)−−−−−−→ S

for some integers 1 ≤ d1 ≤ d2, called the exponents of C.
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Proof. As a first step, we show that a nearly free curve C : f = 0 has a minimal

resolution of the Milnor algebra M(f) of the form

(2.6) 0→ S(−b− 2(d− 1))→ ⊕i=1,3S(−di − (d− 1))→ S3(−d+ 1)→ S,

for some integers 1 ≤ d1 ≤ d2 ≤ d3 and b.

By the Hilbert syzygy theorem (see [22, p. 3]), we know that the minimal

resolution has the form

0→ F3 → F2 → F1 = S3(−d+ 1)→ F0 = S,

where F3 = ⊕S(bj) and F2 = ⊕S(ai) are graded free S modules, with ai, bj finite

sets of integers. It is easy to see that rankF2 = rankF3 + 2, since M(f) has a

constant Hilbert function, m(f)k = τ(C) for k large enough, by [4]. Hence we

have to show only that rankF3 = 1.

If Fi = ⊕S(−j)βi,j , then the positive integers βi,j are called the graded Betti

numbers of M(f). They are denoted by βi,j(M(f)) and they satisfy

βi,j(M(f)) = dim Tori(M(f),C)j ;

see [22, p. 8]. Since Tor(M(f),C) = Tor(C,M(f)) and the graded S-module C has

a minimal resolution given by the homological Koszul complex C(x, y, z;S) of x,

y, z in S, it follows that

Tori(M(f),C) = Hi(C(x, y, z;M(f))),

where C(x, y, z;M(f)) denotes the homological Koszul complex of x, y, z in M(f).

The third differential in the complex C(x, y, z;M(f)) being given essentially by

multiplication by x, y and z, it follows that H3(C(x, y, z;M(f))) is exactly the

socle s(M(f)) of the module M(f), i.e.,

s(M(f)) = {m ∈M(f) : xm = ym = zm = 0}.

It follows that β3,j(M(f)) = dim s(M(f))j . On the other hand, it is clear that

s(M(f)) = s(N(f)), since we have the equality N(f) = H0
m(M(f)), the local

cohomology of M(f) with respect to the maximal ideal m = (x, y, z); see [34]. The

module N(f) is a module with a self-dual resolution; see [36]. If we set βi(M(f)) =∑
j βi,j(M(f)) and similarly for N(f), this implies

β3(M(f)) = β3(N(f)) = β0(N(f)).

In other words, β3(M(f)) = 1, which is our claim, is equivalent to β0(N(f)) = 1,

i.e., N(f) is a cyclic S-module. But this last claim is a direct consequence of [12,

Cor. 4.3], which says that N(f) has a Lefschetz-type property in the following
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sense: if ` ∈ S1 is a generic linear form, then the morphism N(f)k → N(f)k+1

induced by the multiplication by ` has maximal rank for any k. By our assumption,

dimN(f)j ≤ 1 for any j, and it follows that N(f) is generated as an S-module by

any nonzero homogeneous element of minimal degree in N(f). This completes the

first step in the proof.

To construct a resolution (2.6) for a given polynomial f we need the following

ingredients:

(A) three relations ri = (ai, bi, ci) ∈ S3
di

for i = 1, 2, 3 among fx, fy, fz, i.e.,

aifx + bify + cifz = 0,

necessary to construct the morphism

⊕i=1,3S(−di − (d− 1))→ S3(−d+ 1)

by the formula

(u1, u2, u3) 7→ u1r1 + u2r2 + u3r3;

(B) one relation R = (v1, v2, v3) ∈ ⊕i=1,3S(−di − (d − 1))b+2(d−1) among r1, r2,

r3, i.e., v1r1 + v2r2 + v3r3 = 0, necessary to construct the morphism

S(−b− 2(d− 1))→ ⊕i=1,3S(−di − (d− 1))

by the formula w 7→ wR. Note that vi ∈ Sb−di+d−1.

