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Abstract

In this paper, we study an inverse scattering problem at fixed energy on three-dimensional
asymptotically hyperbolic Stäckel manifolds having the topology of toric cylinders and
satisfying the Robertson condition. On these manifolds the Helmholtz equation can be
separated into a system of a radial ODE and two angular ODEs. We can thus decompose
the full scattering operator into generalized harmonics and the resulting partial scattering
matrices consist of a countable set of 2 × 2 matrices whose coefficients are the so-called
transmission and reflection coefficients. It is shown that the reflection coefficients are
nothing but generalized Weyl–Titchmarsh functions associated with the radial ODE.
Using a novel multivariable version of the complex angular momentum method, we show
that knowledge of the scattering operator at a fixed nonzero energy is enough to determine
uniquely the metric of the three-dimensional Stäckel manifold up to natural obstructions.
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§1. Introduction and statement of the main result

In this work we are interested in an inverse scattering problem at fixed energy

for the Helmholtz equation on three-dimensional Stäckel manifolds satisfying the

Robertson condition. The Stäckel manifolds were introduced in 1891 by Stäckel

in [60] and are mainly of interest in the theory of variable separation. Indeed,

it is known that the additive separability of the Hamilton–Jacobi equation for

the geodesic flow on a riemannian manifold is equivalent to the fact that the

metric is in Stäckel form. However, to obtain the multiplicative separability of
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the Helmholtz equation, we also have to assume that the Robertson condition is

satisfied. As we will see in a brief review of the theory of variable separation, there

also exist some intrinsic characterizations of the separability of the Hamilton–

Jacobi and Helmholtz equations in terms of Killing tensors (which correspond to

hidden symmetries) or symmetry operators. We refer to [4, 5, 14, 26, 27, 39, 38,

40, 61] for important contributions in this domain and to [2, 53] for surveys on

these questions. We emphasize that the description of the riemannian manifolds

given by Stäckel is local. We shall obtain a global description of these manifolds by

choosing a global Stäckel system of coordinates and we shall thus use the name of

“Stäckel manifold” in our study. We choose to work on a Stäckel manifold (M, g)

having the topology of a toric cylinder and in order to define the scattering matrix

on this manifold, we add an asymptotically hyperbolic structure, introduced in

[35] (see also [32, 37, 58]), at the two radial ends of our cylinder. We can then

define the scattering operator Sg(λ) at a fixed energy λ 6= 0 associated with the

Helmholtz equation on (M, g) which is the object of main interest in this paper.

The question we address is the following:

Does the scattering operator Sg(λ) at a fixed energy λ 6= 0 uniquely

determine the metric g of the Stäckel manifold?

We recall that inverse scattering problems at fixed energy on asymptotically hyper-

bolic manifolds are closely related to the anisotropic Calderón problem on compact

riemannian manifolds with boundary. We refer to the surveys [34, 35, 41, 43, 59, 62]

for the current state of the art on this question. One of the aims of this paper is

thus to give examples of manifolds on which we can solve the inverse scattering

problem at fixed energy but we do not impose one of the particular structures for

which the uniqueness for the anisotropic Calderón problem on compact manifolds

with boundary is known. Note that the result we prove here is a uniqueness result.

We are also interested in the stability result, i.e., in the study of the continuity of

the mapping g 7→ Sg(λ). This question will be the object of future work.

The main result of this paper is the following:

Theorem 1.1. Let (M, g) and (M, g̃), whereM = (0, A)x1×T 2
x2,x3 , be two three-

dimensional Stäckel toric cylinders. We assume that these manifolds satisfy the

Robertson condition and are endowed with asymptotically hyperbolic structures at

the two ends {x1 = 0} and {x1 = A}. We denote by Sg(λ) and Sg̃(λ) the cor-

responding scattering operators at an arbitrarily fixed energy λ 6= 0. Assume that

Sg(λ) = Sg̃(λ). Then, there exists a diffeomorphism Ψ : M → M, equal to the

identity at the compactified ends {x1 = 0} and {x1 = A}, such that g̃ is the pull

back of g by Ψ, i.e., g̃ = Ψ?g.
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The main tool of this work consists in complexifying the coupled angular

momenta that appear in the variable separation procedure. Indeed, thanks to

variable separation, the scattering operator at a fixed energy can be decomposed

into scattering coefficients indexed by a discrete set of two angular momenta that

correspond to the two constants of separation. Roughly speaking, the aim of the

complexification of the angular momentum method is the following: from a dis-

crete set of data (here the equality of the reflection coefficients on the coupled

spectrum) we want to obtain a continuous regime of information (here the equal-

ity of these functions on C2). This method consists of three steps. We first al-

low the angular momentum to be a complex number. We then use uniqueness

results for functions in certain analytic classes to obtain the equality of the non-

physical corresponding data on the complex plane C. Finally, we use this new

information to solve our inverse problem thanks to the Börg–Marchenko theo-

rem. The general idea of considering complex angular momentum originates from

a paper by Regge (see [56]) and uses it as a tool in the analysis of the scat-

tering matrix of Schrödinger operators in R3 with spherically symmetric poten-

tials. We also refer to [1, 54] for books dealing with this method. This tool has

already been used in the field of inverse problems for one angular momentum

in [18, 19, 20, 22, 21, 23, 30, 55] and we note that this method is also used in

high energy physics (see [17]). In this work we use a novel multivariable version

of the complexification of the angular momentum method for two angular mo-

menta which correspond to the constants of separation of the Helmholtz equation.

Note that we have to use this multivariable version since these two angular mo-

menta (which are also coupled eigenvalues of two commuting operators) are not

independent and cannot be considered separately. This work is a continuation of

the paper [19] by Daudé, Kamran and Nicoleau in which the authors treat the

same question on Liouville surfaces which correspond to Stäckel manifolds in two

dimensions.

§1.1. Review of variable separation theory

In this subsection, we propose a brief review of variable separation theory. We

refer to [2, 53] and to the introduction of [4] for surveys of this theory. Let (M, g)

be a riemannian manifold of dimension n. On (M, g), we are first interested in the

Hamilton–Jacobi equation

(1.1) ∇W · ∇W = E,

where E is a constant parameter and ∇ is the gradient operator (∇W )i = gij∂jW ,

where we use the Einstein summation convention. We are also interested in the
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Helmholtz equation

(1.2) −∆gψ = Eψ,

where ∆g is the Laplace–Beltrami operator ∆gψ = gij∇i∇jψ, where ∇j is the

covariant derivative with respect to the Levi-Civita connection. We note that,

as is shown in [4], we can add a potential V satisfying suitable conditions on

these equations without more complications in the theory we describe here. It

is known that, in many interesting cases, these equations admit local separated

solutions. The reason why we are interested in such solutions is that it happens

that for solutions of this kind, equations (1.1)–(1.2) become equivalent to a system

of ordinary differential separated equations, each one involving a single coordinate.

In this work we study the particular case of the orthogonal separation, i.e., when

gij = 0 for i 6= j. We now recall the definition of separation of variables for the

Hamilton–Jacobi and the Helmholtz equations.

Definition 1.1 ([4]). The Hamilton–Jacobi equation is separable in the coordi-

nates x = {xi} if it admits a complete separated solution, i.e., a solution of the

kind W (x, c) =
∑n
i=1Wi(x

i, c), depending on n parameters c = (cj) satisfying the

completeness condition det(∂pi∂cj
) 6= 0, where pi = ∂iW .

Definition 1.2 ([4, Def. 4.1]). The Helmholtz equation is separable in the coor-

dinates x = {xi} if it admits a complete separated solution, i.e., a solution of the

form ψ(x, c) =
∏n
i=1 ψi(x

i, c), depending on 2n parameters c = (cj) satisfying the

completeness condition det
( ∂ui/∂cj
∂vi/∂cj

)
6= 0, where ui =

ψ′i
ψi

and vi =
ψ′′i
ψi

.

We now recall the results proved by Stäckel, Robertson and Eisenhart at the

end of the 19th century and at the beginning of the 20th century which

(1) characterize the riemannian manifolds admitting orthogonal variable separa-

tion;

(2) make the link between the variable separation for Hamilton–Jacobi and Helm-

holtz equations.

Definition 1.3 (Stäckel matrix). A Stäckel matrix is a regular n × n matrix

S(x) = (sij(x
i)) whose components sij(x

i) are functions depending on the variable

corresponding to the row number only.

Theorem 1.2 (Stäckel 1893, [61]). The Hamilton–Jacobi equation is separable in

orthogonal coordinates x if and only if the metric g is of the form

g =

n∑
i=1

H2
i (dxi)2,
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where H2
i is written using a Stäckel matrix S as

H2
i =

det(S)

si1
∀ i ∈ {1, . . . , n},

where si1 is the minor associated with the coefficient si1 for all i ∈ {1, . . . , n}.

Theorem 1.3 (Robertson 1927, [57]). The Helmholtz equation is separable in or-

thogonal coordinates x if and only if in these coordinates the Hamilton–Jacobi

equation is separable and, moreover, the following condition is satisfied:

(1.3)
det(S)2

|g|
=

det(S)2∏n
i=1H

2
i

=

n∏
i=1

fi(x
i),

by some Stäckel matrix S, where fi(x
i) are arbitrary functions of the corresponding

coordinate only and |g| is the determinant of the metric g.

Thanks to this theorem we see that a full understanding of separation theory

for the Helmholtz equation depends on an understanding of the corresponding

problem for the Hamilton–Jacobi equation and we note that the separability of

the Helmholtz equation is more demanding. The additional condition (1.3) in

Theorem 1.3 is called the Robertson condition. This condition has a geometrical

meaning given by the following characterization due to Eisenhart.

Theorem 1.4 (Eisenhart 1934, [26]). The Robertson condition (1.3) is satisfied

if and only if in the orthogonal coordinates system x the Ricci tensor is diagonal:

Rij = 0 for all i 6= j.

We note that the Robertson condition is satisfied for Einstein manifolds. In-

deed, an Einstein manifold is a riemannian manifold whose Ricci tensor is propor-

tional to the metric which is diagonal in the orthogonal case we study.

As shown by Eisenhart in [26, 27] and by Kalnins and Miller in [38], the

separation of the Hamilton–Jacobi equation for the geodesic flow is related to the

existence of Killing tensors of order 2 (whose presence highlights the presence of

hidden symmetries). The reader is referred to [2] for the state of the art on this

point and to [3, 4, 5, 6, 38, 44, 49] for important contributions and reviews.

We also mentioned that there exists an intrinsic characterization of sepa-

rability for the Hamilton–Jacobi and the Helmholtz equations using symmetry

operators given in [40, Thm. 3].

We finally note that there exists a more general notion of separability called

the R-separation (see for instance [40, 4, 5]). Our notion of separability corresponds

to the case R = 1. The study of R-separability in our framework will be the object

of future work.
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§1.2. Description of the framework

We define a Stäckel matrix which is a 3× 3 matrix of the form

S =

s11(x1) s12(x1) s13(x1)

s21(x2) s22(x2) s23(x2)

s31(x3) s32(x3) s33(x3)

 ,

where the coefficients sij are smooth functions. Let M be endowed with the rie-

mannian metric

(1.4) g = H2
1 (dx1)2 +H2

2 (dx2)2 +H2
3 (dx3)2,

with

H2
i =

det(S)

si1
∀ i ∈ {1, 2, 3},

where si1 is the minor (with sign) associated with the coefficient si1 for all i ∈
{1, 2, 3}. The metric g is riemannian if and only if the determinant of the Stäckel

matrix S and the minors s11, s21 and s31 have the same sign. Moreover, if we

develop the determinant with respect to the first column, we note that if we assume

that s11, s21 and s31 are positive functions and if the minors s11, s21 and s31 have

the same sign, then the sign of the determinant of S is necessarily the same as the

sign of these minors.

We emphasize that the mapping S 7→ g is not one-to-one. Indeed, we describe

here two invariances of the metric which will be useful in solving our inverse

problem.

Proposition 1.5 (Invariances of the metric). Let S be a Stäckel matrix.

(1) Let G be a 2× 2 constant invertible matrix. The Stäckel matrix

Ŝ =

s11(x1) ŝ12(x1) ŝ13(x1)

s21(x2) ŝ22(x2) ŝ23(x2)

s31(x3) ŝ32(x3) ŝ33(x3)

 ,

satisfying (
si2 si3

)
=
(
ŝi2 ŝi3

)
G ∀ i ∈ {1, 2, 3},

leads to the same metric as S.

(2) The Stäckel matrix

Ŝ =

ŝ11(x1) s12(x1) s13(x1)

ŝ21(x2) s22(x2) s23(x2)

ŝ31(x3) s32(x3) s33(x3)

 ,
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where

(1.5)


ŝ11(x1) = s11(x1) + C1s12(x1) + C2s13(x1),

ŝ21(x2) = s21(x2) + C1s22(x2) + C2s23(x2),

ŝ31(x3) = s31(x3) + C1s32(x3) + C2s33(x3),

where C1 and C2 are real constants, leads to the same metric as S.

Since we are interested only in recovering the metric g of the Stäckel mani-

fold, we can choose any representative of the equivalence class described by the

invariances given in the previous proposition. This fact allows us to make some

assumptions on the Stäckel matrix we consider as we can see in the following

proposition.

Proposition 1.6. Let S be a Stäckel matrix with corresponding metric gS. There

exists a Stäckel matrix Ŝ with gŜ = gS and such that

(C)


ŝ12(x1) > 0 and ŝ13(x1) > 0 ∀x1,

ŝ22(x2) < 0 and ŝ23(x2) > 0 ∀x2,

ŝ32(x3) > 0 and ŝ33(x3) < 0 ∀x3,

lim
x1→0

s12(x1) = lim
x1→0

s13(x1) = 1.

Proof. See Appendix A.

Remark 1.1. Condition (C) has some interesting consequences which will be

useful in our later analysis.

(1) We note that under condition (C), s21 = s13s32 − s12s33 and s31 = s12s23 −
s13s22 are strictly positive. Thus, since the metric g has to be a riemannian

metric we must also have det(S) > 0 and s11 > 0.

(2) We note that, since s22, s33 < 0 and s23, s32 > 0,

s11 > 0 ⇔ s22s33 > s23s32 ⇔ s22

s23
<
s32

s33
.

We will use these facts later in the study of the coupled spectrum of the operators

H and L corresponding to the symmetry operators of ∆g introduced in Section 1.1.

From now on and without loss of generality, we assume that the Stäckel matrix

S we consider satisfies condition (C).

On the Stäckel manifold (M, g) we are interested in studying the Helmholtz

equation

−∆gf = −λ2f.
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As mentioned in Section 1.1 the Stäckel structure is not enough to obtain the

multiplicative separability of the Helmholtz equation. Indeed, we have to assume

that the Robertson condition is satisfied. We recall that this condition can be

defined as follows: for all i ∈ {1, 2, 3} there exists fi(x
i), a function of xi alone,

such that

(1.6)
s11s21s31

det(S)
= f1f2f3.

We can easily reformulate this condition into the form

(1.7)
det(S)2

H2
1H

2
2H

2
3

= f1f2f3.

We note that the functions fi, i ∈ {1, 2, 3} are defined up to positive multiplicative

constants whose product is equal to 1. In the following we will choose, without

loss of generality, these constants equal to 1.

§1.3. Asymptotically hyperbolic structure and examples

We say that a riemannian manifold (M, g) with boundary ∂M is asymptotically

hyperbolic if its sectional curvature tends to −1 at the boundary. In this paper, we

put an asymptotically hyperbolic structure at the two radial ends of our Stäckel

cylinders in the sense given by Isozaki and Kurylev in [35, Sect. 3.2].1 Now we give

the definition of this structure in our framework.

Definition 1.4 (Asymptotically hyperbolic Stäckel manifold). A Stäckel manifold

with two asymptotically hyperbolic ends having the topology of a toric cylinder is

a Stäckel manifold (M, g) whose Stäckel matrix S satisfies condition (C) with a

global chart

M = (0, A)x1 × T 2
x2,x3 ,

where x1 ∈ (0, A)x1 corresponds to a boundary defining function for the two

asymptotically hyperbolic ends {x1 = 0} and {x1 = A}, and (x2, x3) ∈ [0, B]x2 ×
[0, C]x3 are angular variables on the 2-torus T 2

x2,x3 , satisfying the following condi-

tions:

(1) The Stäckel metric g has the form (1.4).

(2) The coefficients sij , (i, j) ∈ {1, 2, 3}2 of the Stäckel matrix are smooth func-

tions.

(3) The coefficients of the Stäckel matrix satisfy

1Note that the asymptotically hyperbolic structure introduced in [35] is slightly more general
than the one used by Melrose, Guillarmou, Joshi and Sá Barreto in [32, 37, 52, 58].
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(a) H2
i > 0 for i ∈ {1, 2, 3} (riemannian metric);

(b) s2j(0) = s2j(B), s′2j(0) = s′2j(B), s3j(0) = s3j(C) and s′3j(0) = s′3j(C) for

j ∈ {1, 2, 3} (periodic conditions in angular variables);

(c) asymptotically hyperbolic ends at {x1 = 0} and {x1 = A}:

(i) at {x1 = 0} there exist ε0 > 0 and δ > 0 such that for all n ∈ N there

exists Cn > 0 such that ∀x1 ∈ (0, A− δ),

‖(x1∂x1)n((x1)2s11(x1)− 1)‖ ≤ Cn(1 + | log(x1)|)−min(n,1)−1−ε0 ,

‖(x1∂x1)n(s12(x1)− 1)‖ ≤ Cn(1 + | log(x1)|)−min(n,1)−1−ε0 ,

‖(x1∂x1)n(s13(x1)− 1)‖ ≤ Cn(1 + | log(x1)|)−min(n,1)−1−ε0 ;

(ii) at {x1 = A} there exist ε1 > 0 and δ > 0 such that for all n ∈ N there

exists Cn > 0 such that ∀x1 ∈ (δ, A),

‖((A− x1)∂x1)n((A− x1)2s11(x1)− 1)‖
≤ Cn(1 + | log(A− x1)|)−min(n,1)−1−ε1 ,

‖((A−x1)∂x1)n(s12(x1)−1)‖ ≤ Cn(1 + | log(A− x1)|)−min(n,1)−1−ε1 ,

‖((A−x1)∂x1)n(s13(x1)−1)‖ ≤ Cn(1 + | log(A− x1)|)−min(n,1)−1−ε1 .

Remark 1.2. We know that, thanks to condition (C), s12 and s13 tend to 1 when

x1 tends to 0. However, at the end {x1 = A}, we can just say that there exist two

positive constants α and β such that s12 and s13 tend to α and β respectively.

Thus, at the end {x1 = A}, we should assume that

(A− x1)2s11(x1) = [1]ε1 , s12(x1) = α[1]ε1 and s13(x1) = β[1]ε1 ,

where

[1]ε1 = 1 +O((1 + | log(A− x1)|)−1−ε1).

However, we can show (see the last point of Remark 1.4) that, if s22 or s33 are not

constant functions, then α = β = 1.

