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Hodge–Tate Conditions for Landau–Ginzburg
Models

by

Yota Shamoto

Abstract

We give a sufficient condition for a class of tame compactified Landau–Ginzburg models in
the sense of Katzarkov–Kontsevich–Pantev to satisfy some versions of their conjectures.
We also give examples that satisfy the condition. The relations to the quantum D-modules
of Fano manifolds and the original conjectures are explained in the appendices.
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§1. Introduction

Let X be a smooth projective variety over C with a Zariski open subset Y . We

assume that D := X \Y is a simple normal crossing hypersurface. Let f : X → P1

be a flat projective morphism such that the restriction w := f|Y is a regular func-

tion. In general, the meromorphic flat connection (OX(∗D), d + df) has irregular

singularities along D. Let H•dR(Y,w) denote the de Rham cohomology group of

(OX(∗D), d + df). It has been studied from the viewpoint of generalized Hodge

theories. (See twistor D-modules [30], [29]; irregular Hodge structures [10], [18],
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[37], [38]; non-commutative Hodge structures [25], [26]; TERP-structures [23] and

so on.)

In some cases, (Y,w) can be considered a “mirror dual” of a smooth projective

Fano variety F called a sigma model. In that case, (Y,w) is called a Landau–

Ginzburg model, and it is predicted that some categories associated to (Y,w) are

equivalent to the corresponding categories associated to F. This prediction is called

a homological mirror symmetry conjecture (HMS). Some parts of HMS are proved

in some cases ([1], [2], [43]).

From this point of view, Katzarkov–Kontsevich–Pantev [26] proposed some

conjectures as conjectural consequences of HMS. As emphasized in [26], some of

their conjectures can be seen as “purely algebro-geometric” conjectures on the

generalized Hodge theory of H•dR(Y,w). Such conjectures are the main subjects of

this paper.

As an introduction, we survey some versions of the conjectures in Sections 1.1

and 1.2. (The relations to the original ones are explained in Appendix B.) Then

we explain our main result in Section 1.3. In this paper, we always assume that the

pole divisor (f)∞ of f is reduced and the support |(f)∞| is equal to D, although

this assumption is more restrictive than that of [26].

§1.1. Hodge numbers

The cohomology group H•dR(Y,w) is given by taking the hypercohomology of the

complex (Ω•X(∗D), d + df∧). There are OX -coherent subsheaves Ωkf of ΩkX(∗D)

which give a subcomplex (Ω•f , d + df∧) (see Section 3.1.1). It is known that the

inclusion (Ω•f , d + df∧) ↪→ (Ω•X(∗D), d + df∧) is a quasi-isomorphism (see [18,

Cor. 1.4.3]). The Hodge number fp,q(Y,w) is defined by

fp,q(Y,w) := dimHq(X,Ωpf ).

It is proved by Esnault–Sabbah–Yu, Kontsevich and M. Saito [18] that we have

dimHk(Y,w) =
∑
p+q=k f

p,q(Y,w), which can be considered a consequence of the

E1-degeneration property of the “Hodge filtration”.

Take a sufficiently small holomorphic disk ∆ in P1 centered at infinity so that

Yb := f−1(b) is smooth for any b ∈ ∆\{∞}. It is proved in [26] (see also [11]) that

we have the equality

dimHk
dR(Y,w) = dimHk(Y, Yb),

where b ∈ ∆ \ {∞}, and Hk(Y, Yb) denotes the relative cohomology with C-

coefficient. In our situation, the monodromy Tk at infinity is known to be unipotent

([27, Thm. I′]). Let kW be the monodromy weight filtration of Nk := log Tk on
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Hk(Y, Yb) centered at k (see (2.2), (2.3)). The number hp,q(Y,w) is defined by

hp,q(Y,w) := dim Gr
kW
2p Hk(Y, Yb) (k = p+ q).

By an HMS consideration, Katzarkov–Kontsevich–Pantev [26] conjectured

(1.1) fp,q(Y,w) = hp,q(Y,w).

It is easy to observe that conjecture (1.1) does not hold if the fiber D at infinity

is smooth and fp,q(Y,w) are not zero for two different pairs (p, q) and (p′, q′) with

p + q = p′ + q′. Actually, such an example is given in [28]. However, also in [28],

there are examples of (X, f) that satisfy (1.1). There remains a question when

equality (1.1) holds. The counterexample suggests that we need to impose some

conditions on the degeneration property of Yb as b→∞.

§1.2. Speciality

Let (λ, τ) be a pair of complex numbers. The dimension of the hypercohomology

H•(X; (Ω•f , λd + τ df∧)) is known to be independent of the choice of (λ, τ) ([18],

[30]). Let Cλ, Cτ be complex planes with coordinate λ and τ respectively. Put

P1
λ := Cλ ∪ {∞} and S := P1

λ × Cτ . It follows that we have a locally free Z/2Z-

graded OS(∗(λ)∞)-module bH whose fiber at (λ, τ) is H•(X; (Ω•f , λd + τ df∧)).

The OS(∗(λ)∞)-module bH is equipped with a grade-preserving meromorphic flat

connection
b∇ : bH → bH ⊗OS Ω1

S(log λτ)((λ)0),

where Ω1
S(log λτ)((λ)0) denotes the OS-module locally generated by λ−1τ−1 dτ

and λ−2 dλ.

For a smooth projective Fano variety F, the quantum D-module for the quan-

tum parameters c1(F) log τ ∈ H2(F) gives a similar pair (aH, a∇). These pairs

are considered as one parameter variation of non-commutative Hodge structures

(AH, A∇) := (aH, a∇)|τ=1, and (BH, B∇) := (bH, b∇)|τ=1. It is conjectured [26,

Conj. 3.11] that homological mirror correspondences for a pair F | (Y,w) should

induce an isomorphism (aH, a∇) ' (bH, b∇) (more precisely, we need to fix more

data to determine the mirror pair).

On the one hand, (AH, A∇) has a trivial logarithmic extension to λ =∞. On

the other hand, it is a non-trivial problem to construct a logarithmic extension

of (BH, B∇) such that the induced vector bundle on P1
λ is trivial. The problem is

called the Birkhoff problem (see [36] for example), and the solution to the problem

for (BH, B∇) plays a key role in the construction of primitive forms ([12], [35]).

Katzarkov–Kontsevich–Pantev observed that the trivial solution of the Birk-

hoff problem for the connection (AH, A∇) can be described in terms of the Deligne
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canonical extension and the weight filtration for the nilpotent part of the residue

endomorphism along {λ = ∞}. An extension given in a similar way is called a

skewed canonical extension in [26]. The skewed canonical extension can be defined

for more general objects including (BH, B∇). The property that the skewed canon-

ical extension gives a solution to the Birkhoff problem is called “speciality” (see

[26, Def. 3.21] or Definition 2.13 for details).

From the point of view of the conjecture (aH, a∇) ' (bH, b∇), they con-

jectured that (BH, B∇) is special ([26, Conj. 3.22(a)]). Combining it with their

unobstructedness result on the versal deformation of (Y,w), they also conjectured

the existence of a version of a primitive form under the assumption that ΩdimX
X (D)

is trivial ([26, Conj. 3.22(b)]).

§1.3. Rescaling structures and Hodge–Tate conditions

To treat the conjectures in Sections 1.1 and 1.2 simultaneously, we introduce the

notion of rescaling structure (see Section 2 for details). Let σ : C∗θ × S → S be

the action of C∗θ defined by (θ, λ, τ) 7→ (θλ, θτ). Let p2 : C∗θ × S → S denote

the projection. A rescaling structure is a triple (H,∇, χ) of Z-graded locally free

OS(∗(λ)∞)-module H, a grade-preserving meromorphic flat connection

∇ : H → H⊗ Ω1
S(log λτ)((λ)0),

and an isomorphism χ : p∗2H
∼−→ σ∗H with some conditions (see Definition 2.5).

For a rescaling structure (H,∇, χ), take a fiber V of H at (λ, τ) = (1, 0).

Under an assumption, we associate two filtrations F and W on V , where F is

called a Hodge filtration and W is called a weight filtration of H (Section 2.3). We

also define an abstract version of Hodge numbers fp,q(H) and hp,q(H).

The rescaling structure is said to satisfy the Hodge–Tate condition if these

two filtration behave like a Hodge filtration and a weight filtration of a mixed

Hodge structure of Hodge–Tate type in the sense of Deligne [9] (see Definition 2.11

for details). If (H,∇, χ) satisfies the Hodge–Tate condition, we have fp,q(H) =

hp,q(H), and we also have that H|τ=1 is special.

In Appendix A, we show that a “Tate twisted” version HF of aH comes

equipped with a rescaling structure for any smooth projective Fano variety F. The

rescaling structure HF satisfies the Hodge–Tate condition, and we have

fp,q(HF) = hp,q(HF) = dimHq(F,Ωn−pF ).

For the pair (X, f), we also have a version Hf of bH, which comes equipped

with a rescaling structure (see Section 3; the relation between Hf and bH is given

in Appendix B). The main result of this paper is the following:
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Theorem 1.1 (Theorem 3.30). Let Hf be the rescaling structure for (X, f).

(1) If Hf satisfies the Hodge–Tate condition, then equation (1.1) holds and Hf |τ=1

is special.

(2) The rescaling structure Hf satisfies the Hodge–Tate condition if and only if the

mixed Hodge structure (Hk(Y, Y∞;Q), F,W ) is Hodge–Tate for every k ∈ Z.

The definition of the mixed Hodge structure (Hk(Y, Y∞;Q), F,W ) is given in

Section 3.4.3. In Section 4, we also give some examples such that Hf satisfies the

Hodge–Tate condition in the case where the dimension of X is 2 or 3.

§2. Rescaling structures

§2.1. Holomorphic extensions and filtrations

Let C denote a complex plane. Set C∗ := C \ {0}. Let H be a finitely generated

locally free OC(∗{0})-module. Let V denote the fiber of H at 1 ∈ C. Assume that

we are given an increasing filtration G•V = (GmV | m ∈ Z) on V such that

(2.1) GmV :=

{
0 (m� 0),

V (m� 0).

We shall recall some methods to construct an extension of H to an OC-module by

using G•V . Here, by an extension of H, we mean a locally free OC-submodule L

of H such that L⊗OC(∗{0}) = H.

2.1.1. Construction using C∗-actions. Let m : C∗×C∗ → C∗ and σ : C∗×C→
C denote the multiplications. Let p2 : C∗ × C → C be the projection. Assume

that H is C∗-equivariant with respect to σ. Namely, we have an isomorphism

χ : p∗2H
∼−→ σ∗H with the cocycle condition:

(m× idC)∗χ = (idC∗ × σ)∗χ ◦ p∗23χ,

where p23 : C∗ × C∗ × C→ C∗ × C is given by p23(t1, t2, z) := (t2, z). This case is

considered in [41, Lem. 19] for example. For any vector v ∈ V , there is a unique

invariant section φv ∈ Γ(C, H) with φv(1) = v. There exists a unique extension L1

such that v ∈ GmV if and only if φv ∈ L1(m{0}). The extension L1 is isomorphic

to the extension
∑
mGmV ⊗OC(−m{0}) of V ⊗O(∗{0}). This construction gives

a one-to-one correspondence between the sets of increasing filtrations on V with

(2.1) and C∗-equivariant holomorphic extensions of H.

Example 2.1. Let V be a finite-dimensional C-vector space with a decomposition

V =
⊕

p∈Z Vp. PutH := OC(∗{0})⊗CV . Note that p∗2H ' OC∗×C(∗C∗×{0})⊗V '
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σ∗H. Define χ : p∗2H
∼−→ σ∗H by χ|OC∗×C(∗C∗×{0})⊗Vp(t, z) := tp ⊗ idVp . Consider

V as the fiber of H at 1 ∈ C. Then the trivial extension L1 := OC⊗V corresponds

to the filtration

GmV =
⊕
−p≤m

Vp.

Indeed, for v ∈ Vp, the invariant section φv is given by φv(z) = zpv ∈ L1(−p{0}).

2.1.2. Double complex. Let (C•,•, δ1, δ2) be a double complex of C-vector

spaces where δ1 : Cp,q → Cp+1,q and δ2 : Cp,q → Cp,q+1 are the differentials.

We assume that Cp,q = 0 if p < 0 or q < 0, and that the total complex (C•, δ) has

finite-dimensional cohomology. Here, we put C` :=
⊕

p+q=` C
p,q and δ := δ1 + δ2.

Let F be the filtration on (C•, δ) given by FmC
` :=

⊕
p+q=`,−p≤m C

p,q. We also

assume that the morphisms Hk(Fm(C•, δ)) → Hk(C•, δ) are injective for all k

and m.

Put Cp,q := OC ⊗ Cp,q and C` :=
⊕

p+q=` Cp,q. We have a complex (C•, zδ1 +

δ2). Let L1 be the kth cohomology group of this complex. By the assumption, L1 is

a finitely generated locally free OC-module. Put H := L1⊗OC(∗{0}) and consider

L1 as an extension of H. Define χp : p∗2Cp,q
∼−→ σ∗Cp,q by χp(t, z) := tp ⊗ id. This

induces an isomorphism χ : p∗2H
∼−→ σ∗H with the cocycle condition.

Lemma 2.2. Consider the kth cohomology Hk(C•, δ) as the fiber of H at 1 ∈ C.

Then the extension L1 corresponds to the filtration

GmH
k(C•, δ) := Im(Hk(Fm(C•, δ))→ Hk(C•, δ)).

Proof. Put FmCk :=
⊕

p+q=k,p≥−m Cp,q. It induces a filtration on the complex

(C•, zδ1 + δ2), which is also denoted by F . The induced filtration on L1 is also

denoted by F . By the assumption, we have GrF` L1 ' Hk(GrF` (C•)). Hence it

reduces to the case where there exists a p0 ∈ Z such that Cp,q = 0 for p 6= p0. In

this case, we have L1 ' Hk−p0(Cp0,•, δ2) ⊗ OC, and we obtain the conclusion by

Example 2.1.

2.1.3. Construction using flat connections with regular singularities.

Assume that H is equipped with a flat connection ∇ with a regular singular-

ity at {0}. We also assume that each GkV is invariant with respect to the mon-

odromy of ∇. This case is considered in [25], [26], [36] for example. We have the

flat subbundles G•H on H such that the fiber of GkH at 1 is GkV . For any

t ∈ C∗, let Vt be the fiber of H at t. Let G•Vt denote the induced filtration on

Vt. Set It := {st | 0 < s ≤ 1}. For any vector v ∈ Vt, we have the flat section

ψv,t ∈ Γ(It, H) with ψv,t(t) = v. There exists a unique logarithmic lattice L2 with

the following property: Fix a frame of L2 near 0, and let || ∗ ||L2 be the Hermitian
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metric on L2 near 0 so that the frame is a orthogonal with respect to || ∗ ||L2
. A

vector v ∈ Vt is contained in GmVt if and only if ψv,t satisfies

||ψv,t(r · t)||L2
≤ C|r|−m(− log r)N (0 < r � 1)

for some positive constants C and N . This construction also gives a one-to-one

correspondence between the logarithmic extension of H and monodromy-invariant

filtrations on V with (2.1).