In the second step of the proof of Theorem 2.6, consider the graded dual of

the resolution (2.6) twisted by (−3), namely,

S(−3)→ S3(d− 4)→ F ′2 = ⊕S(−ai − 3)→ F ′3 = S(b+ 2d− 5)→ 0.

Then the cokernel Q of the morphism

δ : ⊕iS(di + d− 4)→ S(b+ 2d− 5)

is the graded dual of N(f) = H0
m(M(f)) by [22, Thm. A 1.9, p. 193]. It follows

that

Q = S/(v1, v2, v3)(b+ 2d− 5),

where v1, v2, v3 are the homogeneous polynomials from (B) above. This quotient is

finite-dimensional if and only if v1, v2, v3 is a regular sequence, and then the Hilbert

function of the quotient depends only on the degrees of the vi’s. In particular, we

can take v1 = xp, v2 = yq and v3 = zr for some integers p, q, r > 0, when the

quotient is the tensor product of the rings C[x]/(xp), C[y]/(yq), C[z]/(zr). Hence,

to get at most one-dimensional homogeneous components, we need to have (up to

a permutation) deg v2 = deg v3 = 1 and deg v1 = k a positive integer. It follows
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that b− di + d− 1 = 1 for i = 2, 3, and hence d2 = d3 = b+ d− 2 = d1 + 2d2 − d,

which implies d1 + d2 = d. The equality b− d1 + d− 1 = k yields our first claim.

Conversely, if the minimal resolution of the Milnor algebra M(f) has the form

given in Theorem 2.6, then we get that C is nearly free as follows. It is known

that N(f) is a finite-dimensional C-vector space in general, as it follows from the

general discussion in [22, pp. 187–188]. Hence the forms v1, v2, v3 above define a

complete intersection. This implies dimN(f)k ≤ 1 for any k.

Remark 2.7. (i) It follows from [9, Thm. 4.1] that the reduced curve C : f = 0

is nearly free if and only if we can find three relations r1, r2 and r3 as in (A)

above such that d1 = r, d2 = d3 = d− r with r = mdr(f) ≤ d− r and r2, r3
linearly independent in (AR(f)/Sr1)d−r.

(ii) If the S-module AR(f) has a minimal set of homogeneous generators ri such

that for two of them, say r1 and r2, one has deg r1 + deg r2 ≤ d − 1, then

the degree-d curve C : f = 0 is free; see [35, Lem. 1.1]. Such a result does

not extend to nearly free curves: one may have a curve C : f = 0 that is

not nearly free, and such that a pair (r1, r2) in a minimal set of generators

for AR(f) satisfies deg r1 + deg r2 ≤ d. To have an example, consider the

curve C : x(xy(x+y) + z3) = 0, a smooth cubic together with an inflectional

tangent. Then the S-module AR(f) has a minimal set of generators consisting

of 3 elements of degree d1 = d2 = 2 and d3 = 3.

Theorem 2.8. Suppose the curve C : f = 0 has a minimal resolution for M(f)

as in (2.6) with d1 ≤ d2 ≤ d3. Then one has the following properties:

(i) d1 + d2 ≥ d, b =
∑
i=1,3 di − 2(d− 1) and

τ(C) = (d− 1)
∑
i=1,3

di −
∑
i<j

didj .

Moreover, mdr(f) = d1, ct(f) = d1 + d− 2 and st(f) = b+ 2d− 4.

(ii) If the curve C : f = 0 is nearly free, then one has d1 + d2 = d and

τ(C) = (d− 1)2 − d1(d2 − 1)− 1.

Moreover, in this case st(f) = d2 + d− 2 and ct(f) + st(f) = T + 2.

Proof. First we prove the part (i). The claims for mdr(f) and ct(f) are obvious.

The relation r2 in (A) above is not a multiple of r1 (otherwise the resolution (2.6)

is not minimal). Then the claim d1 + d2 ≥ d follows from [35, Lem. 1.1].