Let us explain the meaning of asymptotically hyperbolic ends for Stäckel

manifolds.2 Since the explanation is similar at the end {x1 = A} we study just the

end {x1 = 0}. We first write the metric (1.4) in a neighbourhood of {x1 = 0} in

the form

g =

3∑
i=1

H2
i (dxi)2 =

∑3
i=1(x1)2H2

i (dxi)2

(x1)2
.

2We refer to [35, Sect. 3, p.99–101] for a justification of the name “asymptotically hyperbolic”.
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By definition,

(1.8)



(x1)2H2
1 = (x1)2s11 + (x1)2

(
s12

s12

s11 + s13
s13

s21

)
,

(x1)2H2
2 = (x1)2s11

s11

s32s13−s33s12

+(x1)2
(
s12

s12

s32s13−s33s12 + s13
s13

s32s13−s33s12

)
,

(x1)2H2
3 = (x1)2s11

s11

s23s12−s22s13

+(x1)2
(

s12

s23s12−s22s13 + s13
s12

s13

s23s12−s22s13

)
.

As is shown in [51], we know that at the end {x1 = 0}, the sectional curvature of g

approaches −|dx1|h where h =
∑3
i=1(x1)2H2

i (dxi)2. In other words, the sectional

curvature with opposite sign at the end {x1 = 0} is equivalent to

(x1)2H2
1 = (x1)2s11 + (x1)2

(
s12

s12

s11
+ s13

s13

s21

)
.

Thus, since an asymptotically hyperbolic structure corresponds to a sectional cur-

vature that tends to −1, we want this last quantity to tend to 1. This is ensured

by the third assumption of Definition 1.4 which entails that (for n = 0)

(1.9) (x1)2s11(x1) = [1]ε0 , s12(x1) = [1]ε0 and s13(x1) = [1]ε0 ,

where

[1]ε0 = 1 +O((1 + | log(x1)|)−1−ε0).

We also note that under these conditions we can write, thanks to (1.8), the metric

g, in a neighbourhood of {x1 = 0}, in the form

(1.10) g =
(dx1)2 + dΩ2

T 2 + P (x1, x2, x3, dx1, dx2, dx3)

(x1)2
,

where

dΩ2
T 2 =

s11

s32 − s33
(dx2)2 +

s11

s23 − s22
(dx3)2

is a riemannian metric on the 2-torus T 2 (since s11, s21 and s31 have the same

sign) and P is a remainder term which is, roughly speaking, small as x1 → 0.

Hence, in the limit x1 → 0, we see that

g ∼
(dx1)2 + dΩ2

T 2

(x1)2
,

that is, g is a small perturbation of a hyperbolic-like metric.

Remark 1.3. (1) According to the previous definition, we also need conditions

on the derivatives of s1j , j ∈ {1, 2, 3} to be in the framework of [35].
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(2) By symmetry, we can do the same analysis at the end {x1 = A}.

From conditions (1.9) and the Robertson condition (1.6) we can obtain more

information on the functions f1, f2 and f3. We first remark that

f1f2f3 =
s11s21s31

det(S)
=
s11(s13s32 − s12s33)(s12s23 − s13s22)

s11s11 + s12s12 + s13s13
.

Thus, using conditions (1.9), we obtain

f1f2f3 ∼ (x1)2(s23 − s22)(s32 − s33) when x1 → 0.

Hence, we can say that there exist three positive constants c1, c2 and c3 such that

c1c2c3 = 1 and

(1.11) f1(x1) = c1(x1)2[1]ε0 , f2(x2) = c2(s23− s22) and f3(x3) = c3(s32− s33).

We thus note that the functions fi, i ∈ {1, 2, 3} are defined up to positive constants

c1, c2 and c3 whose product is equal to 1. However, as mentioned previously, we

can choose these constants to be equal to 1. Of course, the corresponding result

on f1 at the end {x1 = A} is also true.

Remark 1.4. The previous analysis allows us to simplify the Robertson condition

and thus the expression of the riemannian metric on the 2-torus.

(1) We first note that, if we make a Liouville change of variables in the ith variable,

(1.12) Xi =

∫ xi

0

√
gi(s) ds,

where gi is a positive function of the variable xi, the corresponding coefficient

H2
i of the metric is also divided by gi(x

i). The same modification of the metric

happens when we divide the ith line of the Stäckel matrix by the function gi.

Thus, proceeding to a Liouville change of variables is equivalent to dividing

the ith line of the Stäckel matrix by the corresponding function.

(2) We now remark that, if we divide the ith line of the Stäckel matrix by a

function gi of the variable xi, the quantity s11s21s31

det(S) is divided by gi. Thus, re-

calling the form of the Robertson condition (1.6), we can always assume that

f2 = f3 = 1 by choosing appropriate coordinates on T 2. However, we do not

divide the first line by f1 because it changes the description of the hyperbolic

structure (i.e., condition (1.9)). Nevertheless, there remains a degree of free-

dom on the first line. For instance, we can divide the first line by s12 or s13 and

we then obtain that the radial part depends only on the two scalar functions
s11
s13

and s12
s13

. As we will see at the end of Section 4, these quotients are exactly
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the scalar functions we recover in our study of the radial part. However, since

it does not simplify our study we do not use this reduction for the moment.

(3) From now on, f2 = 1 and f3 = 1 and we can thus rewrite (1.11) in the form

s23 − s22 = 1 and s32 − s33 = 1. Thanks to these equalities, we can also

write dΩ2
T 2 = s11((dx2)2 + (dx3)2) for the induced metric on the compactified

boundary {x1 = 0}.
(4) Generally, we know that s12 and s13 tend to 1 when x1 tends to 0 but we

do not know that this is also true when x1 tends to A. However, the Stäckel

structure allows us to show that the asymptotically hyperbolic structure has

to be the same at the two ends (under a mild additional assumption). Assume

that the behaviour of the first line at the two ends is the following: at the end

{x1 = 0},

(x1)2s11(x1) = [1]ε0 , s12(x1) = [1]ε0 and s13(x1) = [1]ε0 ,

and at the end {x1 = A},

(A− x1)2s11(x1) = [1]ε1 , s12(x1) = α[1]ε1 and s13(x1) = β[1]ε1 ,

where

[1]ε0 = 1+O((1+| log(x1)|)−1−ε0) and [1]ε1 = 1+O((1+| log(A−x1)|)−1−ε1)

and α and β are real positive constants. Using the Robertson condition at the

end {x1 = 0} and the end {x1 = A} we obtain

1 = f2 = s23 − s22 = αs23 − βs22 and 1 = f3 = s32 − s33 = βs32 − αs33.

Thus, using that s23 = 1 + s22 and s32 = 1 + s33, we obtain (α−β)s22 = 1−α
and (β − α)s33 = 1− β. Hence, if we assume that s22 or s33 is not a constant

function, we obtain α = β = 1.

Example 1.1. We give here three examples of Stäckel manifolds that illustrate

the diversity of the manifolds we consider.

(1) We can first choose the Stäckel matrix

S =

s11(x1) s12(x1) s13(x1)

a b c

d e f

 ,

where a, b, c, d, e and f are real constants. The metric g can thus be written

as g =
∑3
i=1H

2
i (dxi)2, where H2

i , for i ∈ {1, 2, 3} are functions of x1 alone.

Therefore, g trivially satisfies the Robertson condition and we can add the
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asymptotically hyperbolic structure given in Definition 1.4. We note that, as

explained in the previous remark, g depends only on two arbitrary functions

(after a Liouville change of variables in the variable x1). Moreover, we can show

that ∂x2 and ∂x3 are Killing vector fields and the existence of these Killing

vector fields reflects the symmetries with respect to the translation in x2 and

x3.

(2) We can also choose the Stäckel matrix

S =

s11(x1) s12(x1) as12(x1)

0 s22(x2) s23(x2)

0 s32(x3) s33(x3)

 ,

where a is a real constant. We can add the asymptotically hyperbolic structure

given in Definition 1.4 and the metric g can be written as

g = s11(dx1)2 +
s11

s12

(
s11

as32 − s33
(dx2)2 +

s11

s23 − as22
(dx3)2

)
.

Therefore, g satisfies the Robertson condition. We note that, after Liouville

transformations in the three variables, g depends on three arbitrary functions.

Moreover, thanks to the Liouville transformation X1 =
∫ x1

0

√
s11(s) ds, we

see that there exists a system of coordinates in which the metric g takes the

form g = (dx1)2 + f(x1)g0, where g0 is a metric on the 2-torus T 2. In other

words, g is a warped product. In particular, g is conformal to a metric that can

be written as the sum of one euclidean direction and a metric on a compact

manifold. We recall that in this case, under some additional assumptions on the

compact part, the uniqueness of the anisotropic Calderón problem on compact

manifolds with boundary has been proved in [24, 25].

(3) Finally, we can choose the Stäckel matrix

S =

 s1(x1)2 −s1(x1) 1

−s2(x2)2 s2(x2) −1

s3(x3)2 −s3(x3) 1

 .

This model was studied in [2, 10] and is of main interest in the field of geodesi-

cally equivalent riemannian manifolds, i.e., of manifolds that share the same

unparametrized geodesics (see [10]). The associated metric

g = (s1−s2)(s1−s3)(dx1)2 +(s2−s3)(s1−s2)(dx2)2 +(s3−s2)(s3−s1)(dx3)2

satisfies the Robertson condition and g has no a priori symmetry, is not a

warped product and depends on three arbitrary functions that satisfy s1 >
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s2 > s3. To form an asymptotically hyperbolic structure in the sense given

in Definition 1.4 we first multiply the second and the third columns of the

Stäckel matrix on the right by the invertible matrix

G =

(
−1−1

0 −1

)
,

since it does not change the metric. We thus obtain the new Stäckel matrix s1(x1)2 s1(x1) s1(x1)− 1

−s2(x2)2 −s2(x2)−s2(x1) + 1

s3(x3)2 s3(x3) s3(x1)− 1

 .

Next, we use the Liouville change of variables in the first variable X1 =∫ x1

0

√
s1(s) ds, and we obtain the Stäckel matrix

S =

 s1(X1) 1 1− 1
s1(X1)

−s2(x2)2 −s2(x2)−s2(x1) + 1

s3(x3)2 s3(x3) s3(x1)− 1

 .

Finally, to form the asymptotically hyperbolic structure on the first line, we

assume that

s1(X1) =
1

(X1)2
(1 +O((1 + | log(X1)|)−1−ε0)) when X1 → 0

and

s1(X1) =
1

(A1 −X1)2
(1 +O((1 + | log(A1 −X1)|)−1−ε1)) when X1 → A1,

where A1 =
∫ A

0

√
s1(s) ds.

§1.4. Scattering operator and statement of the main result

The construction of the scattering operator is given in [35, 36] for asymptotically

hyperbolic manifolds and it was used in [19] in the case of asymptotically hyper-

bolic Liouville surfaces. In our particular model, there are two ends and so we

introduce two cut-off functions χ0 and χ1, smooth on R, defined by

(1.13) χ0 = 1 on

(
0,
A

4

)
, χ1 = 1 on

(
3A

4
, A

)
, χ0 + χ1 = 1 on (0, A),

in order to separate these two ends. We consider the shifted stationary Helmholtz

equation

−(∆g + 1)f = λ2f,
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where λ2 6= 0 is a fixed energy, which is usually studied in the case of asymptotically

hyperbolic manifolds (see [11, 35, 36, 37]). Indeed, it is known (see [36]) that the

essential spectrum of −∆g is [1,+∞) and thus we shift the bottom of the essential

spectrum in order that it becomes 0. It is known that the operator −∆g − 1 has

no eigenvalues embedded in the essential spectrum [0,+∞) (see [13, 35, 36]). It is

shown in [36] that the solutions of the shifted stationary equation −(∆g + 1)f =

λ2f are unique when we impose on f some radiation conditions at infinities. To

be precise, as in [19], we define some Besov spaces that encode these radiation

conditions at infinities as follows. To motivate our definitions, we first recall that

the compactified boundaries {x1 = 0} and {x1 = A} are endowed with the induced

metric

dΩ2
T 2 = s11((dx2)2 + (dx3)2).

Definition 1.5. Let HT 2 = L2(T 2, s11 dx2 dx3). Let the intervals (0,+∞) and

(−∞, A) be decomposed as

(0,+∞) = ∪k∈ZIk and (−∞, A) = ∪k∈ZJk,

where

Ik =


(exp(ek−1), exp(ek)] if k ≥ 1,

(e−1, e] if k = 0,

(exp(−e|k|), exp(−e|k|−1)] if k ≤ −1,

and

Jk =


(A− exp(ek), A− exp(ek−1)] if k ≥ 1,

(A− e,A− e−1] if k = 0,

(A− exp(−e|k|−1), A− exp(−e|k|)] if k ≤ −1.

We define the Besov spaces B0 = B0(HT 2) and B1 = B1(HT 2) to be the Banach

spaces of HT 2-valued functions on (0,+∞) and (−∞, A) satisfying, respectively,

‖f‖B0 =
∑
k∈Z

e
|k|
2

(∫
Ik

‖f(x)‖2HT 2

dx

x2

) 1
2

<∞

and

‖f‖B1 =
∑
k∈Z

e
|k|
2

(∫
Jk

‖f(x)‖2HT 2

dx

(A− x)2

) 1
2

<∞.

The dual spaces B?0 and B?1 are then identified with the spaces equipped with the

norms

‖f‖B?0 =

(
sup
R>e

1

log(R)

∫ R

1
R

‖f(x)‖2HT 2

dx

x2

) 1
2

<∞
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and

‖f‖B?1 =

(
sup
R>e

1

log(R)

∫ A− 1
R

A−R
‖f(x)‖2HT 2

dx

(A− x)2

) 1
2

<∞.

Remark 1.5. As is shown in [35], we can compare the Besov spaces B0 and B?0
to weighted L2-spaces. Indeed, if we define L2,s

0 ((0,+∞),HT 2) for s ∈ R by

‖f‖s =

(∫ +∞

0

(1 + | log(x)|)2s‖f(x)‖2HT 2

dx

x2

) 1
2

<∞,

then for s > 1
2 ,

L2,s
0 ⊂ B0 ⊂ L

2, 12
0 ⊂ L2

0 ⊂ L
2,− 1

2
0 ⊂ B?0 ⊂ L

2,−s
0 .

There is a similar result for the Besov spaces B1 and B?1 .

Definition 1.6. We define the Besov spaces B and B? as the Banach spaces of

HT 2 -valued functions on (0, A) with norms

‖f‖B = ‖χ0f‖B0
+ ‖χ1f‖B1

and ‖f‖B? = ‖χ0f‖B?0 + ‖χ1f‖B?1 .

We also define the Hilbert space of scattering data:

H∞ = HT 2 ⊗ C2 ' HT 2 ⊕HT 2 .

In [35, Thm. 3.15] the following theorem is proved.

Theorem 1.7 (Stationary construction of the scattering matrix).

(1) For any solution f ∈ B? of the shifted stationary Helmholtz equation at nonzero

energy λ2,

(1.14) − (∆g + 1)f = λ2f,

there exists a unique ψ(±) = (ψ
(±)
0 , ψ

(±)
1 ) ∈ H∞ such that

f ' ω−(λ)
(
χ0 (x1)

1
2 +iλψ

(−)
0 + χ1 (A− x1)

1
2 +iλψ

(−)
1

)
− ω+(λ)

(
χ0 (x1)

1
2−iλψ

(+)
0 + χ1 (A− x1)

1
2−iλψ

(+)
1

)
,

(1.15)

where

(1.16) ω±(λ) =
π

(2λ sinh(πλ))
1
2 Γ(1∓ iλ)

.

(2) For any ψ(−) ∈ H∞, there exists a unique ψ(+) ∈ H∞ and f ∈ B? sat-

isfying (1.14) for which the decomposition (1.15) above holds. This defines
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uniquely the scattering operator Sg(λ) as the H∞-valued operator such that

for all ψ(−) ∈ H∞,

(1.17) ψ(+) = Sg(λ)ψ(−).

(3) The scattering operator Sg(λ) is unitary on H∞.

Note that in our model with two asymptotically hyperbolic ends the scattering

operator has the structure of a 2 × 2 matrix whose components are HT 2-valued

operators. To be precise, we write

Sg(λ) =

(
L(λ) TR(λ)

TL(λ) R(λ)

)
,

where TL(λ) and TR(λ) are the transmission operators and L(λ) and R(λ) are the

reflection operators from the right and from the left respectively. The transmission

operators measure what is transmitted from one end to the other end in a scattering

experiment, while the reflection operators measure the part of a signal sent from

one end that is reflected to itself.

As mentioned in the introduction, the main result of this paper is the follow-

ing:

Theorem 1.8. Let (M, g) and (M, g̃), whereM = (0, A)x1×T 2
x2,x3 , be two three-

dimensional Stäckel toric cylinders, i.e., endowed with the metrics g and g̃ defined

in (1.4) respectively. We assume that these manifolds satisfy the Robertson con-

dition and are endowed with asymptotically hyperbolic structures at the two ends

{x1 = 0} and {x1 = A} defined as in Definition 1.4. We denote by Sg(λ) and

Sg̃(λ) the corresponding scattering operators at a fixed energy λ 6= 0 as defined

in Theorem 1.7. Assume that Sg(λ) = Sg̃(λ). Then, there exists a diffeomorphism

Ψ :M→M, equal to the identity at the compactified ends {x1 = 0} and {x1 = A},
such that g̃ is the pull back of g by Ψ, i.e., g̃ = Ψ?g.

Remark 1.6. In fact, the proof of Theorem 1.8 will show that it suffices to know

one of the reflection operators at a fixed energy λ 6= 0, i.e., it is enough to assume

that Rg(λ) = Rg̃(λ) or Lg(λ) = Lg̃(λ) to conclude to the uniqueness of g modulo

isometries.

For general asymptotically hyperbolic manifolds (AHMs in short) with no par-

ticular (hidden) symmetry, direct and inverse scattering results for scalar waves

have been proved by Joshi and Sá Barreto in [37], by Sá Barreto in [58], by Guil-

larmou and Sá Barreto in [32, 31] and by Isozaki and Kurylev in [35]. In [37], it

is shown that the asymptotics of the metric of an AHM are uniquely determined
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(up to isometries) by the scattering matrix Sg(λ) at a fixed energy λ off a discrete

subset of R. In [58], it is proved that the metric of an AHM is uniquely determined

(up to isometries) by the scattering matrix Sg(λ) for every λ ∈ R off an exceptional

subset. Similar results have been obtained recently in [35] for even more general

classes of AHMs. In [32], it is proved that, for connected conformally compact Ein-

stein manifolds of even dimension n+ 1, the scattering matrix at energy n on an

open subset of its conformal boundary determines the manifold up to isometries.

