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Abstract

The notions of a Q-Gorenstein scheme and a Q-Gorenstein morphism are introduced
for locally Noetherian schemes by dualizing complexes and (relative) canonical sheaves.
These cover all the previously known notions of a Q-Gorenstein algebraic variety and
a Q-Gorenstein deformation satisfying the Kollár condition, over a field. By studying
the relative S2-condition and base change properties, valuable results are proved for Q-
Gorenstein morphisms, which include the infinitesimal criteria, the valuative criterion,
and Q-Gorenstein refinements.
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§1. Introduction

The notion of a Q-Gorenstein variety is important for the minimal model theory

of algebraic varieties in characteristic zero: A normal algebraic variety X defined

over a field of any characteristic is said to be Q-Gorenstein if rKX is Cartier for

some positive integer r, where KX stands for the canonical divisor of X. In some

papers, X is additionally required to be Cohen–Macaulay. Reid used this notion

essentially to define the canonical singularity in [49, Def. (1.1)], and he named the

notion “Q-Gorenstein” in [50, (0.12.e)], where the Cohen–Macaulay condition is

required. The notion without the Cohen–Macaulay condition appears in [24] for

example. In the minimal model theory of algebraic varieties of dimension more

than two, we must deal with varieties with mild singularities such as terminal,

canonical, log-terminal, and log-canonical (cf. [24, §0–2] for the definition). The

notion of Q-Gorenstein is hence frequently used in studying the higher dimensional

birational geometry.

The notion of a Q-Gorenstein deformation is also popular in the study of

degenerations of normal algebraic varieties in characteristic zero related to the

minimal model theory and the moduli theory since the paper [31] by Kollár and

Shepherd-Barron. Roughly speaking, a Q-Gorenstein deformation X → C of a

Q-Gorenstein normal algebraic variety X is considered as a flat family of algebraic

varieties over a smooth curve C with a closed fiber being isomorphic to X such that

rKX/C is Cartier and rKX/C |X ∼ rKX for some r > 0, where KX/C stands for

the relative canonical divisor. We call such a deformation “naively Q-Gorenstein”

(cf. Definition 7.1 below). This is said to be “weakly Q-Gorenstein” in [15, §3], or

satisfying Viehweg’s condition (cf. [21, §2, Property V[N ]]). We say that X → C

is a Q-Gorenstein deformation if

OX (mKX/C)⊗OX OX ' OX(mKX)

for any integer m. This additional condition seems to be considered first by Kollár

[27, 2.1.2], and it is called the Kollár condition; a similar condition is named Prop-

erty K in [21, §2] for example. A typical example of a Q-Gorenstein deformation

appears as a deformation of the weighted projective plane P(1, 1, 4): Its versal

deformation space has two irreducible components, in which the one-dimensional

component corresponds to the Q-Gorenstein deformation and its general fibers

are P2 (cf. [46, §8]). The Q-Gorenstein deformation is also used in constructing

some simply connected surfaces of general type over the complex number field C
in [34]. The authors have succeeded in generalizing the construction to the positive

characteristic case in [33], where a special case of Q-Gorenstein deformation over

a mixed characteristic base scheme is considered.
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During the preparation of the joint paper [33], the authors began generalizing

the notion of a Q-Gorenstein morphism to the case of morphisms between locally

Noetherian schemes. The purpose of this article is to give good definitions of

Q-Gorenstein scheme and Q-Gorenstein morphism: We define the notion of “Q-

Gorenstein” for locally Noetherian schemes admitting dualizing complexes (cf.

Definition 6.1 below) and define the notion of “Q-Gorenstein” for flat morphisms

locally of finite type between locally Noetherian schemes (cf. Definition 7.1 below).

So, we try to define the notion of “Q-Gorenstein” as generally as possible. We do

not require the Cohen–Macaulay condition for fibers, which is assumed in most

articles on Q-Gorenstein deformations, and we allow all locally Noetherian schemes

as the base scheme of a Q-Gorenstein morphism.

Q-Gorenstein schemes and Q-Gorenstein morphisms

The definition of a Q-Gorenstein scheme in Definition 6.1 below is interpreted

as follows (cf. Lemma 6.4(3)): A locally Noetherian scheme X is said to be Q-

Gorenstein if and only if

• it satisfies Serre’s condition S2,

• it is Gorenstein in codimension one,

• there exists a dualizing sheaf L locally on X and the double dual of L⊗r is

invertible for some integer r > 0 locally on X.

