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Around Trace Formulas in Non-commutative
Integration

by

Shigeru Yamagami

Abstract

Trace formulas are investigated in non-commutative integration theory. The main result
is to evaluate the standard trace of Takesaki duals and, for this, we introduce the notion of
interpolator and accompanied boundary objects. The formula is then applied to explore
a variation of Haagerup’s trace formula.
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§1. Introduction

Haagerup’s trace formula in non-commutative integration is key to his whole the-

ory of non-commutative Lp-spaces (see [6] and [9]). Our purpose here is to analyse

it from the viewpoint of modular algebras ([10], [11]), which were originally formu-

lated in terms of Haagerup’s Lp-theory itself. So, to circumvent tautological faults

and also to fix notation, we first describe modular algebras, as well as standard

Hilbert spaces, in terms of basic ingredients of Tomita–Takesaki theory.

The semifiniteness of Takesaki duals is then established by constructing rel-

evant Hilbert algebras as a collaboration of modular algebras and complex anal-

ysis. Note that the known proofs of the existence of standard traces are not di-

rect; for example, they are usually deduced from the innerness of modular au-

tomorphism groups combined with a reverse Radon–Nikodym theorem such as

Pedersen–Takesaki’s or Connes’.

Since our construction of the Hilbert algebras is based on complex analysis, the

associated trace can also be described in a calculational way. To make the setup

transparent, we introduce the notion of interpolators, together with associated

boundary operators and vectors. Viewing things this way, the main trace formula
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turns out to be just a straightforward consequence of definitions. Haagerup’s trace

formula is then derived in a somewhat generalized form as a concrete application

of our formula.

Haagerup’s correspondence between normal functionals and relatively invari-

ant measurable operators on Takesaki duals is also established on our streamlines.

Recall that the standard approach to these problems is by the theory of

operator-valued weights ([4], [5]) coupled with dual weights ([2], [3]), which is

based on extended positive parts, a notion of metaphysical flavor, and somewhat

elaborate. Our method may not provide an easy route either but can be applied

rather straightforwardly; it is just a simple combination of elementary Fourier

calculus and the complex analytic nature of modular items.

Notation and convention. The positive part of a W*-algebra M (resp. its pre-

dual M∗) is denoted by M+ (resp. M+
∗ ).

For a positive element p in M+ or M+
∗ , its support projection in M is denoted

by [p].

For a functional ϕ ∈M+
∗ , the associated GNS-vector in the standard Hilbert

space L2(M) of M is denoted by ϕ1/2 (natural notation though not standard) and

the modular operator by ∆ϕ so that ∆ϕ(aϕ1/2) = ϕ1/2a for a ∈ [ϕ]M [ϕ].

For ϕ,ψ ∈M+
∗ , σϕ,ψt stands for the relative modular group of [ϕ]M [ψ], which

is simply denoted by σϕt and expresses a modular automorphism group of the

reduced algebra [ϕ]M [ϕ] when ϕ = ψ.

For convergence in M , w*-topology (resp. s-topology or s*-topology) means

weak operator topology (resp. strong operator topology or *strong operator topol-

ogy) as a von Neumann algebra on the standard Hilbert space L2(M).

Direct integrals are indicated by
∮

instead of ordinary
∫ ⊕

. This is to avoid

duplication of sum meanings.

The notion of weights is used in a very restrictive sense: weights are orthogonal

sums of functionals in M+
∗ .

For an interval I contained in [0, 1], TI expresses the tubular domain based on

an imaginary trapezoid {(x, y) ∈ R2;x ≤ 0, y ≤ 0,−(x + y) ∈ I}: TI = {(z, w) ∈
C2; Im z ≤ 0, Imw ≤ 0,−( Im z + Imw) ∈ I}.

A function f : D →M with D ⊂ C is said to be w*-analytic (s*-analytic) if it

is w*-continuous (s*-continuous) and holomorphic when restricted to the interior

D◦. Note that topologies are irrelevant for holomorphicity because a weaker one

implies power series expansions in norm.

In an ordered set, we use lattice notation such as

α ∨ β = max{α, β}, α ∧ β = min{α, β}.
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For example, in the lattice of real-valued continuous functions of t ∈ R, if r ∈ R is

identified with a constant function, r ∨ t expresses the function

R 3 t 7→

{
t if t ≥ r,
r otherwise,

which can be used in functional calculus to represent a self-adjoint operator r ∨ h
by replacing t with a self-adjoint operator h, and similarly for r ∧ t and r ∧ h.

§2. Standard Hilbert spaces

Given a faithful ω ∈M+
∗ , we denote the associated GNS-vector by ω1/2 and iden-

tify the left and right GNS-spaces by the relation ∆
1/2
ω (xω1/2) = ω1/2x, result-

ing in an M -bimodule L2(M,ω) = Mω1/2M with the positive cone L2(M,ω)+
and the compatible *-operation given by L2(M,ω)+ = {aω1/2a∗; a ∈M} and

(aω1/2b)∗ = b∗ω1/2a∗, in such a way that these constitute a so-called standard

form of M . For a non-faithful ϕ ∈M+
∗ , we set L2(M,ϕ) = L2([ϕ]M [ϕ], ϕ|[ϕ]M [ϕ]).

The dependence on ω as well as its faithfulness is then removed by the matrix

ampliation technique: For each ϕ ∈ M+
∗ , let M ⊗ ϕ1/2 ⊗M be a dummy of the

algebraic tensor product M ⊗M , which is an M -bimodule in an obvious manner

with a compatible *-operation defined by the relation (a⊗ϕ1/2⊗b)∗ = b∗⊗ϕ1/2⊗a∗.
On the algebraic direct sum ⊕

ϕ∈M+
∗

M ⊗ ϕ1/2 ⊗M

of these *-bimodules, introduce a sesquilinear form by n⊕
j=1

xj ⊗ ω1/2
j ⊗ yj

∣∣∣∣∣
n⊕
k=1

x′k ⊗ ω
1/2
k ⊗ y′k

 =
∑
j,k

([ωk](x′k)∗xjω
1/2
j |ω

1/2
k y′ky

∗
j [ωj ]),

which is positive because∑
j,k

([ωk]x∗kxjω
1/2
j |ω

1/2
k yky

∗
j [ωj ]) = (Xω1/2|ω1/2Y )

= (X1/2ω1/2Y 1/2|X1/2ω1/2Y 1/2) ≥ 0.

Here ω = diag(ω1, . . . , ωn) denotes a diagonal functional on the nth matrix ampli-

ation Mn(M) of M and

X = [ω]

x
∗
1
...

x∗n

(x1 . . . xn) [ω] and Y = [ω]

y1...
yn

(y∗1 . . . y∗n) [ω]
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are positive elements in [ω]Mn(M)[ω]. Recall that [ω] = diag([ω1], . . . , [ωn]).

The associated Hilbert space is denoted by L2(M) and the image of a⊗ϕ1/2⊗b
in L2(M) by aϕ1/2b. Here the notation is compatible with that for L2(M,ϕ)

because

[ϕ]M [ϕ]⊗ ϕ1/2 ⊗ [ϕ]M [ϕ] 3 a⊗ ϕ1/2 ⊗ b 7→ aϕ1/2b ∈ L2(M,ϕ)

gives an isometric map by the very definition of inner products. Similar remarks

are in order for left and right GNS spaces.

The left and right actions of M are compatible with taking quotients and they

are bounded on L2(M): For a ∈M ,∥∥∥∥∥∥
⊕
j

axj ⊗ ω1/2
j ⊗ yj

∥∥∥∥∥∥
2

= (ω1/2|ZJY Jω1/2)

with

0 ≤ Z = [ω]

x
∗
1
...

x∗n

 a∗a
(
x1 . . . xn

)
[ω] ≤ ‖a‖2X.

Moreover, these actions give *-representations of M : (aξ|η) = (ξ|a∗η) and (ξa|η) =

(ξ|ηa∗) for ξ, η ∈ L2(M) and a ∈ M , which is immediate from the definition of

inner product.

The *-operation on L2(M) is also compatible with the inner product:∥∥∥∥∥∥
⊕

j

xj ⊗ ω1/2
j ⊗ yj

∗∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
⊕
j

y∗j ⊗ ω
1/2
j ⊗ x∗j

∥∥∥∥∥∥
2

= (Y ω1/2|ω1/2X)

= ((ω1/2X)∗|(Y ω1/2)∗) = (Xω1/2|ω1/2Y )

=

∥∥∥∥∥∥
⊕
j

xj ⊗ ω1/2
j ⊗ yj

∥∥∥∥∥∥
2

.

In this way, we have constructed a *-bimodule L2(M) of M in such a way that

L2(M,ϕ) ⊂ L2(M) for each ϕ ∈ M+
∗ and the closed subspaces Mϕ1/2, ϕ1/2M in

L2(M) are naturally identified with the left and right GNS spaces of ϕ respectively.

Moreover, for ϕ,ψ ∈M+
∗ , we have [ϕ]Mψ1/2 = ϕ1/2M [ψ] in L2(M), which is just

a reflection of the fact that the same identification inside L2(Mn(M), ω) is used

in the definition of inner product.
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§3. Modular algebras

Recall the definition of a (boundary) modular algebra that was introduced in [10]

to “resolve” various cocycle relations in modular theory. We shall here describe it

without essential use of the notion of weights.

Let M be a W*-algebra that is assumed to admit a faithful ω ∈ M+
∗ for the

moment. The modular algebra M(iR) of M is then the *-algebra generated by

elements in M and symbols ϕit for ϕ ∈ M+
∗ and t ∈ R under the conditions that

(i) M(iR) contains M as a *-subalgebra, (ii) {ϕit}t∈R is a one-parameter group of

partial isometries satisfying ϕi0 = [ϕ] and (iii) ϕita = σϕ,ψt (a)ψit for ϕ,ψ ∈ M+
∗ ,

a ∈ [ϕ]M [ψ] and t ∈ R.

