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Eigenfunction of the Laplacian as a Degenerate
Case of a Function with its Fourier Transform

Supported in an Annulus

by

Rudra P. Sarkar

Abstract

The aim of this paper is to reach a characterization of the eigenfunction of the Laplace–
Beltrami operator as a degenerate case of the inverse Paley–Wiener theorem (for functions
whose Fourier transform is supported on a compact annulus) on the rank-1 Riemannian
symmetric spaces of noncompact type. The most distinguished prototypes of these spaces
are the hyperbolic spaces.
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§1. Introduction

Let X be a rank-1 Riemannian symmetric space of noncompact type of dimension

d, ∆ be the Laplace–Beltrami operator on X induced by its Riemannian structure

and B be its maximal distinguished boundary which is diffeomorphic to Sd−1. For

a suitable function f on X, let f̃ be its Helgason Fourier transform (henceforth

called a Fourier transform) defined on R+×B. Let L2,∞(X) be the Lorentz space

of weak L2-functions on X. A weak L2-function f is an L2-tempered distribution

and we can consider its Fourier transform f̃ in the sense of a tempered distribution.

For a function F on B we denote its Poisson transform at α ∈ C by PαF . Let

−ρ2 be the bottom of the L2-spectrum of ∆. In the latter part of this section and

in Section 2 we shall elaborate on this. Using this notation we first state a result

that characterizes a weak L2-functions with its Fourier transform supported on a

sphere as a Poisson transform of an L2-function on the boundary B.
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Theorem 1.1. The following two statements are equivalent for any f ∈ L2,∞(X):

(i) f̃ is supported on the sphere of radius α > 0 in R+ ×B;

(ii) f = PαF for some F ∈ L2(B) and in particular f is an eigenfunction of ∆.

This result serves as an intermediate step for the theorem below, which is the

main result of this paper. It is a detailed account of the characterization of weak

L2-functions with compactly supported Fourier transform.

Theorem 1.2. Suppose that for a nonzero function f ∈ L2,∞(X), there are con-

stants c1 ≥ ρ2, 0 < c2 ≤ 1/ρ2 such that

lim
n→∞

‖∆nf‖1/n2,∞ = c1, lim
n→∞

‖∆−nf‖1/n2,∞ = c2.

Let α =
√
c1 − ρ2 and β =

√
1/c2 − ρ2. Then we have the following conclusions:

(a) c1c2 ≥ 1.

(b) If c1c2 > 1 then f̃ is supported in the annulus Aαβ = [β, α] × B around the

origin, but not inside any smaller annulus Aα′β′ with β < β′ or α′ < α.

(c) If c1c2 = 1 then f = PαF for some F ∈ L2(B). Hence, in particular, f is an

eigenfunction of ∆ with eigenvalue −c1.

(d) The annulus containing the support of f̃ may reduce to a ball Aα0 = [0, α]×B,

but cannot collapse to the origin, namely α > 0.

In the final section we provide some generalization of these results (Proposi-

tion 5.1 and Theorem 5.3). The Poisson transform Pα is an analogue of the oper-

ator Pλ on Rn given by PλF (x) =
∫
Sn−1 F (y)eiλx·y dy. While Pλ maps a suitable

function F on the boundary Sn−1 of Rn to a function on Rn, Pα maps a function

F defined on B to a function on X. Indeed PαF are all the eigenfunctions of ∆

where F is a function or more general object on B. In the hypothesis of the theo-

rem above, ∆nf is used in the sense of a distribution while ∆−nf is in the sense

of a multiplier. This is possible as the spectrum of ∆ on X is (−∞,−ρ2] where

ρ, the half-sum of positive roots, is realized as a positive number. We keep away

from these interpretational worries, as we shall discuss them in detail in Section 3.

The choice of the weak L2-norm (i.e., L2,∞-norm) in the hypotheses of these

theorems are not at all arbitrary. Indeed, among all the Lorentz norms, which

include all Lp-norms, the L2,∞-norm is the unique option for the statements to be

true. In particular the second theorem can accommodate the two possibilities (b)

and (c) only when the L2,∞-norm is used. We shall elaborate on this in Section 3

and cite some other “close to L2”-norms that can be used in place of the weak

L2-norm.
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Similar theorems can be proved for Rn replacing the L2,∞-norm by the L∞-

norm or by the Lp-norm with p > 2n/(n−1) for n > 1, to ensure the possibility of

accommodating the eigenfunctions of the Laplacian. One also obtains an analogue

for the Heisenberg groups Hn with the L∞-norm in the hypothesis, and using the

“Fourier transform” as defined in [42]. See [16, 23, 42], where some parts of these

results for Rn and Hn are implicit. The situation in the Riemannian symmetric

spaces of noncompact type appears to be more intriguing, as indicated in [42] by

constructing a counterexample of the Euclidean result for a complex hyperbolic

space.

To orient the readers we shall add some perspective for this study. We are

motivated by two different sets of papers. The first one deals with the inverse

Paley–Wiener theorem. An inverse Paley–Wiener theorem gives a criterion on a

function (with some integrability or regularity) which is necessary and sufficient

for its Fourier transform to be compactly supported in a ball around the origin,

through the holomorphic extension of the function along with a growth condition

on it. For Euclidean spaces it is the same as the usual Paley–Wiener theorem.

But for other spaces (e.g., a semisimple or nilpotent Lie group or a symmetric

space) where it is plausible to talk about Fourier transforms, the usual and the

inverse Paley–Wiener theorems are distinguished by the fact that the domain of a

function and its Fourier transform may be quite different and it is not at all clear

where the complex analytic extension of the function has to be considered. For

non-Euclidean spaces, such inverse Paley–Wiener theorems are rather recent (see,

e.g., [14, 27, 32]). Very roughly, they state again that a suitable function with its

Fourier transform compactly supported on its domain can be characterized from

the holomorphic extension (in an appropriate domain) and growth of the function.

Unlike these results, a real inverse Paley–Wiener theorem (see [1, 2, 3, 8, 9,

10, 33, 44] and the references therein) does not consider the holomorphic extension

of the inverse Fourier transform, but gives a criterion involving norm estimates on

the integral powers of the Laplacian acting on the function. While most of these

papers deal with Euclidean spaces, in [1, 33] the authors consider the setup of L2-

functions on Riemannian symmetric spaces. See also [12, 15, 25] and the references

therein for related results on band-limited functions and sampling results.

A second set of papers, starting with Roe [36] and followed by many including

[16, 22, 23, 29, 35, 42], try to characterize the eigenfunctions of differential opera-

tors, in particular of the Laplacian, from a normed estimate of a double sequence

of functions {fk} related by ∆fk = fk+1, where ∆ is the Laplacian of the space

in question. Most of these papers deal with Euclidean spaces. The first notable

exception is [42] where Strichartz establishes the failure of the Euclidean result

for hyperbolic spaces, as mentioned above. But through [29] and [35] the result is
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restored by the author and his collaborators for all Riemannian symmetric spaces

of noncompact type (which includes hyperbolic spaces) and is also generalized to

harmonic NA groups. A common thread between these two sets of results is the

use of estimates of integral powers of the Laplacian applied on the function. Our

aim is to exploit this connection to consolidate these two sets of results.

We pause briefly to point out the distinguishing features of our study. As

mentioned above, in [1] Andersen considered real inverse Paley–Wiener theorem

characterizing functions in L2(X) whose Fourier transform is supported in a ball

around the origin in R+×B. This is a representative result of the first set mentioned

above. Part (b) of Theorem 1.2 is an extension of this, where we characterize the

functions whose Fourier transforms are supported in a compact annulus around

the origin, under a weaker norm condition. As [1] deals with L2-functions, the

Plancherel theorem has a crucial presence in the proof. But the use of the L2-

norm precludes the possibility of the support degenerating to a sphere vis-à-vis

the possibility of capturing an eigenfunction, as there is no Lp-eigenfunction of ∆

for p ≤ 2. However, as we go out of the L2-setup and consider L2,∞-functions, we

face new difficulties. But finally we are rewarded with a concrete realization of the

function as the Poisson transform of an L2-function F on the boundary, which is

the same as a matrix coefficient of the class-1 principal series representation πα.

The aim of the second set, on the other hand, is to obtain a characterization of

the eigenfunction of ∆. The hypotheses of these theorems cannot accommodate

functions other than the eigenfunctions of ∆.

We note in passing that “the compactly supported Fourier transform” binds

the real and the usual inverse Paley–Wiener theorems together, vindicating a re-

lation between the estimates of ∆nf and the regularity (e.g., complex or real

analyticity) of f . Indeed, the use of estimates of iterated action of the Laplacian

or more general operators on a function to retrieve regularity properties of the

function is classical. We may cite for example the works of Stein, Nelson, Kotake

and Narasimhan [26, 31, 40].

The organization of the paper is as follows. Section 2 explains the notation and

contains the preliminaries. Section 3 prepares the reader further by supplying more

results (some of which are not easy to locate) and by explaining the sharpness of

the main results. Section 4 contains the proofs of Theorems 1.1 and 1.2. In Section 5

we provide some generalizations of the main results.

§2. Preliminaries

In this section we shall establish notation and collect all the ingredients to explain

the statements and proofs of the main results.
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§2.1. Generalities

For any p ∈ [1,∞), let p′ = p/(p−1). The letters N, Z and R, C denote respectively

the set of natural numbers, the ring of integers and the fields of real and complex

numbers. We denote the sets of the nonzero real numbers, nonnegative real num-

bers and nonnegative integers respectively by R×, R+ and Z+. For z ∈ C, <z,
=z and z̄ denote respectively the real and imaginary parts of z and the complex

conjugate of z. For a set S in a topological space, S denotes its closure and for a

set S in a measure space, |S| denotes its measure. We shall follow the standard

practice of using the letters C, C1, C2, C ′ etc. for positive constants, whose value

may change from one line to another. The constants may be suffixed to show their

dependencies on important parameters. The notation 〈f1, f2〉 for two functions or

distributions f1, f2 is frequently used in this article. It may mean
∫
f1f2 when it

makes sense. It may also mean that the distribution f1 is acting on f2. Depending

on the functions/distributions f1, f2 involved, the space could be X or its Fourier

dual R+×B, or R with the canonical measures on them. As this notation is widely

used in the literature, we hope this will not create any confusion. For two positive

expressions f1 and f2, by f1 � f2 we mean that there are constants C1, C2 > 0

such that C1f1 ≤ f2 ≤ C2f1.

