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The Fourier Algebra of a Rigid C∗-Tensor
Category
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Abstract

Completely positive and completely bounded mutlipliers on rigid C∗-tensor categories
were introduced by Popa and Vaes. Using these notions, we define and study the Fourier–
Stieltjes algebra, the Fourier algebra and the algebra of completely bounded multipliers
of a rigid C∗-tensor category. The rich structure that these algebras have in the setting
of locally compact groups is still present in the setting of rigid C∗-tensor categories. We
also prove that Leptin’s characterization of amenability still holds in this setting, and we
collect some natural observations on property (T).
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§1. Introduction

Let G be a locally compact group. The Fourier algebra A(G) of G is the Banach
algebra consisting of the matrix coefficients of the left-regular representation of G,
and the Fourier–Stieltjes algebra B(G) of G is the Banach algebra consisting of the
matrix coefficients of all unitary representations of the group. Both these algebras
were introduced by Eymard [13]. Nowadays, they play an important role in analytic
group theory, in particular in the study of approximation and rigidity properties
for groups (see, e.g., [7]). In this respect, also their relation to operator algebras
is fundamental: the dual of A(G) can be identified with the group von Neumann
algebra L(G) of G, and B(G) can be identified with the dual of the universal group
C∗-algebra C∗(G) of G. In the study of approximation and rigidity properties for
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groups, the Banach algebra of completely bounded Fourier multipliers also plays
a fundamental role. Analogues of the Fourier–Stieltjes algebra, the Fourier alge-
bra and the algebra of completely bounded Fourier multipliers have been stud-
ied quite extensively in the setting of quantum groups, starting with the work
of Daws [9].

A couple of years ago, fundamentally new results on approximation and rigid-
ity properties for quantum groups were proven [11], [3]. Partly relying on these
results, Popa and Vaes formulated the theory of unitary representations for “sub-
factor related group-like objects” (e.g., quantum groups, subfactors and λ-lattices),
in the setting of rigid C∗-tensor categories [33] (see also [29] and [15]). The repre-
sentation category of a compact quantum group and the standard invariant of a
subfactor are important and motivating examples of rigid C∗-tensor categories. In-
timately related to the unitary representation theory are the notions of completely
positive and completely bounded multipliers, which are particularly important in
the study of approximation and rigidity properties. Popa and Vaes studied such
properties for subfactor related group-like objects in [33]. Recently, more new re-
sults on approximation and rigidity properties for subfactor related group-like
objects were proven [21], [5], [4], [36].

The aim of this article is to study the structure of the collections of completely
positive and completely bounded multipliers. In particular, we define and study
analogues of the Fourier–Stieltjes algebra, the Fourier algebra and the algebra of
completely bounded Fourier multipliers in the setting of rigid C∗-tensor categories.
It turns out that in this setting they also form Banach algebras, and that the
operator algebraic structure of these algebras is still present.

It turns out that in the setting of rigid C∗-tensor categories, we still have Lep-
tin’s characterization of amenability (see Theorem 6.1). Moreover, we collect some
observations on property (T) for quantum groups and rigid C∗-tensor categories
(see Section 7).

§2. Preliminaries

§2.1. Rigid C∗-tensor categories

A C∗-tensor category is a category that behaves similarly to the category of Hilbert
spaces. For the basic theory of C∗-tensor categories and the facts mentioned in
this subsection, we refer to [28, Chap. 2].

In what follows, all tensor categories will be assumed to be strict, unless
explicitly mentioned otherwise. This is not a fundamental restriction, since every
tensor category can be strictified.
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Let C be a C∗-tensor category. An object ū in C is conjugate to an object u
in C if there are R ∈ Mor(1, ū⊗ u) and R̄ ∈ Mor(1, u⊗ ū) such that

u
1⊗R−−−→ u⊗ ū⊗ u R̄∗⊗1−−−−→ u and ū

1⊗R̄−−−→ ū⊗ u⊗ ū R∗⊗1−−−−→ ū

are the identity morphisms. Conjugate objects are uniquely determined up to
isomorphism. If every object has a conjugate object, then the category C is called
a rigid C∗-tensor category.

Let Irr(C) denote the set of equivalence classes of irreducible objects in C.
Using the same notation as above, if u is an irreducible object with a conjugate,
then d(u) = ‖R‖‖R̄‖ is independent of the choice of the morphisms R and R̄. An
arbitrary object u in a rigid C∗-tensor category is unitarily equivalent to a direct
sum u ∼=

⊕
k uk of irreducible objects, and we put d(u) =

∑
k d(uk). The function

d : C → [0,∞) defined in this way is called the intrinsic dimension of C.

§2.2. Multipliers on rigid C∗-tensor categories

Multipliers on rigid C∗-tensor categories were introduced by Popa and Vaes [33].

Definition 2.1. A multiplier on a rigid C∗-tensor category C is a family of linear
maps

θα,β : End(α⊗ β)→ End(α⊗ β)

indexed by α, β ∈ C such that

θα2,β2(UXV ∗) = Uθα1,β1(X)V ∗,
θα1⊗α2,β1⊗β2(1⊗X ⊗ 1) = 1⊗ θα2,β1(X)⊗ 1(1)

for all αi, βi ∈ C, X ∈ End(α2 ⊗ β1) and U, V ∈ Mor(α1, α2)⊗Mor(β2, β1).