By utilizing a faithful ω ∈ M+
∗ , it turns out that M(iR) is *-isomorphic to

the algebraic crossed product of M by {σωt } and therefore M(iR) is an algebraic

direct sum of M(it) = Mωit = ωitM , where M(it) =
∑
ϕ∈M+

∗
MϕitM .

Thus the modular algebra M(iR) is iR-graded in the sense that M(it)∗ =

M(−it), M(is)M(it) = M(i(s+ t)) and M(i0) = M .

We now remove the existence of faithful functionals in M+
∗ . We say that an

element a ∈ M is finitely supported if a = [ϕ]a[ϕ] for some ϕ ∈ M+
∗ . Let Mf be

the set of finitely supported elements in M .

Lemma 3.1. The set Mf is a w*-dense *-subalgebra of M and closed under se-

quential w*-limits in M . Moreover,

Mf =
∑
ϕ∈M+

∗

M [ϕ] =
∑
ϕ∈M+

∗

[ϕ]M.

Proof. Clearly Mf is closed under the *-operation and Mf is a subalgebra since

[ϕ]∨[ψ] ≤ [ϕ+ψ]. The *-subalgebraMf is then w*-dense inM since ∨ϕ∈M+
∗

[ϕ] = 1.

If a = a[ϕ], then [aϕa∗] is the left support of a and [ϕ + aϕa∗]a[ϕ + aϕa∗] = a.

Let a be a w*-limit of {an}n≥1 in Mf with [ϕn][an][ϕn] = an for n ≥ 1. Then, for

ϕ =
∑∞
n=1 2−nϕn/ϕn(1) ∈M+

∗ , we have [ϕ]a[ϕ] = a.

We set

Mf (iR) =
⋃

ϕ∈M+
∗

[ϕ]M [ϕ](iR),

where the natural inclusions [ϕ]M [ϕ](iR) ⊂ [ψ]M [ψ](iR) are assumed in the union

for ϕ,ψ ∈M+
∗ satisfying [ϕ] ⊂ [ψ].

Finally we add formal expressions of the form ωit =
∑
j∈I ω

it
j for families

{ωj ∈M+
∗ }j∈I of mutually orthogonal supports and allow products with elements

in M to get {M(it)}t∈R so that Mf (it) ⊂M(it) and M(0) = M . In what follows,

a formal sum ω =
∑
j∈I ωj is referred to as a weight of M . A weight ω =

∑
ωj
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is said to be faithful if 1 =
∑

[ωj ] in M . Note that any weight is extended to a

faithful one and {ωit} is a one-parameter group of unitaries in M(iR) = ⊕M(it)

for a faithful ω and, for another choice of a faithful weight φ =
∑
k∈J φk and

a ∈M ,

φitaω−it =
∑
j,k

φitk aω
−it
j

defines a continuous family of elements in M so that it consists of unitaries when

a = 1 and σωt (a) = ωitaω−it gives an automorphic action of R on M .

Remark 3.2. Here weights are introduced in a formal and restricted way.

At this stage, we introduce two more classes of modular algebraic items:

M(iR + 1/2) =
∑
t∈R

M(it+ 1/2), M(iR + 1) =
∑
t∈R

M(it+ 1),

with

M(it+ 1/2) =
∑
ϕ∈M+

∗

Mϕit+1/2 =
∑
ϕ∈M+

∗

ϕit+1/2M

and

M(it+ 1) =
∑
ϕ∈M+

∗

Mϕit+1 =
∑
ϕ∈M+

∗

ϕit+1M,

so that M(1/2) = L2(M) and M(1) = M∗.

These are iR-graded *-bimodules of M(iR) in an obvious way and we have a

natural module map M(iR+1/2)⊗M(iR)M(iR+1/2)→M(iR+1), which respects

the grading in the sense thatM(is+1/2)M(it+1/2) = M(i(s+t)+1) for s, t ∈ R. In

particular, given a faithful weight ω onM , we haveM(it+s) = M(s)ωit = ωitM(s)

for s = 1/2, 1.

The evaluation of ϕ ∈ M∗ at the unit 1 ∈ M is called the expectation of

ϕ and denoted by 〈ϕ〉. Note that the expectation satisfies the trace property for

various combinations of multiplications such as 〈aϕ〉 = 〈ϕa〉 and 〈ϕitξψ−itη〉 =

〈ψ−itηϕitξ〉 for a ∈M , ϕ,ψ ∈M+
∗ and ξ, η ∈ L2(M).

The scaling ϕ 7→ e−sϕ on M+
∗ gives rise to a *-automorphic action θs of

s ∈ R (called the scaling automorphism) on these modular items: θs(xϕ
it+r) =

e−ist−srxϕit+r for x ∈M , r ∈ {0, 1/2, 1} and t ∈ R.

Remark 3.3. Since elements in L2(M) and M∗ are always “finitely supported”, we

can describe M(it+ s) (s = 1/2, 1) without referring to weights.
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§4. Analytic properties

We here collect well-known analytic properties of modular items (proofs can be

found in [1] and [8] for example).

Lemma 4.1 (Modular extension). For ϕ,ψ ∈M+
∗ and a ∈M , R 3 t 7→ ϕitaψ1−it

∈M∗ is extended analytically to a norm-continuous function ϕizaψ1−iz on the strip

−1 ≤ Im z ≤ 0 with a bound

‖ϕit+raψ−it+1−r‖ ≤ ‖ϕa‖r‖aψ‖1−r (0 ≤ r ≤ 1),

in such a way that

(ϕizaψ1−iz)|z=t−i = ϕ1+itaψ−it, (ϕizaψ1−iz)|z=t−i/2 = ϕit+1/2aψ−it+1/2.

Corollary 4.2 (KMS condition). Let ϕ,ψ ∈ M∗+ and a ∈ [ϕ]M [ψ]. Then the

function σϕ,ψt (a)ψ1/2 = ϕitaψ−itψ1/2 of t ∈ R is analytically extended to an

L2(M)-valued continuous function ϕizaψ−iz+1/2 of z ∈ R− i[0, 1/2] so that

(ϕizaψ−iz+1/2)z=t−i/2 = ϕ1/2ϕitaψ−it = ϕ1/2σϕ,ψt (a).

Lemma 4.3. Let ω ∈M+
∗ be faithful and let a ∈M . Then the following conditions

are equivalent:

(i) The inequality a∗ωa ≤ ω holds in M+
∗ .

(ii) We can find a function a(z) ∈M of z ∈ R−i[0, 1/2] such that a(t) = ωitaω−it

for t ∈ R, a(z)ξ ∈ L2(M) is norm-analytic in z for any ξ ∈ L2(M) and

‖a(−i/2)‖ ≤ 1.

(iii) We can find an element b ∈M satisfying ‖b‖ ≤ 1 and ω1/2a = bω1/2.

Moreover, if this is the case, with the notation in (ii), ξa(z) ∈ L2(M) is norm-

continuous in z for every ξ ∈ L2(M).

Corollary 4.4. For ϕ,ψ ∈M+
∗ , the following conditions are equivalent:

(i) The inequality ϕ ≤ ψ holds in M+
∗ .

(ii) We have [ϕ] ≤ [ψ] and the function ϕitψ−it of t ∈ R is analytically extended

to an M -valued function ϕizψ−iz of z ∈ R − i[0, 1/2] so that ϕizψ−izξ ∈
L2(M) is norm-continuous in z for any ξ ∈ L2(M) and ‖ϕ1/2ψ−1/2‖ ≤ 1.

(iii) We can find an element c ∈M satisfying ‖c‖ ≤ 1 and ϕ1/2 = cψ1/2.

Moreover, if this is the case, ξϕizψ−iz ∈ L2(M) is norm-continuous in z ∈ R −
i[0, 1/2] for any ξ ∈ L2(M).
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Remark 4.5. Under the above majorization conditions, the relevant analytic ex-

tensions are norm-bounded as M -valued functions of z ∈ R − i[0, 1/2] thanks to

the Banach–Steinhaus theorem.

§5. Sectional continuity

We now describe continuity properties of families {M(it+r)}t∈R for r = 0, 1/2 and

1. Let us begin with a simple observation on the continuity of modular actions:

Let ϕ =
∑
ϕj and ψ =

∑
ψk be weights on M in our sense. For ξ ∈ L2(M),

ϕitξψ−it =
∑
j,k

ϕitj ξψ
−it
k

is norm-continuous in t∈R as an orthogonal sum of L2(M)-valued norm-continuous

functions ϕitj ξψ
−it
k . As any φ ∈ M+

∗ has an expression ξη with ξ, η ∈ L2(M), one

sees that

ϕitφψ−it = (ϕitξω−it)(ωitηψ−it)

(ω being an auxiliary faithful weight) is an M∗-valued norm-continuous function

of t ∈ R as a product of L2(M)-valued norm-continuous functions.

The following facts on the continuity of sections of {M(it+ r)} are then more

or less straightforward from this observation.

Lemma 5.1. For a section x = {x(t)} of {M(it)}, the following conditions are

equivalent:

(i) There exists a faithful weight ω on M such that ω−itx(t)∈M is w*-continuous

in t ∈ R.

(ii) There exists a faithful weight ω on M such that x(t)ω−it∈M is w*-continuous

in t ∈ R.

(iii) For any faithful weight ω on M , ω−itx(t) ∈M is w*-continuous in t ∈ R.

(iv) For any faithful weight ω on M , x(t)ω−it ∈M is w*-continuous in t ∈ R.

(v) For any φ ∈M+
∗ , φ−itx(t) ∈M is w*-continuous in t ∈ R.

(vi) For any φ ∈M+
∗ , x(t)φ−it ∈M is w*-continuous in t ∈ R.

Moreover, if {x(t)} satisfies these equivalent conditions, ‖x(t)‖ is locally bounded

in t ∈ R.

We say that a section {x(t)} is w*-continuous if it satisfies any of these

equivalent conditions.