§2.2. Lorentz spaces

We shall briefly introduce Lorentz spaces (see [18, 34, 41] for details). Let (M,m)

be a σ-finite measure space, f : M −→ C be a measurable function and p ∈ [1,∞),

q ∈ [1,∞]. We define

‖f‖∗p,q =


(
q
p

∫∞
0

[f∗(t)t1/p]q dtt

)1/q
if q <∞,

supt>0 tdf (t)1/p = supt>0 t
1/pf∗(t) if q =∞,

where for α > 0, df (α) = |{x | f(x) > α}|, the distribution function of f , and

f∗(t) = inf{s | df (s) ≤ t}, the decreasing rearrangement of f . Let Lp,q(M) be the

set of all measurable f : M −→ C such that ‖f‖∗p,q <∞. We note the following:

(i) The space Lp,∞(M) is known as the weak Lp-space.

(ii) Lp,p(M) = Lp(M) and ‖ · ‖∗p,p = ‖ · ‖p.
(iii) For 1 < p, q < ∞, the dual space of Lp,q(M) is Lp

′,q′(M) and the dual of

Lp,1(M) is Lp
′,∞(M).

(iv) If q1 ≤ q2 ≤ ∞ then Lp,q1(M) ⊂ Lp,q2(S) and ‖f‖∗p,q2 ≤ ‖f‖
∗
p,q1 .

The Lorentz “norm” ‖ · ‖∗p,q is actually a quasi-norm and Lp,q(M) is a quasi

Banach space (see [18, p. 50]). For 1 < p ≤ ∞, there is an equivalent norm ‖ · ‖p,q
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which makes it a Banach space (see [41, Chap. V, Thms. 3.21, 3.22]). We shall

slur over this difference and use the notation ‖ · ‖p,q.

§2.3. Symmetric space

We shall mostly use standard notation for objects related to semisimple Lie groups

and the associated Riemannian symmetric spaces of noncompact type. Along with

the required preliminaries this can be found for example in [17, 19]. To make this

article self-contained, we shall gather them without elaboration. We recall that a

rank-1 Riemannian symmetric space of noncompact type (which we denote by X

throughout this article) can be realized as a quotient space G/K, where G is a

connected noncompact semisimple Lie group with finite center and of real rank 1

and K is a maximal compact subgroup of G. Thus ooo = {K} is the origin of X and

a function on X can be identified with a function on G which is invariant under

the right K-action. The group G acts naturally on X = G/K by left translations

`g : xK → gxK for g ∈ G. The Killing form on the Lie algebra g of G induces a

G-invariant Riemannian structure and a G-invariant measure on X. Let ∆ be the

corresponding Laplace–Beltrami operator. For an element x ∈ X, let |x| = d(x,ooo),

where d is the distance associated to the Riemannian structure on X. Let k be

the Lie algebra of K, g = k ⊕ p be the corresponding Cartan decomposition and

a be a maximal abelian subspace of p. Then dim a = 1 as G is of real rank 1.

We denote the real dual of a by a∗. Let Σ ⊂ a∗ be the subset of nonzero roots

of the pair (g, a). We recall that either Σ = {−γ, γ} or {−2γ,−γ, γ, 2γ} where

γ is a positive root and the Weyl group W associated to Σ is {Id,−Id} where

Id is the identity operator. Let mγ = dim gγ and m2γ = dim g2γ where gγ and

g2γ are the root spaces corresponding to γ and 2γ. Then ρ = 1
2 (mγ + 2m2γ)γ

denotes the half-sum of the positive roots. Let H0 be the unique element in a

such that γ(H0) = 1 and through this we identify a with R as t 7→ tH0. Then

a+ = {H ∈ a | γ(H) > 0} is identified with the set of positive real numbers.

We identify a∗ and its complexification a∗C with R and C by t 7→ tγ respectively

z 7→ zγ, t ∈ R, z ∈ C. By abuse of notation we will denote ρ(H0) = 1
2 (mγ + 2m2γ)

by ρ. Let n = gγ+g2γ , N = exp n, A = exp a, A+ = exp a+ and A+ = exp a+. Then

N is a nilpotent Lie group and A is a one-dimensional vector subgroup identified

with R. Precisely, A is parametrized by as = exp(sH0). The Lebesgue measure on

R induces a Haar measure on A by das = ds. Let M be the centralizer of A in K.

The groups M and A normalize N .

The group G has the Iwasawa decomposition G = KAN and the polar decom-

position G = KA+K. Through polar decomposition X is realized as A+ × B =

R+ × B, quotiented by the relation (0, k1) ∼ (0, k2) for all k1, k2 ∈ B where

B = K/M is the compact boundary of X. Using the Iwasawa decomposition
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G = KAN , we write an element x ∈ G uniquely as k(x) expH(x)n(x) where

k(x) ∈ K, n(x) ∈ N and H(x) ∈ a. For x ∈ X = G/K, b ∈ B = K/M let

A(x, b) = A(gK, kM) = −H(x−1k). Let dg, dk and dm be the Haar measures of

G, K and M respectively with
∫
K
dk = 1 and

∫
M
dm = 1. Let db be the normal-

ized measure on K/M = B induced by dk on K. Using them we write the integral

formulae corresponding to the Iwasawa decompositions G = KAN and the polar

decomposition, which hold for any integrable function:

(2.1)

∫
G

f(g) dg = C1

∫
K

∫
R

∫
N

f(katn)e2ρt dn dt dk

and

(2.2)

∫
G

f(g) dg = C2

∫
K

∫ ∞
0

∫
K

f(k1atk2)(sinh t)mγ (sinh 2t)m2γ dk1 dt dk2.

The constants C1, C2 depend on the normalization of the Haar measures involved.

Since sinh t ≈ tet/(1 + t), t ≥ 0 it follows from (2.2) that∫
G

|f(g)| dg � C3

∫
K

∫ 1

0

∫
K

|f(k1atk2)|td−1 dk1 dt dk2

+ C4

∫
K

∫ ∞
1

∫
K

|f(k1atk2)|e2ρt dk1 dt dk2,(2.3)

where d = mγ + m2γ + 1 is the dimension of the symmetric space. For an inte-

grable function f on X,
∫
G
f(g) dg =

∫
X
f(x) dx where in the left-hand side f is

considered as a right K-invariant function on G and dg is the Haar measure on G,

while on the right-hand side dx is the G-invariant measure on X.

2.3.1. Poisson transform. For λ ∈ C, the complex power of the Poisson kernel

x 7→ e−(iλ+ρ)H(x−1) is an eigenfunction of the Laplace–Beltrami operator ∆ with

eigenvalue −(λ2 + ρ2). For any λ ∈ C and F ∈ L1(B), we define the Poisson

transform Pλ of F by (see [19, p. 279])

PλF (x) =

∫
B

F (b)e(iλ+ρ)A(x,b) db for x ∈ X.

Then

∆PλF = −(λ2 + ρ2)PλF.
Readers who are oriented more towards representation theory will look at X

as a quotient space G/K and will recognize that PαF = 〈πα(x)1B , F 〉, a matrix

coefficient of the class-1 principal series representation πα of G, realized in the

compact picture on L2(B). Here by 1B we mean the constant function 1 on B =

K/M . By Schur’s orthogonality relation it is clear that these are the only matrix

coefficients which are relevant for functions on G/K.
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A function f on X is said to be left K-invariant or radial if f(kx) = f(x)

for all k ∈ K and x ∈ X. Note that a left K-invariant function on X can be

identified with a K-biinvariant function on G. We shall use both the terms radial

and K-biinvariant for such functions. For any function space L(X), by L(G//K)

we denote its subset of K-biinvariant functions. For a suitable function f on X we

define its radialization Rf by Rf(x) =
∫
K
f(kx) dk. It is clear that Rf is a radial

function and if f is radial then Rf = f . We also note that for φ, ψ ∈ C∞c (X),

we have (i) 〈Rφ,ψ〉 = 〈φ,Rψ〉 and (ii) R(∆φ) = ∆(Rφ). From (i) it follows that∫
X
f(x) dx =

∫
X
Rf(x) dx and hence ‖Rf‖1 ≤ ‖f‖1. We have also the trivial L∞-

boundedness of the operator R: ‖Rf‖∞ ≤ ‖f‖∞. Then a standard interpolation

argument (see, e.g., [41, p. 197]) yields that

‖Rf‖p,q ≤ ‖f‖p,q for 1 < p <∞, 1 ≤ q ≤ ∞.

For any λ ∈ C, the elementary spherical function φλ is given by

φλ(x) = Pλ1B(x) =

∫
K

e−(iλ+ρ)H(xk) dk =

∫
K

e(iλ−ρ)H(xk) dk for all x ∈ G.

Hence ∆φλ = −(λ2 + ρ2)φλ for λ ∈ C. It follows that for λ ∈ C, φλ is radial,

φλ = φ−λ and it satisfies the following estimates (see [6], [17, (4.6.5)]):

|φα+iγpρ(at)| � e−(2ρ/p
′)|t| as |t| → ∞, α ∈ R, 0 < p < 2, γp = 2/p− 1;(2.4)

|φ0(at)| ≤ Ceρt(1 + |t|) for t > 0(2.5)

and

(2.6)

∣∣∣∣ dndλnφλ(x)

∣∣∣∣ ≤ C(1 + |x|)nφ=λ(x) for λ ∈ C.

2.3.2. Spherical Fourier transform. For a measurable function f of X, we

define its spherical Fourier transform f̂ and its inverse as (see [19, p. 425, p. 454])

f̂(λ) =

∫
X

f(x)φ−λ(x) dx, λ ∈ a∗, f(x) = C

∫
a∗
f̂(λ)φλ(x) |c(λ)|−2 dλ,

whenever the integrals make sense. Here c(λ) is the Harish-Chandra c-function,

dλ is the Lebesgue measure on a∗ ≡ R and |c(λ)|−2 dλ is the spherical Plancherel

measure on a∗ and C is a normalizing constant. Since φλ = φ−λ we have f̂(λ) =

f̂(−λ), hence we can consider f̂ as a function on R+.