For any integer j, the resolution (2.6) yields an exact sequence

(2.7) 0→ Sj−b−2(d−1) → ⊕i=1,3Sj−di−(d−1) → S3
j−d+1 → Sj →M(f)j → 0.
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For large j, this gives the equality τ(C) = P (d, d1, d2, d3, b; j), where the polyno-

mial P (j) = P (d, d1, d2, d3, b; j) ∈ Q[j] is defined by

P (j) =

(
j + 2

2

)
− 3

(
j − d+ 3

2

)
+
∑

i=1,2,3

(
j − di − d+ 3

2

)
−
(
j − b− 2d+ 4

2

)
.

The coefficient of j2 in the right-hand side is zero, the vanishing of the coefficient

of j gives the formula for b, while the constant term gives the value for τ(C), since

m(f)j = τ(C) for large j by [4]. For the claim on st(f), note that for j ≥ b+2d−4

the above binomial coefficients give the dimensions of the corresponding spaces in

the exact sequence (2.7), but not for j = b+2d−5, when the last term is 1 instead

of being 0 = dimS−1, due to the equality(
−1

2

)
= (−1)(−2)/2 = 1.

When C is nearly free, the equality b = d1 + d2 was obtained at the end of the

proof of Theorem 2.6. The remaining claims follow by direct computation.

Remark 2.9. Some people have suggested that a nearly free curve should be

what we call either a free curve or a nearly free curve. Though this option is very

reasonable, we have chosen our convention in view of the following situation (in

fact, similar situations for other invariants, e.g., τ(C), occur again and again in

this theory). If C is a free (or nearly free) curve of degree d with exponents d1 ≤ d2,

then d = d1+d2+1 when C is free, but d = d1+d2 when C is nearly free. Hence in

order to know which formula to use, our convention seems simpler in our opinion.

Another illustration of our choice of terminology is the following.

Remark 2.10. It is shown in [9] that f ∈ F (resp. f ∈ NF ) if and only if

ct(f) + st(f) = T , (resp. ct(f) + st(f) = T + 2).

The first natural question is whether such nearly free curves exist. The fol-

lowing examples show that the answer is positive. Consider first the simplest

rational cuspidal curve of degree d (it is the unique rational curve up to pro-

jective equivalence with a unique cusp that is weighted homogeneous), namely

Cd : fd = xd + yd−1z = 0.

Proposition 2.11. The curve Cd : fd = xd + yd−1z = 0 is nearly free for d ≥ 2

and µ(C) = τ(C) = (d− 1)(d− 2). Moreover, (d1, d2) = (1, d− 1), dimN(f)k = 1

for d− 2 ≤ k ≤ 2d− 4 and N(f)k = 0 otherwise.

Proof. The polynomial fd is of Sebastiani–Thom type, i.e., the variables are sep-

arated into two groups. It follows that M(f) = M(xd) ⊗M(yd−1z). Moreover,



172 A. Dimca and G. Sticlaru

we have N(f) = N(xd) ⊗N(yd−1z), and hence the graded module N(f) has the

following monomial basis yd−2, xyd−2, . . . , xd−2yd−2. This completes the proof.

Exactly the same approach gives a similar result for a family having two

singularities.

Proposition 2.12. The curve Cd : fd = xd − yd−kzk = 0 for d ≥ 4 and 2 ≤ k ≤
d/2 is nearly free, has two singularities and τ(C) = (d − 1)(d − 2). In addition,

(d1, d2) = (1, d−1), dimN(f)j = 1 for d−2 ≤ j ≤ 2d−4 and N(f)j = 0 otherwise.

The number of irreducible components is given by the greatest common divisor

gcd(d, k) and each of them is a rational curve.

Example 2.13. In degree d = 3, consider a conic plus a secant line, e.g., C :

x3 + xyz = 0. Then C is nearly free with the resolution for M(f) of the form

0→ S(−5)→ S(−3)⊕ S(−4)2 → S(−2)3 → S,

and hence (d1, d2) = (1, 2). On the other hand, the nodal cubic C : f = xyz+x3 +

y3 = 0 is not nearly free, since dimN(f)1 = 2.