In [31], the authors study direct and inverse scattering problems for asymptoti-

cally complex hyperbolic manifolds and show that the topology and the metric of

such a manifold are determined (up to invariants) by the scattering matrix at all

energies. We also mention the work [50] of Marazzi in which the author studies

inverse scattering for the stationary Schrödinger equation with smooth potential

not vanishing at the boundary on a conformally compact manifold with sectional

curvature −α2 at the boundary. The author then shows that the scattering matrix

at two fixed energies λ1 and λ2, λ1 6= λ2 in a suitable subset of C, determines

α and the Taylor series of both the potential and the metric at the boundary.

Finally, we also mention [12] where related inverse problems — inverse resonance

problems — are studied in certain subclasses of AHMs.

This work must also be put into perspective with the anisotropic Calderón

problem on compact manifolds with boundary. We recall here the definition of

this problem. Let (M, g) be a riemannian compact manifold with smooth bound-

ary ∂M. We denote by −∆g the Laplace–Beltrami operator on (M, g) and we

recall that this operator with Dirichlet boundary conditions is self-adjoint on

L2(M, dVolg) and has a pure point spectrum {λ2
j}j≥1. We are interested in the

solutions u of

(1.18)

{
−∆gu = λ2u on M,

u = ψ on ∂M.

It is known (see for instance [59]) that for any ψ ∈ H 1
2 (∂M) there exists a unique

weak solution u ∈ H1(M) of (1.18) when λ2 does not belong to the Dirichlet

spectrum {λ2
i } of −∆g. This allows us to define the Dirichlet-to-Neumann (DN)

map as the operator Λg(λ
2) from H

1
2 (∂M) to H−

1
2 (∂M) defined for all ψ ∈

H
1
2 (∂M) by

Λg(λ
2)(ψ) = (∂νu)|∂M,

where u is the unique solution of (1.18) and (∂νu)|∂M is its normal derivative

with respect to the unit outer normal vector ν on ∂M. The anisotropic Calderón

problem can be stated as follows:
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Does knowledge of the DN map Λg(λ
2) at a frequency λ2 determine

uniquely the metric g?

We refer for instance to [24, 25, 32, 31, 33, 42, 46, 47, 48] for important contribu-

tions to this subject and to the surveys [34, 43, 59, 62] for the current state of the

art. One of the aims of this paper is thus to give an example of manifolds on which

we can solve the inverse scattering problem at fixed energy but which do not have

one of the particular structures we have just described for which the uniqueness for

the anisotropic Calderón problem on compact manifolds with boundary is known

(see Example 1.1(3)).

§1.5. Overview of the proof

The proof of Theorem 1.8 is divided into four steps which we describe here.

Step 1 (Section 2): The first step of the proof consists in solving the direct prob-

lem. This will be done in Section 2. In this section we first use the structure of

Stäckel manifold satisfying the Robertson condition to proceed to the separation

of variables for the Helmholtz equation. We obtain that the shifted Helmholtz

equation

−(∆g + 1)f = λ2f

can be rewritten as

A1f + s12Lf + s13Hf = 0,

where A1 is a differential operator in the variable x1 alone and L and H are com-

muting, elliptic, semibounded self-adjoint operators on L2(T 2, s11 dx2 dx3) with

discrete spectra. We consider generalized harmonics {Ym}m≥1 which form a Hilber-

tian basis of L2(T 2, s11 dx2 dx3) associated with the coupled spectrum (µ2
m, ν

2
m) of

(H,L). We decompose the solutions f =
∑
m≥1 um(x1)Ym(x2, x3) of the Helmholtz

equation on the common basis of harmonics {Ym}m≥1 and we then conclude that

the Helmholtz equation separates into a system of three ordinary differential equa-

tions:
−u′′m(x1) + 1

2 (log(f1)(x1))′u′m(x1) + [−(λ2 + 1)s11(x1) + µ2
ms12(x1)

+ν2
ms13(x1)]um(x1) = 0,

−v′′m(x2) + [−(λ2 + 1)s21(x2) + µ2
ms22(x2) + ν2

ms23(x2)]vm(x2) = 0,

−w′′m(x3) + [−(λ2 + 1)s31(x3) + µ2
ms32(x3) + ν2

ms33(x3)]wm(x3) = 0,

where f1 is the function appearing in the Robertson condition and Ym(x2, x3) =

vm(x2)wm(x3). In this system of ODEs there is one ODE in the radial variable

x1 and two ODEs in the angular variables x2 and x3. We emphasize that the

angular momenta µ2
m and ν2

m, which are the separation constants, correspond also
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to the coupled spectrum of the two angular operators H and L. The fact that the

angular momenta (µ2
m, ν

2
m) are coupled has an important consequence in the use

of the complexification of the angular momentum method. Indeed, we cannot work

separately with one angular momentum and we thus have to use a multivariable

version of this method.

Next, we define the characteristic and Weyl–Titchmarsh functions following

the construction given in [19, 29, 45]. We briefly recall here the definition of these

objects and the reason why we use them. Using a Liouville change of variables

X1 = g(x1), X1 ∈ (0, A1) where A1 =
∫ A

0
g(x1)dx1, we can write the radial

equation as

(1.19) − Ü + qν2
m
U = −µ2

mU,

where −µ2
m is now the spectral parameter and qν2

m
satisfies at the end {X1 = 0},

qν2
m

(X1, λ) = −
λ2 + 1

4

(X1)2
+ q0,ν2

m
(X1, λ),

where X1q0,ν2
m

(X1, λ) is integrable at the end {X1 = 0} (the potential qν2
m

also has

the same property at the other end). We are thus in the framework of [29].. We can

then define the characteristic and Weyl–Titchmarsh functions associated with this

singular non-self-adjoint Schrödinger equation. To do this, we follow the method

given in [19]. We thus define two fundamental systems of solutions {S10, S20} and

{S11, S21} having the following properties:

(1) When X1 → 0,

S10(X1, µ2, ν2) ∼ (X1)
1
2−iλ and S20(X1, µ2, ν2) ∼ 1

2iλ
(X1)

1
2 +iλ

and when X1 → A1,

S11(X1, µ2, ν2) ∼ (A1−X1)
1
2−iλ and S21(X1, µ2, ν2) ∼ − 1

2iλ
(A1−X1)

1
2 +iλ.

(2) W (S1n, S2n) = 1 for n ∈ {0, 1}.
(3) For all X1 ∈ (0, A1), µ 7→ Sjn(X1, µ2, ν2) is an entire function for j ∈ {1, 2}

and n ∈ {0, 1}.

We add some singular separated boundary conditions at the two ends (see (2.24))

and we consider the new radial equation as an eigenvalue problem. Finally, we

define the two characteristic functions of this radial equation as Wronskians of

functions of the fundamental systems of solutions

∆qν2m
(µ2
m) = W (S11, S10) and δqν2m

(µ2
m) = W (S11, S20)
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and we also define the Weyl–Titchmarsh function by

(1.20) Mqν2m
(µ2
m) = −

δqν2m
(µ2
m)

∆qν2m
(µ2
m)
.

The above definition generalizes the usual definition of classical Weyl–Titchmarsh

functions for regular Sturm–Liouville differential operators. We refer to [45] for

the theory of self-adjoint singular Sturm–Liouville operators and the definition

and main properties of Weyl–Titchmarsh functions. In our case the boundary

conditions make the Sturm–Liouville equation non-self-adjoint. The generalized

Weyl–Titchmarsh function can nevertheless be defined by the same recipe as shown

in [19, 29] and recalled above.

We note that the characteristic and generalized Weyl–Titchmarsh functions

obtained for each one-dimensional equation (1.19) can be summed over the span

of each of the harmonics Ym, m ≥ 1 in order to define operators from L2(T 2,

s11 dx2 dx3) onto itself. To be precise, recalling that

L2(T 2, s11 dx2 dx3) =
⊕
m≥1

〈Ym〉,

we have the following definition:

Definition 1.7. Let λ 6= 0 be a fixed energy. The characteristic operator ∆(λ)

and the generalized Weyl–Titchmarsh operator M(λ) are defined as operators from

L2(T 2, s11 dx2 dx3) onto itself that are diagonalizable on the Hilbert basis of eigen-

functions {Ym}m≥1 associated with the eigenvalues ∆qν2m
(µ2
m) and Mqν2m

(µ2
m).

More precisely, for all v ∈ L2(T 2, s11 dx2 dx3), v can be decomposed as

v =
∑
m≥1

vmYm, vm ∈ C

and we have

∆(λ)v =
∑
m≥1

∆qν2m
(µ2
m)vmYm and M(λ)v =

∑
m≥1

Mqν2m
(µ2
m)vmYm.

We emphasize that the separation of the variables allows us to “diagonalize”

the reflection and the transmission operators into a countable family of multiplica-

tion operators by numbers Rg(λ, µ
2
m, ν

2
m), Lg(λ, µ

2
m, ν

2
m) and Tg(λ, µ

2
m, ν

2
m), called

reflection and transmission coefficients respectively. We will show (see equations

(2.34)–(2.36)) that the characteristic and Weyl–Titchmarsh functions are noth-

ing but the transmission and the reflection coefficients respectively. The aim of

this identification is to use the Börg–Marchenko theorem from the equality of the

scattering matrix at fixed energy.
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Step 2 (Section 3): The second step of the proof consists in solving the inverse

problem for the angular part of the Stäckel matrix. We begin our proof with a

reduction of our problem. Indeed, our main assumption is

Sg(λ) = Sg̃(λ)

and these operators act on L2(T 2, s11 dx2 dx3) and L2(T 2, s̃11 dx2 dx3) respec-

tively. To compare these objects we thus must have

s11 = s̃11.

Using the invariance of the metric g under the choice of the Stäckel matrix S

mentioned in the introduction and the particular structure of the operators H and

L, we then prove that (
s21 s22 s23

s31 s32 s33

)
=

(
s̃21 s̃22 s̃23

s̃31 s̃32 s̃33

)
.

We conclude Section 3 by noticing that, thanks to these results, H = H̃ and L = L̃.

As a consequence, since the generalized harmonics depend only on H and L, we

can choose Ym = Ỹm and (
µ2
m

ν2
m

)
=

(
µ̃2
m

ν̃2
m

)
∀m ≥ 1.

Step 3 (Section 4): In the third step, we solve in Section 4 the inverse problem for

the radial part of the Stäckel matrix. The main tool of this section is a multivari-

able version of the complex angular momentum method. The main assumption of

Theorem 1.8 implies

M(µ2
m, ν

2
m) = M̃(µ2

m, ν
2
m) ∀m ≥ 1

and as explained in the introduction we deduce from this equality, thanks to this

method, that

Mqν2
(µ2) = Mq̃ν2

(µ2) ∀ (µ, ν) ∈ C2 \ P,

where P is the set of points (µ, ν) ∈ C2 such that the Weyl–Titchmarsh functions

do not exist, i.e., such that the denominator vanishes.

Step 4 (Section 5): We now conclude the proof. We use the celebrated Börg–

Marchenko theorem (see [19, 29]) to deduce from the previous equality that

qν2
m

= q̃ν2
m
∀m ≥ 1.
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Since this equality is true for all m ≥ 1, we can “decouple” the potential

qν2
m

= −(λ2 + 1)
s11

s12
+ ν2

m

s13

s12
+

1

16

(
˙(

log

(
f1

s12

)))2

− 1

4

¨(
log

(
f1

s12

))
and we thus obtain the uniqueness of the ratio s13

s12
and one ODE on the ratios f1

s12
,

f̃1
s̃12

and s11
s12

, s̃11
s̃12

. Finally, using the Robertson condition and the uniqueness of a

Cauchy problem, we conclude that

s11

s12
=
s̃11

s̃12
and

s11

s13
=
s̃11

s̃13
.

This finishes the proof of Step 4 and together with the previous steps, the proof

of Theorem 1.8.

This paper is organized as follows. In Section 2 we solve the direct problem.

In this section we study the separation of variables for the Helmholtz equation,

we define the characteristic and Weyl–Titchmarsh functions for different choices

of spectral parameters and we make the link between these different functions

and the scattering coefficients. In Section 3 we solve the inverse problem for the

angular part of the Stäckel matrix. In Section 4 we solve the inverse problem for

the radial part of the Stäckel matrix using a multivariable version of the complex

angular momentum method. Finally, in Section 5, we finish the proof of our main

Theorem 1.8.

§2. The direct problem

In this section we will study the direct scattering problem for the shifted Helmholtz

equation (2.1). We first study the separation of the Helmholtz equation. Second, we

define several characteristic and generalized Weyl–Titchmarsh functions associated

with unidimensional Schrödinger equations in the radial variable corresponding

to different choices of spectral parameters and we study the link between these

functions and the scattering operator associated with the Helmholtz equation.

§2.1. Separation of variables for the Helmholtz equation

We consider (see [11, 35, 36, 37]) the shifted stationary Helmholtz equation

(2.1) − (∆g + 1)f = λ2f,

where λ 6= 0 is a fixed energy, which is usually studied in the case of asymptotically

hyperbolic manifolds (see [11, 35, 36, 37]). Indeed, it is known (see [36]) that the

essential spectrum of −∆g is [1,+∞) and thus we shift the bottom of the essential

spectrum to 0. It is known that the operator −∆g−1 has no eigenvalues embedded
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in the essential spectrum [0,+∞) (see [13, 35, 36]). We know that there exists a

coordinate system separable for the Helmholtz equation (2.1) if and only if the

metric (1.4) is in Stäckel form and furthermore if the Robertson condition (1.6) is

satisfied. We emphasize that, contrary to the case n = 2 studied in [19], we really

need the Robertson condition in the case n = 3.

Lemma 2.1. The Helmholtz equation (2.1) can be rewritten as

(2.2) A1f + s12Lf + s13Hf = 0,

where

(2.3) Ai = −∂2
i +

1

2
∂i (log(fi)) ∂i − (λ2 + 1)si1 for i ∈ {1, 2, 3}

and

(2.4) L = −s33

s11
A2 +

s23

s11
A3 and H =

s32

s11
A2 −

s22

s11
A3.

Proof. Letting |g| be the determinant of the metric and (gij) the inverse of the

metric (gij), g
ii = 1

H2
i

and
√
|g| = H1H2H3. Using the Robertson condition (1.7),

we easily show that

(2.5) ∆g =
1√
|g|
∂i

(√
|g|gij∂j

)
=

3∑
i=1

1

H2
i

(
∂2
i −

1

2
∂i (log(fi)) ∂i

)
.

Hence, from (2.5) we immediately obtain that the Helmholtz equation (2.1) can

be written as

(2.6)

3∑
i=1

1

H2
i

A0
i f = (λ2 + 1)f,

where

(2.7) A0
i = −∂2

i +
1

2
∂i (log(fi)) ∂i for i ∈ {1, 2, 3}.

If we multiply equation (2.6) by H2
1 and if we use that

H2
1 = s11 + s21

s21

s11
+ s31

s31

s11
,

H2
1

H2
2

=
s21

s11
and

H2
1

H2
3

=
s31

s11
,

we obtain

(2.8) A1f +
s21

s11
A2f +

s31

s11
A3f = 0.

Finally, using the equalities

s21

s11
= −s12

s33

s11
+ s13

s32

s11
and

s31

s11
= s12

s23

s11
− s13

s22

s11
,

from (2.8) we obtain equation (2.2).
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Remark 2.1. (1) We note that the Robertson condition is equivalent to the ex-

istence of three functions fi = fi(x
i) such that

∂i log

(
H4
i

H2
1H

2
2H

2
3

)
= ∂i log(fi) ∀ i ∈ {1, 2, 3}.

This equality is interesting since it gives us an expression of the Robertson

condition directly in terms of the coefficients H2
i of the metric g.

(2) Since we assumed that f2 and f3 are constant functions equal to 1 (see Re-

mark 1.4) we know that

A0
2 = −∂2

2 and A0
3 = −∂2

3 .

Lemma 2.2. The operators L and H are self-adjoint, semibounded and elliptic

on L2(T 2, s11 dx2 dx3). Moreover, they commute.

Remark 2.2. Since the operators L and H commute, there exists a common

Hilbertian basis of eigenfunctions {Ym}m≥1 of H and L, i.e.,

(2.9) HYm = µ2
mYm and LYm = ν2

mYm, ∀m ≥ 1,

and

L2(T 2, s11dx2dx3) =
⊕
m≥1

〈Ym〉.

Here, we arrange the coupled spectrum (µ2
m, ν

2
m) such that

(1) counting multiplicity,

µ2
1 < µ2

2 ≤ µ2
3 ≤ µ2

4 ≤ · · · ≤ µ2
n ≤ · · · → ∞;

(2) starting from n = 1 and by induction on n, for each n ≥ 1 such that µ2
n has

multiplicity k, i.e., µ2
n = µ2

n+1 = · · · = µ2
n+k−1, we order the corresponding

(ν2
j )n≤j≤n+k−1 in increasing order, i.e., counting multiplicity,

ν2
n ≤ ν2

n+1 ≤ · · · ≤ ν2
n+k−1.

The toric cylinder topology implies that the boundary conditions are compat-

ible with the decomposition on the common harmonics {Ym}m≥1 of H and L. We

thus look for solutions of (2.1) of the form

(2.10) f(x1, x2, x3) =
∑
m≥1

um(x1)Ym(x2, x3).

We use (2.10) in (2.2) and we obtain that um satisfies, for all m ≥ 1,

− u′′(x1) +
1

2
(log(f1)(x1))′u′(x1)

+
[
−(λ2 + 1)s11(x1) + µ2

ms12(x1) + ν2
ms13(x1)

]
u(x1) = 0.



270 D. Gobin

Finally, inverting (2.9), we obtain

(2.11)

{
A2Ym = −(s22µ

2
m + s23ν

2
m)Ym,

A3Ym = −(s32µ
2
m + s33ν

2
m)Ym.

Remark 2.3. The harmonics Ym(x2, x3), m ≥ 1 can be written as a product of

a function of the variable x2 and a function of the variable x3. Let (f2, g2) and

(f3, g3) be periodic fundamental systems of solutions associated with the operators

A2 and A3 respectively. We can thus write Ym(x2, x3) as

Ym(x2, x3) = a(x3)f2(x2) + b(x3)g2(x2).

We then apply the operator A3 on this equality and we obtain

A3(Ym)(x2, x3) = A3(a)(x3)f2(x2) +A3(b)(x3)g2(x2).

Thus, using that A3Ym = −(s32µ
2
m + s33ν

2
m)Ym and the fact that (f2, g2) is a

fundamental system of solutions we obtain

Ym(x2, x3) = af2(x2)f3(x3) + bf2(x2)g3(x3) + cg2(x2)f3(x3) + dg2(x2)g3(x3),

where a, b, c and d are real constants. Thus, for each coupled eigenvalue (µ2
m, ν

2
m),

m ≥ 1, the corresponding eigenspace for the couple of operators (H,L) is at most

of dimension 4. However, the diagonalization of the scattering matrix Sg(λ) does

not depend on the choice of the harmonics in each eigenspace associated with a

coupled eigenvalue (µ2
m, ν

2
m) and we can thus choose as harmonics Ym = f2f3,

Ym = f2g3, Ym = g2f3 and Ym = g2g3. We can then assume that Ym(x2, x3) is a

product of a function of the variable x2 and a function of the variable x3.

