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On Enriques Surfaces with Four Cusps

by

S lawomir Rams and Matthias Schütt

Abstract

We study Enriques surfaces with four disjoint A2-configurations. In particular, we con-
struct open Enriques surfaces with fundamental groups (Z/3Z)⊕2×Z/2Z and Z/6Z, com-
pleting the picture of the A2-case from Keum and Zhang (Fundamental groups of open
K3 surfaces, Enriques surfaces and Fano 3-folds, J. Pure Appl. Algebra 170 (2002),
67–91; Zbl 1060.14057). We also construct an explicit Gorenstein Q-homology projec-
tive plane of singularity type A3 + 3A2, supporting an open case from Hwang, Keum
and Ohashi (Gorenstein Q-homology projective planes, Science China Mathematics 58
(2015), 501–512; Zbl 1314.14072).
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§1. Introduction

The main aim of this article is to study Enriques surfaces with four disjoint A2-

configurations, the maximum number possible (because an Enriques surface has

Picard number 10). We shall make heavy use of elliptic fibrations to study the

moduli of such Enriques surfaces:

Theorem 1.1. Enriques surfaces with four disjoint A2-configurations come in

exactly two irreducible two-dimensional families F3,3,3,3, F4,3,1.
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This result, which relies on the understanding of Picard–Lefschetz reflections

on the Enriques surface and its K3-cover following [10], enables us to determine

the fundamental groups of the open Enriques surfaces obtained by removing the

A2-configurations (often also referred to as the cusps).

Our paper draws on the classification of possible fundamental groups of open

Enriques surfaces (i.e., complements of configurations of smooth rational curves)

initiated in [10]. Keum and Zhang state a list of 26 possible groups and give

24 examples. Here we supplement and correct their results by adding one exam-

ple and one group supported by another example. Our second main result is as

follows.

Theorem 1.2. Let G ∈ {S3 × Z/3Z, (Z/3Z)⊕2 × Z/2Z,Z/6Z}. Then there is a

complex Enriques surface S with a set A of four disjoint A2-configurations such

that

π1(S \ A) ∼= G.

For a more concise statement, the reader is referred to Theorem 4.3. This

completes the picture for the A2-case.

Another key point of our paper is the clarification that there are indeed En-

riques surfaces admitting different sets of four disjoint A2-configurations which

lead to each alternative of the fundamental group in Theorem 1.2. This issue will

be discussed in detail in Section 5 and also supported by an explicit example; see

Section 5.6.

While some of the constructions involved in our methods are analytic in na-

ture, notably the notion of logarithmic transformations of elliptic surfaces, we will

crucially facilitate Enriques involutions of base change type, as studied systemat-

ically in [6], since this algebro-geometric technique grants us good control of the

curves on the surfaces and their moduli. We review this, among all the prerequisites

and basics necessary for the understanding of this paper, in Section 2. Section 3

introduces the two families F3,3,3,3 and F4,3,1 and proves Theorem 1.1. The proof

of Theorem 1.2 is given in Section 4. As a by-product, our examples produce an

explicit Gorenstein Q-homology projective plane of singularity type A3 + 3A2; by

Proposition 3.14 we settle an open case from [7]. The paper concludes with fur-

ther considerations concerning the moduli of Enriques surfaces with four disjoint

A2-configurations.

Convention. In this note the base field is always C. Root lattices An, Dk, El are

taken to be negative definite.
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§2. Preliminaries and basics

§2.1. A2-configurations

Let S be an Enriques surface that contains four disjoint A2-configurations, i.e.,

eight smooth rational curves F ′1, F
′′
1 , . . . , F

′
4, F

′′
4 such that

F ′j .F
′′
j = 1 for j = 1, . . . , 4,

and the rational curves in question are mutually disjoint otherwise. We say that a

collection of disjoint A2-configurations F ′1, F
′′
1 , . . . , F

′
l , F

′′
l is 3-divisible if one can

label the rational curves in each A2-configuration such that the divisor

(2.1)

l∑
j=1

(F ′j − F ′′j )

is divisible by 3 in Pic(S). Equivalently, since

Pic(S) = H2(S,Z) = Z10 ⊕ Z/2Z,

the class given by (2.1) is 3-divisible in Num(S), the lattice given by divisors up

to numerical equivalence. Recall that Num(S) is a unimodular even hyperbolic

lattice; in fact

Num(S) = U + E8

where U denotes the unimodular hyperbolic plane. The following result (which

is similar to [1, Lem. 1] and [3, Lem. 1.1]) will be instrumental for some of our

investigations.

Lemma 2.1. Let
∑l
j=1(F ′j −F ′′j ) = 3D in Num(S). Then l = 3, but D is neither

effective nor anti-effective.

Proof. The fact l = 3 is easily derived using (F ′j − F ′′j )2 = −6 and the integrality

and rank of the lattice Num(S). Assume that D is effective. Then since F ′j .D = −1

for each j = 1, 2, 3, each of these curves F ′j is contained in the support of D. Hence

D′ = D − (F ′1 + F ′2 + F ′3) is still effective. On the other hand, we obviously have

3D′ ≤ 0, hence 3D ∼ 0, but this is not compatible with D2 = (D′)2 = −2, a

contradiction.

If D ≤ 0, then an analogous argument applies to the F ′′j , thus completing the

proof of the lemma.

We follow the approach of [10, Sect. 3] and let M (resp. M) denote the lattice

spanned by F ′1, . . . , F
′′
4 in Num(S) (resp. its primitive closure).

Lemma 2.2. The index of M inside M satisfies [M : M ] ∈ {3, 32}.



436 S. Rams and M. Schütt

Proof. The lattice M has discriminant d(M) = 34, so [M : M ] ∈ {1, 3, 32}. We

claim that the first case is impossible. Indeed, suppose that M = M . Then M ↪→
Num(S) is a primitive embedding, so

M∨/M ∼= (M⊥)∨/M⊥.

By assumption the left-hand side is isomorphic to (Z/3Z)4 while the right-hand

side comes from the rank-2 lattice M⊥, and thus has length at most 2, a contra-

diction.

Corollary 2.3. The four A2-configurations F ′1, . . . , F
′′
4 contain either one or four

3-divisible sets.

In particular, we can infer that

(2.2) F ′1, . . . , F
′′
4 contain four 3-divisible sets if and only if M is unimodular.

In other words, in this case each triplet of the A2-configurations in question is

3-divisible up to relabeling the rational curves.

§2.2. Elliptic fibrations

We start by recalling some basic concepts and relations. Any complex Enriques

surface S admits an elliptic fibration

(2.3) ϕ : S → P1.

There are two fibers of multiplicity 2; their supports are usually called half-pencils.

The difference of the two half-pencils gives the canonical divisor which represents

the 2-torsion in H2(S,Z). This already shows that the fibration cannot have a

section, but by [2, Prop. VIII.17.6] there always is a bisection R of square R2 = 0

or −2, i.e., an irreducible curve R such that R.F = 2 for any fiber F of (2.3).

The moduli of Enriques surfaces can be studied through the universal cover

(2.4) π : Y → S

which is a K3 surface. By construction, this induces an elliptic fibration

(2.5) ϕ̃ : Y → P1,

which fits into the commutative diagram

(2.6) Y
2:1 //

ϕ̃
��

S

ϕ

��
P1 2:1 // P1.
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The bottom row degree-2 morphism

(2.7) P1 2:1−→ P1

ramifies exactly in the points below the multiple fibers. Moreover, the universal

covering induces a primitive embedding

U(2) + E8(2) ∼= π∗Num(S) ↪→ Pic(Y ),

which lends itself to a study of K3 surfaces with the above lattice polarization.

Abstractly, a complex K3 surface Y admits an Enriques involution if and only if

there is a primitive embedding of U(2) +E8(2) into Pic(Y ) without perpendicular

roots (i.e., classes of smooth rational curves) by [8]. In view of this, it is evident

that a bisection R of square R2 = 0 occurs generically, since on the contrary any

(−2)-curve on S necessarily splits into two disjoint smooth rational curves on the

K3 cover Y ; these give sections of (2.5), causing the Picard number to go up to

11 at least. The same generic behavior will occur on our families F3,3,3,3, F4,3,1 in

Section 3.

On the other hand, we can consider the Jacobian fibration of (2.3). This will

be a rational elliptic surface

(2.8) X → P1

with section and is thus governed by means of explicit classifications, e.g., using the

theory of Mordell–Weil lattices in [16]. Naturally S and X share the same singular

fibers, except that on S, smooth or semi-stable fibers (Kodaira type In, n ≥ 0) may

come with multiplicity 2. The Enriques surface S can be recovered from X through

a logarithmic transformation which depends on the choice of non-trivial 2-torsion

points in two distinct smooth or semi-stable fibers of (2.8) (see, e.g., [4, Sect. 1.6]).

Intrinsically this leads to another K3 surface in terms of the Jacobian elliptic

fibration arising from (2.8) through the quadratic base change (2.7) ramified in the

two distinct fibers where the logarithmic transformation changed the multiplicities

of fibers. It is clear from the construction that at the same time this K3 surface

features as the Jacobian of (2.5). That is, we get another commutative diagram

(2.9) Jac(Y )
2:1 //

��

X

��
P1 2:1 // P1.

Recall that the depicted elliptic fibrations on Y and Jac(Y ) share the same con-

figurations of singular fibers and the same Picard numbers.
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For some purposes, the above construction has the drawback of being analyt-

ical in nature. This can be circumvented in the special situation where the elliptic

fibration (2.5) is already Jacobian, i.e., admits a section. For instance, this occurs

in the presence of a bisection R of (2.3) with square R2 = −2 as indicated above.