In degree d = 4 we consider first the quartic with 3 cusps, e.g.,

C : x2y2 + y2z2 + x2z2 − 2xyz(x+ y + z) = 0.

Then C is nearly free with the minimal resolution for M(f) of the form

0→ S(−6)→ S(−5)3 → S(−3)3 → S,

and hence (d1, d2) = (2, 2). The quartic C : z4 − xz3 − 2xyz2 + x2y2 = 0 (resp.

C : y4 − 2xy2z + yz3 + x2z2 = 0) has 2 cusps of type A2 and A4 (resp. 1 cusp

of type A6), and it is nearly free with the same resolution for M(f) as for the

3-cuspidal quartic.

Example 2.14. We give now an example of line arrangement that is nearly free.

Let C : f = xyz(x + y + z) = 0 be the union of 4 lines in general position. Then

C is a nearly free curve with the resolution for M(f) given by

0→ S(−6)→ S(−5)3 → S(−3)3 → S,

with (d1, d2) = (2, 2), dimN(f)3 = 1 and N(f)k = 0 for other k’s.

Remark 2.15. In fact, we have shown that for all pairs (d1, d2) with d1 +d2 = d,

there is a rational unicuspidal curve C : f = 0 (resp. a line arrangement A : f = 0)

such that f has degree d and C (resp. A) is nearly free with exponents (d1, d2);

see [18] for the precise statement.
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Recall the formula

(2.8) dimN(f)k = m(f)k +m(f)T−k −m(fs)k − τ(C),

which is part of [13, Cor. 3], but can be also obtained as follows. Note that

dimN(f)k = m(f)k − dim(S/If )k = m(f)k − (τ(C) − defkΣf ), with defkΣf the

defect of the singular subscheme Σf with respect to degree-k polynomials, and

defkΣf = m(f)T−k −m(fs)k; for all this see [7]. Formula (2.8) and Theorem 2.8

also yield the following.

Corollary 2.16. The fact that a reduced curve C is nearly free depends only on

the dimensions m(f)k of the homogeneous components of the Milnor algebraM(f).

Conversely, two nearly free curves C1 : f1 = 0 and C2 : f2 = 0 with the same

degrees and the same total Tjurina numbers have the same exponents. In particular,

they satisfy m(f1)k = m(f2)k for any k.

Note that the other invariants of two such curves C1 and C2 can be quite dif-

ferent; see Proposition 2.12. Formula (2.8) and Theorem 2.8 also give the following

related result. Recall that projective rigidity is equivalent to N(f)d = 0; see [34].

Corollary 2.17. Let C : f = 0 be a nearly free curve of degree d with exponents

(d1, d2). Then N(f)k 6= 0 for d+d1−3 ≤ k ≤ d+d2−3 and N(f)k = 0 otherwise.

The curve C is projectively rigid if and only if d1 ≥ 4.

Proposition 2.18. Consider the reduced plane curve C : f = 0 of degree d. Then

dimN(f)[T/2] = 1 if and only if f ∈ NF .

Proof. If N(f) 6= 0, then there is a nonnegative integer n(C), 0 ≤ n(C) ≤ [T/2],

such that N(f)k = 0 for k < n(C) or k > T − n(C), and the remaining dimen-

sions dimN(f)k form a unimodal sequence of strictly positive numbers (see [12,

Cor. 4.3]), symmetric with respect to the middle point [T/2]; see [13] and [34].

We end this section with a remark on nearly free line arrangements. It is known

that for a free arrangement, the characteristic polynomial has a nice factorization

in terms of the exponents; see [40] for an excellent survey. For a nearly free line

arrangement we have the following similar result.

Proposition 2.19. Let C be a nearly free arrangement of d lines in P2 with expo-

nents (d1, d2) and denote by U its complement. Then the characteristic polynomial

χ(U)(t) = t2 − b1(U)t+ b2(U)

is given by

χ(U)(t) = (t− d1)(t− (d2 − 1)) + 1.
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Proof. For any line arrangement one has b1(U) = d−1; hence in our case b1(U) =

d1 + d2− 1. Note that E(U) = E(P2)−E(C) = 3 + d2− 3d−µ(C). It follows that

b2(U) = E(U) + d− 2 = (d− 1)2 − µ(C).