2.1.4. Characterization by using the Deligne lattice. The extension L2

can be characterized by using the Deligne lattice of (H,∇). Let L′ be the Deligne

lattice of (H,∇), which means that L′ is the logarithmic at 0 and the residue with

eigenvalues whose real parts are contained in (−1, 0]. The flat subbundles GmH

extend to {0} and give subbundles of L′. Let GmL
′ denote the subbundles of L′.

Lemma 2.3 ([26, Sect. 3.3.1]). The extension L2 is given by

L2 =
∑
m∈Z

GmL
′(−m{0})

as a submodule of L′(∗{0}).

Proof. It is enough to show that L2 = L′ if G•V is given by G−1V = 0 and G0V =

V . Let rkL′ be the rank of L′. We have an isomorphism of logarithmic connections

(L′,∇) ' (O⊕ rkL′

C ,∇′), where ∇′ = d − Ut−1 dt for a matrix U ∈ End(C⊕ rkL′)

with eigenvalues whose real parts are contained in [0, 1). Take the standard frame

v1, . . . , vrkL′ of O⊕ rkL′

C . It induces a Hermitian metric || ∗ ||L′ . For fixed t ∈ C∗,
take α ∈ C with expα = t. We have the flat section ψi(r · t) := exp(α log rU)vi(rt)

on It for all i = 1, . . . , rkL′. Since the flat sections on It are C-linear combinations

of ψi, we obtain the conclusion.

2.1.5. Relation between two constructions. Assume that H is C∗-equivari-

ant and equipped with a flat connection ∇. We also assume the compatibility of

the action and flat connection. In other words, for all t ∈ C∗, the action of t on H

is assumed to be equal to the parallel transport of ∇. Then we have the following:

Lemma 2.4. The connection ∇ is regular singular at {0}. The extensions L1 and

L2 constructed in Section 2.1.1 and Section 2.1.3 coincide.

Proof. By the compatibility of the action and the connection, the invariant section

φv for v ∈ V is ∇-flat. Since L2 is generated by tmφv (v ∈ GmV , t is a coordinate

on C), it gives a logarithmic extension of H. This shows that the connection ∇ is

regular singular at {0}. Fix a trivialization of L1 around {0} and let || ∗ ||L1 be the
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induced Hermitian metric on L1 around {0}. For v ∈ GmV , φv is in L1(m{0}),
which implies

||φv(t)||L1 ≤ C|t|−m (t ∈ C∗)

for some positive constant C. This shows the conclusion: L1 = L2.

§2.2. Definition of rescaling structure

Let Cλ, Cτ be complex planes with coordinate λ and τ respectively. Put P1
λ :=

Cλ ∪ {∞} and S := P1
λ × Cτ . Let σ : C∗θ × S → S be the action of C∗θ defined by

σ(θ, λ, τ) := (θλ, θτ). For a meromorphic function h on a variety, (h)0 and (h)∞
denote the zero divisor of h and the pole divisor of h, respectively. The supports of

these divisors are denoted by |(h)0| and |(h)∞|, respectively. Let p2 : C∗θ × S → S

be the projection. We define the notion of rescaling structure as follows.

Definition 2.5. A rescaling structure is a triple (H,∇, χ) of a Z-graded locally

free OS(∗(λ)∞)-module H, a grade-preserving meromorphic flat connection

∇ : H → H⊗ Ω1
S

(
∗
(
|(λ)∞| ∪ |(λτ)0|

))
and a grade-preserving isomorphism χ : p∗2H

∼−→ σ∗H with the following properties:

(1) We have ∇λτ∂τ (H) ⊂ H and ∇λ2∂λH ⊂ H.

(2) On C∗λ × C∗τ , χ is flat with respect to p∗2∇ and σ∗∇.

(3) The isomorphism χ satisfies the cocycle condition. In other words, we have

(m× idS)∗χ = (idC∗θ × σ)∗χ ◦ p∗23χ,

where m : C∗θ ×C∗θ → C∗θ denotes the multiplication and p23 : C∗θ ×C∗θ × S →
C∗θ × S denotes the projection given by p23(θ1, θ2, (λ, τ)) = (θ2, (λ, τ)).

We often omit ∇ and χ if there is no confusion. The kth graded piece of H is

denoted by Hk. We assume
∑
k rank Hk <∞ in this paper.

We note that we introduce the notion of rescaling structure only for conve-

nience for the later use. Similar structures have been studied in [23], [26], [30],

[37], [38] for example. Operations acting on H are often assumed to preserve the

grading without mention. If H and H′ are rescaling structures, we can naturally

define the tensor product H⊗H′ which is also a rescaling structure. The dual H∨

can also be defined canonically.

Example 2.6. Set T := OS(∗(λ)∞)v where v is a global section, and deg v = 2.

The connection∇ is defined by∇v := −vλ−1 dλ. The isomorphism χ : p∗2T
∼−→ σ∗T
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is given by χ(p∗2v) := θσ∗v. Then the tuple T(−1) := (T,∇, χ) is a rescaling

structure. We define

T(−k) :=

{
T(−1)⊗k if k ∈ Z≥0,

(T(−1)∨)⊗−k if k ∈ Z<0.

For a rescaling structure H, we define H(k) := H⊗ T(k).

§2.3. Hodge numbers and Hodge–Tate condition for rescaling

structures

2.3.1. Hodge filtrations for rescaling structures. Let us consider the re-

striction H|τ=0 := H/τH. It admits a C∗θ action, and hence we can apply the

correspondence of Section 2.1.1 to get the filtration F•V on V := H |λ=1,τ=0

corresponding to the lattice at λ = 0.

Definition 2.7. Let (H,∇, χ) be a rescaling structure. Then we define

fp,q(H) := dim GrF−pV
p+q,

where V k is the kth graded part of V .

2.3.2. Weight filtrations for nilpotent rescaling structures. We consider

the following condition on rescaling structures:

Definition 2.8. A rescaling structure (H,∇, χ) is called nilpotent if the residue

endomorphism Res{τ=0}∇ on H|τ=0 is nilpotent.

By definition, we have the following:

Lemma 2.9. We have that H(∗(λ)0) is the Deligne lattice of the meromorphic

connection H(∗(λτ)0) along the divisor |(τ)0|.

We have a nilpotent endomorphism N := (Res{τ=0}∇)|λ=1 on V , where V is

the fiber of H at (λ, τ) = (1, 0). Let V k be the fiber of Hk at (λ, τ) = (1, 0). The

graded piece of N on V k is denoted by Nk. Let kW denote the weight filtration

of Nk centered at k, i.e., kW is the unique filtration on V k with the following

properties:

Nk
(
kWi

)
⊂ kWi−2 for all i ∈ Z,(2.2)

N j
k : Gr

kW
k+jV

k ∼−→ Gr
kW
k−jV

k for all j ∈ Z.(2.3)

The induced filtration on V is simply denoted by W .

Definition 2.10. Let (H,∇, χ) be a nilpotent rescaling structure. We define

hp,q(H) := dim GrW2pV
p+q.
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2.3.3. Hodge–Tate condition. In [9], a mixed (Q-)Hodge structure (VQ, F,W )

is called Hodge–Tate if the Hodge filtration F on V := VQ ⊗Q C and the weight

filtration W satisfy

W2i+1 = W2i for all i ∈ Z,(2.4)

F−j ⊕W2j+2
∼−→ V for all j ∈ Z.(2.5)

We use the same notation in this paper. Imitating this notion, we define the fol-

lowing:

Definition 2.11. Let (H,∇, χ) be a nilpotent rescaling structure. Let F and W

be the filtrations on V := H|(λ,τ)=(1,0) defined in Sections 2.3.1 and 2.3.2. Then

(H,∇, χ) is said to satisfy the Hodge–Tate condition if (V, F,W ) satisfies (2.4)

and (2.5). A rescaling structure is said to be of Hodge–Tate type if it satisfies the

Hodge–Tate condition.

The following is trivial by definition:

Lemma 2.12. If a rescaling structure (H,∇, χ) satisfies the Hodge–Tate condi-

tion, then fp,q(H) = hp,q(H) for all p, q.

§2.4. Hodge–Tate condition implies the speciality

Let H =
⊕

kH
k be a Z-graded finitely generated locally free OP1

λ
(∗∞) module

with a grade-preserving meromorphic flat connection ∇. We assume that ∇ has

singularity at most at {λ = 0} in Cλ and ∇λ2∂λ(H) ⊂ H. We also assume that ∇
is regular singular at infinity. Take the Deligne lattice U0H at λ = ∞. Let N be

the nilpotent part of Res{λ=∞}∇. Define kW•(U0H
k
|λ=∞) as the weight filtration

of N centered at k. It induces a filtration W•(U0H|λ6=0) of Z-graded logarithmic

subbundles of U0H|λ6=0.

Definition 2.13 ([26, Def. 3.21]). Let H, ∇, U0H and W•(U0H|λ 6=0) be as above.

We define a vector bundle Ĥ on P1
λ by

Ĥ|λ6=0 := Im

{⊕
`

W2`(U0H)⊗OP1
λ
(−` · ∞)→ U0H(∗∞)

}
,

and Ĥ|λ 6=∞ := H. We call Ĥ a skewed canonical extension of H. The Z-graded

flat bundle (H,∇) is called special if Ĥ is isomorphic to a trivial bundle over P1
λ.

Remark 2.14. Our definition of speciality is slightly different to that of [26]. This

construction of Ĥ is the same as in Section 2.1.3 if we take the filtration G•V to

be G` := W2`.
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Proposition 2.15. Let (H,∇, χ) be a rescaling structure of Hodge–Tate type.

Then H1 := H|τ=1 is special.

The rest of this section is devoted to proving this proposition.

2.4.1. Regular singularity along |(λ)∞|. Let (H,∇, χ) be a rescaling struc-

ture. Put S∗ := C∗λ × C∗τ ⊂ S. Let ι : S∗ ↪→ C∗θ × S be the embedding given by

ι(λ, τ) := (λ−1τ−1, λ, τ). We observe that ισ := σ ◦ ι gives ισ(λ, τ) = (τ−1, λ−1)

and ιp := p2 ◦ ι is the inclusion S∗ ↪→ S. Hence we have the isomorphism

(2.6) ι∗χ : ι∗pH = H|S∗
∼−→ ι∗σH.

We also remark that ισ extends to the map S \ |(λ)0| → S given by (λ, τ) 7→
(τ−1, λ−1), which is denoted by ισ.

Lemma 2.16. The meromorphic connection (H(∗(λτ)0),∇) is regular singular

along |(λ)∞|.

Proof. The isomorphism (2.6) gives a logarithmic extension H̃ of H|τ 6=0 along

|(λ)∞|. The pull-back ι∗σH̃ is isomorphic to H|S\|(λτ)0|.

2.4.2. Deligne lattice. Since H(∗(λτ)0) is regular singular along |(λ)∞| ∪ |(τ)0|
⊂ S, we have the Deligne lattice U0H of H(∗(λτ)0) along |(λ)∞| ∪ |(τ)0|. Assume

that H is nilpotent. Then U0H|τ=0 is equal to H(∗(λ)0)|τ=0 by Lemma 2.9. In

particular, we have U0H|(λ,τ)=(1,0) = V . By (2.6), we have that the residue endo-

morphism N := Resλ=∞∇ on U0H|λ=∞ is nilpotent. We have the weight filtration
kW on degree k part of U0H|λ=∞ with respect to N centered at k. Let W be the

resulting filtration on U0H|λ=∞. Then we have logarithmic OS(∗(λ)0)-submodules

W•(U0H) of H(∗(λ)0) which coincide with W•U0H|λ=∞ on λ =∞. Define Ĥ by

(2.7) Ĥ|λ 6=0 := Im

{⊕
`

W2`(U0H)⊗OS(−`(λ)∞)→ H(∗(λ)∞)|λ 6=0

}
,

and Ĥ|λ 6=∞ = H. It is easy to see that Ĥ|τ=1 is Ĥ1.

Lemma 2.17. The filtration on V induced by W•U0H is equal to the weight fil-

tration given in Section 2.3.2.

Proof. Let T1 be the monodromy around {λ = ∞} acting on V ′ := H|(λ,τ)=(1,1).

Let T2 be the monodromy around {τ = 0} acting on V ′. By the C∗-equivariance

of H (or by (2.6)), N (i) := log Ti (i = 1, 2) coincide with each other (both of them

are nilpotent). We have a trivialization (U0H,∇) ' (V ′ ⊗ OS(∗(λ)0),∇′), where

∇′ = d−N (1)λ−1 dλ+N (2)τ−1 dτ . Identify V and V ′ via this isomorphism. Then
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the filtration induced by W•U0H corresponds to the filtration induced by N (1),

and the filtration given in Section 2.3.2 corresponds to the filtration induced by

N (2). Since N (1) = N (2), these filtrations are equal.

2.4.3. Proof of the Proposition 2.15. Put Ĥ0 := Ĥ|τ=0. By Lemmas 2.17

and 2.4, Ĥ0|λ6=0 is given by construction in Section 2.1.1 taking G` = W2` (` ∈ Z).

Then the Hodge–Tate condition implies the triviality of Ĥ0. By the rigidity of

triviality of vector bundles on P1, there is a open neighborhood U in Cτ such that

the restriction Ĥ|P1
λ×U is trivial along P1

λ. Using the C∗θ-action, we can show that

Ĥ itself is trivial along P1
λ. In particular, Ĥ1 is trivial.

2.4.4. Relation to M. Saito’s criterion. The referee of this paper indicated

the relation between Proposition 2.15 and M. Saito’s criterion for Birkhoff’s prob-

lem. To see this, we recall M. Saito’s criterion in a special case. Let H, ∇ and

U0H be as in Section 2.4. For simplicity, we assume that Resλ=∞∇ is nilpotent.

Let V∞ denote the fiber of U0H at λ = ∞. Note that the residue N acts on V∞.

We define a filtration F on V∞ as

FkV∞ := Im
(

Γ(P1
λ, U0H ⊗OP1

λ
(k{0}))→ V∞

)
where the map is the restriction.

Theorem 2.18 ([40, Lem. 2.8], [36, IV 5.b]). Assume that we have an increasing

filtration G•V∞ such that

(1) GkV∞ is invariant under the morphism N for each k ∈ Z; N(GkV∞) ⊂ GkV∞
and

(2) G•V∞ is opposed to F•V∞;F−p ⊕Gp+1 = V∞ for each p ∈ Z.

Then the extension defined by replacing W2` by G` in Definition 2.13 is logarithmic

at infinity and isomorphic to trivial OP1
λ

-module.