A more general framework for this to occur was introduced in terms of involutions

of base change type in [6]. Here one considers the quadratic twist X ′ of X which

acquires I∗n fibers (n ≥ 0) at the two ramification points of (2.7). In consequence,

the quadratic base change (2.7) applied to either X or X ′ gives the same K3

surface Y .

For any section on X ′, the pull-back to Y is anti-invariant with respect to

the involution ı on Y induced by the deck transformation of (2.7) (s.t. Y/ı = X).

It follows that ı composed with translation by the anti-invariant section defines

another non-symplectic involution on Y . This has fixed points, necessarily in the

ramified fibers, if and only if the section meets the identity components of the two

twisted fibers on X ′. Otherwise, for instance if the section is 2-torsion, we obtain

an Enriques involution on Y which we will refer to as an involution of base change

type.

§2.3. Picard–Lefschetz reflections

Recall that by Kodaira’s work [11], the irreducible components of a singular fiber of

an elliptic fibration correspond to an extended Dynkin diagram; a Dynkin diagram,

or equivalently root lattice, can be obtained from the singular fiber by omitting any

simple component. Given A2-configurations, it is thus natural to ask whether these

correspond to rational curves supported on the fibers of an elliptic fibration on S.

While this may not be true in general, we can weaken the limitations by considering

the question up to isometries of H2(S,Z). This will allow us to reduce the problem

of 3-divisible sets of A2-configurations to the study of certain elliptic fibrations on

Enriques surfaces. To this end, recall that each (−2)-class E in H2(S,Z) defines a

Picard–Lefschetz reflection

sE : H2(S,Z) 3 D 7→ D + (D.E)E ∈ H2(S,Z).

In general, such a reflection does not act effectively on divisors, but the situation

changes drastically when restricted to smooth rational curves. Namely, if E and

E′ are both represented by a smooth rational curve, then

(2.10) sE(E′) is either effective (if E 6= E′), or anti-effective (if E = E′).

In the sequel we will use the following corrected version of [10, Claim 3.5.1] (which

included neither the configurations (2.12) nor the degenerate case of (2.13); cf.

also Remark 2.10).
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Lemma 2.4. There exists a half-pencil H on S and smooth rational curves

E1, . . . , Ek ⊂ S such that the image of each curve F ′j, F
′′
j , where j = 1, . . . , 4,

under the isometry

(2.11) pS := (sEk
◦ · · · ◦ sE1

)

is, up to some multiple of H, the class of a smooth rational curve which is an irre-

ducible component of a member of the pencil |2H|. Moreover, the elliptic fibration

given by |2H| is either of the type

(2.12) I43 , I
3
3 ⊕ 2I3, I

2
3 ⊕ (2I3)2

or of the type

(2.13) IV ∗⊕I3⊕I1, IV ∗⊕2I3⊕I1, IV ∗⊕I3⊕2I1, IV
∗⊕2I3⊕2I1, IV

∗⊕IV.

Proof. We argue with the lattices M,M⊥ ⊂ Num(S) from Section 2.1. Since M

has discriminant 81 and M⊥ is hyperbolic of rank 2, M⊥ represents zero. Thus

there is an isotropic class H0 ∈ M⊥ which we may assume to be primitive in

H2(S,Z). By Riemann–Roch, either H0 or −H0 is effective, so let us assume the

former. Following [2, Lem. VIII.17.4], it remains to subtract the base locus of |2H0|
to derive an elliptic fibration. This precisely amounts to a composition

(2.14) p0 = (sEl
◦ · · · ◦ sE1

)

of reflections in smooth rational curves E1, . . . , El (each meeting the image of H0

under the previous reflections negatively). By construction, we obtain the half-

pencil H := p0(H0) such that |2H| induces an elliptic fibration on S.

To study the impact of the isometry p0 on the (−2)-classes F ′j , F
′′
j , the fol-

lowing generalization of (2.10) enters crucially:

Claim 2.5. For j = 1, . . . , 4, the class p0(F ′j) (and also the class p0(F ′′j )) is an

effective or anti-effective divisor supported on components of a singular fiber of

the elliptic pencil |2H|.

In order to simplify the exposition of the proof of the lemma, the proof of Claim 2.5

will be given, also for later use, in Section 2.4.

Continuing the proof of Lemma 2.4, we infer from Claim 2.5 that singular

fibers of the elliptic pencil |2H| contain four disjoint A2-configurations (given by

effective or anti-effective (−2)-divisors, but not necessarily (yet) by irreducible

curves). As explained in Section 2.2, the Jacobian fibration of |2H| is a rational

elliptic surface X. As it shares the four disjoint A2-divisor configurations in the

fibers, X is automatically extremal by the Shioda–Tate formula [20, Cor. 6.13],
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i.e., X has finite Mordell–Weil group. Going through the classification in [13], one

finds that X may have the following configurations:

(2.15) I43 , IV
∗ ⊕ I3 ⊕ I1, IV ∗ ⊕ IV, II∗ ⊕ I21 , II∗ ⊕ II.

Note that the configurations (2.12) and (2.13) from Lemma 2.4 correspond to the

first three entries in (2.15), with fiber multiplicities. In order to complete the proof

of Lemma 2.4, we shall now prove all claims for the first three configurations above

before ruling out the last two configurations from (2.15).

Before going into the details, recall that for any irreducible root lattice R, any

two roots are equivalent under reflections. Naturally this extends to the extended

Dynkin diagrams R̃:

Tool 2.6. Any two roots in R̃ are equivalent under reflections.

(Note that this holds true even though R̃ contains infinitely many roots —

but only finitely many modulo the primitive isotropic vector.)

Consider the configurations (2.12) and (2.13) from Lemma 2.4. To complete

the proof, we have to show that there are reflections in fiber components of |2H|
such that the composition of all reflections takes each curve F ′j , F

′′
j to a single

smooth rational curve, up to a multiple of H. To see this, fix D = p0(F ′j) or

p0(F ′′j ) for some j = 1, . . . , 4. We claim that there is an integer n ∈ Z and a

divisor D̃ such that

(2.16) D = nH + D̃ and 0 < D̃ < 2H.

This can be seen without difficulty because fiber components generate a semi-

negative-definite lattice. Indeed, if there were some n ∈ Z such that

D = nH + D̃ − D̂

with D̃, D̂ both effective and supported on distinct fiber components, then by

construction,

−2 = D2 = D̃2 − 2D̃.D̂ + D̂2.

Since all entries on the right-hand side are non-positive, even integers, we deduce

that either D̃ or D̂ has square zero, and hence equals some fiber multiple. Upon

subtracting or adding the fiber class 2H, we thus obtain the representation (2.16)

of D. Note that in particular D̃ is supported on a single fiber (and naturally D̃

and n can be chosen such that 0 < D̃ < H if D̃ is supported on a multiple fiber),

so we can now complete the proof of Lemma 2.4 fiber by fiber. In particular, we

only have to distinguish two cases.
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If the fiber has Kodaira type I3 or IV , with components Θ0, Θ1, Θ2 meeting

each other transversally, then up to permutations of components, the only possi-

bilities for a configuration given by effective (−2)-divisors D̃1, D̃2 < 2H (or < H

if the fiber has multiplicity 2) such that D̃1.D̃2 = 1 are easily determined as

D̃1 = Θ1, D̃2 = Θ2 and D̃1 = Θ0 + Θ1, D̃2 = Θ0 + Θ2.

Since the second configuration is obtained from the first by reflection in Θ0, the

remaining statement of Lemma 2.4 holds on fibers of type I3 and IV .

Suppose the fiber in question has Kodaira type IV ∗, thus supporting three

disjoint A2-type configurations given by the divisors D̃ obtained from p0(F ′1), . . . ,

p0(F ′′3 ) as in (2.16). Let us write the type IV ∗ fiber as

(2.17) Θ1 + 2Θ2 + Θ3 + 2Θ4 + Θ5 + 2Θ6 + 3Θ0

where Θ2i meets exactly Θ2i−1 and Θ0 (i = 1, 2, 3). Recall that an additive fiber

on an Enriques surface cannot be multiple.

Start with the root D1 = p0(F ′1). By Tool 2.6, there is a composition of

reflections p′1 such that p′1(D1) = Θ1 as claimed.

Let p1 = p′1◦p0 and D̃2 denote the effective divisor given by the decomposition

of p1(F ′′1 ) defined in (2.16). Since D̃2.Θ1 = 1 and 0 ≤ D̃2 < 2H, we infer that

Θ1 6⊆ supp(D̃2) while Θ2 appears with multiplicity 1 in D̃2. We claim that there

are reflections in Θ3, . . . ,Θ6,Θ0 exclusively, taking D̃2 to Θ2. To see this, we refer

to the following more general property which will be useful in the sequel, too.

Tool 2.7. Let v be a root in a root lattice R which contains the vertex e with

multiplicity 1. Then there is a composition p of reflections in the other vertices of

R such that p(v) = e.

Proof. Denote the vertices of the Dynkin diagram of R by e1, . . . , en and write

v =

n∑
j=1

ajej (aj ∈ Z).

Here e = ei, say, and ai = 1 by assumption. Since the roots in R are always

effective or anti-effective, we infer v ≥ 0 from ai. Since v2 = −2, there is some

j such that v.ej < 0. If j 6= i, then the reflection sej reduces the complexity of

the root (measured in terms of
∑
j aj ≥ 0), so we may continue with the root

sej (v) ≥ 0 instead of v.

Assume that at some point during this process, we have

v.ej ≥ 0 ∀ j 6= i.
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We claim that this implies v = ei. To see this, we compute

−2 = v2 = v.

n∑
j=1

ajej = −2 +
∑
j 6=i

ajv.ej︸ ︷︷ ︸
≥0

.

More precisely, the summands on the right-hand side are all zero if and only if

aj = 0 for all j with ej adjacent to ei. But then, since roots always have connected

support, we infer that all aj for j 6= i are zero as claimed.