2.3.3. Helgason Fourier transform. For a function f on X, its Helgason

Fourier transform (which we shall call the Fourier transform) is defined by

f̃(ξ, b) =

∫
X

f(x)e(−iξ+ρ)(A(x,b)) dx
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for ξ ∈ a∗+ ≡ R+, b ∈ B for which the integral exists. (See [20, pp. 199–203] for

details.) The Fourier transform f(x) → f̃(ξ, b) extends to an isometry of L2(X)

onto L2(R+ ×B, |c(ξ)|−2 dξ db) and we have∫
X

f1(x)f2(x) dx = C

∫
R+×B

f̃1(ξ, b)f̃2(ξ, b)|c(ξ)|−2 dξ db.

For functions f, g on X with g radial, g̃(ξ, k) = ĝ(ξ) and f̃ ∗ g(ξ, b) = f̃(ξ, b)ĝ(ξ)

for ξ ∈ C and b ∈ B whenever the quantities f ∗ g, f̃ ∗ g, f̃ and ĝ make sense.

2.3.4. Schwartz spaces, tempered distributions. For 1 ≤ p ≤ 2, the Lp-

Schwartz space Cp(X) is defined (see [5]) as the set of C∞-functions on X such

that

γr,D(f) = sup
x∈S
|Df(x)|φ−2/p0 (1 + |x|)r <∞,

for all nonnegative integers r and left-invariant differential operators D on X. We

topologize Cp(X) by the seminorms γr,D. In what follows, we shall often abbreviate

“continuous seminorm” as “seminorm”. Then Cp(X) is a dense subset of Lp(X).

Let Cp(G//K) be the set of radial functions in Cp(X). We shall primarily use

C2(X), the L2-Schwartz space. Let C2(X̂) (respectively C2(Ĝ//K)) be the image

of C2(X) (respectively of C2(G//K)) under f 7→ f̃ (respectively f 7→ f̂). Then (see

[5]) f 7→ f̂ is a topological isomorphism from C2(G//K) to C2(Ĝ//K) = S(R)even
where S(R) is the set of Schwartz class functions on R, and S(R)even denotes the

subspace of even functions in S(R). We do not need an explicit description of

C2(X̂). For this and for a proof of the isomorphism f 7→ f̃ from C2(X) to C2(X̂),

we refer to [13, Thm. 4.8.1].

We denote the dual space of Cp(G//K) (respectively Cp(X)) by Cp(G//K)′

(respectively Cp(X)′). Elements of Cp(G//K)′ and Cp(X)′ are called respectively

the K-biinvariant Lp-tempered distributions and Lp-tempered distributions on X.

It is clear that Lp
′
(G//K) ⊂ Cp(G//K)′ and Lp

′
(X) ⊂ Cp(X)′ for 1 ≤ p ≤ 2. For

an L2-tempered distribution f , f̃ is defined as a continuous linear functional on

C2(X̂): for φ ∈ C2(X), 〈f̃ , φ̃〉 = 〈f, φ〉.
For a function φ ∈ C2(X), we define support of φ̃ as a subset of R+ ×B by

Suppt φ̃ = {(λ, b) ∈ R+ ×B | φ̃(λ, b) 6= 0}.

If φ is also K-biinvariant then φ̃(λ, b) = φ̂(λ) for all b ∈ B and hence Suppt φ̂ =

{λ ∈ R+ | φ̂(λ) 6= 0}×B. When φ is K-biinvariant, by abuse of terminology, the set

{λ ∈ R+ | φ̂(λ) 6= 0} will also be called the support of φ. We recall that L2,∞(X) ⊂
C2(X)′ (see Proposition 3.2(ii) below). For a function f ∈ L2,∞(X), the distribu-

tional support of f̃ is the complement of the largest open set U ⊂ R+ × B (with
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respect to the relative topology) such that for any φ ∈ C2(X) with Suppt φ̃ con-

tained in U , 〈f, φ〉 = 0.

If for a function f ∈ L2,∞(X), Suppt f̃ is an empty set then f ≡ 0. Indeed,

Suppt f̃ is empty implies that f annihilates all functions in C2(X) and hence it is

zero as an L2-tempered distribution.

2.3.5. Abel transform. For a radial function f on X its Abel transform Af is

defined by

Af(a) = eρ(log a)
∫
N

f(an) dn for a ∈ A,

whenever the integral makes sense. Through the identification of A with R we can

write it as

Af(t) = eρt
∫
N

f(atn) dn for t ∈ R.

For f ∈ S(R), let F(f)(ξ) =
∫
R f(x)e−iξx dx be its Euclidean Fourier transform

at ξ ∈ R.

We recall two fundamental properties of the Abel transform (see, e.g., [5]):

(a) (slice projection theorem) for any f ∈ C2(G//K), λ ∈ R, F(Af)(λ) = f̂(λ),

(b) A : C2(G//K)→ S(R)even is a topological isomorphism. Moreover, by duality,

(b) implies that the adjoint of the Abel transform A∗ : S(R)′even → C2(G//K)′ is

an isomorphism (see [21, p. 541]).

§3. Some preparatory discussion

In this section we shall explain the statements of the main results, highlight some

of their features and gather some facts which will be used in the next section.

(1) As mentioned in the introduction, the weak L2-norm in the hypothesis is

the only possible Lorentz norm for the formulation. We shall elaborate on this.

As the statements of Theorems 1.1 and 1.2 involve Fourier transforms, tem-

pered distributions are natural and perhaps the most general class of objects to

work with. An L2,∞-function on X is an L2-tempered distribution and the space

L2,∞(X) is close to L2(X), where usually the inverse Paley–Wiener theorems are

stated. We recall that for 1 ≤ q < ∞, L2,q(X) ⊂ C2(X)′ (see Proposition 3.2(ii)

below), i.e., an L2,q-function is also an L2-tempered distribution. But the L2,q-

norm with q <∞ (which in particular includes the L2 = L2,2-norm) discards the

possibility of f being an eigenfunction (see Proposition 3.2(vi) below).

Suppose that we take f ∈ Lp,q(X) with 1 ≤ p < 2, 1 ≤ q ≤ ∞ and use

the Lp,q-norm in the hypothesis instead of the L2,∞-norm. Then again f is an

L2-tempered distribution. Indeed C2(X) ⊂ L2(X) ∩ L∞(X) and hence by inter-

polation, C2(X) ⊂ Lp
′,q(X) for p, q in the range above. This implies by duality
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that Lp,q
′
(X) ⊂ C2(X)′. But the Fourier transform f̃(λ, b) of such a function f

exists pointwise and has a complex-analytic extension in λ in a strip, for almost

every b ∈ B (see [30, 34]). Therefore f̃ cannot be compactly supported. Thus

Theorem 1.1 with this norm is not meaningful. If we formulate Theorem 1.2 with

this norm, then the only possibilities are c1 = ∞ and c2 = ρ−2, i.e., the annulus

Aαβ = R+ ×B.

Lastly if f ∈ Lp,q(X) with p > 2, 1 ≤ q ≤ ∞, then f is an Lp
′
-tempered

distribution where p′ < 2 (and in general not an L2-tempered distribution). See [29,

Sect. 6]. It is clear that the usual definition of distributional support of the Fourier

transform is not meaningful for such a function, since there is no nonzero function

in Cp′(X) whose Fourier transform is compactly supported. Thus Theorem 1.1

cannot be formulated using the Lp,q-norm with p, q in this range. On the other

hand there are functions f ∈ Lp,q(X) satisfying

lim
n→∞

‖∆nf‖1/np,q = c1, lim
n→∞

‖∆−nf‖1/np,q = 1/c1

which are not eigenfunctions, not even generalized eigenfunctions of ∆. We recall

that (see, e.g., [23, p. 205]) f 6= 0 is a generalized eigenfunction of ∆ with eigenvalue

λ if (∆− λ)Nf = 0 for some N ∈ N, N > 1. For example ∂
∂λφλ|λ=α for any α ∈ R

is a generalized eigenfunction of ∆ (see Lemma 5.2). Coming back to the main

discussion, we take two points λ1, λ2 ∈ C such that λ21 6= λ22, |=λi| < |2/p − 1|ρ
for i = 1, 2 and |λ21 + ρ2| = |λ22 + ρ2| = δ for some fixed δ > (4ρ2)/(pp′). Indeed,

uncountably many λ ∈ C satisfy this for any such fixed δ. Then it is easy to

verify that if f = φλ1 + φλ2 then f is not a generalized eigenfunction but satisfies

the hypothesis of Theorem 1.2 with the substitution of the L2,∞-norm by the

Lp,q-norm for p, q as above.

(2) Outside the set of Lorentz norms and Lp-norms there are some prominent

size estimates which are used in the literature to characterize eigenfunctions of

the Laplacian as Poisson transforms. We shall mention only two of them. Let

B(o, r) = {x ∈ X | |x| < r} be the geodesic ball of radius r centered at the origin

o of X. For 1 < p <∞, 1 ≤ q <∞ and a function f on X we define

Mp(f) =

(
lim sup
r→∞

1

r

∫
B(o,r)

|f(x)|p dx
)1/p

,(3.1)

Kp,q(f) = ‖Kq(f)‖p,∞ where Kq(f)(x) =

(∫
K

|f(kx)|q dk
)1/q

.(3.2)

Any function f on X satisfying M2(f) < ∞ or K2,q(f) < ∞ is an L2-tempered

distribution. (See the last sentence of this section.) Since the argument in the proof

of Theorem 1.2 works under the assumption that f is an L2-tempered distribution,
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we can substitute the L2,∞-norm by the M2-norm or by the K2,q-norm. See [29]

for the background relevant to these norms.

(3) Negative powers of ∆ used in the statement of Theorem 1.2 can be in-

terpreted in terms of radial multipliers. Precisely, ∆−1 is an Lp-multiplier for

1 < p < 2 (see [4]) and hence an Lp
′
-multiplier. Hence by interpolation (see, e.g.,

[41, p. 197]) ∆−1 defines a bounded operator from L2,∞(X) to itself. This is a

benefit of the fact that in X (and in NA groups) the spectrum of ∆ does not

contain 0 (see [43]). However, keeping in mind the spaces (e.g., Rn) where this

interpretation is not valid, we can have an alternative formulation of Theorem 1.2

following [16, 23, 42], which in our case is only a change of notation.