Let us consider the case H = H1 = H|τ=1 where H is a nilpotent rescaling

structure. We first observe that H is reconstructed from its restriction H1 as

follows. Let $ : P1
λ × C∗τ → P1

λ be the map defined by $(λ, τ) := (λ/τ). Let

ιτ : P1
λ × C∗τ → C∗θ × S be the map defined by ιτ (λ, τ) = (τ−1, λ, τ). Then by

taking the pull-back of the morphism χ by ιτ , similarly to (2.6), we can identify

HP1
λ×C∗τ with $∗(H|τ=1). Hence, by Lemma 2.9, we obtainH by taking the Deligne

lattice of $∗(H|τ=1) along {τ = 0}.
This identification also gives an isomorphism χV : V

∼−→ V∞ and we have the

following:

Lemma 2.19. The isomorphism χV : (V, F )→ (V∞, F ) is a filtered isomorphism.
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Proof. For v ∈ FkV∞, take a lift v ∈ Γ(P1
λ, U0H1(k{0})). Then we have a unique

C∗θ-equivariant section ṽ ∈ Γ(S,H(k(λ)0)) whose restriction to τ = 1 is v. We have

that the restriction of ṽ to τ = 0 is the C∗-invariant section with (ṽ|τ=0)(1) =

ṽ(1, 0) = χ−1
V (v), and ṽ|τ=0 ∈ H|τ=0(k{0}). This proves the lemma.

By this lemma, Proposition 2.15 can be seen as a corollary of M. Saito’s

criterion (Theorem 2.18). We also remark that the relation to the Hodge–Tate

condition is mentioned in [34, Exa. 3.4.3] for classical Hodge structures.

Remark 2.20. From these observations, it seems that the parameter τ plays a

minor role. However, this parameter naturally appears in some examples [19], [26],

[30], [37]. In particular, as we will see in Appendix A, the parameter τ appears

as a quantum parameter for Tate twisted quantum D-modules. In that case, the

nilpotent-ness of the rescaling structure is deduced from the fact that the quantum

cup product converges to the classical cup product as the quantum parameter goes

to zero.

§3. Landau–Ginzburg models

In this section we consider the following pair (X, f), referred as a Landau–Ginzburg

model:

• a smooth projective variety X of dimension n over C;

• a flat projective morphism f : X → P1 of varieties.

We also consider f as a meromorphic function on X. We assume that the pole

divisor (f)∞ of f is reduced. The support |(f)∞| is denoted by D. We also assume

that D is a simple normal crossing. Put Y := X \D. The restriction of f to Y is

denoted by w.

Remark 3.1. The terminology “Landau–Ginzburg model” might be inappropriate

for general (X, f). We need to impose the condition that there is an isomorphism

O ∼−→ ΩnX(D); 1 7→ volX in order to regard the tuple ((X, f), D, volX) as a tame

compactified Landau–Ginzburg model in [26] (see Appendix B). In this paper, we

do not use this condition. However, since the main examples we have in mind are

(tame compactified) Landau–Ginzburg models, we call the pair (X, f) a Landau–

Ginzburg model for the sake of convenience.

§3.1. Rescaling structure for Landau–Ginzburg models

3.1.1. The Kontsevich complex. Let df : ΩkX(logD) → Ωk+1
X (logD)(D) be a

morphism induced by the multiplication of df . The inverse image of Ωk+1
X (logD) ⊂
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Ωk+1
X (logD)(D) is denoted by Ωkf . The multiplication df induces a morphism df :

Ωkf → Ωk+1
f . The exterior derivative d induces a morphism d : Ωkf → Ωk+1

f .

Let πS : S × X → X be the projection. Recall that S = P1
λ × Cτ . Put

Ωkf,λ,τ := π−1
S Ωkf ⊗λ−kOS×X(∗(λ)∞). We have morphisms of sheaves d+λ−1τ df :

Ωkf,λ,τ → Ωk+1
f,λ,τ where d is the relative exterior derivative, i.e., d = dS×X/S . Since

(d+ λ−1τ df)2 = 0, we have a complex (Ω•f,λ,τ , d+ λ−1τ df).

Definition 3.2. Let pS : S ×X → S denote the projection. For each k ∈ Z, we

put

(3.1) Hkf := RkpS∗
(
Ω•f,λ,τ , d+ λ−1τ df

)
.

We define a Z-graded OS(∗(λ)∞)-module by Hf :=
⊕

k∈ZHkf .

3.1.2. The rescaling structure. Let σ : C∗θ × S → S denote the action of C∗θ
given in Section 2.2. Let σ̃ : C∗θ ×S ×X → S ×X be the action induced by σ and

trivial C∗θ-action on X. Let p̃2 : C∗θ×S×X → S×X denote the projection. We have

the natural isomorphism χ̃f : p̃∗2(Ω•f,λ,τ , d + λ−1τ df)
∼−→ σ̃∗(Ω•f,λ,τ , d + λ−1τ df).

It induces an isomorphism χf : p∗2Hf
∼−→ σ∗Hf with the cocycle condition (Defi-

nition 2.5(3)).

Proposition 3.3. The pair (Hf , χf ) comes equipped with a rescaling structure.

Proof. By the theorem of Esnault–Sabbah–Yu, M. Saito and Kontsevich [18] (see

also [26], [30]), Hf is locally free over OS(∗(λ)∞). Moreover, [30, Thm. 3.5] (see

also its consequences in [30, Sect. 3.1.8]) implies that we have a connection ∇ on

each Hkf with the properties in Definition 2.5.

3.1.3. Hodge filtration. SinceHf is a rescaling structure, Vf := Hf |(λ,τ)=(1,0) is

equipped with a filtration F•Vf (see Section 2.3.1). Note that Vf ' H•
(
X, (Ω•f , d)

)
.

Lemma 3.4 ([18],[30]). Let F•(Ω
•
f , d) be the stupid filtration on (Ω•f , d), i.e., we

put F−pΩ
k
f = 0 for p > k and F−pΩ

k
f = Ωkf for p ≤ k. Then we have

(3.2) F−pV
k
f ' Im

(
Hk
(
X,F−p(Ω

•
f , d)

)
→ Hk

(
X, (Ω•f , d)

))
.

Proof. Let πλ : Cλ×X → X be the projection. Define Ωkf,λ := π∗λΩkf . Let pλ : Cλ×
X → Cλ denote the projection. By the local freeness, we have an C∗θ-equivariant

isomorphism

Hkf |τ=0 ' Rkpλ∗(Ω•f,λ, λd).

The isomorphism χ on Rkpλ∗(Ω•f,λ, λd) is induced by θpχ̃f |τ=0 : (p̃∗2Ωpf,λ,τ )|τ=0
∼−→

(σ̃∗Ωpf,λ,τ )|τ=0.
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Let A p,q
X denote the sheaf of (p, q)-forms on X. Let ∂ : A p,q

X → A p+1,q
X and

∂ : A p,q
X → A p,q+1

X be the Dolbeault operators. Set A p,q
f := Ωpf ⊗OX A 0,q

X . Put

A p,q
f,λ := OCλ×X ⊗π−1

λ OX
π−1
λ A p,q

f . The operators on A p,q
f,λ induced by ∂ and ∂ are

denoted by the same notation. Then we obtain the double complex (A •,•f,λ , λ∂, ∂).

Let (A •f,λ, λ∂ + ∂) be the total complex. Note that A k
f,λ =

⊕
p+q=k A p,q

f,λ . We

obtain a C∗θ-equivariant quasi-isomorphism

(Ω•f,λ, λd)
∼−→ (A •f,λ, λ∂ + ∂),

where the isomorphism on A p,q
f,λ is induced by θpχ̃f |τ=0. Hence, we have a C∗θ-

equivariant isomorphism:

(3.3) Rkpλ∗(Ω•f,λ, λd) 'H kpλ∗(A
•
f,λ, λ∂ + ∂).

Applying Lemma 2.2 for Cp,q := Γ(X,A p,q
f ), δ1 := ∂ and δ2 := ∂, the fiber

of the cohomology sheaf H kpλ∗(A •f,λ, λ∂ + ∂) at λ = 1 has the filtration G• as

in Lemma 2.2 (the fact that we can apply the lemma is due to [18, Thm. 1.3.2]).

Since the restriction of (3.3) to λ = 1 gives a filtered isomorphism (V kf , F ) '
(Hk(C•, δ), G), we obtain the conclusion.

By this lemma, we have GrF−pV
k
f = Hk−p(X,Ωpf ). Define fp,q(Y,w) :=

dimHq(X,Ωpf ). Then we have fp,q(Y,w) = fp,q(Hf ). In the rest of Section 3,

we investigate hp,q(Hf ), or the weight filtration of the rescaling structure.

§3.2. Meromorphic connections for Landau–Ginzburg models

We set X(1) := Cτ × X. We also set D(1) := Cτ × D. Let pτ : X(1) → Cτ
and πτ : X(1) → X denote the projections. We shall review some results on a

meromorphic flat bundle M := O(∗D(1))v with ∇v = d(τf)v in [30], where v

denotes a global frame. We have

M'
(
OX(1)(∗D(1)), d+ d(τf)

)
; v 7→ 1.

Note that, in our case, some of the results in [30] are simplified since we assume

that (f)∞ is reduced and the horizontal divisor (denoted by H in [30]) is empty.

3.2.1. V-filtration along τ . Regard π∗τDX as a sheaf of subalgebra in DX(1) .

Let τV0DX(1) denote the sheaf of subalgebra generated by π∗τDX and τ∂τ . For

α = 0, 1, we set

UαM := π∗τDX · OX(1)

(
(α+ 1)D(1)

)
v ⊂M.

For α ∈ Z<0, we set UαM := τ−αU0M. For α ∈ Z>0, we set UαM :=∑
p+q≤α ∂

p
τUqM. Then we have the following:
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Proposition 3.5 ([30, Prop. 2.3]). We have that U•M is a V-filtration on M
along τ indexed by integers with the standard order (up to shift of degree by 1).

More precisely, we have the following:

• UαM are coherent τV0DX(1)-modules such that
⋃
α UαM =M.

• We have τUαM⊂ Uα−1M and ∂τUαM⊂ Uα+1M.

• Define GrUαM := UαM/Uα−1M. Then τ∂τ + α is nilpotent on GrUαM.

3.2.2. Relative de Rham complexes. We set Ωkf,τ := π∗τΩkf . We obtain a

complex (Ω•f,τ , d+ τ df) where d = dX(1)/Cτ is the relative exterior derivative. We

have the following:

Proposition 3.6 ([30]). We have a quasi-isomorphism of complexes

(3.4) (Ω•f,τ , d+ τ df)
∼−→ U0M⊗ Ω•X(1)/Cτ .

Proof. Combine [30, Prop. 2.21] and [30, Prop. 2.22] in the case α = 0.

As a consequence, we have the following (see also the proof of [30, Cor. 2.23]):

Corollary 3.7. We have the following isomorphism of logarithmic connections:

Hkf |λ=1
∼−→ Rkpτ∗

(
U0M⊗ Ω•X(1)/Cτ

)
.

We also have a quasi-isomorphism of complexes:

(Ω•f , d)
(
= (Ω•f,τ , d+ τ df)|τ=0

) ∼−→ GrU0M⊗ Ω•X ,

which induces V kf
∼−→ Hk

(
X,
(
GrU0M⊗ Ω•X

))
. The residue endomorphism on V kf

is identified with the nilpotent endomorphism on Hk
(
X,
(
GrU0M⊗ Ω•X

))
associ-

ated with ϕ0 on GrU0M⊗Ω•X , where ϕ0 denotes the endomorphism induced by τ∂τ .

3.2.3. Residue endomorphisms. We shall give an alternative description of

ϕ0 to the one in Corollary 3.7. Consider Ωk
X(1)(log τ)0 := O{0}×X ⊗ Ωk

X(1)(log τ)

as an OX -module. It naturally decomposes to the module

ΩkX ⊕ [τ−1dτ ] · Ωk−1
X ,

where [τ−1dτ ] denotes the section induced by τ−1dτ .

Since UαM is a V0DX(1)-module, we have ∇ : UαM⊗Ωk
X(1)(log τ)→ UαM⊗

Ωk+1
X(1)(log τ). This induces

∇′ : GrU0M⊗ ΩkX(1)(log τ)0 → GrU0M⊗ Ωk+1
X(1)(log τ)0.
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The morphisms

∇′0 : GrU0M⊗ ΩkX → GrU0M⊗ Ωk+1
X , and

∇′0 : GrU0M⊗ [τ−1dτ ] · Ωk−1
X → GrU0M⊗ [τ−1dτ ] · ΩkX

induced by ∇′ are the same as the flat connection ∇0 given by the DX -module

structure of GrU0M. The morphism GrU0M⊗ΩkX → GrU0M⊗ [τ−1dτ ] ·ΩkX induced

by ∇′ is given by m 7→ [τ−1dτ ]ϕ0(m).

We have the following exact sequence of complexes:

0 −→ GrU0M⊗
(
[τ−1dτ ] · Ω•X [−1]

)
−→ GrU0M⊗ Ω•X(1)(log τ)0

h−→ GrU0M⊗ Ω•X −→ 0.
(3.5)

From this exact sequence, we obtain a morphism

ϕ1 : GrU0M⊗ Ω•X → GrU0M⊗
(
[τ−1dτ ] · Ω•X

)
' GrU0M⊗ Ω•X

in the derived category Db(CX) of CX -modules.

Lemma 3.8. ϕ0 = ϕ1.

Proof. Let C•(h) be the mapping cone of h in (3.5), i.e.,

Ck(h) := GrU0M⊗Ωk+1
X(1)(log τ)0⊕GrU0M⊗ΩkX , dC•(h)(a, b) := (−∇′a, ha+∇0b),

where a ∈ GrU0M⊗ Ωk+1
X(1)(log τ)0 and b ∈ GrU0M⊗ ΩkX . Then the morphism

GrU0M⊗ ΩkX 3 ω 7→ [τ−1dτ ] · ω ∈ GrU0M⊗ Ωk+1
X(1)(log τ)0

induces a quasi-isomorphism ι0 : GrU0M ⊗ Ω•X → C•(h). The morphism ϕ1 is

induced by a natural morphism ι1 : GrU0M⊗ Ω•X → C•(h).

Using the identification Ωk
X(1)(log τ)0 = ΩkX⊕ [τ−1dτ ] ·Ωk−1

X , we obtain a mor-

phism ΩkX → Ωk
X(1)(log τ)0 of OX -modules. This morphism induces Ψ : GrU0M⊗

ΩkX → Ck−1(h). For a section ω ∈ GrU0M⊗ ΩkX , we have Ψ ◦ dGrU0M⊗Ω•X
(ω) =

Ψ(∇0(ω)) = ∇′0(Ψ(ω)). We also have

dC•(h) ◦Ψ(ω) = (−∇′(Ψ(ω)), h ◦Ψ(ω))

= −∇′0(Ψ(ω))− [τ−1dτ ] · ϕ0(ω) + ι1(ω)

= −∇′0(Ψ(ω))− ι0ϕ0(ω) + ι1(ω).