We here introduce the *-operation on sections by

x∗(t) = x(−t)∗ ∈M(it+ r) for a section {x(t) ∈M(it+ r)}.
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As a consequence of the above lemma, for a section x(t) ∈ M(it), then x∗(t), as

well as ax(t)b with a, b ∈M , is w*-continuous if x(t) is too.

Lemma 5.2. Let p = 1 or 2 with the notation L1(M) = M∗ for p = 1. Then the

following conditions on a section {ξ(t)} of {M(it+ 1/p)} are equivalent:

(i) There exists a faithful weight ω on M such that ω−itξ(t) ∈ Lp(M) is norm-

continuous in t ∈ R.

(ii) There exists a faithful weight ω on M such that ξ(t)ω−it ∈ Lp(M) is norm-

continuous in t ∈ R.

(iii) For any faithful weight ω on M , ω−itξ(t) ∈ Lp(M) is norm-continuous in

t ∈ R.

(iv) For any faithful weight ω on M , ξ(t)ω−it ∈ Lp(M) is norm-continuous in

t ∈ R.

(v) For any φ ∈M+
∗ , φ−itξ(t) ∈ Lp(M) is norm-continuous in t ∈ R.

(vi) For any φ ∈M+
∗ , ξ(t)φ−it ∈ Lp(M) is norm-continuous in t ∈ R.

We say that a section {ξ(t)} is norm-continuous if it satisfies any of these equiv-

alent conditions. Notice here that ξ∗(t) = ξ(−t)∗ is norm-continuous if ξ(t) is

too.

Definition 5.3. A section {x(t)} of {M(it)}t∈R is said to be s*-continuous if

x(t)ξ and ξx(t) are norm-continuous for any ξ ∈ L2(M). Notice that x∗(t) is

s*-continuous if and only if x(t) is too, since x∗(t)ξ = (ξ∗x(−t))∗ and ξx∗(t) =

(x(−t)ξ∗)∗. Clearly s*-continuous sections are w*-continuous.

To control the norm of a w*-continuous section x = {x(t) ∈ M(it)}, two

norms are introduced by

‖x‖∞ = sup{‖x(t)‖; t ∈ R}, ‖x‖1 =

∫
R
‖x(t)‖ dt

and x(t) is said to be bounded if ‖x‖∞ <∞ and integrable if ‖x‖1 <∞. Note here

that ‖x(t)‖ is locally bounded and lower semicontinuous.

Lemma 5.4. The following conditions on a section {x(t)} of {M(it)} are equiv-

alent:

(i) For any ξ ∈ L2(M), {x(t)ξ} is a norm-continuous section of {M(it+ 1/2)}.
(ii) For any ϕ ∈ M+

∗ and any ξ ∈ L2(M), then x(t)ϕ−itξ ∈ L2(M) is norm-

continuous in t ∈ R.

(iii) The norm function ‖x(t)‖ is locally bounded and, for a sufficiently large φ ∈
M+
∗ , x(t)φ−it+1/2 ∈ L2(M) is norm-continuous in t ∈ R, i.e., given any
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ϕ ∈M+
∗ , we can find φ ∈M+

∗ such that ϕ ≤ φ and x(t)φ−it+1/2 ∈ L2(M) is

norm-continuous in t ∈ R.

Corollary 5.5. A section x(t) ∈ M(it) is s*-continuous if and only if ‖x(t)‖ is

locally bounded and L2(M)-valued functions x(t)φ−it+1/2, φ−it+1/2x(t) are norm-

continuous for a sufficiently large φ ∈M+
∗ .

A section {x(t) ∈ M(it)}t∈R is said to be finitely supported if we can find

φ ∈ M+
∗ so that x(t) = [φ]x(t)[φ] for every t ∈ R. We say that {x(t)} is locally

bounded (bounded) if the function ‖x(t)‖ of t is too.

§6. Convolution algebra

Consider a bounded, s*-continuous and integrable section {f(t) ∈ M(it)} and

identify it with a formal expression like
∫
R f(t) dt, which is compatible with the

*-operation by(∫
R
f(t) dt

)∗
=

∫
R
f(t)∗ dt =

∫
R
f(−t)∗ dt =

∫
R
f∗(t) dt.

Moreover, a formal rewriting∫
R
f(s) ds

∫
R
g(t) dt =

∫
R

(∫
R
f(s)g(t− s) ds

)
dt

suggests defining a product of f and g by

(fg)(t) =

∫
R
f(s)g(t− s) ds =

∫
R
f(t− s)g(s) ds.

It is then routine to check that the totality of such sections constitutes a normed

*-algebra in such a way that

‖fg‖∞ ≤ (‖f‖1‖g‖∞) ∧ (‖f‖∞‖g‖1), ‖fg‖1 ≤ ‖f‖1 ‖g‖1.

We notice that the scaling automorphism θs on {M(it)} induces a *-automor-

phic action on the *-algebra of sections by (θsf)(t) = e−istf(t).

Here we shall apply formal arguments to illustrate how tracial functionals can

be associated to this kind of *-algebra.

Formal manipulation is an easy business. Imagine that a section f(t) has

an analytic extension to the region −1 ≤ Im z ≤ 0 in some sense so that f∗(z) =

f(−z)∗ and define a linear functional by

τ

(∫
R
f(t) dt

)
= 〈f(−i)〉.
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Note that f(−i) in the right-hand side belongs to M(1) = M∗. We then have

τ(f∗f) =

∫
R
〈f∗(s)f(−i− s)〉 ds =

∫
R
〈f∗(s− i/2)f(−s− i/2)〉 ds

=

∫
R
〈f(−s− i/2)∗f(−s− i/2)〉 ds ≥ 0,

where Cauchy’s integral theorem is formally used in the first line. The trace prop-

erty is seen from

τ(fg) =

∫
〈f(s)g(−i− s)〉 ds =

∫
〈f(t− i)g(−t)〉 dt

=

∫
〈g(−t)f(t− i)〉 dt =

∫
〈g(t)f(−t− i)〉 dt = τ(gf),

where Cauchy’s integral theorem is again used formally in the first line.

Going back to the same track, it turns out that it is not easy to make all of

the above formal arguments rigorous, at least in a reference-weight-free fashion.

Instead we shall construct a Hilbert algebra as a halfway point in what follows,

which is enough to extract the tracial functional.

§7. Hilbert algebras

Definition 7.1. A section {f(t) ∈M(it)} is said to be half-analytic if, for a suffi-

ciently large φ ∈M+
∗ , the function fφ(t′, t′′) = φ−it

′
f(t′+t′′)φ−it

′′
of (t′, t′′) ∈ R2 is

analytically extended to a bounded M -valued s*-continuous function fφ(z′, z′′) =

φ−iz
′
f(z′ + z′′)φ−iz

′′
of (z′, z′′) ∈ T[0,1/2].

Note here that sufficient largeness in the condition has a meaning: For a φ

majorized by ω ∈M+
∗ , φitω−it is analytically extended to a s*-continuous function

φizω−iz of z ∈ R− i[0, 1/2] (Corollary 4.4) and therefore ω−it
′
f(t′ + t′′)ω−it

′′
has

an analytic extension of the form (ω−iz
′
φiz
′
)(φ−iz

′
f(z′ + z′′)φ−iz

′′
)(φiz

′′
ω−iz

′′
),

which is s*-continuous as a product of s*-continuous locally bounded operator-

valued functions.

Note also that the s*-continuity of φ−iz
′
f(z′ + z′′)φ−iz

′′
is equivalent to

the norm-continuity of the L2-valued functions (φ−iz
′
f(z′ + z′′)φ−iz

′′
)φ1/2 and

φ1/2(φ−iz
′
f(z′+z′′)φ−iz

′′
) (Lemma 5.4). These are analytic extensions of φ−it

′
f(t′+

t′′)φ1/2−it
′′

and φ1/2−it
′
f(t′ + t′′)φ−it

′′
, whence simply denoted by φ−iz

′
f(z′ +

z′′)φ1/2−iz
′′

and φ1/2−iz
′
f(z′ + z′′)φ−iz

′′
respectively.

Warning: No separate meaning of f(z) is assigned here.
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It is immediate to see that f(t) is half-analytic if and only if f∗(t) = f(−t)∗

is too, in such a way that

(1) φ−iz
′
f∗(z′ + z′′)φ−iz

′′
=
(
φiz
′′
f(−z′′ − z′)φiz′

)∗
.

To get the convolution product in a manageable way, we impose the following

decaying condition. For a half-analytic section f(t) ∈ M(it), the obvious identity

fφ(z′+ s′, z′′+ s′′) = φ−is
′
fφ(z′, z′′)φ−is

′′
shows that ‖fφ(z′, z′′)‖ depends only on

r′ = − Im z′, r′′ = − Im z′′ and t = Re (z′ + z′′), which enables us to introduce

|f |φ(t) = sup{‖fφ(z′, z′′)‖; r′ ≥ 0, r′′ ≥ 0, r′ + r′′ ≤ 1/2}.

A half-analytic section f(t) is said to be of Gaussian decay if, for a sufficiently

large φ ∈M+
∗ , we can find δ > 0 so that |f |φ(t) = O(e−δt

2

).

Now let N be the vector space of half-analytic sections of Gaussian decay,

which is closed under taking the *-operation by (1). It is immediate to see that

the scaling automorphisms leave N invariant so that φ−iz
′
(θsf)(z′ + z′′)φ−iz

′′
=

e−is(z
′+z′′)φ−iz

′
f(z′ + z′′)φ−iz

′′
.

Let f, g ∈ N. Thanks to the Gaussian decay assumption, the convolution

product fg has a meaning and (fg)(t) is an s*-continuous section. To see fg ∈ N,

we therefore need to check that it admits a half-analytic extension of Gaussian

decay.