A multiplier (θα,β) is said to be completely positive (or a cp-multiplier) if all
maps θα,β are completely positive. A multiplier (θα,β) is said to be completely
bounded (or a cb-multiplier) if all maps θα,β are completely bounded and ‖θ‖cb =
supα,β∈C ‖θα,β‖cb < ∞. By [33, Prop. 3.6], every multiplier (θα,β) is uniquely
determined by a family of linear maps Mor(α⊗ ᾱ,1)→ Mor(α⊗ ᾱ,1), α ∈ Irr(C).
Since Mor(α ⊗ ᾱ,1) is one-dimensional whenever α is irreducible, each of these
linear maps is given by multiplication with a scalar ϕ(α) ∈ C, α ∈ Irr(C), and hence
every multiplier corresponds uniquely to a function ϕ : Irr(C) → C. Therefore,
when we speak of a multiplier we will often mean the underlying function ϕ :
Irr(C)→ C.
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§2.3. The fusion algebra and admissible ∗-representations

Recall that the fusion algebra C[C] of a rigid C∗-tensor category C is defined as
the free vector space with basis Irr(C) and multiplication given by

αβ =
∑

γ∈Irr(C)

mult(α⊗ β, γ)γ, α, β ∈ Irr(C).

In fact, the fusion algebra is a ∗-algebra when equipped with the involution α] = ᾱ.
In [33], Popa and Vaes defined the notion of admissible ∗-representation of

C[C] as a unital ∗-representation Θ : C[C]→ B(H) such that for all ξ ∈ H the map

Irr(C)→ C, α→ d(α)−1〈Θ(α)ξ, ξ〉

is a cp-multiplier. Moreover, they proved the existence of a universal admissible
∗-representation and denoted the corresponding enveloping C∗-algebra of C[C] by
Cu(C).

§2.4. The tube algebra

In [15], Ghosh and Jones related the representation theory of rigid C∗-tensor cat-
egories to Ocneanu’s tube algebra, which was introduced in [30]. More precisely,
Ghosh and Jones proved that a representation of C[C] is admissible in the sense
of Popa and Vaes if and only if it is unitarily equivalent to the restriction of a
∗-representation of the tube algebra to C[C]. While we do not elaborate on this in
detail, the tube algebra picture is convenient when studying completely bounded
multipliers (see in particular Proposition 5.1).

Let us recall the definition of the tube algebra. Let C be a rigid C∗-tensor
category. For each equivalence class α ∈ Irr(C), choose a representative Xα ∈ α,
and let X0 denote the representative of the tensor unit. Moreover, let Λ be a
countable family of equivalence classes of objects in C with distinct representatives
Yβ ∈ β for every β ∈ Λ. The annular algebra with weight set Λ is defined as

AΛ =
⊕

α,β∈Λ, γ∈Irr(C)

Mor(Xγ ⊗ Yα, Yβ ⊗Xγ).

The algebra AΛ comes equipped with the structure of an associative ∗-algebra.
We will always assume the weight set Λ to be full, i.e., every irreducible object is
equivalent to a subobject of some element in Λ. The annular algebra with weight
set Λ = Irr(C) is called the tube algebra of Ocneanu, and we write AΛ = AC.

§2.5. Unitary half braidings

Another approach to the representation theory of a rigid C∗-tensor category was
developed in [29] in terms of unitary half braidings on ind-objects. This approach
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is particularly well behaved when one is interested in taking tensor products of
representations, a fact we will make use of in the proof of Theorem 3.5. Let us recall
that intuitively, an ind-object X ∈ ind C is a possibly infinite direct sum of objects
in the rigid C∗-tensor category C and that ind C is a C∗-tensor category containing
C, albeit generically not a rigid one. For a rigorous definition and additional details,
see [29]. A unitary half braiding σ on an ind-object X ∈ ind C was defined in [29]
as a family of unitary morphisms σα ∈ Mor(α⊗X,X ⊗ α), α ∈ C satisfying

• σ1 = id;
• (1⊗ V )σα = σβ(V ⊗ 1) for all V ∈ Mor(α, β);
• σα⊗β = (σα ⊗ 1)(1⊗ σβ).

Every pair (X,σ) consisting of an ind-object X and a unitary half braiding σ on X,
defines a ∗-representation of C[C] on the Hilbert space H(X,σ) = Morind C(1, X)
with inner product 〈ξ, η〉1 = η∗ξ. More concretely, if we choose a set of repre-
sentatives Yα for α ∈ Irr(C) with standard solution of the conjugate equations
(RYα , R̄Yα), then

π(X,σ) : C[C]→ B(H(X,σ)), π(α)ξ = (1⊗ R̄∗Yα)(σYα ⊗ 1)(1⊗ ξ ⊗ 1)R̄Yα

defines a ∗-representation. Note that a different choice of representatives yields
a unitarily equivalent ∗-representation. It was shown in [29] that any admissible
representation is unitarily equivalent to a representation of the above form. More
generally, for an explicit bijection between unitary half braidings on ind-objects
and (nondegenerate) ∗-representations of the tube algebra, see [32, Prop. 3.14].