Here we consider a dualizing sheaf (cf. Definition 4.13) as the 0th cohomology

H0(R•) of an ordinary dualizing complex R•, which is a dualizing complex of

special type and exists for any locally equi-dimensional (cf. Definition 2.2(3)) and

locally Noetherian schemes admitting dualizing complexes (cf. Lemma 4.14). The

dualizing sheaf of the Gorenstein locus U = Gor(X) is isomorphic to L|U up to

tensor product with invertible sheaves, and L is a reflexive OX -module with an

isomorphism L ' j∗(L|U ) for the open immersion j : U ↪→ X. This definition

generalizes the usual definition of Q-Gorenstein normal algebraic varieties over a

field (cf. Example 6.6).

On the other hand, in order to define Q-Gorenstein morphisms, we need to

discuss the relative canonical sheaf of an S2-morphism. An S2-morphism is defined

as a flat morphism of locally Noetherian schemes which is locally of finite type

and every fiber satisfies Serre’s condition S2 (cf. Definition 2.30). By Conrad [7,

Sect. 3.5] and Sastry [51], we have a good notion of the relative canonical sheaf for

Cohen–Macaulay morphisms. For an S2-morphism f : Y → T of locally Noetherian

schemes, the relative Cohen–Macaulay locus Y [ = CM(Y/T ) is an open subset

(cf. Definition 2.28 and Fact 2.29), and we define the relative canonical sheaf ωY/T
as the direct image by the open immersion Y [ ⊂ Y of the relative canonical



520 Y. Lee and N. Nakayama

sheaf ωY [/T of the Cohen–Macaulay morphism Y [ → T (cf. Definition 5.3). The

sheaf ωY/T is coherent (cf. Proposition 5.5), and it is reflexive when every fiber is

Gorenstein in codimension one (cf. Proposition 5.6). We set ω
[m]
Y/T to be the double

dual of ω⊗mY/T for m ∈ Z, and we define Q-Gorenstein morphisms as follows: A flat

morphism f : Y → T locally of finite type between locally Noetherian schemes is

called a Q-Gorenstein morphism (cf. Definition 7.1) if and only if

• every fiber is a Q-Gorenstein scheme and

• ω[m]
Y/T satisfies relative S2 over T for any m ∈ Z.

Note that f is an S2-morphism and every fiber is Gorenstein in codimension one,

by the first condition. The second condition corresponds to the Kollár condition.

A weaker notion, a naively Q-Gorenstein morphism, is defined by replacing the

second condition with

• ω[m]
Y/T is invertible for some m locally on Y .

This condition corresponds to Viehweg’s condition.

By our definition above, we can consider Q-Gorenstein deformations f : Y →
T of a Q-Gorenstein scheme X defined over a field k. Here f is a Q-Gorenstein

morphism, T contains a point o with residue field k, and the fiber Yo = f−1(o) is

isomorphic to X over k. The scheme X is not necessarily assumed to be reduced

nor normal, and f is not necessarily a morphism of k-schemes. The Q-Gorenstein

deformations of non-normal schemes have been treated in articles in some special

cases: Hacking [15] and Tziolas [56] consider Q-Gorenstein deformations of slc

surfaces, which are not normal in general, over C. The work of Abramovich–Hassett

[1] covers also non-normal reduced Cohen–Macaulay algebraic schemes over a fixed

field. By further study of Q-Gorenstein morphisms, we may have a well-defined

theory of infinitesimal Q-Gorenstein deformations, which is now in progress in the

authors’ joint work.

Notable results on Q-Gorenstein morphisms

Some expected properties on Q-Gorenstein morphisms can be verified by standard

methods. For example, we prove that Q-Gorenstein morphisms are stable under

base change and composition (cf. Propositions 7.22(5) and 7.23(3)). Besides such

elementary properties, we have notable results in the topics below, which show

that our definition of Q-Gorenstein morphism is reasonable and widely applicable:

(1) A sufficient condition for a virtually Q-Gorenstein morphism to be Q-Goren-

stein

(2) Infinitesimal and valuative criteria for a morphism to be Q-Gorenstein
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(3) Some conditions on fibers related to Serre’s S3-condition which are sufficient

for a morphism to be Q-Gorenstein

(4) The existence of Q-Gorenstein refinement

We shall explain results on these topics briefly.

(1): The virtually Q-Gorenstein morphism is introduced in Section 7.2 as a

weak form of a Q-Gorenstein morphism (cf. Definition 7.13). This is inspired by the

definition [15, Def. 3.1] by Hacking on a Q-Gorenstein deformation of an slc surface

in characteristic zero: His definition is generalized to the notion of a Kollár family

of Q-line bundles in [1]. Hacking defines the Q-Gorenstein deformation by the

property that it locally lifts to an equivariant deformation of an index-one cover.

This definition essentially coincides with our definition of a virtually Q-Gorenstein

morphism (cf. Lemma 7.16 and Remark 7.17). A Q-Gorenstein morphism is always

a virtually Q-Gorenstein morphism. The converse holds if every fiber satisfies S3;

it is proved as a part of Theorem 7.18. This theorem is derived from Theorems 3.16

and 5.10 on criteria for certain sheaves to be invertible, and from a study of the

relative canonical dualizing complex in Section 5.1. By Theorem 7.18, we can study

infinitesimal Q-Gorenstein deformations of a Q-Gorenstein algebraic scheme over

a field satisfying S3 via the equivariant deformations of the index-one cover.

