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On the Cauchy Problem for Differential Operators
with Double Characteristics, A Transition from
Non-effective to Effective Characteristics

by

Tatsuo NISHITANI

Abstract

We discuss the well-posedness of the Cauchy problem for hyperbolic operators with double
characteristics which changes from non-effectively hyperbolic to effectively hyperbolic, on
the double characterisitic manifold, across a submanifold of codimension 1. We assume
that there is no bicharacteristic tangent to the double characteristic manifold and the
spatial dimension is 2. Then we prove the well-posedness of the Cauchy problem in all
Gevrey classes assuming, on the double characteristic manifold, that the ratio of the
imaginary part of the subprincipal symbol to the real eigenvalue of the Hamilton map is
bounded and that the sum of the real part of the subprincipal symbol and the modulus
of the imaginary eigenvalue of the Hamilton map is strictly positive.
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81. Introduction

This paper is a continuation of our previous papers [N3, N4]. Let
P(x,D) = —D3 + Ay (x,D")Dy + As(x,D’)

be a differential operator of order 2 in Dy with coefficients A;(z, D’), classical
pseudodifferential operator of order j on R™ depending smoothly on xg where x =
(wo,2") = (w0, x1,...,2n). We put P(zo,2",&0,&) = p(x,§) + Pi(x,§) + Po(z,§),
where p, P; and Py, respectively, are the principal symbol, the first-order and the
zeroth-order parts of the symbol of P(x, D). We assume that the principal symbol
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p(z,€) of P(x, D) vanishes exactly of order 2 on a C'™° manifold ¥ and

(1.1) rank (dej A dxj|2) = constant.

Jj=0

As in [N3, N4] we assume that codim ¥ = 3 and

(1.2)

the spectral structure of F, changes simply
across a submanifold S of codimension 1 of 3.

By conjugation with a Fourier integral operator one can assume A; = 0, and then,
near any point p € X, one can write

p(l‘,f) = _58 + (bl(xagl)z + ¢2(xa€,)2

where d¢, and d¢s are linearly independent at p and ¥ = {£y = 0,¢1 = 0, ¢ = 0}.
Under assumptions (1.1) and (1.2) without restrictions we can assume (see [N3])

{&0,#2} >0, {0, 01} = O(|(d1,92)|)

near p. Here and in what follows f = O(|(¢1, ¢2)|) means that f is a linear combi-
nation of ¢; and ¢o near the reference point. We first recall the following lemma.

Lemma 1.1 ([N4, Lem. 1.2]). If the spectral structure of F, changes across S
then we have {&y, d2}? —{p1, 2} = 0 on S and one of the following cases occurs:

(i) {€o, 232 — {01, 92}% < 0 in X\ S so that p is non-effectively hyperbolic in X
with Ker F? NIm F} = {0} in £\ S and Ker F NIm F? # {0} on S,

(ii) {€o, P2}% — {¢1, 0212 > 0 in £\ S so that p is effectively hyperbolic in ¥\ S
and non-effectively hyperbolic on S with Ker Fg N Im Fg # {0},

(iii) {&o, p2}? — {01, P2}? changes the sign across S, that is, p is non-effectively
hyperbolic on one side of ¥\ S with Ker F; NIm F? = {0}, non-effectively
hyperbolic on S with Ker Fﬁ N Im Fﬁ # {0} and effectively hyperbolic on the
other side.

Let us denote

2F = {(2,8) € D] £({&, ¢2}* — {1, 02}*) > 0}

The eigenvalues of F,, are 0 and i\/{€07¢2}2 —{¢1,02}% on ¥ so that F), has
non-zero real eigenvalues on X7 and non-zero purely imaginary eigenvalues on ¥~
in case (iii). Let us set

26(p)? = [{&0, d2} — {01, 02}
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and we make precise the meaning of “simply” in (1.2), namely we assume that
(1.3) k(p) ~ dists(p, S) (case (i) or case (ii)), &?(p) ~ dists(p,S) (case (iii))

on X where disty(p, S) denotes the distance from p to S on X. Our aim in this
paper is to complete the proof of the following result:

Theorem 1.2. Assume (1.2) and that there is no bicharacteristic tangent to 3
and that there exist ¢ > 0, C' > 0 such that

(1.4) (1 =e€)ulp) + Re Paun(p) = €, |Im Pap(p)| < Celp), pe Xn{[¢]=1}

where te(p) (e(p) > 0) are real eigenvalues and Liu(p) (p(p) > 0) are purely

imaginary eigenvalues of F,(p). We also assume n = 2 in case (4i). Then the
Cauchy problem for P is well posed in any Gevrey class 4 for s > 1.

Case (i), namely e(p) = 0 on X: Theorem 1.2 was proved in [BPP]| while
in [N3], it was proved under a less restrictive assumption of the non-existence of
bicharacteristics tangent to S. Case (ii) and hence p(p) = 0 on X: Theorem 1.2 was
proved in [N4]. Some transition cases from non-effectively hyperbolic to effectively
hyperbolic are studied in [BB, BE, E|. In particular in [BE, E] a typical case of
(iii) was studied but condition (1.4) was not investigated. In this paper we give
a proof of Theorem 1.2 for case (iii) assuming n = 2, while if n = 1 the case
Ker F7 NIm F # {0} never occurs.

Remark 1.3. For differential operators, condition (1.4) with ¢ = 0 can be ex-
pressed as

distc (Paub(p), [=1(p), u(p)]) < Celp), peX,

which generalizes the Ivrii-Petkov—-Hormander condition ([IP, H1]) and Melrose
conjectured in [Me] that this condition is necessary for the Cauchy problem to be
C*> well posed, but little is known about necessary conditions for well-posedness
when the spectral structure of F}, changes.

Remark 1.4. With X* = {&, po}He, — {1, 02} Hy, £ V2k(p)Hy, it is easy to
see that

Fp(p)X* = £e(p)X*, pexn?
and that there exist exactly two bicharacteristics passing p transversally to ¥
with tangents X* (see [KoN]). We note that the surface ¢ = 0 is spacelike on X+

because doo(X*) = {€o, ¢2}2 — {b1, 9212 = 2k(p)? > 0. On the other hand there
is no bicharacteristic reaching X~ (see [Iv1]).
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§2. Idea of the proof of Theorem 1.2

From Lemma 1.1 we have Ker F? N Im F # {0} on X~ and there is no bichar-
acteristic tangent to X~ by assumption. Then thanks to [N2, Thm. 3.3] p admits
an elementary decomposition microlocally at every point on 3~. As in [BPP, N3]
we try to decompose p = —(§o + ¢1 — ¥) (o — &1 + ¥) + ¢ with ¢ = o(|¢1]) and
non-negative ¢ verifying {{op — ¢1 + ¥, q} = O(q) in ¥~. These requirements es-
sentially determine ¢ and actually the non-existence of a tangent bicharacteristic
ensures that £y — 11 + ¥ commutes against ¢ better than the usual case. On the
other hand, as checked in Remark 1.4, the surface (52 = 0 is spacelike on ¥T; then
[N1, N4] suggest the use of a pseudodifferential weight T ~ e¢!°2 %2 where ¢ is
a cutoff symbol to ¥ . Our strategy for proving Theorem 1.2 is rather naive so
that we make such a decomposition and derive weighted energy estimates with
the cutoff weight 7. But the decomposition should be compatible with the cutoff
weights and to achieve this goal we must be careful in choosing cutoff symbols and
in estimating errors caused by them. The assumption n = 2 enables us to choose
all symbols that we need, including cutoff symbols, in S3/4 /2 and we carry out a
pseudodifferential calculus within the framework of S3/4 1 /2 though we often need
the calculus in smaller and more specific classes than Ss/4 1 /2.

In the rest of this section we rewrite the assumptions in more explicit forms.
In what follows we assume n = 2 and we work in a conic neighborhood of p € S.
Without restrictions we may assume p = (0, e3), es = (0,0,1) € R? with a system
of local coordinates x = (zg, ") = (zo, %1, z2). From (1.3) and Lemma 1.1 one can
write

(2.1) {€0, P2} — {01, 02} = 0/E'| + c161 + 262

in a neighborhood of p where S is defined by {# = 0} N X and df # 0 on S and
hence ¥* = ¥ N {£f > 0}. Compare this to cases (i) and (ii) where we have
{&0, #2}2 — {p1, P2}2 = F0% + 11 + a9 respectively ([N3, N4]). Here note that

e(p) = V2i(p), pexT, (5) = 0, peXTt,
"o, pes— T \Vakp), pes

Since {£o, ¢2}? — {d1, P2} = {&0 — b1, P2 }{& + ¢1,d2} = 0 on S we may assume

without restrictions that

(2.2) {& — ¢1,62} =0 on S

and {&o, d2} = {d1, P2} > 0 on S (see [N3, N4J).
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Lemma 2.1. In a conic neighborhood of p' = (0,e3) one can assume that

P2(2,8) = da(@)e(z, &), Oz, &)|&l™ = v(@) + f(2,&)da(2),

where 0 # e(x,&') € Sty and f(x,&') € SY 4. Moreover we have {0,¢;} = c;b2
with ¢; € 59 .