Lemma 2.3. Any solution u ∈ H1(M) of −(∆g + 1)u = λ2u can be written as

u =
∑
m≥1

um(x1)Ym(x2, x3),

where Ym(x2, x3) = vm(x2)wm(x3) and
−u′′m(x1) + 1

2 (log(f1)(x1))′u′m(x1) + [−(λ2 + 1)s11(x1) + µ2
ms12(x1)

+ν2
ms13(x1)]um(x1) = 0,

−v′′m(x2) + [−(λ2 + 1)s21(x2) + µ2
ms22(x2) + ν2

ms23(x2)]vm(x2) = 0,

−w′′m(x3) + [−(λ2 + 1)s31(x3) + µ2
ms32(x3) + ν2

ms33(x3)]wm(x3) = 0.

From Lemma 2.3 we can deduce more information on the eigenvalues (µ2
m)m≥1

and (ν2
m)m≥1. Indeed, we can prove the following lemma which will be useful in

the sequel.
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Lemma 2.4. There exist real constants C1, C2, D1 and D2 such that for all

m ≥ 1,

C1µ
2
m +D1 ≤ ν2

m ≤ C2µ
2
m +D2,

where

C1 = min

(
−s32

s33

)
> 0 and C2 = −min

(
s22

s23

)
> 0.

Proof. We first recall the angular equations of Lemma 2.3:

(2.12) − v′′(x2) + [−(λ2 + 1)s21(x2) + µ2
ms22(x2) + ν2

ms23(x2)]v(x2) = 0

and

(2.13) − w′′(x3) + [−(λ2 + 1)s31(x3) + µ2
ms32(x3) + ν2

ms33(x3)]w(x3) = 0.

We use a Liouville change of variables in (2.12) to transform this equation into

a Schrödinger equation in which −ν2
m is the spectral parameter. Thus, we define

the diffeomorphism X2 = g2(x2) =
∫ x2

0

√
s23(t) dt and we define v(X2, µ2

m, ν
2
m) =

v(h2(X2), µ2
m, ν

2
m), where h2 = g−1

2 is the inverse function of g2. We also introduce

a weight function to cancel the first-order term. We thus define

V (X2, µ2
m, ν

2
m) =

(
1

s23(h2(X2))

)− 1
4

v(h2(X2), µ2
m, ν

2
m).

After calculation, we obtain that V (X2, µ2
m, ν

2
m) satisfies, in the variable X2, the

Schrödinger equation

(2.14) − V̈ (X2, µ2
m, ν

2
m) + pµ2

m,2
(X2, λ)V (X2, µ2

m, ν
2
m) = −ν2

mV (X2, µ2
m, ν

2
m),

where

(2.15) pµ2
m,2

(X2, λ) = −(λ2 + 1)
s21(X2)

s23(X2)
+ µ2

m

s22(X2)

s23(X2)
,

with s21(X2) := s21(h2(X2)), s22(X2) := s22(h2(X2)) and s23(X2) := s23(h2(X2)).

We follow the same procedure for (2.13) putting

X3 = g3(x3) =

∫ x3

0

√
−s33(t) dt

and W (X3, µ2
m, ν

2
m) =

(
1

−s33(h3(X3))

)− 1
4

w(h3(X3), µ2
m, ν

2
m)

and we obtain that W (X3) satisfies, in the variable X3, the Schrödinger equation

(2.16) − Ẅ (X3, µ2
m, ν

2
m) + pµ2

m,3
(X3, λ)W (X3, µ2

m, ν
2
m) = ν2

mW (X3, µ2
m, ν

2
m),
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where

(2.17) pµ2
m,3

(X3, λ) = (λ2 + 1)
s31(X3)

s33(X3)
− µ2

m

s32(X3)

s33(X3)
,

with s31(X3) := s31(h3(X3)), s32(X3) := s32(h3(X3)) and s33(X3) := s33(h3(X3)).

Assume now that µ2
m is fixed and look at (2.14) and (2.16) as eigenvalue problems

in ±ν2
m. We suppose that µ2

m has multiplicity k ≥ 1 and we use the notation given

in Remark 2.2, i.e., that we want to show that

C1µ
2
m +D2 ≤ ν2

j ≤ C2µ
2
m +D2 ∀m ≤ j ≤ m+ k − 1,

where ν2
j ≤ ν2

j+1 for all j ∈ {m, . . . ,m+ k − 1}. We know that the spectra of the

operators

P2 = − d2

(dX2)2
+ pµ2

m,2
and P3 = − d2

(dX3)2
+ pµ2

m,3

are included in [min(pµ2
m,2

),+∞) and [min(pµ2
m,3

),+∞) respectively. The first con-

dition gives us that

−ν2
j ≥ −C2µ

2
m−D2, where −C2 = min

(
s22

s23

)
and −D2 = (λ2+1) min

(
−s21

s23

)
and the second one tells us that

ν2
j ≥ C1µ

2
m +D1, where C1 = min

(
−s32

s33

)
and D1 = (λ2 + 1) min

(
s31

s33

)
.

Since (ν2
j )m≤j≤m+k−1 is the set of eigenvalues of (2.12) and (2.13), for a fixed µ2

m

of multiplicity k we obtain from these estimates that

C1µ
2
m +D1 ≤ ν2

j ≤ C2µ
2
m +D2 ∀m ≤ j ≤ m+ k − 1.

In other words, thanks to our numbering of the coupled spectrum explained in

Remark 2.2,

C1µ
2
m +D1 ≤ ν2

m ≤ C2µ
2
m +D2 ∀m ≥ 1.

Remark 2.4. (1) Using the condition given in Remark 1.1, C1 = min
(
− s32

s33

)
<

−min
(
s22
s23

)
= C2.

(2) The previous lemma says that the coupled spectrum {(µ2
m, ν

2
m), m ≥ 1} lives

in a cone contained in the quadrant (R+)2 (up to a possible shift due to the

presence of the constants D1 and D2). Moreover, since the multiplicity of µ2
m is

finite for all m ≥ 1, there is a finite number of points of the coupled spectrum

on each vertical line. We can summarize these facts with the generic picture

in Figure 1.
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Figure 1. Coupled spectrum.

(3) The Weyl law (see [41, Thm. 2.21]) which says (in two dimensions) that there

exists a constant C such that the eigenvalues are equivalent for large m to

Cm, is satisfied by the eigenvalues {µ2
m}m and {ν2

m}m if we arrange them in

increasing order. However, we labelled the coupled spectrum in such a way

that the order for the (ν2
m) is not necessarily increasing.

(4) An eigenvalue of the coupled spectrum (µ2
m, ν

2
m) has at most multiplicity 4, as

was mentioned in Remark 2.3.

Example 2.1. We can illustrate the notion of coupled spectrum on the examples

given in Example 1.1.

(1) We define the Stäckel matrix

S1 =

s11(x1) s12(x1) s13(x1)

0 1 0

0 0 1

 .

In this case H = −∂2
3 and L = −∂2

2 and we note that these operators can

be obtained by derivation of the Killing vector fields ∂2 and ∂3. The coupled

spectrum of these operators is {(m2, n2), (m,n) ∈ Z2} and we can decompose

the space L2(T 2, s11 dx2 dx3) on the basis of generalized harmonics Ymn =

eimx
2+inx3

. We note that this coupled spectrum is not included in a cone

strictly contained in (R+)2 but there is no contradiction with Lemma 2.4

since the Stäckel matrix S does not satisfy condition (C). However, we can

use the invariances of Proposition 1.5 to come down to our framework (this

transformation modifies the coupled spectrum). Indeed, we can obtain the

Stäckel matrix

S2

s11(x1) s12(x1) s13(x1)

a b c

d e f

 ,
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where s11, s12 and s13 are smooth functions of x1 and a, b, c, d, e and f are

real constants such that b, f < 0 and c, e > 0. In this case we have

H = −s32

s11
∂2

2 +
s22

s11
∂2

3 = − e

bf − ce
∂2

2 +
b

bf − ce
∂2

3

and

L =
s33

s11
∂2

2 −
s23

s11
∂2

3 =
f

bf − ce
∂2

2 −
c

bf − ce
∂2

3 .

Thus, the coupled spectrum of the operators H and L can be computed using

the same procedure as the one used for S1.

We emphasize that in the case of the Stäckel matrix S1 the coupled spectrum

is in fact uncoupled. We can thus freeze one angular momentum and let the

other one move on the integers. After the use of the invariance to come down

to our framework these vertical or horizontal half-lines are transformed into

half-lines contained in our cone of (R+)2. This allows us to use the usual

complexification of the angular momentum method in one dimension on a

half-line contained in our cone.

(2) We define the Stäckel matrix

S =

s11(x1) s12(x1) as12(x1)

0 s22(x2) s23(x2)

0 s32(x3) s33(x3)

 ,

where s11 and s12 are smooth functions of x1, s22 and s23 are smooth functions

of x2, s32 and s33 are smooth functions of x3 and a is a real constant. In this

case, the Helmholtz equation (2.1) can be rewritten as A1f + s12(L+ aH)f =

0. Therefore, the separation of variables depends only on a single angular

operator given by L + aH whose properties can be easily derived from the

ones for H and L. In particular, the set of angular momenta is given by

ω2
m = µ2

m+ν2
m, m ≥ 1, and could be used to apply the Complexification of the

Angular Momentum method. Note that, even though the spectra {µ2
m, ν

2
m} are

coupled, only the spectrum ω2
m appears in the separated radial equation.

(3) In the case of the Stäckel matrix

S =

 s1(x1)2 −s1(x1) 1

−s2(x2)2 s2(x2) −1

s3(x3)2 −s3(x3) 1

 ,

where s1 is a smooth function of x1, s2 is a smooth function of x2 and s3 is a

smooth function of x3, there is no trivial symmetry. We are thus in the general

case and we have to use the general method we develop in this paper.
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§2.2. A first construction of characteristic and Weyl–Titchmarsh

functions

The aim of this section is to define the characteristic and Weyl–Titchmarsh func-

tions for the radial equation choosing −µ2
m as the spectral parameter. We recall

that the radial equation is

(2.18) − u′′ + 1

2
(log(f1))′u′ +

[
−(λ2 + 1)s11 + µ2

ms12 + ν2
ms13

]
u = 0,

where the functions depend only on x1. We choose −µ2 := −µ2
m to be the spectral

parameter. As mentioned in the introduction, to do this we make a Liouville change

of variables:

X1 = g(x1) =

∫ x1

0

√
s12(t) dt

and we define u(X1, µ2, ν2) = u(h(X1), µ2, ν2), where h = g−1 is the inverse

function of g and ν2 := ν2
m. Next, to cancel the resulting first-order term and

obtain a Schrödinger equation, we introduce a weight function. To be precise, we

define

(2.19) U(X1, µ2, ν2) =

(
f1

s12
(h(X1))

)− 1
4

u(h(X1), µ2, ν2).

After calculation, we obtain that U(X1, µ2, ν2) satisfies, in the variable X1, the

Schrödinger equation

(2.20) − Ü(X1, µ2, ν2) + qν2(X1, λ)U(X1, µ2, ν2) = −µ2U(X1, µ2, ν2),

where

qν2(X1, λ) = −(λ2 + 1)
s11(X1)

s12(X1)
+ ν2 s13(X1)

s12(X1)

+
1

16

(
˙(

log

(
f1(X1)

s12(X1)

)))2

− 1

4

¨(
log

(
f1(X1)

s12(X1)

))(2.21)

with ḟ = df
dX1 , f1(X1) := f1(h1(X1)), s11(X1) := s11(h1(X1)), s12(X1) :=

s12(h1(X1)) and s13(X1) := s13(h1(X1)).

Lemma 2.5. The potential qν2 satisfies, at the end {X1 = 0},

qν2(X1, λ) = −
λ2 + 1

4

(X1)2
+ q0,ν2(X1, λ),
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where X1q0,ν2(X1, λ) ∈ L1
(

0, A
1

2

)
with A1 = g(A). Similarly, at the end {X1 =

A1},

qν2(X1, λ) = −
λ2 + 1

4

(A1 −X1)2
+ qA1,ν2(X1, λ),

where (A1 −X1)qA1,ν2(X1, λ) ∈ L1
(
A1

2 , A
1
)

.

Proof. We first note that since s12(x1) ∼ 1 when x1 → 0 we obtain by definition

of X1 that X1 ∼ x1 as x1 → 0. Thus we can use the hyperbolicity conditions (1.9)

directly in the variable X1. The lemma is then a consequence of these conditions.

We now follow the paper [19] to define the characteristic and the Weyl–

Titchmarsh functions associated with the equation (2.20). To do that, we introduce

two fundamental systems of solutions Sjn, j ∈ {1, 2} and n ∈ {0, 1} defined by

(1) when X1 → 0,

(2.22) S10(X1, µ2, ν2) ∼ (X1)
1
2−iλ and S20(X1, µ2, ν2) ∼ 1

2iλ
(X1)

1
2 +iλ

and when X1 → A1,

S11(X1, µ2, ν2) ∼ (A1 −X1)
1
2−iλ

and S21(X1, µ2, ν2) ∼ − 1

2iλ
(A1 −X1)

1
2 +iλ;

(2.23)

(2) W (S1n, S2n) = 1 for n ∈ {0, 1};
(3) for all X1 ∈ (0, A1), µ 7→ Sjn(X1, µ2, ν2) is an entire function for j ∈ {1, 2}

and n ∈ {0, 1}.

As in [19, 29], we add singular boundary conditions at the ends {X1 = 0} and

{X1 = A1} and we consider (2.20) as an eigenvalue problem. To be precise, we

consider the conditions

(2.24) U(u) := W (S10, u)|X1=0 = 0 and V (u) := W (S11, u)|X1=A1 = 0,

where W (f, g) = fg′− f ′g is the Wronskian of f and g. Finally, we can define the

characteristic functions

(2.25) ∆qν2
(µ2) = W (S11, S10) and δqν2 (µ2) = W (S11, S20)

and the Weyl–Titchmarsh function

(2.26) Mqν2
(µ2) = −W (S11, S20)

W (S11, S10)
= −

δqν2 (µ2)

∆qν2
(µ2)

.
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Remark 2.5. The Weyl–Titchmarsh function is the unique function such that the

solution of (2.20) given by Φ(X1, µ2, ν2) = S10(X1, µ2, ν2) +Mqν2
(µ2)S20(X1, µ2,

ν2) satisfies the boundary condition at the end {X1 = A1}.

An immediate consequence of the third condition in the definition of the

fundamental systems of solutions is the following lemma.

Lemma 2.6. For any fixed ν, the maps µ 7→ ∆qν2
(µ2) and µ 7→ δqν2 (µ2) are

entire.

In the following (see Sections 2.4 and 2.5), we will define other characteristic

and Weyl–Titchmarsh functions that correspond to other choices of spectral pa-

rameters which are −ν2
m and −(µ2

m + ν2
m). We study here the influence of these

other choices.

Proposition 2.7. Let X̆1 = ğ(x1) be a change of variables and p̆ be a weight

function; then

U(X1, µ2, ν2) =
p(h(X1))

p̆(h̆(X̆1))
Ŭ((ğ ◦ h)(X1), µ2, ν2)

and V (X1, µ2, ν2) =
p(h(X1))

p̆(h̆(X̆1))
V̆ ((ğ ◦ h)(X1), µ2, ν2),

where p(h(X1)) =
(
f1
s12

(h(X1))
)− 1

4

,

Ŭ(X̆1, µ2, ν2) = p̆(h̆(X̆1))u(h̆(X̆1), µ2, ν2)

and V̆ (X̆1, µ2, ν2) = p̆(h̆(X̆1))v(h̆(X̆1), µ2, ν2).

Moreover,

WX1(U, V ) =

(
p(h(X1))

p̆(h̆(X̆1))

)2

∂X1(ğ ◦ h)(X1)WX̆1(Ŭ , V̆ ).

Corollary 2.8. Let X̂1 and X̌1 be two Liouville changes of variables defined by

X̂1 = ĝ(x1) =

∫ x1

0

√
s13(t) dt and X̌1 = ǧ(x1) =

∫ x1

0

√
rµ2,ν2(t) dt,

where

rµ2,ν2(x1) :=
µ2s12(x1) + ν2s13(x1)

µ2 + ν2
,

and let p̂ and p̌ be two weight functions defined by

p̂(ĥ(X̂1)) =

(
f1

s13
(ĥ(X̂1))

)− 1
4

and p̌(ȟ(X̌1)) =

(
f1

rµ2,ν2

(ȟ(X̌1))

)− 1
4

.
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Let Û and V̂ be defined as

Û(X̂1, µ2, ν2) = p̂(ĥ(X̂1))u(ĥ(X̂1), µ2, ν2)

and V̂ (X̂1, µ2, ν2) = p̂(ĥ(X̂1))v(ĥ(X̂1), µ2, ν2)

and Ǔ and V̌ be defined as

Ǔ(X̌1, µ2, ν2) = p̌(ȟ(X̌1))u(ȟ(X̌1), µ2, ν2)

and V̌ (X̌1, µ2, ν2) = p̌(ȟ(X̌1))v(ȟ(X̌1), µ2, ν2).

Then,

WX1(U, V ) = WX̂1(Û , V̂ ) = WX̌1(Ǔ , V̌ ).

We will use X̂1 and p̂ in Section 2.4 to obtain holomorphic properties and

good estimates in the variable ν2. Second, we will use X̌1 and p̌ in Section 2.5 to

show that the characteristic functions are bounded for (µ, ν) ∈ (iR)2.

§2.3. Link between the scattering coefficients and the

Weyl–Titchmarsh and characteristic functions

In this section, we follow [19, Sect. 3.3] and we make the link between the transmis-

sion and the reflection coefficients, corresponding to the restriction of the transmis-

sion and the reflection operators on each generalized harmonics, and the character-

istic and Weyl–Titchmarsh functions defined in Section 2.2. First, we observe that

the scattering operator defined in Theorem 1.7 leaves invariant the span of each

generalized harmonic Ym. Hence, it suffices to calculate the scattering operator on

each vector space generated by the Ym’s. To do this, we recall from Theorem 1.7

that, given any solution f = um(x1)Ym(x2, x3) ∈ B? of (2.1), there exists a unique

ψ
(±)
m = (ψ±0m, ψ

(±)
1m ) ∈ C2 such that

um(x1) ' ω−(λ)
(
χ0 (x1)

1
2 +iλψ

(−)
0m + χ1 (A− x1)

1
2 +iλψ

(−)
1m

)
− ω+(λ)

(
χ0 (x1)

1
2−iλψ

(+)
0m + χ1 (A− x1)

1
2−iλψ

(+)
1m

)
,

(2.27)

where ω± are given by (1.16) and the cut-off functions χ0 and χ1 are defined in

(1.13). As in [19], we would like to apply this result to the fundamental systems

of solutions (FSS) {Sjn, j = 1, 2, n = 0, 1}. However we recall that Sjn are

solutions of the equation (2.20) and this Schrödinger equation was obtained from

the Helmholtz equation (2.1) by a change a variables and the introduction of a

weight function (see (2.19)). We thus apply the previous result to the functions

(2.28) ujn(x1, µ2, ν2) =

(
f1

s12
(x1)

) 1
4

Sjn(g(x1), µ2, ν2), j ∈ {1, 2}, n ∈ {0, 1}.
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We first study the behaviour of the weight function at the two ends in the following

lemma.