Choose an auxiliary weight ω that supports both f and g. Then

φ−iz
′
((fg)(z′ + z′′)φ−iz

′′
)

=

∫
R
φ−iz

′
f(z′ + s)ω−isσωs (g(z′′ − s)φ−i(z

′′−s))ωisφ−is ds

gives the s*-continuous analytic extension with its norm estimated by

‖φ−iz
′
(fg)(z′ + z′′)φ−iz

′′
‖

≤
∫
R
|f |φ( Re z′ + s) |g|φ( Re z′′ − s) ds = O(e−εδt

2/(ε+δ))

for t = Re (z′ + z′′) if |f |φ(t) = O(e−εt
2

) and |g|φ(t) = O(e−δt
2

).

So far N is shown to be a *-algebra with an automorphic action of R by scaling

automorphisms. We next introduce an inner product that makes N into a Hilbert

algebra.

Lemma 7.2. The following identity holds for f ∈ N and sufficiently large φ, ϕ ∈
M+
∗ :

[ϕ]
(
f(t− i/2)φ−it−1/2

)
φit+1/2 = ϕit+1/2

(
ϕ−it−1/2f(t− i/2)

)
[φ]
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(the left-hand side therefore depends only on [ϕ] while the right-hand side depends

only on [φ] and the common element in M(it + 1/2) is reasonably denoted by

[ϕ]f(t− i/2)[φ]).

Proof. For a ∈M , the identity

〈(f(t)φ−it)φ1/2σφ,ϕt (a)ϕ1/2〉 = 〈ϕ1/2(ϕ−itf(t))φ1/2a〉

is analytically continued from t to t− i/2 to get

〈(f(t− i/2)φ−it−1/2)φ1/2φ1/2σφ,ϕt (a)〉 = 〈ϕ1/2(ϕ−it−1/2f(t− i/2))φ1/2a〉

(use the KMS condition at σφ,ϕt (a)ϕ1/2) and, after a simple rewriting,

〈(f(t− i/2)φ−it−1/2)φit+1/2φ1/2aϕ−it〉 = 〈ϕit+1/2(ϕ−it−1/2f(t− i/2))φ1/2aϕ−it〉.

Since [ϕ]f(t − i/2)[φ] = [ϕ]([ϕ′]f(t − i/2)[φ′])[φ] whenever [ϕ] ≤ [ϕ′] and

[φ] ≤ [φ′], then [ϕ]f(t− i/2)[φ] is increasing in [ϕ] and [φ]. We claim that

f(t− i/2) = lim
[ϕ]→1
[φ]→1

[ϕ]f(t− i/2)[φ]

exists in M(it+ 1/2). In fact, if not, we can find increasing sequences ϕn and φn
in M+

∗ so that lim
n→∞

‖[ϕn]f(t− i/2)[φn]‖ =∞, which contradicts

‖[ϕn]f(t− i/2)[φn]‖ ≤ ‖[ϕ]f(t− i/2)[φ]‖ <∞

for the choice ϕ =
∑
ϕn/2

n‖ϕn‖, φ =
∑
φn/2

n‖φn‖.
Moreover, the same reasoning reveals that we can find ϕ, φ ∈ M+

∗ so that

f(t− i/2) = [ϕ]f(t− i/2) = f(t− i/2)[φ]. Consequently, {f(t− i/2) ∈M(it+1/2)}
is a norm-continuous section of Gaussian decay from the expression

f(t− i/2) = f(t− i/2)[φ] =
(
f(t− i/2)φ−it−1/2

)
φit+1/2,

which is valid for a sufficiently large φ.

Remark 7.3. By an analytic continuation, one sees that any half-analytic section

{f(t)} of {M(it)} is finitely supported in the sense that there exists φ ∈ M+
∗

satisfying f(t) = [φ]f(t)[φ] for every t ∈ R.

Example 7.4. Let ϕ ∈M+
∗ and a, b ∈ [ϕ]M [ϕ] be entirely analytic for σϕt . Then,

for α > 0 and β ∈ C, we find that f(t) = e−αt
2+βtaϕitb belongs to N and its

boundary section is f(t− i/2) = e−α(t−i/2)
2+β(t−i/2)aϕit+1/2b.
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The inner product is now introduced by

(f |g) =

∫
R

(f(t− i/2)|g(t− i/2)) dt =

∫
R
〈f(t− i/2)∗g(t− i/2)〉 dt,

which is clearly positive definite, and the completed Hilbert space H is naturally

identified with the direct integral

H =

∮
R
M(it+ 1/2) dt

because N provides a dense set of measurable sections in the right-hand side. The

Hilbert space H is then made into a *-bimodule of M(iR) by

aωis
∮
R
ξ(t) dt =

∮
R
aωisξ(t− s) dt

and (∮
ξ(t) dt

)∗
=

∮
R
ξ(−t)∗ dt

in such a way that actions of M(it) on H are s*-continuous.

Since the family {M(it+1/2)} is trivialized by obvious isomorphisms L2(M)ωit

∼= L2(M) ∼= ωitL2(M) in terms of a faithful weight ω on M , we have identifications

H ∼= L2(M)⊗ L2(R) in two ways, which transforms left and right multiplications

of ωit into a translational unitary by t ∈ R. Recall that our weights are orthogonal

direct sums of bounded functionals and the multiplication of ωis on H gives a

continuous one-parameter group of unitaries.

With these observations in mind, it is immediate to check the axioms of Hilbert

algebra: the left and right multiplications are bounded with respect to the inner

product, N2 is dense in H and (f∗|g∗) = (g|f) for f, g ∈ N.

Remark 7.5. Note that the scaling automorphism θs satisfies (θsf)(t − i/2) =

e−ist−s/2f(t − i/2) and hence scales the inner product: (θsf |θsg) = e−s(f |g) for

f, g ∈ N.

In this way, we have constructed a Hilbert algebra N. The associated von

Neumann algebra is denoted by N = MoR and is referred to as the Takesaki dual

of M in what follows. The scaling automorphisms θs of N induce a *-automorphic

action (also denoted by θs) of R on N by θs(l(f)) = l(θsf), which is referred to as

the dual action. Here l(f) denotes a bounded operator on H defined by l(f)g = fg

for g ∈ N.

Let ω be a faithful weight on M . From the convolution form realization of N

on H, one sees that N contains M as well as ωit as operators by left multiplication

and these in turn generate N . Likewise right multiplications of M and ωit generate
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the right action of N on H. Thus the Takesaki dual of M is isomorphic to the

crossed product of M with respect to the modular automorphism group {σωt },
which justifies our notation M oR for N .

We record here the following well-known fact for later use, together with a

proof to illustrate how the essence can be easily captured in the modular algebra

formalism.

Theorem 7.6 (Takesaki). The fixed-point algebra Nθ of N under the dual action

θ is identified with M .

Proof. Through H ∼= L2(M)⊗L2(R) adapted to the trivialization M(it+1/2)ω−it

= L2(M) of M(it+1/2), the right action of ωis is realized on L2(R) by translations

whereas θs is realized by multiplication of e−ist on L2(R). Since these generate

B(L2(R)) (Stone–von Neumann), Nθ is identified with (B(L2(M))⊗1)∩End(HM ).

Let a ∈M and f, g ∈ L2(R). For ξ, η ∈ L2(M),

(η ⊗ g|(ξ ⊗ f)a) = (η|ξσωgf ) with σωgf =

∫
R
g(t)f(t)ωitaω−it ∈M

shows that T ∈ B(L2(M)) belongs to Nθ if and only if it is in the commutant of

the right action of {σωh (a);h ∈ L1(R)} on L2(M). Since {σωh (a); a ∈M,h ∈ L1(R)}
generates M , this implies Nθ ⊂M .

Now we introduce some notation and conventions in connection with our

Hilbert algebra: N is regarded as a *-subalgebra of N and we write Nτ1/2 = τ1/2N

to indicate the corresponding subspace in H =
∮
RM(it+1/2) dt, where τ1/2 is just

a dummy symbol but its square τ shall soon be identified with the standard trace on

N . Thus h ∈ N is identified with an operator on H satisfying h(fτ1/2) = (hf)τ1/2

for f ∈ N, whereas fτ1/2 = τ1/2f =
∮
R f(t− i/2) dt.

Let B ⊃ N be a dense *-ideal of N such that Bτ1/2 = τ1/2B is the set of

bounded vectors in H; y ∈ N belongs to B if and only if there exists a vector

η ∈ H satisfying ηf = y(fτ1/2) = y(τ1/2f) for any f ∈ N and, if this is the case,

we write η = yτ1/2 = τ1/2y. Recall that the standard trace τ on N+ is defined

by τ(y∗y) = (yτ1/2|yτ1/2) if y ∈ B and τ(y∗y) = ∞ otherwise. Note that, for

f, g ∈ N, f∗g ∈ N2 is in the trace class and its trace is calculated by

τ(f∗g) =

∫
R
(f(t− i/2)|g(t− i/2)) dt = (fτ1/2|gτ1/2),

which justifies our notation fτ1/2.

From the scaling relation (θsf)(t−i/2) = e−ist−s/2f(t−i/2), the inner product

is scaled by a factor e−s under the *-automorphism of N and hence the associated

trace τ scales like τ(θs(y
∗y)) = e−sτ(y∗y) for y ∈ N .
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To each ξ, η ∈ H, a sesquilinear element ξ∗η ∈ N∗ is associated by 〈ξ∗η, x〉 =

(ξ|ηx), and a∗bτ = τa∗b ∈ N∗ is defined to be (aτ1/2)∗(bτ1/2) for a, b ∈ B.

As a square root of this correspondence, we have a unitary map H→ L2(N) in

such a way that |a|τ1/2 7→ (a∗aτ)1/2 for a ∈ B. Therefore, if we set B+ = B ∩N+,

the closure of B+τ
1/2 = τ1/2B+ in H corresponds to the positive cone L2(N)+.

Related to these, we recall the following well-known and easily proved fact

(cf. [7, Cor. 19.1]).