Proof. Since {&y, ¢2} # 0 then one can write ¢o = (zg — 2(x,&’))be where 1 is
independent of 2y and by # 0. From {¢1, ¢2} # 0 we see {12, 1} # 0. This shows
that di, is not proportional to 23:0 §;j dz; at p because otherwise we would have
$1(0,€2) = 061(0,e2)/0& # 0. Since E¢g = &y, Xo = o, X1 = 1o verifies the
commutation relations and d=g, dXp, dX7, Z?:o §j dx; are linearly independent
at p, as just observed above, these coordinates extend to homogeneous symplectic
coordinates (X, =) (see [H1, Thm. 21.1.9]). Switching the notation to (z,{) we can
assume that ¢o = (xg — x1)e. Since {P2, 1} # 0 one can write ¢ = (&1 — ¥1)by
where 11 is independent of &y and &;. Writing v (x, &) = 1 (2, £2) + e1¢o and
0(x,&') = 0(x', &) +(x0—21)01+(£1—11 )02 so that S is given by & = 0, zo—z1 = 0,
& — (2, &) =0, 0(z, &) = 0 where (2, &) = (21, 1, 2,1 (2, &), &2). Since
# is homogeneous of degree 1 in & one can write

O(a’, &) = 0(a',1)Ea = (2 )Eo

in a conic neighborhood of (0, ez), where we have used the assumption n = 2. Let

us set 0 = (2')6a+ ({:(2')€2, 61} /{1, d2}); then it is clear that {6, ¢;} = ;0

and hence this 6 is the desired one. O

Remark 2.2. Since the restriction n = 2 is used only to prove Lemma 2.1 then
Theorem 1.2 is still true if we can choose homogeneous symplectic coordinates
such that Lemma 2.1 holds.

We now assume that ¢5 and 6 satisfy Lemma 2.1 and set
0=01%7", dr=hl¢|™
so that 6 and ¢; are homogeneous of degree 0 in £’. From (2.2) we can write
(2.3) {&0 — ¢1, 02} = 0 + b1 + cho

near j where ¢ > 0, which follows from (2.1). Since we have {£, + ¢1, 2 }|é¢0||e| =
2% on ¥ and {& + ¢1,02}/2{d1,¢92} = 1 on S then for any € > 0 there is a
neighborhood of p where we have

(2.4) (1= )r*(p) < {1, d2}[ele] < (1 +e)x*(p).
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Here we examine how the non-existence of tangent bicharacteristics reflects on the
Poisson brackets of symbols.

Proposition 2.3. [N4, Prop. 2.1] Assume {0,¢;} = O(|(¢1, ¢2)|) and that there
is no bicharacteristic tangent to 3. Then we have

{503 0}(/)) = 07 {{50 - ¢1a ¢2}7 ¢2}(p) - O, pE S.

Lemma 2.4. Assume that {{& — ¢1,¢2},02} = 0 on S. Then one can write
{€0 — b1, 02} = ¢0 + cobd1 + 107 + cadpa.

Lemma 2.5. Assume that {€y,0} = 0, {{&o — ¢1,d2},d2} = 0 on S. Then we
hcwe {fo — ¢1,9} = 000 —+ 61(725% —+ 02¢2.

Proof. Note that {&y — ¢1,0} = af + Bd1 + y¢a. On the other hand we see

{0,{6 — ¢1,02}} = O(19),  {& — 61, {0,023} = O(1(6,9)]).
Then from the Jacobi identity it follows that 8 = O(|(f, $)|) and hence we have

{& — o1, é} = af + cofp1 + clqgf + ca¢o which proves the assertion. O

Corollary 2.6. We have {€y,0} = cof + 102 + c26hs.

§3. Cutoff and weight symbols

We use the same notation as in [N4]. We first make a dilation of the coordinate
To: x9 — pxo with small g > 0 so that

P(:c,ﬁ,u) = NZP(Hanx,7M71€O7£,)
= p(,LLLL'(), .’L'/7 £0a Mf/) + MPI(Man 1'/7 603 5/) + M2PO(Man CE/)
=:p(z, & p) + Pi(x, & p) + Polz, p).

In what follows we often express such symbols dropping . It is easy to see that
a(pzo, z’, p€') = a(x, &', p) € S(u€")™, go) if a(x, ') € STy where

go = ldef* +(€/);21d€ 1%, (€)= (™2 + |2 = uHug).

To prove the well-posedness of the Cauchy problem, applying [N5, Thm. 1.1], it
suffices to derive energy estimates for P, which coincides with the original P in
a conic neighborhood of (0,0,¢’), |¢'| = 1. Thus we can assume that the following
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conditions are satisfied globally:

p(x,8) = =& + d1(2, &) + da(,£')?, ¢j € S((1€'), 90),

{60, 91} = di1 + daa, dj € uS(1, go),
(3.1) {&0 — 1. 92} = el + cobdy + 193 + cagpa, ¢>0, &€ S(1, o),

{€0,0} = chf + ¢,d? + choa,

{1, 2} > e, c>0,

where c¢;, ¢j€ pS(1, go) and 0 € S(1,go) verifies

(3.2) (0,0} = ¢jba, ¢; € uS(1,90)

and Sup|é|, Sup|<;A5j\ can be assumed to be sufficiently small, shrinking a conic
neighborhood of p’ where we are working.

Let us put Psyp, = Pf +iP5 with real Pf € uS({(ug’), go). Then from (1.4) and
(2.4) the following conditions can be assumed to be satisfied globally:

P2\ e{ b, da}lblle] + Py > eplug’)  in 6 <0,
(3:3) PP > cp{pg') in 6 >0,
Py = ,ucmé(,u{’} + 1101 + c12¢02 (co =0 for 0 < 0),

with a constant ¢ > 0 and ¢y € S(1,go) and ¢;; € uS(1, go). Recall from [N4] that
€0 (62 + w),

7+ i{ log (b + its) — log (d — iw)} = m — 2arg (b + i),

(@3 + (€)1, w= (3t + (€)Y

=3 +w? =3+ ol + (€)1 > (0 +w?)/2,

¢
d
w
2

where ¢ plays a major role in our arguments and ® is introduced in order to
manage the energy estimates in the region C¢? > w. Note that

(3.4) {F, @} = 2(w{F, ¢} — $2{F,w})/p.
We use the following metrics:
g =w?|dzl> +w (&), ?|d¢'?,
g1=(p7 ' +wV2)2|dx|? + wm ) 21dE 2,
g = (w " +wV2)2da)? + (¢) 2| de!?,
= (&) dal? + (€)°%)de')2.
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Note that g, g1 < g < 4g and g is the metric defining the class S3,4,1/2 for any fixed
p > 0. As checked in [N4] we have w € S(w,g1), p € S(p,91) and @ € S(1,41).
With a cutoff symbol ¢ (x,&") = ¢(fw™?) we define the weight

(3.5) T = exp (nC2(x*log ¢ + ),

where x = x(¢2w™') and ((s) = 1in s > —b; and ((s) = 0 in s < —by with
¢’(s) > 0 and n is a positive parameter.

X X2 ¢ ¢

0 d dy ds by —by —b, 0 b by b

Let Co(z,¢) = Ce(w™) and xa(z,¢) = x2(¢fw™") where (+(s) = 1 in
+s > b3 and 0 in £s < be so that (¢4 = (4 and ((—- = 0. We simply write
X, X2 for x(z,&') and xa(z,&’) and (, ¢4 for {(x,&’) and (4 (z,¢’) if there is no
confusion. It is easy to check x, x2 € S(1, g). As for cutoff symbols ¢, {x+ we have
the following lemma.

Lemma 3.1. Let G = w?|dz|? + (¢'),2|d¢']* (< g), then w € S(w,G) and
o € S(p,G). We have also (,(x € S(1,G). Let s € R, then (10° € S(|0]%,G).

Moreover if 0 < s <1 and |a| # 0 we have \(C+és)gg§| < Ca5w5<§’>;|a‘w"m.

Proof. To prove ¢ € S(¢,G), with ¢ = ¢ + w, it is enough to show ¢ € S(¢, Q).
Note that one can write

353?/¢2($)(]3+ 9508(¢) !

w 2w
with bag € S(w™1P1(¢) %, G) and ang € S((wH(g), Hw71(€),1, G) for |a +
Bl = 1. By induction on |a + S| we see easily 970%¢ = bagd + aap with bas €
S(w= 1Bl ),LICY',G) and aqp € S((w™ <§/>u Yw=18l(¢! >,L‘a|,G) for any «, . Since
w () < 2¢ we get the assertion. To prove ¢ € S(1,G) it suffices to show

00086 = = bagd + aap

(3.6) IC'0708 (Bw )] < Capw™ (€)1,
By Lemma 2.1 without restrictions we may assume 0(z, &) = ¢(z') + f(z, & ) pa(z)

from which it follows |8§‘,é| < Ca<§’>;‘°‘|w for |a| > 1. Noting |¢("0w™!| < C we
get (3.6). On the support of ( the estimate

IC Eg§|<zca1 ﬁkQSIQ C¥1)|0 L...16 ak)w 1

holds where |a; + 8;] > 1 and a3 + - —|— ap = «, 1+ -+ Br = B. On the
other hand Lemma 2.1 shows that |9 i B ({’);Iai‘wl_mi‘ if |o;| # 0 and

(B)
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bounded by Cg, if |a;| = 0. Since 61w is bounded on the support of ¢y the third
assertion is clear. If |o;| # 0 then noting és\éggz))ﬁfl\ < Coypw (€)1 w181 on
the support of (; one gets the last assertion. 0

Remark 3.2. If n > 2 the ¢(2’) in Lemma 2.1 would depend on £ also and hence
¢, ¢+ do not belong to S(1,g) in general.