Hence we obtain (d ◦Ψ + Ψ ◦ d)(ω) = ι1(ω)− ι0ϕ(ω), which implies ϕ1 = ϕ0.
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§3.3. Relative cohomology groups for Landau–Ginzburg models

Let t denote a coordinate on the target space of w : Y → C. Put s := 1/t and

let Cs ⊂ P1 be the complex plane with coordinate s. Take a sufficiently small

holomorphic disk ∆s ⊂ Cs centered at infinity so that no critical values of f are

contained in ∆×s := ∆s \ {∞}.
Set X := X × ∆s, D := D × ∆s. Let πs : X → X and ps : X → ∆s be the

projections. Put g := 1/f . Set Γ := {(x, s) ∈ X | g(x) = s}. The inclusion Γ ↪→ X

is denoted by iΓ. The divisor D ∪ Γ is a normal crossing. The intersection D ∩ Γ

is denoted by DΓ.

3.3.1. De Rham complexes. For k ∈ Z≥0, we have a natural morphism

φk : ΩkX (logD ∪ {s = 0}) −→ iΓ∗Ω
k
Γ(logDΓ).

Let Ek be the kernel of φk. This gives a subcomplex E• of Ω•X (logD ∪ {s = 0}).

Lemma 3.9. For each k, we have

(3.6) Ek =

(
ds

s
− dg

g

)
· π∗sΩk−1

X (logD)⊕ (s− g) · π∗sΩkX(logD).

In particular, Ek is a locally free OX-module.

Proof. It is trivial that the right-hand side of (3.6) is included in Ek. Let s−1ds ·
ω1 + ω2 be a section of Ek, where ω1 ∈ π∗sΩk−1

X (logD) and ω2 ∈ π∗sΩkX(logD).

Since (s−1ds − g−1dg) · ω1 is a (local) section of Ek, g−1dg · ω1 + ω2 is a section

of Ek. We observe that g−1dg · ω1 + ω2 is also a section of π∗sΩkX(logD). Since

Ek ∩ π∗sΩkX(logD) = (g − s)π∗sΩkX(logD), we obtain that g−1dg · ω1 + ω2 is a

section of (s− g)π∗sΩkX(logD). This implies that s−1ds ·ω1 +ω2 is a section of the

right-hand side of (3.6).

3.3.2. Relative de Rham complex. For k ∈ Z≥0, we have a canonical mor-

phism

φk : π∗sΩkX(logD) −→ iΓ∗Ω
k
Γ/∆s

(logDΓ).

Note that π∗sΩkX(logD) is given by

ΩkΓ/∆s
(logDΓ) :=

ΩkΓ(logDΓ)

Ωk−1
Γ (logDΓ) ∧ p∗ΓΩ1

∆s
(log s)

,

where pΓ denotes the composition of iΓ and ps.

Definition 3.10 ([26]). The kernel of the morphism φk is denoted by Ek. The

induced subcomplex of π∗sΩ•X(logD) is denoted by E•.
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By definition, Ek|X\D '
(
(s− g)π∗sΩkX(logD)

)
|X\D.

Lemma 3.11 ([26]). Let Q be a point in D. If we take a sufficiently small neigh-

borhood U of Q, we have

(3.7) Ek|U =
dg

g
· (π∗sΩk−1

X (logD))|U +
(
(s− g)π∗sΩk−1

X (logD)
)
|U,

where U := U ×∆s. Moreover, Ek is a locally free OX-module.

Proof. Since the complex (Ω•X(logD), g−1dg) is acyclic near Q ∈ D, we have a

decomposition

π∗sΩ`X(logD)|U(=U×∆s) = F` ⊕ G`

such that g−1dg : F`−1 ∼−→ G` (` ∈ Z≥0) for a sufficiently small neighborhood U of

Q (see the proof of [30, Lem. 2.29]). We have Ek|U ⊃ G
k, and Ek|U∩F

k = (s−g)Fk.

The local freeness of Ek and equation (3.7) are obvious by this description.

By this lemma, the restriction of E• to s = 0 is identified with (Ωf , d). Here,

we remark that we have

Ωkf |U = g · ΩkX(logD)|U +
df

f
∧ Ωk−1

X (logD)|U

for sufficiently small U (see [26, (2.3.1)], [30, Lem. 2.29] for example).

3.3.3. Gauss–Manin connection. We have a canonical epimorphism ϕ : Ek →
Ek.

Lemma 3.12. Kerϕ = s−1ds · Ek−1.

Proof. It is trivial that Kerϕ ⊃ s−1ds ·Ek−1. Let (s−1ds− g−1dg)ω1 + (s− g)ω2

be a (local) section of Kerϕ, where ω1 ∈ π∗sΩk−1
X (logD) and ω2 ∈ π∗sΩkX(logD).

We have

−g−1dgω1 + (s− g)ω2 = 0.

Hence, we have

ω1 = (s− g)τ1 + g−1dgτ2, ω2 = g−1dgτ1

for some τ1 ∈ Ωk−1
X (logD) and τ2 ∈ Ωk−2

X (logD). We obtain

(s−1ds− g−1dg)ω1 + (s− g)ω2

= (s−1ds− g−1dg)
(
(s− g)τ1 + g−1dgτ2

)
+ (s− g)g−1dgτ1

= s−1ds(s− g)τ1 + (s−1ds− g−1dg)g−1dgτ2

= s−1ds
(
(s− g)τ1 + g−1dgτ2

)
.
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This implies Kerϕ ⊂ s−1ds · Ek−1.

By this lemma, we have the following diagram, whose rows and columns are

exact:

(3.8)

0

��

0

��

0

��
0 // s−1ds · E•[−1] //

��

E•
ϕ //

��

E•

��

// 0

0 // s−1ds · π∗sΩ•X(logD)[−1] //

φ•[−1]

��

Ω•X(log(D ∪ {s = 0})) //

φ•

��

π∗sΩ•X(logD) //

φ•

��

0

0 // s−1ds · iΓ∗Ω•Γ/∆s
(logDΓ)[−1] //

��

iΓ∗Ω
•
Γ(logDΓ) //

��

iΓ∗Ω
•
Γ/∆s

(logDΓ) //

��

0

0 0 0.

From this exact sequence, we obtain a morphism

E• −→ s−1ds · E•

in the derived category Db(CX). This gives a logarithmic connection

(3.9) ∇GM : Rkps∗E• −→ Rkps∗E• ⊗ Ω1
∆s

(log s).

On ∆×s , the kernel of ∇GM is the local system of the relative cohomology Hk(Y, Yb)

(b ∈ ∆×s ) ([26]). Hence (3.9) gives a logarithmic extension of the flat connection

associated with the local system of the relative cohomology Hk(Y, Yb) (b ∈ ∆×s ).

3.3.4. Residue endomorphisms. Put E•0 := E• ⊗ OX×{0}. The complex E•0
can naturally be considered as a complex on X. The complex E•0 is a subcomplex

of the complex Ω•X(logD)⊕ s−1ds⊗ Ω•−1
X (logD). On πs(Γ), we have

Ek
0 = g · ΩkX(logD)⊕

(
ds

s
− dg

g

)
⊗ Ωk−1

X (logD).

On X \ πs(Γ), we have

Ek
0 = ΩkX(logD)⊕ ds

s
⊗ Ωk−1

X (logD).

From the exact sequence (3.8), we have the exact sequence

(3.10) 0 −→ ds

s
⊗ (Ω•f , d)[−1] −→ E•0 −→ (Ω•f , d) −→ 0.
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From this exact sequence, we obtain a morphism

ϕ2 : (Ω•f , d) −→ ds

s
⊗ (Ω•f , d) ' (Ω•f , d).

This induces a residue endomorphism

Res{s=0}(∇GM) : Hk(X, (Ωf , d)) −→ Hk(X, (Ωf , d))

of ∇GM along {s = 0}.

§3.4. Hodge–Tate conditions for Landau–Ginzburg models

3.4.1. Comparison of the residue endomorphisms. We shall compare the

residue endomorphisms given in Sections 3.2.2 (see also Section 3.2.3) and 3.3.4.

Put Ω•X(log s)0 := Ω•X(log s)⊗OX×{0}. Let [s−1ds] denote the section of Ω•X(log s)0

induced by s−1ds. The correspondence [s−1ds] ↔ [τ−1dτ ] gives an isomorphism

Ω•X(log s)0 ' Ω•
X(1)(log τ)0. Via this isomorphism, we identify Ω•X(log s)0 with

Ω•
X(1)(log τ)0. Similarly, we identify

Ω•X
(

log(D ∪ {s = 0})
)

0
:= Ω•X

(
log(D ∪ {s = 0})

)
⊗OX×{0}

with

Ω•X(1)

(
log(D(1) ∪ {τ = 0})

)
0

:= Ω•X(1)

(
log(D(1) ∪ {τ = 0})

)
⊗O{0}×X .

By the construction of U0M, we have an inclusion

ΩkX(1)(log τ)⊗OX(1)(D(1)) · v ↪→ ΩkX(1)(log τ)⊗M.

We also have another inclusion

ΩkX(1)

(
log(D(1) ∪ {τ = 0})

)
· v ↪→ ΩkX(1)(log τ)⊗OX(1)(D(1)) · v.

Hence we obtain a morphism

ΩkX
(

log(D ∪ {s = 0})
)
−→ U0M⊗ ΩkX(1)(log τ).

Since the filtration U•M is indexed by Z, we have a morphism

ΩkX
(

log(D ∪ {s = 0})
)

0
→ GrU0M⊗ ΩkX(1)(log τ)0

given by η 7→ v ⊗ η, where v denotes the section of GrU0M induced by the global

section v of M. By restricting this morphism to Ek
0 , we obtain a morphism

Φ : Ek
0 −→ GrU0M⊗ ΩkX(1)(log τ)0.

Lemma 3.13. We have that Φ defines a morphism of complexes.
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Proof. First we verify the lemma on πs(Γ). Since f = 1/g, we have

∇′(v) = vτ dg−1 + vτg−1[τ−1dτ ] = vτg−1
(
[τ−1dτ ]− g−1dg

)
in GrU0 ⊗ Ω1

X(1)(log τ)0. Hence, we have

∇′(v) ·
(
− g−1dg + [τ−1dτ ]

)
= 0

in GrU0 ⊗Ω2
X(1)(log τ)0. Since vg−1dg and vτ−1dτ are sections of U0M⊗Ω1

X(1)(log τ),

we have

g∇′(v) = vτ(−g−1dg + [τ−1dτ ]) = 0

in GrU0 ⊗ Ω1
X(1)(log τ)0.

Let (g−1dg − [τ−1dτ ])ω1 + gω2 be a section of Ek
0 , where ω1 ∈ Ωk−1

X (logD)

and ω2 ∈ ΩkX(logD) (see Section 3.3.4). We then obtain

∇′(v · (g−1dg − [τ−1dτ ])ω1)

= ∇′(v) · (g−1dg − [τ−1dτ ])ω1 + v · d((g−1dg − [τ−1dτ ]ω1))

= v · d((g−1dg − [τ−1dτ ]ω1))

and

∇′(v · gω2) = ∇′(v) · g · ω2 + vd(g · ω2) = vd(g · ω2).

Hence we have ∇′ ◦ Φ = Φ ◦ d on πs(Γ).

On X \πs(Γ), f = 1/g is a holomorphic function. Hence, ∇′(v) = vτ df+vτf ·
τ−1dτ is a section of τU0M⊗ Ω1

X(1)(log τ). This implies ∇′(v) = 0 on GrU0M⊗
Ω1
X(1) . Then we can prove ∇′ ◦ Φ = Φ ◦ d on X \ πs(Γ) similarly.

We then obtain the following:

Theorem 3.14. The nilpotent endomorphism (Res{τ=0}∇)|λ=1 on V kf coincides

with the residue endomorphism of the Gauss–Manin connection ∇GM for the rel-

ative cohomology group.

Proof. By Lemma 3.13, we obtain the following commutative diagram in the

abelian category of complexes on X:

0 // ds
s · (Ω

•
f , d)[−1] //

qis
��

E•0 //

Φ

��

(Ω•f , d) //

qis
��

0

0 // GrU0M⊗ ([τ−1dτ ] · Ω•X [−1]) // GrU0M⊗ Ω•
X(1)(log τ)0

// GrU0M⊗ Ω•X
// 0.

The rows of this diagram are the exact sequences (3.10) and (3.5). Left and right

columns are the quasi-isomorphisms given in Corollary 3.7. This diagram shows

ϕ1 = ϕ2 in the derived category, which implies the theorem (see Lemma 3.8).
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3.4.2. Koszul complex. Let W•Ω
`
X(logD) be the weight filtration given by

WmΩ`X(logD) :=


Ω`X(logD) (m ≥ `),
Ω`−mX ∧ ΩmX(logD) (0 ≤ m < `),

0 (m < 0).

Take the irreducible decompositionD =
⋃
i∈ΛDi. Fix an order of Λ. Note that each

Di is a smooth hypersurface in X by the assumption. Put D(0) := X, and D(m) :=⊔
I⊂Λ,|I|=m(

⋂
i∈I Di) for m ∈ Z>0. We have the isomorphism of complexes Résm :

GrWmΩ•X(logD)
∼−→ am∗Ω

•
D(m)[−m], where am : D(m)→ X denotes the morphism

induced by inclusions ([8], [21], [31]).

We recall that the morphism Résm is locally described as follows. Let (U ; (z1,

. . . , zn)) be a local coordinate system such that U ∩D =
⋃

1≤j≤k{zj = 0}. Assume

that we have {i1 < i2 < · · · < ik} ⊂ Λ such that Dij ∩ U = {zj = 0}. For J =

(j1, . . . , jm) with 1 ≤ j1 < j2 < · · · < jm ≤ k, put DJ := {zj1 = · · · = zjm = 0}
and (z−1dz)J := z−1

j1
dzj1∧· · ·∧z−1

jm
dzjm . For ω ∈WmΩ`X(logD), we have a unique

expression

ω = (z−1dz)J ∧ α+ β,

where α ∈ Ω`−mX , β ∈ ΩkX(logD) such that β does not have the component

(z−1dz)J . The residue RésJω is defined by RésJω := α|DJ , and Résm is defined

by

Résm(ω) :=
∑

J⊂{1,...,k},|J|=m

RésJ(ω).

Let Mgp
X,D be the sheaf of invertible sections of OX(∗D). We have the mor-

phism OX → Mgp
X,D given by h 7→ exp(2πih), where i :=

√
−1. We have the

exact sequence of ZX -modules

0 −→ ZX → OX
exp(2πi−)−−−−−−−→Mgp

X,D

vD(1)−−−→ a1∗ZD(1) −→ 0,

where the ZX -module structure ofMgp
X,D is given by the multiplication and vD(1)

denotes taking the valuation along the divisors. The induced morphism OX →
Mgp

X,D ⊗Z Q is denoted by e. We also have the exact sequence

(3.11) 0 −→ QX → OX
e−−→Mgp

X,D ⊗Z Q −→ a1∗QD(1) −→ 0.