§3. The Fourier–Stieltjes algebra

Let C be a rigid C∗-tensor category, and let C[C] denote its fusion algebra. The
notion of an admissible ∗-representation and the universal admissible ∗-represen-
tation, as introduced by Popa and Vaes in [33], were recalled in Section 2.3. Ad-
missible ∗-representations can be used to define the Fourier–Stieltjes algebra of a
C∗-tensor category.

Definition 3.1. The Fourier–Stieltjes algebra B(C) of a rigid C∗-tensor category
C is the algebra of functions ϕ : Irr(C)→ C of the form

ϕ(α) = d(α)−1〈Θ(α)ξ, η〉 (α ∈ Irr(C)),

where Θ : C[C] → B(K) is an admissible ∗-representation of the fusion algebra
and ξ, η ∈ K. We call such a function ϕ a (matrix) coefficient of Θ. The algebra
structure is given by pointwise multiplication.
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Remark 3.2. To see that the Fourier–Stieltjes algebra is a unital algebra, note
that it can also be defined as the span of the cp-multipliers CP (C) on C, i.e.,

B(C) =
{∑n

i=1 λiϕi | n ∈ N, λi ∈ C, ϕi ∈ CP (C), i = 1, . . . , n
}
.

Indeed, it follows from the definition of cp-multiplier that the product of two such
multipliers is a cp-multiplier again.

We will now equip B(C) with a norm that turns it into a Banach algebra.

Proposition 3.3. The map Φ0 : CP (C)→Cu(C)∗+, Φ0(ϕ)(α) =ωϕ(α) = d(α)ϕ(α)
extends linearly to an isomorphism of vector spaces Φ : B(C)→ Cu(C)∗. Moreover,
for an element ϕ ∈ B(C), we have the following equality of norms:

‖ϕ‖B(C) := ‖Φ(ϕ)‖ = min
{
‖ξ‖‖η‖ | ϕ(·) = d(·)−1〈Θ(·)ξ, η〉, Θ admissible

}
.

Proof. By definition of Cu(C) and [33, Prop. 4.2], the map Φ0 is well defined, and
so is Φ. It is clear that Φ defines a bijection. The second part follows directly from
the following lemma.

Lemma 3.4. Let A be a unital C∗-algebra. For all ω ∈ A∗, we have the following
equality of norms:

‖ω‖ = min
{
‖ξ‖‖η‖ | ω(·) = 〈Θ(·)ξ, η〉, Θ ∗-representation of A

}
.

Although this is a well-known result, for the sake of completeness, we include
a proof.

Proof. Since we can view A∗ as the predual of the von Neumann algebra A∗∗,
we can consider the polar decomposition of ω, i.e., there exists a positive normal
functional |ω| ∈ A∗+ and a partial isometry V ∈ A∗∗ such that ω = V |ω| and
‖ω‖ = ‖ |ω| ‖. Consider the GNS-representation Θ : A→ B(K) of |ω|, which has a
cyclic vector, say η, i.e., |ω|(x) = 〈Θ(x)η, η〉 for all x ∈ A. As a consequence, we
obtain that

ω(x) = (V |ω|)(x) = |ω|(xV ) = 〈Θ(x)Θ′(V )η, η〉 ∀x ∈ A,

where Θ′ is the unique extension of Θ to A∗∗. Defining ξ = Θ′(V )η, we have
‖ξ‖ ≤ ‖η‖, since V is a partial isometry. Altogether, the set on the right-hand side
of the equality which is to be proven is nonempty and we have ‖ω‖ = ‖ |ω| ‖ =
‖η‖2 ≥ ‖ξ‖‖η‖.
On the other hand, for every ∗-representation Θ : A → B(H) and ξ, η ∈ H such
that ω(·) = 〈Θ(·)ξ, η〉 we have

|ω(x)| = |〈Θ(x)ξ, η〉| ≤ ‖x‖‖ξ‖‖η‖ ∀x ∈ A.
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Theorem 3.5. Let C be a rigid C∗-tensor category. Then B(C) is a Banach alge-
bra with respect to the norm defined in the previous proposition.

Proof. The definition of ‖ · ‖B(C) directly implies that (B(C), ‖ · ‖B(C)) is a Banach
space and hence we are left only with showing that ‖ϕ1ϕ2‖B(C) ≤ ‖ϕ1‖B(C)‖ϕ2‖B(C)
for ϕ1, ϕ2 ∈ B(C). Now, by Proposition 3.3 and the discussion in Section 2.5, for
i = 1, 2 we can find pairs (Xi, σi) of ind-objects Xi ∈ ind C and unitary half
braidings σi on Xi as well as ξi, ηi ∈ H(Xi,σi) such that

ϕi(α) = d(α)−1〈π(Xi,σi)(α)ξi, ηi〉 and ‖ϕi‖B(C) = ‖ξi‖‖ηi‖.