To factorize p let us define

(3.7) ¥ = (—hC2 +vC2)0¢1 + X203 (1) 7% = (01 + X207 (u€') 72,

with a positive parameter 0 < v <« 1 which will be determined later, where
¢ =—h¢% + v with h = pé{p1, 2}~ > 0. Using ¢ we rewrite p as

p=—( +¢1— )€ — b1 + ) + 2061 — ¥ + ¢3

(3.8)
=—(& +d1 — V)0 — ¢1 + ) +q,

where .

q = ¢3 + 202087 + 20 X291 (€') 72,

a=(1-¢0/2 X208 {ug)~?/2)"/>.
The main part of {{y — ¢1 + v, ¢} will be {&, — ¢1 + ¥, #3} which is required to
be O(q) in 6 < 0 as explained above. Indeed, by our choice of ¢, we have

{60 — b1+, do} = (1 — (2)éb + pvh='e (30

(3.9) o
+ c1¢7 + 2001 + 3o,

where 1 — (2 =0 in 6 < —bsw so that |(1 —¢2)§| < Cw in 0 < 0.
Lemma 3.3. We have (CE@)EZ;, (X2<£%)EZ; € S(<f/>;‘a|,g) for |a + B = 1. Hence

the same holds for aggg. In particular \(éé)gg) l, |(X2(£%)Eg)| and |agg;| are bounded by

C’agwl/Q<§’);|a‘w_|a‘/2_|5| forja+p| > 1 and bounded by C’agw@’);‘alw_'aw_‘m
for |a+B| > 2.

In this paper Op(¢) denotes the Weyl quantized pseudodifferential operator
with symbol ¢ and we denote Op(¢) Op(1)) = Op(¢p#1). We often use the same
letter to denote a symbol and the operator with such a symbol if there is no
confusion. Thus we denote

Op(¢yp)u = ¢tpu,  Op(¢) Op(v)u = ¢(Pu).

We make some additional preparation (see [Iv2]). Let ¢ = idy + icy; with dy, 11
in (3.2), (3.3) and we set M =&+ 1 — v+ ¢, A =& — ¢1 + ¢ — c and write

P+ P +iPy = —M#A+ Q= —M#A+q+ Ty +iT.
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Note that —(& + ¢1 — ) (& — ¢d1 + ) = —MA — cpy — 2¢p — 2. In view of
Lemma 3.3 it is not difficult to check

M#A = MA + i{€, 1 — ¥ + c11} + crw2p1 + cod? (u€') + R

with ¢; € uS(1,g) and R € p?S(w1,g). Therefore we see from (3.1) that T}
satisfies

(3.10) A\ {on, G} blle(w, &) + T > 2mp(ue’) in 6 <0,
Ty > 2Ru(ug’) in 6 > 0,

with some £ > 0, and T, can be written

(3.11) Ty = pco@(ug'y + bobr + by ¢ (ue') + bads + byw'/ ¢,

with b; € 1S(1,g). Thus To(ué’) ™" = O(|(6, ¢2, 2, w'/2$1)|) so that we can get
rid of the term O(él) in the expression of T5. We transform P by T so that

PT =TP, P=-MA+Q.

To simplify notation we set ¥ = (?(x?log® + ®). Then we have the following
lemma.

Lemma 3.4. We have T = ™Y € S(e™, (log” (€/),,)7)-

Proof. Note that 858?/ log ¢ = ¢—1a§ag¢ for [ + 3] =1 and ¢~ € S(¢p~1,9).

Since |log ¢| < C'log (¢'),, and g, g1 < 4g the assertion is clear. O
Let us write M = Dy — m(z, D’), A = Dy — A(z, D’) and fix any small £ > 0.

Proposition 3.5 ([N3, N4|). Let P = —(M—iv)\ie)(]\—i'y)\ie)—}-é, then we have

. d - -
2Im(Pu, Au) > dTJO(IIAUHQ + ((ReQ)u,u) + 7 |{D") 2 ul|?)

+ YIIAS (Au)]|® + 2y Re(A2 (Qu), u) + 2((Im i) Au, Au)
+ 2Re(Au, (Im Q)u) + Im([Dy — Re A, Re Qu, u)
+2Re((ReQ)u, (Im Nu) + (v /2) | X} ul®

+ 292 (N (Im A, u).

(3.12)

In this paper the positive large parameters n, v and the positive small pa-
rameter p are assumed to satisfy nu'/* < 1 and yu* > 1.

Remark 3.6. The weight (4D’)? is introduced to control error terms log™ (D'),
caused by the metric (log? (¢'),,)g, and hence we can choose £ > 0 as small as we
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please, which determines the well-posed Gevrey class v(1/2¢). Actually the Cauchy
problem is well posed in the space consisting of all C§® functions of whose Fourier
transform is bounded by exp (—C'log™ (¢')) with some C' > 0, N > 0.

Definition 3.7. We set A = (u&’), A\, = (¢'), and we write a € S(A50, g) (resp.
a € SN0, g)) if a € S((E)37,g) (resp. a € S((u')*(€)2,g)) for any € > 0. We
also write

[Aull < CINFull - (vesp. A ul)

if ||Au|| < C(D")s*=ul| (vesp. [|Aull < Ccl[(uD’)*(D")5ul|) for any ¢ > 0 with
C: > 0 independent of p > 0.

§4. Transformed symbols ),

We first list several properties of cutoff symbols.

Lemma 4.1. We have

Xx2=0, (=0, ({4=0C, ((=vd,
(4.1) ba, x¢2, (6, (LB S(w,g), xb1e€Sw/?yg),

where ¢’ = ¢'(Bw™"). We also have oA {6 e S(wiastg).

Denote Wg = T~'970¢T and note that we have for a € S(A5™w', g) or
ac S()‘sa go)a

a#T = TH#a —inT{a, ¥}

i (RO LAIT B
+§T| Z| NET (agyWe = Wa)) + T#R
a+3|=3

with some R € S(wt)\ff5/4+0,g) or R ¢ S()\s)\;5/2+0,§) respectively. From

Lemma 3.3 it follows that ¢Eg))W£ € S(1,9) for |+ S| = 3 then the main parts

of Imm and Im A are, up to the parameter n,

{&o £ ¢1 F b, U} = (*{& £ 1 F b, x* log ¢ + @}
+{&+t o1 F9,P (P logo + D).

To estimate {&y £ ¢1 F ¥, x%log ¢ + ®} it suffices to repeat similar arguments as
in [N4] to get

(4.2) {€o+ 1 F ¥, X logd + @} = {& £ b1 T, do}(r +2wp ) + R
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with R € pS(AFY, g) where
0<r=x*w't+d¢ S(w_l)\:t'o 9),
0<d=—-2xxdlw >z logp € S(w™ A, g)
and the fact 6 > 0 follows from [N4, Lem. 3.6] which was a key point in treating

(4.2). We examine how the term {& &= ¢1 F 9, (?}(x?log ¢ + ®) can be managed.
It is not difficult to see

{€o £ 1 FU,*H (X log o + @)
= —20C' 0w 3 go(x*log ¢ + D) {&o £ b1 F ¥, do} + R,

with R € pS(AF?, g). Here we note the following result.

(4.3)

Lemma 4.2. We have
0< A =-20("0w3ps(x*log ¢ + ®) € S(w AL, g).

Proof. Since ¢olog¢ > 0 by [N5, Lem. 3.6] it is clear 0 < —2x2¢¢" 0w 3pylog ¢ €
S(w™t A0, g) because ¢'(Bw=1)0 < 0. Noting that 0 < & = 7 —2arg (o + iw) < 7
ifpo >0and —7 < & =7 —2arg (2 +iw) < 0 for ¢ < 0 it is also clear p2P > 0
and hence 0 < —2¢¢'w3¢,® € S(w™', ). Thus we get the assertion. O

To simplify notation we set I' = 7 + 2wp~2. From (4.2) and (4.3) it suffices to
consider n(A + ¢20){& £ ¢1 F 1, ¢ }. As in [N4] we set

{61 = pé+v{pi, ¢}, ez ={ +¢1, ¢},
e2 = {&o + ¢1, P2} — vO{¢1, $2}C3.

Noting Lemma 4.1 it is easy to see

{€0— d1 + ¥, b2} = péd + C{p1, 210 + coldy + 3x207 {1, da},
{€o+¢1 — 1, da} = {0 + d1, P2} — ({1, 6230 — 3x20 {1, B}
modulo S(w, §). Noting ¢ = ¢2 +¢(1—¢2), ¢(1 - ¢2)0 € S(w, §) we have

{C2{§0 — 1+, 2} = (e1 + a1¢31)ﬁé + a3,
{0+ b1 — ¥, g2} = €2 + azei,

with a; € ©S(1,g) modulo S(w,g). Since Af, T'¢? € S(Af0,g) by Lemma 4.1 we
see Im A = n¢2 (e; +ap)T0 + R with R € S\, 9) and a € pS(Af0, g). Similarly
we have Imm = n(es + a’$?) A + nea¢?T' + R with R € S(Af0,g). Noting that the
main part of Re A comes from {{§, — ¢ + ¢, U}, ¥} we summarize the following

(4.4)

lemma.
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Lemma 4.3. We have
ImXA = n(e; +b161)TC20 + Ry,
RGS\ = gf)l — ’L/) + n(bQé =+ b3(5%)ﬂ)71/2 =+ Rg,
Imm = neC?T + n(es + b4<£%)A + R3,
where b; € pS(ALY,g) and R; € S(ALY, g).

Lemma 4.4. There exists ¢ > 0 which is independent of p > 0 such that we have

C(lmAu,u) > cun(FCiéu,u) - C’1||)\Z0u||2
> (G404 ), (¢4042)u) — Col| 3 Oul?,
C(Immu,u) > cun((¢*T + A)u,u) — C3H)\:[Ou||2
> cun(T'(Cu), Cu) + cun(Au,u) — C4||)\;0u||2.

We have also

Clim X, u) > epn (82w V2l + [IC, 62 p 2u)?),

Cim i, u) > pn(| O™ 2ul? + [¢p~/2ul?)
modulo C'||\}Oul|* with some C, ¢ > 0 independent of yu.