Since all the singularities of C are homogeneous, it follows that µ(C) = τ(C) and

using the formula for τ(C) given in Theorem 2.8 we get b2(U) = d1(d2−1)+1.

Example 2.20. (i) For the line arrangement in Example 2.14 we have d1 =

d2 = 2 and hence χ(U)(t)− 1 = (t− 1)(t− 2).

(ii) Consider the line arrangement C : f = xyz(x− y)(x− 2y)(x− 3y)(x+ 5y +

7z) = 0, which occurs essentially in [28, Exa. 4.139] as an illustration of the

fact that χ(U)(t) can factor even for nonfree arrangements. It turns out that

this curve is a nearly free arrangement with exponents (d1, d2) = (2, 5) and

hence

χ(U)(t) = (t− 2)(t− 4) + 1 = (t− 3)2.

Remark 2.21. It is known that two line arrangements Ai : fi = 0, i = 1, 2 with

the same combinatorics can have the distinct invariants ri = mdr(fi); see [32],

[42]. However, these arrangements are far from being free or nearly free. On the

other hand, in many cases, one can determine the invariant r = mdr(f) from the

combinatorics of a line arrangement, and prove Terao’s conjecture in special cases;

see [23], [10] and the references there. Moreover, a similar property to Terao’s

conjecture holds for nearly free line arrangements; see [10, Cor. 1.7].

§3. Local and global Milnor fiber monodromies

We state now the main result of our paper.

Theorem 3.1. Let C : f = 0 be a rational cuspidal curve of degree d. Assume

that either

(1) d is even, or

(2) d is odd and for any singularity x of C, the order of any eigenvalue λx of the

local monodromy operator hx is not d.

Then C is either a free or a nearly free curve.

For examples of rational cuspidal curves not satisfying the assumption in this

theorem, see case (3) with d odd in Theorem 3.4 below.
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Proof. The results in Walther [39, Thm. 4.3] and M. Saito [30, Thm. A.1, Ap-

pendix] yield the inequality

dimN(f)2d−2−j ≤ dimH2(F,C)λ,

with j = 1, 2, . . . , d, where F : f(x, y, z) − 1 = 0 is the Milnor fiber associated

to the plane curve C or, equivalently, to the surface singularity f = 0, and the

subscript λ indicates the eigenspace of the monodromy action corresponding to

the eigenvalue λ = exp(2πi(d+ 1− j)/d).

Suppose first that d is even, say d = 2d1. In view of Proposition 2.18, it

is enough to show that dimH2(F,C)λ = 1 for λ = −1, which corresponds to

j = d1 + 1. To show this, note first that [2, Prop. 2.1] implies H1(F,C)λ = 0.

Denote again by U the complement P2 \ C, and note that its topological Euler

characteristic is given by E(U) = E(P2) − E(C) = 1. Since F is a cyclic d-fold

covering of U , it follows that H1(F )1 = H1(U) and also

dimH2(F,C)λ − dimH1(F,C)λ + dimH0(F,C)λ = 1;

see for instance [6, Prop. 1.21, Chap. 4] or [11, Cor. 5.1 and Rem. 5.1]. Since clearly

H0(F,C)λ = 0, we get dimH2(F,C)λ = 1 as claimed. The last three equalities are

valid for any eigenvalue 6= 1 of prime power order, but in view of Proposition 2.18

it is enough to consider only the eigenvalue λ = −1.

Suppose now that d is odd, say d = 2d1 + 1. By Proposition 2.18 again, it

is enough to show that dimH2(F,C)λ = 1, for λ = exp(2πid1/(2d1 + 1)), which

corresponds to j = d1 + 2. As this eigenvalue λ clearly has order d, we conclude

as in the previous case. Indeed, it is known that the Alexander polynomial of

C, which is the characteristic polynomial of the monodromy action on H1(F,C),

divides the product of the Alexander polynomials of the singularities (C, x) of C;

see for instance [6, Cor. (6.3.29)].