Following [29], σ = (1 ⊗ σ2)(σ1 ⊗ 1) defines a unitary half braiding on X =
X1 ⊗X2 ∈ ind C. Recall from [29] that, in the same way as unitary half braidings
are generalizations of group representations, this new half braiding is the proper
analogue of the tensor product of the unitary half braidings (X1, σ1) and (X2, σ2).
We have ξ = (ξ1⊗1)ξ2, η = (η1⊗1)η2 ∈ Morind C(1, X1⊗X2) = H(X,σ) with ‖ξ‖ =
‖ξ1‖‖ξ2‖, ‖η‖ = ‖η1‖‖η2‖. Choosing representatives Yα for irreducible objects
α ∈ Irr(C) as in Section 2.5 and using the fact that R̄∗YαR̄Yα = d(α) ∈ Mor(1,1),
we compute

π(X,σ)(α)ξ = d(α)−1(π(X1,σ1)(α)ξ1 ⊗ 1)(π(X2,σ2)(α)ξ2),

and hence
ϕ1(α)ϕ2(α) = d(α)−1〈π(X,σ)(α)ξ, η〉,

which finishes the proof.

§4. The Fourier algebra

Recall that by [33, Cor. 4.4], the left regular representation of C[C] given by

λ : C[C]→ B(`2(Irr(C))), λ(α)δβ =
∑

γ∈Irr(C)

mult(α⊗ β, γ)δγ

is admissible and corresponds to the cp-multiplier defined by ϕλ(α) = δα,1 (α ∈
Irr(C)).

Definition 4.1. The Fourier algebra A(C) of a rigid C∗-tensor category C is de-
fined as the predual of the von Neumann algebra λ(C[C])′′.

Recall that there is a one-to-one correspondence between functions on Irr(C)
and functionals ω : C[C]→ C given by ϕ 7→ ωϕ, where ωϕ(α) = d(α)ϕ(α). By this
correspondence, A(C) can also be interpreted as an algebra of functions on Irr(C).
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Proposition 4.2. For every ω ∈ A(C), there exist ξ, η ∈ `2(Irr(C)) such that
ω(x) = 〈λ(x)ξ, η〉. In addition,

‖ω‖A(C) = min
{
‖ξ‖ ‖η‖ | ω(·) = 〈λ(·)ξ, η〉, ξ, η ∈ `2(Irr(C))

}
.

Proof. Since M = λ(C[C])′′ is nothing but the GNS-representation with respect
to ωϕ, where ϕλ(α) = δα,1 (α ∈ Irr(C)), we can represent every positive normal
functional on M as a vector state on M by [35, Chap. IX, Lem. 1.6]. The result for a
general normal functional follows as in Proposition 3.3 by polar decomposition.

Remark 4.3. It is an immediate consequence of Proposition 4.2 that we have

‖ϕ‖B(C) ≤ ‖ϕ‖A(C)

for ϕ ∈ A(C), and it is not hard to see that the norms are actually equal. Indeed,
the dual Cr(C)∗ of the reduced C∗-algebra Cr(C) = λ(C[C]) identifies isometrically
with the dual of a quotient of Cu(C) and hence with the annihilator of a closed
ideal in Cu(C). Consequently,

‖ϕ‖A(C) = ‖ϕ‖Cr(C)∗ = ‖ϕ‖Cu(C)∗

for ϕ ∈ A(C). This means that we could also have defined A(C) as the closure of
the coefficients of the left regular representation in B(C). Moreover, we will see
in Corollary 5.2 that A(C) is a closed ideal in B(C) and in particular a Banach
algebra itself.

§5. Completely bounded multipliers

In this section, we study the algebra of completely bounded multipliers

M0A(C) = {ϕ : Irr(C)→ C | ϕ cb-multiplier}.

While the Fourier algebra A(C) is defined only in terms of the fusion algebra
C[C], the Fourier–Stieltjes algebra B(C) and the algebra M0A(C) of completely
bounded multipliers use considerably more information on the category C. There-
fore, there is no apparent reason why completely bounded multipliers should cor-
respond to completely bounded maps on the von Neumann algebra λ(C[C)])′′.
However, in the tube algebra setting, the situation is more convenient. Indeed,
whenever ϕ : Irr(C) → C is a function on the irreducibles of C and Λ is a full
family of objects, then there is a canonical linear map Mϕ : AΛ→ AΛ given by

Mϕ(x) = ϕ(γ)x whenever x ∈ Mor(Xγ ⊗ Yα, Yβ ⊗Xγ).
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Let us recall here that a multiplier ϕ : Irr(C) → C is called completely bounded
if ‖ϕ‖cb = supα,β∈C ‖θ

ϕ
α,β‖cb < ∞, where (θϕα,β)α,β∈C denotes the family of linear

maps associated to ϕ as in Definition 2.1 and the discussion thereafter. In terms of
the maps Mϕ on the level of the tube algebra, the characterization of completely
bounded multipliers is analogous to the group case. This leads to the following
proposition which was proven by Vaes and the first-named author [5, Prop. 5.1].