Lemma 7.7. The Hilbert space H is canonically isomorphic to the vector space

of Hilbert–Schmidt class operators with respect to τ in such a way that τ(y∗y) =

(yτ1/2|yτ1/2). Note that a closed operator y affiliated to N is in the Hilbert–Schmidt

class if and only if τ(y∗y) <∞.

§8. Trace formula

We shall now utilize the Hilbert algebra structure behind N to set up a method

modeled after N to calculate the standard trace τ on N .

Given an open interval I ⊂ [0, 1/2], let F̃I be the set of M -valued analytic

functions of z ∈ R−iI and set FI = ∪φ∈M+
∗

[φ]F̃I [φ]. We write fφ(z)φiz for φ ∈M+
∗

and fφ ∈ [φ]FI [φ] to indicate dummies of elements in FI . All such dummies are

then identified by the relation ϕiz = (ϕizψ−iz)ψiz whenever ϕ ≤ ψ, and the

obtained quotient set (which is a kind of inductive limit of dummy elements) is

denoted by LII and an element in LII is called a left interpolator on I.

Thus each left interpolator is of the form f(z) = fϕ(z)ϕiz and we say that

f(z) is supported by ϕ. Then, for φ ∈ M+
∗ majorizing ϕ, f(z) is supported by φ

and fφ(z) = fϕ(z)(ϕizφ−iz), which is also denoted by f(z)φ−iz.

Clearly we have a similar notion of right interpolators with the obvious nota-

tion for them. These are related by the *-operation defined by f∗(z) = f(−z)∗: If

f ∈ LII , f∗ ∈ RII so that φ−izf∗(z) = (f(−z)φiz)∗.
A pair (l(z), r(z)) of left and right interpolators on I is called an interpolator

if one can find φ ∈ M+
∗ that supports l, r and interrelates them in the following

sense: For each w ∈ R − iI, the function σφt (φ−iwr(w)) of t ∈ R is analytically

extended up to the horizontal line w + R so that the function σφz (φ−iwr(w)) is

w*-analytic on D = {(z, w) ∈ C2;w ∈ R − iI, Imw ≤ Im z ≤ 0} and satisfies

σφw(φ−iwr(w)) = l(w)φ−iw. Here, for z ∈ C\R and a ∈M , σz(a) means that σt(a)

(t ∈ R) is analytically extended to a w*-continuous function of ζ ∈ R+ i Im z[0, 1]

and it is evaluated at ζ = z.

Since analytical extensions are moved back to the starting horizontal lines,

the condition is symmetrical in the left and the right: σφ−t(l(w)φ−iw) is analytically
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extended to σφw−z(φ
−iwr(w)), which is w*-continuous in (z, w) ∈ D. For (z, w) ∈

TI , the relation σφz+w(φ−i(z+w)r(z+w)) = l(z+w)φ−i(z+w) is then rewritten into

σφw(φ−i(z+w)r(z + w)) = σφ−z(l(z + w)φ−i(z+w)), which is a w*-analytic function

of (z, w) ∈ TI and denoted by φ−izf(z + w)φ−iw when (l(z), r(z)) is symbolically

expressed by f(z).

Moreover, the interrelating condition is compatible with the majorization

changes: Let φ ≤ ω and z ∈ R− iI. Then

σωt (ω−izr(z)) = (ω−i(z−t)φi(z−t))σφt (φ−izr(z))φitω−it

is analytically continued from t to z to get (l(z)φ−iz)(φizω−iz) = l(z)ω−iz.

We say that an interpolator f(z) = (l(z), r(z)) is supported by φ ∈M+
∗ if both

l(z) and r(z) are supported by φ and, in that case, we write φf(z) = φ−izf(z) =

φ−izr(z) and fφ(z) = f(z)φ−iz = l(z)φ−iz.

Let II be the set of interpolators on I. By restriction or extension, IJ ⊂ II if

I ⊂ J ⊂ (0, 1/2). The *-operation on II is defined by (l(z), r(z))∗ = (r∗(z), l∗(z))

so that it is compatible with the inclusions IJ ⊂ II . Notice that N can be regarded

as a *-subspace of I(0,1/2).
Given an asymptotic function ρ : R \ [−R,R]→ [0,∞) with R > 0 a positive

real, an interpolator f(z) on I is said to have a ρ-growth and is denoted by f(z) =

O(ρ( Re z)) if we can find C > 0 so that ‖φ−izf(z+w)φ−iw‖ ≤ Cρ( Re (z+w)) for

any (z, w) ∈ TI satisfying z+w ∈ R\ [−R,R]− iI. Note that the growth condition

is well defined thanks to the half-power analyticity for majorization.

An interpolator f is said to be of sub-Gaussian growth if, for any small ε > 0,

f(z)φ−iz = O(eε( Re z)2). Let IgI be the set of interpolators of sub-Gaussian growth.

For f ∈ IgI with I = (α, β) ⊂ [0, 1/2], we here introduce a sesquilinear form

on N as follows. Continuous functions

F (s, t) =
(
h(t− i/2)|fφ(s− ir)φit+1/2

φg(t− s+ ir − i/2)
)

of (s, t) ∈ R2 parametrized by r ∈ I are of Gaussian decay with their absolutely

convergent integrals independent of r ∈ I owing to Cauchy’s integral theorem.

Moreover, F (s, t) does not depend on the choice of supporting φ either.

Thus a sesquilinear form 〈 | 〉f on N is well defined by

〈h|g〉f =

∫
R2

ds dt
(
h(t− i/2)|fφ(s− ir)φit+1/2

φg(t− s+ ir − i/2)
)

=

∫
R2

ds dt
(
h(t− i/2)(g∗)φ(−t+ s+ ir − i/2)φi(s−t)|fφ(s− ir)φis+1/2

)
as far as r ∈ I and φ ∈ M+

∗ supports f and g, which behaves well under the

*-operation: 〈g|h〉f∗ = 〈h|g〉f .
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Notice that, when f ∈ N, 〈h|g〉f is reduced to (hτ1/2|fgτ1/2).

We interpret the sesquilinear form 〈 | 〉f as defining an operator K in a kernel

form by (hτ1/2|K(gτ1/2)) = 〈h|g〉f , which is referred to as the virtual operator of

f(z) and denoted by f itself.

Let D(f) be the set of vectors gτ1/2 ∈ Nτ1/2 that makes the conjugate-

linear functional hτ1/2 7→ 〈h|g〉f bounded. For gτ1/2 ∈ D(f), if the vector ξ ∈
H satisfying (hτ1/2|ξ) = 〈h|g〉f is denoted by f(gτ1/2), then we obtain a linear

operator on H by D(f) 3 gτ1/2 7→ f(gτ1/2) ∈ H.

A virtual operator is said to be densely defined if D(f) is dense in H. When

the sesquilinear form 〈 | 〉f itself is bounded, D(f) = Nτ1/2 and the associated

linear operator Nτ1/2 → H is bounded and identified with an element y ∈ N in

such a way that 〈h|g〉f =
(
hτ1/2|y(gτ1/2)

)
for g, h ∈ N.

We next introduce the virtual vector as a conjugate-linear form on N2τ1/2.

Lemma 8.1. If φ ∈ M+
∗ supports g, h ∈ N, then vector-valued functions

(hg∗)φ(s)φ1/2 and φ1/2φ(hg∗)(s) of s ∈ R are analytically continued to L2(M)-

valued norm-continuous functions (hg∗)φ(z)φ1/2 and φ1/2φ(hg∗)(z) of z ∈ R −
i[0, 1] so that these are of Gaussian decay and, for 0 ≤ r ≤ 1/2, satisfy

(hg∗)φ(s− i(1− r))φ1/2 =

∫
R
h(t− i/2)(g∗)φ(−t+ s+ ir − i/2)φ−it dt,

φ1/2φ(hg∗)(s− i(1− r)) =

∫
R
φitφh(t+ s+ ir − i/2)g∗(−t− i/2) dt

respectively.

Proof. We already know that (hg∗)φ(s) has an s*-continuous analytic extension

(hg∗)φ(z) ∈ M to z ∈ R − i[0, 1/2] so that (hg∗)φ(s − i/2)φ1/2 = f(s − i/2)φ−is,

whereas

(hg∗)φ(s− i/2)φ1/2 =

∫
h(t− i/2)g∗φ(−t+ s)φ−it dt

is analytically continued to the norm-continuous function∫
h(t− i/2)g∗φ(−t+ z)φ−it dt

of z ∈ R − i[0, 1/2], which is of Gaussian decay as a convolution of functions of

Gaussian decay.

The sesquilinear form 〈h|g〉f is now expressed by

〈h|g〉f =

∫
R
ds
(
(hg∗)φ(s− i(1− r))φis+1/2|fφ(s− ir)φis+1/2

)
,
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whenever 0 < r < 1 and φ supports g, h as well as f , which reveals that a

conjugate-linear form fτ1/2 on N2τ1/2 is well defined by the relation

(hg∗τ1/2|fτ1/2) = 〈h|g〉f

and called the virtual vector of f .

Note that the virtual vector of f∗ is given by (fτ1/2)∗, which is defined by

(ξ|(fτ1/2)∗) = (ξ|fτ1/2) for ξ ∈ N2τ1/2:

〈h|g〉f∗ = 〈g|h〉f = (gh∗τ1/2|fτ1/2) = (hg∗τ1/2|(fτ1/2)∗).

These are also referred to as a boundary operator and a boundary vector for

I = (0, ν) and I = (ν, 1/2) with additional notation
∫
f(t) dt and

∮
f(t − i/2) dt

respectively. We now focus on these.

Boundary operator. In extracting linear operators from the kernel form of

boundary operators, the following illustrates the meaning of boundary (limit).