In summary, we can apply reflections away from e = ei (reducing the com-

plexity and preserving effectivity) until v is mapped to e as stated.

Remark 2.8. If e has coefficient −1 in the root v ∈ R, then one can show analo-

gously that reflections away from e map v to −e.

Applied to D̃2, we deduce that there is a reflection p′2 such that

p′2(D̃2) = Θ2, p′2(Θ1) = Θ1.

That is, p2 = p′2 ◦ p1 maps F ′1, F ′′1 to Θ1, Θ2 up to multiples of H.

The same kind of reasoning applies to F ′2, . . . , F
′′
3 to show that a composition

of reflections (in Θ3, . . . ,Θ6 only!) maps their image under p2, up to multiples of

H, to the fiber components Θ3, . . . ,Θ6. The details are omitted for shortness. This

proves Lemma 2.4 for the first three fiber configurations from (2.15).

We now turn to the last two fiber configurations from (2.15). Here the config-

uration of four A2’s is supported on a single fiber of Kodaira type II∗. We shall

seek to establish a contradiction to Lemma 2.1, using Tools 2.6, 2.7.

By Lemma 2.2, there is a configuration of three A2’s involving a 3-divisible

class, say
3∑
j=1

(F ′j − F ′′j ) = 3D.

We start by embedding the remaining A2-summand into the II∗ fiber whose com-

ponents we label as in Figure 1.

t t t t t t t t
e2 e3 e4 e5 e6 e7 e8

t e1

e9

Figure 1. Components of a fiber of Kodaira type II∗.
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We let D′ := p0(F ′4) and D′′ := p0(F ′′4 ) denote the two (−2)-divisors of the

remaining A2, both supported on the singular fiber (effective or anti-effective by

Claim 2.5). By Tool 2.6, there is a composition p′1 of reflections mapping D′ to e9.

Decomposing

p′1(D′′) = D̃ +mH (0 ≤ D̃ < 2H)

as before, we infer from the intersection number with p′1(D′) = e9 that e9 6∈
supp(D̃) while e8 has multiplicity 1 in D̃; i.e., D̃ ∈ E8 = Ẽ8 \ {e9}, and by

Tool 2.7, there is a composition p′2 of reflections in e1, . . . , e7 mapping D̃ to e8.

It follows that p2 = p′2 ◦ p′1 ◦ p0 maps F ′1, . . . , F
′′
3 to effective or anti-effective

(−2)-divisors in the orthogonal complement of 〈e8, e9〉 inside the extended Dynkin

diagram Ẽ8 which is given by

〈e8, e9〉⊥ = 〈e1, . . . , e6, 2H〉 ∼= Ẽ6.

In consequence, the above analysis of the IV ∗ case applies verbatim to show that,

after a suitable composition p of reflections (in e1, . . . , e6) and up to fiber multiples,

the three A2’s in question can be realized as

(2.18) 〈e2, e3〉 ⊕ 〈e5, e6〉 ⊕ 〈e1,−(2e1 + e2 + 2e3 + 3e4 + 2e5 + e6)〉.

Indeed, after mapping 〈F ′2, F ′′2 〉, 〈F ′3, F ′′3 〉 to 〈e2, e3〉, 〈e5, e6〉 and F ′1 to e1, we

solve the system of equations given by the fact that p(F ′′1 ) is a (−2)-divisor with

prescribed intersection pattern. This gives exactly the above solution modulo 2H.

Apparently (2.18) does not give the signs of the six classes D′1, . . . , D
′′
3 in

the 3-divisible divisor p(3D). Yet, since the intersection numbers p(3D).ej are

multiples of 3 for j = 1, . . . , 9, one obtains only one possibility (up to sign and a

multiple of (2H)):

(e3 − e2) + (e5 − e6) + (e1 + (2e1 + e2 + 2e3 + 3e4 + 2e5 + e6)) = ±3p(D)

which yields

p(D) = ±(e1 + e3 + e4 + e5) + 2mH

for somem ∈ Z. In particular, p(D) is either effective or anti-effective, and applying

p−1, we infer the same for D from Observation 2.11 (to be derived in Section 2.4).

This contradicts Lemma 2.1 and thus concludes the proof of Lemma 2.4.

Remark 2.9. On the extremal rational elliptic surfaces, the orthogonal A2-con-

figurations gives rise to 3-torsion sections by way of 3-divisibility. Essentially, this

holds because H2(X,Z) is unimodular. Since the same applies to Num(S), we will

be able to establish the same results on S, even though there is no section; see

Lemma 3.6.
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Remark 2.10. The proof of [10, Claim 3.5.1] states that one can let go the fiber

multiple in Lemma 2.4, i.e., there is a composition of reflections pS such that the

image of each smooth rational curve F ′j , F
′′
j under pS is again represented by a

smooth rational curve (without possibly adding a multiple of H). Since we were

not able to find a reference for this statement, we decided to follow the advice of a

referee and give a detailed proof of the weaker statement recorded in Lemma 2.4

(which fortunately will be sufficient for our purposes).

§2.4. Picard–Lefschetz reflections on the K3-cover

In the last part of this section we study Picard–Lefschetz reflections on the K3-

cover Y of S.

Let π : Y → S be the K3-cover with induced elliptic fibration (2.5) and let

ψ y Y be the Enriques involution. Given a smooth rational curve E in S, the

preimage π−1(E) consists of two disjoint smooth rational curves E+, E−.

With this preparation we proceed to the proof of Claim 2.5.

Proof of Claim 2.5. We maintain the notation of the proof of Lemma 2.4 (see

(2.14)), and put

p0,Y := (sE+
l
◦ sE−l ◦ · · · ◦ sE+

1
◦ sE−1 ).

This map is independent of the order of the elements of the pairs E+
i , E−i as

we shall exploit below. Let D ∈ Pic(S). Observe that (D.E1) = (π∗D.E+
1 ) =

(π∗D.E−1 ). In particular, we have

(sE+
1
◦ sE−1 )(π∗D) = π∗D + (π∗D.E+

1 )E+
1 + (π∗D.E−1 )E−1

= π∗(D + (D.E1)E1) = π∗(sE1(D)).

This yields the equality

p0,Y ◦ π∗ = π∗ ◦ p0.
Similarly, one can show that

p0,Y ◦ ψ∗ = ψ∗ ◦ p0,Y .

Moreover, one has the equality

(2.19) π∗(p0,Y )(E+) = π∗(p0,Y (E−)) = p0(E).

Since p0,Y is an isometry, we have p0,Y (F ′±j )2 = −2. Therefore Riemann–Roch

implies that either |p0,Y (F ′±j )| 6= ∅ or | − p0,Y (F ′±j )| 6= ∅. Suppose that D′ ∈ | ±
p0,Y (F ′±j )|. From (p0,Y (F ′±j ).π∗H) = 0, we infer that all components of supp(D′)

are components of fibers of the fibration |π∗H|. Claim 2.5 now follows directly

from (2.19).
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Essentially, the above proof shows the following observation:

Observation 2.11. If D is an effective (−2)-divisor on an Enriques surface,

supp(D) consists of (−2)-curves, and p is a composition of reflections in some

(−2)-curves, then p(D) is either effective or anti-effective.

Since the proof of Lemma 2.4 is now complete, we know that the map pS (see

(2.11)) exists, and we define

(2.20) pY := (sE+
k
◦ sE−k ◦ · · · ◦ sE+

1
◦ sE−1 ).

Obviously we have the equalities pY ◦ π∗ = π∗ ◦ pS , and pY ◦ ψ∗ = ψ∗ ◦ pY .

Moreover, it is immediate that

π∗(pY (E+)) = π∗(pY (E−)) = pS(E).

The latter implies, using Zariski’s lemma, that for j = 1, . . . , 4, the divisor pY (F ′±j )

(and also the divisor pY (F ′′±j )) is represented, up to sign, by a sum of smooth

rational curves contained in a singular fiber of the elliptic fibration (2.5) induced

by |π∗H| plus possibly a multiple of the general fiber of |π∗H|.
In particular, Y inherits eight orthogonal A2-configurations from S. For later

use, we label the curves F ′±j , F ′′±j , in such a way that

(2.21) π∗pY (F ′±j ) = pSF
′
j and π∗pY (F ′′±j ) = pSF

′′
j , for j = 1, . . . , 4.

In the sequel we will need the following simple observation. Suppose that for

j = 1, . . . , 4 the equalities

(2.22) pSF
′
j = Θ2j−1 + n2j−1H and pSF

′′
j = Θ2j + n2jH

hold, where Θ2j−1, Θ2j are components of singular fibers of |2H| and n2j−1, n2j ∈
Z. Then, up to a relabeling of the rational curves Θ±2j−1, Θ±2j , we have

(2.23) pY F
′±
j = Θ±2j−1 + n2j−1π

∗H and pY F
′′±
j = Θ±2j + n2jπ

∗H.

§3. Two families of Enriques surfaces with four cusps

In this section we construct families of Enriques surfaces with four disjoint A2-

configurations supported on the fibers of an elliptic fibration (following Lemma 2.4)

and study 3-divisible sets on them.

§3.1. First family of Enriques surfaces

Let X3,3,3,3 be the extremal rational elliptic surface with four singular fibers of

type I3. Locating them at the third roots µ3 of (−1) and at∞, the surface is given
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by the Hesse pencil

X3,3,3,3 : x3 + y3 + z3 + 3λxyz = 0.

Here the 3-torsion sections alluded to in Remark 2.9 enter as the base points of the

cubic pencil. An Enriques surface is obtained from X3,3,3,3 by applying logarithmic

transformations of order 2 to the elliptic fibers over two distinct points P1, P2 ∈ P1.

