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Erratum to
Hodge Theory of the Middle Convolution

by

Michael Dettweiler and Claude Sabbah

Abstract

We give a correction to the statement of Theorem 3.2.3 of [2].

2010 Mathematics Subject Classification: 14D07, 32G20, 32S40, 34M99.
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Theorem 3.2.3 of [2] is incorrectly stated. The correct statement is as follows.

Given λ ∈ S1, we set λ = exp(−2πiα′) with α′ ∈ (0, 1] (not [0, 1)). With this in

mind, we have the following theorem.

Theorem 3.2.3 ([10, Thm. 5.4]).

grpF φs,λ(M1�M2) =
⊕

(λ1,λ2)
λ1λ2=λ



⊕
j+k=p−1

grjF φt1,λ1
M1 ⊗ grkF φt2,λ2

M2

if α′1 + α′2 ∈ (0, 1],⊕
j+k=p

grjF φt1,λ1
M1 ⊗ grkF φt2,λ2

M2

if α′1 + α′2 ∈ (1, 2].

The statement of Theorem 3.1.2 is unchanged. Note that 3.1.2(2) would be

more symmetric by setting λ = exp(−2πiα′) with α′ ∈ (0, 1]:

3.1.2(2)′ µpxi,λ,`
(MCχ(M)) =

µ
p−1
xi,λ/λo,`

(M) if α′ ∈ (αo, 1],

µpxi,λ/λo,`
(M) if α′ ∈ (0, αo].
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We make clear below the side-changing relations to relate our setting to that

of [10]. Assume (M,F •M) is a polarizable complex Hodge module on the disc ∆

as defined in [2, §3.2], and that M is a minimal extension at the origin. Let V •M

be its V -filtration (cf. the notation in [2, §2.2]).

Since ∆ has a global coordinate, we can identify the associated right D∆-

module with M on which D∆ acts in a transposed way. We denote it by Mr.

The V -filtration and the F -filtration are now denoted increasingly. We have the

following relations:

FpM
r = F−p−1M, VγM

r = V −γ−1M.

By the definition in [9], we have, for λ ∈ S1 and λ = exp(2πiγ) with γ ∈ [−1, 0),

FpψλM
r := Fp−1 grVγ M

r = F−p grβV M (β = −γ − 1),

Fpφ1M
r := Fp grV0 M

r = F−p−1 gr−1
V M.

(∗)

Due to our previous definition of F qψλM and F qφ1M (given before Theo-

rem 2.2.4 and Proposition 2.2.5), we find that

FpψλM
r = F−pψλM, Fpφ1M

r = F−pφ1M.

Lastly, the theorem of Saito (for filtered right D∆-modules) gives, setting λ =

exp(−2πiβ) with β ∈ (−1, 0] (since we are now interested in vanishing cycles),

grFp φs,λ(Mr
1 �Mr

2 ) =
⊕

(λ1,λ2)
λ1λ2=λ



⊕
j+k=p+1

grFj φt1,λ1
Mr

1 ⊗ grFk φt2,λ2
Mr

2

if β1 + β2 ∈ (−2,−1],⊕
j+k=p

grFj φt1,λ1
Mr

1 ⊗ grFk φt2,λ2
Mr

2

if β1 + β2 ∈ (−1, 0].

We now replace β, β1, β2 by α′, α′1, α′2 ∈ (0, 1] (by adding 1 to each number). The

previous formula is immediately translated to the above statement by replacing

Mr with M and increasing F -filtrations with decreasing ones.

In the setting of Theorem 3.1.2(2), we have α′2=αo∈(0, 1), and grkF φt2,λo
Mo=0

unless k = 0. For α′, α′1 ∈ (0, 1], we have

α′ = α′1 + αo ⇐⇒ α′ ∈ (0, 1] ∩ (αo, αo + 1] = (αo, 1].

If α′1 +αo ∈ (1, 2], we must set α′ = α′1 +αo−1, and similarly α′ ∈ (0, αo]. We thus

find the above expression for µpxi,λ,`
(MCχ(M)) depending on the position of α′.

Going back to α ∈ [0, 1), the condition becomes as stated in [2].

Remark 1 (Suggested by the referee). The formula of Theorem 3.2.3 is essen-

tially the same as that given in [11]. The referee emphasizes that the results of
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[10], [11] involve Q-mixed Hodge modules, while Theorem 3.2.3 concerns polariz-

able complex Hodge modules as defined in [2, §3.2]. Fortunately, the last version of

[4] proves a Thom–Sebastiani-type theorem for filtered D-modules in a sufficiently

general case including our case, where the V -filtration is indexed by R.