Let D be the set of s*-continuous sections of {M(it + 1/2)} of Gaussian

decay, which is a topological vector space of inductive limit of Banach spaces

Dδ = {{ξ(t)} ∈ {M(it + 1/2)}; ‖ξ‖δ < ∞} with ‖ξ‖δ = sup{eδt2‖ξ(t)‖; t ∈ R}.
The embedding Dδ → H is norm-continuous and therefore so is D → H. For

f ∈ IgI with I = (0, ν) and ξ ∈ Dδ,∫
R
fϕ(s− ir)ϕitξ ds

is norm-convergent inDδ′ for any δ′ < δ and gives a bounded linear mapDδ → Dδ′ ,

which depends continuously on r ∈ I in the norm-topology of B(Dδ, Dδ′). The

induced continuous linear operator on D is then denoted by
∫
R fϕ(s − ir)ϕis ds.

We say that
∫
R fϕ(s − ir)ϕis ds is bounded if it is bounded as a densely defined

linear operator on H.

Note that, if
∫
R fϕ(s− ir)ϕis ds ∈ B(H) is locally norm-bounded for r ∈ I, it

is s-continuous in r ∈ I by the density of D in H.

Lemma 8.2. Let f ∈ IgI be supported by ϕ ∈M+
∗ . Assume that

D 3 ξ 7→
∫
R
fϕ(s− ir)ϕisξ ds ∈ H

gives rise to a bounded linear operator yr =
∫
R fϕ(s− ir)ϕis on H and

y =

∫
R
f(s− i0) ds = lim

r→+0

∫
R
fϕ(s− ir)ϕis ds

exists in the w*-topology of N .

Then the boundary operator of f(z) is bounded and given by the above limit.
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Proof. Given g ∈ N and ϕ ∈ M+
∗ , choose φ ∈ M+

∗ so that it supports g and

majorizes ϕ. Then,

R2 3 (s, t) 7→ ϕisf(t− s− i/2)φ−it ∈ L2(M)

is analytically extended to an L2(M)-valued norm-continuous function (ϕizφ−iz)

×
(
φizg(t− z − i/2)

)
of z ∈ R− i[0, 1/2] and t ∈ R, which is denoted by ϕizg(t−

z − i/2).

Since ϕizg(t − z − i/2) = (ϕizφ−iz)φit+1/2
φg(t − z − i/2), (ϕizg)(t − i/2) =

ϕizg(t− z − i/2) belongs to Dδ as a function of t ∈ R if |g|φ(t) = O(e−δt
2

). Thus,

ξr(t) = ϕrg(t+ ir − i/2) is a Dδ-valued norm-analytic function of r.

By our assumptions, an s*-continuous family {yr}r∈I in N converges to y in

w*-topology as r → +0, whence the operator norm ‖yr‖ is bounded in a neigh-

borhood of r = 0 and we see that

yrξr = lim
r→0

yrξr = lim
(r′,r′′)→(0,0)

yr′ξr′′ = lim
r′→0

yr′ξ0 = yξ0.

Now the identity∫
fφ(s− ir)φit+1/2

φg(t− s+ ir − i/2) ds = (yrξr)(t)

is used to get

〈h|g〉f = (hτ1/2|yrξr) = (hτ1/2|yξ0) = (hτ1/2|y(gτ1/2)).

Corollary 8.3. Let f(z) be an interpolator on I = (0, ν) (0 < ν ≤ 1/2) and sup-

pose that f is supported by a φ ∈M+
∗ , so that fφ(z) = f(z)φ−iz is a scalar operator

of polynomial growth with its horizontal Fourier transform
∫
R fφ(s− ir)eisλ ds be-

ing in L∞(R) for a small r > 0 and w*-converging to f̂φ ∈ L∞(R) as r → 0. Then

the boundary operator of f(z) is a bounded operator

f̂φ(log φ) =

∫
R
f̂φ(λ)E(dλ) ∈ N.

Here E(·) denotes the spectral measure of φit: φit =
∫
R e

itλE(dλ) in N .

Proof. Due to the left trivialization [φ]L2(N) ∼= L2(R)⊗[φ]L2(M), the whole thing

is reduced to L∞(R) on L2(R) and the classical harmonic analysis on the real line

works.

Example 8.4. If f(z)φ−iz extends to a bounded w*-continuous M -valued func-

tion of z ∈ R − i[0, ν) in such a way that there exists an integrable function ρ(t)



Trace Formulas 201

satisfying ‖f(t− ir)φ−i(t−ir)‖ ≤ ρ(t) for t ∈ R and 0 ≤ r < ν, then the boundary

operator is bounded and hence belongs to N .

In accordance with the notation φit (φ ∈ M+
∗ , t ∈ R) and the Haagerup

correspondence in Section 9, it is reasonable to regard φ as the analytic generator

of φit and consequently we shall denote by r ∨ φ and r ∧ φ its functional calculus

applied to continuous functions r ∨ t and r ∧ t of t ∈ R (r > 0) respectively.

Example 8.5. For φ ∈ M+
∗ and µ ∈ C, consider an interpolator f(z) = 1

µ+izφ
iz

on I with I specified according to µ as follows:

(i) For I = (0, 1/2) ( Reµ ≥ 0), the boundary operator is given by 2π(1 ∨ φ)−µ.

(ii) For either I = (0,−Reµ) (−1/2 < Reµ < 0) or I = (0, 1/2) ( Reµ ≤ −1/2),

the boundary operator is given by −2π(1 ∧ φ)−µ.

Here, with the help of a spectral decomposition φit =
∫
R e

itλE(dλ), we set

(1 ∨ φ)−µ =

∫ ∞
0

e−µλE(dλ), (1 ∧ φ)−µ =

∫ 0

−∞
e−µλE(dλ).

Boundary vector. We next look into boundary vectors. Let f(z) ∈ IgI with

I = (ν, 1/2) and g, h ∈ N. In the expression

(hg∗τ1/2|fτ1/2) =

∫
R
ds
(
(hg∗)ϕ(s− i(1− r))ϕis+1/2|fϕ(s− ir)ϕis+1/2

)
(g, h and f being supported by ϕ ∈ M+

∗ ), notice that the norm-convergence

lim
r→1/2

(hg∗)ϕ(s− i(1−r))ϕ1/2 = (hg∗)(s− i/2)ϕ−is in L2(M) is uniformly in s ∈ R

and the domination ‖(hg∗)ϕ(s − i(1 − r))ϕ1/2‖ ≤ Ce−δs
2

holds uniformly in r,

whereas ‖fϕ(s− ir)‖ = O(eεs
2

) uniformly in r for any ε > 0.

Thus, if f(z) satisfies the conditions that

(i) ρϕ(s) = sup{‖fϕ(s − ir)‖; r ∈ (ν, 1/2)} is a locally integrable function of

s ∈ R for some supporting ϕ and

(ii) we can find a locally integrable measurable section η(s) ∈ M(is + 1/2) so

that, for a sufficiently large φ and for almost all s, fφ(s−ir)φis+1/2 converges

weakly to η(s) in M(is+ 1/2) as r → 1/2,

then we have the expression

(hg∗τ1/2|fτ1/2) =

∫
R

(
(hg∗)(s− i/2)|η(s)

)
ds,

which shows that the boundary vector of f(z) is represented by the measurable

section η(s) ∈M(is+ 1/2). Note here that ‖η(s)‖ is of sub-Gaussian growth.
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Example 8.6. If fφ(z) is extended to an M -valued w*-continuous function of

z ∈ R − i(ν, 1/2], then ρφ(s) is locally bounded and η(s) = fφ(s − i/2)φis+1/2 =

f(s− i/2) meets the requirements.

Example 8.7. Again consider f(z) = 1
µ+izϕ

iz on I but this time I = (−Reµ, 1/2)

if −1/2 < Reµ < 0 and I = (0, 1/2) otherwise.

Then, for Reµ 6= −1/2, the boundary vector of f belongs to H and is given

by f(t− i/2) = (µ+ it+ 1/2)−1ϕit+1/2.

When Reµ 6∈ [−1,−1/2], the expression

(kτ1/2|fτ1/2) =

∫
R

1

it+ µ+ 1/2
〈k∗(−t− i/2)ϕit+1/2〉 dt

for k ∈ N2 is analytically changed in the integration variable to get

(kτ1/2|fτ1/2) =

∫
R

φ(k∗(−t)ϕit)
it+ µ+ 1

dt.

Thus the parametric limit of fτ1/2 exists in simple convergence as µ ap-

proaches a point in Reµ = −1/2 from the right ( Reµ > −1/2).

Now let µ = im − 1/2 (m ∈ R) be on the critical line Reµ = −1/2 and set

ε = 1/2− r. By Lemma 8.1, we have

〈h|g〉f =

∫
R

1

i(s+m) + 1/2
φ
(
φis(gh∗)(−s)

)
ds,

which reveals that the boundary vector of f(z) coincides with

lim
ε→+0

∮
R

1

i(t+m) + ε
φit+1/2 dt.

We now generalize the notion of interpolators on I = (0, 1/2) so that f(z)

is allowed to be not defined on a compact subset K of R− i(0, 1/2). The various

analyticity is then defined just avoiding K. Since the growth condition is about

horizontal asymptotics, it still has a meaning as well.

We introduce the residue operator Rf =
∮
K
f(z) dz : Nτ1/2 → H by

Rf (gτ1/2) =

∮
R

(∮
f(z)g(t− z − i/2) dz

)
dt.

Here f(z)g(t − z − i/2) = fφ(z)φit+1/2
φg(t − z − i/2) is an M(it + 1/2)-valued

analytic function of z ∈ (R − i[0, 1/2]) \K and the contour integral is performed

by surrounding K.

Theorem 8.8 (Trace formula). Let f(z) be an interpolator on (0, 1/2) of sub-

Gaussian growth and assume that the boundary vector fτ1/2 =
∮
R f(t − i/2) dt

exists in H.
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Then the sum of the boundary operator f and the residue operator Rf is τ -

measurable and we have

τ((f +Rf )∗(f +Rf )) = (fτ1/2|fτ1/2) =

∫
R

(
f(t− i/2)|f(t− i/2)

)
dt.

