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On the Cauchy Problem for Differential Operators
with Double Characteristics, A Transition from

Non-effective to Effective Characteristics

by

Tatsuo Nishitani

Abstract

We discuss the well-posedness of the Cauchy problem for hyperbolic operators with double
characteristics which changes from non-effectively hyperbolic to effectively hyperbolic, on
the double characterisitic manifold, across a submanifold of codimension 1. We assume
that there is no bicharacteristic tangent to the double characteristic manifold and the
spatial dimension is 2. Then we prove the well-posedness of the Cauchy problem in all
Gevrey classes assuming, on the double characteristic manifold, that the ratio of the
imaginary part of the subprincipal symbol to the real eigenvalue of the Hamilton map is
bounded and that the sum of the real part of the subprincipal symbol and the modulus
of the imaginary eigenvalue of the Hamilton map is strictly positive.
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§1. Introduction

This paper is a continuation of our previous papers [N3, N4]. Let

P (x,D) = −D2
0 +A1(x,D′)D0 +A2(x,D′)

be a differential operator of order 2 in D0 with coefficients Aj(x,D
′), classical

pseudodifferential operator of order j on Rn depending smoothly on x0 where x =

(x0, x
′) = (x0, x1, . . . , xn). We put P (x0, x

′, ξ0, ξ
′) = p(x, ξ) + P1(x, ξ) + P0(x, ξ),

where p, P1 and P0, respectively, are the principal symbol, the first-order and the

zeroth-order parts of the symbol of P (x,D). We assume that the principal symbol
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p(x, ξ) of P (x,D) vanishes exactly of order 2 on a C∞ manifold Σ and

(1.1) rank

( n∑
j=0

dξj ∧ dxj
∣∣
Σ

)
= constant.

As in [N3, N4] we assume that codim Σ = 3 and

(1.2)

{
the spectral structure of Fp changes simply

across a submanifold S of codimension 1 of Σ.

By conjugation with a Fourier integral operator one can assume A1 = 0, and then,

near any point ρ ∈ Σ, one can write

p(x, ξ) = −ξ2
0 + φ1(x, ξ′)2 + φ2(x, ξ′)2

where dφ1 and dφ2 are linearly independent at ρ and Σ = {ξ0 = 0, φ1 = 0, φ2 = 0}.
Under assumptions (1.1) and (1.2) without restrictions we can assume (see [N3])

{ξ0, φ2} > 0, {ξ0, φ1} = O(|(φ1, φ2)|)

near ρ. Here and in what follows f = O(|(φ1, φ2)|) means that f is a linear combi-

nation of φ1 and φ2 near the reference point. We first recall the following lemma.

Lemma 1.1 ([N4, Lem. 1.2]). If the spectral structure of Fp changes across S

then we have {ξ0, φ2}2−{φ1, φ2}2 = 0 on S and one of the following cases occurs:

(i) {ξ0, φ2}2−{φ1, φ2}2 < 0 in Σ \S so that p is non-effectively hyperbolic in Σ

with KerF 2
p ∩ ImF 2

p = {0} in Σ \ S and KerF 2
p ∩ ImF 2

p 6= {0} on S,

(ii) {ξ0, φ2}2 − {φ1, φ2}2 > 0 in Σ \ S so that p is effectively hyperbolic in Σ \ S
and non-effectively hyperbolic on S with KerF 2

p ∩ ImF 2
p 6= {0},

(iii) {ξ0, φ2}2 − {φ1, φ2}2 changes the sign across S, that is, p is non-effectively

hyperbolic on one side of Σ \ S with KerF 2
p ∩ ImF 2

p = {0}, non-effectively

hyperbolic on S with KerF 2
p ∩ ImF 2

p 6= {0} and effectively hyperbolic on the

other side.

Let us denote

Σ± = {(x, ξ) ∈ Σ | ±({ξ0, φ2}2 − {φ1, φ2}2) > 0}.

The eigenvalues of Fp are 0 and ±
√
{ξ0, φ2}2 − {φ1, φ2}2 on Σ so that Fp has

non-zero real eigenvalues on Σ+ and non-zero purely imaginary eigenvalues on Σ−

in case (iii). Let us set

2κ(ρ)2 = |{ξ0, φ2}2 − {φ1, φ2}2|
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and we make precise the meaning of “simply” in (1.2), namely we assume that

(1.3) κ(ρ) ≈ distΣ(ρ, S) (case (i) or case (ii)), κ2(ρ) ≈ distΣ(ρ, S) (case (iii))

on Σ where distΣ(ρ, S) denotes the distance from ρ to S on Σ. Our aim in this

paper is to complete the proof of the following result:

Theorem 1.2. Assume (1.2) and that there is no bicharacteristic tangent to Σ

and that there exist ε > 0, C > 0 such that

(1.4) (1− ε)µ(ρ) + RePsub(ρ) ≥ ε, | ImPsub(ρ)| ≤ Ce(ρ), ρ ∈ Σ ∩ {|ξ| = 1}

where ±e(ρ) (e(ρ) ≥ 0) are real eigenvalues and ±iµ(ρ) (µ(ρ) ≥ 0) are purely

imaginary eigenvalues of Fp(ρ). We also assume n = 2 in case (iii). Then the

Cauchy problem for P is well posed in any Gevrey class γ(s) for s > 1.

Case (i), namely e(ρ) ≡ 0 on Σ: Theorem 1.2 was proved in [BPP] while

in [N3], it was proved under a less restrictive assumption of the non-existence of

bicharacteristics tangent to S. Case (ii) and hence µ(ρ) ≡ 0 on Σ: Theorem 1.2 was

proved in [N4]. Some transition cases from non-effectively hyperbolic to effectively

hyperbolic are studied in [BB, BE, E]. In particular in [BE, E] a typical case of

(iii) was studied but condition (1.4) was not investigated. In this paper we give

a proof of Theorem 1.2 for case (iii) assuming n = 2, while if n = 1 the case

KerF 2
p ∩ ImF 2

p 6= {0} never occurs.

Remark 1.3. For differential operators, condition (1.4) with ε = 0 can be ex-

pressed as

distC
(
Psub(ρ), [−µ(ρ), µ(ρ)]

)
≤ Ce(ρ), ρ ∈ Σ,

which generalizes the Ivrii–Petkov–Hörmander condition ([IP, H1]) and Melrose

conjectured in [Me] that this condition is necessary for the Cauchy problem to be

C∞ well posed, but little is known about necessary conditions for well-posedness

when the spectral structure of Fp changes.

Remark 1.4. With X± = {ξ0, φ2}Hξ0 − {φ1, φ2}Hφ1
±
√

2κ(ρ)Hφ2
it is easy to

see that

Fp(ρ)X± = ±e(ρ)X±, ρ ∈ Σ+

and that there exist exactly two bicharacteristics passing ρ transversally to Σ+

with tangents X± (see [KoN]). We note that the surface φ2 = 0 is spacelike on Σ+

because dφ2(X±) = {ξ0, φ2}2 − {φ1, φ2}2 = 2κ(ρ)2 > 0. On the other hand there

is no bicharacteristic reaching Σ−(see [Iv1]).
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§2. Idea of the proof of Theorem 1.2

From Lemma 1.1 we have KerF 2
p ∩ ImF 2

p 6= {0} on Σ− and there is no bichar-

acteristic tangent to Σ− by assumption. Then thanks to [N2, Thm. 3.3] p admits

an elementary decomposition microlocally at every point on Σ−. As in [BPP, N3]

we try to decompose p = −(ξ0 + φ1 − ψ)(ξ0 − φ1 + ψ) + q with ψ = o(|φ1|) and

non-negative q verifying {ξ0 − φ1 + ψ, q} = O(q) in Σ−. These requirements es-

sentially determine ψ and actually the non-existence of a tangent bicharacteristic

ensures that ξ0 − ψ1 + ψ commutes against q better than the usual case. On the

other hand, as checked in Remark 1.4, the surface φ̂2 = 0 is spacelike on Σ+; then

[N1, N4] suggest the use of a pseudodifferential weight T ≈ eζ log φ̂2 where ζ is

a cutoff symbol to Σ+. Our strategy for proving Theorem 1.2 is rather naive so

that we make such a decomposition and derive weighted energy estimates with

the cutoff weight T . But the decomposition should be compatible with the cutoff

weights and to achieve this goal we must be careful in choosing cutoff symbols and

in estimating errors caused by them. The assumption n = 2 enables us to choose

all symbols that we need, including cutoff symbols, in S3/4,1/2 and we carry out a

pseudodifferential calculus within the framework of S3/4,1/2 though we often need

the calculus in smaller and more specific classes than S3/4,1/2.

In the rest of this section we rewrite the assumptions in more explicit forms.

In what follows we assume n = 2 and we work in a conic neighborhood of ρ̄ ∈ S.

Without restrictions we may assume ρ̄ = (0, e3), e3 = (0, 0, 1) ∈ R3 with a system

of local coordinates x = (x0, x
′) = (x0, x1, x2). From (1.3) and Lemma 1.1 one can

write

(2.1) {ξ0, φ2}2 − {φ1, φ2}2 = θ|ξ′|+ c1φ1 + c2φ2

in a neighborhood of ρ̄ where S is defined by {θ = 0} ∩ Σ and dθ 6= 0 on S and

hence Σ± = Σ ∩ {±θ > 0}. Compare this to cases (i) and (ii) where we have

{ξ0, φ2}2 − {φ1, φ2}2 = ∓θ2 + c1φ1 + c2φ2 respectively ([N3, N4]). Here note that

e(ρ) =

{√
2κ(ρ), ρ ∈ Σ+,

0, ρ ∈ Σ−,
µ(ρ) =

{
0, ρ ∈ Σ+,
√

2κ(ρ), ρ ∈ Σ−.

Since {ξ0, φ2}2 − {φ1, φ2}2 = {ξ0 − φ1, φ2}{ξ0 + φ1, φ2} = 0 on S we may assume

without restrictions that

(2.2) {ξ0 − φ1, φ2} = 0 on S

and {ξ0, φ2} = {φ1, φ2} > 0 on S (see [N3, N4]).
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Lemma 2.1. In a conic neighborhood of ρ̄′ = (0, e2) one can assume that

φ2(x, ξ′) = φ̂2(x)e(x, ξ′), θ(x, ξ′)|ξ2|−1 = ψ(x′) + f(x, ξ′)φ̂2(x),

where 0 6= e(x, ξ′) ∈ S1
1,0 and f(x, ξ′) ∈ S0

1,0. Moreover we have {θ, φj} = cjφ2

with cj ∈ S0
1,0.

Proof. Since {ξ0, φ2} 6= 0 then one can write φ2 = (x0 − ψ2(x, ξ′))b2 where ψ2 is

independent of x0 and b2 6= 0. From {φ1, φ2} 6= 0 we see {ψ2, φ1} 6= 0. This shows

that dψ2 is not proportional to
∑2
j=0 ξj dxj at ρ̄ because otherwise we would have

φ1(0, e2) = ∂φ1(0, e2)/∂ξ2 6= 0. Since Ξ0 = ξ0, X0 = x0, X1 = ψ2 verifies the

commutation relations and dΞ0, dX0, dX1,
∑2
j=0 ξj dxj are linearly independent

at ρ̄, as just observed above, these coordinates extend to homogeneous symplectic

coordinates (X,Ξ) (see [H1, Thm. 21.1.9]). Switching the notation to (x, ξ) we can

assume that φ2 = (x0 − x1)e. Since {φ2, φ1} 6= 0 one can write φ1 = (ξ1 − ψ1)b1
where ψ1 is independent of ξ0 and ξ1. Writing ψ1(x, ξ2) = ψ̄1(x′, ξ2) + e1φ2 and

θ(x, ξ′) = θ̃(x′, ξ2)+(x0−x1)θ1+(ξ1−ψ̄1)θ2 so that S is given by ξ0 = 0, x0−x1 = 0,

ξ1− ψ̄1(x′, ξ2) = 0, θ̃(x′, ξ2) = 0 where θ̃(x′, ξ2) = θ(x1, x1, x2, ψ̄1(x′, ξ2), ξ2). Since

θ̃ is homogeneous of degree 1 in ξ2 one can write

θ̃(x′, ξ2) = θ̃(x′, 1)ξ2 = ψ(x′)ξ2

in a conic neighborhood of (0, e2), where we have used the assumption n = 2. Let

us set θ = ψ(x′)ξ2 +({ψ(x′)ξ2, φ1}/{φ1, φ2})φ2; then it is clear that {θ, φj} = cjφ2

and hence this θ is the desired one. �

Remark 2.2. Since the restriction n = 2 is used only to prove Lemma 2.1 then

Theorem 1.2 is still true if we can choose homogeneous symplectic coordinates

such that Lemma 2.1 holds.

We now assume that φ2 and θ satisfy Lemma 2.1 and set

θ̂ = θ|ξ2|−1, φ̂1 = φ1|ξ′|−1

so that θ̂ and φ̂1 are homogeneous of degree 0 in ξ′. From (2.2) we can write

(2.3) {ξ0 − φ1, φ̂2} = ĉ θ̂ + c′1φ̂1 + c′2φ̂2

near ρ̄ where ĉ > 0, which follows from (2.1). Since we have {ξ0 + φ1, φ2}|ĉ θ̂||e| =
2κ2 on Σ and {ξ0 + φ1, φ2}/2{φ1, φ2} = 1 on S then for any ε > 0 there is a

neighborhood of ρ̄ where we have

(2.4) (1− ε)κ2(ρ) ≤ {φ1, φ2}|ĉ θ̂||e| ≤ (1 + ε)κ2(ρ).
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Here we examine how the non-existence of tangent bicharacteristics reflects on the

Poisson brackets of symbols.