In [2, §2], we have used the (still unpublished) results of Schmid in the con-

text of polarizable variations of real or complex Hodge structures of some weight,

according to [13] (cf. also [1, §1.11]) in order to ensure that, by taking their inter-

mediate extensions, we obtain a polarizable complex Hodge module as defined in

[2, §3.2]. Recall that another proof is given in [7, §3.a–3.g] relying on the theory

of tame harmonic bundles on curves [12].

Remark 2. Since we are interested only in proving Theorem 3.1.2 of [2], we will

indicate precisely a direct proof of 3.1.2(2)′ via twistor D-modules, avoiding Thom–

Sebastiani in its local form, and using instead the stationary phase formula proved

in [8, (A.11) & (A.12)].

To a filtered C[t]〈∂t〉-module (M,F •M) we associate the Rees module

RFM :=
⊕

p F
pMz−p, where z is a new variable. It is endowed with the action

of z2∂z such that, for m ∈ F pM , we have z2∂z(mz
−p) = −pmz−(p−1). To a

variation of polarized complex Hodge structure (V,∇, F •V ) of weight 0 on A1 rx

is associated a polarized pure twistor DP1 -module T of weight 0 whose restriction

to A1rx is (RFV,RFV,RF k), where the sesquilinear RF k is obtained by the Rees

procedure from the flat sesquilinear pairing k inducing the polarization (cf. [7,

§3]). Then T is also endowed with a compatible action of z2∂z: one says that it

is integrable.

Note that in [7, §3] the construction of (T , z2∂z) uses the R-variant of

Schmid’s results. In order to avoid this, we can use the property that the Hodge

metric is a tame harmonic metric and then use the extension property of [12]

(cf. also [6, Thm. 5.0.1], [5, Thm. 1.22], both in the simpler case of integrable

objects).

The formulas (A.11) and (A.12) of [8] need to be modified in order to take

care of the shift by 1 in the definition (∗) of F pφ1M , and of the shift of the

filtration by the push-forward by a closed immersion, as explained in [3, (1.2.4)].

Here, the codimension-1 inclusion i0 used in Lemma A.10 of [8] produces a shift

by 1 in the formulas. With this slight change of convention, compatible with that

of [9], (A.11) and (A.12) of [8] read, at xi = 0 and with an adaptation of the

notation,

(P`φt,λT , z2∂z) ' (P`ψτ ′,λ
FT , z2∂z − βz)

if λ = exp(−2πiβ) and β ∈ (−1, 0].
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For χ = λo, the meromorphic flat bundle Lχ defines a polarized pure twistor

D-module Tχ of weight 0. We then have, setting βo = αo − 1 ∈ (−1, 0),

(P`φt,λ(MCχ T ), z2∂z)

' (P`ψτ ′,λ
F(MCχ T ), z2∂z − βz) (β ∈ (−1, 0])

' (P`ψτ ′,λ(FT ⊗ FTχ), z2∂z − βz)
' (P`ψτ ′,λ/λo

(FT ), z2∂z − (β − βo)z)⊗ (ψτ ′,λo

FTχ, z
2∂z − βoz)

' (P`φt,λ/λo
T , z2∂z(−z))⊗ (φt,λo

Tχ, z
2∂z)

' (P`φt,λ/λo
T , z2∂z(−z)),

where (−z) means that we add −z if β ∈ (βo, 0], that is, going back to the

notation α′, if α′ ∈ (αo, 1]. The C[z]-module part of each side is RFP`φt,λ(MCχM)

(resp. RFP`φt,λ/λo
M) and we recover F pP`φt,λ(MCχM) (resp. F pP`φt,λ/λo

M) by

considering Ker(z2∂z + pz). In such a way we obtain 3.1.2(2)′ at xi = 0.

A similar formula applies at every singularity xi of M after a twist by exi/τ
′z

and gives 3.1.2(2)′ at any xi.

Acknowledgements. We thank Nicolas Martin for pointing out the mistake in

the statement of Theorem 3.2.3. We thank the referee for his/her accurate com-

ments.
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Boston, MA, 1987, 1–19. Zbl 0656.14010 MR 0900821

[2] M. Dettweiler and C. Sabbah, Hodge theory of the middle convolution, Publ. RIMS, Kyoto
Univ. 49 (2013), 761–800. Zbl 1307.14015 MR 3141723
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