Proof. Let Vf be the virtual operator of f(z) (z ∈ R − i(1/2 − ε, 1/2)). By the

residue formula, Vf = f +Rf and, for g, h ∈ N,

(hτ1/2|Vf (gτ1/2)) = (hτ1/2|(fτ1/2)g) = (h1/2τ1/2|l(fτ1/2)(gτ1/2))

shows that the virtual operator Vf is closable with its closure given by l(fτ1/2).

Lemma 7.7 is then applied to get the assertion.

Corollary 8.9. If f(z) is analytic on the whole R − i(0, 1/2) additionally, then

the boundary operator f is τ -measurable and we have

τ(f∗f) = (fτ1/2|fτ1/2) =

∫
R

(
f(t− i/2)|f(t− i/2)

)
dt.

Example 8.10. Let G ∈ L2(R) and suppose that its Fourier transform Ĝ(λ) =∫
RG(t)e−iλt dt is integrable and satisfies

∫∞
0
|Ĝ(λ)|2eλ dλ <∞.

Then the inverse Fourier transform Gw of Ĝ(λ)eiwλ belongs to L2(R)∩C0(R)

and depends on w ∈ R − i[0, 1/2] norm-continuously for both ‖ · ‖∞ and ‖ · ‖2.

Since, for F ∈ L2(R),

(F |Gw) =
1

2π

∫
R
F̂ (λ)Ĝ(λ)eiwλ dλ

is analytic in w and Gs is reduced to the translation G(t + s) of G(t), G(t) is

analytically extended to G(z) so that Gw(t) = G(t+ w) for w ∈ R− i[0, 1/2] and

t ∈ R.

Now, for φ ∈ M+
∗ , g(z) = G(z)φit defines an interpolator on (0, 1/2) that

vanishes at Re z = ±∞. Since φit on H is given by translation on L2(R) ⊗
[φ]L2(M)[φ] ∼= [φ]H[φ], the associated boundary operator is bounded and the

boundary vector is given by
∮
RG(t− i/2)φit+1/2 dt so that

τ(g∗fg) =

∫
R2

(g(t− i/2)|f(s)g(t− s− i/2)) ds dt

= φ(1)

∫
R2

G(t− i/2)F (s)G(t− s− i/2) ds dt

=
φ(1)

2π

∫
R
F̂ (λ)|Ĝ(λ)|2eλ dλ.

Here, for F ∈ L1(R), an L1-section {f(t)} of {M(it)} is defined by f(t) = F (t)φit

and f =
∫
R f(t) dt ∈ N .
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Thus, letting A be the W*-subalgebra of [φ]N [φ] generated by {φit; t ∈ R},
L2(A, τ) is identified with L2(R, eλ dλ) by a unitary map

Uφ : L2(A, τ) 3 gτ1/2 7→
√
φ(1)

2π
Ĝ(λ) ∈ L2(R, eλ dλ)

so that φis on L2(A, τ) is realized by a multiplication of the function e−isλ of

λ ∈ R.

Example 8.11. For −1/2 < Reβ < 0 and φ ∈ M+
∗ , the interpolator f(z) =

1
β+izφ

iz has −2π(1∧φ)−β ∈ N as the boundary operator. The residue operator is

calculated by the realization L∞(A) on L2(A) as∫
|z−iβ|=ε

1

β + iz
eiλz dz = 2πe−βλ,

which is therefore 2πφ−β . Adding these, we see that (1 ∨ φ)−β is in the Hilbert–

Schmidt class and hence, for x ∈ M and µ = −r + is ∈ −(0, 1) + iR, then

x(1 ∨ φ)−µ = x(1 ∨ φ)r/2−is(1 ∨ φ)r/2 is in the trace class with

2πτ(x(1 ∨ φ)−µ) = φ(x)

∫
R

1

−it+ (1− r)/2
1

i(t+ s) + (1− r)/2
dt

=
φ(x)

is− r + 1
=

φ(x)

µ+ 1
.

Although Haagerup deals only with the case µ = 0 and its scaled variation,

the following generalization should also be attributed to him.

Theorem 8.12 (Haagerup’s trace formula). Let ω be a weight on M in our sense.

The trace of a positive operator (1∨ω)−µ with µ ∈ R, which belongs to N for µ ≥ 0

and is affiliated to N for µ < 0, is given by

τ((1 ∨ ω)−µ) =

{
ω(1)

2π(µ+1) if µ > −1,

∞ otherwise.

Moreover, when ω ∈ M+
∗ , for any x ∈ M and µ ∈ (−1,∞) + iR, the τ -

measurable operator x(1 ∨ ω)−µ is in the trace class and we have

τ(x(1 ∨ ω)−µ) =
ω(x)

2π(µ+ 1)
.

Proof. Assume ω ∈ M+
∗ . Then ωit is realized as a multiplication operator on

L2(R, eλ dλ) by a function e−itλ of λ ∈ R. Consequently (1 ∨ ω)−µ is represented

by the function 1(−∞,0](λ)eλµ of λ, which is integrable relative to the measure
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eλ dλ if and only if Reµ > −1 with∫ 0

−∞
eλµeλ dλ =

1

µ+ 1
.

Since our weights are orthogonal sums of elements in M+
∗ , the formula for

ω ∈M+
∗ remains valid for weights.

The remaining part is already covered in Example 8.11.

Remark 8.13.

(i) By the integral expression
∫
R

1
µ+itω

it dt of 2π(1∨ω)−µ, the formula coincides

with the one obtained from the formal argument.

(ii) The normalization of our trace is different from that in [6] and [9] by a factor

of 2π.

Thus, for ω ∈ M+
∗ , the analytic generator h of ωit as a positive operator on

H, which satisfies θs(h) = e−sh (called relative invariance of degree −1), is τ -

measurable in the sense that lim
r→∞

τ([r∨h]) = 0. Haagerup’s ingenious observation

is that the non-commutative Lp spaces are captured as measurable operators on

H satisfying relative invariance of degree −1/p.

We now go into the reverse problem of characterizing τ -measurable posi-

tive operators satisfying relative invariance of degree −1, which is the heart of

Haagerup’s correspondence.

Recall the original approach to this problem: First establish a one-to-one

correspondence between normal weights on M and θ-invariant normal weights

on N . Second, the latter is then paraphrased into positive operators of relative

invariance of degree −1 by taking a Radon–Nikodym derivative with respect to

τ . Finally, positive operators associated to M+
∗ are characterized as τ -measurable

operators among these.

Formally these processes look natural and seem harmless but it is in fact

supported by clever and effective controls over infinities based on extended positive

parts.

We shall here present an inelegant but down-to-earth proof by continuing

elementary Fourier calculus.

§9. Haagerup correspondence

Let h ≥ 0 be a τ -measurable operator on H satisfying θs(h) = e−sh for s ∈ R.

Our first task here is to identify hit with ϕit for some ϕ ∈M+
∗ .
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Let p = [1 ∨ h] be the support projection of 1 ∨ h. By the relative invariance

of h, θs(p) is the support projection of es ∨ h and we have a Stieltjes integral

representation of h,

h = −
∫ ∞
−∞

es dθs(p) =

∫ ∞
−∞

e−sdθ−s(p),

and set

(1 ∨ h)−µ = −
∫ ∞
0

e−µs dθs(p),

which is τ -measurable for any µ ∈ C since τ(p) <∞. Notice that θs(p) is contin-

uous in s ∈ R and dθs has no spectral jumps.

Let x ∈M and start with the computation

τ(hx(1 ∨ h)−µ) = τ(x(1 ∨ h)−µh) = τ(x(1 ∨ h)1−µ)

= −
∫ ∞
0

e(1−µ)s dτ(xθs(p)) = −
∫ ∞
0

e(1−µ)s d(e−s)τ(xp)

= τ(xp)

∫ ∞
0

e−µs ds =
1

µ
τ(xp),

which is valid for Reµ > 0.

For t ∈ R, σt(x) = hitxh−it (x ∈ M) defines an automorphic action of

R on M because hitxh−it is θ-invariant since θs(h
it) = e−isthit. We claim that

ϕ(x) = 2πτ(xp) satisfies the KMS condition for the automorphic action σt.

First notice that [h] = [ϕ]. In fact, from the definition of ϕ and the faithfulness

of the standard trace, (1 − [ϕ])p = 0, which means that p ≤ [ϕ] and then [h] =

lim
s→−∞

θs(p) ≤ θs([ϕ]) = [ϕ]. Conversely, from (1− [h])p = 0, 1− [h] ≤ 1− [ϕ] gives

the reverse inequality.

Now consider ϕ(x∗σt(x)) = τ(x∗hitxh−itp) with x ∈ M . If the Stieltjes inte-

gral expression for h is used as in xh−itp = −
∫∞
0
e−istdθs(xp), we have

− 1

2π
ϕ(x∗σt(x)) =

∫ ∞
0

e−ist dτ(x∗hitθs(xp))

=

∫ ∞
0

e−ist dτ
(
θs
(
x∗θ−s(h

it)xp
))

=

∫ ∞
0

e−ist d(e−seist)τ(x∗hitxp) = (it− 1)τ(x∗hitxp)

and then

−τ(x∗hitxp) =

∫ 0

−∞
eist dτ (x∗θs(p)xp) +

∫ ∞
0

eist dτ (x∗θs(p)xp) ,
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together with∫ ∞
0

eist dτ (x∗θs(p)xp) =

∫ ∞
0

eist d
(
e−sτ

(
x∗pxθ−s(p)

))
=

∫ ∞
0

eiste−s dτ (x∗pxθ−s(p))

−
∫ ∞
0

eiste−sτ
(
x∗pxθ−s(p)

)
ds,

revealing that −τ(x∗hitxp) is analytically extended to a bounded continuous func-

tion

−τ(x∗hizxp) =

∫ ∞
−∞

eisz dτ (x∗θs(p)xp) =

∫ ∞
−∞

eisz d
(
e−sτ(x∗pxθ−s(p))

)
=

∫ ∞
−∞

eisze−s dτ (x∗pxθ−s(p))−
∫ ∞
−∞

eisze−sτ
(
x∗pxθ−s(p)

)
ds

of z = t− ir ∈ R− i[0, 1].