Proposition 2.3. [N4, Prop. 2.1] Assume {θ, φj} = O(|(φ1, φ2)|) and that there

is no bicharacteristic tangent to Σ. Then we have

{ξ0, θ}(ρ) = 0, {{ξ0 − φ1, φ2}, φ2}(ρ) = 0, ρ ∈ S.

Lemma 2.4. Assume that {{ξ0 − φ1, φ2}, φ2} = 0 on S. Then one can write

{ξ0 − φ1, φ̂2} = ĉ θ̂ + c0θ̂φ̂1 + c1φ̂
2
1 + c2φ̂2.

Lemma 2.5. Assume that {ξ0, θ̂} = 0, {{ξ0 − φ1, φ2}, φ2} = 0 on S. Then we

have {ξ0 − φ1, θ̂} = c0θ̂ + c1φ̂
2
1 + c2φ̂2.

Proof. Note that {ξ0 − φ1, θ̂} = αθ̂ + βφ̂1 + γφ̂2. On the other hand we see

{θ̂, {ξ0 − φ1, φ2}} = O(|φ̂|), {ξ0 − φ1, {θ̂, φ2}} = O(|(θ̂, φ̂)|).

Then from the Jacobi identity it follows that β = O(|(θ̂, φ̂)|) and hence we have

{ξ0 − φ1, θ̂} = αθ̂ + c0θ̂φ̂1 + c1φ̂
2
1 + c2φ̂2 which proves the assertion. �

Corollary 2.6. We have {ξ0, θ̂} = c0θ̂ + c1φ̂
2
1 + c2φ̂2.

§3. Cutoff and weight symbols

We use the same notation as in [N4]. We first make a dilation of the coordinate

x0: x0 → µx0 with small µ > 0 so that

P (x, ξ, µ) = µ2P (µx0, x
′, µ−1ξ0, ξ

′)

= p(µx0, x
′, ξ0, µξ

′) + µP1(µx0, x
′, ξ0, ξ

′) + µ2P0(µx0, x
′)

=: p(x, ξ, µ) + P1(x, ξ, µ) + P0(x, µ).

In what follows we often express such symbols dropping µ. It is easy to see that

a(µx0, x
′, µξ′) = a(x, ξ′, µ) ∈ S(〈µξ′〉m, g0) if a(x, ξ′) ∈ Sm1,0 where

g0 = |dx|2 + 〈ξ′〉−2
µ |dξ′|2, 〈ξ′〉µ = (µ−2 + |ξ′|2)1/2 = µ−1〈µξ′〉.

To prove the well-posedness of the Cauchy problem, applying [N5, Thm. 1.1], it

suffices to derive energy estimates for Pξ′ , which coincides with the original P in

a conic neighborhood of (0, 0, ξ′), |ξ′| = 1. Thus we can assume that the following
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conditions are satisfied globally:

(3.1)



p(x, ξ) = −ξ2
0 + φ1(x, ξ′)2 + φ2(x, ξ′)2, φj ∈ S(〈µξ′〉, g0),

{ξ0, φ1} = d1φ1 + d2φ2, dj ∈ µS(1, g0),

{ξ0 − φ1, φ̂2} = µĉ θ̂ + c0θ̂φ̂1 + c1φ̂
2
1 + c2φ̂2, ĉ > 0, ĉ ∈ S(1, g0),

{ξ0, θ̂} = c′0θ̂ + c′1φ̂
2
1 + c′2φ̂2,

{φ1, φ̂2} ≥ cµ, c > 0,

where cj , c
′
j∈ µS(1, g0) and θ̂ ∈ S(1, g0) verifies

(3.2) {θ̂, φj} = cj φ̂2, cj ∈ µS(1, g0)

and sup |θ̂|, sup |φ̂j | can be assumed to be sufficiently small, shrinking a conic

neighborhood of ρ̄′ where we are working.

Let us put Psub = P s1 + iP s2 with real P si ∈ µS(〈µξ′〉, g0). Then from (1.4) and

(2.4) the following conditions can be assumed to be satisfied globally:

(3.3)


µ1/2

√
ĉ {φ1, φ̂2}|θ̂||e|+ P s1 ≥ cµ〈µξ′〉 in θ̂ < 0,

P s1 ≥ cµ〈µξ′〉 in θ̂ > 0,

P s2 = µc0θ̂〈µξ′〉+ c11φ1 + c12φ2 (c0 = 0 for θ̂ < 0),

with a constant c > 0 and c0 ∈ S(1, g0) and cij ∈ µS(1, g0). Recall from [N4] that
φ = 〈ξ′〉1/2µ

(
φ̂2 + w

)
,

Φ = π + i
{

log (φ̂2 + iω)− log (φ̂2 − iω)
}

= π − 2 arg (φ̂2 + iω),

w = (φ̂2
2 + 〈ξ′〉−1

µ )1/2, ω = (φ̂4
1 + 〈ξ′〉−1

µ )1/2,

ρ2 = φ̂2
2 + ω2 = φ̂2

2 + φ̂4
1 + 〈ξ′〉−1

µ ≥ (w2 + ω2)/2,

where φ plays a major role in our arguments and Φ is introduced in order to

manage the energy estimates in the region Cφ̂2
1 ≥ w. Note that

(3.4) {F,Φ} = 2(ω{F, φ̂2} − φ̂2{F, ω})/ρ2.

We use the following metrics:
g = w−2|dx|2 + w−1〈ξ′〉−2

µ |dξ′|2,
g1 = (ρ−1 + ω−1/2)2|dx|2 + ω−1〈ξ′〉−2

µ |dξ′|2,
g̃ = (w−1 + ω−1/2)2|dx|2 + 〈ξ′〉−3/2

µ |dξ′|2,
ḡ = 〈ξ′〉−1

µ |dx|2 + 〈ξ′〉−3/2
µ |dξ′|2.
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Note that g, g1 ≤ g̃ ≤ 4ḡ and ḡ is the metric defining the class S3/4,1/2 for any fixed

µ > 0. As checked in [N4] we have ω ∈ S(ω, g1), ρ ∈ S(ρ, g1) and Φ ∈ S(1, g1).

With a cutoff symbol ζ(x, ξ′) = ζ(θ̂w−1) we define the weight

(3.5) T = exp (nζ2(χ2 log φ+ Φ)),

where χ = χ(φ̂2
1w
−1) and ζ(s) = 1 in s ≥ −b1 and ζ(s) = 0 in s ≤ −b2 with

ζ ′(s) ≥ 0 and n is a positive parameter.

1

d2 d3

χ2

d10

χ
1

−b3

ζ−

−b2

ζ+

−b1 0

ζ

b1 b2 b3

Let ζ±(x, ξ′) = ζ±(θ̂w−1) and χ2(x, ξ′) = χ2(φ̂2
1w
−1) where ζ±(s) = 1 in

±s ≥ b3 and 0 in ±s ≤ b2 so that ζζ+ = ζ+ and ζζ− = 0. We simply write

χ, χ2 for χ(x, ξ′) and χ2(x, ξ′) and ζ, ζ± for ζ(x, ξ′) and ζ±(x, ξ′) if there is no

confusion. It is easy to check χ, χ2 ∈ S(1, g). As for cutoff symbols ζ, ζ± we have

the following lemma.

Lemma 3.1. Let G = w−2|dx|2 + 〈ξ′〉−2
µ |dξ′|2 (≤ g), then w ∈ S(w,G) and

φ ∈ S(φ,G). We have also ζ, ζ± ∈ S(1, G). Let s ∈ R, then ζ+θ̂
s ∈ S(|θ̂|s, G).

Moreover if 0 < s ≤ 1 and |α| 6= 0 we have |(ζ+θ̂s)(α)
(β)| ≤ Cαβw

s〈ξ′〉−|α|µ w−|β|.

Proof. To prove φ ∈ S(φ,G), with φ̃ = φ̂2 + w, it is enough to show φ̃ ∈ S(φ̃, G).

Note that one can write

∂βx∂
α
ξ′ φ̃ =

∂βx∂
α
ξ′ φ̂2(x)

w
φ̃+

∂βx∂
α
ξ′〈ξ′〉−1

µ

2w
= bαβφ̃+ aαβ

with bαβ ∈ S(w−|β|〈ξ′〉−|α|µ , G) and aαβ ∈ S((w−1〈ξ′〉−1
µ )w−|β|〈ξ′〉−|α|µ , G) for |α+

β| = 1. By induction on |α + β| we see easily ∂βx∂
α
ξ′ φ̃ = bαβφ̃ + aαβ with bαβ ∈

S(w−|β|〈ξ′〉−|α|µ , G) and aαβ ∈ S((w−1〈ξ′〉−1
µ )w−|β|〈ξ′〉−|α|µ , G) for any α, β. Since

w−1〈ξ′〉−1
µ ≤ 2φ̃ we get the assertion. To prove ζ ∈ S(1, G) it suffices to show

(3.6) |ζ ′∂βx∂αξ′(θ̂w−1)| ≤ Cαβw−|β|〈ξ′〉−|α|µ .

By Lemma 2.1 without restrictions we may assume θ̂(x, ξ′) = ψ(x′)+f(x, ξ′)φ̂2(x)

from which it follows |∂αξ′ θ̂| ≤ Cα〈ξ′〉−|α|µ w for |α| ≥ 1. Noting |ζ ′θ̂w−1| ≤ C we

get (3.6). On the support of ζ+ the estimate

|(θ̂s)(α)
(β)| ≤

∑
Cα1,...,βk

θ̂s|θ̂(α1)
(β1) |θ̂

−1 · · · |θ̂(αk)
(βk) |θ̂

−1

holds where |αi + βi| ≥ 1 and α1 + · · · + αk = α, β1 + · · · + βk = β. On the

other hand Lemma 2.1 shows that |θ̂(αi)
(βi)
| ≤ Cαiβi

〈ξ′〉−|αi|
µ w1−|βi| if |αi| 6= 0 and
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bounded by Cβi
if |αi| = 0. Since θ̂−1w is bounded on the support of ζ+ the third

assertion is clear. If |αi| 6= 0 then noting θ̂s|θ̂(αi)
(βi)

θ̂−1| ≤ Cαiβi
ws〈ξ′〉−|αi|

µ w−|βi| on

the support of ζ+ one gets the last assertion. �

Remark 3.2. If n > 2 the ψ(x′) in Lemma 2.1 would depend on ξ′ also and hence

ζ, ζ± do not belong to S(1, g) in general.

To factorize p let us define

(3.7) ψ = (−hζ2
− + νζ2

+)θ̂φ1 + χ2φ
3
1〈µξ′〉−2 = ζ̃ θ̂φ1 + χ2φ

3
1〈µξ′〉−2,

with a positive parameter 0 < ν � 1 which will be determined later, where

ζ̃ = −hζ2
− + νζ2

+ with h = µĉ{φ1, φ̂2}−1 > 0. Using ψ we rewrite p as

p = −(ξ0 + φ1 − ψ)(ξ0 − φ1 + ψ) + 2ψφ1 − ψ2 + φ2
2

= −(ξ0 + φ1 − ψ)(ξ0 − φ1 + ψ) + q,
(3.8)

where {
q = φ2

2 + 2a2ζ̃ θ̂φ2
1 + 2a2χ2φ

4
1〈µξ′〉−2,

a = (1− ζ̃ θ̂/2− χ2φ
2
1〈µξ′〉−2/2)1/2.

The main part of {ξ0 − φ1 + ψ, q} will be {ξ0 − φ1 + ψ, φ2
2} which is required to

be O(q) in θ < 0 as explained above. Indeed, by our choice of ψ, we have

{ξ0 − φ1 + ψ, φ̂2} = µ(1− ζ2
−)ĉ θ̂ + µνĥ−1ĉ ζ2

+θ̂

+ c1φ̂
2
1 + c2θ̂φ̂1 + c3φ̂2,

(3.9)

where 1− ζ2
− = 0 in θ̂ ≤ −b3w so that |(1− ζ2

−)θ̂| ≤ Cw in θ̂ ≤ 0.

Lemma 3.3. We have (ζ̃ θ̂)
(α)
(β), (χ2φ̂

2
1)

(α)
(β) ∈ S(〈ξ′〉−|α|µ , g) for |α + β| = 1. Hence

the same holds for a
(α)
(β). In particular |(ζ̃ θ̂)(α)

(β)|, |(χ2φ̂
2
1)

(α)
(β)| and |a(α)

(β)| are bounded by

Cαβw
1/2〈ξ′〉−|α|µ w−|α|/2−|β| for |α+β| ≥ 1 and bounded by Cαβw〈ξ′〉−|α|µ w−|α|/2−|β|

for |α+ β| ≥ 2.

In this paper Op(φ) denotes the Weyl quantized pseudodifferential operator

with symbol φ and we denote Op(φ) Op(ψ) = Op(φ#ψ). We often use the same

letter to denote a symbol and the operator with such a symbol if there is no

confusion. Thus we denote

Op(φψ)u = φψu, Op(φ) Op(ψ)u = φ(ψu).

We make some additional preparation (see [Iv2]). Let c = id1 + ic11 with d1, c11

in (3.2), (3.3) and we set M = ξ0 + φ1 − ψ + c, Λ = ξ0 − φ1 + ψ − c and write

p+ P s1 + iP s2 = −M#Λ +Q = −M#Λ + q + T1 + iT2.