Theorem 3.1. Let {fk}k∈Z be a doubly infinite sequence of nonzero functions in

L2,∞(X) with ∆fk = fk+1 for all k ∈ Z. Suppose for constants c1 ≥ ρ2, c2 ≤ 1/ρ2,

lim
k→∞

‖fk‖1/k2,∞ = c1, lim
k→∞

‖f−k‖1/k2,∞ = c2.

Then we have conclusions (a)–(d) of Theorem 1.2 for f = f0.

Indeed the substitution f = f0 and fk = ∆kf0 = ∆kf for k ∈ Z reduces the

hypothesis of this theorem to that of Theorem 1.2.

(4) We recall that ∆n for n ∈ N commutes with translations, precisely

∆n`xf = `x∆nf for any x ∈ G and a locally integrable function f on X. It is

also not difficult to see that ∆−n`xf = `x∆−nf for any n ∈ N. Similarly it can

be verified that ∆n for n ∈ Z commutes with the radialization operator R, i.e.,

∆n(R(f)) = R(∆nf).

(5) We conclude this section collecting a few not-so-well-known results, some

of which are used in the discussion above and some will be required for the main

argument.

Proposition 3.2. (i) C2(X) is a dense subset of L2,1(X) and there exists a

seminorm ν of C2(X) such that for all φ ∈ C2(X), ‖φ‖2,1 ≤ Cν(φ).

(ii) For f ∈ L2,∞(X), there exists a seminorm ν of C2(X) such that for all

φ ∈ C2(X), |〈f, φ〉| ≤ C‖f‖2,∞ν(φ). That is, f ∈ L2,∞(X) is an L2-tempered

distribution. Since for any q <∞, L2,q(X) ⊂ L2,∞(X) and ‖f‖2,∞ ≤ ‖f‖2,q,
any f ∈ L2,q(X) is also an L2-tempered distribution.

(iii) Let 1 ≤ q ≤ ∞ be fixed. If for a nonnegative radial measure µ on X, µ̂(0) <

∞, then Tµ : f → f ∗µ defines a bounded operator from L2,q(X) to itself and

the operator norm satisfies ‖Tµ‖L2,q→L2,q ≤ µ̂(0).

(iv) For f ∈ L2,∞(X) and ψ ∈ C2(G//K), ‖f ∗ ψ‖2,∞ ≤ ‖f‖2,∞ν(ψ) for some

seminorm ν of C2(X).
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(v) If a nonzero function f on X satisfies ∆f = −ρ2f , then f 6∈ L2,∞(X). In

particular φ0 6∈ L2,∞(X).

(vi) If a nonzero function f on X satisfies ∆f = −(λ2 + ρ2)f , for some λ ∈ R×,

then f 6∈ L2,q(X) for any q <∞.

(vii) For any λ ∈ R×, φλ ∈ L2,∞(X).

(viii) Suppose that a function f on X satisfies ∆f = −(λ2 + ρ2)f with λ ∈ R×.

Then f = Pλu for some u ∈ L2(B) if and only if f ∈ L2,∞(X) and in that

case ‖Pλu‖2,∞ ≤ Cλ‖u‖L2(B).

Proof. (i) follows from the definition of C2(X) and the fact that for an appro-

priately large M , the function φ0(x)(1 + |x|)−M ∈ L2,1(X). See [29, Lem. 6.1.1].

Denseness of C2(X) is a consequence of denseness of C∞c (X) in L2,1(X). (ii) is

immediate from (i) and Hölder’s inequality. See also [29, Lem. 6.1.1]. (iii) is a par-

ticular case of a more general result proved in [38, Lem. 3.2.1] and [6]. For (iv) we

have

|̂ψ|(0) =

∫
X

|ψ(x)|φ0(x) dx

≤ sup
x∈X

[
|ψ(x)|φ−10 (x)(1 + |x|)M

] ∫
X

φ20(x)(1 + |x|)−M dx.

It follows from the estimate of φ0 and the measure on X (see Section 2) that

C =
∫
X
φ20(x)(1 + |x|)−M dx <∞ for suitably large M . We define

ν(ψ) = sup
x∈X

[
|ψ(x)|φ−10 (x)C(1 + |x|)M

]
to get |̂ψ|(0) ≤ ν(ψ). Thus by (iii),

‖f ∗ ψ‖2,∞ ≤ ‖ |f | ∗ |ψ| ‖2,∞ = ‖T|ψ|(|f |)‖2,∞ ≤ ‖f‖2,∞ |̂ψ|(0) ≤ ‖f‖2,∞ν(ψ).

For (v), (vi), (vii) and (viii) we refer to [29, Prop. 3.1.1, (2.2.6) and Thm. 4.3.5]

and [28]. ((vii) is also a particular case of (viii).)

For the corresponding results, in particular those of (i), (ii) and (viii) above

for the M2-norm and the K2,q-norm, we refer to [29, Lem. 6.1.1] and [11, 24].

§4. Proof of the main results

This section is devoted to the proofs of Theorems 1.1 and 1.2. We begin with a

few results which relate the support of the Fourier transform of a function on X

to the support of the Fourier transform of its translation and radialization.
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Proposition 4.1. Let g ∈ C2(X) and λ ∈ R+. Then (λ, b) ∈ Suppt g̃ for some

b ∈ B if and only if λ ∈ Suppt R̂(`xg) for some x ∈ G.

Proof. Note that for λ ∈ R (see [20, p. 200]),

R̂(`xg)(λ) = g ∗ φλ(x−1) =

∫
B

g̃(λ, b) e(iλ+ρ)(A(x−1,b)) db = Pλ g̃(λ, ·)(x−1),

where in the last equality above we have considered g̃(λ, ·) as a function on B.

If (λ, b) 6∈ Suppt g̃ for all b ∈ B then clearly λ 6∈ Suppt R̂(`xg) for all x ∈ G.

Conversely, if λ 6∈ Suppt R̂(`xg) for all x ∈ G, then Pλg̃(λ, ·) ≡ 0. Using the

simplicity criterion ([20, pp. 152, 165]) this implies that g̃(λ, ·) ≡ 0.

Proposition 4.2. Let g ∈ C2(X). If the support of g̃ intersects the sphere {γ}×B
for some γ ≥ 0, then for any y ∈ G, the support of ˜̀yg also intersects {γ} ×B.

Proof. We have

˜̀
yg(ξ, kM) =

∫
X

g(y−1x)e(iξ−ρ)H(x−1k)dx.

With the substitution y−1x = z and using the identity H(z−1y−1k) = H(y−1k) +

H(z−1k(y−1k)) ([20, p. 200]) we get from above

˜̀
yg(ξ, kM) = [e(iξ−ρ)H(y−1k)]

∫
X

g(z)e(iξ−ρ)H(z−1k(y−1k)) dz

= [e(iξ−ρ)H(y−1k)] g̃(ξ, k(y−1k)).

Suppose that g̃(γ, b) 6= 0 for b = k1M . Let k(yk1) = k. Then k(y−1k) = k1 and

hence ˜̀yg(γ, kM) 6= 0, which proves the assertion.

We note that for Theorem 1.2, it is required to find only the outer and inner

radii of the support of f̃ . Precisely, the outer and inner radii of the support of f̃

are α and β respectively if the support of f̃ is contained in the annulus [β, α]×B
but not contained in [β′, α′]×B when β < β′ or α′ < α. We need two more results

in this vein, relating the support of the Fourier transform of a function with the

support of the Fourier transform of its translation and radialization.

Proposition 4.3. Let f ∈ L2,∞(X). Then for any x ∈ G, the outer and inner

radii of support of ˜̀xf are the same as those of the support of f̃ .

Proof. Suppose that the outer and inner radii of support of f̃ are α, β respectively.

We take a function g ∈ C2(G/K), such that Suppt g̃ is contained in {(λ, b) ∈
R+ × B | λ > α}. Then by Proposition 4.2, Suppt˜̀x−1g for any x ∈ G is also
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contained in {(λ, b) ∈ R+×B | λ > α}. Hence 〈f, `x−1g〉 = 0. Therefore 〈`xf, g〉 =

〈f, `x−1g〉 = 0. This shows that the outer radius of Suppt˜̀xf ≤ α for all x ∈ G.

Since f is a translation of `xf , the outer radius of the support of ˜̀xf is the same

as the outer radius of the support of f̃ . Similarly we can show that the inner radii

of f̃ and of ˜̀xf are the same.

Proposition 4.4. Let f ∈ L2,∞(X). Suppose that Suppt f̃ ⊂ {α} × B. Then

Suppt R̂(`xf) ⊂ {α} for any x ∈ G.

Proof. If for some x ∈ G, R(`xf) = 0 we have nothing to show. Therefore we

assume R(`xf) 6= 0. We take a function g ∈ C2(X) with Suppt g̃ ⊂ {(λ, b) ∈
R+ × B | λ 6= α}. By Proposition 4.1, Suppt R̂(g) ⊂ {λ ∈ R+ | λ 6= α}. Therefore

by Proposition 4.3, 〈`xf,Rg〉 = 0 and hence 〈R(`xf), g〉 = 〈`xf,Rg〉 = 0.

This makes us ready to present the proofs of the main results. First we shall

take up Theorem 1.1 which will be proved through a series of lemmas.

We shall write ∂λ, ∂nλ respectively for ∂
∂λ and ∂n

∂λn .

Lemma 4.5. For any λ0 > 0, ∂λφλ|λ=λ0 6∈ L2,∞(X).

Proof. In view of the polar decomposition, the corresponding integral formula

(2.3), and the identification of A with R, it suffices to show that ∂λφλ|λ=λ0 re-

stricted to [1,∞) does not belong to L2,∞([1,∞), e2ρt dt). We shall use the facts

that e−ρt ∈ L2,∞([1,∞), e2ρt dt) and te−ρt 6∈ L2,∞([1,∞), e2ρt dt), which are easily

verifiable through straightforward computation. We recall that for λ ∈ R×, φλ has

the expansion (see [24, 39])

φλ(t) = e−ρt[c(λ)eiλt + c(−λ)e−iλt + E(λ, t)],

where

E(λ, t) = c(λ)eiλt
∞∑
k=1

Γk(λ)e−2kt + c(−λ)e−iλt
∞∑
k=1

Γk(−λ)e−2kt

and the Γk are recursively defined by Γ0(λ) = 1 and

(k+1)(k+1− iλ)Γk+1 = (ρ+k)(ρ+k− iλ)Γk+m2γ

k∑
j=0

(−1)k+j+1(ρ+2j− iλ)Γj .