We shall consider the “Koszul complex” of e ([24], [31]),

K`
m := Symm−`

Q (OX)⊗Q
∧̀
Q

(Mgp
X,D ⊗Z Q).
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We have the natural inclusion K`
m ↪→ K`

m+1 by h1 · · ·hm−`⊗y 7→ 1·h1 · · ·hm−`⊗y
and the differential d : K`

m → K`+1
m by

d(h1 · · ·hm−` ⊗ y) :=

m−∑̀
i=1

h1 · · ·hi−1 · hi+1 · · ·hm−` ⊗ e(hi) ∧ y.

Lemma 3.15 ([24, Prop. 4.3.1.6], [31, Thm. 4.15]).

H q(K•p ) '

{
aq∗QD(q) for q ≤ p,
0 for q > p.

By this lemma, the natural inclusion K•p ↪→ K•p+1 is a quasi-isomorphism for

p ≥ n = dimX. We put K•∞ := K•n and let WmK
k
∞ be the image of Kk

m to Kk
n

for m < n and WmK
k
∞ := Kk

∞ for m ≥ n. We obtain a filtered complex (K•∞,W ).

Theorem 3.16 ([31, Thm. 4.15, Cor. 4.16]). The morphism K`
m→WmΩ`X(logD)

given by

(3.12) h1 · · ·hm−` ⊗ y1 ∧ · · · ∧ y` 7→
1

(2πi)`

(
m−`∏
i=1

hi

)
· dy1

y1
∧ · · · ∧ dy`

y`

induces a filtered quasi-isomorphism α : (K•∞,W ) ⊗ C → (Ω•X(logD),W ), or an

isomorphism in the derived category of filtered complexes Db(FCX) [8, Sect. 7.1].

Corollary 3.17 ([31, Prop.-Def. 4.11, Cor. 4.17]). Let F be the stupid filtration

on Ω•X(logD). Then the tuple

Hdg(X logD) :=
(
(K•∞,W ), (Ω•X(logD), F,W ), α

)
is isomorphic to the cohomological mixed Q-Hodge complex

(
( R∗QY , τ≤ ),

(Ω•X(logD), F,W ), α′
)

on X in [8, (8.1.8)], [7]. Here,  : Y ↪→ X is the in-

clusion, τ≤ denotes the filtration by truncation functor and α′ : (R∗CY , τ≤) →
(Ω•X(logD),W ) is an isomorphism in D+(FCX).

Proof. By Theorem 3.16, we have the following commutative diagram:

(3.13)

(R∗CY , τ≤)
∼ // (R∗Ω•Y , τ≤) (Ω•X(logD), τ≤)

∼oo // (Ω•X(logD),W )

(R∗CY , τ≤)
∼ // R∗−1(K•∞, τ≤)⊗ C

'R∗−1α

OO

(K•∞, τ≤)⊗ C∼oo

'α

OO

// (K•∞,W )⊗ C.

α '

OO

Here, the arrows
∼−→ and ↑' denote filtered quasi-isomorphisms. Since the natural

morphism

(Ω•X(logD), τ≤) −→ (Ω•X(logD),W )
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is a filtered quasi-isomorphism, the morphism

(K•∞, τ≤)⊗ C −→ (K•∞,W )⊗ C

is also a filtered quasi-isomorphism. Note that α′ is defined by the first row of

(3.13), and the second row comes from the sequence

(3.14) (R∗QY , τ≤)
∼ // R∗−1(K•∞, τ≤) (K•∞, τ≤)

∼oo ∼ // (K•∞,W ).

It follows that (3.14) defines the isomorphism of cohomological mixed Hodge com-

plexes.

The cohomological mixed Hodge complex Hdg(X logD) gives a mixed Q-

Hodge structure on the cohomology groups Hk(Y,Q), k ∈ Z≥0, which is denoted

by Hk(Y ) := (Hk(Y,Q), F,W ).

3.4.3. Cohomological mixed Hodge complex. Put Ãp,q := Ωp+qX (logD)/

Wq−1Ωp+qX (logD) and C̃p,q := (Kp+q
∞ /Wq−1K

p+q
∞ )(q), where p, q ∈ Z≥0 and (q)

denotes the Tate twist. We have the differentials

δ′ : Ãp,q → Ãp+1,q;[η mod Wq−1] 7→ [dη mod Wq−1],

δ′′ : Ãp,q → Ãp,q+1;[η mod Wq−1] 7→ [g−1dg ∧ η mod Wq],

δ′ : C̃p,q → C̃p+1,q;[x⊗ y mod Wq−1]⊗ (2πi)q 7→ [d(x⊗ y) mod Wq−1]⊗ (2πi)q,

δ′′ : C̃p,q → C̃p,q+1;[x⊗ y mod Wq−1]⊗ (2πi)q 7→ [x⊗ g ∧ y mod Wq]⊗ (2πi)q+1,

where η ∈ Ωp+qX (logD), x ∈ Symk
Q(OX) for k ≥ 0 and y ∈

∧p+q
Q (Mgp

X,D⊗ZQ). The

total complexes of these double complexes are denoted by s(Ã•,•) and s(C̃•,•),

i.e., s(Ã•,•)k :=
⊕

p+q=k Ã
p,q and δ := δ′ + δ′′ : s(Ã•,•)k → s(Ã•,•)k+1 is the

differential; s(C̃•,•) is defined similarly. We also have the filtrations

WrÃ
p,q := Wr+2qΩ

p+q
X (logD)/Wq−1Ωp+qX (logD) ⊂ Ãp,q,

WrC̃
p,q := (Wr+2qK

p+q
∞ /Wq−1K

p+q
∞ )(q) ⊂ C̃p,q,

which induce the filtrations Wrs(Ã
•,•)k :=

⊕
p+q=kWrÃ

p,q and Wrs(C̃
•,•)k :=⊕

p+q=kWrC̃
p,q on s(Ã•,•) and s(C̃•,•) respectively. We define the filtration F by

F`s(Ã
•,•)k :=

⊕
p+q=k

⊕
p≥−` Ã

p,q.

Since δ′′Wr ⊂ Wr−1 for the filtrations W on s(Ã•,•) and s(C̃•,•), we obtain

the isomorphisms GrWj s(Ã
•,•) '

⊕
k≥0,−j GrWj+2kΩ•X(logD) and GrWj s(C̃

•,•) '⊕
k≥0,−j GrWj+2kK

•
∞(k) of complexes. Then the following lemma is trivial by The-

orem 3.16:
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Lemma 3.18. The morphisms Kp+q
∞ (q)→ Ωp+qX (logD) given by

(h1 · · ·hn−p−q ⊗ y1 ∧ · · · ∧ yp+q)⊗ (2πi)q 7→ 1

(2πi)p

(
n−p−q∏
i=1

hi

)
dy1

y1
∧ · · · ∧ dyp+q

yp+q

induce a filtered quasi-isomorphism α1 : (s(C̃•,•),W )⊗ C→ (s(Ã•,•),W ).

Put Ap,q := Ãp,q+1, Cp,q := C̃p,q+1 for p, q ∈ Z≥0. The total complexes

are denoted by s(A•,•) and s(C•,•). We note that s(A•,•) and s(C•,•) are sup-

ported on D. Let WrA
p,q := Wr−1Ã

p,q+1 and WrC
p,q := Wr−1C̃

p,q+1. These

filtrations induce filtrations on s(A•,•) and s(C•,•). We have a quasi-isomorphism

α0 : (s(C•,•),W )⊗C→ (s(A•,•),W ) by restricting α1. We also have the filtration

F on s(A•,•) by F`s(A
•,•)k :=

⊕
p+q=k

⊕
p≥−`A

p,q.

Theorem 3.19 ([31, Thm. 11.22]). The tuple

ψHdg
g :=

(
(s(C•,•),W ), (s(A•,•), F,W ), α0

)
is a cohomological mixed Q-Hodge complex on X, which defines a mixed Hodge

structure on the hypercohomology H•(X,ψg(QX)) of the nearby cycle ψg(QX).

The mixed Q-Hodge structure on the hypercohomology group Hk(X,ψgQX)

is denoted by Hk(Y∞). Define ϑC : ΩpX(logD)→ Ap,0 by ϑC(η) := (−1)p[g−1dg ∧
η mod W0]. It induces a morphism of complexes ϑC : Ω•X(logD)→ s(A•,•). Define

ϑQ : Kp
∞ → Cp,0 by ϑQ(x ⊗ y) := (−1)p[x ⊗ g ∧ y]. It induces a morphism of

complexes ϑQ : K•∞ → s(C•,•). By the construction, we have α0 ◦ ϑQ = ϑC ◦ α.

Hence, we obtain a morphism of cohomological mixed Q-Hodge complexes ϑ :

Hdg(X logD)→ ψHdg
g (see [17, Sect. 3.3.4.2] for the definition of a morphism of a

cohomological mixed Hodge complex). We have the mixed cone complex C(ϑ) =(
(C(ϑQ),W ), (C(ϑC),W, F ), αϑ)

)
([17, Sect. 3.3.4.2]). We also have the notion of

shift ([17, Sect. 3.3.3.1]) for cohomological mixed Hodge complexes.

Proposition 3.20. The tuple ΞHdg
g :=

(
(s(C̃•,•),W ), (s(Ã•,•),W, F ), α1

)
con-

stitutes a cohomological mixed Q-Hodge complex on X, which is isomorphic to

C(ϑ)[−1].

Proof. The shifted cone C(ϑQ)[−1] of ϑQ is given by

(C(ϑQ)[−1])k = Kk
∞ ⊕ s(C•,•)k−1

= C̃k,0 ⊕
⊕

p+q=k−1

Cp,q =
⊕
p+q=k

C̃p,q.



Hodge–Tate Conditions 495

The differential d :
⊕

p+q=k C̃
p,q →

⊕
p+q=k+1 C̃

p,q of C(ϑQ)[−1] is given by

d|Ãp,q =−δ for q > 0, and d|Ãp,0 = δ′+(−1)p+1δ′′. The isomorphism hQ : s(C̃•,•)→
C•(ϑQ)[−1] is given by hQ|C̃p,0 := idC̃p,0 and hQ|C̃p,q+1 = (−1)p+qidC̃p,q+1 . The

weight filtration on C(ϑQ)[−1] is given by

W`(C
k(ϑQ)[−1])k = W`K

k
∞ ⊕W`+1s(C

•,•)k−1

= W`s(C̃
•,•)k.

This shows the compatibility of the weight filtrations. A similar argument can be

applied to C(ϑC). The compatibility of Hodge filtration F can easily be checked.

Let hC : s(Ã•,•) → C(ϑC) be the isomorphism defined in the same way as hQ. It

can also be checked that

(αϑ[−1]) ◦ (hQ ⊗ idC) = hC ◦ α1.

Note that αϑ : C(ϑQ) ⊗ C → C(ϑC) is defined by αϑ(x, y) := (αx, α0y) for x ∈
Kk+1
∞ ⊗ C, y ∈ s(C•,•)k ⊗ C. This proves the proposition.

The mixed Hodge complex ΞHdg
g defines a mixed Hodge structure on Hk(X,

s(C̃•,•)), which we denote by Hk(Y, Y∞) = (Hk(Y, Y∞;Q), F,W ).

Corollary 3.21 ([31]). We have the following long exact sequence of mixed Hodge

structures:

(3.15) · · · −→ Hk−1(Y∞) −→ Hk(Y, Y∞) −→ Hk(Y ) −→ Hk(Y∞) −→ · · · .

Proof. Apply [31, Thm. 3.22(2)] to the cone C(ϑ).

Remark 3.22. Although we postpone clarification of the precise relation, the no-

tation ΞHdg
g comes from the notation for Beilinson’s maximal extension (see [18,

Thm. E.3]).

3.4.4. Monodromy weight filtration. Let ν : Ãp,q → Ãp−1,q+1 be the mor-

phism given by ν([η mod Wq−1]) := [η mod Wq]. It induces a nilpotent endomor-

phism on s(Ã•,•), which is also denoted by ν. It can easily be observed that

ν(Wr) ⊂ Wr−2, and ν(Fi) ⊂ Fi+1. We also define ν : C̃p,q → C̃p−1,q+1(−1) simi-

larly: [x⊗ y mod Wq−1]⊗ (2πi)q−1 7→ [x⊗ y mod Wq]⊗ (2πi)q−1. Hence we have

a morphism ν : Hk(Y, Y∞)→ Hk(Y, Y∞)(−1) of mixed Hodge structures for each

k. The following theorem is proved in Section 3.4.6:

Theorem 3.23. The map ν induces isomorphisms

νr : GrWk+rH
k(Y, Y∞)

∼−→ GrWk−rH
k(Y, Y∞)(−r),
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i.e., the weight filtration W on Hk(Y, Y∞) is the monodromy weight filtration of ν

centered at k.

The way to prove this theorem is essentially the same as in [21, Thm. 5.2].

We remark that n in [21] corresponds to n−1 in this paper.

3.4.5. Monodromy weight spectral sequence. By Proposition 3.20, we have

the following:

Corollary 3.24. The spectral sequence for (RΓ(X, s(C̃•,•)),W ) whose E1-term

is given by

E−r,q+r1 = Hq(X,GrWr s(C̃
•,•))

degenerates at the E2-term. In other words, GrWq+rHq(X, s(C̃•,•)) is the cohomology

of the complex

E−r−1,q+r
1

d1−→ E−r,q+r1
d1−→ E−r+1,q+r

1 .

Proof. Apply ([8, (8.1.9)]) to the cohomological mixed Q-Hodge complex ΞHdg
g

on X.

By Theorem 3.16 we have a quasi-isomorphism GrWmK
•
∞'am∗QD(m)[−m](−m).

Recall that GrWj s(C̃
•,•) '

⊕
k≥0,−j GrWj+2kK

•
∞(k). Hence,

E−r,q+r1 = Hq(X,GrWr s(C̃
•,•)) '

⊕
k≥0,−r

Hq(X,GrWr+2kK
•
∞(k))

'
⊕

k≥0,−r

Hq−r−2k(D(2k + r);Q)(−r − k).

Following [21], we put Ki,j,k
Q := Hi+j−2k+n(D(2k − i);Q)(i − k) for k ≥ 0, i, and

Ki,j,k
Q = 0 otherwise. Then we have E−r,q+r1 '

⊕
k∈ZK

−r,q−n,k
Q . We also put

E−r,q+r1,R := E−r,q+r1 ⊗R, Ki,j,k := Ki,j,k
Q ⊗R, and Ki,j :=

⊕
kK

i,j,k. The induced

morphism d1 ⊗ idR is also denoted by d1.

Proposition 3.25 (cf. [21, Lem. (2.7), Prop. (2.9)]). The restriction of d1 to Ki,j,k

decomposes to d′1 : Ki,j,k → Ki+1,j+1,k and d′′1 : Ki,j,k → Ki+1,j+1,k+1. Moreover,

d′1 is the alternating sum of the Gysin map γ(2k−i) in [21, (1.3)] times (−1), and

d′′1 is the alternating sum of restriction map ρ(2k−i) in [21, (1.3)].