326 T. Nishitani

Note that −(ξ0 + φ1 − ψ)(ξ0 − φ1 + ψ) = −MΛ − cφ1 − 2cψ − c2. In view of

Lemma 3.3 it is not difficult to check

M#Λ = MΛ + i{ξ0, φ1 − ψ + c11}+ c1w
1/2φ1 + c2φ̂

2
1〈µξ′〉+R

with ci ∈ µS(1, ḡ) and R ∈ µ2S(w−1, ḡ). Therefore we see from (3.1) that T1

satisfies

(3.10)

µ1/2

√
ĉ {φ1, φ̂2}|θ̂||e(x, ξ′)|+ T1 ≥ 2κ̄µ〈µξ′〉 in θ̂ < 0,

T1 ≥ 2κ̄µ〈µξ′〉 in θ̂ > 0,
,

with some κ̄ > 0, and T2 can be written

(3.11) T2 = µc0θ̂〈µξ′〉+ b0θ̂φ1 + b1φ̂
2
1〈µξ′〉+ b2φ2 + b3w

1/2φ1

with bi ∈ µS(1, ḡ). Thus T2〈µξ′〉−1 = O(|(θ̂, φ̂2
1, φ̂2, w

1/2φ̂1)|) so that we can get

rid of the term O(φ̂1) in the expression of T2. We transform P by T so that

PT = T P̃ , P̃ = −M̃ Λ̃ + Q̃.

To simplify notation we set Ψ = ζ2(χ2 log φ + Φ). Then we have the following

lemma.

Lemma 3.4. We have T = enΨ ∈ S(enΨ, (log2 〈ξ′〉µ)ḡ).

Proof. Note that ∂βx∂
α
ξ′ log φ = φ−1∂βx∂

α
ξ′φ for |α + β| = 1 and φ−1 ∈ S(φ−1, g).

Since | log φ| ≤ C log 〈ξ′〉µ and g, g1 ≤ 4ḡ the assertion is clear. �

Let us write M̃ = D0 − m̃(x,D′), Λ̃ = D0 − λ̃(x,D′) and fix any small ε > 0.

Proposition 3.5 ([N3, N4]). Let P̃ = −(M̃−iγλ2ε
µ )(Λ̃−iγλ2ε

µ )+Q̃, then we have

2 Im(P̃ u, Λ̃u) ≥ d

dx0
(‖Λ̃u‖2 + ((Re Q̃)u, u) + γ2‖〈D′〉2εµ u‖2)

+ γ‖λεµ(Λ̃u)‖2 + 2γ Re(λ2ε
µ (Q̃u), u) + 2((Im m̃)Λ̃u, Λ̃u)

+ 2Re(Λ̃u, (Im Q̃)u) + Im([D0 − Re λ̃,Re Q̃]u, u)

+ 2Re((Re Q̃)u, (Im λ̃)u) + (γ3/2)‖λ3ε
µ u‖2

+ 2γ2(λ4ε
µ (Im λ̃)u, u).

(3.12)

In this paper the positive large parameters n, γ and the positive small pa-

rameter µ are assumed to satisfy nµ1/4 � 1 and γµ4 � 1.

Remark 3.6. The weight 〈µD′〉2ε is introduced to control error terms logN 〈D′〉,
caused by the metric (log2 〈ξ′〉µ)ḡ, and hence we can choose ε > 0 as small as we
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please, which determines the well-posed Gevrey class γ(1/2ε). Actually the Cauchy

problem is well posed in the space consisting of all C∞0 functions of whose Fourier

transform is bounded by exp (−C logN 〈ξ′〉) with some C > 0, N > 0.

Definition 3.7. We set λ = 〈µξ′〉, λµ = 〈ξ′〉µ and we write a ∈ S(λs+0
µ , g) (resp.

a ∈ S(λs+0, g)) if a ∈ S(〈ξ′〉s+εµ , g) (resp. a ∈ S(〈µξ′〉s〈ξ′〉εµ, g)) for any ε > 0. We

also write

‖Au‖ ≤ C‖λs+0
µ u‖ (resp. ‖λs+0u‖)

if ‖Au‖ ≤ Cε‖〈D′〉s+εµ u‖ (resp. ‖Au‖ ≤ Cε‖〈µD′〉s〈D′〉εµu‖) for any ε > 0 with

Cε > 0 independent of µ > 0.

§4. Transformed symbols λ̃, m̃

We first list several properties of cutoff symbols.

Lemma 4.1. We have

χχ2 = 0, ζζ− = 0, ζζ+ = ζ+, ζ̃ζ = νζ2
+,

φ̂2, χφ̂2
1, ζ ′θ̂, ζ ′±θ̂ ∈ S(w, g), χφ̂1 ∈ S(w1/2, g),

(1− ζ2
− − ζ2

+)θ̂, ζ(1− ζ2
+)θ̂ ∈ S(w, g),

(4.1)

where ζ ′ = ζ ′(θ̂w−1). We also have {χ, λsµ}, {ζ, λsµ} ∈ S(w−1λs−1
µ , g).

Denote Wα
β = T−1∂βx∂

α
ξ′T and note that we have for a ∈ S(λs+0

µ wt, g) or

a ∈ S(λs, g0),

a#T = T#a− inT{a,Ψ}

+
i

8
T
∑

|α+β|=3

(−1)|β|

α!β!

(
a

(α)
(β)W

β
α −Wα

β a
(β)
(α)

)
+ T#R

with some R ∈ S(wtλ
s−5/4+0
µ , ḡ) or R ∈ S(λsλ

−5/2+0
µ , ḡ) respectively. From

Lemma 3.3 it follows that ψ
(α)
(β)W

β
α ∈ S(1, ḡ) for |α + β| = 3 then the main parts

of Im m̃ and Im λ̃ are, up to the parameter n,

{ξ0 ± φ1 ∓ ψ,Ψ} = ζ2{ξ0 ± φ1 ∓ ψ, χ2 log φ+ Φ}
+ {ξ0 ± φ1 ∓ ψ, ζ2}(χ2 log φ+ Φ).

To estimate {ξ0 ± φ1 ∓ ψ, χ2 log φ + Φ} it suffices to repeat similar arguments as

in [N4] to get

(4.2) {ξ0 ± φ1 ∓ ψ, χ2 log φ+ Φ} = {ξ0 ± φ1 ∓ ψ, φ̂2}(r + 2ωρ−2) +R
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with R ∈ µS(λ+0
µ , ḡ) where

0 ≤ r = χ2w−1 + δ ∈ S(w−1λ+0
µ , g),

0 ≤ δ = −2χχ′φ̂2
1w
−3φ̂2 log φ ∈ S(w−1λ+0

µ , g)

and the fact δ ≥ 0 follows from [N4, Lem. 3.6] which was a key point in treating

(4.2). We examine how the term {ξ0 ± φ1 ∓ ψ, ζ2}(χ2 log φ+ Φ) can be managed.

It is not difficult to see

{ξ0 ± φ1 ∓ ψ, ζ2}(χ2 log φ+ Φ)

= −2ζζ ′θ̂w−3φ̂2(χ2 log φ+ Φ){ξ0 ± φ1 ∓ ψ, φ̂2}+R,
(4.3)

with R ∈ µS(λ+0
µ , ḡ). Here we note the following result.

Lemma 4.2. We have

0 ≤ ∆ = −2ζζ ′θ̂w−3φ̂2(χ2 log φ+ Φ) ∈ S(w−1λ+0
µ , ḡ).

Proof. Since φ̂2 log φ ≥ 0 by [N5, Lem. 3.6] it is clear 0 ≤ −2χ2ζζ ′θ̂w−3φ̂2 log φ ∈
S(w−1λ+0

µ , g) because ζ ′(θ̂w−1)θ̂ ≤ 0. Noting that 0 ≤ Φ = π−2 arg (φ̂2 + iω) ≤ π
if φ̂2 ≥ 0 and −π ≤ Φ = π− 2 arg (φ̂2 + iω) ≤ 0 for φ̂2 ≤ 0 it is also clear φ̂2Φ ≥ 0

and hence 0 ≤ −2ζζ ′θ̂w−3φ̂2Φ ∈ S(w−1, ḡ). Thus we get the assertion. �

To simplify notation we set Γ = r+ 2ωρ−2. From (4.2) and (4.3) it suffices to

consider n(∆ + ζ2Γ){ξ0 ± φ1 ∓ ψ, φ̂2}. As in [N4] we set{
e1 = µĉ+ ν{φ1, φ̂2}, e3 = {ξ0 + φ1, φ̂2},
e2 = {ξ0 + φ1, φ̂2} − νθ̂{φ1, φ̂2}ζ2

+.

Noting Lemma 4.1 it is easy to see

{ξ0 − φ1 + ψ, φ̂2} = µĉθ̂ + ζ̃{φ1, φ̂2}θ̂ + c0θ̂φ̂1 + 3χ2φ̂
2
1{φ1, φ̂2},

{ξ0 + φ1 − ψ, φ̂2} = {ξ0 + φ1, φ̂2} − ζ̃{φ1, φ̂2}θ̂ − 3χ2φ̂
2
1{φ1, φ̂2}

(4.4)

modulo S(w, ḡ). Noting ζ = ζ2
+ + ζ(1− ζ2

+), ζ(1− ζ2
+)θ̂ ∈ S(w, ḡ) we have{

ζ2{ξ0 − φ1 + ψ, φ̂2} = (e1 + a1φ̂1)ζ2
+θ̂ + a2ζφ̂

2
1,

ζ2{ξ0 + φ1 − ψ, φ̂2} = e2ζ
2 + a3ζφ̂

2
1,

with ai ∈ µS(1, ḡ) modulo S(w, ḡ). Since ∆θ̂, Γφ̂2
1 ∈ S(λ+0

µ , ḡ) by Lemma 4.1 we

see Im λ̃ = nζ2
+(e1 + aφ̂1)Γθ̂+R with R ∈ S(λ+0

µ , ḡ) and a ∈ µS(λ+0
µ , ḡ). Similarly

we have Im m̃ = n(e3 + a′φ̂2
1)∆ + ne2ζ

2Γ +R with R ∈ S(λ+0
µ , ḡ). Noting that the

main part of Re λ̃ comes from {{ξ0 − φ + ψ,Ψ},Ψ} we summarize the following

lemma.
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Lemma 4.3. We have
Im λ̃ = n(e1 + b1φ̂1)Γζ2

+θ̂ +R1,

Re λ̃ = φ1 − ψ + n(b2θ̂ + b3φ̂
2
1)w−1/2 +R2,

Im m̃ = ne2ζ
2Γ + n(e3 + b4φ̂

2
1)∆ +R3,

where bi ∈ µS(λ+0
µ , ḡ) and Ri ∈ S(λ+0

µ , ḡ).

Lemma 4.4. There exists c > 0 which is independent of µ > 0 such that we have

C(Im λ̃ u, u) ≥ cµn(Γζ2
+θ̂u, u)− C1‖λ+0

µ u‖2

≥ cµn(Γ(ζ+θ̂
1/2)u, (ζ+θ̂

1/2)u)− C2‖λ+0
µ u‖2,

C(Im m̃ u, u) ≥ cµn((ζ2Γ + ∆)u, u)− C3‖λ+0
µ u‖2

≥ cµn(Γ(ζu), ζu) + cµn(∆u, u)− C4‖λ+0
µ u‖2.

We have also

C(Im λ̃ u, u) ≥ cµn(‖χζ+θ̂1/2w−1/2u‖2 + ‖ζ+θ̂1/2ρ−1/2u‖2),

C(Im m̃ u, u) ≥ cµn(‖ζχw−1/2u‖2 + ‖ζρ−1/2u‖2)

modulo C ′‖λ+0
µ u‖2 with some C, c > 0 independent of µ.

Proof. Since φ̂1(0, e2) = 0 we may assume ẽ1 = e1 + b1φ̂1 ≥ µc1 with c1 > 0. Take

M > 0 so that Mẽ1 ≥ µ. Since 0 ≤ (Mẽ1 − µ)Γζ2
+θ̂ ∈ µS(w−1λ+0

µ , ḡ) ⊂ µS
1/2+0
3/4,1/2

then from the Fefferman–Phong inequality (see [H2, Thm. 18.6.8]) it follows that

M(ẽ1Γζ2
+θ̂u, u) ≥ µ(Γζ2

+θ̂u, u)− C1‖λ+0
µ u‖2.

Here note that Γζ2
+θ̂ = (ζ+θ̂

1/2)#Γ#(ζ+θ̂
1/2) + R with R ∈ S(λ+0

µ , ḡ). Since

|(Ru, u)| ≤ C ′‖λ+0
µ u‖2 the first assertion follows. To show the second assertion

it suffices to repeat the same arguments proving the first assertion. To prove the

third assertion we first note that

(δζ2
+θ̂u, u), (ζ2δu, u), (∆u, u) ≥ −C‖λ+0

µ u‖2,

which follows from the Fefferman–Phong inequality since δ, ∆ ∈ S(w−1λ+0
µ , ḡ)

are non-negative. We then write χ2ζ2
+θ̂w

−1 = χζ+θ̂
1/2w−1/2#χζ+θ̂

1/2w−1/2 + R

with R ∈ S(λ+0
µ , ḡ) because ζ+θ̂

1/2 ∈ S(1, G) ⊂ S(1, ḡ) by Lemma 3.1, which

gives the first term on the right-hand side. To get the second term on the right-

hand side we note that w−1 + ωρ−2 ≥ ρ−1/2; on the other hand if χ < 1 we

have Cω ≥ ρ with some C > 0 and hence Cωρ−2 ≥ ρ−1. Therefore it follows

C(χ2ζ2
+θ̂w

−1 + ζ2
+θ̂ωρ

−2) ≥ ζ2
+ρ
−1θ̂ and the Fefferman–Phong inequality proves

C(χ2ζ2
+θ̂w

−1u, u) + C(ζ2
+θ̂ωρ

−2u, u) ≥ ‖ζ+ρ−1/2θ̂u‖2 − C‖λ+0
µ u‖2,
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which gives the second term. The proof of the last assertion is similar. �

Applying Lemma 4.4 one can show the following proposition.