For t ≥ 1 the series defining E(λ, t) and its λ-derivative at λ = λ0 are uniformly

convergent. Term-by-term differentiation shows that |E(λ, t)| ≤ Cλ for some con-

stant Cλ for t ≥ 1. Thus e−ρtE(λ, t) ∈ L2,∞([1,∞), e2ρt dt). Therefore we need to

show that

e−ρt∂λ[c(λ)eiλt + c(−λ)e−iλt]|λ=λ0 6∈ L2,∞([1,∞), e2ρt dt).
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Noting that c(λ) = c(−λ) and writing c(λ) = a(λ) + i b(λ) where a(λ), b(λ) are

real functions, we have

e−ρt∂λ[c(λ)eiλt + c(−λ)e−iλt] = 2e−ρt∂λ(<(c(λ)eiλt))

= 2e−ρt∂λ(a(λ) cosλt− b(λ) sinλt)

= −2te−ρt(a(λ) sinλt+ b(λ) cosλt)

+ 2e−ρt(∂λ(a(λ)) cosλt− ∂λ(b(λ)) sinλt).

Since at λ=λ0 the last term in the equality above is in L2,∞([1,∞), e2ρt dt), we need

only to show that g(t) = te−ρt(a(λ0) sinλ0t+b(λ0) cosλ0t) 6∈ L2,∞([1,∞), e2ρt dt).

For the sake of deriving a contradiction, we assume that g ∈ L2,∞([1,∞), e2ρt dt).

Then its translation by π/2λ0 is g(t+ π/2λ0) = C(t+ π/2λ0)e−ρt(a(λ0) cosλ0t−
b(λ0) sinλ0t), which is also in L2,∞([1,∞), e2ρt dt). This follows from interpolation

of the facts that for 1 < p < 2 < q, translation by a fixed element in R is a bounded

operator from Lp to Lp and from Lq to Lq in the measure space ([1,∞), e2ρt dt).

We note that the part C(π/2λ0)e−ρt(a(λ0) cosλ0t − b(λ0) sinλ0t) of g(t +

π/2λ0) is in L2,∞([1,∞), e2ρt dt). Therefore the other part of g(t + π/2λ0) given

by h(t) = te−ρt(−b(λ0) sinλ0t + a(λ0) cosλ0t) ∈ L2,∞([1,∞), e2ρt dt). Since g(t)

and h(t) are in L2,∞([1,∞), e2ρt dt) we have

b(λ0)g(t) + a(λ0)h(t) = te−ρt(a(λ0)2 + b(λ0)2) cosλ0t ∈ L2,∞([1,∞), e2ρt dt),

a(λ0)g(t)− b(λ0)h(t) = te−ρt(a(λ0)2 + b(λ0)2) sinλ0t ∈ L2,∞([1,∞), e2ρt dt).

Hence (a(λ0)2 + b(λ0)2)eiλ0tte−ρt ∈ L2,∞([1,∞), e2ρt dt) which amounts to saying

that te−ρt ∈ L2,∞([1,∞), e2ρt dt), a contradiction.

Lemma 4.6. For any nonconstant polynomial P and λ0 ≥ 0, if P (∂λ)φλ|λ=λ0
6≡

0, then P (∂λ)φλ|λ=λ0 6∈ L2,∞(X).

Proof. First we shall take up the case λ0 > 0. Let P be a polynomial of degree

n given by P (y) = a0y
n + a1y

n−1 + · · · + an with a0 6= 0. We shall show that

if P (∂λ)φλ|λ=λ0 ∈ L2,∞(X), then ∂λφλ|λ=λ0 ∈ L2,∞(X). Use of Lemma 4.5 then

completes the proof.

So, we assume that P (∂λ)φλ|λ=λ0
∈ L2,∞(X). If n = 1, then P (∂λ)φλ =

a0∂λφλ+a1φλ. Since P (∂λ)φλ|λ=λ0
∈ L2,∞(X) and a1φλ0

∈ L2,∞(X) (see Propo-

sition 3.2(vii)) we have a0∂λφλ|λ=λ0
∈ L2,∞(X). If n ≥ 2, we take a function

ψ ∈ C2(G//K) such that ψ̂ and its derivatives of orders up to (n − 2) are

zero at λ0 and ∂n−1λ (ψ̂(λ))|λ=λ0
6= 0 (e.g., ψ ∈ C2(G//K) given by ψ̂(λ) =

(λ2 − λ20)n−1e−λ
2

, λ ∈ R). Then ∂n−rλ (ψ̂(λ)φλ)|λ=λ0 = 0 for all 2 ≤ r ≤ n.
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We note that P (∂λ)φλ|λ=λ0
∗ ψ = P (∂λ)(φλ ∗ ψ)|λ=λ0

where the convolution

can be justified from the estimate of P (∂λ)φλ (see (2.4), (2.6)). Hence,

P (∂λ)φλ|λ=λ0 ∗ ψ = {a0∂nλ (ψ̂(λ)φλ) + a1∂
n−1
λ (ψ̂(λ)φλ)}|λ=λ0 .

Expanding the derivatives in the right-hand side by the Leibniz rule and using

that ψ̂ and its derivatives of order 1, 2, . . . , n− 2 vanish at λ0 we get

P (∂λ)φλ|λ=λ0 ∗ ψ

=
[
a0{φλ∂nλ (ψ̂(λ)) + n(∂λφλ)∂n−1λ (ψ̂(λ))}+ a1φλ∂

n−1
λ (ψ̂(λ))

]
λ=λ0

.

The assumption P (∂λ)φλ|λ=λ0
∈ L2,∞(X) implies that P (∂λ)φλ|λ=λ0

∗ ψ ∈
L2,∞(X) (Proposition 3.2(iv)). Since φλ0 ∈ L2,∞(X) (Proposition 3.2(vii)), we get

from above that ∂λφλ|λ=λ0
∈ L2,∞(X).

Next we assume that λ0 = 0. Note that for any fixed x ∈ G, φλ(x) is an

even function of λ. Hence for any odd m ∈ N, ∂mλ φλ(x) is an odd function of λ

and consequently ∂mλ φλ|λ=0 ≡ 0. As above we take a polynomial P (y) = a0y
n +

a1y
n−1 + · · · + an with a0 6= 0 and for the sake of deriving a contradiction we

assume that P (∂λ)φλ|λ=0 6≡ 0 and P (∂λ)φλ|λ=0 ∈ L2,∞(X). Since ∂nλφλ|λ=0 ≡ 0

if n is odd, we take the degree of P , i.e., n, to be even without loss of generality.

Let ψ ∈ C2(G//K) be defined by ψ̂(λ) = λne−λ
2

for λ ∈ R. Then ∂mλ ψ̂|λ=0 = 0

for m = 0, 1, . . . , n− 1 and ∂nλ ψ̂|λ=0 6= 0.

As above, by Proposition 3.2(iv), P (∂λ)φλ|λ=0 ∗ ψ ∈ L2,∞(X), hence

P (∂λ)(ψ̂(λ)φλ)|λ=0 = P (∂λ)(φλ ∗ ψ)|λ=0 = P (∂λ)φλ|λ=0 ∗ ψ ∈ L2,∞(X).

We also have

P (∂λ)(ψ̂(λ)φλ)|λ=0 = a0
[
φλ∂

n
λ (ψ̂(λ)) + a0∂λφλ∂

n−1
λ (ψ̂(λ))

]
|λ=0

= a0∂
n
λ (ψ̂(λ))|λ=0 φ0.

Since ∂nλ (ψ̂(λ))|λ=0 6= 0, we have φ0 ∈ L2,∞(X), which contradicts Proposi-

tion 3.2(v).

Lemma 4.7. For any polynomial P in one variable and ξ ∈ R, A∗(P (∂ξ)e
−iξt) =

P (∂ξ)φξ as an L2-tempered distribution on X; equivalently (A∗)−1(P (∂ξ)φξ) =

P (∂ξ)e
−iξt as a tempered distribution on R.

Proof. It is enough to show this for P (∂ξ) = ∂ξ. Let ψ ∈ C2(G//K). Then Aψ ∈
S(R)even. We have

〈Aψ, ∂ξe−iξt〉 = 〈ψ,A∗(∂ξe−iξt)〉.
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On the other hand, using the slice-projection theorem (see Section 2.3.5) we have

〈Aψ, ∂ξe−iξt〉 = ∂ξF(Aψ)(ξ) = ∂ξψ̂(ξ) = ∂ξ〈ψ, φξ〉 = 〈ψ, ∂ξφξ〉.

Thus 〈ψ,A∗(∂ξe−iξt)〉 = 〈ψ, ∂ξφξ〉, for all ψ ∈ C2(G//K), implying A∗(∂ξe−ξt) =

∂ξφξ as L2-tempered distributions. As A∗ is an isomorphism from S(R)even to

C2(G//K), the equivalent statement follows.

Lemma 4.8. Let f1, f2 be two nonzero functions in L2,∞(X). Then the following

statements are true.

(a) There exists x ∈ G such that R(`xf1) 6= 0.

(b) If for some x ∈ G, R(`xf1) 6= 0, then R(∆n`xf1) 6= 0 for all n ∈ Z.

(c) If R(`xf1) = R(`xf2) for all x ∈ G, then f1 = f2.

Proof. If R(`xf1) = 0 for all x ∈ G, then for any h ∈ C2(G//K), 〈`xf1, h〉 = 0.

Let ht, t > 0 be the heat kernel which is an element in C2(G//K) defined through

its spherical Fourier transform ĥt(λ) = e−t(λ
2+ρ2). Taking h = ht we thus get

〈`xf1, ht〉 = 0, i.e., f1 ∗ ht ≡ 0 for all t > 0. But f1 ∗ ht → f1 as t → 0 in the

sense of a distribution. Therefore f1 = 0 which contradicts that f1 is nonzero. This

proves (a). Applying this on f1 − f2 we get (c).