Proof. Since gi;l(O, e2) = 0 we may assume é; = e; +b1q§1 > pcy with ¢; > 0. Take

M > 0 so that Mé, > . Since 0 < (Mé&; — u)T¢20 € pS(w™'Af°,g) C usg//jj%

then from the Fefferman—Phong inequality (see [H2, Thm. 18.6.8]) it follows that
M(élFCiéu,u) > /J(l"(iéu, u) — ClH)\IOuHQ.

Here note that T¢20 = (C402)#T#(¢0'?) + R with R € S(A0,g). Since
|(Ru,u)] < C'[|Af%ul|* the first assertion follows. To show the second assertion
it suffices to repeat the same arguments proving the first assertion. To prove the
third assertion we first note that

(3G 0u,u), (CPou,u), (Auyu) > —ClIA; ul?,

which follows from the Fefferman—Phong inequality since §, A € § (w_l)\l‘fo, J)
are non-negative. We then write ngﬁéw—l = X(+é1/2w_1/2#XC+é1/2w_1/2 + R
with R € S(\f°,g) because ¢,0% € S(1,G) c S(1,7) by Lemma 3.1, which
gives the first term on the right-hand side. To get the second term on the right-
hand side we note that w=! + wp~=2 > p~1/2; on the other hand if y < 1 we
have Cw > p with some C > 0 and hence Cwp~2 > p~!. Therefore it follows
C’(ngiéuf1 + Ciéwp’z) > Cip’lé and the Fefferman—Phong inequality proves

COPCEow u,u) + C(CF Owp2u,u) > [|Cop~ Y 20ul]* — CIIN Pl %,
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which gives the second term. The proof of the last assertion is similar. O

Applying Lemma 4.4 one can show the following proposition.
Proposition 4.5. We have

2((Imm)Au, Au) > cpn((T + A)(CAw), (CAu)) 4 cun||xCw™ 2 Au)|?
Fepnl|cw 2o Rul + cpnl|Cp 2 Ral — CINFORul?,

with some ¢ > 0 independent of u > 0 and some C > 0.

§5. Estimate ||Aul|

From now on we often disregard error terms which are bounded by 72 [[XfOu]|?
without special mention because we have 4[| A% u||? in (3.12). We first note the
following lemma which is easily checked using (3.1) and (3.2).

Lemma 5.1. Let C, { € C*(R) such that A= C§°(R). Set (= é(éwil) and
L = (2w 1), Then we have

(61,0} € Sw AL g), {61, %} € S(w AL g),

{qglawil} S S(w72>\;1 g)? {Q£17WP72} € S(p72>\;17g)7

{2, %} € S(w 2N g), {d2.Che SN 9),

{QAﬁQawp_Q} € S(p_3/2)\;1 g)? {(&2,’(,0_1} S S(U)_l)\;l,g),

{C.0} e S\ 9), {Gw ' eSw At g), {Cwp e St PwTIN Y g),
{x,0} € SNLE), {wreSw V2 g), {vwp e SN 9),
{&, X e S\t g), {w w2} e S(w2p 21 g),

{007} €S9, {Bwp e S(TIALY), {w A e S 9).

From Lemma 4.4 it follows that

_ d 3 .
—9] A > 2 et 5 2 22 —1
o m(Av.v) = ol + SoINel? + eum(x* ¢ bu"v.v)

+epn|| ¢80 2ol2 — CA ol

with some ¢ > 0. Let (p(s), xo(s) € C*°(R) be such that supp (o is contained in
{¢+ =1} and xo = 1 for s < ¢ with some ¢ > 0 and supp xo C {x = 1}. Set
Co = Co(fw™') and xo = xo(¢3w ™). Replacing u by w™'nf'/?u, n = xo(o in (5.1)
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it follows that

—2Im(A(w™ 0 %), w ' nd'/?u)
(52) d 1 s1/2 12 1,225, —1,41/2 —1,41/2
ZEHU} N0 “ul|” + cpun(w™ x*CGO(w Nl u), w Nl “u).
0

We first examine [A, w1n0/2u. Note {& — ¢1,w '} = —2dw3{& — 1, do}
modulo S(w™?, ). From (3.1) we see nf'/2{&, — 1, w1} —enuw=26%/2 € S(w™1, g)
with some ¢ € S(1,g). Since nf'/2{sp, w1} = nf/2{h¢;, w1} for xx2 = 0 then
noting Lemma 5.1 we have 70'/2{¢&, — ¢1 + ¢, w1} —bpw=26%/2 € S(w™!, 7). We
next examine w={& — ¢, + b, nf'/2}. Since §-1/2¢y € S(w1/2,g) from (3.1) we
have w1 {& — ¢1, 702} — enfw=3/2 € pS(w=",g) by similar arguments. Noting
{CO¢1, 10" /?} € pS(w=?, g) we get

(5.3) {A, w00} — ecnpuw=20%% — ¢nbw=>/% € uS(w=,9)
with some ¢, ¢ € pS(1, ). From (5.3) one has

[Im((A, ™' 56"?Ju, w 'y /)| < Re(enuw™26*/>u, w™'nb"/*u)
+ Re(cnfw 3" ?u, w™nd" u) + Cflw ul.
Writing Re(fuflnél/z#cnw?éwf) = Re~(w*3/271é#c#nw*3/2é) modulo S(w~2, g)
an w- u)=w- u) + [A,w™ u we get
dA 1n91/2 17791/2 A A 17791/2
Im (R (nf/2u), w'nd"/2u)
(5.4) < Im(w ™02 (Au), w™'nh" ?u)
+ Cpllnw=3"20ul|? + C|lnw=6"?u|? + C|lw ul|>.
We now estimate Im(wilnél/z([\”&),wilnél/zu). Thanks to Lemma 3.3 one can
write
w G 2w~ ndY? = =Y 240w 3/20 + bCow=3/26 + R

with b € S(1,5) where R € S(w™!,g) and therefore we have

Im (w902 (Au), w nd*/ ?u)
< Im(w™Y2n(Au), nw=3/?0u)
(5.5) + Oy 2 ([ Gow™ 20ull® + ™ ) + Cy 2 (| Rul + Jlul?)
< (expon) w2 Rall? + (expon + Oy V2) |G/ 20
+ Oy 2| Al + C(Jw Ml + [|ul]?),
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where b € S(1,3) and €; > 0 will be chosen later. Combining (5.2), (5.4) and (5.5)
one obtains

d . . X .
w00 2ull® + cpn(w™ X G O(w 0" 2u), w6 u)
0

(5:6) < (erpm) [l Rall? + (erpn + Cy~V2 + Cpa) | Gow™/ Gl

+ C([lpw™10"2u® + o™ ull* + /2| Aul®).
We now estimate (w_lngﬁé(w_lnél/zu),w‘lnél/zu) from below. Note that
wnfY 24w 22 Bt Y2 = win®2C20% + R
with R € S(w™2,g) and hence we have
(0™ N2 w0 20), w0 2u) > (w8, w) —

for n?x?¢2 = n?. We have nzw*3é2 = nw*?’/zé#nw"gﬂé + R with R € S(w™2,9)
which proves that
2 Re(wilx%ié(nw*lélmu),nwilél/zu) > (Pw30%u, u)

(5.7) . _
+ [lmw=*?6ul]® — Cllw™ ul*.

Write (w302 = 2w =302 + (1 — x2)¢2w 302 and consider
pTEMGE08T — (1= x)Ghw 0% = (n™ HG0' ?1)?,

where H = (M — (1—X%)w_3A;2$f2é)1/2 € S(1,g) for large M > 0, which follows

(
from (1 — x2)$72 € S(w™',g). Then it is not difficult to see

(u HGo0 1) # (" HG0 *61) = (n™ " HG0" > ¢1)?
+biw gy + bow ' 2N+ R

withb; € p=15(1,g) and R € S(w™2, ). Noting that byw=/2¢; = w ' #byw'/ 3¢, +
Ry and byw 132X\ = wl#byd2X + Ry with R; € S(w™2,3) we conclude that
2 M (CR0¢3u,u) > (1 — x2)Ew36%u, u) modulo a term Cpu~2(||byw'/2¢ ul? +
(D22 M| 2+ p2]|w " w|?) which proves together with (5.7) that z®n3|(C2w30%u, u)|
is bounded by

Cun®(a®(0¢3u,u) + 2w x*CF 0 (w10 ?)u, w16/ ?u)

(5.8) ”
+ Cpn® (' drul® + 63 xal* + p?[lw ™ ul|?)

with some C > 0. To simplify notation we introduce the following definition.
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Definition 5.2. We denote by O(FE) a symbol or the set of symbols of the form

arpw™" + aspw ™" + azp' A2 4+ agw' ¢y
+ a5w1/2¢1 + agps + aw@%)\ + agwA + agwA
with a; € S(1,g). We denote by S(A\" X2w®, §)O(E) a symbol or the set of symbols

which is a linear combination of p~tw™!, p~tw™t, p'2AV2 wl/2¢y, w'/2¢y, ¢o,
A¢7, wA and wA with coefficients in S(A*' X2w®, g). We also denote

lOE)ull* = @ (Jlw™ ul® + o™ ul®) + wl A2 ul|? + w2y ul|?
+ w2 grull? + | gaull® + [|$3Aull® + flwrul® + flodu]?.

We choose €; > 0 small so that we have a positive contribution (Cow™36u, u)
when adding (5.6) and (5.8). Then we obtain the following proposition.