Corollary 3.2. Let C : f = 0 be a rational cuspidal curve of degree d such that

(1) either d = pk is a prime power, or

(2) π1(U) is abelian, where U = P2 \ C.

Then C is either a free or a nearly free curve.

Proof. When d is an odd prime power, the vanishing H1(F,C)λ = 0, with λ as

above in the degree-d, odd case, goes back to Zariski [41]; see also [2, Prop. 2.1].

When π1(U) is abelian, which actually means π1(U) = H1(U) = Z/dZ, it follows

that π1(F ) = 0, as the Milnor fiber F is a Galois degree-d cover of U . This implies

H1(F,C) = 0, which completes the proof as above.
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A lot of examples of rational cuspidal curves C with an abelian fundamental

group π1(U) can be found in the papers [1], [37], [38]. Here is one example of an

infinite family of such curves.

Example 3.3. Let C be a rational cuspidal curve of type (d, d − 2) having 3

cusps. Then there exists a unique pair of integers a, b, a ≥ b ≥ 1 with a+ b = d−2

such that up to projective equivalence the equation of C can be written in affine

coordinates (x, y) as

f(x, y) =
x2a+1y2b+1 − ((x− y)d−2 − xyg(x, y))2

(x− y)d−2
= 0,

where d ≥ 4, g(x, y) = yd−3h(x/y) and

h(t) =
∑

k=0,d−3

ak
k!

(t− 1)k,

with a0 = 1, a1 = a− 1
2 and ak = a1(a1−1) · · · (a1−k+1) for k > 1; see [26]. Then

it follows from [1, Cor. 1], that π1(U) is abelian if 2a+ 1 and 2b+ 1 are relatively

prime. It follows by Corollary 3.2 that all these curves are either free or nearly

free. In [19, Exa. 4.3] we have checked by direct computation that these curves

(without any condition on 2a+ 1 and 2b+ 1) are actually free for 5 ≤ d ≤ 10.

To get further examples, including curves of odd degree, we recall now the

classification of unicuspidal rational curves with a unique Puiseux pair; see [24,

Thm. 1.1].

Theorem 3.4. Let ai be the Fibonacci numbers with a0 = 0, a1 = 1, aj+2 =

aj+1 + aj. A Puiseux pair (a, b) can be realized by a unicuspidal rational curve of

degree d ≥ 3 if and only if the triple (a, b, d) occurs in the following list:

(1) (d− 1, d, d);

(2) (d/2, 2d− 1, d) with d even;

(3) (a2j−2, a
2
j , aj−2aj) with j ≥ 5 odd;

(4) (aj−2, aj+2, aj) with j ≥ 5 odd;

(5) (3, 22, 8);

(6) (6, 43, 16).

Corollary 3.5. A unicuspidal rational curve with a unique Puiseux pair not of

the type (3) above, with d = aj−2aj odd, is either free or nearly free.

Numerical experiments suggest that unicuspidal rational curves with a unique

Puiseux pair of type (3) above, with d = aj−2aj odd, are also either free or nearly

free, but our method of proof does not work in this case.
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Proof. Recall that a cusp with a unique Puiseux pair (a, b) has the same mon-

odromy eigenvalues as the cusp ua + vb = 0. It follows that the order kx of any

such eigenvalue λx should be a divisor of ab, but not a divisor of either a or

b. This remark combined with Theorem 3.1 settles cases (1), (2), (5) and (6) in

Theorem 3.4, as well as case (3) when the degree d is even. For case (4), we use

Catalan’s identity

a2j − aj−2aj+2 = (−1)j ,

and conclude that kx = 1 for any eigenvalue λx that is a dth root of unity.

The same idea as that in the proof of Theorem 3.1 gives the following, to be

compared with Corollary 2.17.

Proposition 3.6. Let C : f = 0 be a rational cuspidal curve of degree d. Then

N(f)k = 0 for k ≤ d− 3 or k ≥ 2d− 3 and st(f) ≤ 2d− 3.