For (b) it is enough to show that R(`xf1) 6= 0 implies that ∆−1R(`xf1) 6= 0

and ∆R(`xf1) 6= 0. Indeed, ∆−1R(`xf1) = 0 implies R(`xf1) = ∆∆−1R(`xf1) = 0.

On the other hand, if ∆R(`xf1) = 0, then 〈∆R(`xf1), ψ〉 = 0 and hence

〈R(`xf1),∆ψ〉 = 0 for all ψ ∈ C2(G//K). Since for any φ ∈ C2(G//K), φ̂(λ)(λ2 +

ρ2)−1 ∈ C2(Ĝ//K) (see Section 2.3.4), φ can be written as φ = ∆ψ for some ψ ∈
C2(G//K). Thus 〈R(`xf1), φ〉 = 0 for any φ ∈ C2(G//K), i.e., R(`xf1) = 0.

Lemma 4.9. Let f be a nonzero locally integrable radial function on X which

defines an L2-tempered distribution. If the support of the (distributional) spherical

Fourier transform f̂ is {α} for some α ≥ 0, then f = P (∂λ)φλ|λ=α for some

polynomial P . If moreover f ∈ L2,∞(G//K) then f = cφα for some constant c

and α > 0.

Proof. Since f is an L2-tempered distribution, (A∗)−1f is an even tempered dis-

tribution on R (see Section 2.3.5). We recall that C2(Ĝ//K) = S(R)even. The

Euclidean Fourier transform of (A∗)−1f in the sense of a distribution, denoted by

F((A∗)−1f), is the same as the spherical Fourier transform of f in the sense of

an L2-tempered distribution, denoted by f̂ . Indeed, we take φ, ψ ∈ S(R)even such

that F(ψ) = φ. As an Abel transform is an isomorphism between C2(G//K) and

S(R)even, there is g ∈ C2(G//K) such that Ag = ψ; hence by the slice-projection
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theorem ĝ = F(ψ). Then we have

〈F((A∗)−1f), φ〉 = 〈(A∗)−1f, ψ〉 = 〈(A∗)−1f,Ag〉

= 〈A∗(A∗)−1f, g〉 = 〈f, g〉 = 〈f̂ , ĝ〉

= 〈f̂ ,F(ψ)〉 = 〈f̂ , φ〉.

Thus 〈F((A∗)−1f), φ〉 = 〈f̂ , φ〉 where in the left-hand side φ is interpreted as a

function of S(R)even and on the right-hand side φ is an element of C2(Ĝ//K).

Therefore F((A∗)−1f) is supported on {α}.
Therefore by [37, Thm. 6.25],

(A∗)−1f(t) = [P1(∂λ)eiλt + P2(∂λ)e−iλt]|λ=α

for two polynomials P1 and P2.

As φλ = φ−λ we have by Lemma 4.7, f = P (∂λ)φλ|λ=α for some polynomial

P . If f ∈ L2,∞(X), then by Proposition 3.2(ii), f is an L2-tempered distribution,

hence the conclusion above is valid for f . But by Lemma 4.6 the polynomial P is

constant. Hence f = cφα for some constant c. By Proposition 3.2(v), α > 0.

Lemma 4.10. Let f be a nonzero function in L2,∞(X) with Suppt f̃ ⊂ {α} ×B.

Then α > 0.

Proof. For any x ∈ G, R(`xf) is in L2,∞(G//K). By Proposition 4.4 for any

x ∈ G, Suppt R̂(`xf) ⊂ {α}. Therefore by Lemma 4.9, R(`xf) = cxφα, for some

constant cx which depends on x and if α = 0 then cx = 0 for all x ∈ G. That

is, if α = 0 then R(`xf) = 0 for all x ∈ G, which by Lemma 4.8(a) implies that

f ≡ 0.

We shall now complete the proof of Theorem 1.1.

Completion of the proof of Theorem 1.1. Suppose that f = PαF for F ∈ L2(B).

We take a function φ ∈ C2(X) such that φ̃(α, b) = 0 for all b ∈ B. We note that

φ ∈ L2,1(X) (Proposition 3.2(i)). Then by duality, 〈φ,PαF 〉 = 0. Indeed, using

Fubini’s theorem,∫
G

φ(x)PαF (x) dx =

∫
G

∫
K

φ(x)e(iλ−ρ)H(x−1k)F (kM) dk dx

=

∫
B

φ̃(α, b)F (b) db = 0.

From this it is easy to see that the distributional Fourier transform of f is sup-

ported on the sphere {α} ×B.
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For the converse we have by Proposition 4.4 that for any x ∈ G either R(`xf)

is zero or its spherical Fourier transform is supported on {α}. We also note that

since f ∈ L2,∞(X), R(`xf) ∈ L2,∞(G//K). Therefore by Lemma 4.9, ∆R(`xf) =

−(α2 + ρ2)R(`xf) for all x ∈ G. That is, R(`x∆f) = R(`x[−(α2 + ρ2)f ]) for all

x ∈ G. Hence by Lemma 4.8(c), ∆f = −(α2 + ρ2)f . Since f ∈ L2,∞(X), by

Proposition 3.2(viii), we have f = Pαu for some u ∈ L2(B).

Next we shall prove Theorem 1.2.

Proof of Theorem 1.2. We shall prove (b) and (c) and then use them to prove (a)

and (d).

(b) We take λ1, λ2 ∈ R+ such that α < λ1 < λ2. Let φ ∈ C2(Ĝ//K) be

supported on [λ1, λ2]. We claim that 〈f̃ , φ〉 = 0.

Let ε = 1
2 (λ21 − α2) > 0 where α =

√
c1 − ρ2. From the hypothesis we know

that there exists N ∈ N, such that for all n ≥ N ,

(4.1) | ‖∆nf‖1/n2,∞ − c1| < ε and hence (c1 − ε)n < ‖∆nf‖2,∞ < (c1 + ε)n.

As ∆̃kf = (−1)k(λ2 + ρ2)kf̃ (where λ is a dummy variable),

|〈f̃ , φ〉| =
∣∣∣∣〈∆̃kf,

1

(λ2 + ρ2)k
φ
〉∣∣∣∣

= |〈∆kf, ψk〉|
≤ ‖∆kf‖2,∞‖ψk‖2,1
≤ ‖∆kf‖2,∞ν(ψk)

≤ ‖∆kf‖2,∞µ(ψ̂k),

where ψk ∈ C2(G//K) is the inverse spherical transform of (λ2 + ρ2)−kφ ∈
C2(Ĝ//K) and ν, µ are seminorms of C2(X) and of C2(X̂) respectively. Above,

we have used Hölder’s inequality, that ‖ψk‖2,1 ≤ ν(ψk) (Proposition 3.2(i)) and

the isomorphism between C2(G//K) and C2(Ĝ//K) (see Section 2.3.4).

Thus for k ≥ N , we have

(4.2) |〈f̃ , φ〉| ≤ (c1 + ε)kµ(ψ̂k) = µ

[(
α2 + ρ2 + ε

λ2 + ρ2

)k
φ

]
.

Recall that φ is supported on [λ1, λ2]. For λ ∈ [λ1, λ2] and the ε chosen above,

λ2 + ρ2 ≥ λ21 + ρ2 = α2 + ρ2 + 2ε > α2 + ρ2 + ε.

Hence given any δ > 0 we can find N1 ∈ N with N1 ≥ N such that for k ≥ N1,

µ[. . .] < δ in (4.2) and hence |〈f̃ , φ〉| < δ. This establishes the claim and proves that
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f annihilates any function φ ∈ C2(G//K) such that φ̂ is supported in a compact

set of R+ outside [0, α].

A step-by-step adaptation of this argument will show that f also annihilates

any function ψ ∈ C2(G//K) such that ψ̂ is supported in a compact set of R+

outside [β,∞). We include a sketch of the proof: We take ξ1, ξ2 with 0 < ξ1 < ξ2 <

β. Let φ ∈ C2(Ĝ//K) be supported on [ξ1, ξ2]. We need to show that 〈f̃ , φ〉 = 0.

We take

(4.3) ε =
β2 − ξ22

2(ξ22 + ρ2)(β2 + ρ2)
> 0.

It follows from the hypothesis that there exists N ∈ N, such that for all n ≥ N ,

(4.4) | ‖∆−nf‖1/n2,∞ − c2| < ε and hence (c2 − ε)n < ‖∆−nf‖2,∞ < (c2 + ε)n.

Following the steps of the previous part of the proof we get

|〈f̃ , φ〉| = |〈∆̃−kf, (λ2 + ρ2)kφ〉| ≤ ‖∆−kf‖2,∞µ(ψ̂k)

where ψk ∈ C2(G//K) is the inverse image of (λ2 + ρ2)kφ ∈ C2(Ĝ//K) and µ is a

seminorm of C2(X̂). Taking k ≥ N , we have

|〈f̃ , φ〉| ≤ (c2 + ε)kµ(ψ̂k) = µ

[(
1

β2 + ρ2
+ ε

)k
(λ2 + ρ2)kφ

]
.

Since φ is supported on [ξ1, ξ2], by (4.3) we have for λ ∈ [ξ1, ξ2],

2ε+
1

β2 + ρ2
=

1

ξ22 + ρ2
≤ 1

λ2 + ρ2
.

The rest of the argument is the same as the first part.

We have shown that f annihilates any function ψ ∈ C2(G//K) with ψ̂ com-

pactly supported outside [β, α]. We shall now remove the condition that φ is

K-biinvariant. By Proposition 4.3, for any x ∈ G, `xf also annihilates all ψ ∈
C2(G//K) for which ψ̂ is compactly supported outside [β, α]. Since ψ(x) = ψ(x−1),

this implies that f ∗ψ(x) = 0 for all x ∈ G. Noting that f ∗ψ ∈ L2,∞(X) (Propo-

sition 3.2(iv)) we have for any g ∈ C2(X), 〈f ∗ ψ, g〉 = 0 and hence by Fubini’s

theorem 〈f, g ∗ ψ〉 = 0.