Lemma 2.9. When x1 → 0,(
f1

s12
(x1)

) 1
4

=
√
x1[1]ε0 where [1]ε0 = 1 +O((1 + | log(x1)|)−1−ε0).

The corresponding result at the end {x1 = A} is also true.

Proof. We first divide the Robertson condition (1.6) by s12 and we obtain

f1

s12
=

(
det(S)
s12

)2

H2
1

s12
H2

2H
2
3

.

We use the hyperbolicity conditions given in (1.8)–(1.9) and Remark 1.4 to obtain

det(S)
s12

= s11

(x1)2 [1]ε0 ,
H2

1

s12
= 1

(x1)2 [1]ε0 ,

H2
2 = s11

(x1)2 [1]ε0 ,

H2
3 = s11

(x1)2 [1]ε0 .

The lemma is then a direct consequence of these estimates.

Thanks to (2.22)–(2.23), (2.28) and Lemma 2.9, we obtain that when x1 → 0,

u10(x1, µ2, ν2) ∼ (x1)1−iλ and u20(x1, µ2, ν2) ∼ 1

2iλ
(x1)1+iλ

and when x1 → A,

(2.29) u11(x1, µ2, ν2) ∼ (A−x1)1−iλ and u21(x1, µ2, ν2) ∼ − 1

2iλ
(A−x1)1+iλ.

We denote by ψ(−) = (ψ
(−)
0 , ψ

(−)
1 ) and ψ(+) = (ψ

(+)
0 , ψ

(+)
1 ) the constants appearing

in Theorem 1.7 corresponding to u10. Since u10 ∼ (x1)1−iλ when x1 → 0, we obtain

ψ
(−)
0 = 0 and ψ

(+)
0 = − 1

ω+(λ)
.

We now write S10 as a linear combination of S11 and S21, i.e., S10=a1(µ2
m, ν

2
m)S11+

b1(µ2
m, ν

2
m)S21, where a1(µ2

m, ν
2
m) = W (S10, S21) and b1(µ2

m, ν
2
m) = W (S11, S10).

Thus, thanks to (2.28),

u10 = a1(µ2
m, ν

2
m)u11 + b1(µ2

m, ν
2
m)u21.
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We then obtain, thanks to (2.29), that

ψ
(−)
1 = −b1(µ2

m, ν
2
m)

2iλω−(λ)
and ψ

(+)
1 = −a1(µ2

m, ν
2
m)

ω+(λ)
.

Finally, we have shown that u10 satisfies the decomposition of Theorem 1.7 with

(2.30) ψ(−) =

(
0

− b1(µ2
m,ν

2
m)

2iλω−(λ)

)
and ψ(+) =

(
− 1
ω+(λ)

−a1(µ2
m,ν

2
m)

ω+(λ)

)
.

We follow the same procedure for u11 and we obtain the corresponding vectors

(2.31) φ(−) =

(
b0(µ2

m,ν
2
m)

2iλω−(λ)

0

)
and φ(+) =

(
−a0(µ2

m,ν
2
m)

ω+(λ)

− 1
ω+(λ)

)
,

where a0(µ2
m, ν

2
m) = W (S11, S20) and b0(µ2

m, ν
2
m) = W (S10, S11). We now recall

that for all ψ
(−)
m ∈ C2 there exists a unique vector ψ

(+)
m ∈ C2 and um(x)Ym ∈ B?

satisfying (2.1) for which the expansion (1.15) holds. This defines the scattering

matrix Sg(λ, µ
2
m, ν

2
m) as the 2× 2 matrix such that for all ψ

(−)
m ∈ C2,

(2.32) ψ(+)
m = Sg(λ, µ

2
m, ν

2
m)ψ(−)

m .

Using the notation

Sg(λ, µ
2
m, ν

2
m) =

(
L(λ, µ2

m, ν
2
m) TL(λ, µ2

m, ν
2
m)

TR(λ, µ2
m, ν

2
m) R(λ, µ2

m, ν
2
m)

)
,

and using definition (2.32) of the partial scattering matrix, together with (2.30)–

(2.31), we find

(2.33) Sg(λ, µ
2
m, ν

2
m) =

− 2iλω−(λ)
ω+(λ)

a0(µ2
m,ν

2
m)

b0(µ2
m,ν

2
m)

2iλω−(λ)
ω+(λ)

1
b1(µ2

m,ν
2
m)

− 2iλω−(λ)
ω+(λ)

1
b0(µ2

m,ν
2
m)

2iλω−(λ)
ω+(λ)

a1(µ2
m,ν

2
m)

b1(µ2
m,ν

2
m)

 .

In this expression of the partial scattering matrix, we recognize the usual trans-

mission coefficients TL(λ, µ2
m, ν

2
m) and TR(λ, µ2

m, ν
2
m) and the reflection coefficients

L(λ, µ2
m, ν

2
m) and R(λ, µ2

m, ν
2
m) from the left and the right respectively. Since they

are written in terms of Wronskians of the Sjn, j = 1, 2, n = 0, 1, we can make

the link between the characteristic function (2.25) and the generalized Weyl–

Titchmarsh function (2.26) as follows. Noting that

∆qν2m
(µ2
m) = b1(µ2

m, ν
2
m) = −b0(µ2

m, ν
2
m) and Mqν2m

(µ2
m) =

a0(µ2
m, ν

2
m)

b0(µ2
m, ν

2
m)

,

we get

(2.34) L(λ, µ2
m, ν

2
m) = −2iλω−(λ)

ω+(λ)
Mqν2m

(µ2
m)
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and

(2.35) T (λ, µ2
m, ν

2
m) = TL(λ, µ2

m, ν
2
m) = TR(λ, µ2

m, ν
2
m) =

2iλω−(λ)

ω+(λ)

1

∆qν2m
(µ2
m)
.

Finally, using the fact that the scattering operator is unitary (see Theorem 1.7)

we obtain as in [19] the equality

(2.36) R(λ, µ2
m, ν

2
m) =

2iλω−(λ)

ω+(λ)

∆qν2m
(µ2
m)

∆qν2m
(µ2
m)
Mqν2m

(µ2
m).

§2.4. A second construction of characteristic and Weyl–Titchmarsh

functions

In Section 2.2 we defined the characteristic and the Weyl–Titchmarsh functions

when −µ2
m is the spectral parameter. We can also define these functions when we

put −ν2
m as the spectral parameter. We recall that the radial equation is given by

(2.18). To choose −ν2 := −ν2
m as the spectral parameter we make the Liouville

change of variables

X̂1 = ĝ(x1) =

∫ x1

0

√
s13(t) dt,

and we define û(X̂1, µ2, ν2) = u(ĥ(X̂1), µ2, ν2), where ĥ = ĝ−1 and µ2 := µ2
m. As

in Section 3.1 we introduce a weight function and we define

Û(X̂1, µ2, ν2) =

(
f1

s13
(ĥ(X̂1))

)− 1
4

u(ĥ(X̂1), µ2, ν2).

After calculation, we obtain that Û(X̂1, µ2, ν2) satisfies, in the variable X̂1, the

Schrödinger equation

(2.37) − ¨̂
U(X̂1, µ2, ν2) + q̂µ2(X̂1, λ)U(X̂1, µ2, ν2) = −ν2U(X̂1, µ2, ν2),

where

q̂µ2(X̂1, λ) = −(λ2 + 1)
s11(X̂1)

s13(X̂1)
+ µ2 s12(X̂1)

s13(X̂1)

+
1

16

 ˙(
log

(
f1(X̂

1
)

s13(X̂
1
)

))2

− 1

4

¨(
log

(
f1(X̂

1
)

s13(X̂
1
)

))
.

(2.38)

As in Section 2.2 we can prove the following lemma.

Lemma 2.10. The potential q̂µ2 satisfies, at the end {X̂1 = 0},

q̂µ2(X̂1, λ) = −
λ2 + 1

4

(X̂1)2
+ q̂0,µ2(X̂1, λ),



282 D. Gobin

where X̂1q̂0,µ2(X̂1, λ) ∈ L1
(
0, Â

1

2

)
with Â1 = ĝ(A). Similarly, at the end {X̂1 =

Â1},

q̂µ2(X̂1, λ) = −
λ2 + 1

4

(Â1 − X̂1)2
+ q̂Â1,µ2(X̂1, λ),

where (Â1 − X̂1)q̂Â1,µ2(X̂1, λ) ∈ L1
(
Â1

2 , Â
1
)
.

We can now follow the procedure of Section 2.2 to define the characteris-

tic and Weyl–Titchmarsh functions corresponding to equation (2.37) using two

fundamental systems of solutions. Thus, we can define the characteristic functions

(2.39) ∆̂q̂µ2
(ν2) = W (Ŝ11, Ŝ10) and δ̂q̂µ2 (ν2) = W (Ŝ11, Ŝ20)

and the Weyl–Titchmarsh function

(2.40) M̂q̂µ2
(ν2) = −W (Ŝ11, Ŝ20)

W (Ŝ11, Ŝ10)
= −

δ̂q̂µ2 (ν2)

∆̂q̂µ2
(ν2)

.

Thanks to Corollary 2.8 we immediately obtain the following lemma.

Lemma 2.11.

∆qν2m
(µ2
m) = ∆̂q̂µ2m

(ν2
m) and Mqν2m

(µ2
m) = M̂q̂µ2m

(ν2
m), ∀m ≥ 1.

As in Section 2.2 the characteristic functions satisfy the following lemma.

Lemma 2.12. For any fixed µ the maps

ν 7→ ∆̂q̂µ2
(ν2) = ∆qν2

(µ2) and ν 7→ δ̂q̂µ2 (ν2) = δqν2 (µ2)

are entire.

§2.5. A third construction of characteristic and Weyl–Titchmarsh

functions and application

The aim of this subsection is to show that, if we allow the angular momenta to

be complex numbers, the characteristic functions ∆ and δ are bounded on (iR)2.

Thus, in this subsection µm and νm are assumed to be in iR. In Sections 2.2 and 2.4

we defined the characteristic and the Weyl–Titchmarsh functions with −µ2
m and

−ν2
m as the spectral parameter respectively. We now make a third choice of spectral

parameter. We recall that the radial equation is given by (2.18) and we rewrite

this equation as

−u′′ + 1

2
(log(f1))′u′ − (λ2 + 1)s11u = −(µ2

m + ν2
m)

(
µ2
ms12 + ν2

ms13

µ2
m + ν2

m

)
u.
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We put, for (y, y′) ∈ R2,

µ := µm = iy, ν := νm = iy′, ω2 := µ2 + ν2

and rµ2,ν2(x1) :=
µ2s12(x1) + ν2s13(x1)

µ2 + ν2
.

Remark 2.6. There exist some positive constants c1 and c2 such that for all

(µ, ν) ∈ (iR)2 and x1 ∈ (0, A),

0 < c1 ≤ rµ2,ν2(x1) ≤ c2 < +∞.

To choose −ω2 as the spectral parameter we make a Liouville change of vari-

ables (that depends on µ2 and ν2 and is a kind of average of the previous ones):

X̌1
µ2,ν2 = ǧµ2,ν2(x1) =

∫ x1

0

√
rµ2,ν2(t) dt.

For the sake of clarity, we put X̌1 := X̌1
µ2,ν2 and ǧ(x1) := ǧµ2,ν2(x1). We define

ǔ(X̌1, µ2, ν2) = u(ȟ(X̌1), µ2, ν2), where ȟ = ǧ−1. As in Section 3.1, we introduce

a weight function and we define

Ǔ(X̌1, µ2, ν2) =

(
f1

rµ2,ν2

(ȟ(X̌1))

)− 1
4

u(ȟ(X̌1), µ2, ν2).

After calculation, we obtain that Ǔ(X̌1, µ2, ν2) satisfies, in the variable X̌1, the

Schrödinger equation

(2.41) − ¨̌U(X̌1, µ2, ν2) + q̌µ2,ν2(X̌1, λ)Ǔ(X̌1, µ2, ν2) = −ω2Ǔ(X̌1, µ2, ν2),

where

q̌µ2,ν2(X̌1, λ) = −(λ2 + 1)
s11(X̌1)

rµ2,ν2(X̌1)
+

1

16

 ˙(
log

(
f1(X̌

1
)

rµ2,ν2(X̌
1
)

))2

− 1

4

¨(
log

(
f1(X̌

1
)

rµ2,ν2(X̌
1
)

))
.

(2.42)

Lemma 2.13. The potential q̌µ2,ν2 satisfies, at the end {X̌1 = 0},

q̌µ2,ν2(X̌1, λ) = −
λ2 + 1

4

(X̌1)2
+ q̌0,µ2,ν2(X̌1, λ),
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where X̌1q̌0,µ2,ν2(X̌1, λ) ∈ L1
(

0, Ǎ
1

2

)
with Ǎ1 = ǧ(A) and q̌0,µ2,ν2 is uniformly

bounded for (µ, ν) ∈ (iR)2. Similarly, at the end {X̌1 = Ǎ1},

q̌µ2,ν2(X̌1, λ) = −
λ2 + 1

4

(Ǎ1 − X̌1)2
+ q̌Ǎ1,µ2,ν2(X̌1, λ),

where (Ǎ1 − X̌1)q̌Ǎ1,µ2,ν2(X̌1, λ) ∈ L1
(
Ǎ1

2 , Ǎ
1
)

with Ǎ1 = ǧ(A) and q̌Ǎ1,µ2,ν2 is

uniformly bounded for (µ, ν) ∈ (iR)2.

Remark 2.7. Thanks to Remark 2.6, we immediately obtain that there exist

some positive constants A− and A+ such that for all (µ, ν) ∈ (iR)2,

A− ≤ Ǎ1 =: Ǎ1
µ2,ν2 ≤ A+.

Once more, we follow the procedure of Section 2.2 to define the characteristic

and Weyl–Titchmarsh functions corresponding to equation (2.41) using two funda-

mental systems of solutions {Šj0}j=1,2 and {Šj1}j=1,2 satisfying the asymptotics

(2.22)–(2.23). Thus, we define the characteristic function

(2.43) ∆̌q̌µ2,ν2
(ω2) = W (Š11, Š10),

and the Weyl–Titchmarsh function

(2.44) M̌q̌µ2,ν2
(ω2) = −W (Š11, Š20)

W (Š11, Š10)
=: −

δ̌q̌µ2,ν2 (ω2)

∆̌q̌µ2,ν2
(ω2)

.

As in Section 2.4, Lemma 2.11, we can use Corollary 2.8 to prove the following

lemma.

Lemma 2.14.

∆qν2
(µ2) = ∆̌q̌µ2,ν2

(ω2) and Mqν2
(µ2) = M̌q̌µ2,ν2

(ω2), ∀ (µ, ν) ∈ (iR)2.

We finish this subsection following the proof of [19, Prop. 3.2] and proving

the following proposition.

Proposition 2.15. For ω = iy, where ±y ≥ 0, when |ω| → ∞,

∆̌q̌µ2,ν2
(ω2) =

Γ(1− iλ)2

π22iλ
ω2iλe±λπ2 cosh

(
ωǍ1 ∓ λπ

)
[1]ε,

δ̌q̌µ2,ν2 (ω2) =
Γ(1− iλ)Γ(1 + iλ)

2iλπ
2 cosh

(
ωǍ1

)
[1]ε,

M̌q̌µ2,ν2
(ω2) = −Γ(1 + iλ)2e∓λπ22iλ

2iλΓ(1− iλ)
ω−2iλ cosh

(
ωǍ1

)
cosh

(
ωǍ1 ∓ λπ

) [1]ε,

where [1]ε = O
(

1
(log |ω|)ε

)
when |ω| → ∞ with ε = min(ε0, ε1).
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Proof. The only difference from [19, Prop. 3.2] is the fact that our potential qµ2,ν2

depends on the angular momenta µ2 and ν2. However, since q̌0,µ2,ν2 is uniformly

bounded for (µ, ν) ∈ (iR)2, we obtain Proposition 2.15 without additional compli-

cation.

Corollary 2.16. There exists C > 0 such that for all (µ, ν) ∈ (iR)2,

|∆qν2
(µ2)| = |∆̌q̌µ2,ν2

(ω2)| ≤ C and |δqν2 (µ2)| = |δ̌q̌µ2,ν2 (ω2)| ≤ C.

Proof. This corollary is an immediate consequence of Proposition 2.15, Remark 2.7

and the definition of ω2 = µ2 + ν2 ≤ 0 when (µ, ν) ∈ (iR)2.

§3. The inverse problem at fixed energy for the angular equations

The aim of this section is to show the uniqueness of the angular part of the Stäckel

matrix, i.e., of the second and the third lines. First, we prove that the block(
s22 s23
s32 s33

)
is uniquely determined by knowledge of the scattering matrix at a fixed

energy using the fact that the scattering matrices act on the same space and the

first invariance described in Proposition 1.5. Second, we use the decomposition on

the generalized harmonics and the second invariance described in Proposition 1.5 to

prove the uniqueness of the coefficients s21 and s31. We finally show the uniqueness

of the coupled spectrum which will be useful in the study of the radial part.

§3.1. A first reduction and a first uniqueness result

We first recall that (see (1.10))

g =
(dx1)2 + dΩ2

T 2 + P (x1, x2, x3, dx1, dx2, dx3)

(x1)2

and

g̃ =
(dx1)2 + d̃Ω

2

T 2 + P̃ (x1, x2, x3, dx1, dx2, dx3)

(x1)2
.

Our main assumption is

Sg(λ) = Sg̃(λ),

where the equality holds as operators acting on L2(T 2, dVoldΩT 2 ;C2) with

dVoldΩT 2 =
√

det(dΩ2
T 2) dx2 dx3.

Thus,
√

det(dΩ2
T 2) =

√
det(d̃Ω

2

T 2), since these operators have to act on the same

space. Since

dΩ2
T 2 = s11((dx2)2 + (dx3)2) and d̃Ω

2

T 2 = s̃11((dx2)2 + (dx3)2),
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this equality implies

(3.1) s11 = s̃11.

Using Remark 1.4, we can obtain more information from this equality. Indeed, we

first note that

s11 = s22s33 − s23s32 = s22s33 − (1 + s22)(1 + s33) = −1− s22 − s33.

Thus, equality (3.1) allows us to obtain

s22 − s̃22 = s̃33 − s33.

Since the left-hand side depends only on the variable x2 and the right-hand side

depends only on the variable x3, we can deduce that there exists a constant c ∈ R
such that

s22 − s̃22 = c = s̃33 − s33.