As explained in Section 2.2, this depends on the choice of 2-torsion points in the

fibers of X3,3,3,3 over P1, P2. However, this subtlety will not cause us any trouble:

Lemma 3.1. The Enriques surfaces obtained by a logarithmic transformation of

order 2 from X3,3,3,3 as above form an irreducible two-dimensional family F3,3,3,3.

Proof. The moduli space F3,3,3,3 is a degree 9 ramified covering of the configuration

space

(3.1) Sym2(P1) \ diagonal.

Thus F3,3,3,3 has dimension 2. Here the fiber above a non-ordered pair {P1, P2}
consists of all non-ordered pairs in

(EP1
[2] \ {O})× (EP2

[2] \ {O})

where EP denotes the fiber of X3,3,3,3 at P ∈ P1 with zero element O and 2-torsion

subgroup EP [2]. It follows that the covering (3.1) ramifies exactly at the singular

fibers. Since the monodromy action of

π1(Sym2(P1 \ (µ3 ∪ {∞})) \ diagonal)

on a general fiber is transitive, the moduli space F3,3,3,3 is irreducible.

This proves the first part of Theorem 1.1. In view of Lemma 3.1, we will allow

ourselves to abuse notation and denote the resulting Enriques surface(s) simply

by SP1,P2 .

Now, let S = SP1,P2
∈ F3,3,3,3 be an Enriques surface with K3-cover Y and

elliptic fibrations ϕ, ϕ̃ in the notation of Section 2.2. We continue by establishing

some information about Y with the help of Jac(Y ). As far as P1, P2 are different

from ∞ and third roots of (−1) (i.e., outside the branch locus of (3.1)), we obtain

eight fibers of type I3 on Y and Jac(Y ), so the Picard number ρ(Y ) = ρ(Jac(Y ))

is at least 18 by the Shioda–Tate formula.

Lemma 3.2. If ρ(Y ) = 18, then NS(Y ) has discriminant d(NS(Y )) = −324.
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Proof. By assumption, Jac(Y ) has finite Mordell–Weil group. The configuration

of singular fibers accommodates only 3-torsion, so we infer

MW(Jac(Y )) ∼= (Z/3Z)2

by pull-back from X3,3,3,3. Hence d(NS(Jac(Y ))) = −81. By the existence of a

bisection on Y (induced from S; see Section 2.2), we infer from [9, Lem. 2.1] that

(3.2) either d(NS(Y )) = −81 or d(NS(Y )) = −324

as soon as ρ(Y ) = 18. (Here the former equality holds iff ϕ̃ admits a section,

i.e., iff Y = Jac(Y ).) Lemma 3.2 now results immediately from the following

proposition.

Proposition 3.3. Let Y be the K3-cover of an Enriques surface. Then

220−ρ(Y ) | d(NS(Y )).

In particular, if d(NS(Y )) is odd, then ρ(Y ) = 20.

Proof. We shall use the primitive embedding

L := U(2) + E8(2) ∼= π∗Num(S) ↪→ NS(Y ).

We follow the notation of [14, Sect. 5◦] and denote the discriminant group of L by

AL := L∨/L;

likewise for other primitive sublattices of NS(Y ) such as L⊥. Define the finite

abelian group

H := NS(Y )/(L⊕ L⊥).

Obviously we have the inclusion

H ⊂ AL ⊕AL⊥ .

Let pL (resp. pL⊥) be the projection from AL ⊕ AL⊥ onto the first (resp. the

second) summand. By [14, p. 111] either projection is an embedding. The first

embedding implies

H ∼= (Z/2Z)l,

while the second shows l ≤ ρ− 10 since the length of AL⊥ is bounded by the rank

of L⊥. We obtain

d(NS(Y )) = d(L⊕ L⊥)/|H|2 = 210−l · (d(L⊥)/2l).

Note that the rightmost term in brackets is an integer since |H| = |pL⊥(H)| divides

|AL⊥ | = d(L⊥). Hence we infer that 220−ρ|d(NS(Y )) as claimed.
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Remark 3.4. A detailed analysis using the 2-length of the groups involved allows

one to strengthen the above line of arguments to prove that the K3 cover Y of an

Enriques surface has ANS(Y ) of 2-length at least 20− ρ(Y ).

§3.2. 3-divisible sets

We shall now investigate the 3-divisible sets among the four A2-configurations

supported on fibers of an Enriques surface S ∈ F3,3,3,3. Our main results will be

formulated in Lemmas 3.6 and 3.7.

Let G be a 2-section of the elliptic fibration ϕ and let Fj , F
′
j , F

′′
j , where

j = 1, . . . 4, be the components of the I3-fibers of ϕ. In order to streamline our

notation we label the components of the singular fibers in the following way relative

to G:

Notation 3.5. If G meets only one component of an I3-fiber we denote this com-

ponent by Fj . Otherwise, F ′j , F
′′
j stand for the components of the I3-fiber that

meet the 2-section G (i.e., we have G.Fj = 0 then).

In particular, if (Fj +F ′j +F ′′j ) happens to be a half-pencil of the fibration in

question, we assume that G.Fj = 1. After this preparation we can study 3-divisible

sets in the fibers of the elliptic fibration ϕ on S and ϕ̃ on Y .

Lemma 3.6. Let S ∈ F3,3,3,3. The A2-configurations

(3.3) F ′1, F
′′
1 , . . . , F

′
4, F

′′
4

contain four 3-divisible sets.

Proof. By (2.2) it suffices to prove that M , the primitive closure of the lattice M

spanned in Num(S) by the curves (3.3), is unimodular. Equivalently, the lattice

M⊥ = M
⊥

is unimodular. To see this, define an auxiliary divisor class

D := G+
∑

{j:G.Fj=0}

(F ′j + F ′′j ) ∈M⊥.

Let B denote a half-pencil of the fibration ϕ. By construction, B ∈M⊥, and B,D

span the hyperbolic plane U since D.B = G.B = 1 and B2 = 0. Thus M⊥ and M

are unimodular, and the proof of Lemma 3.6 is completed by (2.2).

We shall now eliminate all but one 3-divisible class by considering a different

configuration of four A2’s on S ∈ F3,3,3,3. Recall that F+
j , F−j stand for the

(−2)-curves on the K3-cover π : Y → S that lie over the smooth rational curve

Fj , and likewise for F ′j , F
′′
j . A discussion of properties of 3-divisible sets of A2-

configurations on K3 surfaces can be found in [1]. In particular, by [1, Lem. 1], a
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3-divisible set of A2-configurations on a K3 surface consists always of six or nine

such configurations.

Lemma 3.7. Let S ∈ F3,3,3,3. Then

(a) the four A2-configurations

(3.4) F ′1, F
′′
1 , . . . , F

′
3, F

′′
3 , F

′
4, F4

on the Enriques surface S contain exactly one 3-divisible set;

(b) if the I3-configuration (F4 + F ′4 + F ′′4 ) is not a half-pencil, then the eight A2-

configurations

(3.5) F ′+1 , F ′′+1 , F ′−1 , F ′′−1 , . . . , F ′−3 , F ′′−3 , F ′+4 , F+
4 , F

′−
4 , F−4

on the K3-cover Y contain exactly one 3-divisible set.

Proof. (a): By (2.3) we are to show that (3.4) does not contain four 3-divisible

sets. Suppose to the contrary. Then each triplet of A2-configurations in (3.4) is

3-divisible. In particular, we have

3∑
j=2

(λ′jF
′
j + λ′′jF

′′
j ) + λ4F4 + λ′4F

′
4 = 3L, where {λ′j , λ′′j } = {λ4, λ′4} = {1,−1}.

Since G.(λ′jF
′
j + λ′′jF

′′
j ) = 0 for j = 2, 3, we obtain G.(λ4F4 + λ′4F

′
4) ∈ 3Z.

If G meets only the curve F4 in the fiber (F4+F ′4+F ′′4 ) (resp. 2(F4+F ′4+F ′′4 )

iff we deal with a half-pencil) we have G.F4 ∈ {2, 1} and G.F ′4 = 0, so λ4 ∈ 3Z, a

contradiction.

Otherwise, G meets the fiber (F4 + F ′4 + F ′′4 ) in two different components,

i.e., G.F ′4 = G.F ′′4 = 1 and G.F4 = 0, which yields λ′4 ∈ 3Z. Again we arrive at a

contradiction, which implies by symmetry and Lemma 2.2 that

(3.6) F ′1, F
′′
1 , F

′
2, F

′′
2 , F

′
3, F

′′
3 form the unique 3-divisible set in (3.4).

(b): Since the pull-back of a (non-trivial) 3-divisible divisor under π is (non-

trivially) 3-divisible, (3.6) implies that the six A2-configurations

(3.7) F ′+1 , F ′′+1 , F ′−1 , F ′′−1 , . . . , F ′+3 , F ′′+3 , F ′−3 , F ′′−3

are 3-divisible on the K3-cover Y . To show that they form the unique 3-divisible

configuration in (3.5), assume that the A2-configuration F+
4 , F ′+4 is contained in

another non-trivial 3-divisible set on Y .
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Suppose that neither the curve F−4 nor the curve F ′−4 is contained in the

3-divisible divisor in question. Since π is unramified, push-forward yields a non-

trivial 3-divisible set of three A2-configurations in (3.4) that contains F4, F ′4. The

latter is impossible by (3.6).