Proposition 4.5. We have

2((Im m̃)Λ̃u, Λ̃u) ≥ cµn((Γ + ∆)(ζΛ̃u), (ζΛ̃u)) + cµn‖χζw−1/2Λ̃u‖2

+cµn‖ζω1/2ρ−1Λ̃u‖2 + cµn‖ζρ−1/2Λ̃u‖2 − C‖λ+0
µ Λ̃u‖2,

with some c > 0 independent of µ > 0 and some C > 0.

§5. Estimate ‖Λ̃u‖

From now on we often disregard error terms which are bounded by γ2‖λ+0
µ u‖2

without special mention because we have γ3‖λ3ε
µ u‖2 in (3.12). We first note the

following lemma which is easily checked using (3.1) and (3.2).

Lemma 5.1. Let ζ̂, χ̂ ∈ C∞(R) such that ζ̂ ′, χ̂′ ∈ C∞0 (R). Set ζ̂ = ζ̂(θ̂w−1) and

χ̂ = χ̂(φ̂2
1w
−1). Then we have

{φ̂1, ζ̂} ∈ S(w−1λ−1
µ , ḡ), {φ̂1, χ̂} ∈ S(w−1λ−1

µ , ḡ),

{φ̂1, w
−1} ∈ S(w−2λ−1

µ , ḡ), {φ̂1, ωρ
−2} ∈ S(ρ−2λ−1

µ , ḡ),

{φ̂2, χ̂} ∈ S(w−1/2λ−1
µ , ḡ), {φ̂2, ζ̂} ∈ S(λ−1

µ , ḡ),

{φ̂2, ωρ
−2} ∈ S(ρ−3/2λ−1

µ , ḡ), {φ̂2, w
−1} ∈ S(w−1λ−1

µ , ḡ),

{ζ̂, θ̂} ∈ S(λ−1
µ , ḡ), {ζ̂, w−1} ∈ S(w−2λ−1

µ , ḡ), {ζ̂, ωρ−2} ∈ S(ρ−3/2w−1λ−1
µ , ḡ),

{χ̂, θ̂} ∈ S(λ−1
µ , ḡ), {χ̂, w−1} ∈ S(w−1/2, ḡ), {χ̂, ωρ−2} ∈ S(ρ−5/2λ−1

µ , ḡ),

{ζ̂, χ̂} ∈ S(w−3/2λ−1
µ , ḡ), {w−1, ωρ−2} ∈ S(w−2ρ−3/2λ−1

µ , ḡ),

{θ̂, w−1} ∈ S(w−1λ−1
µ , ḡ), {θ̂, ωρ−2} ∈ S(ρ−1λ−1

µ , ḡ), {w−1, λ−1
µ } ∈ S(λ−1

µ , ḡ).

From Lemma 4.4 it follows that

−2 Im(Λ̃v, v) ≥ d

dx0
‖v‖2 +

3

2
γ‖λεµv‖2 + cµn(χ2ζ2

+θ̂w
−1v, v)

+ cµn‖χζ+θ̂1/2w−1/2v‖2 − C‖λ+0
µ v‖2,

(5.1)

with some c > 0. Let ζ0(s), χ0(s) ∈ C∞(R) be such that supp ζ0 is contained in

{ζ+ = 1} and χ0 = 1 for s ≤ c with some c > 0 and suppχ0 ⊂ {χ = 1}. Set

ζ0 = ζ0(θ̂w−1) and χ0 = χ0(φ̂2
1w
−1). Replacing u by w−1ηθ̂1/2u, η = χ0ζ0 in (5.1)
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it follows that

− 2 Im(Λ̃(w−1ηθ̂1/2u), w−1ηθ̂1/2u)

≥ d

dx0
‖w−1ηθ̂1/2u‖2 + cµn(w−1χ2ζ2

+θ̂(w
−1ηθ̂1/2u), w−1ηθ̂1/2u).

(5.2)

We first examine [Λ̃, w−1ηθ̂1/2]u. Note {ξ0 − φ1, w
−1} = −2φ̂2w

−3{ξ0 − φ1, φ̂2}
modulo S(w−1, ḡ). From (3.1) we see ηθ̂1/2{ξ0−φ1, w

−1}−cηw−2θ̂3/2 ∈ S(w−1, ḡ)

with some c ∈ S(1, ḡ). Since ηθ̂1/2{ψ,w−1} = ηθ̂1/2{ζ̃ θ̂φ1, w
−1} for χχ2 = 0 then

noting Lemma 5.1 we have ηθ̂1/2{ξ0 − φ1 +ψ,w−1}− bηw−2θ̂3/2 ∈ S(w−1, ḡ). We

next examine w−1{ξ0 − φ1 + ψ, ηθ̂1/2}. Since θ̂−1/2ζ0 ∈ S(w−1/2, ḡ) from (3.1) we

have w−1{ξ0 − φ1, ηθ̂
1/2} − cηθ̂w−3/2 ∈ µS(w−1, ḡ) by similar arguments. Noting

{ζ̃ θ̂φ1, ηθ̂
1/2} ∈ µS(w−1, ḡ) we get

(5.3) {Λ̃, w−1ηθ̂1/2} − cηw−2θ̂3/2 − c′ηθ̂w−3/2 ∈ µS(w−1, ḡ)

with some c, c′ ∈ µS(1, ḡ). From (5.3) one has

| Im([Λ̃, w−1ηθ̂1/2]u,w−1ηθ̂1/2u)| ≤ Re(cηw−2θ̂3/2u,w−1ηθ̂1/2u)

+ Re(c′ηθ̂w−3/2u,w−1ηθ̂1/2u) + C‖w−1u‖2.

Writing Re(w−1ηθ̂1/2#cηw−2θ̂3/2) = Re(w−3/2ηθ̂#c#ηw−3/2θ̂) modulo S(w−2, ḡ)

and Λ̃(w−1ηθ̂1/2u) = w−1ηθ̂1/2(Λ̃u) + [Λ̃, w−1ηθ̂1/2]u we get

Im(Λ̃w−1(ηθ̂1/2u), w−1ηθ̂1/2u)

≤ Im(w−1ηθ̂1/2(Λ̃u), w−1ηθ̂1/2u)

+ Cµ‖ηw−3/2θ̂u‖2 + C‖ηw−1θ̂1/2u‖2 + C‖w−1u‖2.

(5.4)

We now estimate Im(w−1ηθ̂1/2(Λ̃u), w−1ηθ̂1/2u). Thanks to Lemma 3.3 one can

write

w−1ηθ̂1/2#w−1ηθ̂1/2 = ηw−1/2#ηw−3/2θ̂ + bζ0w
−3/2θ̂ +R

with b ∈ S(1, ḡ) where R ∈ S(w−1, ḡ) and therefore we have

Im(w−1ηθ̂1/2(Λ̃u), w−1ηθ̂1/2u)

≤ Im(w−1/2η(Λ̃u), ηw−3/2θ̂u)

+ Cγ−1/2(‖ζ0w−3/2θ̂u‖2 + ‖w−1u‖2) + Cγ1/2(‖Λ̃u‖2 + ‖u‖2)

≤ (ε1µn)−1‖ηw−1/2Λ̃u‖2 + (ε1µn+ Cγ−1/2)‖ζ0w−3/2θ̂u‖2

+ Cγ1/2‖Λ̃u‖+ C(‖w−1u‖2 + ‖u‖2),

(5.5)
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where b ∈ S(1, ḡ) and ε1 > 0 will be chosen later. Combining (5.2), (5.4) and (5.5)

one obtains

d

dx0
‖w−1ηθ̂1/2u‖2 + cµn(w−1χ2ζ2

+θ̂(w
−1ηθ̂1/2u), w−1ηθ̂1/2u)

≤ (ε1µn)−1‖ηw−1/2Λ̃u‖2 + (ε1µn+ Cγ−1/2 + Cµ)‖ζ0w−3/2θ̂u‖2

+ C
(
‖ηw−1θ̂1/2u‖2 + ‖w−1u‖2 + γ1/2‖Λ̃u‖2

)
.

(5.6)

We now estimate (w−1χ2ζ2
+θ̂(w

−1ηθ̂1/2u), w−1ηθ̂1/2u) from below. Note that

w−1ηθ̂1/2#w−1χ2ζ2
+θ̂#w

−1ηθ̂1/2 = w−3η2χ2ζ2
+θ̂

2 +R

with R ∈ S(w−2, ḡ) and hence we have

(w−1χ2ζ2
+θ̂(w

−1ηθ̂1/2u), w−1ηθ̂1/2u) ≥ (w−3η2θ̂2u, u)− C‖w−1u‖2

for η2χ2ζ2
+ = η2. We have η2w−3θ̂2 = ηw−3/2θ̂#ηw−3/2θ̂+R with R ∈ S(w−2, ḡ)

which proves that

2Re(w−1χ2ζ2
+θ̂(ηw

−1θ̂1/2u), ηw−1θ̂1/2u) ≥ (η2w−3θ̂2u, u)

+ ‖ηw−3/2θ̂u‖2 − C‖w−1u‖2.
(5.7)

Write ζ2
0w
−3θ̂2 = η2w−3θ̂2 + (1− χ2

0)ζ2
0w
−3θ̂2 and consider

µ−2Mζ2
0 θ̂φ

2
1 − (1− χ2

0)ζ2
0w
−3θ̂2 = (µ−1Hζ0θ̂

1/2φ1)2,

where H = (M−(1−χ2
0)w−3λ−2

µ φ̂−2
1 θ̂)1/2 ∈ S(1, ḡ) for large M > 0, which follows

from (1− χ2
0)φ̂−2

1 ∈ S(w−1, ḡ). Then it is not difficult to see

(µ−1Hζ0θ̂
1/2φ1)#(µ−1Hζ0θ̂

1/2φ1) = (µ−1Hζ0θ̂
1/2φ1)2

+ b1w
−1/2φ1 + b2w

−1φ̂2
1λ+R

with bj ∈µ−1S(1, ḡ) andR∈S(w−2, ḡ). Noting that b1w
−1/2φ1 = w−1#b1w

1/2φ1+

R1 and b2w
−1φ̂2

1λ = w−1#b2φ̂
2
1λ + R2 with Ri ∈ S(w−2, ḡ) we conclude that

µ−2M(ζ2
0 θ̂φ

2
1u, u) ≥ ((1− χ2

0)ζ2
0w
−3θ̂2u, u) modulo a term Cµ−2(‖b1w1/2φ1u‖2 +

‖b2φ̂2
1λu‖2+µ2‖w−1u‖2) which proves together with (5.7) that µ3n3|(ζ2

0w
−3θ̂2u, u)|

is bounded by

Cµn3(a2ζ̃ θ̂φ2
1u, u) + 2(w−1χ2ζ2

+θ̂(ηw
−1θ̂1/2)u, ηw−1θ̂1/2u)

+ Cµn3
(
‖w1/2φ1u‖2 + ‖φ̂2

1λu‖2 + µ2‖w−1u‖2
)(5.8)

with some C > 0. To simplify notation we introduce the following definition.
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Definition 5.2. We denote by O(E) a symbol or the set of symbols of the form

a1µw
−1 + a2µω

−1 + a3µ
1/2λ1/2 + a4w

1/2φ1

+ a5ω
1/2φ1 + a6φ2 + a7φ̂

2
1λ+ a8wλ+ a9ωλ

with ai ∈ S(1, ḡ). We denote by S(λt1λt2µ w
s, ḡ)O(E) a symbol or the set of symbols

which is a linear combination of µ−1w−1, µ−1ω−1, µ1/2λ1/2, w1/2φ1, ω1/2φ1, φ2,

λφ̂2
1, wλ and ωλ with coefficients in S(λt1λt2µ w

s, ḡ). We also denote

‖O(E)u‖2 = µ2(‖w−1u‖2 + ‖ω−1u‖2) + µ‖λ1/2u‖2 + ‖w1/2φ1u‖2

+ ‖ω1/2φ1u‖2 + ‖φ2u‖2 + ‖φ̂2
1λu‖2 + ‖wλu‖2 + ‖ωλu‖2.

We choose ε1 > 0 small so that we have a positive contribution (ζ0w
−3θ̂u, u)

when adding (5.6) and (5.8). Then we obtain the following proposition.

Proposition 5.3. Let χ0, ζ0 be as above. Then there exist n0 > 0, µ0 > 0 and

γ0 > 0 such that we have

Cµn‖χ0ζ0w
−1/2Λ̃u‖2 + Cγ‖Λ̃u‖2 ≥ cµ2n2 d

dx0
‖χ0ζ0w

−1θ̂1/2u‖2

+ cµ3n3(‖ζ0w−3/2θ̂u‖2 + (ζ2
0w
−3θ̂2u, u))

− Cµ(ζ̃a2θ̂φ2
1u, u)− Cµ‖O(E)u‖2

with some c > 0 for n ≥ n0, 0 < µ ≤ µ0 and γ ≥ γ0.

§6. Transformed symbol Q̃

We start with the following lemma.

Lemma 6.1. One can write O(E) = T#(O(E) +R) with R ∈ S(λ+0
µ , ḡ).

Proof. Let A ∈ O(E); then it is easy to check T−1T
(α)
(β)A

(β)
(α) ∈ S(λ

−1/4+0
µ , ḡ)O(E)

for |α + β| = 1. Then we have TA − T#A = TA1 with A1 ∈ S(λ
−1/4+0
µ , ḡ)O(E).

Repeating the same arguments we get TA = T#(A + A1 + · · · + A4) + K where

K ∈ S(λ−1
µ , ḡ)O(E) ⊂ S(λ+0

µ , ḡ). Since T#T−1 = 1 − r with r ∈ µ1/4S(1, ḡ)

and hence the inverse of 1 − r exists in L(L2, L2) which is given by Op(b) with

b ∈ S(1, ḡ) (see [Be]) and hence T#T̃ = 1 with T̃ = T−1#b ∈ S(λ+0
µ , ḡ). Then

writing K = T#(T̃#K) we get the assertion. �
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Recall Wα
β = T−1∂βx∂

α
ξ′T ∈ S(λ

−3|α|/4+|β|/2+0
µ , ḡ). Since q

(α)
(β) ∈ S(λ2λ

−|α|
µ , ḡ)

for |α+ β| = 1 by Lemma 3.3 we see

q#T = T#q − inT{q,Ψ}+
i

8
T

∑
|α+β|=3

(−1)|β|

α!β!