Proposition 5.3. Let xo, (o be as above. Then there exist ng > 0, pg > 0 and
Yo > 0 such that we have

—1/2§ 5 d L
CmllxoGor™ /2R + Cl|Rul® > enn o xodow 0

+en’n® (| Gow™20ul? + (Guw™ 0%, u)
— Cu(Ca*b¢iu,u) — Cul|O(E)ul?

with some ¢ > 0 forn > ng, 0 < p < po and v > 7p.

§6. Transformed symbol Q

We start with the following lemma.
Lemma 6.1. One can write O(E) = T#(O(E) + R) with R € S(\1°, 7).

Proof. Let A € O(E); then it is easy to check T‘lT((g))Agig e SO 9 o(E)

for |a + 8| = 1. Then we have TA — T#A = TA; with 4; € S\, /*1°, §)0(E).
Repeating the same arguments we get TA = T#(A + A +--- + Ay) + K where
K € S(A\1,9)0(E) € S(Af0,g). Since T#T™! = 1 — r with r € p'/*S(1,3)
and hence the inverse of 1 — r exists in £(L?, L?) which is given by Op(b) with
b€ S(1,9) (see [Be]) and hence T#HT = 1 with T = T~'#b € S(Af°, 7). Then
writing K = T#(T#K) we get the assertion. O
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Recall Wg = T*lafag,T € S()\;S‘ul/4+|ﬂ|/2+0,§). Since qgg)) € S()\QA;"I‘,g)
for |a + ] =1 by Lemma 3.3 we see
(—-1)lAl

[e4 o (B
a'ﬁ' ( ( )Wg_Wﬂq( ))

) 7
(6.1) q#T =T#Hq— inT{q, T} + §T Z 43 (@)

|a+B]=3
modulo R € p3/28(\/2%0, ). We first check the following lemma.

Lemma 6.2. We have

S (0)glyWE = Wgal) fa1Bl € pS(N, 9)O(E).
la+B|=3

Proof. Write ¢ = ¢2 + f¢? with f = 2a2(0 + 2a%x2¢? and recall f € S(1,g) and
f((g)) € S(A;‘al,g) for |a + 8| = 1 by Lemma 3.3. Applying Lemma 3.3 again one

can check that (f(b%)Eg;Wf with |+ 3| = 3 is a linear combination of A\'/2, w'/2¢,
and ¢2\ with coefficients in .9 (A0, 9), which proves the assertion. O

We make a more detailed study of {¢, ¥} and {¥, {q, U}}.
Lemma 6.3. We have
{0.9) = v¢2 02061 (1 + A) {61, da} + mO(E) + az0(E) + a;0(E),

where ay = (xay, az = Cay with a) € pS(w™'2\I0,g), ay € pS(p~"/%,g) and
az € pS(AL0,g).

Proof. Denote W1 = (?x?log¢ € S()\:O,g) and Uy = (2@, ® € S(1,¢;) so that
U = Uy + Uy, Thanks to (3.4) and Lemma 5.1 we can see {¢2 + a2x203A2, Uy} =
a20(E) where ay = (aly with ay € uS(p~'/?,g). Similarly, from Lemma 5.1 and

(6.2) {F,log ¢} = {F, $o} Jw + NPE N + N HF N 2w,

we obtain {¢2+a2x20iA\2, U1} = a1 O(E) with a; € ,uS(w_l/Q)\:L'O, g) where clearly
a1 = Cxal. We turn to {a2(0¢?, U, }. Repeating similar arguments one can check
that {a2CA¢?, U;} = a2CA{¢?, ¥;} + a;O(E) where a; verifies the same properties
as above. From the same arguments proving (4.2) and (4.3) one can show

with R € S(A}?, 7). Since (¢ =v¢2 and CA = v¢2 A we get the assertion. O

Lemma 6.4. We have

{U,{q, U}} = —A; + (4 (2w 2001 + azér) + SN2, 9)O(E)
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where a; € uS()\;O 3), 7 =2,3 and
0< A; = vC2a®00(CT + A) {61, 92} € 12S(w™2X}°, 7).

Proof. By obvious abbreviated notation we see \Ilggg(ajO(E))gig € O(E) for |a +

B| =1 and hence {¥,>" a;O(FE)} € O(E). By Lemma 6.3 it remains to check that
{W,¢2a%0¢, (T + A){¢1, 92} }. Since A € S(Af0,g) and b = C2a?0A{¢p1, b} €
,uS()\IO,g) it is easy to check that {W,bg,} is a linear combination of w!/2¢;
and w with coefficients pS(A1?, ) because (*® € S(1,g). Therefore {¥,bg,} €
uS(AE?, §)O(E). Let us consider {¥, B} with B = Cia2é¢1f{¢1,q§2}. Thanks to
(6.3) taking Lemma 5.1 into account we can prove that

{V,B} = _CJQra29AF(C2F + A){p1, 2} + (4 (azw™ %091 + azr)

modulo S(A}?, 5)O(E) where a; € nS(\f°, ). This proves the assertion. O

Proposition 6.5. We have

g#T = T#(q — in{g, ¥} + n*{¥,{¥,q}})
+ i(a1pw =320 + agw' 20X + asfey) + uS(/\ITO, §)O(E),

where a; € /LS()\ZO,.(]) are real valued and supp a; C supp (4.

Proof. From Lemma 6.3 it is clear that T_IT((;‘)){q,\II}Egi is c10¢1 + cow'/20\
modulo ul/ZS()\;fo,g)O(E) because )\;1/4 € S(w'/?,g) for |a + B| = 2. Therefore

we get

TH#{q, W} = T{q, U} +nT{¥, {g,V}}/2i + c206,
+ cw' 20N+ pS(AL0, 9)O(E),
where ¢; € /LS()\:[O,g) is real. It is clear that suppc; C supp (4. Thus we have
T{q, ¥} = T#({a, U} +n{¥, {¥,q}}/2i — 1061 — copw*ON) + puS(NS°, 9)O(E).
From Lemma 6.4 it can be seen that \I/Eg;{\ll, {q, \I/}}Egg for |a+ 8| = 1 are written
as aypw =320 4+ azw'/20\ + azf¢; modulo nS(AEY,g)O(E). This proves
T{q, 0} = T#({q, ¥} — n{ ¥, {W, ¢}}/2i + a1 pw™>/20 + asw' /20X + as0¢,)
+uS(AE°, 9)O(E)

where a; € ,uS(/\j;O, g) with suppa; C supp (4. This proves the assertion. O
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Corollary 6.6. We have
ImQ =Ty — vn2a®0:0{¢1, P2} + a1 w20 + agw' /20N
+ag0¢1 + c10(E) + c20(E) + pS(A1°, 9)O(E),

where a; € uS()\:[O@) are real valued with supports are contained in supp (4 and
c1 = (xc) with ¢) € uS(w*1/2)\jO7§) and ¢y = (chy with ¢y € pS(p~1/%,9).

Corollary 6.7. We have
ReQ = q+ Ty + (s (arpw ™20 + apw™/20¢1 + aze) + S(A:fO, 9)0(E),

where a; € pS(Af°,g) and ay > 0.

§7. Estimate ((ReQ — T} + Ru\)u, u)
We write ReQ = ReQ — T} + &u\ + (T) — RpA) with 7 > 0 in (3.10) and study
((Re@ — Ty + RuX)u,u).
Proposition 7.1. Let cx € S(1,3) be real. Then we have

C((q +mpA)u,u) = Y (llexCe 0] 2rull® + (23 10]¢Tu, u))
(7.1) +(03u, w)| + [(wdtu, u)| + |(weTu, u)l
+ (WX, u)| + (WX, u)| + | O(E)ul?.
Proof. In the proof we may assume k = 1 without restrictions. Write
Ma*(067 — (e 20+ c-C|)ot = HECE 007 + H2C216]07

with H, = (Ma®v — ¢y)Y/? and H_ = (Ma*h — ¢_)"/? where M > 0 is chosen
so that Ma?v — cy > c and Ma?h — c_ > ¢ > 0. Since (4 |0]'/% € S(|0]'/2,3) by
Lemma 3.1 noting Hy € S(1,g) we can write

ColO o1 Hy#Ca |0V 201 Hy — (3|0|¢3HE

= Y Cap(Calf 61 H) ) (Cal0 260 H) )
|a+B|=2

= b1w73¢3% + 521075/2(;51

modulo 425 (w2, ), where b; € u25(1, §). Writing byw3¢2 = ciw'/2¢, #w' /2 ¢, +
R; and b2w75/2¢31 = peow ' #w' /2y + Ry with ¢; € S(1,g) and R; € uS(w=2,9)
we conclude

(7.2) D lexG10lgu, w)| < M(a*C0dTu, u) + C||O(E)ul*.
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Similarly ¢2¢2|0|¢? can be written
G |01 2 pr#tesCel0] 2 g1 + bepw ™2y + by pPw 9 + R

with R € S(w=2,5). Thus |lcxC+|0]/2p1ul|? is estimated also by the right-hand
side of (7.2).

We next study § = ¢2 + x202¢* A2 + p. If xo # 1 so that ¢2 < dsw it
is clear % < C(¢% + A1) and then A2 < C(¢2 + p)) so we have § > cdtA2
with some ¢ > 0. If yo = 1 this inequality is obvious. Since ¢FA™2 + uX = A\2w?
and ¢3 + pA = w?\? it is obvious ¢ > c(w? + w?)A? with some ¢ > 0. Let us set
G—cw? X2 = F? with F = MGA 2 —cw?)/2 € S(A, §). If we note x2a2¢? € S(w?, g)
and w € S(w,Gy) with G = w™1/2(|dz|? + (€),21dg’[?) it is not difficult to see
that F? = F#F + R with R € p2S(w™! +w™!,3). Thus we conclude that

(qu, ) > c(wNu,u) = Cp* (Jlo™ ul® + [lw™"ul|?) = Cllull*.