Thus we can assume that the curves F−4 , F ′−4 , F+
4 , F ′+4 are contained in the

support of the 3-divisible divisor in question. From the properties of the push-

forward π∗ and (3.6), we infer the existence of λ′±j , λ′′±j ∈ {0, 1,−1}, such that

one has

3∑
j=1

(
λ′+j F

′+
j + λ′−j F

′−
j + λ′′+j F ′′+j + λ′′−j F ′′−j

)
+ (F ′−4 − F

−
4 )− (F ′+4 − F

+
4 ) = 3L̃

for a divisor L̃ on Y . By Lemma 3.6, each triplet of A2-configurations in (3.3) is

3-divisible, so we can assume that for j = 2, 3, 4 there exist µ′j , µ
′′
j , such that

4∑
j=2

(µ′j(F
′+
j + F ′−j ) + µ′′j (F ′′+j + F ′′−j )) = 3L̂ and {µ′j , µ′′j } = {1,−1}

for some L̂ ∈ Pic(Y ). After exchanging components, if necessary, we can assume

that (µ′4, µ
′′
4) = (1,−1). By adding the previous two equalities we arrive at a

3-divisible divisor

D + (2F ′+4 + F ′′+4 ) + 3(F ′−4 + F+
4 )− (F−4 + F ′−4 + F ′′−4 )− 2(F+

4 + F ′+4 + F ′′+4 )

with supp(D) contained in the union of the curves F ′±j , F ′′±j for j = 1, 2, 3. Since

both triangles (F−4 + F ′−4 + F ′′−4 ), (F+
4 + F ′+4 + F ′′+4 ) are fibers of the elliptic

fibration ϕ̃, we derive a 3-divisible divisor

(3.8) D − (F ′+4 − F
′′+
4 )

with supp(D) satisfying the condition given above. We continue to establish a

contradiction.

Recall (see, e.g., [17, Sect. 5]) that each non-trivial 3-divisible set on Y cor-

responds to a line F3v, where v is a non-zero vector in the kernel of the F3-linear

map

F8
3 3 (λ+1 , . . . , λ

−
4 ) 7→

4∑
1

λ+j (F ′+j − F
′′+
j ) +

4∑
1

λ−j (F ′−j − F
′′−
j ) ∈ Pic(Y )⊗ F3.

Thus the kernel in question is a ternary [8, d, {6}]-code (i.e., a d-dimensional sub-

space of F8
3, such that all its non-zero vectors have exactly six non-zero coor-

dinates). By the Griesmer bound (see, e.g., [25, Thm. (5.2.6)]), we have d ≤
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2 and F ′±j , F ′′±j , where j = 1, . . . , 4, contain at most four sets of 3-divisible

A2-configurations. On the other hand we obtain four non-trivial ψ∗-invariant 3-

divisible sets by pulling-back the 3-divisible sets from S (see Lemma 3.6). Observe

that the 3-divisible set given by (3.8) is not ψ∗-invariant, a contradiction.

Remark 3.8. Since any elliptic fibration on an Enriques surface has exactly two

multiple fibers, we can always ensure by exchanging fibers that the assumption in

Lemma 3.7(b) holds.

§3.3. Second family of Enriques surfaces

In the following paragraphs, we work out Enriques surfaces with elliptic fibrations

of the types (2.13). To this end, we consider another two extremal rational elliptic

surfaces, given in Weierstrass form

X4,3,1 : y2 + xy + ty = x3,

X4,4 : y2 + ty = x3.

Each has a fiber of Kodaira type IV ∗ at ∞ and a 3-torsion section at (0, 0). The

fiber type at t = 0 is IV for X4,4 and I3 for X4,3,1 (which thus has one further

singular fiber, of type I1). The surface X4,4 gives the special case in (2.13) omitted

in [10]. We point out that both elliptic surfaces live inside an isotrivial family

(3.9) X : y2 + cxy + ty = x3, c ∈ C

whose fibers Xc for c 6= 0 are all isomorphic to X4,3,1 after rescaling while X0 =

X4,4. Implicitly, this connection will feature again shortly.

As in Section 3.1, we shall apply logarithmic transformations of order 2 to

X4,3,1 and X4,4. On X4,3,1, we can do so for any two distinct points P1, P2 ∈
P1 \{∞}; again, the logarithmic transformation depends on the choice of 2-torsion

points in the fibers, but as in the proof of Lemma 3.1, we obtain an irreducible

two-dimensional family F of Enriques surfaces, parametrized by a 9-fold covering

of the configuration space Sym2(P1 \ {∞}) \ diagonal.

The situation is quite different for the logarithmic transformations of X4,4:

since X4,4 has only two singular fibers (and the above Weierstrass form has only

three terms), we can still rescale the base curve P1 without changing the surface

at all! Hence the resulting Enriques surfaces do only come in a one-dimensional

family.

Lemma 3.9. The Enriques surfaces arising from X4,4 via logarithmic transfor-

mation lie in the boundary of F .
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We did not attempt to prove Lemma 3.9 directly from the above data (al-

though the isotrivial family (3.9) certainly points in this direction). Instead, we

pursue an alternative algebraic approach towards the Enriques surfaces with fibers

of type IV ∗ and I3 or IV in Section 5. Incidentally, this will provide an easy proof

of Lemma 3.9; see Remark 5.7.

Definition 3.10. We denote the resulting irreducible family of Enriques surfaces

by F4,3,1 (comprising surfaces arising from X4,3,1 as well as from X4,4).

On an Enriques surface S′ ∈ F4,3,1, we put

3F0 +

3∑
j=1

(F ′j + 2F ′′j )

(resp. F4 + F ′4 + F ′′4 ) to denote the IV ∗-fiber (resp. the I3 or IV -fibers) of the

induced elliptic fibration ϕ. It is immediate that, up to the choice of the curve F4,

the rational curves

F ′1, F
′′
1 , . . . , F

′
4, F

′′
4

form the only set of four disjoint A2-configurations contained in the singular fibers

of the fibration ϕ.

Let π : Y ′ → S′ be the K3-cover and let ϕ̃ be the fibration induced by ϕ on

Y ′. The number of 3-divisible sets on S′ (resp. Y ′) supported on the components

of fibers of ϕ (resp. ϕ̃) can be found using [10, Lem. 3.5(1)].

Lemma 3.11. Let S′ ∈ F4,3,1. Then the four A2-configurations

F ′1, F
′′
1 , . . . , F

′
4, F

′′
4

contain exactly one 3-divisible set, whereas the eight A2-configurations

F ′1
+
, F ′′+1 , . . . , F ′−4 , F ′′−4

on the K3-cover contain four 3-divisible sets.

Proof. By [10, Lem. 3.5(1)] the set F ′1, F
′′
1 , . . . , F

′
3, F

′′
3 is not 3-divisible, whereas

the six A2-configurations F ′+1 , F ′′+1 , F ′−1 , F ′′−1 , . . . , F ′−3 , F ′′−3 form a 3-divisible set

on Y ′ (pushing down to a trivially 3-divisible divisor on S′). The former assertion

rules out the second possibility of Corollary 2.3.

On the other hand, the curves F ′1, F
′′
1 , . . . , F

′
4, F

′′
4 contain at least one 3-

divisible set by Corollary 2.3. As the pullback under π we obtain another 3-divisible

set on Y ′, so the K3-cover contains exactly four 3-divisible sets (see the proof of

Lemma 3.7).
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§3.4. Proof of Theorem 1.1

Let S be an Enriques surface admitting four disjoint A2-configurations. Then S

admits an elliptic fibration

π : S → P1

whose singular fibers are classified in Lemma 2.4. The Jacobian of π is either

X3,3,3,3, X4,3,1 or X4,4 (as exploited in the proof of Lemma 2.4). In particular, S

arises from Jac(π) by a logarithmic transformation of degree 2. Thus S ∈ F3,3,3,3∪
F4,3,1 as shown in Sections 3.1, 3.3.

§3.5. Explicit examples supporting each case

Example 3.12. Let S′ be the Enriques surface with finite automorphism group

S4 × Z/2Z considered in [12, Exa. V] arising from the Kummer surface of E2 for

the elliptic curve with zero j-invariant. By [12, Table 2, p. 132] we have

S′ ∈ F4,3,1 \ F3,3,3,3.

In fact, by [12, Rem. (4.29)] no surface in F3,3,3,3 has finite automorphism

group, so we can find no example of a surface from F3,3,3,3 in [12]. Therefore, we

will use the construction of Enriques involution of base change type (as reviewed

in Section 2.2) to obtain an explicit example of such an Enriques surface.

Example 3.13. Let Y denote the singular K3 surface with transcendental lattice

(3.10) T (Y ) =

(
6 3

3 12

)
.

In what follows, we will sketch in a rather conceptual way that Y admits an

Enriques involution of base change type whose quotient surface is in F3,3,3,3.

We start from elliptic curves E parametrized by the j-invariant. To E2, we

can associate the Kummer surface Kum(E2), but also by way of what is called a

Shioda–Inose structure nowadays (cf. [23]) a K3 surface which recovers the tran-

scendental lattice of E2. We thus obtain a one-dimensional family of K3 surfaces

Y ′ with generic transcendental lattice

T (Y ′) = U + 〈2〉.

By Nishiyama’s method ([15]) Y ′ comes with an elliptic fibration with a fiber of

Kodaira type I18 and generically MW(Y ′) ∼= Z/3Z. Quotienting out by translation

by the 3-torsion sections, we obtain another family of K3 surfaces Y, generically

with one fiber of type I6, six fibers of type I3 and

MW(Y) ∼= (Z/3Z)2.



454 S. Rams and M. Schütt

It follows that Y arises from X3,3,3,3 by the one-dimensional family of base changes

(2.7) ramified at a given singular fiber, say λ =∞. That is, there is an involution

ı y Y such that Y/ı = X3,3,3,3. For discriminant reasons, the transcendental

lattice is scaled by a factor of 3,

(3.11) T (Y) ∼= T (Y ′)(3),

where this equality not only holds generically, but also on the level of single mem-

bers of the families (cf. [18, Lem. 8]).