Using Remark 1.4 again, we can thus write(
s22 s23

s32 s33

)
=

(
s̃22 s̃23

s̃32 s̃33

)
+ c

(
1 1

−1−1

)
,

or equivalently, (
s22 s23

s32 s33

)
=

(
s̃22 s̃23

s̃32 s̃33

)
G,

where

G =

(
1− c −c
c 1 + c

)
is a constant matrix with determinant equal to 1. Moreover, as was mentioned in

Proposition 1.5, if Ŝ is a second Stäckel matrix such that(
si2 si3

)
=
(
ŝi2 ŝi3

)
G ∀ i ∈ {1, 2, 3},

then g = ĝ, since si1 = ŝi1 for all i ∈ {1, 2, 3}. The presence of the matrix G is

then due to the invariance of the metric g. We can thus assume that G = I2. We

conclude that

(3.2)

(
s22 s23

s32 s33

)
=

(
s̃22 s̃23

s̃32 s̃33

)
.
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§3.2. End of the inverse problem for the angular part

The aim of this subsection is to show that the coefficients s21 and s31 are uniquely

defined.

First, since {Ỹm}m≥1 is a Hilbertian basis of L2(T 2, s11 dx2 dx3), we can de-

duce that, for all m ∈ N \ {0}, there exists a subset Em ⊂ N \ {0} such that

Ym =
∑
p∈Em

cpỸp.

We recall that, thanks to (2.4),(
H

L

)
=

1

s11

(
s32 −s22

−s33 s23

)(
A2

A3

)
,

where Aj , j ∈ {2, 3}, were defined in (2.3). Clearly,

(3.3)

(
A2

A3

)
= T

(
H

L

)
,

where

T = −

(
s23 s22

s33 s32

)
.

We recall that

T̃ = −

(
s̃23 s̃22

s̃33 s̃32

)
= T.

We finally deduce from (3.3) that

−

(
∂2

2

∂2
3

)
= T

(
H

L

)
+ (λ2 + 1)

(
s21

s31

)
and we then obtain

(3.4) T

(
H

L

)
+ (λ2 + 1)

(
s21

s31

)
= T

(
H̃

L̃

)
+ (λ2 + 1)

(
s̃21

s̃31

)
.

Lemma 3.1. For all m ≥ 1,

H̃

( ∑
p∈Em

cpỸp

)
=
∑
p∈Em

cpH̃(Ỹp) and L̃

( ∑
p∈Em

cpỸp

)
=
∑
p∈Em

cpL̃(Ỹp).

Proof. We first recall that H̃ is self-adjoint and we note that the sum
∑
p∈EmcpH̃(Ỹp)

converges because the coefficients cp are decaying sufficiently rapidly. Indeed, we

note that cp = 〈Ym, Ỹp〉 and we can use integration by parts with the help of the
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operator H and the Weyl law on the eigenvalues to obtain the decay we want. We

can then conclude the lemma using the closedness of H̃.

Remark 3.1. If Em, m ∈ N \ {0}, are finite then Lemma 3.1 is obvious. In fact,

following the idea of [19, Prop. 4.1], we could obtain that these sets are finite using

asymptotics of the Weyl–Titchmarsh function.

Applying (3.4) to the vector of generalized harmonics(
Ym
Ym

)
=

(∑
p∈Em cpỸp∑
p∈Em cpỸp

)
we obtain, thanks to Lemma 3.1 and (2.9), that(
T

(
H

L

)
+(λ2 + 1)

(
s21

s31

))(
Ym
Ym

)
=

(
T

(
µ2
m

ν2
m

)
+(λ2 + 1)

(
s21

s31

))(
Ym
Ym

)

=
∑
p∈Em

cp

(
T

(
µ2
m

ν2
m

)
+(λ2 + 1)

(
s21

s31

))(
Ỹp
Ỹp

)
and(
T

(
H

L

)
+(λ2 + 1)

(
s21

s31

))(
Ym
Ym

)
=
∑
p∈Em

cp

(
T

(
H̃

L̃

)
+(λ2 + 1)

(
s̃21

s̃31

))(
Ỹp
Ỹp

)

=
∑
p∈Em

cp

(
T

(
µ̃2
p

ν̃2
p

)
+(λ2 + 1)

(
s̃21

s̃31

))(
Ỹp
Ỹp

)
.

Hence, ∑
p∈Em

cp

(
T

(
µ2
m

ν2
m

)
+ (λ2 + 1)

(
s21

s31

))(
Ỹp
Ỹp

)

=
∑
p∈Em

cp

(
T

(
µ̃2
p

ν̃2
p

)
+ (λ2 + 1)

(
s̃21

s̃31

))(
Ỹp
Ỹp

)
.

Since {Ỹp}p≥1 is a Hilbertian basis we deduce from this equality that for all m ≥ 1,

for all p ∈ Em,

(3.5) T

(
µ2
m

ν2
m

)
+ (λ2 + 1)

(
s21

s31

)
= T

(
µ̃2
p

ν̃2
p

)
+ (λ2 + 1)

(
s̃21

s̃31

)
.

We deduce from (3.5) that(
µ̃2
p − µ2

m

ν̃2
p − ν2

m

)
= (λ2 + 1)T−1

(
s21 − s̃21

s31 − s̃31

)
.



Inverse Scattering on Stäckel Manifolds 289

Since the right-hand side is independent of m and p, we can deduce from this

equality that there exists a constant vector
(
c1
c2

)
such that(

µ̃2
p

ν̃2
p

)
=

(
µ2
m

ν2
m

)
+

(
c1
c2

)
,

and

(3.6)

(
s21

s31

)
=

(
s̃21

s̃31

)
+

1

λ2 + 1
T

(
c1
c2

)
.

From (3.6), we immediately deduce that

(3.7)

{
s21(x2) = s̃21(x2)− C1s23(x2)− C2s22(x2),

s31(x3) = s̃31(x3)− C1s33(x3)− C2s32(x3),

where Ci = ci
λ2+1 for i ∈ {1, 2}. We recall that

g =

3∑
i=1

H2
i (dxi)2 with H2

i =
det(S)

si1
∀ i ∈ {1, 2, 3}.

Since the minors si1 depend only on the second and the third columns, they do

not change under the transformation given in (3.7). Thus, as mentioned in the

introduction in Proposition 1.5, recalling that the determinant of a matrix does

not change if we add to the first column a linear combination of the second and

the third columns, we conclude that equalities (3.7) describe an invariance of the

metric g under the definition of the Stäckel matrix S. We can then choose Ci = 0,

i ∈ {1, 2}, i.e., c1 = c2 = 0. Finally, we have shown that

(3.8)

(
s21

s31

)
=

(
s̃21

s̃31

)
.

From the definition of the operators L and H given by (2.4), we deduce from (3.2)

and (3.8) that

H = H̃ and L = L̃.

We then conclude that these operators have the same eigenfunctions, i.e., we can

choose

(3.9) Ym = Ỹm ∀m ≥ 1

and the same coupled spectrum

(3.10)

(
µ2
m

ν2
m

)
=

(
µ̃2
m

ν̃2
m

)
∀m ≥ 1.
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§4. The inverse problem at fixed energy for the radial equation

The aim of this section is to show that the radial part of the Stäckel matrix, i.e., the

first line, is uniquely determined by knowledge of the scattering matrix. We first

use a multivariable version of the complex angular momentum method to extend

the equality of the Weyl–Titchmarsh functions (valid on the coupled spectrum)

to complex angular momenta. Next, we use the Börg–Marchenko theorem (see for

instance [29, 45]) to obtain the uniqueness of the quotients s11
s12

and s11
s13

.

§4.1. Complexification of the angular momenta

We recall that, thanks to our main assumption in Theorem 1.8, (3.9)–(3.10) and

(2.34), we know that

(4.1) M(µ2
m, ν

2
m) = M̃(µ2

m, ν
2
m) ∀m ≥ 1,

where

M(µ2
m, ν

2
m) = Mqν2m

(µ2
m) = Mq̂µ2m

(ν2
m)

and M̃(µ2
m, ν

2
m) = Mq̃ν2m

(µ2
m) = M ˜̂qµ2m

(ν2
m).

The aim of this subsection is to show that

(4.2) M(µ2, ν2) = M̃(µ2, ν2) ∀ (µ, ν) ∈ C2 \ P,

where P is the set of points (µ, ν) ∈ C2 such that (µ2, ν2) is a pole of M and

M̃ , or equivalently that is a zero of ∆ and ∆̃. Usually, in the complexification

of the angular momentum method there is only one angular momentum that we

complexify using uniqueness results for holomorphic functions in certain classes.

In [20], there are two independent angular momenta and the authors are able to

use the complexification of the angular momentum method for only one angular

momentum. Here, we cannot complexify one angular momentum keeping the other

fixed since the two angular momenta are not independent (see Lemma 2.4). We

thus have to complexify simultaneously the two angular momenta and we then

need to use uniqueness results for multivariable holomorphic functions. Therefore,

to obtain (4.2) we want to use the following result given in [7, 8].

Theorem 4.1. Let K be an open cone in R2 with vertex the origin and T (K) =

{z ∈ C2, Re(z) ∈ K}. Suppose that f is a bounded analytic function on T (K). Let

E be a discrete subset of K such that for some constant h > 0, |e1 − e2| ≥ h for

all (e1, e2) ∈ E. Let n(r) = #E ∩ B(0, r). Assume that f vanishes on E. Then f

is identically zero if

lim
n(r)

r2
> 0, r → +∞.
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We first introduce the function

ψ : C 3 (µ, ν) 7→ ∆̃(µ2, ν2)δ(µ2, ν2)−∆(µ2, ν2)δ̃(µ2, ν2) ∈ C,

with δ(µ2, ν2) = δqν2 (µ2) = δq̂µ2 (ν2), where δqν2 (µ2) and δq̂µ2 (ν2) were defined in

(2.25) and ∆(µ2, ν2) = ∆qν2
(µ2) = ∆q̂µ2

(ν2), where ∆qν2
(µ2) and ∆q̂µ2

(ν2) were

defined in (2.39). Our aim is then to show that ψ is identically zero.

Lemma 4.2. The map ψ is entire as a function of two complex variables.

To use Theorem 4.1 we need the following estimate on the function ψ.

Lemma 4.3. There exist some positive constants C, A and B such that

|ψ(µ, ν)| ≤ CeA|Re(µ)|+B|Re(ν)| ∀ (µ, ν) ∈ C2.

Proof. The proof of this lemma consists of four steps.

Step 1: We claim that for all fixed ν ∈ C there exists a constant C1(ν) such that

for all µ ∈ C,

|ψ(µ, ν)| ≤ C1(ν)eA|Re(µ)|.

To obtain this estimate we study the solutions Sj0 and Sj1 defined in Section 2.2.

First, we show that for j ∈ {1, 2},

|Sj0(X1, µ2, ν2)| ≤ C(ν)
e|Re(µ)|X1

|µ| 12
,

|S′j0(X1, µ2, ν2)| ≤ C(ν)|µ| 12 e|Re(µ)|X1

,

|Sj1(X1, µ2, ν2)| ≤ C(ν)
e|Re(µ)|(A1−X1)

|µ| 12
,

|S′j1(X1, µ2, ν2)| ≤ C(ν)|µ| 12 e|Re(µ)|(A1−X1).

As in [19], we can show by an iterative procedure that

(4.3) |Sj0(X1, µ2, ν2)| ≤ C
(

X1

1 + |µ|X1

) 1
2

e|Re(µ)|X1

exp

(∫ X1

0

t|q0,ν2(t)|
1 + |µ|t

dt

)
.

Recall now that, thanks to the asymptotically hyperbolic structure, we have for

all X1 ∈ (0, X1
0 ), where X1

0 ∈ (0, A1) is fixed,

t|q0,ν2(t)| ≤ C(1 + ν2)

t(1 + | log(t)|)1+ε0
∀ t ∈ (0, X).

Thus, as shown in [19, Sect. 3.1],

(4.4)

∫ X1

0

t|q0,ν2(t)|
1 + |µ|t

dt ≤ (1 + ν2)O

(
1

(log(|µ|))ε0

)
.
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We can then conclude

|Sj0(X1, µ2, ν2)| ≤ C(ν)
e|Re(µ)|X1

|µ| 12
.

The result on S′j0(X1, µ2, ν2) is obtained similarly using the estimate on the deriva-

tive of the Green kernel given in [19, Prop. 3.1]. By symmetry, we also obtain the

corresponding estimates on Sj1(X1, µ2, ν2) and S′j1(X1, µ2, ν2). We can then con-

clude that

∆(µ2, ν2) = ∆qν2
(µ2) = W (S11, S10) and δ(µ2, ν2) = δqν2 (µ2) = W (S11, S20)

satisfy

|∆(µ2, ν2)| ≤ C1(ν)eA|Re(µ)| and |δ(µ2, ν2)| ≤ C1(ν)eA|Re(µ)|, ∀ (µ, ν) ∈ C2.

Finally, we have shown

|ψ(µ, ν)| ≤ C1(ν)eA|Re(µ)| ∀ (µ, ν) ∈ C2.

Step 2: We can also show that for all fixed µ ∈ C there exists a constant C2(µ)

such that for all ν ∈ C,

|ψ(µ, ν)| ≤ C2(µ)eÂ|Re(ν)|.

To obtain this estimate we use the strategy of the first step of the equation (2.37)

with potential (2.38) introduced in Section 2.4.

Step 3: Thanks to Corollary 2.16, there exists a constant C such that for all

(y, y′) ∈ R2,

(4.5) |ψ(iy, iy′)| ≤ C.

Step 4: We finish the proof of the lemma by the use of the Phragmén–Lindelöf

theorem (see [9, Thm. 1.4.3]). We first fix ν ∈ iR. Thus, the mapping µ 7→ ψ(µ, ν)

satisfies {
|ψ(µ, ν)| ≤ C1(ν)eA|Re(µ)| ∀µ ∈ C (Step 1),

|ψ(µ, ν)| ≤ C ∀µ ∈ iR (Step 3).

Thanks to the Phragmén–Lindelöf theorem, we deduce from these equalities that

|ψ(µ, ν)| ≤ CeA|Re(µ)| ∀ (µ, ν) ∈ C× iR.
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We now fix µ ∈ C; then the mapping ν 7→ ψ(µ, ν) satisfies{
|ψ(µ, ν)| ≤ C2(µ)eB|Re(ν)| ∀ ν ∈ C (Step 1),

|ψ(µ, ν)| ≤ CeA|Re(µ)| ∀ ν ∈ iR.

Thus, using the Phragmén–Lindelöf theorem once more, we obtain

|ψ(µ, ν)| ≤ CeA|Re(µ)|+B|Re(ν)| ∀ (µ, ν) ∈ C2.

We apply Theorem 4.1 with K = (R+)2 and F (µ, ν) = ψ(µ, ν)e−Aµ−Bν .

Lemma 4.4. The function F is bounded and holomorphic on

T ((R+)2) = {(µ, ν) ∈ C2, (Re(µ),Re(ν)) ∈ R+ × R+}.

Proof. This lemma is an immediate consequence of Lemmas 4.2 and 4.3.

We now recall that (µ2
m, ν

2
m), m ≥ 1 denotes the coupled spectrum of the

operators H and L. We note that µ2
m and ν2

m tend to +∞, as m→ +∞. Therefore,

there exists M ≥ 1 such that µ2
m ≥ 0 and ν2

m ≥ 0 for all m ≥M . We then set

EM = {(|µm|, |νm|), m ≥M}.

Thanks to equation (4.1), we note that the function F satisfies

F (µm, νm) = 0 ∀m ≥M

since

(4.6) ψ(µm, νm) = 0 ∀m ≥M.

Moreover, since the characteristic functions are, by definition, even functions with

respect to µ and ν, we obtain

F (|µm|, |νm|) = F (µm, νm) = 0 ∀m ≥M,

i.e., F vanishes on EM .

Remark 4.1. We emphasize that EM denotes the set of eigenvalues counted with

multiplicity (which is at most 4). Since we need a separation property, given in

the following lemma, to apply Bloom’s theorem, we have to consider a new set,

also denoted by EM , which corresponds to the previous set of eigenvalues counted

without multiplicity. To obtain this separation property on the coupled spectrum

EM , we also need to restrict our analysis to a suitable cone given in the following

lemma.
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Lemma 4.5. We set

(4.7) C = {(µ2, θ2µ2), c1 + ε ≤ θ2 ≤ c2 − ε}, 0 < ε� 1,

where

c1 = max

(
−s32

s33

)
and c2 = min

(
−s22

s23

)
.

In this case, there exists h > 0 such that |e1− e2| ≥ h for all (e1, e2) ∈ (EM ∩C)2,

e1 6= e2.

Proof. See Appendix B.

Remark 4.2. We note that, as we showed in Lemma 2.4, there exist real constants

C1, C2, D1 and D2 such that for all m ≥ 1,

C1µ
2
m +D1 ≤ ν2

m ≤ C2µ
2
m +D2,

where

C1 = min

(
−s32

s33

)
> 0 and C2 = −min

(
s22

s23

)
> 0.

We then easily obtain

0 < C1 ≤ c1 < c2 ≤ C2.

Lemma 4.6. We set

n(r) = #EM ∩B(0, r) ∩ C,

where C is defined in (4.7); then

lim
n(r)

r2
> 0, r → +∞.

Proof. See Appendix C.

Remark 4.3. We emphasize that the number of points of the coupled spectrum

n(r) we use to apply Bloom’s theorem is not exactly the one we compute in the

framework of Colin de Verdière. Indeed, Colin de Verdière computes the number

of points of the coupled spectrum counting multiplicity whereas n(r) denotes the

number of points of the coupled spectrum counting without multiplicity. However,

as we have seen before (see Remark 2.3) the multiplicity of a coupled eigenvalue

is at most 4. Therefore, n(r) is greater than a quarter of the number computed in

the work of Colin de Verdière and is thus still of order r2.

We can then use Theorem 4.1 on the cone C to conclude that

F (µ, ν) = 0 ∀ (µ, ν) ∈ C2.
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From this equality we immediately deduce that

(4.8) M(µ2, ν2) = M̃(µ2, ν2) ∀ (µ, ν) ∈ C2 \ P,

where P is the set of points (µ, ν) ∈ C2 such that (µ2, ν2) is a zero of the charac-

teristic functions ∆ and ∆̃.

§4.2. Inverse problem for the radial part

By definition, formula (4.8) means that

Mqν2
(µ2) = Mq̃ν2

(µ2) ∀ (µ, ν) ∈ C2 \ P,

where Mqν2
(µ2) is defined in (2.26). We can thus use the celebrated Börg–Mar-

chenko theorem in the form given in [19, 29] to obtain

qν2
m

(X1, λ) = q̃ν2
m

(X1, λ) ∀m ≥ 1, ∀X1 ∈ (0, A1).