Proof. By the definition, d1 : E−r,q+r1 → E−r+1,q+r
1 is induced by the short exact

sequence

0 −→ GrWr−1s(C̃
•,•) −→Wrs(C̃

•,•)/Wr−2s(C̃
•,•) −→ GrWr s(C̃

•,•) −→ 0.

We shall compute the complex version of d1 using Dolbeault resolution, and then

observe the compatibility with the rational structure.
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Let A p,q
X be the sheaf of (p, q)-forms on X. Put A p,q

X,D := ΩpX(logD) ⊗OX
A 0,q
X , A k

X :=
⊕

p+q=k A p,q
X , A k

X,D :=
⊕

p+q=k A p,q
X,D and WmA k

X,D := A k−m
X ∧

A m
X,D. Let d := ∂ + ∂ : A k

? → A k+1
? be the differential (? = X, or X,D). We

have a resolution (Ω•X(logD), d) ' (A •X,D, d) compatible with the filtrations. Put

Ã p,q := A p+q
X,D/Wq−1A

p+q
X,D and define δ′ : Ã p,q → Ã p+1,q, δ′′ : Ã p,q → Ã p,q+1 by

δ′([η mod Wq−1]) = [dη mod Wq−1] and δ′′([η mod Wq−1]) = [g−1dg ∧ η mod Wq].

Denote by s(Ã •,•) the associated single complex. We also define the filtration on

s(Ã •,•) by WrÃ p,q = Wr+2qA
p+q
X,D/Wq−1A

p+q
X,D . We have the quasi-isomorphism

s(Ã•,•) ' s(Ã •,•) compatible with the filtrations.

For k ≥ 0,−r, take a class

[x] ∈ Hq(X,GrWr+2kΩ•X(logD)) ⊂ Hq(X,GrWr s(Ã
•,•)).

Since we have the isomorphism Hq(X,GrWr+2kΩ•X(logD))'Hq(Γ(X,GrWr+2kA
•
X,D)),

then we can take a representative x ∈ Γ(X,GrWr+2kA
q
X,D) with 0 = dx ∈ Γ(X,

GrWr+2kA
q+1
X,D ). Take a lift x̃ ∈ Γ(X,Wr+2kA

q
X,D/Wk−1A

q
X,D) = Γ(X,WrÃ q−k,k).

We have δ′′x̃ ∈ Γ(X,Wr−1Ã q−k,k+1). Since dx = 0, we have δ′x̃ ∈ Γ(X,

Wr−1Ã q−k+1,k). We obtain

d1[x] = [δ′x̃] + [δ′′x]

∈ Hq+1(X,GrWr+2k−1Ω•X(logD))⊕Hq+1(X,GrWr+2k+1Ω•X(logD)).

Defining d′1[x] := [δ′x̃], and d′′1 [x] := [δ′′x̃], we have the decomposition d1 = d′1+d′′1 .

Then, by the construction, d′1 : Hq(X,GrWr+2kΩ•X(logD)) → Hq+1(X,

GrWr+2k−1Ω•X(logD)) is induced by the short exact sequence

0 −→ GrWr+2k−1Ω•X(logD) −→ Wr+2kΩ•X(logD)

Wr+2k−2Ω•X(logD)
−→ GrWr+2kΩ•X(logD) −→ 0.

The differential d′′1 : Hq(X,GrWr+2kΩ•X(logD)) → Hq+1(X,GrWr+2k+1Ω•X(logD)) is

induced by

g−1dg : GrWmΩpX(logD)→ GrWm+1Ωp+1
X (logD) (m ≥ 0).

In [21], it is shown that Résr+2k−1◦d′1 = (−γ(r+2k))◦Résr+2k and Résr+2k+1◦d′′1 =

ρ(r+2k) ◦ Résr+2k holds, where γ(m) : Hk−m(D(m);C) → Hk−m+2(D(m − 1);C)

denotes the (alternating sum of) Gysin map and ρ(m) : Hk(D(m);C)→ Hk(D(m+

1);C) denotes (the alternating sum of) restriction [21, (1.3)]. It is also shown that

similar commutativity holds for rational cohomology ([21, (1.8),(2.9)]). Hence, we

obtain the conclusion.
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The morphism ν : s(C̃•,•) → s(C̃•,•)(−1) induces morphisms ν : Ki,j,k →
Ki+2,j,k+1(−1), which is the identity whenever k ≥ 0, i. Hence, we obtain the

following lemma:

Lemma 3.26 ([21, Lem. (2.7), Prop. (2.9)], [31, Prop. 11.34]).

(1) For all i ≥ 0, ν induces an isomorphism νi : K−i,j
∼−→ Ki,j(−i).

(2) Ker(νi+1) ∩K−i,j = K−i,j,0.

3.4.6. Polarized Hodge–Lefschetz modules. We shall use Guillén–Navarro

Aznar’s formulation [21, Sect. 4] of the result of Saito [39] and Deligne on the

Hodge–Lefschetz modules. Let L•,• =
⊕

i,j∈Z L
i,j be a bi-graded finite-dimensional

R-vector space. Let `1, `2 be endomorphisms on L such that `1(Li,j) ⊂ Li+2,j ,

`2(Li,j) ⊂ Li,j+2 and [`1, `2] = 0. The tuple (L•,•, `1, `2) is called a Lefschetz

module if `i1 : L−i,j → Li,j are isomorphisms for all i > 0 and `j2 : Li,−j → Li,j

are isomorphisms for all j > 0. A Lefschetz module (L•,•, `1, `2) is called a Hodge–

Lefschetz module if every Li,j has real Hodge structure and `1, `2 are morphisms

of real Hodge structures of some types ([20, (1.2)] or [44, Def. 7.22]).

A polarization ψ of a Hodge–Lefschetz module (L•,•, `1, `2) is a morphism

of real Hodge structures ψ : L•,• ⊗ L•,• → R of certain type with the following

properties:

(P1) ψ(`ix, y) + ψ(x, `iy) = 0 for i = 1, 2 and

(P2) ψ(−, `i1`
j
2C−) is symmetric positive definite on L−i,−j0 := L−i,−j∩Ker(`i+1

1 )∩
Ker(`j+1

2 ).

Here C denotes the Weil operator. The tuple (L•,•, `1, `2, ψ) of a Hodge–Lefschetz

module and its polarization is called a polarized Hodge–Lefschetz module.

A differential d on a polarized Hodge–Lefschetz module (L•,•, `1, `2, ψ) is a

morphism of real Hodge structures d : L•,• → L•,• of certain type such that

(D1) d(Li,j) ⊂ Li+1,j+1 for i, j ∈ Z;

(D2) d2 = 0;

(D3) [d, `i] = 0 for i = 1, 2; and

(D4) ψ(dx, y) = ψ(x, dy).

The tuple (L•,•, `1, `2, ψ, d) is called a differential polarized Hodge–Lefschetz mod-

ule. By definition `i defines an endomorphism on the cohomology groupH∗(L•,•, d)

for i = 1, 2, which is denoted by the same notation. We also have a bilinear map

on H∗(L•,•, d), which is also denoted by ψ.
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Theorem 3.27. [21, Thm. (4.5)] Let (L•,•, `1, `2, ψ, d) be a differential polar-

ized Hodge–Lefschetz module. Then (H∗(L•,•, d), `1, `2, ψ) is a polarized Hodge–

Lefschetz module.

Fix a Kähler form ωKäh on X. Let [ωKäh] ∈ H2(X;R) be its cohomology

class. The cup product with the restriction of the class [ωKäh] to H2(D(2k+ i);R)

defines mappings L : Ki,j,k → Ki,j+2,k for all k ≥ 0, i. Define the linear mapping

ψ : K•,• ⊗K•,• → R by

ψ(x, y) :=

{
ε(i+j−n) (2πi)

2k+i ∫
D(2k+i)

x∧y if x ∈ K−i,−j,k, y ∈ Ki,j,k+i,

0 otherwise,

where ε(a) := (−1)a(a−1)/2.

Theorem 3.28 (cf. [21, Thm. (5.1)]). The tuple (K•,•, (2πi)ν, L, ψ, d1) is a dif-

ferential polarized Hodge–Lefschetz module.

Proof. By Lemma 3.26, (2πiν)i : K−i,j
∼−→ Ki,j for i > 0. By the hard Lefschetz

theorem, we also have Lj : Ki,−j ∼−→ Ki,j for j > 0. Hence, (K•,•, (2πi)ν, L)

is a Hodge–Lefschetz module. Since the trace map and the cup product are the

morphisms of Hodge structures, ψ is a morphism of real Hodge structures. By

some direct computation as in [21, Prop. 3.5], we have ψ(x, y) = (−1)nψ(y, x),

ψ((2πi)νx, y) +ψ(x, (2πi)νy) = 0, ψ(Lx, y) +ψ(x, Ly) = 0. This proves (P2). By

Lemma 3.26, and the last formula in [21, (1.3)], we also have ψ(d′1x, y) = ψ(x, d′′1y).

It follows that ψ(d1x, y) = ψ(x, d1y). This proves (D4). Statements (D1), (D2) are

trivial by definition, and (D3) follows from Proposition 3.25.

It remains to prove (P1). Put K−i,−j0 := K−i,−j ∩ Ker(νi+1) ∩ Ker(Lj+1).

By the hard Lefschetz theorem and Lemma 3.26, K−i,−j0 is the primitive part of

Hn−i−j(D(i);R)(−i). If we put Q(x, y) := ψ(x, ((2πi)ν)iLjCy) for x, y ∈ K−i,−j0 ,

we have

Q(x, y) = ε(i+ j − n)

∫
D(i)

(
(2πi)ix

)
∧ LjC(2πi)iy.

Note that ξ := (2πi)ix and η := (2πi)iy are the elements of the primitive part

of Hn−i−j(D(i);R). Since L is the Lefschetz operator on D(i), the map (ξ, η) 7→
ε(i + j − n)

∫
D(i)

ξ ∧ LjCη is positive definite by the classical Hodge–Riemann

bilinear relations. This implies (P1).

Proof of Theorem 3.23. By Theorem 3.27 and Theorem 3.28, the tuple

(H∗(K•,•, d1), (2πi)ν, L, ψ)
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is a polarized Hodge–Lefschetz module. In particular, (2πiν)i : H∗(K•,•, d1)−i,j →
H∗(K•,•, d1)i,j are isomorphisms for i > 0. By Corollary 3.24, this implies the

theorem.

3.4.7. Main theorem. We first compare the nilpotent endomorphisms in Sec-

tion 3.4.1 with ν in Section 3.4.3. Recall that the stupid filtration on (Ω•f , d) was

denoted by F in Lemma 3.4.

Proposition 3.29. We have a filtered quasi-isomorphism ρ : ((Ω•f , d), F )
∼−→

(s(Ã•,•), F ), which is compatible with the nilpotent endomorphisms ϕ2 and ν. In

other words, ν ◦ ρ = ρ ◦ ϕ2 in the derived category.

Proof. The morphism ρ is given by the natural inclusion Ωpf ↪→ ΩpX(logD) = Ãp,0.

It is trivial that ρ is strictly compatible with F . By (3.8), we have a short exact

sequence

0 −→ Ωpf −→ ΩpX(logD) −→ ΩpX(logD)⊗OD −→ 0.

By [42], we have an exact sequence

0 −→ ΩpX(logD)⊗OD
θp−→ Ap,0

δ′′−→ · · ·

where θp(η) := (−1)p[g−1dg ∧ η mod W0]. Hence, we obtain an exact sequence

0 −→ Ωpf
ρ−→ Ãp,0

δ′′−→ Ãp,1
δ′′−→ · · · .

This implies that ρ is a filtered quasi-isomorphism.

Take the shifted cone B• := C•(ν)[−1] of ν. Define % : Ek
0 → Bk = s(Ã•,•)k⊕

s(Ã•,•)k−1 as the restriction of the morphism

ΩkX(log(D ∪ {s = 0}))0 = ΩkX(logD)⊕ s−1dsΩk−1
X (logD) 3

ω1 + s−1dsω2 7→ ω1 ⊕ ω2

∈ Ak,0 ⊕Ak−1,0 ⊂ s(Ã•,•)k ⊕ s(Ã•,•)k−1.

Then % gives a morphism of complexes. Indeed, it is trivial on X \πs(Γ). On πs(Γ),

take a section gω1 + (s−1ds− g−1dg)ω2 of Ek
0 . Note that [gω1 mod W0] = 0, and

[dg ∧ ω1 mod W0] = [g(g−1dg ∧ ω1) mod W0] = 0. Then we have

d%(gω1) = (dg ∧ ω1 + gdω1)⊕ 0

= %(d(gω1)),

d%((s−1ds− g−1dg) · ω2) = d((−g−1dgω2)⊕ ω2)

= (g−1dgdω2)

⊕ (−dω2, [−g−1dg ∧ ω2 + g−1dg ∧ ω2 mod W0])
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= (g−1dgdω2)⊕−dω2

= % ◦ d((s−1ds− g−1dg)ω2).

We obtain the following diagram:

0 // s−1ds · (Ω•f , d)[−1]

ρ

��

// E0

%

��

// (Ω•f , d)

ρ

��

// 0

0 // s(Ã•,•)[−1] // B• // s(Ã•,•) // 0.

Compatibility with ϕ2 and ν follows from this diagram.

Combining Theorems 3.14 and 3.23 and Proposition 3.29 we attain the fol-

lowing main theorem of this paper:

Theorem 3.30. The filtrations F and W on V kf are identified with the Hodge

filtration and the weight filtration on Hk(Y, Y∞;C). In particular, the rescaling

structure Hf is of Hodge–Tate type if and only if the mixed Hodge structures

(Hk(Y, Y∞;Q), F,W ) are Hodge–Tate for all k.

We also have the equation

(3.16) hp,q(Hf ) = dim GrW2pH
p+q(Y, Y∞).

The right-hand side of (3.16) is denoted by hp,q(Y,w) in Section 1. By Lemma 2.12

and Proposition 2.15, we obtain Theorem 1.1(1). Theorem 1.1(2) follows from

Theorem 3.30 immediately.

Remark 3.31. A similar relation between Vf and H•(Y, Y∞) is obtained in [33,

Thms. (4.3), (5.3)] in terms of Hodge modules. However, it is not clear whether

the weight filtrations are the same as ours.

By the strictness of the morphisms of mixed Hodge structures [7, Thm. (2.3.5)],

we have the following well-known fact (see [31, Cor. 3.8] for example):

Lemma 3.32. Let V i = (V iQ, F,W ) (i = 1, 2, 3) be mixed Q-Hodge structures,

where V iQ is the Q-vector space, F is the Hodge filtration on V iC := V iQ ⊗C and W

is the weight filtration for each i. Assume that we have that

V 1 −→ V 2 −→ V 3

is an exact sequence of mixed Q-Hodge structures.