(
q

(α)
(β)W

β
α −Wα

β q
(β)
(α)

)
(6.1)

modulo R ∈ µ3/2S(λ1/2+0, ḡ). We first check the following lemma.

Lemma 6.2. We have∑
|α+β|=3

(−1)|β|(q
(α)
(β)W

β
α −Wα

β q
(β)
(α))/α!β! ∈ µS(λ+0

µ , ḡ)O(E).

Proof. Write q = φ2
2 + fφ2

1 with f = 2a2ζ̃ θ̂ + 2a2χ2φ̂
2
1 and recall f ∈ S(1, g) and

f
(α)
(β) ∈ S(λ

−|α|
µ , g) for |α + β| = 1 by Lemma 3.3. Applying Lemma 3.3 again one

can check that (fφ2
1)

(α)
(β)W

β
α with |α+β| = 3 is a linear combination of λ1/2, w1/2φ1

and φ̂2
1λ with coefficients in µS(λ+0

µ , ḡ), which proves the assertion. �

We make a more detailed study of {q,Ψ} and {Ψ, {q,Ψ}}.

Lemma 6.3. We have

{q,Ψ} = νζ2
+a

2θ̂φ1(Γ + ∆){φ1, φ̂2}+ a1O(E) + a2O(E) + a3O(E),

where a1 = ζχa′1, a2 = ζa′2 with a′1 ∈ µS(w−1/2λ+0
µ , ḡ), a′2 ∈ µS(ρ−1/2, ḡ) and

a3 ∈ µS(λ+0
µ , ḡ).

Proof. Denote Ψ1 = ζ2χ2 log φ ∈ S(λ+0
µ , g) and Ψ2 = ζ2Φ, Φ ∈ S(1, g1) so that

Ψ = Ψ1 + Ψ2. Thanks to (3.4) and Lemma 5.1 we can see {φ2
2 + a2χ2φ̂

4
1λ

2,Ψ2} =

a2O(E) where a2 = ζa′2 with a2 ∈ µS(ρ−1/2, ḡ). Similarly, from Lemma 5.1 and

(6.2) {F, log φ} = {F, φ̂2}/w + λ−1/2
µ {F, λ1/2

µ }+ λ1/2
µ {F, λ−1

µ }/2wφ,

we obtain {φ2
2+a2χ2φ̂

4
1λ

2,Ψ1} = a1O(E) with a1 ∈ µS(w−1/2λ+0
µ , ḡ) where clearly

a1 = ζχa′1. We turn to {a2ζ̃ θ̂φ2
1,Ψj}. Repeating similar arguments one can check

that {a2ζ̃ θ̂φ2
1,Ψj} = a2ζ̃ θ̂{φ2

1,Ψj}+ ajO(E) where aj verifies the same properties

as above. From the same arguments proving (4.2) and (4.3) one can show

(6.3) {φ1,Ψ} = (ζ2Γ + ∆){φ1, φ̂2}+R

with R ∈ S(λ+0
µ , ḡ). Since ζ̃ζ = νζ2

+ and ζ̃∆ = νζ2
+∆ we get the assertion. �

Lemma 6.4. We have

{Ψ, {q,Ψ}} = −A1 + ζ+(a2w
−1/2θ̂φ1 + a3φ1) + S(λ+0

µ , ḡ)O(E)
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where aj ∈ µS(λ+0
µ , ḡ), j = 2, 3 and

0 ≤ A1 = νζ2
+a

2θ̂Γ(ζ2Γ + ∆){φ1, φ̂2}2 ∈ µ2S(w−2λ+0
µ , ḡ).

Proof. By obvious abbreviated notation we see Ψ
(α)
(β)(ajO(E))

(β)
(α) ∈ O(E) for |α+

β| = 1 and hence {Ψ,
∑
ajO(E)} ∈ O(E). By Lemma 6.3 it remains to check that

{Ψ, ζ2
+a

2θ̂φ1(Γ + ∆){φ1, φ̂2}}. Since θ̂∆ ∈ S(λ+0
µ , ḡ) and b = ζ2

+a
2θ̂∆{φ1, φ̂2} ∈

µS(λ+0
µ , ḡ) it is easy to check that {Ψ, bφ1} is a linear combination of w1/2φ1

and wλ with coefficients µS(λ+0
µ , ḡ) because ζ2Φ ∈ S(1, g̃). Therefore {Ψ, bφ1} ∈

µS(λ+0
µ , ḡ)O(E). Let us consider {Ψ, B} with B = ζ2

+a
2θ̂φ1Γ{φ1, φ̂2}. Thanks to

(6.3) taking Lemma 5.1 into account we can prove that

{Ψ, B} = −ζ2
+a

2θ̂Γ(ζ2Γ + ∆){φ1, φ̂2}2 + ζ+(a2w
−1/2θ̂φ1 + a3φ1)

modulo S(λ+0
µ , ḡ)O(E) where aj ∈ µS(λ+0

µ , ḡ). This proves the assertion. �

Proposition 6.5. We have

q#T = T#
(
q − in{q,Ψ}+ n2{Ψ, {Ψ, q}}

)
+ i(a1µw

−3/2θ̂ + a2w
1/2θ̂λ+ a3θ̂φ1) + µS(λ+0

µ , ḡ)O(E),

where aj ∈ µS(λ+0
µ , ḡ) are real valued and supp aj ⊂ supp ζ+.

Proof. From Lemma 6.3 it is clear that T−1T
(α)
(β) {q,Ψ}

(β)
(α) is c1θ̂φ1 + c2w

1/2θ̂λ

modulo µ1/2S(λ+0
µ , ḡ)O(E) because λ

−1/4
µ ∈ S(w1/2, ḡ) for |α+ β| = 2. Therefore

we get

T#{q,Ψ} = T{q,Ψ}+ nT{Ψ, {q,Ψ}}/2i+ c1θ̂φ1

+ c2w
1/2θ̂λ+ µS(λ+0

µ , ḡ)O(E),

where ci ∈ µS(λ+0
µ , ḡ) is real. It is clear that supp cj ⊂ supp ζ+. Thus we have

T{q,Ψ} = T#
(
{q,Ψ}+n{Ψ, {Ψ, q}}/2i− c1θ̂φ1− c2µw1/2θ̂λ

)
+µS(λ+0

µ , ḡ)O(E).

From Lemma 6.4 it can be seen that Ψ
(α)
(β){Ψ, {q,Ψ}}

(β)
(α) for |α+β| = 1 are written

as a1µw
−3/2θ̂ + a2ω

1/2θ̂λ+ a3θ̂φ1 modulo µS(λ+0
µ , ḡ)O(E). This proves

T{q,Ψ} = T#({q,Ψ} − n{Ψ, {Ψ, q}}/2i+ a1µw
−3/2θ̂ + a2w

1/2θ̂λ+ a3θ̂φ1)

+ µS(λ+0
µ , ḡ)O(E)

where aj ∈ µS(λ+0
µ , ḡ) with supp aj ⊂ supp ζ+. This proves the assertion. �
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Corollary 6.6. We have

Im Q̃ = T2 − νnζ2
+a

2θ̂φ1Γ{φ1, φ̂2}+ a1µw
−3/2θ̂ + a2w

1/2θ̂λ

+ a3θ̂φ1 + c1O(E) + c2O(E) + µS(λ+0
µ , ḡ)O(E),

where aj ∈ µS(λ+0
µ , ḡ) are real valued with supports are contained in supp ζ+ and

c1 = ζχc′1 with c′1 ∈ µS(w−1/2λ+0
µ , ḡ) and c2 = ζc′2 with c′2 ∈ µS(ρ−1/2, ḡ).

Corollary 6.7. We have

Re Q̃ = q + T1 + ζ+(a1µw
−2θ̂ + a2w

−1/2θ̂φ1 + a3φ1) + S(λ+0
µ , ḡ)O(E),

where aj ∈ µS(λ+0
µ , ḡ) and a1 ≥ 0.

§7. Estimate ((Re Q̃− T1 + κ̄µλ)u, u)

We write Re Q̃ = Re Q̃ − T1 + κ̄µλ + (T1 − κ̄µλ) with κ̄ > 0 in (3.10) and study

((Re Q̃− T1 + κ̄µλ)u, u).

Proposition 7.1. Let c± ∈ S(1, ḡ) be real. Then we have

C
(
(q + κ̄µλ)u, u) ≥

∑
(‖c±ζ±|θ̂|1/2φ1u‖2 + |(c±ζ2

±|θ̂|φ2
1u, u)|)

+ |(φ2
2u, u)|+ |(wφ2

1u, u)|+ |(ωφ2
1u, u)|

+ |(w2λ2u, u)|+ |(ω2λ2u, u)|+ ‖O(E)u‖2.

(7.1)

Proof. In the proof we may assume κ̄ = 1 without restrictions. Write

Ma2ζ̃ θ̂φ2
1 − (c+ζ

2
+θ̂ + c−ζ

2
−|θ̂|)φ2

1 = H2
+ζ

2
+θ̂φ

2
1 +H2

−ζ
2
−|θ̂|φ2

1

with H+ = (Ma2ν − c+)1/2 and H− = (Ma2ĥ − c−)1/2 where M > 0 is chosen

so that Ma2ν − c+ ≥ c and Ma2ĥ − c− ≥ c > 0. Since ζ±|θ̂|1/2 ∈ S(|θ̂|1/2, ḡ) by

Lemma 3.1 noting H± ∈ S(1, ḡ) we can write

ζ±|θ̂|1/2φ1H±#ζ±|θ̂|1/2φ1H± − ζ2
±|θ̂|φ2

1H
2
±

=
∑

|α+β|=2

Cαβ(ζ±|θ̂|1/2φ1H±)
(α)
(β)(ζ±|θ̂|

1/2φ1H±)
(β)
(α)

= b1w
−3φ̂2

1 + b2w
−5/2φ̂1

modulo µ2S(w−2, ḡ), where bi ∈µ2S(1, ḡ). Writing b1w
−3φ̂2

1 = c1w
1/2φ1#w1/2φ1+

R1 and b2w
−5/2φ̂1 = µc2w

−1#w1/2φ1 +R2 with ci ∈ S(1, ḡ) and Ri ∈ µS(w−2, ḡ)

we conclude

(7.2)
∑
|(c±ζ2

±|θ̂|φ2
1u, u)| ≤M(a2ζ̃ θ̂φ2

1u, u) + C‖O(E)u‖2.
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Similarly c2±ζ
2
±|θ̂|φ2

1 can be written

c±ζ±|θ̂|1/2φ1#c±ζ±|θ̂|1/2φ1 + b±µ
2w−5/2φ̂1 + b′±µ

2w−3φ̂2
1 +R

with R ∈ S(w−2, ḡ). Thus ‖c±ζ±|θ̂|1/2φ1u‖2 is estimated also by the right-hand

side of (7.2).

We next study q̃ = φ2
2 + χ2a

2φ4
1λ
−2 + µλ. If χ2 6= 1 so that φ̂2

1 ≤ d3w it

is clear φ̂4
1 ≤ C(φ̂2

2 + λ−1
µ ) and then φ̂4

1λ
2 ≤ C(φ2

2 + µλ) so we have q̃ ≥ cφ̂4
1λ

2

with some c > 0. If χ2 = 1 this inequality is obvious. Since φ4
1λ
−2 + µλ = λ2ω2

and φ2
2 + µλ = w2λ2 it is obvious q̃ ≥ c(w2 + ω2)λ2 with some c > 0. Let us set

q̃−cω2λ2 = F 2 with F = λ(q̃λ−2−cω2)1/2 ∈ S(λ, ḡ). If we note χ2a
2φ̂4

1 ∈ S(w2, g)

and ω ∈ S(ω,G1) with G1 = ω−1/2(|dx|2 + 〈ξ′〉−2
µ |dξ′|2) it is not difficult to see

that F 2 = F#F +R with R ∈ µ2S(w−1 + ω−1, ḡ). Thus we conclude that

(q̃u, u) ≥ c(ω2λ2u, u)− Cµ4(‖ω−1u‖2 + ‖w−1u‖2)− C‖u‖2.

Repeating a similar argument we get (q̃u, u) ≥ c‖φ̂2
1λu‖2−Cµ4‖w−1u‖2−C‖u‖2.

Since ω2λ2 = ωλ#ωλ + R with R ∈ µ2S(ω−1, ḡ), hence (ω2λ2u, u) ≥ ‖ωλu‖2 −
C(µ4‖ω−1u‖2 + ‖u‖2). Recalling φ2

2 + µλ = w2λ2 similar arguments show

((φ2
2 + µλ)u, u) ≥ c(w2λ2u, u) + ‖wλu‖2 − C(µ4‖w−1u‖2 + ‖u‖2).

Noting µλ ≤ w2λ2 ∈ S(λ2, g0) we see (w2λ2u, u) ≥ µ‖λ1/2u‖2 − C‖u‖2. On the

other hand, since one can write w−1 = (w−1λ−1/2)#λ1/2 + R with R ∈ S(1, ḡ),

noting that w−1λ−1/2 ∈ µ−1/2S(1, ḡ) we have ‖w−1u‖2 ≤ Cµ−1‖λ1/2u‖2 +C‖u‖2.