Repeating a similar argument we get (Gu, u) > ¢||¢? ul|? — Cp|lw= ul|2 — C|lul2.
Since w?\? = wWA#wA + R with R € p2S(w™1,9), hence (w*N?u,u) > [Jwhul|? —
C(p*|w™ul|? + ||ul?). Recalling ¢2 + uX = w?)\? similar arguments show

(03 + N )u, w) > c(w? Nu,u) + wdul* = C(u fw™ ull? + [ul|?).

Noting puX < w?A2 € S(A\2, go) we see (w?A2u,u) > ul||A/?ul|?> — C|jul®>. On the
other hand, since one can write w—! = (w™'A"V/2)#A\/2 + R with R € S(1,3),
noting that w="A\=1/2 € u~125(1, 3) we have |[|w " ul|? < Cp~ N/ 2ul|? + C|ju|?.
Similarly we have |jw™ u|? < Cu~IAN2u|? + C||u||>. Thus we get
P2 (o™l o™ all?) + pl A2l 4 o + flodu]|?
(7.3) + (@AW, )| + | (@A, )| + 1|67 Ml |
< C(qu, u) + Cllull*.

Noting w'/2¢, #w'/2¢; = wp3+R with R € 25 (w2, §) and wp? = Re(Ap2HwN)+
R with R € 2S(w™2, g), we have

lw'2g1ull® + [(wetu, )| < C|OE)ul®

We get [|lw!/2grul|> +|(weiu, u)| < C([AGTul® +[lwAul® +p?[lw™ ul?) by a repeti-
tion of similar arguments. It is easy to see ||paul|? +|(¢3u, u)| < C((d3+puN)u, u)+
lu||?); then we conclude the assertion by (7.3). O

Corollary 7.2. We have ||0¢1u])? + |[(063u, u)| < C((q + pN\)u, u) + C|lul[>.
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Proof. Take n(s) € C§°(R) so that (_ + {4+ +n = 1. Thanks to Proposition 7.1 it
suffices to prove |(nf¢iu, u)| < C((g + pM)u,u) + C|lu|*. Note that one can write
nh¢2 = cwe?; then the assertion follows immediately. O

Lemma 7.3. Let xo = xo(¢?w™1) with xo(s) € C3°(R) which is 1 near s = 0.
Then we have

(1 = x0)CE10lwAu,u) < C((q+ pA)u, u) + C|lul|.

Proof. Note that Ma®C0¢? — (1 — x0)(¢20 + C210))w? = H3 (2093 + H2 (20|43
where Hy = (Ma2v — (1 — xo)wé72)/2 and H_ = (Ma2h — (1 — xo)wdy )1/
which are in S(1, g) taking M > 0 large. The rest of the proof is just a repetition
of the proof of Proposition 7.1. O

Since 0 < ¢ya w2 € pS(w=>Xf0, g) then (¢rayw20u, u) is bounded from
below by —C|[[Af%u|?. On the other hand, noting w1 2u||? < Cy~Hw  ul|? +
Cry|lul|? it is easy to check

(74)  |((azw™ 201 + aspr)u, w)| < Oy 2O(E)ull? + C7*2 I\ .

From Proposition 7.1 and Corollary 7.2 together with (7.4) we obtain the following
proposition.

Proposition 7.4. There exist y9 > 0, po > 0, ng > 0 such that we have
C((ReQ =Ty + RpA)u,u) > [(067u, u)| + [[0¢1u]® + O(E)ul?
modulo 6'73/2||/\I'f01ua||2 forv > v, 0< < pg andn > ng. We have also

COF (ReQ — Th + Rud)u, u) + C72 |\ ul?
> |(AFOtu, w)| + A7 001ul)? + 1AL O(E)ul .

§8. Estimate Re((ReQ — Ty + &u\)u, (Im X)u)
Recall Lemma 4.3 which gives Im\ = néﬂ“(ié + Ry with R; € S()\;O g). Denote
§ = 3 + x202¢tA "2 + ) again. Note Re(&10C2T#q) = &¢204T + R with R €
SN0, g) since T' € S(w™'A10 g) and ¢3 4+ x20°¢tA"? € S(w?A?, ). Thus
noting |(Ru, u)| < Cpul|\/20u||? we get
Re(qu, 10¢iTu) > (61¢204Tu, u) — C|INCO(E)ul>.

Write MéC20qT — puC2 0w \°T = H#(Méqw2A"2 — p)T#H + R with H =
¢40'2w) and R € pS(A0 g). Since 0 < (Mé&1gw 2 "2 —p)T' € pS(w='Nf0 g) C
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§1/2+0

34,12 then from the Fefferman—Phong inequality it follows that

M(&1¢20qTu, u) — p(CF 0w NTu, u) > —C|NCO(E)ul*.

Since (20w \°T = H#T#H + R with R € uS(A'10, g), taking (¢2 —¢2)0 € S(w, g)
into account we conclude
w(T(COY2wAu), COY2wAu) + pl (CCOw? N2Tu, u)|

8.1 X
®.1) < M Re(Gu, &0¢iTu) + C|APO(E)ul?.

Noting I' = r +2wp~2 and w*r € S(ws_l)\jo,g) for s > 0, a repetition of a similar
argument for w instead of w shows (8.1) where w is replaced by w. Note that
(w? + W) > x2w + w3p~2. Tt is easy to check that w + w3p~2 > ¢p with some
¢ > 0 and on the support of 1 — x? we have Cw > p > w. Therefore we obtain

Cp > (w? +w)T > cp
with some ¢ > 0. Then applying the Fefferman-Phong inequality one obtains

(CO(w? + w?)ATu,u) > ¢|C0Y/2p" 2 u)|? — C|A°O(E)ul®. Thus we have the

following lemma.
Lemma 8.1. We have
pl(C%0pNu, w)| + ul|¢H?p 2 xul|® < C'Re(Gu, €163 Tu) + C|INFC0(B)ul>.

We turn to Re(azféqﬁ%u,élﬁ_éfu). Since I' = r + 2wp~2 and rh? € S(w, g)
and wp~2¢2 € S(1,7) we see that Re(élgiéF#azféqS%) can be written
1)18l .
vei(L0°a’ il + Z m(elgier) J(a 2@%)553
lotB8|=2

with R € uS(X, g). Consider (¢:¢36 )Egj gll)( 2C9)(a,,)(¢2) (7) for la+p| = 2. By

Lemma 3.3 it is not difficult to see that we can write such a term as
VCC_%_’[L)/\QGA2 + <+ (021w71/2)\é + 622w71¢1é + 0231073/29(;;%)\)

(8.2) i
+ (earw ™21 + caaw™1PIN)

with ¢ € uS(1,9) and ¢;; € pu?S(1,5). One can estimate the last term, the lin-
ear combination with cs; coefficients, applying Proposition 7.1. The second term,
the linear combination with cp; coefficients, can be estimated thanks to Proposi-
tions 5.3 and 7.1. Indeed, writing 023C+0AQA5%)\ = Re(023(+w*3/2é#¢3%)\) + R with
R € S(w'/?)\, g) we have

| Re(casCyw™ 206 hu, )| < CpPy™2¢rw™20u||* + Oy || O(E)ul*.
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Other terms can be estimated similarly. To estimate the first term in (8.2), choosing
v > 0 small we write (2 0wA? —ve¢2 wh?\2 = H#H+R with H = (0202 )\(1—
vef)/? and R € S(w2A2t0, 5) and apply Lemma 8.1. We now prove the following
result.

Lemma 8.2. There are ¢ > 0 and vy > 0 such that we have
Re(a’C0¢Tu, &1¢30Tu) > cvp(T (¢ 061 )u, C1bu)
— (P +y72)[Cw ™ 0u?
= Cun™" 447 2)l|Cw! 20Nl
— C|0¢rul)* = CY2|O(E)ulf?

(8.3)

for 0 < v <.

Proof. It remains to estimate VRe(é1Cié2a2q’)%Fu,u) from below. Since ((} —
Ci)é%%l" € S(weiAf?, g) it suffices to study v Re(élgiﬁhcﬁqﬁl—‘u, u). Note that

A o A . 94220 (_1)|ﬁ1+52+53\
Re((0¢1#€1a°TH#( 1 0¢1) = €1¢107a ¢ — Z Ton Bl Bal

< (G005 155 @5 o i) + &

where the sum is taken over |a; + 31 + - + 3] = 2 and R € p2S(A\+0, g) which
follows from Lemma 3.3. Here it can be checked that the second term is written

01C2w_1)\é2 + CQCw_1é¢1 + c;;w_léf)\ + C4w_1/2¢1 + c5w_1/2CéA

with ¢; € p2S(Af0,g) modulo p2S(w=At?, g). To estimate the first term let us
write ¢1C2w M2 = Re(ciCw3/204Cw'/2\0) + R with R € p2S(A\'0,g). Then
one can estimate | Re(¢y¢2w=102u, u)| by
Crn|Cw™**ull* + Cpn~"|[Cw'*Mu) + CINTO(E)ul*.
It is easy to see that |((caCw '8¢ + csw™ ' GIN+ cqw ™/ 2¢1 + csw™/2CON)u, u)| is
bounded by C~y~/2(||Cw=3/20ul|? + [|Cw'/20)u||?) + C'/2||O(E)u|/?. To end the
proof it suffices to apply the Fefferman—Phong inequality to obtain
Re(é1a?T(¢0b1u), (L 0¢1u) > cpRe(D (¢ 0p1u), (4 0¢1u) — Cl0pyul)?

because é;a® — cy > 0 with some ¢ > 0. O

Similar arguments proving Lemma 8.2 show the estimate

Re(a”x2¢{N*u, &1¢30Tu) = —Cy 2 (lI¢rw™20u))? + | Crw'20Mul|?)
— Oy 2N O(B)ul®.
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We turn to consider
(8.4) (aypw ™20 + aow™20¢1 + aszd1)u, (Im Nw).
To handle (8.4) we prepare a lemma.
Lemma 8.3. We have
Re(Tu,v) < (T'v,v) + (Tw,w) + C’(H)\:jov||2 + HAZOwHQ).