Then for all k, p ∈ Z, the sequences

GrF−pGrWk V
1
C −→ GrF−pGrWk V

2
C −→ GrF−pGrWk V

3
C

of complex vector spaces are exact.
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Note that a mixed Q-Hodge structure V = (VQ, F,W ) is Hodge–Tate if and

only if

GrF−pGrWp+qVC = 0

for p 6= q. Then we immediately have the following:

Corollary 3.33. Let V i be as in Lemma 3.32. If V 1 and V 3 are Hodge–Tate,

then so is V 2.

By the long exact sequence (3.15) of mixed Hodge structures, we have the

following:

Corollary 3.34. If the mixed Hodge structures Hk(Y ) and Hk(Y∞) are of Hodge–

Tate type for all k, then Hf is of Hodge–Tate type.

§4. Examples

In this section, we shall give some examples of the Landau–Ginzburg models (X, f)

in Section 3 such that the induced rescaling structures Hf are of Hodge–Tate type.

In Section 4.1, we consider the case dimX = 2. In Section 4.2, we consider the

case dimX = 3.

§4.1. Two-dimensional examples

We shall prove the following:

Proposition 4.1. Let f : X → P1 be a rational elliptic surface such that (f)∞ is

a reduced normal crossing, and D = |(f)∞| is a wheel of d smooth rational curves

for 2 ≤ d ≤ 9. Then the rescaling structure Hf of (X, f) is of Hodge–Tate type.

Proof. Since X is a rational surface, we have hp,q(X) = 0 for p 6= q. Since D is a

wheel of d rational curves, the (co)homology of D is of Hodge–Tate type (see [31,

Exa. 5.34] for example). We have the exact sequence of mixed Hodge structures

[8, (9.2.1.2)]

· · · −→ Hk(X) −→ Hk(Y ) −→ Hk−1(D)(−1) −→ · · · .

By Corollary 3.33, it follows that Hk(Y ) are Hodge–Tate for all k. By the Clemens–

Schmid exact sequence [20, (10.14), Thm. (10.16)], we have the following exact

sequence of mixed Hodge structures:

Hk(D) −→ Hk(Y∞)
N−→ Hk(Y∞)(−1) −→ H2−k(D)(−2),
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where 0 ≤ k ≤ 2 and N is the nilpotent endomorphism. Since Hk(D) and H2−k(D)

are Hodge–Tate, by Corollary 3.33, we have the exact sequence

(4.1) 0 −→ A1 −→ Hk(Y∞) −→ Hk(Y∞)(−1) −→ A2 −→ 0,

where A1 and A2 are Hodge–Tate. Let pk(x, y) be the Hodge number polynomial

of Hk(Y∞) (see [31, (II-1), Lem. 2.8 & (III-2)] for example). The exact sequence

(4.1) implies that (1 − xy)pk(x, y) =
∑
p apx

pyp for some ap. Hence, we have

pk(x, y) =
∑
p bpx

pyp for some bp. Namely, we have that Hk(Y∞) is of mixed

Hodge–Tate type for each k. By Corollary 3.34, we have the conclusion.

By Theorem 3.30, Lemma 2.12, Proposition 2.15, (3.2) and (3.16), we obtain

the following:

Corollary 4.2. Let (X, f) be as in Proposition 4.1. Then we have fp,q(Y,w) =

hp,q(Y,w), and Hf |τ=1 is special.

Remark 4.3. This example was studied by Auroux–Katzarkov–Orlov [1] as homo-

logical mirrors of del Pezzo surfaces. The equality of Hodge numbers fp,q(Y,w) and

hp,q(Y,w) was proved by Lunts–Przjalkowski [28] who directly computed both of

the numbers (the number fp,q(Y,w) was also computed in Harder’s thesis [22]).

Here, we gave a more conceptual proof of the equality. To the best of the author’s

knowledge, the speciality of Hf |τ=1 was not known.

§4.2. Three-dimensional examples

We consider the toric Landau–Ginzburg models considered in Harder’s thesis [22].

4.2.1. Fano polytope. Let M be a free Abelian group of rank 3. Put MR := M⊗
R, and N := HomZ(M,Z). We have the natural pairing 〈·, ·〉 : M ×N → Z. Define

NR similarly. We consider an integral polytope P with the following properties:

(a) There is a finite set {uF | F is a facet of P} of primitive vectors in N indexed

by all facets of P such that{
P = {m ∈MR|〈m,uF〉 ≥ −1 for all F} ,
F = {m ∈ P | 〈m,uF〉 = −1}.

In particular, the origin 0 ∈M is contained in the interior of P.

(b) For each facet F, the set of vertexes of F form a basis of M . In particular, F is

a triangle whose interior does not contain the point of M .

Remark 4.4. Condition (a) is called reflexivity. Condition (b) implies that the

cone generated by F is smooth. These cones generate a smooth fan, which defines

a smooth Fano variety.
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4.2.2. Toric varieties. For a face Q of P, let σQ be the cone generated by {uF |
Q ⊂ F}. We remark that σP = {0} since {0} is the cone generated by the empty set.

Then we have a fan ΣP := {σQ | Q is a face of P} (see [6, Thm. 2.3.2] for example).

Although this fan is not smooth in general, we have a smooth refinement Σ of ΣP.

Since the dimension of ΣP is 3, the refinement is given by a triangulation of the

convex hull of the set {uF | F is a facet of P}. In particular, together with condition

(a), we may assume that for every primitive vector uρ of a ray ρ in Σ, we have

minm∈P〈m,uρ〉 = −1. The toric variety corresponding to Σ is denoted by XΣ.

It contains the algebraic torus TN = Spec(C[M ]) as an open dense subset. Put

DΣ := XΣ \ TN .

4.2.3. A non-degenerate Laurent polynomial. We consider a Laurent poly-

nomial

fP(χ) =
∑
m∈M

cmχ
m ∈ C[M ],

where cm are complex numbers and χm is the monomial corresponding to m ∈M .

The polynomial fP is considered an algebraic function on TN . Since TN is an open

dense subvariety of XΣ, fP is considered a meromorphic function on XΣ, whose

pole divisor is contained in DΣ. We impose the following non-degenerate condition

on fP:

(c) The convex hull of {m | cm 6= 0} in MR is P.

(d) For every face Q ⊂ P, put fQ(χ) :=
∑
m∈Q cmχ

m. Then the intersection of

(dfQ)−1(0) and f−1
Q (0) in TN is empty for every Q.

The meaning of the non-degenerate condition considering fP as a meromorphic

connection on XΣ is explained later.

4.2.4. Coordinate system with respect to a cone. Fix an isomorphism

M
∼−→ Z3; m 7→ (m1,m2,m3). Let (ei)

3
i=1 be a canonical base of M via M

∼−→ Z3.

We have an isomorphism C[M ]
∼−→ C[x±1 , x

±
2 , x

±
3 ] by χm 7→ xm1

1 xm2
2 xm3

3 . For a

maximal cone σ ∈ Σ(3), take primitive vectors uρ for rays ρ of σ. Then the open

subvariety Uσ = Spec(C[σ∨∩M ]) of XΣ has coordinate (yρ)ρ∈σ(1). The relation be-

tween the two coordinates is given by xi =
∏
ρ y
〈ei,uρ〉
ρ . The function fP considered

as a meromorphic function on Uσ is given by

(4.2) fP(y) =
∑
m∈P

cm
∏

ρ∈σ(1)

y〈m,uρ〉ρ .

4.2.5. Pole orders along invariant divisors. For each ray ρ ∈ Σ(1), we have

the divisor Dρ invariant under the action of TN . If ρ ∈ σ(1), the intersection
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Uσ ∩Dρ is given by {yρ = 0}. Let Qρ be a face defined by

Qρ :=

{
m ∈ P

∣∣∣∣〈m,uρ〉 = min
m′∈P
〈m′, uρ〉 = −1

}
.

Note that Qρ 6= ∅. Equation (4.2) is written

(4.3) fP(y) = y−1
ρ

yρfQρ(y) + yρ
∑

m∈P,〈m,uρ〉≥0

cm
∏

ρ′∈σ(1)

y
〈m,uρ′ 〉
ρ′

 .

Note that yρfQρ(y) does not depend on yρ. The pole order along Dρ is 1.

4.2.6. Non-degenerate condition. For a τ ∈ σ(2), take ρ, ρ′ ∈ σ(1) so that

τ = ρ+ ρ′. Put Qτ := Qρ ∩ Qρ′ . We have

(4.4)

fP(y) = y−1
ρ y−1

ρ′

yρyρ′fQτ (y) + yρyρ′
∑
m∈P,

〈m,uρ〉≥0 or 〈m,uρ′ 〉≥0

cm
∏

ρ′′∈σ(1)

y
〈m,uρ′ 〉
ρ′′

 .

Note that yρyρ′fQτ (y) does not depend on yρ or yρ′ . There is also a similar de-

scription of fP for the vertex Qσ =
⋂
ρ∈σ(1) Qρ. From these descriptions, we have

the following properties of the zero divisor (fP)0 in XΣ:

• The divisor (fP)0 is a (reduced) smooth hypersurface of XΣ.

• The fixed points of the action of TN are not contained in (fP)0.

• The divisor DΣ ∪ (fP)0 is a simple normal crossing.

4.2.7. Base locus. Put Bρ := |(fP)0| ∩Dρ for all rays ρ in Σ.

Lemma 4.5. For every ρ, Bρ is isomorphic to a projective line.

Proof. By the non-degenerateness of fP, all Bρ are smooth curves in XΣ. Since

DΣ ∪ (fP)0 is a normal crossing, the intersections of Bρ and the lower-dimensional

TN -orbits in Dρ are zero-dimensional. Therefore, it is enough to show that the

intersection of |(fP)0| and the two-dimensional orbit in Dρ is rational.

Take a facet F ⊂ P which contains Qρ. By assumptions (a), (b) in Section 4.2.1,

F is a triangle, whose vertexes e1, e2, e3 form a Z-basis of M . Using this basis, we

take an isomorphism M ' Z3. Let (x1, x2, x3) be the corresponding coordinate as

in Section 4.2.4. Put

I := {i ∈ {1, 2, 3} | ei is a vertex of Qρ}.

Note that I 6= ∅, and fQρ =
∑
i∈I cixi 6= 0.
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Take σ ∈ Σ(2) so that ρ ∈ σ(1). Let ρ1 := ρ, ρ2, ρ3 be the three ray of σ. Put

yi := yρi for i = 1, 2, 3. Then g := y1fQρ is a Laurent polynomial depending only

on y2, y3. We need to show that {(y2, y3) ∈ (C∗)2 | g(y2, y3) = 0} is rational. This

space is isomorphic to the quotient space of {(y1, y2, y3) ∈ (C∗)3 | fQρ(y1, y2, y3) =

0} by the C∗-action defined by t · (y1, y2, y3) := (ty1, y2, y3).

Using the coordinate (x1, x2, x3), the C∗-action is given by t · (x1, x2, x3) =

(t−1x1, t
−1x2, t

−1x3) since 〈ei, uρ1〉 = −1. We are considering the quotient space

of {(x1, x2, x3) ∈ (C∗)3 |
∑
i∈I cixi = 0}. Since the quotient of {(x1, x2, x3) ∈

C3 |
∑
i∈I cixi = 0} by the action defined above is a line in P2, we obtain the

rationality.

4.2.8. Blow-ups. Take an ordering Σ(1) = {ρ1, . . . , ρ`} for the set of all rays in

Σ. We consider the following sequence of blow-ups:

X = X(`) p(`−1)

−−−−→ · · · → X(j+1) p(j)−−→ X(j) → · · · p
(0)

−−→ X(0) = XΣ,

where p(j) : X(j+1) → X(j) is the blow-up along the strict transform of Bρj+1
in

X(j). The composition X → XΣ is denoted by πΣ. The strict transform of Dρj is

denoted by Dj (1 ≤ j ≤ `).

Lemma 4.6. We have the following:

(1) The divisor Dj is given by the composition of blow-ups of Dρj along reduced

0-schemes.

(2) The union D :=
⋃
j Dj is a simple normal crossing.

(3) The pole divisor of π∗ΣfP is reduced and the support |(π∗ΣfP)∞| is D.

(4) The pull-back of fP by πΣ gives a well-defined morphism π∗ΣfP : X → P1.

Proof. Let π(i) : X(i) → X(0) be the composition p(i−1)◦· · ·◦p(0) for i = 1, 2, . . . , `.

We put π(0) := idX(0) . Let f (i) be the pull-back of fP by π(i) for i = 0, 1, . . . , `.

Let D
(i)
j (resp. B

(i)
j ) denote the strict transform of Dρj (resp. Bρj ) in X(i) for

i, j = 1, 2, . . . , `. Put D
(0)
j := Dρj and B

(0)
j := Bρj . We define D(i) :=

⋃
j D

(i)
j . We

shall prove the following by the induction on i:

(1)i The divisor D
(i)
j is given by the composition of blow-ups of D

(0)
j along reduced

0-schemes.

(2)i The zero divisor (f (i))0 is a reduced smooth hypersurface of X(i), and the

union (f (i))0 ∪D(i) is a simple normal crossing.

(3)i The pole divisor (f (i))∞ is reduced and the support |(f (i))∞| is D(i).

(4)i The intersection (f (i))0 ∩ (f (i))∞ ∩
(⋃i

j=1D
(i)
j

)
is empty.
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Note that (1)0, and (4)0 are trivial. We also remark that (2)0 and (3)0 are shown

in Sections 4.2.5 and 4.2.6.

Take i ∈ {1, 2, . . . , `}. Assume that (1)i−1, (2)i−1, (3)i−1, (4)i−1 hold. Let Q

be an arbitrary point in B
(i−1)
i . By assumption (2)i−1, (3)i−1, we have a local

coordinate system (UQ; z0, z1, z2) centered at Q with the following properties:

D(i−1) ∩ UQ =

k⋃
i=1

{zi=0}, D(i−1)
i ∩ UQ = {z1=0} and f

(i−1)
|UQ (z) = z0 ·

k∏
i=1

z−1
i ,

where k = 1 or 2. We have B
(i−1)
i ∩ UQ = {z0 = z1 = 0}. Let VQ be the inverse

image of UQ by p(i−1). Then we have

VQ =
{(

(z0, z1, z2), [w0 : w1]
)
∈ UQ × P1 | z0w1 − z1w0 = 0

}
.

If k = 2 and {z2 = 0} = D
(i−1)
j then j > i by assumption (4)i−1, and D

(i)
j ∩ VQ is

given by the blow-up of D
(i−1)
j ∩UQ at the reduced point Q. On V +

Q := VQ∩{w0 6=
0}, we have a local coordinate (u0, u1, u2) with z0 = u0, z1 = u0u1, z2 = u2 and

w1/w0 = u1. We have f
(i)

|V +
Q

(u) =
∏k
i=1 u

−1
i . The strict transform D

(i)
i ∩V

+
Q is given

by {u1 = 0}. On V −Q := VQ∩{w1 6= 0}, we have a local coordinate (v0, v1, v2) with

z0 = v0v1, z1 = v1, z2 = v2 and w0/w1 = v0. We have f
(i)

V −Q
(v) = v0 if k = 1, and

f
(i)

V −Q
(v) = v0v

−1
2 if k = 2. The strict transform D

(i)
i ∩ V

−
Q is given by {v1 = 0}.