We take g ∈ C2(X) with Suppt g̃ contained in an open set U ⊂ R+ ×B such

that ([β, α]×B)∩U = ∅. We find another open set U1 ⊂ R+×B satisfying U ⊂ U1,

U1 is B-invariant (i.e., if (λ, b) ∈ U1 for some b ∈ B, then {λ} × B ⊂ U1) and

([β, α] × B) ∩ U1 = ∅. We take a ψ ∈ C2(G//K) such that ψ̂ is supported on U1

and ψ̂ ≡ 1 on U (hence on the set {λ | (λ, b) ∈ U for some b ∈ B} × B). Then
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g ∗ ψ = g since g̃ ∗ ψ(λ, k) = g̃(λ, k)ψ̂(λ) = g̃(λ, k). Thus by the argument above,

〈f, g〉 = 〈f, g ∗ ψ〉 = 0.

Thus it follows that f̃ is supported on a subset of [β, α] × B. We shall now

show that it is not supported in a smaller annulus. We define

R+
f = sup{λ2 + ρ2 | (λ, b) ∈ Suppt f̃}, R−f = inf{λ2 + ρ2 | (λ, b) ∈ Suppt f̃}.

Above we have proved that c1 ≥ R+
f and 1/c2 ≤ R−f . Now we shall show that

given any ε > 0, c1 < R+
f + ε and 1/c2 > R−f − ε. For this we fix an ε > 0. We take

a ψ ∈ C2(G//K) such that ψ̂ is compactly supported, ψ̂ ≡ 1 on the support of f̃

(hence Suppt f̃ ⊆ Suppt ψ̂) and R+
f < R+

ψ < R+
f + ε, R−f − ε < R−ψ < R−f . Then

ψ̂f̃ = f̃ and hence f = f ∗ ψ. Thus by Proposition 3.2(iv) and an isomorphism of

C2(G//K) and C2(Ĝ//K), there exist seminorms ν of C2(X) and µ of C2(X̂) such

that

‖∆nf‖2,∞ = ‖∆nf ∗ ψ‖2,∞ = ‖f ∗∆nψ‖2,∞

≤ ‖f‖2,∞ ν(∆nψ) ≤ ‖f‖2,∞µ(∆̂nψ).

Thus,

‖∆nf‖2,∞ ≤ ‖f‖2,∞µ((λ2 + ρ2)nψ̂) ≤ ‖f‖2,∞(R+
ψ )nnNµCψ,µ

for some positive integer Nµ depending on µ and some constant Cψ,µ > 0 which

depends on ψ and µ. This implies

c1 = lim
n→∞

‖∆nf‖1/n2,∞ ≤ R
+
ψ < R+

f + ε.

Replacing ∆nf by ∆−nf in the argument above, we get similarly,

‖∆−nf‖2,∞ ≤ ‖f‖2,∞(R−ψ )−nnN
′
µC ′ψ,µ,

for some N ′µ ∈ N and C ′ψ,µ > 0, which implies c2 = limn→∞ ‖∆−nf‖1/n2,∞ ≤ (R−ψ )−1,

hence 1/c2 ≥ R−ψ > R−f − ε. This completes the proof of part (b)

(c) If c1c2 = 1 then α = β, hence f̃ is supported on the sphere {α}×B. This

and Lemma 4.10 implies that α > 0. Therefore (c) follows from Theorem 1.1.

(a) We have used the two conditions of the hypothesis independently to prove

that f̃ is supported in a subset of [0, α] and also in a subset of [β,∞) for α, β ∈ R+.

If α < β then the support of f̃ is empty and hence f = 0, contradicting the

hypothesis. Therefore α ≥ β, equivalently c1c2 ≥ 1.

(d) When β = 0, equivalently c2 = 1/ρ2, then the annulus Aαβ obviously

reduces to a ball around the origin of radius α. But if the support of f̃ collapses

to the origin, i.e., if Suppt f̃ ⊂ {0} ×B, then by Lemma 4.10, f 6∈ L2,∞(X).
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Before we close this section let us emphasize certain points that are implicit

in the proof above. For the discussion below we take a nonzero function f ∈
L2,∞(X) such that ∆nf ∈ L2,∞(X) for all n ∈ Z. Let An = ‖∆nf‖1/n2,∞ and A′n =

‖∆−nf‖1/n2,∞. The notation R+
f and R−f is as defined in the proof of Theorem 1.2(b).

We consider the following assertions.

(i) {An} → ∞ if and only if f̃ is not compactly supported.

(ii) {An} → α2 + ρ2 for some 0 < α < ∞ if and only if the outer radius of

Suppt f̃ is α. In particular, if f̃ is compactly supported then {An} converges

to a finite limit.

(iii) {A′n} → (β2 + ρ2)−1 for some 0 ≤ β < ∞ if and only if the inner radius of

Suppt f̃ is β. Thus, in particular, for any f as above {A′n} converges to a

finite limit. It does not depend on the compactness of the support.

The forward sides of (ii) and (iii) are proved explicitly in Theorem 1.2(b) and

the forward side of (i) is a weakening of the converse side of (ii). So it is enough

to prove the converse sides of the three assertions. This again mainly involves

revisiting the proof of Theorem 1.2(b). We include a sketch of the proof:

First we observe that if a subsequence of {An} converges to a finite limit L,

then L > ρ2. Let L = α2
L + ρ2 for αL > 0. Then αL ≥ α where α is the outer

radius of Suppt f̃ , i.e., (in particular) if {An} has a convergent subsequence then

f̃ is compactly supported.

For (i) we assume that f̃ is not compactly supported, but {An} does not

diverge to ∞. Then {An} has a subsequence converging to a finite limit, say L.

But then as observed above, f̃ is compactly supported which is a contradiction.

For (ii), we take f as above with f̃ compactly supported and the outer radius of

support equal to α. Then R+
f = α2+ρ2. This implies that lim supn→∞An < R+

f +ε

for any ε > 0 (see the second part of the proof of Theorem 1.2(b)). Suppose that

a subsequence of {An} converges to a limit L. Then by our observation above

L = α2
L + ρ2 with αL ≥ α, α being the outer radius of Suppt f̃ . But αL ≥ α

implies L ≥ R+
f . Hence L = R+

f , i.e., An → R+
f = α2 + ρ2.

For (iii) we note that the inner radius β < ∞ for any nonzero f ∈ L2,∞(X),

because β = ∞ implies Suppt f̃ = ∅, hence f = 0. We have R−f = β2 + ρ2 and

Theorem 1.2(b) shows that lim supn→∞A′n < 1/(R−f −ε) for 0 < ε < R−f . Suppose

that {A′n} has a subsequence converging to a limit L. Then L ≤ 1/ρ2, since if we

assume the contrary, then L > 1/ρ2 ≥ 1/(β2+ρ2) = 1/R−f which is a contradiction.

We write L = 1/(β2
L + ρ2). Then by the first part of Theorem 1.2(b), βL ≤ β,

because any ψ ∈ C2(G//K) with Suppt ψ̂ ⊂ [ξ1, ξ2], ξ1 < ξ2 < βL is annihilated

by f . But βL ≤ β implies L ≥ 1/R−f . Thus L = 1/R−f , which proves the assertion.



374 R. P. Sarkar

§5. Concluding remarks

(1) Theorem 1.1 can be generalized in the following way. See [23, pp. 205], [42,

Lem. 2.2] for Euclidean results of this genre.

Proposition 5.1. Suppose that a locally integrable function f on X satisfies

f(x)(1 + |x|)−M ∈ L2,∞(X) for some fixed nonnegative integer M and f̃ is sup-

ported on the sphere {α}×B of radius α > 0 in R+×B. Then (∆+α2+ρ2)M+1f =

0, i.e., f is a generalized eigenfunction of ∆ with eigenvalue −(α2 + ρ2). In par-

ticular, if M = 0 then f is an eigenfunction.

We need the following lemma.

Lemma 5.2. Let eλ, λ ∈ R be a family of eigenfunctions of ∆ with eigenvalues

A(λ) such that the function (x, λ) 7→ eλ(x) is in C∞(X × R) and the function

λ 7→ A(λ) is in C∞(R). Then for any polynomial P in one variable of degree

m ∈ N, (∆ − A(λ))m+1P (∂λ)eλ = 0, i.e., P (∂λ)eλ is a generalized eigenfunction

of ∆ with eigenvalue A(λ).

Proof. It suffices to show that (∆−A(λ))m+1∂mλ eλ = 0, which can be verified by

straightforward computation for m = 1, 2. Then we use induction. Suppose the

result is true for m = 1, 2, . . . , n− 1. We have

(∆−A(λ))n+1∂nλeλ = (∆−A(λ))n[∂nλ (A(λ)eλ)−A(λ)∂nλeλ].

Expanding the part in square brackets [. . .] in the right-hand side above by the

Leibniz rule we see that each term in it is of the form C∂rλA(λ)∂n−rλ eλ for r =

1, 2, . . . , n. From induction hypothesis it follows that (∆−A(λ))n∂n−rλ eλ = 0. This

completes the proof.

We need this result only when A(λ) is a polynomial, more specifically for

A(λ) = λ2 + ρ2.

Proof of Proposition 5.1. We have `x(f(y)/(1 + |y|)M ) = `xf(y)/(1 + |x−1y|)M ∈
L2,∞(X). Since (1 + |xy|) ≤ (1 + |x|)(1 + |y|) ([17, Prop. 4.6.11]), `xf(y)/(1 +

|y|)M ∈ L2,∞(X). Now as R((`xf)(y)/(1+ |y|)M ) = R(`xf)(y)/(1+ |y|)M , we have

R(`xf)(y)/(1 + |y|)M ∈ L2,∞(G//K). Therefore by Proposition 3.2(ii) R(`xf) is

an L2-tempered distribution. By Proposition 4.4, if for some x ∈ G, R(`xf) 6= 0

then R̂(`xf) is supported on {α}. We fix x ∈ G, such that R(`xf) 6= 0. Pro-

ceeding as in the proof of Lemma 4.9 we conclude that R(`xf) = Px(∂λ)φλ|λ=α
where the polynomial Px depends on x ∈ G. Hence by Lemma 5.2, (∆ + α2 +

ρ2)degPx+1R(`xf) = 0. However, the condition R(`xf)/(1 + | · |)M ∈ L2,∞(G//K)

gives an upper bound for the degree of the polynomial, precisely degPx ≤ M as
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can be proved going through steps similar to Lemma 4.5. Thus for all x ∈ G,

(∆ + α2 + ρ2)M+1R(`xf) = 0. That is, R(`x(∆ + α2 + ρ2)M+1f) = 0 and hence

by Lemma 4.8, (∆ + α2 + ρ2)M+1f = 0.