Similarly we have ‖ω−1u‖2 ≤ Cµ−1‖λ1/2u‖2 + C‖u‖2. Thus we get

µ2(‖w−1u‖2 + ‖ω−1u‖2) + µ‖λ1/2u‖2 + ‖wλu‖2 + ‖ωλu‖2

+ |(w2λ2u, u)|+ |(ω2λu, u)|+ ‖φ̂2
1λu‖2

≤ C(q̃u, u) + C‖u‖2.

(7.3)

Noting w1/2φ1#w1/2φ1 =wφ2
1+R withR∈µ2S(w−2, ḡ) and wφ2

1 = Re(λφ̂2
1#wλ)+

R with R ∈ µ2S(w−2, ḡ), we have

‖w1/2φ1u‖2 + |(wφ2
1u, u)| ≤ C‖O(E)u‖2.

We get ‖ω1/2φ1u‖2 + |(ωφ2
1u, u)| ≤ C(‖λφ̂2

1u‖2 +‖ωλu‖2 +µ2‖ω−1u‖2) by a repeti-

tion of similar arguments. It is easy to see ‖φ2u‖2 + |(φ2
2u, u)| ≤ C((φ2

2 +µλ)u, u)+

‖u‖2); then we conclude the assertion by (7.3). �

Corollary 7.2. We have ‖θ̂φ1u‖2 + |(θ̂φ2
1u, u)| ≤ C((q + µλ)u, u) + C‖u‖2.
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Proof. Take η(s) ∈ C∞0 (R) so that ζ− + ζ+ + η = 1. Thanks to Proposition 7.1 it

suffices to prove |(ηθ̂φ2
1u, u)| ≤ C((q + µλ)u, u) + C‖u‖2. Note that one can write

ηθ̂φ2
1 = cwφ2

1; then the assertion follows immediately. �

Lemma 7.3. Let χ0 = χ0(φ̂2
1w
−1) with χ0(s) ∈ C∞0 (R) which is 1 near s = 0.

Then we have

((1− χ0)ζ2
±|θ̂|wλ2u, u) ≤ C((q + µλ)u, u) + C‖u‖2.

Proof. Note that Ma2ζ̃ θ̂φ2
1 − (1− χ0)(ζ2

+θ̂ + ζ2
−|θ̂|)wλ2 = H2

+ζ
2
+θ̂φ

2
1 +H2

−ζ
2
−|θ̂|φ2

1

where H+ = (Ma2ν − (1 − χ0)wφ̂−2
1 )1/2 and H− = (Ma2ĥ − (1 − χ0)wφ̂−2

1 )1/2

which are in S(1, ḡ) taking M > 0 large. The rest of the proof is just a repetition

of the proof of Proposition 7.1. �

Since 0 ≤ ζ+a1θ̂w
−2 ∈ µS(w−2λ+0

µ , ḡ) then (ζ+a1w
−2θ̂u, u) is bounded from

below by −C‖λ+0
µ u‖2. On the other hand, noting ‖w−1/2u‖2 ≤ Cγ−1‖w−1u‖2 +

Cγ‖u‖2 it is easy to check

(7.4) |((a2w
−1/2θ̂φ1 + a3φ1)u, u)| ≤ Cγ−1/2‖O(E)u‖2 + Cγ3/2‖λ+0

µ u‖2.

From Proposition 7.1 and Corollary 7.2 together with (7.4) we obtain the following

proposition.

Proposition 7.4. There exist γ0 > 0, µ0 > 0, n0 > 0 such that we have

C((Re Q̃− T1 + κ̄µλ)u, u) ≥ |(θ̂φ2
1u, u)|+ ‖θ̂φ1u‖2 + ‖O(E)u‖2

modulo Cγ3/2‖λ+0
µ u‖2 for γ ≥ γ0, 0 < µ < µ0 and n ≥ n0. We have also

C(λ2ε
µ (Re Q̃− T1 + κ̄µλ)u, u) + Cγ2‖λ3ε

µ u‖2

≥ |(λ2ε
µ θ̂φ

2
1u, u)|+ ‖λεµθ̂φ1u‖2 + ‖λεµO(E)u‖2.

§8. Estimate Re((Re Q̃− T1 + κ̄µλ)u, (Im λ̃)u)

Recall Lemma 4.3 which gives Im λ̃ = nẽ1Γζ2
+θ̂ +R1 with R1 ∈ S(λ+0

µ , ḡ). Denote

q̃ = φ2
2 + χ2a

2φ4
1λ
−2 + µλ again. Note Re(ẽ1θ̂ζ

2
+Γ#q̃) = ẽ1ζ

2
+θ̂q̃Γ + R with R ∈

µS(λ1+0, ḡ) since Γ ∈ S(w−1λ+0
µ , g̃) and φ2

2 + χ2a
2φ4

1λ
−2 ∈ S(w2λ2, g̃). Thus

noting |(Ru, u)| ≤ Cµ‖λ1/2+0u‖2 we get

Re(q̃u, ẽ1θ̂ζ
2
+Γu) ≥ (ẽ1ζ

2
+θ̂q̃Γu, u)− C‖λ+0

µ O(E)u‖2.

Write Mẽ1ζ
2
+θ̂q̃Γ − µζ2

+θ̂w
2λ2Γ = H#(Mẽ1q̃w

−2λ−2 − µ)Γ#H + R with H =

ζ+θ̂
1/2wλ and R∈µS(λ1+0, ḡ). Since 0 ≤ (Mẽ1q̃w

−2λ−2−µ)Γ ∈ µS(w−1λ+0
µ , ḡ) ⊂
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µS
1/2+0
3/4,1/2 then from the Fefferman–Phong inequality it follows that

M(ẽ1ζ
2
+θ̂q̃Γu, u)− µ(ζ2

+θ̂w
2λ2Γu, u) ≥ −C‖λ+0

µ O(E)u‖2.

Since ζ2
+θ̂w

2λ2Γ = H#Γ#H+R with R ∈ µS(λ1+0, ḡ), taking (ζ2
+−ζ2)θ̂ ∈ S(w, g)

into account we conclude

µ(Γ(ζθ̂1/2wλu), ζθ̂1/2wλu) + µ|(ζ2θ̂w2λ2Γu, u)|

≤M Re(q̃u, ẽ1θ̂ζ
2
+Γu) + C‖λ+0

µ O(E)u‖2.
(8.1)

Noting Γ = r+ 2ωρ−2 and ωsr ∈ S(ws−1λ+0
µ , g̃) for s ≥ 0, a repetition of a similar

argument for ω instead of w shows (8.1) where w is replaced by ω. Note that

(w2 + ω2)Γ ≥ χ2w + ω3ρ−2. It is easy to check that w + ω3ρ−2 ≥ cρ with some

c > 0 and on the support of 1− χ2 we have Cω ≥ ρ ≥ ω. Therefore we obtain

Cρ ≥ (w2 + ω2)Γ ≥ cρ

with some c > 0. Then applying the Fefferman–Phong inequality one obtains

(ζ2θ̂(w2 + ω2)λ2Γu, u) ≥ c‖ζθ̂1/2ρ1/2λu‖2 − C‖λ+0
µ O(E)u‖2. Thus we have the

following lemma.

Lemma 8.1. We have

µ|(ζ2θ̂ρλ2u, u)|+ µ‖ζθ̂1/2ρ1/2λu‖2 ≤ C Re(q̃u, ẽ1θ̂ζ
2
+Γu) + C‖λ+0

µ 0(E)u‖2.

We turn to Re(a2ζ̃ θ̂φ2
1u, ẽ1ζ

2
+θ̂Γu). Since Γ = r + 2ωρ−2 and rθ̂2 ∈ S(w, ḡ)

and ωρ−2φ̂2
1 ∈ S(1, ḡ) we see that Re(ẽ1ζ

2
+θ̂Γ#a2ζ̃ θ̂φ2

1) can be written

νẽ1ζ
4
+θ̂

2a2φ2
1Γ +

∑
|α+β|=2

(−1)|β|

(2i)|α+β|α!β!
(ẽ1ζ

2
+θ̂Γ)

(α)
(β)(a

2ζ̃ θ̂φ2
1)

(β)
(α) +R

with R ∈ µS(λ, ḡ). Consider (ẽ1ζ
2
+θ̂)

(α2)
(β2)Γ

(α1)
(β1)(a2ζ̃ θ̂)

(β′′)
(α′′)(φ

2
1)

(β′)
(α′) for |α+β| = 2. By

Lemma 3.3 it is not difficult to see that we can write such a term as

νcζ2
+wλ

2θ̂2 + ζ+(c21w
−1/2λθ̂ + c22w

−1φ1θ̂ + c23w
−3/2θ̂φ̂2

1λ)

+ (c31w
−1/2φ1 + c32w

−1φ̂2
1λ)

(8.2)

with c ∈ µS(1, ḡ) and cij ∈ µ2S(1, ḡ). One can estimate the last term, the lin-

ear combination with c3j coefficients, applying Proposition 7.1. The second term,

the linear combination with c2j coefficients, can be estimated thanks to Proposi-

tions 5.3 and 7.1. Indeed, writing c23ζ+θ̂φ̂
2
1λ = Re(c23ζ+w

−3/2θ̂#φ̂2
1λ) + R with

R ∈ S(w1/2λ, ḡ) we have

|Re(c23ζ+w
−3/2θ̂φ̂2

1λu, u)| ≤ Cµ2γ−1/2‖ζ+w−3/2θ̂u‖2 + Cγ1/2‖O(E)u‖2.
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Other terms can be estimated similarly. To estimate the first term in (8.2), choosing

ν > 0 small we write ζ2
+θ̂wλ

2−νcζ2
+wθ̂

2λ2 = H#H+R with H = ζ+θ̂
1/2w1/2λ(1−

νcθ̂)1/2 and R ∈ S(w2λ2+0, ḡ) and apply Lemma 8.1. We now prove the following

result.

Lemma 8.2. There are c > 0 and ν0 > 0 such that we have

Re(a2ζ̃ θ̂φ2
1u, ẽ1ζ

2
+θ̂Γu) ≥ cνµ(Γ(ζ+θ̂φ1)u, ζ+θ̂φ1u)

− C(µ3n+ γ−1/2)‖ζw−3/2θ̂u‖2

− C(µn−1 + γ−1/2)‖ζw1/2θ̂λu‖2

− C‖θ̂φ1u‖2 − Cγ1/2‖O(E)u‖2

(8.3)

for 0 < ν ≤ ν0.

Proof. It remains to estimate ν Re(ẽ1ζ
4
+θ̂

2a2φ2
1Γu, u) from below. Since (ζ4

+ −
ζ2
+)θ̂2φ2

1Γ ∈ S(wφ2
1λ

+0
µ , ḡ) it suffices to study ν Re(ẽ1ζ

2
+θ̂

2a2φ2
1Γu, u). Note that

Re(ζ+θ̂φ1#ẽ1a
2Γ#ζ+θ̂φ1) = ẽ1ζ

2
+θ̂

2a2φ2
1Γ−

∑ (−1)|β1+β2+β3|

4α1!β1! · · ·β3!

× (ζ+θ̂φ1)
(α1+α2)
(β1+β2) (ẽ1a

2Γ)
(β1+α3)
(α1+β3)(ζ+θ̂φ1)

(β2+β3)
(α2+α3) +R,

where the sum is taken over |α1 + β1 + · · ·+ β3| = 2 and R ∈ µ2S(λ1+0, ḡ) which

follows from Lemma 3.3. Here it can be checked that the second term is written

c1ζ
2w−1λθ̂2 + c2ζw

−1θ̂φ1 + c3w
−1φ̂2

1λ+ c4w
−1/2φ1 + c5w

−1/2ζθ̂λ

with ci ∈ µ2S(λ+0
µ , ḡ) modulo µ2S(w−1λ+0

µ , ḡ). To estimate the first term let us

write c1ζ
2w−1λθ̂2 = Re(c1ζw

−3/2θ̂#ζw1/2λθ̂) + R with R ∈ µ2S(λ1+0, ḡ). Then

one can estimate |Re(c1ζ2w−1θ̂2u, u)| by

Cµ3n‖ζw−3/2θ̂u‖2 + Cµn−1‖ζw1/2λθ̂u‖2 + C‖λ+0
µ O(E)u‖2.

It is easy to see that |((c2ζw−1θ̂φ1 + c3w
−1φ̂2

1λ+ c4w
−1/2φ1 + c5w

−1/2ζθ̂λ)u, u)| is
bounded by Cγ−1/2(‖ζw−3/2θ̂u‖2 + ‖ζw1/2θ̂λu‖2) + Cγ1/2‖O(E)u‖2. To end the

proof it suffices to apply the Fefferman–Phong inequality to obtain

Re(ẽ1a
2Γ(ζ+θ̂φ1u), ζ+θ̂φ1u) ≥ cµRe(Γ(ζ+θ̂φ1u), ζ+θ̂φ1u)− C‖θ̂φ1u‖2

because ẽ1a
2 − cµ ≥ 0 with some c > 0. �

Similar arguments proving Lemma 8.2 show the estimate

Re(a2χ2φ̂
4
1λ

2u, ẽ1ζ
2
+θ̂Γu) ≥ −Cγ−1/2(‖ζ+w−3/2θ̂u‖2 + ‖ζ+w1/2θ̂λu‖2)

− Cγ1/2‖λ+0
µ O(E)u‖2.
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We turn to consider

(8.4) ((a1µw
−2θ̂ + a2w

−1/2θ̂φ1 + a3φ1)u, (Im λ̃)u).

To handle (8.4) we prepare a lemma.

Lemma 8.3. We have

Re(Γu, v) ≤ (Γv, v) + (Γw,w) + C(‖λ+0
µ v‖2 + ‖λ+0

µ w‖2).