Proposition 5.1. Let C be a rigid C∗-tensor category, let Λ be a full family of
objects of C, and let ϕ : Irr(C) → C be a function. Moreover, let Mϕ : AΛ → AΛ
be defined as above. Then ‖Mϕ‖cb = ‖ϕ‖cb. If this cb-norm is finite, then Mϕ

extends uniquely to a normal completely bounded map on AΛ′′ ⊂ B(L2(AΛ)).

Corollary 5.2. Let ϕ be a completely bounded multiplier. Then, the multiplication
operator

Tϕ : A(C)→ A(C), θ 7→ ϕθ (θ ∈ A(C))
is well defined and completely bounded with ‖Tϕ‖cb ≤ ‖ϕ‖cb.

Proof. The dual map of the multiplication operator Tϕ is given by restricting the
map Mϕ to A(C)∗. By the previous proposition and standard results in operator
space theory, the map Tϕ is completely bounded with ‖Tϕ‖ = ‖T ∗ϕ‖ ≤ ‖ϕ‖cb.

Corollary 5.3. Let C be a rigid C∗-tensor category. Then M0A(C) carries the
structure of a dual Banach algebra if we endow it with pointwise addition and
multiplication and the cb-norm ‖ · ‖cb.

Proof. Pick a full family of objects Λ, say Λ = Irr(C), and denote the reduced
C∗-algebra of AΛ by A and its enveloping von Neumann algebra by M = AΛ′′. It
follows from a well-known result in operator theory due to Effros and Ruan [12]
and, independently, due to Blecher and Paulsen [6], that the space of completely
bounded maps CB(A,M) is a dual operator space with predual A⊗̂M∗. Here,
⊗̂ denotes the projective tensor product of operator spaces (see [31, Chap. 4]
for details). Let us show that the image of the isometric embedding M0A(C) →
CB(A,M), ϕ 7→ M̃ϕ is w∗-closed in CB(A,M), where M̃ϕ denotes the unique
extension of Mϕ to A. This will then imply that M0A(C) is isomorphic as a Banach
space to the dual of a quotient of A⊗̂M∗ and in particular to a dual Banach algebra.
So, let (ϕi) be a net in M0A(C) such that (M̃ϕi) converges to a completely bounded
map Ψ ∈ CB(A,M). In particular, this means that

ω(M̃ϕi(x))→ ω(Ψ(x)) as i→∞,

for all x ∈ A, ω ∈ M∗. By choosing x ∈ Mor(Xγ ⊗ 1,1 ⊗Xγ) and ω ∈ M∗ such
that ω(x) 6= 0 and by applying the definition of M̃ϕi(x), we find that ϕi converges
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pointwise to a bounded function ϕ. It follows from a short computation that the
restriction of Ψ to AΛ is equal to Mϕ. As a consequence, ϕ is completely bounded
by the previous proposition with Ψ = M̃ϕ. Lastly, it is easy to see that pointwise
multiplication of completely bounded maps inM0A(C) is separately w∗-continuous,
so M0A(C) is a dual Banach algebra.

§6. Leptin’s characterization of amenability

As defined by Popa and Vaes [33, Def. 5.1], a rigid C∗-tensor category C is said to be
amenable if there exists a net of finitely supported cp-multipliers ϕi : Irr(C)→ C
that converges to 1 pointwise.

In [25], Leptin proved that a locally compact group is amenable if and only
if the Fourier algebra of the group admits a bounded approximate unit. We finish
this section by proving a version of Leptin’s theorem for rigid C∗-tensor categories.
Before doing so, we note that, using the dimension function d : Irr(C)→ C, one can
turn Irr(C) into a discrete hypergroup (see [27] for the definition of a hypergroup
and its Fourier algebra). In the setting of discrete hypergroups, the existence of
a bounded approximate unit on the Fourier algebra implies amenability, but the
converse implication does not hold (see [2]).

We now state our version of Leptin’s theorem in the setting of rigid C∗-tensor
categories.

Theorem 6.1. A rigid C∗-tensor category C is amenable if and only if A(C) ad-
mits a bounded approximate unit, i.e., a net (ϕi) in A(C) such that supi ‖ϕi‖A(C) <

∞ and for all f ∈ A(C),

‖ϕif − f‖A(C) → 0 as i→∞.

In order to prove this theorem, we first prove the following lemma.

Lemma 6.2. The space of finitely supported functions in the unit ball A(C)1 is
norm dense in A(C)1, i.e., A(C)1 = cc(Irr(C)) ∩A(C)1

A(C)
.