We continue by specializing to a member Y ∈ Y in order to endow Y with a

section which combines with ı to an Enriques involution of base change type. To

this end, choose E to be the elliptic curve with CM by Z[ω] for ω = (1 +
√
−7)/2

(j-invariant −153). By [24],

T (E2) ∼=

(
2 1

1 4

)
which exactly gives rise to (3.10) by (3.11). Inside the family Y, this can only

be accounted for by a section Q of height 7/6. It is induced from a section Q′ of

height 7/12 on the quadratic twist X ′3,3,3,3 of X3,3,3,3. Here X ′3,3,3,3 has singular

fibers of types I∗3 , 3 times I3 and I∗0 ; the given height can be attained only if Q′

is perpendicular to O′ and intersects non-trivially I∗3 (in a far simple component),

one I3 and I∗0 . In consequence, the pull-back Q on Y is disjoint from O and anti-

invariant for ı. Hence

 := (translation by Q) ◦ ı

defines an Enriques involution on Y such that Y/ ∈ F3,3,3,3 as claimed. All of

this can be made explicit without much difficulty. For instance, spelling out the

conditions for Q′ on X ′3,3,3,3 to take the above shape, one finds that the second

ramification point of the quadratic base change (2.7) is located at λ = 5/4. We

leave the details to the reader.

§3.6. Gorenstein Q-homology projective planes

In [7], a classification of Gorenstein Q-homology projective planes is completed in

terms of their singularity types. A key case originates from Enriques surfaces after

contracting a set of nine (−2)-curves. Among the 31 singularity types which are

a priori possible, only two are so far not supported by an example. Here we note

that the Enriques surface S = Y/ from Example 3.13 remedies this for one type.

(See also [19] for subsequent results in the same spirit.)

Proposition 3.14. The Enriques surface S contains an A3 + 3A2-configuration

of smooth rational curves.
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Proof. By construction, S is equipped with an elliptic fibration with four singular

fibers of Kodaira type I3, the one at ∞ actually with multiplicity 2. Consider

the bisection R whose pre-image decomposes into O and Q on the covering K3

surface. Since O and Q are disjoint, R is a smooth rational curve, and R2 = −2.

By the setup in Example 3.13, R meets all but one singular fiber in a single fiber

component. Therefore there are three A2-configurations supported on the fibers

that are perpendicular to R. The remaining I3 fiber connects with R for a square

with one diagonal added. Omitting one fiber component meeting R, we obtain an

A3-configuration.

§4. The fundamental groups of open Enriques surfaces

Let S be an Enriques surface that contains four disjoint A2-configurations F ′1,

F ′′1 , . . . , F
′
4, F ′′4 and let π : Y → S be the K3-cover. As in the preceding sections,

the (−2)-curves in π−1(F ′j) are denoted by F ′+j , F ′−j . Moreover, we put

A := {F ′1, F ′′1 , . . . , F ′4, F ′′4 } and A± := {F ′1
+
, F ′′+1 , F ′1

−
, F ′′−1 , . . . , F ′−4 , F ′′−4 }.

Given the pair (S,A), we follow [10] and define the fundamental group of the open

Enriques surface S◦ = S \ A:

π1(S,A) := π1(S◦).

To deal with Enriques surfaces with four A2-configurations in more generality

we introduce the following notation:

Notation 4.1. We say that the pair (S,A) belongs to F4,3,1 (resp. F3,3,3,3) iff

there exists a composition of Picard–Lefschetz reflections (2.11) and an elliptic

pencil |2H| on S such that the elliptic fibration given by |2H| has singular fibers

of the types (2.13) (resp. (2.12)) and, up to multiples of the half-pencil H, each

class pS(F ′j), pS(F ′′j ), where j = 1, . . . , 4, is an irreducible component of a singular

fiber of the elliptic fibration |2H|. To simplify our notation we write

(S,A) ∈ F4,3,1 (resp. (S,A) ∈ F3,3,3,3)

when the above condition is satisfied. Then pS(A) stands for the set of the four

A2-configurations defined, up to multiples of H, by pS(F ′1), . . . , pS(F ′′4 ) for a fixed

composition of reflections pS .

Recall that pS induces the map pY (see (2.20)). In the sequel we maintain the

notation (2.21) and use pY (A±) to denote the set of the eight A2-configurations

on the K3-cover (again supported on the fibers of an elliptic fibration).
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As we explained around Lemma 2.4, the authors of [10] claim that after ap-

plying an appropriate composition of Picard–Lefschetz reflections pS , the four

A2-configurations on the Enriques surface S become components of singular fibers

of the fibration of type (2.13). The latter implies the erroneous claim that A never

contains four 3-divisible sets ([10, Lem. 3.5(2)]) and the fundamental group π1(S0)

of the open Enriques surface is either Z/6Z or S3 × Z/3Z (see [10, Lem. 3.6(3)]).

Here we correct these claims.

Lemma 4.2. Let S be an Enriques surface with four A2-configurations A. Then

(4.1) π1(S0) ∈ {S3 × Z/3Z,Z/6Z, (Z/3Z)⊕2 × Z/2Z}.

Moreover, one has the following characterizations:

(a) Both A and A± contain exactly one 3-divisible set iff π1(S0) = Z/6Z.

(b) The A2-configuration A contains exactly one 3-divisible set and A± contains

four 3-divisible sets iff

π1(S0) = S3 × Z/3Z.

(c) The A2-configuration A contains four 3-divisible sets iff π1(S0) = (Z/3Z)⊕2×
Z/2Z.

Proof. The proof follows almost verbatim the first part of the proof of [10,

Lem. 3.6(3)], but there is one addition to be made: Lemma 3.6 shows that one

cannot use [10, Lem. 3.5(2)] to rule out the existence of an Enriques surface S

with π1(S0) = (Z/3Z)⊕2 × Z/2Z.

With this preparation we can prove the following precise version of Theo-

rem 1.2:

Theorem 4.3. Let S be an Enriques surface with a set of four mutually disjoint

A2-configurations A:

(a) If (S,A) ∈ F4,3,1, then π1(S,A) = S3 × Z/3Z.

(b) If S ∈ F3,3,3,3, then there exist A′ and A′′ such that

π1(S,A′) = (Z/3Z)⊕2 × Z/2Z and π1(S,A′′) = Z/6Z.

In particular, all groups given in Lemma 4.2 are realized by Enriques surfaces.

Proof. We start with (b) which is much easier to prove. Indeed, the existence

of A′ (resp. A′′) results immediately from Lemma 3.6 and Lemma 4.2(c) (resp.

Lemma 3.7, Remark 3.8 and Lemma 4.2(a)).
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In order to prove part (a) we assume that (S,A) ∈ F4,3,1, i.e., that there exist

the fibration |2H| and the map pS . By Lemma 4.2 it suffices to show that A±

contains four 3-divisible sets, but A contains only one 3-divisible set.

We label the components of the type-IV ∗ fiber of the fibration |2H| as in

(2.17). Moreover, we put Θ7, . . . ,Θ9 to denote the components of the I3 fiber. We

can assume that (2.22), (2.23) hold. Then, the divisor

(4.2) Θ+
1 −Θ+

2 + Θ+
3 −Θ+

4 + Θ+
5 −Θ+

6 −Θ−1 + Θ−2 −Θ−3 + Θ−4 −Θ−5 + Θ−6

is 3-divisible (see the proof of [10, Lem. 3.5.1]). From (2.23) we infer that A±

contains a 3-divisible set that cannot be obtained as the image of a 3-divisible

set in A under the pull-back π∗. On the other hand, the eight A2-configurations

contain the pull-back π∗ of a 3-divisible set contained in A. The latter exists by

Corollary 2.3. This proves the first claim.

The second claim is a little more subtle due to the multiples of the half-pencil

H involved. Indeed, the four A2-configurations have to contain a 3-divisible set

by Lemma 3.11, but the three A2-configurations Θ1, . . . ,Θ6 supported on the IV ∗

fiber are themselves not 3-divisible because the divisor

(4.3) D0 = Θ1 −Θ2 + Θ3 −Θ4 + Θ5 −Θ6 +H

visibly is (in the 3-divisible divisor (4.2) on the covering K3, the contributions

from H even out). That is, without multiples of the half-pencil, the four A2-

configurations contain only one 3-divisible set (by Lemma 3.11) while modulo the

half-pencil, there are four 3-divisible sets. Therefore we will have to conduct a

careful analysis of the precise multiples of H involved.

After rearranging the (−2)-curves, if necessary, we can assume that the divisor

(4.4) D1 = Θ1 −Θ2 −Θ3 + Θ4 + Θ7 −Θ8

is 3-divisible. By symmetry, the same applies to a compatible pair of divisors

D2 = Θ3 −Θ4 −Θ5 + Θ6 +

{
Θ8 −Θ9, case (i),

Θ9 −Θ7, case (ii),

D3 = Θ5 −Θ6 −Θ1 + Θ2 +

{
Θ9 −Θ7, case (i),

Θ8 −Θ9, case (ii).

Which case actually persists depends on whether the I3 fiber supported on Θ7,

Θ8, Θ9 is multiple or not, i.e., whether

Θ7 + Θ8 + Θ9 = H or 2H.
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One easily verifies that if the fiber is multiple, case (i) persists while the unramified

fiber type leads to case (ii). It remains to check whether having four 3-divisible

sets is compatible with fixed H-multiplicities m1, . . . ,m4 attached to the four A2-

configurations. To this end, we may assume that

p(F ′i − F ′′i ) = Θ2i−1 −Θ2i +miH, i = 1, . . . , 4.

Since we care only about 3-divisibility, all equations in the remainder of the proof

of Theorem 4.3 should be understood in Z/3Z. Then (4.3) leads to

m1 +m2 +m3 = 1

while (4.4) gives

m1 −m2 +m4 = 0.

The two cases for D2, D3 lead to the same equations although (or because) they

depend on the multiplicity of the I3 fiber:

m2 −m3 +m4 = 1,

−m1 +m3 +m4 = −1.