In these and the following calculations, note that τ(x∗pxθ−s(p)) (τ(x∗θs(p)xp))

is positive, increasing (decreasing) and continuous in s ∈ R, whence both

dτ (x∗pxθ−s(p)) and −dτ (x∗θs(p)xp) give rise to positive finite measures on R.

Consequently, with the notation ϕ(x∗σz(x)) for the analytic continuation of

ϕ(x∗σt(x)) and, with the help of integration by parts, we get the expression

1

2π
ϕ(x∗σt−ir(x)) = (it+ r − 1)

∫ ∞
−∞

e(it+r−1)sdτ (x∗pxθ−s(p))

− (it+ r − 1)

∫ ∞
−∞

e(it+r−1)sτ (x∗pxθ−s(p)) ds

= (it+ r)

∫ ∞
−∞

e(it+r−1)s dτ (x∗pxθ−s(p))

−
[
e(it+r−1)sτ (x∗pxθ−s(p))

]∞
−∞

.

For 0 < r < 1, we see lim
s→∞

e(it+r−1)sτ
(
x∗pxθ−s(p)

)
= 0 and

lim
s→−∞

e(it+r−1)sτ
(
x∗pxθ−s(p)

)
= lim
s→−∞

e(it+r)sτ
(
x∗θs(p)xp

)
= 0

at the boundary values and therefore

1

2π
ϕ(x∗σt−ir(x)) = (it+ r)

∫ ∞
−∞

e(it+r−1)sdτ (x∗pxθ−s(p)) .
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Since both sides are continuous in r ∈ [0, 1], the equality holds at the boundary as

well. We now compare this expression with

1

2π
ϕ(σt(x)x∗) = τ(phitxh−itx∗) = −

∫ ∞
0

eist dτ
(
θs(p)xh

−itx∗
)

= −
∫ ∞
0

eist dτ
(
θs
(
pxθ−s(h

−it)x∗
))

= −
∫ ∞
0

eist d(e−s−ist)τ(pxh−itx∗) = (it+ 1)τ(pxh−itx∗)

= (it+ 1)

∫ ∞
−∞

eist dτ (pxθ−s(p)x
∗) ,

to conclude that ϕ(x∗σt−i(x)) = ϕ(σt(x)x∗) for t ∈ R.

So far we have checked that hitxh−it = ϕitxϕ−it for x ∈ [ϕ]M [ϕ]. Then

u(t) = hitϕ−it is a unitary in the center of [ϕ]M [ϕ]. Since each ϕit commutes with

the reduced center, {u(t)} is a one-parameter group of unitaries in the reduced

algebra. Let u(t) =
∫
R e

istE(ds) be the spectral decomposition in [ϕ]M [ϕ]. Then

an =
∫
[−n,n] e

s/2E(ds) is an increasing sequence of positive elements in the reduced

center and ϕn = anϕan ∈ M+
∗ satisfies ϕitn = hit[an] = [an]hit for t ∈ R. Set

hn = h[an] = [an]h, which is also τ -measurable and satisfies θs(hn) = e−shn.

From the equalities

ϕn(x)

2πµ
= τ(x(1 ∨ ϕn)1−µ) = τ(x(1 ∨ hn)1−µ) = τ(x[an](1 ∨ h)1−µ) =

ϕ(x[an])

2πµ

for x ∈M and µ ≥ 1, one sees that ϕn = ϕ[an] = [an]ϕ and then ϕitn = ϕit[an] for

t ∈ R. Finally we have hit = lim
n→∞

hitn = lim
n→∞

ϕit[an] = ϕit.

We next check the additivity of the correspondence hϕ ↔ ϕ. To see this, we

first establish the following relation.

Lemma 9.1. Let ω ∈M+
∗ and µ > 0. Then

(1 ∨ ω)−µ =
1

2π

∫
R

1

µ+ it
ωit dt

is in the τ -trace class and, for x ∈ [ϕ]M , we have

τ(hx∗(1 ∨ ω)−µx) =
1

2πµ
ϕ(x∗x).

Recall here that (1∨ω)−µ/2 = 1
2π

∫
R

1
it+µ/2ω

it dt belongs to B+ in such a way

that

(1 ∨ ω)−µ/2τ1/2 =
1

2π

∮
R

1

it+ (µ+ 1)/2
ωit+1/2 dt.
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The identity is checked as follows: Letting y = x∗(1 ∨ ω)−µx, we have

τ(hy) = − lim
n→∞

∫ n

−n
es dτ

(
θs(p)y

)
= lim
n→∞

(∫ n

−n
esτ
(
θs(p)y

)
ds− enτ

(
θn(p)y

)
+ e−nτ

(
θ−n(p)y

))
= lim
n→∞

(∫ n

−n
ds es

∫
R
dt

1

2π(µ+ it)
τ
(
θs(p)x

∗ωitx
)
− τ
(
pθ−n(y)

))
= lim
n→∞

(∫ n

−n
ds

∫
R
dt

eist

2π(µ+ it)
τ(px∗ωitx)− 1

2π

∫
R

eint

µ+ it
τ(px∗ωitx) dt

)
.

By the lemma below, the function τ(px∗ωitx)/(µ+ it) is integrable, whence

lim
n→∞

∫
R

eint

µ+ it
τ(px∗ωitx) dt = 0.

Lemma 9.2. We have

τ(px∗ωitx) =
1

2π(1− it)
ϕ(x∗ωitxϕ−it).

Proof. From the expression τ(px∗ωisx) = (xpτ1/2|ωisxpτ1/2) with

ωisxpτ1/2 =
1

2π

∮
R
dt

1

i(t− s) + 1/2
ωisxϕ−isϕit+1/2,

we obtain

τ(px∗ωisx) =
1

(2π)2

∫
R
dt

1

−it+ 1/2

1

i(t− s) + 1/2
(xϕit+1/2|ωisxϕ−isϕit+1/2)

=
1

(2π)2

∫
R
dt

1

−it+ 1/2

1

i(t− s) + 1/2
ϕ(x∗ωisxϕ−is)

=
1

2π

1

1− is
ϕ(x∗ωisxϕ−is).

To deal with the first term in the last expression of τ(hy), we use the relation

2π(µ+ it)−1 = g∗ ∗ g for g(t) = 1/(it+ µ/2) to see that∫
R

eist

µ+ it
ωit dt =

∫
R
dt′ e−ist

′
g(t′)ω−it

′
∫
R
dt eistg(t)ωit

and hence

2π

∫
R

eist

µ+ it
(xξ0|ωitxξ0) dt =

(∫
R
dt′ eist

′
g(t′)ωit

′
xξ0

∣∣∣∣ ∫
R
dt eistg(t)ωitxξ0

)



210 S. Yamagami

=
∑
j

(∫
R
dt′ eist

′
g(t′)ωit

′
xξ0

∣∣∣∣δj)(δj∣∣∣∣ ∫
R
dt eistg(t)ωitxξ0

)
=
∑
j

∫
R
dt eist(F ∗j ∗ Fj)(t) =

∑
j

|F̂j(s)|2,

where {δj} is an orthonormal system in H supporting vectors {ωitxξ0}t∈R, and

Fj(t)=g(t)(δj |ωitxξ0) together with their Fourier transforms F̂j(s)=
∫
R e

istFj(t) dt

belong to L2(R).

The Plancherel formula is then applied to each Fj to get

(2π)2τ(hy) =

∫ ∞
−∞

∑
j

|F̂j(s)|2 ds

=
∑
j

∫ ∞
−∞
|F̂j(s)|2 ds = 2π

∑
j

∫
R
|Fj(t)|2 dt

= 2π

∫
R

∑
j

|Fj(t)|2 dt =
2π

µ
(xξ0|xξ0) =

2π

µ
τ(px∗x).

Similarly and more easily, the side identity follows from

2π

∫
R

(ξ|θs(y)ξ) =

∫
R
ds

∫
R
dt

1

µ+ it
(xξ|θs(ωit)xξ)

=

∫
R
ds

∫
R
dt

e−ist

µ+ it
(xξ|ωitxξ) =

2π

µ
(ξ|x∗xξ)

for each ξ ∈ L2(N).

Theorem 9.3 (Haagerup correspondence). There is a linear isomorphism between

M∗ and the linear space of τ -measurable operators h on L2(N) satisfying θs(h) =

e−sh and so that ϕ ∈ M+
∗ corresponds to the analytic generator hϕ of the one-

parameter group {ϕit} of partial isometries in N .

Moreover, the correspondence preserves N*-bimodule structures as well as

positivity.

Proof. The correspondence is already established for positive parts and Lemma 9.1

is used to get the additivity by

1

2πµ
φ(x∗x) = 〈(hϕ + hψ)x∗(1 ∨ ω)−µx〉 =

1

2πµ
(ϕ(x∗x) + ψ(x∗x)).

Here ϕ,ψ ∈M+
∗ and φ ∈M+

∗ is specified by hφ = hϕ + hψ.

Once the semilinearity is obtained, the other part is almost automatic. The

linear extension is well defined by hϕ = hϕ1 −hϕ2 + ihϕ3 − ihϕ4 for ϕ = ϕ1−ϕ2 +
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iϕ3 − iϕ4 ∈ M∗ with ϕj ∈ M+
∗ . The identity ahϕa

∗ = haϕa∗ for a ∈ M follows

again from Lemma 9.1 as

τ(aha∗x∗(1 ∨ ω)−µx) = τ(ha∗x∗(1 ∨ ω)−µxa) =
2π

µ
ϕ(a∗x∗xa) =

2π

µ
(aϕa∗)(x∗x)

and then ahϕb
∗ = haϕb∗ by polarization.
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