Proof. Note first that if ξ, η ∈ cc(Irr(C)) are finitely supported functions, the same
holds for the matrix coefficient ϕξ,η(α) = d(α)−1〈λ(α)ξ, η〉, α ∈ Irr(C). Since we
can approximate any function in `2(Irr(C)) by finitely supported ones of smaller
norm, every ϕ ∈ A(C)1 can be approximated in norm by functions of the form
ϕξ,η with ξ, η ∈ cc(Irr(C)) and ‖ξ‖, ‖η‖ ≤ 1. More precisely, this follows from the
inequality

‖ϕξ1,η1 − ϕξ2,η2‖ ≤ ‖ξ1 − ξ2‖‖η1‖+ ‖η1 − η2‖‖ξ2‖
for all ξi, ηi ∈ A(C), i = 1, 2, which is easily established.
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Proof of Theorem 6.1. Assume first that C is amenable. By [33, Prop. 5.3], this
means that the trivial representation ε given by ε(α) = d(α), α ∈ Irr(C) extends
to a character on Cr(C) which we can extend to a (not necessarily normal) state
on Cr(C)′′. Since the unit ball of every Banach space is w∗-dense in the unit ball
of its double dual, there exists a net of normal states (ωi) on Cr(C)′′ such that for
all x ∈ Cr(C)′′,

ωi(x)→ ε(x) as i→∞.
Let ϕi ∈ A(C) such that ωi = ωϕi . By the previous lemma, it suffices to show that
for all f ∈ cc(Irr(C)) ∩A(C)1,

‖ωϕif−f‖ → 0 as i→∞.

Let f ∈ cc(Irr(C)). The operator given by

Tf : C[C]→ C[C], Tf (α) = f(α)α, α ∈ Irr(C)

extends to a (completely) bounded finite rank operator on Cr(C)′′ (see Proposi-
tion 5.1) with norm ‖Tf‖ = K for some K > 0. We have

‖ωϕif−f‖ = sup
‖x‖≤1

|ωϕi−1(Tf (x))| ≤ sup
y∈RanTf , ‖y‖≤K

|ωϕi−1(y)|.

But since RanTf is finite-dimensional and ωϕi−1 → 0 as i→∞ in the w∗-topology,
the result follows.

Let us now assume that A(C) admits a bounded approximate unit (ϕi) with
‖ϕi‖A(C) ≤ 1 for all i. Let α ∈ Irr(C). By putting f = δα ∈ A(C), the characteristic
function of α, and x = d(α)−1λ(α), we obtain

|ϕi(α)− 1| ‖λ(α)‖ = |ωϕif−f (x)| → 0 as i→∞

and hence (ϕi) converges to 1 pointwise. Now, using Lemma 6.2, we can approxi-
mate every ϕi by a net (φji ) in A(C)1∩cc(Irr(C)) and since ϕi is a positive element
of A(C), the function φji can also be chosen to be positive for all i and j. The net
(φji )(i,j) in A(C)1∩ cc(Irr(C)) converges to 1 pointwise, which proves the amenabil-
ity of the category by [33, Prop. 5.3].

§7. Remarks on property (T)

The material of Section 3 gives rise to some observations on property (T) in the
setting of C∗-tensor categories that are motivated by Kazhdan’s property (T)
in the setting of groups. Kazhdan’s property (T) is a rigidity property for locally
compact groups that has numerous consequences and applications in mathematics.
It was introduced in [22], in which it was also shown that countable discrete groups
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with property (T) are finitely generated. Property (T) can be generalized to other
settings, such as quantum groups and rigid C∗-tensor categories, and usually the
natural analogue of finite generation is still an important consequence of property
(T). In particular, Popa and Vaes showed that this is indeed the case in the setting
of rigid C∗-tensor categories [33, Prop. 5.4].

The definition of property (T) in the context of rigid C∗-tensor categories by
Popa and Vaes and two characterizations of this property obtained in [33], are
given in the following definition.

Definition 7.1. A rigid C∗-tensor category C has property (T) if one (and hence
all) of the following equivalent conditions is satisfied.

(i) Every net (ϕλ) of cp-multipliers ϕλ : Irr C → C converging to ϕε pointwise
converges uniformly, i.e., supx∈Irr C |ϕλ(x)− 1| → 0.

(ii) If (ωλ) is a net of states on Cu(C) converging to ε in the weak*-topology, it
must already converge in norm.

(iii) There exists a unique nonzero projection p ∈ Cu(C) such that αp = d(α)p
for all α ∈ C. Such a projection is the analogue of a Kazhdan projection in
the setting of groups.

Let C be a rigid C∗-tensor category, and let W (C) = B(C)∗ = Cu(C)∗∗ be the
enveloping von Neumann algebra of the full C∗-algebra of C. Since the multiplier
ϕε : Irr(C) → C given by ϕε(α) = 1 is completely positive by [33, Cor. 4.4], the
counit ε : C[C]→ C extends to a normal ∗-homomorphism on W (C).

It is known that for every locally compact group G, the Fourier–Stieltjes
algebra B(G) has a unique invariant mean. This goes back to [16, Chap. III]. This
result was generalized to the setting of locally compact quantum groups in [10].
The next proposition asserts the existence of an invariant mean on the Fourier–
Stieltjes algebra of C, but we formulate it in terms of the existence of a central
projection on W (C).

Proposition 7.2. Let A be a unital C∗-algebra and let χ : A→ C be a character
on A. There exists a unique projection p in the von Neumann algebra A∗∗ such
that

xp = px = χ(x)p for all x ∈ A∗∗.
In particular, setting A = Cu(C), χ = ε, we find a unique projection p ∈ B(C)∗ =
W (C) such that ε(p) = 1 and 〈ω, αp〉 = 〈ω, pα〉 = d(α)〈ω, p〉 for all α ∈ Irr(C) and
ω ∈ B(C).