Thanks to (2.21), and since the previous equality is true for all m ≥ 1, we then

have, for all X1 ∈ (0, A1),

(4.9)
s13(X1)

s12(X1)
=
s̃13(X1)

s̃12(X1)

and

− (λ2 + 1)
s11(X1)

s12(X1)
+

1

16

(
˙(

log

(
f1(X1)

s12(X1)

)))2

− 1

4

¨(
log

(
f1(X1)

s12(X1)

))

= −(λ2 + 1)
s̃11(X1)

s̃12(X1)
+

1

16

 ˙(
log

(
f̃1(X1)

s̃12(X1)

))2

− 1

4

¨(
log

(
f̃1(X1)

s̃12(X1)

))
.

(4.10)

We want to rewrite this equation as a Cauchy problem for a second-order nonlinear

differential equation with boundary conditions at the end {X1 = 0}. To do that,

we put

f =
s11

s12
, h =

s12

f1
, l =

s13

s12
= l̃ and u =

(
h

h̃

) 1
4

.

We can thus rewrite (4.10) in the form

(4.11) u′′ + 1
2 (log(h̃))′u′ + (λ2 + 1)(f̃ − f)u = 0.

Using the Robertson condition (1.6) we can write

(4.12)
s11

s12
= f = −s

12

s11
− l s

13

s11
+ h(ls32 − s33)(s23 − ls22).
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Thanks to (4.12), we see that we can write s11
s12

as a function of s13
s12

and f1
s12

, i.e.,

(4.13)
s11

s12
= Φ

(
s13

s12
,
f1

s12

)
and

s̃11

s̃12
= Φ

(
s13

s12
,
f̃1

s̃12

)
,

where

Φ(X,Y ) = −s
12

s11
−X s13

s11
+

1

Y
(Xs32 − s33)(s23 −Xs22).

Thus, to show that s11
s12

= s̃11
s̃12

, it is sufficient by (4.9) to prove that f1
s12

= f̃1
s̃12

. From

(4.12), we deduce that

f − f̃ = (h− h̃)(ls32 − s33)(s23 − ls22)

= h̃(u4 − 1)(ls32 − s33)(s23 − ls22).

Finally, using this last equality, we can rewrite (4.11) as

(4.14) u′′ + 1
2 (log(h̃))′u′ + (λ2 + 1)h̃(ls32 − s33)(s23 − ls22)(u5 − u) = 0.

Lemma 4.7. The function u defined by u =
(
h
h̃

) 1
4 satisfies u(0) = 1 and u′(0) = 0.

Proof. The proof is a consequence of the fact that the asymptotically hyperbolic

structures given in Definition 1.4(3) are the same on the two manifolds.

We thus study the Cauchy problem

(4.15)

{
u′′ + 1

2 (log(h̃))′u′ + (λ2 + 1)h̃(ls32 − s33)(s23 − ls22)(u5 − u) = 0,

u(0) = 1 and u′(0) = 0.

We immediately note that u = 1 is a solution of (4.15). By uniqueness of the

Cauchy problem for the ODE (4.15) we conclude that u = 1. We then have shown

that
f1

s12
=

f̃1

s̃12

and, using (4.9) and (4.13), we can conclude that

(4.16)
s11

s12
=
s̃11

s̃12
and

s11

s13
=
s̃11

s̃13
.

§5. Solution of the inverse problem

We can now finish the proof of our inverse problem. We first note that

g′ =
H2

1

s12
(dX1)2 +H2

2 (dx2)2 +H2
3 (dx3)2,
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where ψ is the diffeomorphism (equal to the identity at the compactified ends

{x1 = 0} and {x1 = A}) corresponding to the Liouville change of variables in the

first variable X1 =
∫ x1

0

√
s12(s) ds. Similarly, g̃ =

∑3
i=1 H̃

2
i (dxi)2 = ψ̃?g̃′, where

g̃′ =
H̃2

1

s̃12
(dX̃1)2 + H̃2

2 (dx2)2 + H̃2
3 (dx3)2,

where ψ̃ is the diffeomorphism (equal to the identity at the compactified ends

{x1 = 0} and {x1 = A}) corresponding to the same Liouville change of variables

in the first variable for the second manifold. We note that, thanks to the Börg–

Marchenko theorem, we can identify A1 = Ã1. We now note that, thanks to (4.16),

H2
1

s12
=

det(S)

s12s11
=
s11

s12
+
s12

s11
+
s13

s12

s13

s11
=
H̃2

1

s̃12
,

H2
2 =

det(S)

s21
=

s11
s12
s11 + s12 + s13

s12
s13

s13
s12
s32 − s33

= H̃2
2

and

H2
3 =

det(S)

s31
=

s11
s12
s11 + s12 + s13

s12
s13

s23 − s13
s12
s22

= H̃2
3 .

We can then deduce from these equalities that

g′ = g̃′.

Finally, we have shown that there exists a diffeomorphism Ψ := ψ−1ψ̃ such that

g̃ = Ψ?g,

where Ψ is the identity at the two ends.

Appendix A. Proof of Proposition 1.6

The proof of this proposition consists of three steps and uses the riemannian

structure and the invariances of the metric described in Proposition 1.5. We first

show that the coefficients of the second and the third columns are nonnegative

or nonpositive functions. Second, we show that these coefficients can be assumed

to be positive or negative functions. Finally, we show that we can find a Stäckel

matrix with the same associated metric and satisfying condition (C).

Step 1: We claim that for all (i, j) ∈ {1, 2, 3} × {2, 3}, sij ≥ 0 or sij ≤ 0. Since

the proof is similar for the third column we give the proof just for the second one.

First, if one of the functions s12, s22 and s32 is identically zero, the two others

cannot vanish on their intervals of definition since the minors s11, s21 and s31
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cannot vanish. Thus, in this case we immediately obtain si2 ≥ 0 or si2 ≤ 0 for all

i ∈ {1, 2, 3}. We can thus assume that there exists a triplet (x1
0, x

2
0, x

3
0) such that

s12(x1
0) 6= 0, s22(x2

0) 6= 0 and s32(x3
0) 6= 0. Without loss of generality, we assume

that det(S) > 0 and si1 > 0 for all i ∈ {1, 2, 3}. From the positivity property of

the minors we can deduce that, according to the sign of the quantities s12(x1
0),

s22(x2
0) and s32(x3

0),

• s12(x1
0) > 0, s22(x2

0) > 0 and s32(x3
0) > 0: This case is impossible since the mi-

nors s11, s21 and s31 cannot all be positive.

• s12(x1
0) > 0, s22(x2

0) < 0 and s32(x3
0) > 0:

(A.1)
s33(x3

0)

s32(x3
0)
<
s23(x2

0)

s22(x2
0)
<
s13(x1

0)

s12(x1
0)
.

• s12(x1
0) > 0, s22(x2

0) > 0 and s32(x3
0) < 0:

(A.2)
s13(x1

0)

s12(x1
0)
<
s33(x3

0)

s32(x3
0)
<
s23(x2

0)

s22(x2
0)
.

• s12(x1
0) > 0, s22(x2

0) < 0 and s32(x3
0) > 0:

(A.3)
s23(x2

0)

s22(x2
0)
<
s13(x1

0)

s12(x1
0)
<
s33(x3

0)

s32(x3
0)
.

Since the four cases corresponding to the case s12(x1
0) < 0 are similar, we treat

just the four cases above. Assume, for instance, that there exists α2
0 such that

s22(α2
0) = 0. We want to show that s22 does not change its sign. We denote by I

the maximal interval (possibly reduced to α2
0) containing α2

0 such that s22(x2) = 0

for all x2 ∈ I. Since the minors s11 and s31 are nonvanishing quantities, the

functions s12 and s32 then cannot vanish. Thus, there exist two real constants c1
and c2 such that

(A.4) c1 ≤
s13

s12
≤ c2 and c1 ≤

s33

s32
≤ c2,

i.e., these quotients are bounded. Moreover, s23(x2) 6= 0 for all x2 ∈ I and by

continuity there exists an interval J such that I ( J and s23(x2) 6= 0 for all

x2 ∈ J . If we assume that s22 changes sign in a neighbourhood of I we obtain that

for all ε > 0 there exist y2
0 ∈ J and y2

1 ∈ J such that

0 < s22(y2
0) < ε and − ε < s22(y2

1) < 0.

Thus, for all M > 0 there exist y2
0 ∈ J and y2

1 ∈ J such that

s23(y2
0)

s22(y2
0)
> M and

s23(y2
1)

s22(y2
1)
< −M.



Inverse Scattering on Stäckel Manifolds 299

We thus obtain a contradiction between (A.4) and each of the equalities (A.1),

(A.2) and (A.3). We can then conclude that s22(x2) ≥ 0 or s22(x2) ≤ 0. The proof

is similar for s12 and s32.

Step 2: We show, thanks to the first invariance given in Proposition 1.5, that

there exists a Stäckel matrix having the same associated metric as S and such

that for all (i, j) ∈ {1, 2, 3} × {2, 3}, sij > 0 or sij < 0. We recall that there is

at most one vanishing function sij , (i, j) ∈ {1, 2, 3} × {2, 3} per column since the

minors s11, s21 and s31 are nonzero quantities. We assume that one coefficient of

the second column vanishes. By symmetry, we can assume that this is s12, i.e.,

that s12(x1
0) = 0 at one point x1

0. We first assume that s23 and s33 do not vanish.

In this case, there exists a real a ≥ 1 such that

|s23| < a|s22| and |s33| < a|s32|

and a real constant b ≥ 1 such that

|s22| < b|s23| and |s32| < b|s33|.

We now search a 2×2 constant invertible matrix G such that the coefficients of the

new Stäckel matrix, obtained by the transformation given in Proposition 1.5(1),

are positive or negative. For instance, if s12 and s13 have the same sign, we put

G =

(
a 1

1 b

)
and we thus obtain a new Stäckel matrix whose second and third columns areas12 + s13 s12 + bs13

as22 + s23 s22 + bs23

as32 + s33 s32 + bs33

 .

We can easily show that these six components are positive or negative (we recall

that s12 and s13 cannot vanish simultaneously). However, if s12 and s13 have

different signs, we put

G =

(
a −1

−1 b

)
and we also obtain positive or negative components. If s23 or s33 vanish we have

just to choose suitable constants a and b using the fact there is at most one

vanishing function in the third column.

Step 3: Finally, we show, thanks to the first invariance given in Proposition 1.5

and the riemannian structure, that there exists a Stäckel matrix having the same
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associated metric as S and satisfying condition (C) of Proposition 1.6. We recall

that thanks, to the second step, we can assume that the Stäckel matrix S satisfies

sij > 0 or sij < 0 for all (i, j) ∈ {1, 2, 3} × {2, 3}. We recall that the metric g

is riemannian if and only if det(S), s11, s21 and s31 have the same sign. Without

loss of generality, we assume that these quantities are all positive. We recall that

according to the sign of the functions s12, s22 and s32, inequalities (A.1)–(A.3)

are satisfied. We thus have to treat different cases according to the sign of the

components of the Stäckel matrix. First we want to obtain the sign conditions in

(C). Since the proof is similar in the other cases, we give the proof just in the case

s12 > 0, s22 < 0 and s32 > 0.

We give below, in each case, the matrix G ∈ GL2(R) such that the transformation

given in the first invariance of Proposition 1.5 provides us with the signs we want.

• If s13 > 0, s23 < 0 and s33 > 0 we put

G =

(
1−1

0 b

)
,

where
s13

s12
< b <

s23

s22
<
s33

s32
,

and we obtain the required signs. Indeed, we obtain that the second and the

third columns of the new Stäckel matrix are given bys12 −s12 + bs13

s22 −s22 + bs23

s32 −s32 + bs33


which has the desired signs thanks to our choice of constant b.

• If s13 > 0, s23 > 0 and s33 < 0 we put G = I2.

• If s13 > 0, s23 < 0 and s33 < 0 we put

G =

(
1−1

0 b

)
,

where
s33

s32
<
s13

s12
< b <

s23

s22
.
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As previously, the case s13 < 0 is similar and we thus omit its proof. Up to this

point, we proved that we can assume that

(A.5)


s12(x1) > 0 and s13(x1) > 0 ∀x1,

s22(x2) < 0 and s23(x2) > 0 ∀x2,

s32(x3) > 0 and s33(x3) < 0 ∀x3.

Finally, we have to use just once more the invariance with respect to the multipli-

cation of the second and the third columns by an invertible constant 2× 2 matrix

G to obtain that we can assume

lim
x1→0

s12(x1) = lim
x1→0

s13(x1) = 1.

Indeed, we have just to set

G =

(
1
α 0

0 1
β

)
,

where

α = lim
x1→0

s12(x1) > 0 and β = lim
x1→0

s13(x1) > 0.

The result then follows.

Appendix B. Proof of Lemma 4.5

We recall that the coupled spectrum was defined in Remark 2.2 by

(B.1) HYm = µ2
mYm and LYm = ν2

mYm, ∀m ≥ 1,

where H and L are commuting, elliptic and self-adjoint operators of order 2.

Writing Ym(x2, x3) = vm(x2)wm(x3), we obtain that (B.1) is equivalent to

(B.2) − v′′m(x2) +
[
−(λ2 + 1)s21(x2) + µ2

ms22(x2) + ν2
ms23(x2)

]
vm(x2) = 0

and

(B.3) − w′′m(x3) +
[
−(λ2 + 1)s31(x3) + µ2

ms32(x3) + ν2
ms33(x3)

]
wm(x3) = 0,

where vm and wm are periodic functions, i.e.,

(B.4)

{
vm(0) = vm(B) and v′m(0) = v′m(B),

wm(0) = wm(C) and w′m(0) = w′m(C).

We first consider equation (B.2) which we rewrite as

−v′′ − (λ2 + 1)s21v = µ2
[
−s22 − θ2s23

]
v,
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where v := vm, µ2 := µ2
m, ν2 := ν2

m and θ2 := ν2

µ2 . In the following we will consider

Schrödinger equations associated with (B.2)–(B.3) whose spectral parameter is µ2

which tends to +∞. Moreover, these equations depend on the parameter θ2 which

is always bounded in a suitable cone that we introduce now. We recall that, as we

showed in Lemma 2.4, there exist real constants C1, C2, D1 and D2 such that for

all m ≥ 1,

C1µ
2
m +D1 ≤ ν2

m ≤ C2µ
2
m +D2,

where C1 = min
(
− s32

s33

)
> 0 and C2 = −min

(
s22
s23

)
> 0. Let ε > 0 be fixed; we

then consider θ2 such that

c1 +
D1

µ2
+ ε ≤ θ2 ≤ c2 +

D2

µ2
− ε,(B.5)

where c1 = max
(
− s32

s33

)
and c2 = min

(
− s22

s23

)
. We note that 0 < C1 ≤ c1 < c2 ≤

C2. This implies that, for sufficiently large µ2, there exists δ > 0 such that

(B.6) − s22 − θ2s23 ≥
(
ε− D2

µ2

)
s23 ≥ δ > 0

and

−s32 − θ2s33 ≥
(
ε+

D1

µ2

)
(−s33) ≥ δ > 0.(B.7)

For such a θ2, we can thus proceed to the Liouville change of variables X2 =∫ x2

0

√
−s22(t)− θ2s23(t) dt, in equation (B.2). This new variable thus satisfies

X2 ∈ [0, B̃(θ2)], where

(B.8) B̃(θ2) =

∫ B

0

√
−s22(t)− θ2s23(t) dt.

Finally, we set

V (X2) =
[
−s22(x2(X2))− θ2s23(x2(X2))

] 1
4 v(x2(X2)).

This new function then satisfies in the variable X2 the Schrödinger equation

−V̈ 2(X2) +Qθ2(X2)V (X2) = µ2V (X2),(B.9)

where µ2 is the spectral parameter, Qθ2(X2) is uniformly bounded with respect

to θ2 satisfying (B.5) and for such a θ2, Qθ2(X2) = O(1).

We now search the couples (µ2, θ2) such that (B.9) admits periodic solutions.

We define {C0, S0} and {C1, S1} to be the usual fundamental systems of solutions

of (B.9), i.e.,

C0(0) = 1, Ċ0(0) = 0, S0(0) = 0 and Ṡ0(0) = 1
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and

C1(B̃) = 1, Ċ1(B̃) = 0, S1(B̃) = 0 and Ṡ1(B̃) = 1.

We recall that these functions are analytic and even with respect to µ. We write

the solution V of (B.9) as

V = αC0 + βS0 = γC1 + δS1,

where α, β, γ and δ are real constants. Thus, V (0) = α, V̇ (0) = 0, V (B̃) = γ and

V̇ (B̃) = δ. Then V is a periodic function if and only if

V (0) = V (B̃) ⇔ α = γ ⇔ W (V, S0) = W (V, S1)

and

V̇ (0) = V̇ (B̃) ⇔ β = δ ⇔ W (C0, V ) = W (C1, V ),

where W (f, g) = fg′ − f ′g denotes the Wronskian of two functions f and g. In

other words, V is a periodic solution of (B.9) if and only if

(B.10) W (V, S0 − S1) = W (C0 − C1, V ) = 0.

We thus add to equation (B.9) the boundary conditions (B.10) and we define the

corresponding characteristic functions. In other words, we define

∆1(µ2, θ2) = W (C0 − C1, S0 − S1) = 2−W (C0, S1)−W (C1, S0).

We emphasize that ∆1(µ2, θ2) vanishes if and only if there exists a periodic solution

of (B.9) for (µ2, θ2). The asymptotics of W (C0, S1) and W (C1, S0) are well known

(see for instance [20, 28]). Indeed, we know

(B.11) W (C0, S1) = cos
(
µB̃(θ2)

)
×
(

1 +O

(
1

µ

))
and

(B.12) W (C1, S0) = cos
(
µB̃(θ2)

)
×
(

1 +O

(
1

µ

))
,

where µ =
√
µ2 (we do not have to make the sign of µ precise since the charac-

teristic functions are even functions). We then obtain

(B.13) ∆1(µ2, θ2) = 0 ⇔ 2− 2 cos
(
µB̃(θ2)

)
+O

(
1

µ

)
= 0.

Using Rouché’s theorem (see for instance [28]) we can then deduce that the couples

(µ2, θ2) satisfying (B.13) are close for large µ to the couples (µ2, θ2) satisfying

2− 2 cos
(
µB̃(θ2)

)
= 0 ⇔ cos

(
µB̃(θ2)

)
= 1.
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The solutions of this last equation are µ = 2mπ
B̃(θ2)

, m ∈ Z for θ2 satisfying (B.5)

and m sufficiently large. Finally, we recall that B̃(θ2) is given by (B.8). Thus,

since s23 is a positive function, the map B̃ is strictly decreasing with respect to

θ2 ∈ [c1 + ε, c2 − ε]. The map 1
B̃(θ2)

is then strictly increasing. We can summarize

these facts in Figure 2.

Figure 2. First approximation of the coupled spectrum.