Thus we obtain a system of four linear equations over Z/3Z. One immediately

verifies that the system has no solution. Hence, regardless of the multiples of

H involved, the four A2-configurations cannot support four 3-divisible sets. By

Lemma 4.2, this concludes the proof of Theorem 4.3.

Finally, we use the Jacobian fibration to verify that surfaces in F4,3,1∩F3,3,3,3

have some special properties; notably,. the families F4,3,1, F3,3,3,3 overlap only on

proper subfamilies:

Proposition 4.4. Let S be an Enriques surface and let Y be the K3-cover of S.

If S ∈ F4,3,1 ∩ F3,3,3,3, then ρ(Y ) ≥ 19.

Proof. We compare the discriminants of the K3-covers. For S ∈ F3,3,3,3 with K3-

cover Y of Picard number ρ(Y ) = 18, Lemma 3.2 gives d(NS(Y )) = −324.

A completely analogous argument applies to S′ ∈ F4,3,1 with K3-cover Y ′ such

that ρ(Y ′) = 18. We find that d(NS(Y ′)) = −36. This implies that S′ 6∈ F3,3,3,3

and vice versa for S.

In the next section, we shall take this result as a starting point to take a closer

look at the moduli of our families F3,3,3,3 and F4,3,1.
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§5. Moduli

§5.1. Algebro-geometric construction

We start by giving an algebro-geometric description of the family F4,3,1. As op-

posed to the analytic construction of logarithmic transformations, it will be based

on Enriques involutions of base change type as outlined in Section 2.2. Our start-

ing point is another extremal rational elliptic surface X6,3,2,1, this time with

MW(X6,3,2,1) ∼= Z/6Z. As a cubic pencil, it can be given by

(5.1) X6,3,2,1 : (x+ y)(y + z)(z + x) + txyz = 0.

More precisely, X6,3,2,1 is the relatively minimal resolution of the above cubic

pencil model in P2 × P1, obtained by blowing up the three double base points at

[1, 0, 0], [0, 1, 0], [0, 0, 1]. The blowup results in a fiber of Kodaira type I6 at∞; the

other singular fibers are I3 at t = 0, I2 at t = 1 and I1 at t = −8. The other three

base points of the cubic pencil are actually points of inflection. Fixing one of them

as zero O for the group law, say [1,−1, 0], we find that P = [0, 0, 1] has order 2

inside MW(X6,3,2,1). Thus it lends itself to (the classical case of) the construction

of an Enriques involution of base change type (as reviewed in Section 2.2). To this

end, consider a quadratic base change (2.7) that does not ramify at the I3 and

I1 fibers. Denote the pull-back surface by Y6,3,2,1; this is an elliptic K3 surface,

generically with all singular fibers of X6,3,2,1 duplicated. The deck transformation

ı enables us to define a fixed-point-free involution ψ on Y6,3,2,1 by

ψ = (fiberwise translation by P ) ◦ ı.

The quotient surface will be an Enriques surface S = S6,3,2,1 with elliptic fibration

π0 : S → P1

with the same singular fibers as X6,3,2,1 (generically not multiple); here O and P

map to a smooth rational bisection R.

Lemma 5.1. The Enriques surface S contains four perpendicular A2-configura-

tions.

Proof. Consider the singular fibers of S together with the bisection R. Figure 2

depicts how they intersect and indicates the four A2-configurations.

By Theorem 1.1, we conclude that S ∈ F3,3,3,3 or S ∈ F4,3,1. For discriminant

reasons (cf. the proof of Proposition 4.4), the second alternative should hold. Here

we will give a purely geometric argument:
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Figure 2. Four disjoint A2-configurations on S6,3,2,1.

Lemma 5.2. S ∈ F4,3,1.

Proof. It suffices to identify a divisor of Kodaira type IV ∗ on S with orthogonal

A2. Then its linear system will induce an elliptic fibration

π : S → P1

with singular fibers of types IV ∗ and I3 or IV ; thus S ∈ F4,3,1. This is easily

achieved: simply connect the three A2’s on the left in Figure 2 through one of the

remaining components of the original I6 fiber.

Remark 5.3. A bisection for the fibration π from the proof of Lemma 5.2 can

be given without difficulty (although Figure 2 displays only fiber components and

4-sections): take a half-pencil B of the fibration π0. Out of the curves depicted in

Figure 2, B meets the bisection R with only multiplicity 1. On the fibration π, B

meets the IV ∗ fiber only in the double component R; since additive fibers cannot

be multiple, B thus defines a bisection for π. The fiber of type I3 or IV is met by

B only in the component not displayed in Figure 2.

§5.2. K3-cover for F4,3,1

Overall, there are six configurations of how a bisection may intersect the two

reducible fibers of a given Enriques surface S ∈ F4,3,1. For three of them, including

the one sketched in Remark 5.3, we can conversely derive the configuration of

rational curves on S6,3,2,1 originating from the Enriques involution of base change

type. Here we detail one example:

Example 5.4. For the configuration from Remark 5.3 comprising a bisection B

(of arithmetic genus 0) meeting the fibers of type IV ∗ and I3/IV on S, one finds

that B automatically is a half-pencil inducing an elliptic fibration π|2B|, since

it is met by some (nodal) curve (a double component Θ of the IV ∗ fiber) with

multiplicity 1 (so Θ gives a bisection for π|2B|). This fibration has singular fibers
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accounting for the root lattices A5+A1 and A2 obtained from the extended Dynkin

diagrams Ẽ6, Ã2 by omitting the curves meeting B. With the nodal bisection Θ,

we necessarily end up on a quotient of X6,3,2,1 by an Enriques involution of base

change type. Indeed, otherwise, there would be an additive fiber of type IV ∗, III∗

or II∗; but here it is easy to see that the root of the A5-diagram met by Θ

would correspond to a triple fiber component which, of course, cannot be met by

a bisection.

For the other three possible configurations of bisection and singular fibers, the

approach from Example 5.4 does not seem to work. However, the next proposition

and its corollary show in a lattice-theoretic, hence non-explicit, way that also these

Enriques surfaces are covered by Y6,3,2,1. We expect that they arise from Y6,3,2,1
by another kind of Enriques involution.

Proposition 5.5. Let S ∈ F4,3,1 such that the K3 cover Y has ρ(Y ) = 18. Then

NS(Y ) ∼= U(2) +A2 + E6 + E8.

Proof. The elliptic fibration on Y induced from S comes automatically with a

bisection R. Since ρ(Y ) = 18, we can assume that R2 = 0. The key step in proving

the proposition is the observation that we can modify R to a divisor D by adding

fiber components as correction terms such that D is perpendicular to two A2- and

two E6-configurations on Y (in the fibers of π). For fibers of type I3, IV , this has

been exhibited in the proof of Lemma 3.6. For IV ∗ fibers, it is a similar exercise.

For instance, if R meets a double component, then simply subtract from R the

adjacent simple component Θ′ (which is thus met by R−Θ′ with multiplicity 2).

Crucially, we now use that the singular fibers come in pairs which are met

by R in exactly the same way (there cannot be non-reduced singular fibers since

ρ(Y ) = 18). In consequence, the correction terms for D also come in pairs, so

D2 ≡ R2 ≡ 0 mod 4.

Hence D and the general fiber F span the lattice U(2), and we obtain a finite

index sublattice

U(2) +A2
2 + E2

6 ⊂ NS(Y ).

To compute NS(Y ), it remains to take the 3-divisible class in A2
2+E2

6 induced from

the Enriques surface into account. From the lattice viewpoint, this behaves exactly

like the 3-torsion section on Jac(Y ); we obtain an integral index 3 overlattice M

of A2
2 + E2

6 by adjoining a vector of square −4 obtained by adding up minimal

vectors twice each of A∨2 and E∨6 (of square −2/3, resp. −4/3). Finally we verify

that M and A2 + E6 have isomorphic discriminant forms. By [14, Cor. 1.13.3], it

follows that U(2) +M and U(2) +A2 + E6 + E8 are isometric.
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Corollary 5.6. A general Enriques surface S ∈ F4,3,1 is covered by a K3 surface

Y6,3,2,1.

Proof. The Néron–Severi lattice of the covering K3 surface admits a unique em-

bedding into the K3 lattice U3 +E2
8 up to isometries by [14, Thm. 1.14.4]. Hence

the K3 surfaces with this lattice polarization form an irreducible two-dimensional

family, and the corollary ends up being a consequence of Lemma 5.2 in the re-

verse direction (since the quadratic base changes of X6,3,2,1 exactly form a two-

dimensional family, the parameters being the non-ordered pairs comprising the

two ramification points).

Remark 5.7. We can use the above description to give a proof of Lemma 3.9. For

this purpose, we check within our family where the singular fiber types degenerate

from (I3 + I1) to IV . For this, we normalize the base change (2.7) to take the

shape

t 7→ 1− γ (t− 1)(t− λ)

t
,

so that Y6,3,2,1 has fibers of type I6 at 0, ∞ and I2 at 1, λ. Then we extract the

elliptic fibration with two fibers of types IV ∗ and two perpendicular A2 inducing

generically a quadratic base change of X4,3,1. This turns out to be isotrivial (with

zero j-invariant and IV fibers instead of I3 and I1) exactly for λ = 1− 3/γ.

§5.3. Comparison with Y6,3,2,1

As a sanity check, we will compute NS(Y6,3,2,1) at a very general moduli point

directly. Incidentally, this will allow us to draw interesting consequences; see The-

orem 5.8.

Consider a K3 surface Y6,3,2,1 with ρ(Y6,3,2,1) = 18. By [20, (22)], NS(Y6,3,2,1)

has discriminant−36. In order to compute NS(Y6,3,2,1) directly, we will identify two

perpendicular divisors D1, D2 of Kodaira type II∗ among the plentitude of (−2)-

curves visible in the elliptic fibration π0 as fiber components and torsion sections.