Proposition 5.1 vindicates a generalization of Theorem 1.2. For a fixed M > 0

we define a weighted norm ‖ · ‖M in the following way. For a measurable function

f on X, let g(x) = f(x)(1 + |x|)−M . Then ‖f‖M = ‖g‖2,∞.

Theorem 5.3. Let f be a nonzero measurable function on X with ‖f‖M < ∞.

Suppose for constants c1 ≥ ρ2, c2 ≤ 1/ρ2,

lim
n→∞

‖∆nf‖1/nM = c1, lim
n→∞

‖∆−nf‖1/nM = c2.

Let β =
√

1/c2 − ρ2 and α =
√
c1 − ρ2. Then we have conclusions (a) and (b) of

Theorem 1.2, while (c) and (d) of that theorem are replaced by

(c) if c1c2 = 1 then f is a generalized eigenfunction with eigenvalue −c1,

(d) the annulus Aαβ may reduce to a ball around the origin and may also collapse

to the origin.

The proof of Theorem 1.2 can be easily adapted to prove this, but we omit

it for brevity. We note only that under the norm condition here which is more

relaxed than that of Theorem 1.2, this theorem allows collapsing of the annulus

to the origin (see (d) above). This corresponds to the case c1 = 1/c2 = ρ2, hence

c1c2 = 1 and thus is a subcase of (c). Precisely, in this case f is a generalized

eigenfunction of ∆ with eigenvalue −ρ2, a particular case of which is φ0.

(2) We recall that through the Iwasawa decomposition G = NAK, X = G/K

can be identified with the solvable Lie group N o A. Thus a rank-1 Riemannian

symmetric space X of noncompact type is also a Damek–Ricci space (which are

also known asNA groups). We shall denote them by S and use both of these names.

Rank-1 symmetric spaces are the most distinguished prototypes of the NA groups,

though they account for a very thin subcollection in the set of all NA groups (see

[6]). In general, a Damek–Ricci space is a Riemannian manifold and a solvable Lie

group but not a symmetric space. The absence of semisimple machinery (which en-

ters the analysis on symmetric spaces through the natural G-action on X = G/K)

in a general Damek-Ricci space S offers many fresh challenges. For instance, we

cannot decompose a function on S in its K-types, a very useful tool for symmetric

spaces. In particular the sense of radiality in S is not connected with any group

action. Keeping these in mind we have completely avoided such well-known tech-

niques for symmetric spaces. Most of the basic ingredients of the proofs are also
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available for NA groups. Thus the proof given here should be readily extendable

to NA groups. We refer to [6, 7, 34] for a detailed account on harmonic analysis

on NA groups. However, we have to make a compromise, as the characterization

of the L2,∞-eigenfunction as a Poisson transform (see Proposition 3.2(viii)) is still

unavailable for NA groups. This unavailability is perhaps rooted in a missing ana-

logue (for NA groups) of a result for the symmetric spaces due to Helgason and six

authors (see [20, Chap. V, Thm. 6.6]). Precisely, “f is a Poisson transform” has to

be substituted by a weaker statement “f is an eigenfunction of ∆ with eigenvalue

−(α2 + ρ2) (respectively −c1)” in Theorem 1.1 (respectively in Theorem 1.2(c)).
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[27] B. Krötz and R. J. Stanton, Holomorphic extensions of representations. I. Automorphic
functions, Ann. of Math. (2) 159 (2004), 641–724. Zbl 1053.22009 MR 2081437

[28] P. Kumar, Fourier restriction theorem and characterization of weak L2-eigenfunctions of
the Laplace-Beltrami operator, J. Funct. Anal. 266 (2014), 5584–5597. Zbl 1302.43001
MR 3182952

[29] P. Kumar, S. K. Ray and R. P. Sarkar, Characterization of almost Lp-eigenfunctions
of the Laplace-Beltrami operator, Trans. Amer. Math. Soc. 366 (2014), 3191–3225.
Zbl 1290.43014 MR 3180744

[30] P. Mohanty, S. K. Ray, R. P. Sarkar and A. Sitaram, The Helgason-Fourier transform for
symmetric spaces. II, J. Lie Theory 14 (2004), 227–242. Zbl 1047.43013 MR 2040178

[31] E. Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. Zbl 0091.10704
MR 0107176

[32] A. Pasquale, A Paley-Wiener theorem for the inverse spherical transform, Pacific J. Math.
193 (2000), 143–176. Zbl 1014.22010 MR 1748186

[33] I. Pesenson, Bernstein-Nikolskii and Plancherel-Polya inequalities in Lp-norms on non-
compact symmetric spaces, Math. Nachr. 282 (2009), 253–269. Zbl 1160.43007
MR 2493515

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0433.43012&format=complete
http://www.ams.org/mathscinet-getitem?mr=0552702
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1116.43006&format=complete
http://www.ams.org/mathscinet-getitem?mr=1984103
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1137.94314&format=complete
http://www.ams.org/mathscinet-getitem?mr=2138377
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0686.46032&format=complete
http://www.ams.org/mathscinet-getitem?mr=0994086
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0675.43004&format=complete
http://www.ams.org/mathscinet-getitem?mr=0954385
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1148.42001&format=complete
http://www.ams.org/mathscinet-getitem?mr=2449250
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0543.58001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0754767
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0809.53057&format=complete
http://www.ams.org/mathscinet-getitem?mr=1280714
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1112.44002&format=complete
http://www.ams.org/mathscinet-getitem?mr=2313637
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0661.33001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0942633
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0764.35068&format=complete
http://www.ams.org/mathscinet-getitem?mr=1165169
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0963.43007&format=complete
http://www.ams.org/mathscinet-getitem?mr=1768984
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1228.81102&format=complete
http://www.ams.org/mathscinet-getitem?mr=2373235
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0104.32503&format=complete
http://www.ams.org/mathscinet-getitem?mr=0149329
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1053.22009&format=complete
http://www.ams.org/mathscinet-getitem?mr=2081437
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1302.43001&format=complete
http://www.ams.org/mathscinet-getitem?mr=3182952
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1290.43014&format=complete
http://www.ams.org/mathscinet-getitem?mr=3180744
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1047.43013&format=complete
http://www.ams.org/mathscinet-getitem?mr=2040178
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0091.10704&format=complete
http://www.ams.org/mathscinet-getitem?mr=0107176
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1014.22010&format=complete
http://www.ams.org/mathscinet-getitem?mr=1748186
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1160.43007&format=complete
http://www.ams.org/mathscinet-getitem?mr=2493515


378 R. P. Sarkar

[34] S. K. Ray and R. P. Sarkar, Fourier and Radon transform on harmonic NA groups, Trans.
Amer. Math. Soc. 361 (2009), 4269–4297. Zbl 1180.43005 MR 2500889

[35] S. K. Ray and R. P. Sarkar, A theorem of Roe and Strichartz for Riemannian sym-
metric spaces of noncompact type, Int. Math. Res. Not. IMRN 2014 (2014), 1273–1288.
Zbl 1301.43009 MR 3178598

[36] J. Roe, A characterization of the sine function, Math. Proc. Cambridge Philos. Soc. 87
(1980), 69–73. Zbl 0463.33002 MR 0549299

[37] W. Rudin, Functional analysis, McGraw-Hill, 1973. Zbl 0253.46001 MR 0365062

[38] R. P. Sarkar, Chaotic dynamics of the heat semigroup on the Damek-Ricci spaces, Israel J.
Math. 198 (2013), 487–508. Zbl 1282.37041 MR 3096648

[39] R. J. Stanton and P. A. Tomas, Expansions for spherical functions on noncompact symmetric
spaces, Acta Math. 140 (1978), 251–276. Zbl 0411.43014 MR 0511124

[40] E. M. Stein, Functions of exponential type, Ann. of Math. (2) 65 (1957), 582–592.
Zbl 0079.13103 MR 0085342

[41] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton
Mathematical Series 32, Princeton University Press, Princeton, NJ, 1971. Zbl 0232.42007
MR 0304972

[42] R. S. Strichartz, Characterization of eigenfunctions of the Laplacian by boundedness con-
ditions, Trans. Amer. Math. Soc. 338 (1993), 971–979. Zbl 0815.35012 MR 1108614

[43] M. E. Taylor, Lp-estimates on functions of the Laplace operator, Duke Math. J. 58 (1989),
773–793. Zbl 0691.58043 MR 1016445

[44] V. K. Tuan and A. I. Zayed, Paley-Wiener-type theorems for a class of integral transforms,
J. Math. Anal. Appl. 266 (2002), 200–226. Zbl 0998.44001 MR 1876778

http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1180.43005&format=complete
http://www.ams.org/mathscinet-getitem?mr=2500889
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1301.43009&format=complete
http://www.ams.org/mathscinet-getitem?mr=3178598
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0463.33002&format=complete
http://www.ams.org/mathscinet-getitem?mr=0549299
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0253.46001&format=complete
http://www.ams.org/mathscinet-getitem?mr=0365062
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:1282.37041&format=complete
http://www.ams.org/mathscinet-getitem?mr=3096648
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0411.43014&format=complete
http://www.ams.org/mathscinet-getitem?mr=0511124
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0079.13103&format=complete
http://www.ams.org/mathscinet-getitem?mr=0085342
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0232.42007&format=complete
http://www.ams.org/mathscinet-getitem?mr=0304972
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0815.35012&format=complete
http://www.ams.org/mathscinet-getitem?mr=1108614
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0691.58043&format=complete
http://www.ams.org/mathscinet-getitem?mr=1016445
http://www.zentralblatt-math.org/zmath/en/advanced/?q=an:0998.44001&format=complete
http://www.ams.org/mathscinet-getitem?mr=1876778

	Introduction
	Preliminaries
	Generalities
	Lorentz spaces
	Symmetric space

	Some preparatory discussion
	Proof of the main results
	Concluding remarks
	References