We do the same analysis on equation (B.3). We recall that if θ2 satisfies

(B.5) then the inequality (B.7) is satisfied for µ2 sufficiently large. We can thus

set X3 =
∫ x3

0

√
−s32(t)− θ2s33(t) dt. This new variable satisfies X3 ∈ [0, C̃(θ2)],

where

(B.14) C̃(θ2) =

∫ C

0

√
−s32(t)− θ2s33(t) dt.

We then set

W (X3) =
[
−s32(x3(X3))− θ2s33(x3(X3))

] 1
4 w(x3(X3)).

This function then satisfies, in the variable X3, the Schrödinger equation

(B.15) − Ẅ 2(X3) + Q̃θ2(X3)W (X3) = µ2W (X3), where Q̃θ2(X3) = O(1),

for θ2 satisfying (B.5) and µ2 sufficiently large. As previously, we obtain that

(B.15) has a periodic solution if and only if

∆2(µ2, θ2) := 2−W (C0, S1)−W (C1, S0) = 0.

Thanks to the asymptotics (B.11)–(B.12) we obtain

∆2(µ2, θ2) = 0 ⇔ 2− 2 cos
(
µC̃(θ2)

)
+O

(
1

µ

)
= 0.

Using Rouché’s theorem once more, we obtain that the couple (µ2, θ2) satisfying

the previous equality are close for large µ to the couple satisfying cos
(
µC̃(θ2)

)
= 1,
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i.e., µ2 = 2πk
C̃(θ2)

, k ∈ Z, where k is sufficiently large and θ2 satisfies equation (B.5).

We recall that C̃(θ2) is given by (B.14). Since s33 is a negative function, the map

C̃ is strictly increasing for θ2 ∈ [c1 + ε, c2 − ε]. The map 1
C̃(θ2)

is then strictly

decreasing. We can summarize these facts in Figure 3.

Figure 3. Second approximation of the coupled spectrum.

The coupled spectrum Λ = {(µ2
m, ν

2
m), m ≥ 1}, or equivalently the coupled

spectrum (µ2
m, θ

2
m), is then given by

Λ = {∆1(µ2, θ2) = 0} ∩ {∆2(µ2, θ2) = 0},

since for all (µ2
m, ν

2
m) ∈ Λ, there exist simultaneously a periodic solution of (B.9)

and a periodic solution of (B.15). Using Figures 2 and 3 we obtain Figure 4 in

which the coupled spectrum corresponds to the intersection between the previous

curves.

Figure 4. The coupled spectrum.

We now want to use this particular structure of the coupled spectrum to prove

Lemma 4.5. We work on the plane (µ, θ) and we set ν = θµ, with 0 < α1 ≤ θ ≤ α2,

where α1 =
√
c21 + ε and α2 =

√
c22 − ε, with ε > 0. We recall that for large m we
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can approximate µm by µm = 2mπ
B̃(θ2)

, where B̃(θ2) =
∫ B

0

√
−s22(t)− θ2s23(t) dt.

We first want to show that the curves drawn in Figure 2 are uniformly separated.

In other words, we show that there exists δ > 0 such that the distance between

two successive curves is greater than δ. To be precise, we want to show that there

exists δ > 0 such that for large m and for all (θ1, θ2) ∈ [α1, α2]2,

(B.16) |µm+1(θ2)− µm(θ1)|+ |θ2µm+1(θ2)− θ1µm(θ1)| ≥ δ.

If we put d = |µm+1(θ2)−µm(θ1)| we immediately obtain that (B.16) is equivalent

to

(B.17) d+ |dθ2 + (θ2 − θ1)µm(θ1)| ≥ δ.

We now use the mean value theorem on the map 1
B̃(θ2)

and we thus obtain

1

B̃(θ2
2)

=
1

B̃(θ2
1)

+ e(ξ)(θ2
2 − θ2

1),

where

e(ξ) = − B̃
′(ξ2)

B̃(ξ2)2
> 0,

with ξ ∈ (θ1, θ2). Actually, we can show that there exist two positive constants e1

and e2 such that

0 < e1 ≤ e(ξ) ≤ e2 ∀ ξ ∈ [α1, α2].

We then easily obtain

d =

∣∣∣∣ 2π

B̃(θ2
1)

+ 2(m+ 1)πe(ξ)(θ1 + θ2)(θ1 − θ2)

∣∣∣∣ .
Using the triangle inequality we thus obtain

(B.18) 2(m+ 1)πe(ξ)(θ1 + θ2)|θ1 − θ2| ≥
2π

B̃(θ2
1)
− d.

We thus have to study different cases.

Case 1: If d ≥ 2π
B̃(θ21)

, we easily obtain

|µm+1(θ2)− µm(θ1)|+ |θ2µm+1(θ2)− θ1µm(θ1)| ≥ d ≥ 2π

B̃(θ2
1)
.

Case 2: If d < 2π
B̃(θ21)

, then (B.18) gives us

|θ1 − θ2| >
2π − dB̃(θ2

1)

2(m+ 1)πe(ξ)(θ1 + θ2)B̃(θ2
1)
.
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Thus,

µm(θ1)|θ1 − θ2| =
2mπ

B̃(θ2
1)
|θ1 − θ2|

>
m

m+ 1

2π − dB̃(θ2
1)

e(ξ)(θ1 + θ2)B̃(θ2
1)2

>
2π − dB̃(α2

1)

4e2α2B̃(α2
1)2

.

We note that

dθ2 <
2π − dB̃(α2

1)

4e2α2B̃(α2
1)2

⇔ d <
2π

(4θ2e2α2B̃(α2
1) + 1)B̃(α2

1)
.

If

d >
2π

(4θ2e2α2B̃(α2
1) + 1)B̃(α2

1)
,

then as in Case 1, we easily obtain

|µm+1(θ2)− µm(θ1)|+ |θ2µm+1(θ2)− θ1µm(θ1)| ≥ d ≥ δ.

If

d <
2π

(4θ2e2α2B̃(α2
1) + 1)B̃(α2

1)
,

we then obtain

|µm+1(θ2)− µm(θ1)|+ |θ2µm+1(θ2)− θ1µm(θ1)|
= d+ |dθ2 + (θ2 − θ1)µm(θ1)|
= d+ |θ2 − θ1|µm(θ1)− dθ2

> d+
2π − dB̃(α2

1)

4e2α2B̃(α2
1)2
− dθ2

=
π

2e2α2B̃(α2
1)2

+ d

(
1− 1

4e2α2B̃(α2
1)
− θ2

)
.

We note that there exists d0 > 0 such that for all d < d0,

d

(
1− 1

4e2α2B̃(α2
1)
− θ2

)
> − π

4e2α2B̃(α2
1)2

.

Thus, for all d < d0, we immediately obtain

|µm+1(θ2)− µm(θ1)|+ |θ2µm+1(θ2)− θ1µm(θ1)| ≥ π

4e2α2B̃(α2
1)2
≥ δ.

Moreover, if d ≥ d0 we conclude as in Case 1.
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We thus have shown that the curves of Figure 2 are uniformly separated.

Since, the same analysis is also true for Figure 3 we have shown Lemma 4.5.

Appendix C. Proof of Lemma 4.6

To prove the lemma we use the work of Colin de Verdière on the coupled spectrum

of commuting pseudodifferential operators in [15, 16]. We recall that the operators

L and H are defined by (2.4) and satisfy (2.9). Since L and H are semibounded

operators by Lemma 2.2, there exists M ∈ R such that L + M and H + M are

positive operators. We set

P1 =
√
L+M and P2 =

√
H +M.

The operators P1 and P2 are commuting, self-adjoint pseudodifferential operators

of order 1 such that P 2
1 + P 2

2 is an elliptic operator. These operators are thus in

the framework of [15]. The principal symbols of P1 and P2 are given by

(C.1) p1(x, ξ) =

√
−s33

s11
ξ2
2 +

s23

s11
ξ2
3 and p2(x, ξ) =

√
s32

s11
ξ2
2 −

s22

s11
ξ2
3 ,

respectively. We put p(x, ξ) = (p1(x, ξ), p2(x, ξ)), where x := (x2, x3), ξ := (ξ2, ξ3)

and (x, ξ) is a point on the cotangent bundle of T 2, i.e., T ?T 2. We will apply [15,

Thm. 0.7] to P1 and P2. We recall here this result adapted to our framework.

Theorem C.1. Let C be a cone of Ṙ2 = R2\{(0, 0)}, with piecewise C1 boundary

such that ∂C ∩W = ∅, where ∂C is the boundary of C and W is the set of critical

values of p. We then have

#{λ ∈ C ∩ Λ, |λ| ≤ r} =
1

4π2
volΩ

(
p−1(C ∩B(0, r))

)
+O(r),

where Λ is the coupled spectrum of P1 and P2 and Ω = dx2 ∧ dx3 ∧ dξ2 ∧ dξ3.

Thus, to use Theorem C.1, we have to determine the set W of critical values of

p. We first have to determine the critical points of p, i.e., the points for which the

differential of p is not onto. The differential of p is given by (we omit the variables)

Dp(x, ξ)

=
−1

4p1p2

(
∂2

(
s33
s11

)
ξ2
2 − ∂2

(
s23
s11

)
ξ2
3 ∂3

(
s33
s11

)
ξ2
2 − ∂3

(
s23
s11

)
ξ2
3 2 s33s11 ξ2 −2 s23s11 ξ3

−∂2

(
s32
s11

)
ξ2
2 + ∂2

(
s22
s11

)
ξ2
3 −∂3

(
s32
s11

)
ξ2
2 + ∂3

(
s22
s11

)
ξ2
3 −2 s32s11 ξ2 2 s22s11 ξ3

)
.

We compute the six 2× 2 minors of this matrix and we search the points (x, ξ) for

which all these minors vanish. After calculation, we obtain that (x, ξ) is a critical
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point of p if and only if the following four conditions are satisfied:
ξ2ξ3 = 0,

ξ3∂2(s22)(ξ2
2 + ξ2

3) = 0,

ξ2∂3(s33)(ξ2
2 + ξ2

3) = 0,

∂2(s22)∂3(s33)(ξ2
2 + ξ2

3)2 = 0.

Thus, there are four cases to study according to the vanishing of ∂2(s22) and

∂3(s33). We finally obtain

W =


(0, 0) if ∂2(s22) 6= 0 and ∂3(s33) 6= 0,

D1 if ∂2(s22) = 0 and ∂3(s33) 6= 0,

D2 if ∂2(s22) 6= 0 and ∂3(s33) = 0,

D1 ∪ D2 if ∂2(s22) = 0 and ∂3(s33) = 0,

where

D1 = {t(
√
s23,
√
−s22), t ≥ 0} and D2 = {t(

√
−s33,

√
s32), t ≥ 0},

where s22, s23 = s22 + 1, s33 and s32 = s33 + 1 are constants according to the

case we study. We now recall that in Theorem C.1, we have to choose a cone

C such that ∂C ∩ W = ∅ and we want to study the set p−1(C ∩ B(0, r)) =

p−1(C)∩p−1(B(0, r)). Letting r > 0, we first study the set p−1(B(0, r)). We recall

that there exists a constant c1 > 0 such that max
(
− s33s11 ,

s23
s11 ,

s32
s11 ,−

s22
s11

)
≤ c1. Thus,

if (ξ2, ξ3) ∈ B
(
0, r√

2c1

)
and (x2, x3) ∈ T 2, then ‖p(x, ξ)‖ =

√
p1(x, ξ) + p2(x, ξ) ≤√

2c1(ξ2
2 + ξ2

3) ≤ r. We deduce from this fact that

(C.2) T 2 ×B
(

0,
r√
2c1

)
⊂ p−1(B(0, r)).

We now study the set p−1(C). We have to divide our study in four cases as we

have seen before.

Case 1: ∂2(s22) 6= 0 and ∂3(s33) 6= 0. In this case (see Figure 5) we have just

to avoid the point {(0, 0)}. We consider the cone C = {(x, y) ∈ R2 such that ε ≤
x, ε ≤ y}, ε > 0.

By definition

p−1(C) = {(x, ξ) ∈ T 2 × R2, ε ≤ p1(x, ξ), ε ≤ p2(x, ξ)}

and since there exists c2 > 0 such that c2 ≤ min
(
− s33s11 ,

s23
s11 ,

s32
s11 ,−

s22
s11

)
, there exists

η > 0 such that T 2 × (R2 \B(0, η)) ⊂ p−1(C).
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Figure 5. Case 1.

Case 2: ∂2(s22) = 0 and ∂3(s33) 6= 0. We have to avoid the half-line D1 which

has slope β1 =
√
−s22
s23

(see Figure 6). We consider the cone C = {(x, y) ∈
R2 such that ε ≤ x, ε ≤ y ≤ β1x− ε}, ε > 0.

Figure 6. Case 2.

As in the first case, there is η > 0 such that

p1(x, ξ) ≥ ε and p2(x, ξ) ≥ ε, ∀ (x, ξ) ∈ T 2 × (R2 \B(0, η)).

The last condition can be rewritten as

p2(x, ξ) ≤ β1p1(x, ξ)− ε⇔
√
s32

s11
ξ2
2 −

s22

s11
ξ2
3 ≤

√
−s22

s23

√
−s33

s11
ξ2
2 +

s23

s11
ξ2
3 − ε

⇔
√
s32

s11
ξ2
2 −

s22

s11
ξ2
3 ≤

√
s22s33

s23s11
ξ2
2 −

s22

s11
ξ2
3 − ε.

We recall that, thanks to the condition given in Remark 1.1, s22s33
s23

> s32. Thus,

there exists ε > 0 small enough such that

p2(x, ξ) ≤ β1p1(x, ξ)− ε ∀ (x, ξ) ∈ T 2 × R2.
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Finally, we have shown that for such an ε, there exists η > 0 such that T 2× (R2 \
B(0, η)) ⊂ p−1(C).

Case 3: ∂2(s22) 6= 0 and ∂3(s33) = 0. We have to avoid the half-line D2 which

has slope β2 =
√
− s32s33 (see Figure 7). We consider the cone C = {(x, y) ∈

R2 such that ε ≤ x, β2x+ ε ≤ y}, ε > 0, and we show, as in the second case, that

Figure 7. Case 3.

for ε > 0 small enough there exists η > 0 such that T 2× (R2 \B(0, η)) ⊂ p−1(C).

Case 4: ∂2(s22) = 0 and ∂3(s33) = 0. We have to avoid D1 ∪ D2 which have

slopes α1 and α2 respectively (see Figure 8). We consider the cone C = {(x, y) ∈
R2 such that ε ≤ x, β2x + ε ≤ y ≤ β1x − ε}, ε > 0. As in the first case, there is

Figure 8. Case 4.

η > 0 such that

p1(x, ξ) ≥ ε ∀ (x, ξ) ∈ T 2 × (R2 \B(0, η))

and, as in the second and the third cases, there exists ε > 0 small enough such

that

p2(x, ξ) ≤ β1p1(x, ξ)− ε and β2p1(x, ξ) + ε ≤ p2(x, ξ), ∀ (x, ξ) ∈ T 2 × R2.
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Thus, for ε > 0 small enough, there exists η > 0 such that T 2 × (R2 \ B(0, η)) ⊂
p−1(C).

In conclusion, we have shown that in any cases there exists η > 0 such that

(C.3) T 2 × (R2 \B(0, η)) ⊂ p−1(C).

Moreover, in each case the cone C defined in (4.7) is, by definition, included in the

cone C we considered and we can thus apply Theorem C.1 to this cone. Therefore,

thanks to (C.2)–(C.3) we thus have shown that for r > 0 large enough,

(C.4) T 2×
(
B

(
0,

r√
2c1

)
\B(0, η)

)
⊂ p−1(C)∩p−1(B(0, r)) = p−1(C∩B(0, r)).

From the inclusion (C.4) we can deduce that there exists a constant c > 0 such

that

cr2 ≤ 1

4π2
volΩ

(
B

(
0,

r√
2c1

)
\B(0, η)

)
≤ 1

4π2
volΩ

(
p−1(C ∩B(0, r))

)
.

Thanks to Theorem C.1, we can then conclude that there exists c > 0 such that

#{λ ∈ C ∩ Λ, |λ| ≤ r} ≥ cr2.

Finally, we recall that Λ = {(
√
µ2
m +M,

√
ν2
m +M), m ≥ 1} and we note that,

thanks to the fact that µ2
m → +∞ and ν2

m → +∞ as m→ +∞,√
µ2
m +M ∼ |µm| and

√
ν2
m +M ∼ |νm|, m→ +∞.

We recall that n(r) = #{λ ∈ C ∩ EM , |λ| ≤ r}, without multiplicity, whereas the

result obtained before was computed counting multiplicity. However, the multi-

plicity of the coupled eigenvalues is at most 4 (see Remark 2.3). Taking account

of this fact, we can conclude that

lim
n(r)

r2
> 0, r → +∞.
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also very grateful to the referee who read the first version of the manuscript care-

fully and gave him advice on improving this paper. Finally, the author also would

like to thank his friends and colleagues Valentin Samoyeau and Pierre Vidotto for

their support.

References

[1] V. de Alfaro and T. Regge, Potential scattering, North-Holland, Amsterdam; Interscience
Publishers Division John Wiley and Sons, 1965. Zbl 0141.23202 MR 0191316

[2] S. Benenti, Separability in Riemannian manifolds, arXiv:1512.07833.

[3] S. Benenti, Orthogonal separable dynamical systems, in Differential geometry and its
applications, Mathematical Publications, Silesian University Opava 1, 1993, 163–184.
Zbl 0817.70012 MR 1255538

[4] S. Benenti, C. Chanu and G. Rastelli, Remarks on the connection between the additive sepa-
ration of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger
equation. I. The completeness and Robertson condition, J. Math. Phys. 43, (2002), 5183–
5222. Zbl 1060.35116 MR 1935158

[5] S. Benenti, C. Chanu and G. Rastelli, Remarks on the connection between the additive sepa-
ration of the Hamilton-Jacobi equation and the multiplicative separation of the Schrödinger
equation. II. First integrals and symmetry operators, J. Math. Phys. 43 (2002), 5223–5253.
Zbl 1060.35117 MR 1935159

[6] S. Benenti and M. Francaviglia, The theory of separability of the Hamilton-Jacobi equation
and its applications to general relativity, in General relativity and gravitation vol. 1, Plenum,
New York-London, 1980, 393–439. MR 0583725

[7] B. Berndtsson, Zeros of analytic functions of several variables, Ark. Mat. 16 (1978), 251–262.
Zbl 0409.32001 MR 0524753

[8] T. Bloom, A spanning set for C(In), Trans. Amer. Math. Soc. 321, (1990), 741–759.
Zbl 0723.41031 MR 0984854

[9] R. P. Boas, Entire functions, Academic Press, New York, 1954. Zbl 0058.30201
MR 0068627

[10] V. Bolsinov A. and V. S. Matveev, Local normal forms for geodesically equivalent pseudo-
Riemannian metrics, Trans. Amer. Math. Soc. 9 (2015), 6719–6749. Zbl 1320.53024
MR 3356952

[11] D. Borthwick, Spectral theory for infinite-area hyperbolic surfaces, Birkhäuser, Boston-
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