Proof. Since 0 ≤ Γ ∈ S(λ
1/2+0
µ , ḡ) it follows from the Fefferman–Phong inequality

that (Γu, u) ≥ −C‖λ+0
µ u‖2 with some C > 0. Thus with L = Γ + Cλ+0

µ we have

(Lu, u) ≥ 0 so that |Re(Lu, v)| ≤ (Lu, u) + (Lv, v) which proves the assertion. �

Write Re(ẽ1ζ
2
+θ̂Γ#a1µw

−2θ̂) = µRe(Γζ+θ̂wλ#aζ+w
−1θ̂) + R where a =

ẽ1a1w
−2λ−1 ∈ µS(λ+0

µ , ḡ) and R ∈ µ2S(w−2, ḡ) and apply Lemma 8.3 to get

|Re(ẽ1Γζ2
+θ̂u, a1µw

−2θ̂u)| ≤ Cµn−1 Re(Γζ+θ̂wλu, ζ+θ̂wλu)

+ CµnRe(Γaζ+w
−1θ̂u, aζ+w

−1θ̂u)

+ C‖λ+0
µ O(E)u‖2.

Since |Re(Γaζ+w−1θ̂u, aζ+w
−1θ̂u)| ≤ Cµ2(‖ζ+w−3/2θ̂u‖2 +‖w−1λ+0

µ u‖2) we con-

clude

|Re(ẽ1Γζ2
+θ̂u, a1µw

−2θ̂u)| ≤ Cµn−1 Re(Γζ+θ̂wλu, ζ+θ̂wλu)

+ Cµ3n‖ζ+w−3/2θ̂u‖2 + C‖λ+0
µ O(E)u‖2).

Similar arguments show

|Re(ẽ1Γζ2
+θ̂u, a3φ1u)| ≤ γ−1/2 Re(Γζ+θ̂wλu, ζ+θ̂wλu) + Cγ1/2‖λ+0

µ O(E)u‖2.

Repeating similar arguments we conclude that (8.4) is bounded by

C(µn−1 + γ−1/2)Re(Γζ+θ̂wλu, ζ+θ̂wλu)

+ Cµ3n‖ζ+w−3/2θ̂u‖2 + Cγ1/2‖O(E)u‖2.

We finally consider the term (qu, bu) with b ∈ S(λ+0
µ , ḡ). Noting ζ̃ ′θ̂1/2 ∈ S(w1/2, ḡ)

one sees

Re(b#a2ζ̃2θ̂φ2
1) = Re(baζ̃θ̂1/2φ1#aζ̃θ̂1/2φ1) +O(E) ·O(E) +O(E)

and hence one obtains |(qu, bu)| ≤ C‖O(E)u‖2. We summarize in the following

proposition.
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Proposition 8.4. There exist c > 0 and γ0 > 0, µ0 > 0, n0 > 0, ν0 > 0 such

that we have

C
{
γ((q + µλ)u, u) + γ3‖u‖2 + Re((Re Q̃− T1 + κ̄µλ)u, Im λ̃ u)

+ µn‖χζw−1/2Λ̃u‖2
}

≥ cnνµ(Γ(ζ+θ̂φ1)u, ζ+θ̂φ1u) + cnµ|(ζ2θ̂ρλ2u, u)|+ cnµ‖ζθ̂1/2ρ1/2λu‖2

for γ ≥ γ0, 0 < µ < µ0, n ≥ n0 and 0 < ν ≤ ν0.

§9. Estimates of error terms

We estimate Re(Λ̃u, (Im Q̃− T2)u). Recall

Im Q̃− T2 = −νnζ2
+a

2θ̂φ1Γ{φ1, φ̂2}+ a1µw
−3/2θ̂ + a2w

1/2θ̂λ

+ a3θ̂φ1 + c1O(E) + c2O(E) + µS(λ+0
µ , ḡ)O(E).

Thanks to Lemma 3.3 one can write

a2ζ2
+θ̂φ1{φ1, φ̂2}Γ = µζ+#âΓ#ζ+θ̂φ1 + c1ζ+θ̂λ+ c2ζ+φ1

with â = µ−1a2{φ1, φ̂2} modulo λ+0
µ O(E) where ci ∈ µS(λ+0

µ , ḡ). Noting ζζ+ = ζ+
it follows from Lemma 8.3 that

νnRe(a2ζ2
+θ̂φ1{φ1, φ̂2}Γu, Λ̃u) ≤ ε−1nν2µ(âΓ(ζ+θ̂φ1)u, (ζ+θ̂φ1)u)

+ εnµ(âΓζ(Λ̃u), ζ(Λ̃u)) + cnνµ‖ζ+ρ−1/2Λ̃u‖2

+ cnνµ‖ζ+ρ1/2θ̂λu‖2

+ C(‖λ+0
µ θ̂φ1u‖2 + ‖λ+0

µ Λ̃u‖2 + ‖λ+0
µ O(E)u‖2)

where ε > 0 will be determined later. We turn to estimating

((a1µw
−3/2θ̂ + a2w

1/2θ̂λ+ a3θ̂φ1)u, Λ̃u).

It is easy to see that this is bounded by

Cγ−1/2(‖ζw−3/2θ̂u‖2 + ‖ζw1/2θ̂λu‖2)

+ Cγ1/2(‖Λ̃u‖2 + ‖θ̂φ1u‖2 + ‖λ+0
µ O(E)u‖2).

Finally we consider |(c1O(E)u+ c2O(E)u, Λ̃u)|. Recalling Corollary 6.6 it is easily

seen that this term is estimated by

Cγ−1/2(‖ζχw−1/2Λ̃u‖2 + ‖ζρ−1/2Λ̃u‖2) + Cγ1/2‖λ+0
µ O(E)u‖2.

Noting ‖w1/2φ1u‖2 + ‖ω1/2φ1u‖2 ≥ ‖ρ1/2φ1u‖2 − C‖O(E)u‖2 we obtain the fol-

lowing proposition.
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Proposition 9.1. The term |Re(Λ̃u, (Im Q̃− T2)u)| is bounded by

cε−1nν2µ(Γ(ζ+θ̂φ1)u, (ζ+θ̂φ1)u) + cεnµ(Γζ(Λ̃u), ζ(Λ̃u))

+ (cnνµ+ Cγ−1/2)(‖ζρ−1/2Λ̃u‖2 + ‖ζρ1/2θ̂λu‖2)

+ Cγ−1/2(‖ζw−3/2θ̂u‖2 + ‖ζχw−1/2Λ̃u‖2)

+ Cγ1/2(‖θ̂φ1u‖2 + ‖Λ̃u‖2 + ‖λ+0
µ O(E)u‖2)

where c > 0 is independent of ε, ν, µ and γ.

We turn to consider ([D0 − Re λ̃,Re Q̃− T1]u, u). Recall

ξ0 − Re λ̃ = ξ0 − φ1 + ψ + n(b2θ̂ + b3φ̂
2
1)w−1/2 +R1

where ψ = ζ̃ θ̂φ1 + χ2φ̂
3
1λ and R ∈ S(λ+0

µ , ḡ) and

Re Q̃− T1 = q + ζ+(a1µw
−2θ̂ + a2w

−1/2θ̂φ1 + a3φ1) + µS(λ+0
µ , ḡ)O(E)

with q = φ2
2 +2ζ̃a2θ̂φ2

1 +2χ2a
2φ̂4

1λ
2. Let us study (φ2{ξ0−φ1 +ψ, φ2}u, u). Taking

(3.9) into account it suffices to estimate

ν(c1ζ
2
+θ̂φ2λu, u), (c2φ2φ̂

2
1λu, u), (c3θ̂φ2φ1u, u)

where cj ∈ µS(1, ḡ). Write ζ2
+θ̂φ2λ = (1 − χ2)ζ2

+θ̂φ2λ + χ2ζ2
+θ̂φ2λ and consider

Mζ2
+θ̂φ

2
1 − (1− χ2)ζ2

+θ̂φ2λ with a large M > 0. Note

M2ζ2
+θ̂φ

2
1 − (1− χ2)ζ2

+θ̂φ2λ = (Mφ1)2F

where 0 ≤ F = ζ2
+θ̂
(
1 − (1 − χ2)φ̂2φ̂

−2
1 /M2

)
∈ S(1, g). Writing (Mφ1)2F =

Re(Mφ1#F#Mφ1) +R with R ∈ S(w−2, ḡ) we obtain from the Fefferman–Phong

inequality that

M2(ζ2
+θ̂φ

2
1u, u) ≥ ((1− χ2)ζ2

+θ̂φ2λu, u)− C‖O(E)u‖2.

Consider now 2wχ2ζ2
+θ̂λ

2 − χ2ζ2θ̂φ2λ = (w1/2λ)2F with 0 ≤ F = χ2ζ2
+θ̂(2 −

φ̂2w
−1) ∈ S(1, ḡ). Since (w1/2λ)2F = Re(w1/2λ#F#w1/2λ)+R with R ∈ µS(λ, ḡ)

from the Fefferman–Phong inequality again one has

2(wχ2ζ2
+θ̂λ

2u, u) ≥ (χ2ζ2
+θ̂φ2λu, u)− C‖w1/2λ1/2u‖2 − C‖O(E)u‖2.

Here we note that w1/2λ1/2#w1/2λ1/2 = wλ+R with R ∈ S(1, ḡ) and hence

2(wχ2ζ2
+θ̂λ

2u, u) ≥ (χ2ζ2
+θ̂φ2λu, u)− C‖O(E)u‖2.

It is easy to see |(c3θ̂φ1φ2u, u)| ≤ C(‖θ̂φ1u‖2 + ‖O(E)u‖2); then we have the

following lemma.
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Lemma 9.2. There exists C > 0 such that

|({ξ0 − φ1 + ψ, φ2
2}u, u)| ≤ Cνµ(χ2ζ2

+θ̂wλ
2u, u)

+ C(ζ2
+θ̂φ

2
1u, u) + C(‖θ̂φ1u‖2 + ‖O(E)u‖2).

We next consider {ξ0 − φ1 + ψ, ζ̃a2θ̂φ2
1} which is

{ξ0 − φ1, ζ̃a
2θ̂φ2

1}+ {ζ̃ θ̂φ1, a
2φ1}ζ̃ θ̂φ1 + {χ2φ̂

3
1λ, ζ̃a

2θ̂φ2
1}.

It follows that {χ2φ̂
3
1λ, ζ̃a

2θ̂φ2
1} = c1φ̂

4
1λ

2 and {ζ̃ θ̂φ1, a
2φ1}ζ̃ θ̂φ1 = c2θ̂φ

2
1 from

Lemma 3.3. Since {ξ0 − φ1, ζ̃a
2θ̂φ2

1} = c1θ̂φ
2
1 + c2φ̂

2
1λφ2 + c3θ̂φ1φ2 + c4φ̂

4
1λ

2 by

(3.1), (3.2) and Lemma 5.1 we get

{ξ0 − φ1 + ψ, ζ̃a2θ̂φ2
1} = c1θ̂φ

2
1 + c2φ̂

2
1λφ2 + c4θ̂φ1φ2 + c5φ̂

4
1λ

2.

We then consider {ξ0 − φ1 + ψ, χ2a
2φ̂4

1λ
2} which is

{ξ0 − φ1, χ2a
2φ̂4

1λ
2}+ {ζ̃ θ̂φ1, χ2a

2φ̂4
1λ

2}+ {χ2φ̂
3
1λ, a

2φ̂1λ}χ2φ̂
3
1λ.

A repetition of similar arguments shows

{ξ0 − φ1 + ψ, χ2a
2φ̂4

1λ
2} = c1θ̂φ

2
1 + c2φ̂

4
1λ

2 + φ̂2
1λφ2.

Therefore |({ξ0 − φ1 + ψ, a2ζ̃ θ̂φ2
1 + a2χ2φ̂

4
1λ

2}u, u)| is bounded by C|(θ̂φ2
1u, u)|+

C‖O(E)u‖2. Denoting ζ+aj by aj we turn to checking {ξ0 − φ1 + ψ, a2w
−1/2θ̂φ1}

where a2 ∈ S(λ+0
µ , ḡ) with support contained in supp ζ+. Noting Lemmas 3.3

and 4.1 it is easy to see that

{ξ0 − φ1 + ψ, a2w
−1/2θ̂φ1} = c0ζ

2w1/2λθ̂φ1 + c1µζw
−1/2θ̂λ+ c2µλ

with cj ∈ µS(λ+0
µ , ḡ). Writing c0ζ

2w1/2λθ̂φ1 = Re(c0ζθ̂
1/2φ1#ζw1/2θ̂1/2λ) + R1

and c1ζw
−1/2θ̂λ = Re(ζw−3/2θ̂#c1wλ) +R2 with Ri ∈ µS(λ1+0, ḡ) we obtain the

estimate

|(c0ζ2w1/2λθ̂φ1u, u)| ≤ Cγ−1/2(‖ζw1/2θ̂1/2λu‖2 + ‖ζw−3/2θ̂u‖2)

+ Cγ1/2‖c0ζθ̂1/2φ1u‖2 + C‖O(E)u‖2.

The term |(c1ζw−1/2θ̂λu, u)| can be estimated similarly. In order to estimate {ξ0−
φ1 + ψ, a1w

−2θ̂} we need to look at a1 more carefully. Since (wφ)−1 ∈ S(λµ, g)

the main part of {F, log φ} is w−1{F, φ̂2} by (6.2). Therefore noting (3.4), it is not

difficult to see from the proof of Lemma 6.4 that a1 has the form

(9.1) f(ζ+)k1(ζ ′+)k2(χ)k3(χ′)k4 φ̂`11 φ̂
`2
2 w

s1ωs2ρs3(log φ)ε,
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where f ∈ S(1, g0) and ki, `i ∈ N and si ∈ R, ε = 0 or 1 which verifies

s1 + s2 + s3 + `1/2 + `2 ≥ 0

so that this is in S(λ+0
µ , ḡ). Here we examine that ξ0 − φ1 + ψ commutes better

against such terms of the form (9.1) than against a general symbol in S(λ+0
µ , ḡ).