Proof. Since 0 <T € S ()\,1/ 2+0, g) it follows from the Fefferman—Phong inequality
that (Pu,u) > —C|[X\fOu||* with some C' > 0. Thus with L = T' 4+ CAt? we have
(Lu,u) > 0 so that | Re(Lu,v)| < (Lu,u) + (Lv,v) which proves the assertion. [

Write Re(élCiéF#aluwﬂé) = pRe(I‘CJrQAw)\#aCer’lé) + R where a =
N ) = /LS()\:[O,LG) and R € p?2S(w=2,7) and apply Lemma 8.3 to get

| Re(élFCiéu,aluwdéuﬂ < Cpun~' Re(D¢0whu, (4 fwAu)
+ Cpn Re(Talyw ™ Ou, alyw™0u)
+ CAPO(E)ul.

Since |Re(TaCyw ™ 0u, aCyw = 0u)| < Cp2(||Cow3/20u)? + Jw= A 0u||?) we con-
clude

\ Re(élFCiéu, arpw20u)| < Cun~t Re(T'¢4 OwAu, ¢ Owu)
+ O Grw™20u)? + CINO(B)ul?).
Similar arguments show
| Re(611¢3 0u, azgyu)| < v ~/2 Re(T¢y Owu, (4 fwu) + Cy /2N OO(E)ul|>.
Repeating similar arguments we conclude that (8.4) is bounded by
Clun~" +~7Y2) Re(T'¢4 GwAu, (4 Owu)
T CptnllGyw20ul2 + CoM2|O(B)ul .

We finally consider the term (qu, bu) with b € S()\;O, g). Noting /2 e S(w'/?,g)
one sees

Re(b#a2C%04%) = Re(bal' 21 #al0' 2 ¢1) + O(E) - O(E) + O(E)

and hence one obtains |(qu,bu)| < C||O(E)u|/?>. We summarize in the following
proposition.
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Proposition 8.4. There exist ¢ > 0 and v > 0, pg > 0, ng > 0, vg > 0 such
that we have

C{((g+ pA)u,w) + % ull® + Re((Re @ — Tt + RpA)u, Im Au)
+ [ xCw ™ ? Aul*}
> envp(T (G101 )u, Gy ru) + enpa| (C0pN>u,u)| + enpl| GO/ p'/* X

fory >, 0 < pp< o, n>ng and 0 < v < 1.

89. Estimates of error terms
We estimate Re(Au, (Im Q — Tb)u). Recall
ImQ — T, = —VnCiaQéqblF{th (ﬁg} + al,uw_g/Qé + asw/?0)
+a30¢1 + c10(E) + 20(E) + wS(AY0, g)O(E).
Thanks to Lemma 3.3 one can write

a*(}061{¢1, 62)T = p#al #0601 + 10N + 216
with @ = p~1a2{¢1, 2} modulo AMPO(E) where ¢; € pS(Af°, ). Noting (¢y = (4
it follows from Lemma 8.3 that
vnRe(a®(F001{p1, 923Tu, Au) < ' u(al (G061 )u, (C4001)u)
+ enpu(@r¢(Ru), C(Au)) + enwplCp~ /2 Ru
+ envpl|Cp* 0Nl
+ O(IN0grull + [INSAull* + [NFPO(E)ul|)
where € > 0 will be determined later. We turn to estimating
((alpw*?’/% + asw' 20\ + agéd)l)u, Au).
It is easy to see that this is bounded by
Cy 2 (l¢w™20ul|? + [[Cw 20xul?)
+Cy (| Aul® + (101ul* + [\FO(E)ul).
Finally we consider |(¢;O(E)u+ c2O(E)u, Au)|. Recalling Corollary 6.6 it is easily
seen that this term is estimated by
Oy 2 ([ Cxw™ 2 Al + [¢p™ 2 Ra|?) + Oy 2 INPO(E)ul .

Noting [|w'/2¢1ul|? + [|w'/2p1ul|? > ||p*/2p1ul|?> — C||O(E)ul|> we obtain the fol-
lowing proposition.
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Proposition 9.1. The term | Re(Au, (Im Q — To)u)| is bounded by

e (DG4 00, (C B o) + cenpu(TC(Rur), € (Au)
+ (e + Cy ) (1K™ V2 A + [[CpM 200 |?)
+ Oy (lICw™20ull® + | Oew™ 2 Au?)
+ O 2 (0¢rull® + [[Aul® + N O(E)ul?)
where ¢ > 0 is independent of €, v, p and 7.
We turn to consider ([Dy — Re \,Re Q — Ti]u,u). Recall
€0 — ReX =& — ¢1 + ¥ + n(baf + bsgD)w™ "> + Ry
where ¢ = C0¢1 4+ x203A and R € S(Af0,g) and
ReQ — Th = q+ (o (arpw 20 + ayw™?0¢y + aspr) + uS(A:O,g)O(E)

with ¢ = ¢2 +2C~a2é¢% +2X2a2g§‘11)\2. Let us study (¢2{& — &1+, P2 }u, u). Taking
(3.9) into account it suffices to estimate

V(leié@)\%u), (capadiru,u), (c3bpadru, u)
where ¢; € pS(1,g). Write Ciégbg)\ =(1- Xz)ﬁ_égbg/\ + XQCiéqbgA and consider
M¢20¢7 — (1 — x)C2 0o\ with a large M > 0. Note
M2C3067 — (1= x*)(3062) = (M¢1)*F

where 0 < F = ¢20(1 — (1 — x*)¢oo; 2/M?) € S(1,g). Writing (M¢1)>F =
Re(M 1 #F#M@,)+ R with R € S(w™2,g) we obtain from the Fefferman-Phong
inequality that

M(C30Tu,u) > (1= x*)¢G bdaru, u) — C|O(E)ul.

Consider now 2wx?¢2002 — x2C20po\ = (w'/2)\)?F with 0 < F = x2¢30(2 —
dowt) € S(1, ). Since (w/2X\)2F = Re(w'/2A#F4#w/2\)+ R with R € uS(\, g)
from the Fefferman—Phong inequality again one has

2(wx* 0N u,u) > (PCE 002 Xu, u) — Of|w' A 20| — C|lO(E)ul|*.
Here we note that w'/2\Y/2#w!'/2X1/2 = w) + R with R € S(1,3) and hence
2(wX2§iéA2u,u) > (XQC_QFé(ﬁg/\u,u) — C||O(E)ul?.

It is easy to see |(cs0p1dzu,u)| < C(|0¢rul® + |O(E)ull); then we have the

following lemma.
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Lemma 9.2. There exists C' > 0 such that
({60 — 1+, 65 }u, u)| < Crp(x*C20wN’u, u)
+C(C2067u, w) + C([|6gru® + [|O(E)ul®).
We next consider {€y — ¢1 + 1, Ca®0¢?} which is
{60 — 1,$a”007} + {061,061 }(0b1 + {x2d7 A, Ca®0e7 ).

It follows that {x2¢3\, (a2042} = 10422 and {01, a2¢1}CO¢1 = 2002 from
Lemma 3.3. Since {{y — ¢1,(a?090%} = c1007 + cad? Ao + 300102 + c1dTA? by
(3.1), (3.2) and Lemma 5.1 we get

{0 — 1+ ,Ca”007} = 1067 + bt Ao + cabr b + 5PN,
We then consider {€ — ¢1 + 1, x2a2$* A2} which is
{&0 — 1, X202 PIN} + {CO81, X2 PIN*} + {x205 N, a*pr A 23N
A repetition of similar arguments shows
{60 — 61+ ¥ 20 61N} = 1007 + 201N + FiAe.

Therefore |({€ — ¢1 + ¥, a2C0¢? + a®x2¢* A2 u, u)| is bounded by C|(0¢2u, u)| +
C||O(E)ul|?. Denoting ¢ya; by aj we turn to checking {€y — ¢1 + 1, agw™"/20¢; }
where ay € S()\l‘fo g) with support contained in supp ;. Noting Lemmas 3.3
and 4.1 it is easy to see that

{&0 — &1+, a0w™ 201} = coCPw' PNy + e puCw 2N + cop

with ¢; € pS(AS0, ). Writing co¢?w'/2A\0¢; = Re(coC0'/2¢1#Cw'/20'/2)) + Ry
and ¢1Cw ™20\ = Re(Cw /204 w)) + Ry with R; € nS(AM0, §) we obtain the
estimate
[(co®w! Xy, u)| < Cy™2([Cw' 2012 Ml + [|Cw ™ 20u] )
+ O leo¢h 2 drull* + ClIO(E)ul*.
The term |(¢;Cw /20 u, u)| can be estimated similarly. In order to estimate {€—
$1 + ¥, a1w 20} we need to look at a; more carefully. Since (w¢)~! € S(A\us9)

the main part of {F,log ¢} is w™'{F, 3} by (6.2). Therefore noting (3.4), it is not
difficult to see from the proof of Lemma 6.4 that a; has the form

(9.1) FCHM (E)™= 00" () gt w* w2 p* (log ),



CaucHy PROBLEM, A TRANSITION CASE 345

where f € S(1,90) and k;, ¢; € Nand s; € R, e = 0 or 1 which verifies
81+82+83+£1/2+€2 20

so that this is in S()\j;o J). Here we examine that {y — ¢1 + ¢ commutes better
against such terms of the form (9.1) than against a general symbol in S ()\;‘0 g)-

Lemma 9.3. Denote A = & — ¢1 + v; then {A,q@l}, {A,g{)g} and {A,é} are
linear combinations of él, b2 and 6 with uS(1,g) coefficients. We denote these by
{A,¢1} = pS(1,5)0() and so on.