To define D1, connect the zero section O in three directions: by a component of

either I2 fiber, two components of an I3 and a chain Θ0, . . . ,Θ4 of five components

of an I6. Similarly, the divisor D2 comprises the 6-torsion section disjoint from D1

(i.e., meeting the remaining fiber component Θ5 of the chosen I6 fiber) and fiber

components of the other I2, I3 and I6 fibers.

This approach has several advantages. First it reveals that Y6,3,2,1 admits an

elliptic fibration π|D1| with two fibers of type II∗. This comes with multisections

of degree 6, given for instance by Θ5. In consequence, the Jacobian has

NS(Jac(Y6,3,2,1, π|D1|))
∼= U + E2

8 .
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With this Néron–Severi lattice, Jac(Y6,3,2,1, π|D1|) is sandwiched by the Kummer

surface of two elliptic curves by [22]. All of this occurs in the framework of Shioda–

Inose structures and shows the following result:

Theorem 5.8. There are elliptic curves E, E′ such that as transcendental Q-

Hodge structures,

T (Y6,3,2,1) ∼= T (E × E′).

Remark 5.9. Theorem 5.8 provides a conceptual way to exhibit explicit K3 sur-

faces Y6,3,2,1 with ρ(Y6,3,2,1) = 18, parallelling [5, Sect. 4.7]. Using the involution

of base change type from Section 5.1, we obtain explicit, very general members of

the family F4,3,1, as opposed to the extraordinary Example 3.12.

As a second application, we return to the computation of NS(Y6,3,2,1). Con-

sider the orthogonal projection inside NS(Y6,3,2,1) with respect to the sublattice E2
8

specified above. The multisection Θ5 is taken to a divisor D of square D′2 = −60

orthogonal to E2
8 . It follows that D and a fiber of π|D1| generate the lattice U(6).

Thus we obtain

(5.2) NS(Y6,3,2,1) ∼= U(6) + E2
8 .

(Here, a priori we have checked only the inclusion ’⊇’, but equality holds since

the discriminants match.) One easily checks that the discriminant forms of the

Néron–Severi lattices in Proposition 5.5 and in (5.2) agree. By [14, Cor. 1.13.3],

this suffices to prove that the lattices are isometric as required.

Proposition 5.10. If Y6,3,2,1 has ρ(Y6,3,2,1) = 18, then T (Y6,3,2,1) ∼= U + U(6).

Proof. This follows directly from (5.2) using [14, Prop. 1.6.1 & Cor. 1.13.3].

§5.4. K3-cover for F3,3,3,3

We can carry out similar calculations for the K3 cover Y ′ of an Enriques surface

S′ ∈ F3,3,3,3. Here we only sketch the results.

Generically, Y ′ comes equipped with an elliptic fibration with eight fibers of

type I3 and an irreducible bisection R′ such that R′2 = 0. Thus the argumentation

from the proof of Lemma 3.6 applies to modify R′ to a divisor D perpendicular to

eight disjoint A2-configurations (supported on the fibers). Generically, we obtain

the finite index sublattice

U(2) +A8
2 ↪→ NS(Y ′),

which leads to the following analogue of Proposition 5.5.
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Proposition 5.11. Let S′ ∈ F3,3,3,3 such that the K3 cover Y ′ has ρ(Y ′) = 18.

Then

NS(Y ′) ∼= U(2) +A2
2 + E2

6 .

As before, it follows that the K3 covers of all Enriques surfaces in F3,3,3,3

form an irreducible two-dimensional family. Using the discriminant form, we can

compute the transcendental lattice of a very general K3 cover:

Proposition 5.12. Let S′ ∈ F3,3,3,3 be an Enriques surface such that its K3-cover

Y ′ has ρ(Y ′) = 18. Then

T (Y ′) ∼= U(3) + U(6).

Proof. The discriminant group ANS of NS(Y ′) has 3-length 4 by Proposition 5.11.

Since this length equals the rank of T (Y ′), we deduce that T (Y ′) is 3-divisible as

an integral even lattice, i.e.,

T (Y ′) = M(3) for some even lattice M .

By Lemma 3.2, M has determinant 4. From Proposition 5.11, we infer the equality

of discriminant forms

qM = −qU(2) = qU(2).

Hence M ∼= U + U(2) by [14, Prop. 1.6.1 & Cor. 1.13.3].

§5.5. Overlap of F4,3,1 and F3,3,3,3

Recall from Proposition 4.4 that the two families of Enriques surfaces F4,3,1 and

F3,3,3,3 intersect only on one-dimensional subfamilies. Here we shall give a lattice-

theoretic characterization of two infinite series of subfamilies and work out the

first case explicitly.

In essence, computing the one-dimensional subfamilies of overlap amounts to

calculating even lattices T of signature (2, 1) admitting primitive embeddings into

both generic transcendental lattices from Propositions 5.10 and 5.12. Then one can

enhance the Néron–Severi lattices by a primitive vector perpendicular to T using

the gluing data encoded in the discriminant form (see, e.g., [5, Sect. 3]). There are

two obvious kinds of candidates for T with N ∈ Z>0:

U(3) + 〈12N〉 ↪→

{
U(3) + U(2) ∼= U + U(6),

U(3) + U(6),
(5.3)

U(6) + 〈6N〉 ↪→

{
U(6) + U,

U(6) + U(3).
(5.4)
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Remark 5.13. We point out that (5.3) includes families where the Jacobians of

the K3 covers Y3,3,3,3 and Y4,3,1 overlap. In fact, this happens with transcendental

lattices U(3) + 〈6M〉, and one can show as in [6, Prop. 4.2] that a K3 surface with

this transcendental lattice admits an Enriques involution if and only if M is even.

Moreover, the involution turns out to be of base change type, so we can, at least

in principle, give a very explicit description of these surfaces.

§5.6. Explicit component of F3,3,3,3 ∩ F4,3,1

We conclude this paper by working out the first case of (5.3) explicitly. That is,

we aim for K3 surfaces with transcendental lattice

(5.5) T = U(3) + 〈12〉.

By Remark 5.13, this could be done purely on the level of Jacobians of Y3,3,3,3
or Y4,3,1, but here we shall rather continue to work with Y6,3,2,1. The lattice en-

hancement raises the rank of the Néron–Severi lattice by 1 while the discriminant

changes from −36 to 108. By the theory of Mordell–Weil lattices [21], this can be

achieved only by adding a section Q of height 3. Up to adding a torsion section, we

may assume Q to be induced by the quadratic twist X ′ of X6,3,2,1 corresponding

to the quadratic base change (2.7); i.e., Q comes from a section Q′ of height 3/2

on X ′. Note that X ′ inherits the 2-torsion section from X6,3,2,1. At the same time,

this will ease the explicit computations and limit the possible configurations for

Q′. Indeed, using the height formula from [21] it is easy to see that there are only

two possible cases for Q′ up to adding the 2-torsion section:

• either Q′ meets exactly one I∗0 fiber (at a component not met by the 2-torsion

section) and the I6 fiber (at the component met by the 2-torsion section)

non-trivially,

• or it intersects non-trivially exactly one I∗0 fiber (at a component not met

by the 2-torsion section), the I6 fiber (at a component adjacent to the zero

component) and the I3 fiber.

We can compute the Néron–Severi lattice and the transcendental lattice of the

resulting covering K3 surfaces by the same means as in Section 5.3: simply compute

the rank 3 orthogonal complement of E2
8 inside NS. We obtain T = U + 〈108〉 for

the second case and the desired transcendental lattice from (5.5) for the first.

We continue to work out the first case in more detail. Let us assume that

the quadratic base change (2.7) ramifies at a, b ∈ P1. For ease of computation, we

shall use an extended Weierstrass form of X ′ which locates the 2-torsion section
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at (0, 0):

X ′ : y2 = x
(
x2 + (t− a)(t− b)(t2/4 + t− 2)x+ (t− a)2(t− b)2(1− t)

)
.

Then we can implement the section Q′ to have the x-coordinate c(t− a). Solving

for this to give a square upon substituting into the extended Weierstrass form

leads to

a = −1

3

(b+ 2)2

b− 4
, c = (b+ 8)(b− 1)2/27.

Thus we obtain explicitly a one-dimensional family of K3 surfaces with transcen-

dental lattice (5.5). Unless the base change degenerates or the ramification points

hit the fibers of type I1 or I3, i.e., for b 6∈ {−8,−2, 0, 1, 10}, the resulting K3

surface Y possesses the Enriques involution ψ of base change type constructed in

Section 5.1. By Lemma 5.2, the quotient surface S lies in F4,3,1. We can also verify

geometrically that S ∈ F3,3,3,3. To this end we use that the induced section Q of

height 3 on Y meets only the two I6 fibers non-trivially — in the same component

as the 2-torsion section P , i.e., opposite the zero component — and it meets the

zero section O in the ramified fiber above t = b. Hence Q, O and the identity

component of either of the I2 fibers form a triangle, i.e., they give a divisor D of

Kodaira type I3. Perpendicular to D, we find

• another I3 formed by the sections P , (P −Q) and the non-identity component

of the other I2 fiber;

• six A2’s contributed from the I6 and I3 fibers;

• four sections of the induced elliptic fibration π|D| given by the remaining com-

ponents of the I6 fibers.

We conclude that π|D| is a Jacobian elliptic fibration with eight fibers of type I3.

Hence it comes from X3,3,3,3 by some quadratic base change. Finally, one directly

verifies that the above rational curves on Y are interchanged by the Enriques

involution ψ. Therefore, π|D| induces an elliptic fibration with four fibers of type

I3 on S = Y/ψ. That is, S ∈ F3,3,3,3 as claimed.
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