Lemma 9.3. Denote Λ = ξ0 − φ1 + ψ; then {Λ, φ̂1}, {Λ, φ̂2} and {Λ, θ̂} are

linear combinations of φ̂1, φ̂2 and θ̂ with µS(1, ḡ) coefficients. We denote these by

{Λ, φ̂1} = µS(1, ḡ)O(Σ) and so on.

Proof. It follows easily from (3.1) and (3.2) that {ξ0 − φ1, φ̂1}, {ξ0 − φ1, φ̂2} and

{ξ0 − φ1, θ̂} are O(Σ). Write ψ = (ζ̃ θ̂ + χ2φ̂
2
1)φ1 and note Lemma 3.3; then the

desired assertion for {ψ, φ̂1}, {ψ, φ̂2} and {ψ, θ̂} follows immediately. �

Corollary 9.4. One can write {Λ, w−1} = µS(w−1, ḡ) + µS(w−2, ḡ)O(Σ) and

{Λ, ω−1} = µS(ω−1, ḡ) + µS(ω−3/2, ḡ)O(Σ) and that {Λ, ρ−1} = µS(w−1, ḡ) +

µS(w−2, ḡ)O(Σ) + S(ω−3/2, ḡ)O(Σ). We have also {Λ, ζ} = c1w
−1θ̂ + c2w

−1/2

with ci ∈ µS(1, ḡ) and the same holds for {Λ, χ}.

Let us consider {Λ, a1} where a1 has the form (9.1) with k1 + k2 ≥ 1. Since

(χ)k3(χ′)k4 φ̂1 ∈ S(w1/2, ḡ) it follows from Lemma 9.3 and Corollary 9.4 that

{Λ, a1} can be written as c0w
−1θ̂ + c1w

−1/2 + c2ω
−1/2 with ci ∈ µS(λ+0

µ , ḡ).

Since ω−1/2w−1/2 ∈ µ−1/2S(λ1/2, ḡ) then applying Lemma 9.3 and Corollary 9.4

again to {Λ, w−2θ̂} we conclude that

µ{Λ, a1w
−2θ̂} = c0µ

3w−3θ̂2 + c1µ
5/2w−3/2θ̂λ1/2 + c2µ

2φ1 +O(E)

where ci ∈ S(λ+0
µ , ḡ). Writing c0w

−3θ̂2 = Re(c0w
−3/2θ̂#w−3/2θ̂) + R with R ∈

S(w−2, ḡ) and recalling that the supports of ci are contained in the support of ζ+
we obtain the estimate

|µ({ξ0 − φ1 + ψ, a1w
−2θ̂}u, u)|

≤ C(µ3 + γ−1/2)‖ζw−3/2θ̂u‖2 + Cγ1/2‖O(E)u‖2.
(9.2)

Since the estimate |({ξ0−φ1 +ψ, ζ+a3φ1}u, u)| ≤ C(‖θ̂φ1u‖2 +‖O(E)u‖2) is easy

we obtain the following proposition.
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Proposition 9.5. We have

|([D0 − Re λ̃,Re Q̃]u, u)| ≤ cνµ(χ2ζ2
+θ̂wλ

2u, u)

+ (cµ3 + Cγ−1/2)‖ζw−3/2θ̂u‖2 + C(ζ2
+θ̂φ

2
1u, u)

+ Cγ−1/2(‖ζρ1/2θ̂1/2λu‖2 + ‖ζw−3/2θ̂u‖2)

+ Cγ1/2(‖θ̂φ1u‖2 + ‖ζθ̂1/2φ1u‖2 + ‖O(E)u‖2)

where c > 0 is independent of ν, µ and γ.

§10. Lower-order terms

Finally we handle the lower-order terms. By (3.11) one can write

T2 = µc0θ̂λ+ b0θ̂φ1 + b1φ̂
2
1λ+ b2φ2 + b3w

1/2φ1

with bj ∈ µS(1, g) where c0 = 0 for θ̂ < 0 by assumption. Write c0θ̂λ = c0ζ
2
+θ̂λ+

(1 − ζ2
+)c0θ̂λ where it is clear that we can write (1 − ζ2

+)c0θ̂λ = b4wλ. One can

write

(1− χ2)ζ2
+θ̂λ = ω1/2ρ−1ζ+#ρω−1/2(1− χ2)ζ+θ̂λ

+ ω1/2ρ−1ζ+#c ρω−1/2θ̂λ+R

with c ∈ S(λ
−1/4
µ , ḡ) and R ∈ µ1/2S(λ1/2, ḡ). Moreover supp c ⊂ supp(1 − χ2).

Indeed, since ω±1/2ρ∓1 ∈ S(ω±1/2ρ∓1, g̃) then ω1/2ρ−1ζ+#ρω−1/2(1 − χ2)ζ+θ̂λ

can be written as cζ+θ̂λ+R with c ∈ S(λ
−1/4
µ , ḡ) and R ∈ µ1/2S(λ1/2, ḡ). Writing

cζ+θ̂λ = ω1/2ρ−1ζ+#cρω−1/2θ̂λ+R again we get the desired assertion. This proves

|((1− χ2)ζ2
+θ̂λu, Λ̃u)| ≤ Cγ−1/2‖ω1/2ρ−1(ζ+Λ̃u)‖2

+ Cγ1/2‖cρω−1/2θ̂λu‖2 + C(‖Λ̃u‖2 + ‖O(E)u‖2)

with c ∈ S(λ
−1/4
µ , ḡ) where supp c ⊂ supp(1 − χ2). Now consider ‖cρω−1/2θ̂λu‖2.

Note that cρω−1/2 ∈ S(ω1/2, ḡ) because if c 6= 0 then we have Cφ̂2
1 ≥ w and

hence C2ω2 ≥ w2. Thus it is clear ω2 ≤ φ̂2
2 + ω2 = ρ2 ≤ (C2 + 1)ω2 so that

ω1/2 ≤ ρω−1/2 ≤ (1+C ′)ω1/2. Then it is easily seen that cρω−1/2θ̂λ#cρω−1/2θ̂λ =

aωλ3/2+R with a ∈ S(1, ḡ) andR ∈ S(λ, ḡ) so that ‖cρw−1/2θ̂λu‖2 ≤ C‖O(E)u‖2.

Summarizing we get

|((1− χ2)ζ2
+θ̂λu, Λ̃u)| ≤ Cγ−1/2‖ρ−1ω1/2ζ+(Λ̃u)‖2

+ Cγ1/2(‖Λ̃u‖2 + ‖O(E)u‖2).
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We turn to studying (χ2ζ2
+θ̂λu, Λ̃u). Let us write χ2ζ2

+θ̂λ = χζ+w
−1/2#χζ+w

1/2θ̂λ

+ cζ+w
1/2θ̂λ+R with c ∈ S(1, ḡ) and R ∈ S(λ1/2, ḡ) and hence we have

|(χ2ζ2
+θ̂λu, Λ̃u)| ≤ cn1/2‖χζ+w−1/2Λ̃u‖2 + (cn−1/2 + Cγ−1/2)‖ζ+w1/2θ̂λu‖2

+ Cγ1/2(‖O(E)u‖2 + ‖Λ̃u‖2).

Since it is clear that |((b0θ̂φ1 + b1φ̂
2
1λ + b2φ2 + b3w

1/2φ1)u, Λ̃u)| is bounded by

C(‖Λ̃u‖2 + ‖θ̂φ1u‖2 + ‖O(E)u‖2) we get the following proposition.

Proposition 10.1. We have

|(T2u, Λ̃u)| ≤ (cµn1/2 + Cγ−1/2)‖χζ+w−1/2Λ̃u‖2

+ (cµn−1/2 + Cγ−1/2)‖ζ+w1/2θ̂λu‖2 + Cγ−1/2‖ρ−1ω1/2ζΛ̃u‖2

+ Cγ1/2(‖Λ̃u‖2 + ‖λ+0
µ O(E)u‖2)

with c > 0 independent of n, ν, µ and λ.

We turn to studying ((T1−κ̄µλ)u, u). From Lemma 3.1 it follows that ζ2
−h|θ̂|φ2

1

= h1/2φ1ζ−|θ̂|1/2#h1/2φ1ζ−|θ̂|1/2 +R with R ∈ µ2S(w−2, g). By Lemma 3.1 again

we see

φ2#h1/2φ1ζ−|θ̂|1/2 − h1/2φ1ζ−|θ̂|1/2#φ2 = {φ2, h
1/2φ1ζ−|θ̂|1/2}/i+R

with R ∈ µ2S(w−2, g). Here, since h = µĉ{φ1, φ̂2}−1, we have

{h1/2φ1ζ−|θ̂|1/2, φ2} = µ1/2ζ−(ĉ{φ1, φ̂2}|θ̂|)1/2e+ cµw1/2φ1

with c ∈ S(1, g) thanks to Lemma 3.1 because φ
(α)
2 ∈ µS(w, g) for |α| = 1. Then

the following estimate follows easily:

µ1/2
(
ζ−(ĉ{φ1, φ̂2}|θ̂|)1/2e u, u

)
≤ (φ2

2u, u) + (hζ2
−|θ̂|φ2

1u, u) + Cγ−1/2‖O(E)u‖2

modulo Cγ3/4‖u‖2 because ‖w−1u‖2 ≤ C(γ−1‖w−1u‖2 + γ‖u‖2). From (3.10) it

follows that

(10.1) µ1/2ζ−(ĉ{φ1, φ̂2}|θ̂|)1/2 e+ T1 ≥ 2κ̄µλ− Cµw1/2λ

with some C > 0. In fact if θ̂ ≤ −b3w then ζ− = 1 and the assertion follows

by (3.10). If −b3w ≤ θ̂ ≤ 0 then we have Cw1/2λ ≥ µ−1/2(ĉ{φ1, φ̂2}|θ̂|)1/2 e and

hence the assertion. Since S(λ,G) ⊂ S1
1,1/2 the Fefferman–Phong inequality gives

µ1/2(ĉζ−({φ1, φ̂2}|θ|)1/2e u, u) + (T1u, u) ≥ 2κ̄µ(λu, u)− Cµ‖O(E)u‖2.

We summarize what we have proved in the next proposition.
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Proposition 10.2. We have

(φ2
2u, u) + (hζ2

−|θ̂|φ2
1u, u) + ((T1 − κ̄µλ)u, u)

≥ κ̄µ(λu, u)− C(µ+ γ−1/2)‖O(E)u‖2 − Cγ3/2‖λ+0
µ u‖2.

Similarly (λ2ε
µ φ

2
2u, u) + (λ2ε

µ hζ
2
−|θ̂|φ2

1u, u) + (λ2ε
µ (T1 − κ̄µλ)u, u) is bounded from

below by κ̄µ(λ2ε
µ λu, u)− C(µ+ γ−1/2)‖λεµO(E)u‖2 − Cγ3/2‖λ2ε

µ u‖2.

Finally we estimate Re((T1−κ̄µλ)u, (Im λ̃)u). Since ζ−ζ+ = 0 then from (10.1)

we see that Re((T1 − κ̄µλ)u, (Im λ̃)u) is bounded from below by

Re((κ̄µλ− Cµw1/2λ)u, ẽ1Γζ+θ̂u)− C‖λ+0
µ O(E)u‖2.

Note that Re(ẽ1Γζ+θ̂#(κ̄µλ − Cµw1/2λ)) = κ̄µẽ1Γζ+θ̂λ + cζ+w
−1/2θ̂λ + R with

c ∈ S(λ+0
µ , ḡ) and R ∈ µS(w−1, ḡ). Since 0 ≤ ẽ1Γζ+θ̂λ ∈ S(w−1λ1+0, ḡ) and

noting cζ+w
−1/2θ̂λ = Re(ζ+w

−3/2θ̂#cwλ) + R with R ∈ S(λ, ḡ) one can see that

Re(ẽ1Γζ+θ̂#(κ̄µλ−Cµw1/2λ) has a bound from below −Cγ−1/2‖ζ+w−3/2θ̂u‖2 −
Cγ1/2‖λ+0

µ O(E)u‖2. Therefore we obtain the following lemma.

Lemma 10.3. We have

Re((T1 − κ̄µλ)u, (Im λ̃)u) ≥ −Cγ−1/2‖ζ+w−3/2θ̂u‖2 − Cγ1/2‖λ+0
µ O(E)u‖2.

We first choose ε > 0 small so that cεnµ(Γζ(Λ̃u), ζ(Λ̃u)) in Proposition 9.1

can be controlled by the corresponding term in Proposition 4.5. We next choose

ν > 0 small so that cnνµ‖ζρ−1/2Λ̃u‖2 and

cε−1nν2µ(Γ(ζ+θ̂φ1)u, (ζ+θ̂φ1)u) + cnνµ‖ζρ1/2θ̂λu‖2

in Proposition 9.1 will be small against the corresponding terms in Propositions 4.5

and 8.4. We then choose n such that µ3‖ζw−3/2θ̂u‖2 in Proposition 9.5 can be

controlled by Proposition 5.3 and cµn1/2‖χζ+w−1/2Λ̃u‖2 + cµn−1/2‖ζ+w1/2θ̂λu‖2

in Proposition 10.1 can be estimated by Propositions 4.5 and 8.4. Finally we choose

µ > 0 small enough and then γ > 0 large enough so that µn4 is small and γµ4

is large. Then combining Propositions 4.5, 5.3, 7.4, 8.4, 9.1, 9.5, 10.1 and 10.2 we

obtain the desired weighted energy estimates. Once we obtain the energy estimates,

in order to conclude the well-posedness of the Cauchy problem it suffices to apply

[N5, Thm. 1.1].
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