Proof. Tt follows easily from (3.1) and (3.2) that {& — ¢1, b1}, {€0 — ¢1, P2} and
{& — qﬁl,é} are O(X). Write ¢ = (fé + X2€Z7%)¢1 and note Lemma 3.3; then the
desired assertion for {v, g?)l}, {v, 952} and {w,é} follows immediately. O

Corollary 9.4. One can write {A,w™'} = pS(w™',9) + pS(w=2,9)0(X) and
{Aw™'} = pSw™,9) + uSw™??,9)0() and that {A,p~'} = pS(w=',g) +
uS(w=2,7)0(2) + S(w=3/2,5)0(X). We have also {A, ¢} = cyw™ 0 + cow= /2
with ¢; € uS(1,g) and the same holds for {A, x}.

Let us consider {A, a1} where a; has the form (9.1) with ky + k2 > 1. Since
)% () k1 € S(w'/?,5) it follows from Lemma 9.3 and Corollary 9.4 that
{A,a1} can be written as cow 10 + ciw™? + cow™1/? with ¢; € MS()\:O g)-
Since w™/2w=/2 € u=1/28(A\V/2,g) then applying Lemma 9.3 and Corollary 9.4
again to {A, w=20} we conclude that

uf{A, a1w72é} = cougwﬂo’éz + clu5/2w73/2é)\1/2 + cop’ér + O(E)

where ¢; € S(\f°,g). Writing cow™30% = Re(cow 3204w =3/20) + R with R €
S(w=2,g) and recalling that the supports of ¢; are contained in the support of ¢y
we obtain the estimate

9.2) [1({&o — 1+ ¢, a1w 0}, u)|
| < O+ Y2)lcw26ul + O OBl

Since the estimate |({€ — ¢1 + v, Craze bu, v)| < C(||6ru||? + || O(E)ul?) is casy

we obtain the following proposition.
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Proposition 9.5. We have

|([Do — Re A\, Re Qlu, u)| < cuu(XQCiéw/\Zu, u)
+ (e + Cy 1 2)[Cw™20ul® + C(CF 0T, u)
+ Oy 21PN 20 Ml + [ 2hul?)
+ Oy 2 (101u])* + 110" prul® + | O(B)ul|?)

where ¢ > 0 is independent of v, u and ~.

810. Lower-order terms

Finally we handle the lower-order terms. By (3.11) one can write
Ty = pcodA + bofBr + b1d? X + baga + baw'/ 2y

with b; € uS(1, g) where cg = 0 for 6 <0 by assumption. Write cob\ = cogﬁé)\ +
(1- Ci)coé)\ where it is clear that we can write (1 — (%)coA = bywA. One can
write

(1= x*)C30N = w!?p 1 ¢ #pw™ /2 (1 = X*)( 4 O
—+ w1/2p_1g“+#cpw_1/2é)\ +R

with ¢ € S(A\;"/*,9) and R € p!/25(A/2, ). Moreover suppc C supp(l — x2).
Indeed, since wil/prl € S(wT/2pFl §) then w'/2p= ¢ #pw2(1 — X)L 0
can be written as {0\ + R with ¢ € S(\,/*, ) and R € u/2S(A1/2, ). Writing
el 0N = w2p7 1, #epw/20M+ R again we get the desired assertion. This proves

(1= x*)¢E0Mu, Au)| < Cy 12wt 2p7 (¢4 A2
+ Oy 2 lepw™ 200u® + C(| Aull? + |O(E)ul]?)

with ¢ € S(A;1/4,§) where supp ¢ C supp(1 — x2). Now consider [cpw™/20\ul2.
Note that cpw1/2 € S(w'/2,5) because if ¢ # 0 then we have C¢? > w and
hence C%w? > w?. Thus it is clear w? < ¢2 + w? = p? < (C? 4 1)w? so that
w2 < pw1/2 < (14C")wl/2. Then it is easily seen that cpw™ /20 \#cpw /20 =
aw 2+ R with a € S(1,7) and R € S(\, g) so that [Jcpw™/20\ul> < C||O(E)ul|?.

Summarizing we get

(1= x*)¢E 0N, Au)| < Cy 2|~ w24 (Au) |2
+ Oy 2 (| Aull? + | O(E)ul®).
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We turn to studying (XQCiéAu, Auw). Let us write ngié/\ = xCrw 24\ (w20
+ cCow'?6) 4+ R with ¢ € S(1,§) and R € S(A\'/2, ) and hence we have
(3 0w, Au)| < en'?||xCrw™ 2 Aull® + (en™ V2 + Cy /%) ¢ w20l |?
+Cy 2 (|O(E)ul® + || Aul?).

Since it is clear that |((bofdy + b1d2\ + bagha + bsw'/2p1 )u, Au)]| is bounded by
C(||Au))? + |61 ul)® + ||O(E)u||?) we get the following proposition.

Proposition 10.1. We have

(T, )| < (/2 + Cy~V/2) [ x =1 /2 Rar?
+ (eun =12 + Oy V)¢t 28Ma2 + Cy 2 p w2 A2
+ Oy (| Aull + NS O(E)ull)
with ¢ > 0 independent of n, v, u and \.

We turn to studying (71 —#u\)u, v). From Lemma 3.1 it follows that ¢2 k|| ¢2
= hY2¢1C_ |02 #0291 (|02 + R with R € pu2S(w=2, g). By Lemma 3.1 again
we see

GoAth 21 C |0V — W29 |0] 2400 = {62, KT 21|02} )i+ R
with R € u2S(w=2, g). Here, since h = pué{e1, (52}71, we have
{12 1C 1012, ¢} = M2 C_ ({1, 32 }10]) e + cpw' 2y

with ¢ € S(1, g) thanks to Lemma 3.1 because qbéa) € uS(w,g) for |a] = 1. Then
the following estimate follows easily:

12 (C (e, P2 3O e u,u) < (¢3u,u) + (h¢2|0]63u, u) + Oy~ V2| O(B)u|?

modulo Cv3/4||u||? because ||w™ u|? < C(y~|w ™ u|? + v||ul?). From (3.10) it
follows that

(10.1) p2C ({1, o} O e + T1 > 2Ru\ — Cpuw'/?X

with some C' > 0. In fact if § < —bsw then (- = 1 and the assertion follows
by (3.10). If —bsw < 6 < 0 then we have Cw'/2X > p~1/2(¢{¢1, $2}|6])*/% ¢ and
hence the assertion. Since S(\,G) C 5'11,1 /2 the Fefferman-Phong inequality gives

/1‘1/2(6(*({(;517 éQ}‘el)l/Qeua u) + (T1u7u) 2 2RM(AU>U) - CMHO(E)U‘HQ

We summarize what we have proved in the next proposition.
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Proposition 10.2. We have

(¢3u, u) + (h¢2|0]¢3u, u) + (T — Rp\)u, u)
> Rp(du,u) — O+~ 2 [O(B)u)|? — O3 Xf Pl 2.

Similarly (N2F ¢pau, u) + (z\ffh(ﬂé@%u, u) + (N2(Th — RpX)u,u) is bounded from
below by Ru(N2F A, u) — C(p+ 7*1/2)||/\ZO(E)u||2 - C"y3/2||)\ffu||2.

Finally we estimate Re((T} —&uA)u, (Im X) w). Since ¢_¢; = 0 then from (10.1)
we see that Re((T} — &uA)u, (Im X) w) is bounded from below by

Re((FpA — Cpw'N)u, &1 T¢,0u) — C|NCO(E)ul>.

Note that Re(é11¢C4 04 (Ful — Cpuaw'/2X)) = mué D¢ 0N + cC w20\ + R with
c € S(Af%g) and R € pS(w™!,g). Since 0 < e1lC 0N € S(w A0 g) and
noting cCy w20\ = Re(¢Lw3/20#cw)) + R with R € S(),§) one can see that
Re(611¢C4 0# (Rl — Cpaw'/2)) has a bound from below —Cry~1/2||¢,w3/20u))? —
Cy'2|AHPO(E)ul|?. Therefore we obtain the following lemma.

Lemma 10.3. We have
Re((Ty — RuA)u, (Im X)) = —Cy =2 ¢w= 20ul2 = Co 2 |NCO(B)ul .

We first choose € > 0 small so that cenu(I'¢(Au), ((Au)) in Proposition 9.1
can be controlled by the corresponding term in Proposition 4.5. We next choose
v > 0 small so that cnvp|¢p~/?Aul|? and

ce ' u(T(C4 01 )u, (C40h1)u) + enwpl|Cpt 20Nl |?

in Proposition 9.1 will be small against the corresponding terms in Propositions 4.5
and 8.4. We then choose n such that p3(|Cw=3/20ul|?> in Proposition 9.5 can be
controlled by Proposition 5.3 and cun'/2||x¢p w2 Aul|2 + cun /2| ¢y w202
in Proposition 10.1 can be estimated by Propositions 4.5 and 8.4. Finally we choose
p > 0 small enough and then v > 0 large enough so that un* is small and ~yu*
is large. Then combining Propositions 4.5, 5.3, 7.4, 8.4, 9.1, 9.5, 10.1 and 10.2 we
obtain the desired weighted energy estimates. Once we obtain the energy estimates,
in order to conclude the well-posedness of the Cauchy problem it suffices to apply
[N5, Thm. 1.1].
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