Proof. Uniqueness of p is immediate. To prove the existence, note that, since χ is
a normal ∗-homomorphism, its kernel Ker(χ) is weakly closed and therefore a von
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Neumann algebra itself. Denote its unit by eχ. Then the central cover p = 1− eχ
of χ is a projection in A∗∗ satisfying qp = pq = p for all q with χ(q) = 1. On
the other hand, if q is a projection in Ker(χ), we have pq = 0. Since every von
Neumann algebra is the norm closure of the span of its projections, and χ is in
particular norm continuous, the result follows.

Remark 7.3. In the group case, it was shown in [1, Lem. 1] (see also [37, Lem. 3.1]
and [17, Prop. 4.1]) that a locally compact group G has Kazhdan’s property (T) if
and only if the unique invariant mean on B(G) is weak∗-continuous, i.e., the mean
is an element of C∗(G) rather than just C∗(G)∗∗. In fact, under the natural map
from B(G)∗ to C∗(G)∗∗, the mean is mapped to the Kazhdan projection, which is
by weak∗-continuity actually an element of C∗(G).

By characterization (iii) above, we see that the same thing happens for C∗-
tensor categories: a rigid C∗-tensor category C has property (T) if and only if the
mean on B(C) is weak∗-continuous.

Remark 7.4. In the group case, the unique invariant mean on B(G) is the restric-
tion to B(G) of the unique invariant mean on the space WAP(G) of weakly almost
periodic functions on G, which is well known to have a unique invariant mean.
Indeed, note that B(G) ⊂ WAP(G). Hence, the only thing one needs to show is
that this restriction is the unique invariant mean on B(G). In a similar fashion, it
is shown (see [17, Thm. A]) that the space M0A(G) of completely bounded Fourier
multipliers on G admits a unique invariant mean, using that B(G) ⊂ M0A(G) ⊂
WAP(G). It is not known whether the space M0A(C) of a rigid C∗-tensor category
admits a unique invariant mean, in particular because it is not known what the nat-
ural analogue of WAP(G) for rigid C∗-tensor categories should be. For locally com-
pact quantum groups, WAP algebras were studied more thoroughly in [8]. However,
to the authors’ knowledge, the existence of an invariant mean on the WAP alge-
bra of a locally compact quantum group G is known only in the case where G is
amenable [34].

The unique invariant mean on M0A(G) leads in [17] to the notion of property
(T∗), defined in terms of the mean on M0A(G) being weak∗-continuous, which
obstructs the approximation property of Haagerup and Kraus (see [18]). The first
examples of groups without the latter property were provided only recently (see
[24], [19], [20], [17] and [26]). It is still an open problem to find an example of a
quantum group without an analogue of the approximation property.

We will now compare property (T) for rigid C∗-tensor categories with other
versions of property (T). In the case of discrete quantum groups, we have the
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following definition of property (T) (see [23]), which is equivalent to the one in-
troduced by Fima in [14].

Definition 7.5. Let G be a compact quantum group. The discrete dual Ĝ has
property (T) if one (and hence all) of the following equivalent conditions is satisfied:

(i) If a net of states (ωλ) in Cu(G)∗ converges to ε pointwise, then it converges
in norm.

(ii) There exists a projection p ∈ Cu(G) such that xp = ε(x)p for all x ∈ Cu(G).

It was shown in [10] that, also in the more general framework of locally com-
pact quantum groups, condition (i) of the previous definition is equivalent to the
conventional notion of property (T) in terms of (almost) invariant vectors. The
first part of the following theorem is [33, Prop. 6.3], and the second part was
proven in [3].

Theorem 7.6. Let G be a compact quantum group. The following conditions are
equivalent:

(i) The category RepG has property (T) for rigid C∗-tensor categories.
(ii) The discrete dual Ĝ has central property (T), i.e., if a net (ωλ) of central

states on Cu(G)∗ converges in the weak∗-topology, then it converges in norm.

Moreover, if we assume the Haar state on G to be tracial, this is equivalent to the
discrete dual Ĝ having (noncentral) property (T).

We will now complete the picture by involving property (T) for von Neu-
mann algebras. We use the following two characterizations of this property (see
[7, Chap. 12] for the equivalence).

Definition 7.7. A finite von Neumann algebra (M, τ) has property (T) if one
(and hence all) of the following equivalent conditions is satisfied:

(i) If (Φλ : M → M) is a net of unital completely positive τ -preserving maps
converging to the identity pointwise on L2(M), i.e., ‖Φλ(x)−x‖2 → 0, λ→∞
for all x ∈M , then it already converges in norm, i.e.,

sup
x∈M1

‖Φλ(x)− x‖2 → 0 as λ→∞.