Propositions 2.11 and 2.12 show that this vanishing result is sharp.

Proof. As in the proof of Theorem 3.1 we have an inequality

dimN(f)2d−3 ≤ dimH2(F,C)1,

and H2(F,C)1 = H2(U,C), where U = P2 \C. Since E(U) = E(P2)−E(C) = 3−
2 = 1 and b0(U) = 1, b1(U) = 0 (since C is irreducible), it follows that b2(U) = 0.

Hence N(f)2d−3 = 0 and using the Lefschetz-type property of the Jacobian module

N(f) (see [12, Cor. 4.3]), it follows that N(f)k = 0 for any k ≥ 2d − 3. To end

the proof of the vanishing claim, it is enough to use the self-duality of the graded

module N(f) (see [13] or [34]), which yields dimN(f)k = dimN(f)T−k.

To prove the claim on the stability threshold st(f), one uses formula (2.8).
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31–45. Zbl 1120.14019 MR 2280130

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1329.32014&format=complete
http://www.ams.org/mathscinet-getitem?mr=1189539
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0867.32015&format=complete
http://www.ams.org/mathscinet-getitem?mr=1346928
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0753.57001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1194180
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1299.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=3098166
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1365.14061&format=complete
http://www.ams.org/mathscinet-getitem?mr=3523120
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06782249&format=complete
http://www.ams.org/mathscinet-getitem?mr=3656354
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1375.14106&format=complete
http://www.ams.org/mathscinet-getitem?mr=3657222
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1362.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=3618796
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06621098&format=complete
http://www.ams.org/mathscinet-getitem?mr=3508312
http://arxiv.org/abs/1212.1081
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1327.14049&format=complete
http://www.ams.org/mathscinet-getitem?mr=3322789
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1329.32014&format=complete
http://www.ams.org/mathscinet-getitem?mr=3341443
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06744835&format=complete
http://www.ams.org/mathscinet-getitem?mr=3669005
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1364.14010&format=complete
http://www.ams.org/mathscinet-getitem?mr=3636378
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:06802578&format=complete
http://www.ams.org/mathscinet-getitem?mr=3642034
http://arxiv.org/abs/1505.00666
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0926.14012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1670229
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1066.14001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2103875
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1308.52021&format=complete
http://www.ams.org/mathscinet-getitem?mr=3291795
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1120.14019&format=complete
http://www.ams.org/mathscinet-getitem?mr=2280130


Free Curves vs. Rational Cuspidal Curves 179

[25] T. Fenske, Rational 1- and 2-cuspidal plane curves, Beitr. Algebra Geom. 40 (1999),
309–329. Zbl 0959.14012 MR 1720107

[26] H. Flenner and M. Zaidenberg, On a class of rational plane curves, Manuscripta Math.
89 (1996), 439–459. Zbl 0868.14014 MR 1383524

[27] D. Mond, Differential forms on free and almost free divisors, Proc. London Math. Soc.
81 (2000), 587–617. Zbl 1025.32026 MR 1781149

[28] P. Orlik and H. Terao, Arrangements of hyperplanes, Springer, Berlin, 1992.
Zbl 0757.55001 MR 1217488

[29] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac.
Sci. Univ. Tokyo Sect. IA Math. 27 (1980), 265–291. Zbl 0496.32007 MR 0586450

[30] M. Saito, Hilbert series of graded Milnor algebras and roots of Bernstein-Sato polyno-
mials, arXiv:1509.06288

[31] F. Saka and K. Tono, Rational cuspidal curves of type (d, d− 2) with one or two cusps,
Osaka J. Math. 37 (2000), 405–415. Zbl 0969.14020 MR 1772840

[32] H. Schenck, Hyperplane arrangements: computations and conjectures, Arrangements of
Hyperplanes–Sapporo 2009, Advanced Studies in Pure Mathematics 62, Mathematical
Society of Japan, Tokyo, 2012, 323–358. Zbl 1261.52016 MR 2933802
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