By this description and the assumptions, we have (1)i, (2)i, (3)i, (4)i. Then, by the

induction, we obtain (1)`, (2)`, (3)`, (4)`. It is easy to prove that (1)`, (2)`, (3)`, (4)`
implies the lemma.

4.2.9. Hodge–Tate condition. We obtain the following:

Proposition 4.7. Let f : X → P1 be the pull-back of fP by πΣ. Then the rescaling

structure Hf is of Hodge–Tate type.

Proof. By Lemma 4.6, the pair (X, f) satisfies the condition in Section 3. Since

X is given by blow-ups of a toric manifold along projective lines, hp,q(X) = 0 for

p 6= q ([44, Thm. 7.31]). Since Dj is given by the composition of blow-ups of Dρj

along reduced 0-schemes (Lemma 4.6(1)), and each Di ∩Dj is isomorphic to P1,

the (co)homology of D is Hodge–Tate (see [31, Exa. 5.34] for example). Hence, by

Lemma 3.33 and the exact sequence

· · · −→ Hk(X) −→ Hk(Y ) −→ Hk−1(D)(−1) −→ · · · ,

we have that the mixed Hodge structure on Hk(Y ) is Hodge–Tate for each k. By

Corollary 3.34, it remains to show that the limit mixed Hodge structure Hk(Y∞)
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is of Hodge–Tate type. From the Clemens–Schmid exact sequence [20, (10.14),

Thm. (10.16)], we obtain the exact sequence of mixed Hodge structures

Hk(D) −→ Hk(Y∞)
N−→ Hk(Y∞)(−1) −→ H4−k(D)(−3),

where 0 ≤ k ≤ 4. By Corollary 3.33, we have the exact sequence

0 −→ A1 −→ Hk(Y∞) −→ Hk(Y∞)(−1) −→ A2 −→ 0,

where A1 and A2 are Hodge–Tate. Then, by a similar argument to the proof of

Proposition 4.1, Hk(Y∞) is also Hodge–Tate for each k.

Similarly to Corollary 4.2, we have the following:

Corollary 4.8. Let (X, f) be as in Proposition 4.7. Then we have fp,q(Y,w) =

hp,q(Y,w). We also have that Hf |τ=1 is special.

Remark 4.9. In [22], A. Harder computed the number fp,q(Y,w) and compared

it with the Hodge number of the smooth toric Fano manifold XP associated to

P [22, Thm. 2.3.7]. In [32], Reichelt–Sevenheck studied the hypergeometric D-

module associated to (a family of) fP, and solved a kind of Birkhoff problem. The

result here is a priori different from theirs since the cohomology considered here

is different from the one considered in [32]. We also remark that T. Mochizuki

informed us that we can obtain similar but a priori different results from the

viewpoint of twistor D-modules.

Appendix A. Rescaling structures for quantum D-modules of Fano

manifolds

Appendix A.1. Square roots of Tate twists

We use the notation in Section 2.2. Set T1/2 := OS(∗(λ)∞)w where w is a

global section with degw = 1. We define a connection ∇ on T1/2 by ∇w :=

−(1/2)wλ−1 dλ. Since p∗2(T1/2,∇) is not isomorphic to σ∗(T1/2,∇), (T1/2,∇) is

not equipped with a rescaling structure. However, we have a flat isomorphism

(T1/2)⊗2 ∼−→ T;w⊗2 7→ v. Hence we use the notation T(−1/2) := (T1/2,∇). For

each k ∈ Z, we define

(A.1) T(−k/2) :=

{
T(−1/2)⊗k (k ≥ 0),

(T(−1/2)∨)⊗−k (k < 0).

In the case where k ∈ 2Z, T(k/2) is identified with the rescaling structure defined

in Example 2.6. For a meromorphic connection (H,∇) as in Definition 2.5, we also

define H(k/2) := H⊗ T(k/2).
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Appendix A.2. Tate twisted quantum D-modules

Let F be a smooth projective Fano variety over C of dimension n. Put HHa(F) :=⊕
a=q−pH

q(F,ΩpF). Set HH•(F) :=
⊕

a HHa(F) and identify it with H•(F;C) by

the Hodge decomposition. Let ?τ be the quantum cup product of F with respect

to the parameter c1(F) log τ ∈ H2(F;C), where c1(F) is the first Chern class of

the tangent bundle of F. This is well defined for all τ ∈ C. Indeed, the right-hand

side of

(A.2) (α ?τ β, γ)F =
∑

d∈H2(F;Z)

〈α, β, γ〉F0,3,dτ c1(F)·d

is a finite sum since F is Fano, where α, β, γ ∈ H•(F;C) ' HH•(F), (·, ·)F denotes

the Poincaré pairing, and 〈·, ·, ·〉F0,3,d denotes genus-zero 3-points Gromov–Witten

invariant of degree d ∈ H2(F;Z) (see [3], [4], [5], and references therein).

For any non-negative integer k, we take a finite rank free OS(∗(λ)∞)-module
aHk := HHk−n(F)⊗OS(∗(λ)∞). The Z-grading of aHk is defined to be 0. Define

µF ∈ End(HHk−n(F)) by µF|Hq(F,ΩpF) := (p + q − n)/2 · idHq(F,ΩpF). We also have

an endomorphism c1(F)?τ on HHk−n(F). We have the Dubrovin connection a∇
on aHk as follows ([13], [14], [15]):

a∇ := d+
c1(F)?τ

λ

dτ

τ
+ µF

dλ

λ
− c1(F) ?τ

dλ

λ2
.

Proposition A.1. We have that HkF := aHk(−k/2) comes equipped with a rescal-

ing structure.

Proof. We have thatHkF is identified with the free OS(∗(λ)∞)-module HHk−n(F)⊗
OS(∗(λ)∞) with the connection

∇ = d+
c1(F)?τ

λ

dτ

τ
+

(
µF −

k

2
· id
)
dλ

λ
− c1(F) ?τ

dλ

λ2
.

Taking the pull-back by σ : C∗θ × S → S; (θ, λ, τ) 7→ (θλ, θτ), we have

σ∗∇ = d+
c1(F)?θτ

θλ

dτ

τ
+

(
µF −

k

2
· id
)(

dλ

λ
+
dθ

θ

)
− c1(F)?θτ

θ

dλ

λ2
.

Put µk := µF − (k/2) · id. On Hq(F,ΩpF) with q − p = k − n, we have µk =

(q − k) · id = (p− n) · id. Hence we have a morphism of OC∗θ×S(∗(λ)∞)-modules:

θ−µk : p∗2HkF
∼−→ σ∗HkF.

By (A.2), we obtain

c1?τ = θµk
(
c1(F)?θτ

θ

)
θ−µk ,
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which implies that θ−µk is flat with respect to the connections (see [19, Sect. 2.2]

for example).

Definition A.2. We define a rescaling structure HF by

HF :=
⊕
k∈Z
HkF.

We call HF a Tate twisted quantum D-module of F.

Remark A.3. The Z/2Z-graded flat meromorphic connection aH in the introduc-

tion (or [26]) is given by aH =
⊕

k
aHk, where the Z/2Z-grading on aHk is given

by (k mod 2).

Appendix A.3. Hodge–Tate condition and Hodge numbers

The fiber of HkF at (λ, τ) = (1, 0) is naturally identified with HHk−n(F). We

shall describe the Hodge and weight filtrations on HHk−n(F) in the sense of Sec-

tion 2.3.1.

As we have seen in the proof of Proposition A.1, the C∗-action on HkF|τ=0 is

given by θ−(q−k) = θ−(p−n) on Hq(F,ΩpF) ⊗ OCλ with q − p = k − n. Hence the

Hodge filtration on HHk−n(F) is

(A.3) FiHHk−n(F) =
⊕

p−n≤i,
q−p=k−n

Hq(F,ΩpF).

We obtain fp,q(HF) = dimHq(F,Ωn−pF ) = hn−p,q(F).

The residue endomorphism Nk := Resτ∇ on HHk−n(F) is identified with

c1(F)∪. It follows that the monodromy weight filtration centered at k is

(A.4) kWiHHk−n(F) =
⊕

p≥n−i/2,
q−p=k−n

Hq(F,ΩpF).

Hence, we have hp,q(HF) = hn−p,q(F). By (A.3) and (A.4), we obtain the following:

Proposition A.4. The Tate twisted quantum D-module HF satisfies the Hodge–

Tate condition for any smooth projective Fano variety F.

Appendix B. Relation to the work of Katzarkov–Kontsevich–Pantev

Appendix B.1. Tame compactified Landau–Ginzburg model

In [26], Katzarkov–Kontsevich–Pantev considered the following:
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Definition B.1 ([26, Def. 2.4, (T)]; see also [28, Def. 3]). A tame compactified

Landau–Ginzburg model is a tuple ((X, f), D, volX), where

(1) X is a smooth projective variety and f : X → P1 is a flat projective morphism;

(2) D = (
⋃
iD

h
i ) ∪ (

⋃
j D

v
j) ⊂ X is a reduced normal crossing divisor such that

(a) Dv =
⋃
j D

v
j is a scheme-theoretic pole divisor of f , i.e., (f)∞ = Dv, and

in particular, the pole order of f along Dv
j is 1;

(b) each component Dh
i of Dh :=

⋃
iD

h
i is smooth and horizontal for f , i.e.,

f|Dh
i

is a flat morphism;

(c) the critical locus of f does not intersect Dh;

(3) volX is a nowhere vanishing meromorphic section of the canonical bundle KX

with poles of order exactly 1 along each component of D. In other words, we

have an isomorphism OX
∼−→ KX(D); 1 7→ volX .

In this paper (Section 3), the horizontal divisor Dh is assumed to be empty,

and each component Dv
j is assumed to be smooth. Although we do not impose the

existence of volX in Section 3, all examples in Section 4 have volX .

Appendix B.2. Landau–Ginzburg Hodge numbers

The Hodge number fp,q(Y,w) in this paper corresponds to fq,p(Y,w) in [26,

Def. 3.1]. The definition in this paper is suited to the convention in classical Hodge

theory. The number hp,q(Y,w) in [26] is dim GrWp H
p+q(Y, Y∞) in our notation. Our

definition of hp,q(Y,w) is dim GrW2pH
p+q(Y, Y∞), which is different from their def-

inition. As mentioned in [28], their definition seems not to be what they had in

mind. The definition of hp,q(Y,w) in this paper corresponds to hq,p(Y,w) in [28,

Def. 3]. In [28], they also give a counterexample for the part of equality with the

numbers ip,q(Y,w) in [26, Conj. 3.6].

Appendix B.3. One-parameter families

Recall that S = P1
λ×Cτ . We also recall that πS : S×X → X and pS : S×X → S

denote the projections. Put

ΩkX,S(∗D) := OX×S(∗(λ)∞)⊗ π−1
S ΩkX(∗D).

Let bHk be the OS(∗(λ)∞)-module defined by

bHk := RkpS∗(Ω•X,S(∗D), λd+ τ df∧).
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Let ∇ : Ω•X,S(∗D)→ Ω•X,S(∗D)⊗ p∗SΩ1
S(∗|(λτ)0|) be the connection on Ω•X,S(∗D)

:=
⊕

k ΩkX,S(∗D) defined by

∇ = dS +
f

λ
dτ + G

dλ

λ
− τf dλ

λ2
,

where G = −(k/2)id on ΩkX,S(∗D). Then we have [∇∂τ , λd + τ df∧] = 0, and

[∇∂λ , λd + τ df∧] = (2λ)−1(λd + τ df∧). Let A p,q
X be the sheaf of (p, q)-forms on

X and ∂ and ∂ be the Dolbeault operators. Put A p,q
X,S,D := ΩpX,S(∗D) ⊗π−1

S OX
π−1
S A 0,q

X . Let ∂ : A p,q
X,S,D → A p+1,q

X,S,D, and ∂ : A p,q
X,S,D → A p,q+1

X,S,D be the induced

operators. Put A `
X,S,D :=

⊕
p+q=` A p,q

X,S,D and

dtot := λ∂ + ∂ + τ∂f : A `
X,S,D → A `+1

X,S,D.

We have a natural quasi-isomorphism

ιDol : (Ω•X,S(∗D), λd+ τ df)
∼−→ (A •X,S,D, dtot).

We also have the connection ∇ : A •X,S,D → A •X,S,D ⊗ Ω1
S(∗|(λτ)0|) by

∇ := dS +
f

λ
dτ + µf

dλ

λ
− τf dλ

λ2
,

where µf |A p,q
X,S,D

= 2−1(q− p) · id. Then ιDol ◦∇ = ∇ ◦ ιDol by definition. We have

[∇∂τ , dtot] = 0, and

[∇∂λ , dtot] = [∂λ + λ−1µf − λ−2τf, λ∂ + ∂ + τ∂f ]

= ∂ − (1/2)∂ + (1/2)λ−1∂ − (1/2)λ−1τ∂f + λ−1τ∂f

= (2λ)−1(λ∂ + ∂ + τ∂f) = (2λ)−1dtot.

Hence ∇ gives a connection b∇k on bHk 'H kpS∗(A •X,S,D, dtot). We remark that

similar discussions are given in [16] and [25].

Lemma B.2. For each k ∈ Z≥0, we have (bHk, b∇k)(−k/2) ' Hkf .

Proof. We have a natural isomorphism (bHk, b∇k)(−k/2) ' (bHk, b∇k −
(k/2)λ−1dλ). Then the connection b∇k−(k/2)λ−1dλ is induced from the following

connection on A •X,S,D:

∇′ := dS +
f

λ
dτ + P

dλ

λ
− τf dλ

λ2
,

where P|A p,q
X,S,D

= 2−1((q − p) − (p + q)) · id = (−p) · id. Note that [∇′, dtot] = 0.

Moreover, it is induced from the following connection on Ω•X,S(∗D):

∇′ = dS +
f

λ
dτ + P

dλ

λ
− τf dλ

λ2
,
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where P|ΩpX,S(∗D) = (−p) · id. We also remark that [∇′, λd + τ df ] = 0. Then the

quasi-isomorphism

iso : (Ω•f,λ,τ , d+ λ−1τ df)
∼−→ (Ω•X,S(∗D), λd+ τ df)

on S∗ × X = (C∗λ × C∗τ ) × X defined by iso|Ωpf,λ,τ = λp induces the conclusion

naturally.

Remark B.3. It seems that the connection on bH which Katzarkov–Kontsevich–

Pantev had in mind in [26, (3.2.2)] was the one where f is replaced by qf. The dual

of it (or, the connection (bH, b∇) defined first in [26, Sect. 3.2.2]) is isomorphic to⊕
k∈Z(bHk,b∇k).
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