(ii) For any M -bimodule H and any net (ξλ) of unit vectors satisfying

〈xξλy, ξλ〉H → τ(xy) as λ→∞,
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for all x, y ∈ M and τ(x) = 〈xξλ, ξλ〉 = 〈ξλx, ξλ〉 for all λ, there exists a net
of M -central vectors (µλ) with

‖ξλ − µλ‖ → 0 as λ→∞.

The following theorem is a generalization of [14, Thm. 3.1]. However, as Ste-
faan Vaes pointed out to us, the proof in [14] contains a mistake. Indeed, at a
critical point in the proof of [14, Thm. 3.1], it is stated that for two irreducible
objects x, y ∈ Irr(G), one has x ⊂ x⊗y if and only if y = 1. This is false whenever
Ĝ is not a group. We thank Stefaan Vaes for providing us with a new proof, which
we include here with his kind permission.

Theorem 7.8. Let G be a compact quantum group with a tracial Haar state. Then
Ĝ has (central) property (T) if and only if L∞(G) has property (T).

Proof. Suppose that Ĝ has property (T), and let H be an L∞(G)-bimodule and
(ξλ) a net of unit vectors in H such that 〈xξλy, ξλ〉 → h(xy) for all x, y ∈ L∞(G)
and h(x) = 〈xξλ, ξλ〉 = 〈ξλx, ξλ〉 for all λ and x ∈ M . We have to find a net (µλ)
of L∞(G)-central vectors such that ‖ξλ−µλ‖ → 0. For every π ∈ Irr(G), choose a
unitary matrix uπ = (uπij) representing π. Since the Haar state is tracial, we can
assume that uπ̄ = uπ. Define the linear map

Θ : O(G)→ B(H); Θ(uπij)ξ =
d(π)∑
k=1

uπikξ(uπjk)∗ (π ∈ Irr(G))

and, denoting the coinverse of G by S, observe that Θ = ϑ ◦∆ where ϑ : O(G)⊗
O(G) → B(H) is the ∗-homomorphism defined by ϑ(a ⊗ b)ξ = aξS(b), ξ ∈ H.
Hence Θ is a ∗-homomorphism as well and therefore extends to Cu(G). Moreover,
the conditions on (ξλ) imply

‖Θ(x)ξλ − ε(x)ξλ‖ → 0 ∀x ∈ Cu(G).

Indeed, it suffices to show this for x being a coefficient of an irreducible corepre-
sentation π ∈ Irr(G) and in that case one computes

‖Θ(uπij)ξλ − δijξλ‖2
λ−→

d(π)∑
k,l=1

h((uπil)∗uπik(uπjk)∗uπjl)− 2
d(π)∑
k=1

h(uπik(uπjk)∗) + δij = 0.

Since Ĝ has property (T), by Definition 7.5, we can find a projection q ∈ Cu(G)
such that xq = ε(x)q for all x ∈ Cu(G) and in particular we have ε(q) = 1.
Defining µλ = Θ(q)ξλ, it follows that ‖ξλ − µλ‖ → 0. It remains only to prove
that the vector µλ is L∞(G)-central for every λ. To see this, observe first that for
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π ∈ Irr(G), we have

d(π)∑
k=1

uπikµλ(uπjk)∗ = Θ(uπij)µλ = Θ(uπijq)ξλ = δijµλ.

Therefore, the computation

µλu
π
il =

d(π)∑
j=1

δijµλu
π
jl =

d(π)∑
j,k=1

uπikµλ(uπjk)∗uπjl = uπilµλ

for π ∈ Irr(G), i, l = 1, . . . , d(π) concludes the argument.
Let us now assume that L∞(G) has property (T). We prove that RepG has

property (T), which is equivalent to central property (T) by Theorem 7.6. Let
(ϕλ)λ be a net of cp-multipliers converging to ε pointwise. Without loss of gen-
erality, we can assume that ϕλ(1) = 1 for all λ. By [33, Prop. 6.1], we obtain a
net of h-preserving unital completely positive maps Ψλ : L∞(G) → L∞(G) such
that Ψλ(uπij) = ϕλ(π)uπij for all π ∈ Irr(G), i, j = 1, . . . ,dim π. The pointwise con-
vergence of the net (ϕλ)λ then implies that the unital completely positive maps
Ψλ : L∞(G)→ L∞(G) converge pointwise to the identity, i.e.,

‖Ψλ(x)− x‖2 → 0 ∀x ∈ L∞(G) as λ→∞.

It follows from the assumption that L∞(G) has property (T) that

sup
x∈L∞(G)1

‖Ψλ(x)− x‖2 → 0 as λ→∞.

Now, for all π ∈ Irr(G) and all λ, consider the unital completely positive map

idπ ⊗Ψλ : B(Hπ)⊗ L∞(G)→ B(Hπ)⊗ L∞(G)

and note that (idπ ⊗Ψλ)(uπ) = ϕλ(π)uπ. Hence,

sup
π∈Irr(G)

|ϕλ(π)− 1| = sup
π∈Irr(G)

‖(ϕλ(π)− 1)uπ‖2

= sup
π∈Irr(G)

‖(idπ ⊗Ψλ)(uπ)− uπ‖2 → 0,

which establishes property (T) in the categorial sense.
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