(2): The infinitesimal criterion says that, for a given flat morphism f : Y → T

locally of finite type between locally Noetherian schemes, it is a Q-Gorenstein

morphism if and only if the base change fA : YA = Y ×T SpecA→ SpecA is a Q-

Gorenstein morphism for any morphism SpecA→ T for any Artinian local ring A.

The valuative criterion is similar but T is assumed to be reduced and A is replaced

with any discrete valuation ring. These criteria and some variants are proved in

Theorems 7.25 and 7.29 and Corollaries 7.26 and 7.27. The proofs of these criteria

use Proposition 3.19 on infinitesimal and valuative criteria for a reflexive sheaf on

Y to satisfy relative S2 over T .

(3): Theorem 7.30 proves that, for a morphism f : Y → T in (2) above, it is

Q-Gorenstein along a fiber Yt = f−1(t) if Yt is Q-Gorenstein and Gorenstein in

codimension two and if

ω
[m]
Yt/k(t) = ω

[m]
Yt/ Spec k(t)

satisfies S3 for any m ∈ Z. Here k(t) denotes the residue field of OT,t.

(4): For an S2-morphism f : Y → T of locally Noetherian schemes such that

every fiber is Q-Gorenstein, the Q-Gorenstein refinement is defined as a monomor-

phism S → T satisfying the following universal property (cf. Definition 7.31): For

a morphism T ′ → T from another locally Noetherian scheme T ′, the base change
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Y ×T T ′ → T ′ is a Q-Gorenstein morphism if and only if T ′ → T factors through

S → T . Theorem 7.32 proves the existence of a Q-Gorenstein refinement, for ex-

ample in the case where f is proper and ω
[m]
Yt/k(t) is invertible for a constant m > 0

for any fiber Yt. In this case, S → T is shown to be separated and locally of

finite type. Similar results are given as Theorem 7.34 for a local version and as

Theorem 7.35 for naively Q-Gorenstein morphisms. Kollár’s result [29, Cor. 25] is

stronger than Theorem 7.32 when f is a projective morphism.

The role of our key proposition

The deep results above on topics (1)–(4) and some basic properties of S2-morphisms

and Q-Gorenstein morphisms are obtained by applying our key proposition (=

Proposition 3.7). It proves that, for a flat morphism Y → T of locally Noetherian

schemes and for an exact sequence

0→ F → E0 → E1 → G → 0

of coherent OY -modules satisfying suitable conditions, the relative S2-condition

for F over T is equivalent to the flatness of G over T . For example, if f is an

S2-morphism, then a reflexive sheaf F on Y admits such an exact sequence locally

on Y when F is locally free in codimension one on each fiber (cf. Lemma 3.14).

Therefore, the relative S2-condition for F over T can be studied by the flatness

of another sheaf G defined locally on Y . This is useful, since the sheaves ω
[m]
Y/T

are reflexive. For the relative canonical sheaf ωY/T of an S2-morphism Y → T ,

we can show in the proof of Proposition 5.5 that Y is locally embedded into an

affine smooth T -scheme P as a closed subscheme and ωY/T admits such an exact

sequence as F on P .

Applying the local criterion of flatness (cf. Proposition A.1) and the valuative

criterion of flatness (cf. [12, IV, Thm. (11.8.1)]) for G, we have infinitesimal and

valuative criteria for F to satisfy relative S2 over T in Proposition 3.19. This

is applied to the reflexive sheaf F = ω
[m]
Y/T in topic (2) above. The flattening

stratification theorem by Mumford in [39, Lect. 8] and the representability theorem

of unramified functors by Murre [41] applied to G yield Theorem 3.26 on the relative

S2 refinement for F (cf. Definition 3.20). This is defined as a monomorphism

S → T satisfying the following universal property: For a morphism T ′ → T from

a locally Noetherian scheme T ′ and for the induced morphisms p : Y ′ → Y and

Y ′ → T ′ from the fiber product Y ′ = Y ×T T ′, the double dual of p∗F satisfies

relative S2 over T ′ if and only if T ′ → T factors through S → T . When Y → T

is projective, Theorem 3.26 is similar to Kollár’s result [29, Thm. 2] on “hulls

and husks”. We also have a “local version” of the relative S2 refinement for F as

Theorem 3.28 by applying to G theorems on a local universal flattening functor
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by Raynaud–Gruson [48, Part 1, Thm. (4.1.2)] or Raynaud [47, Chap. 3, Thm. 1].

Applying the results on relative S2 refinement for F = ω
[m]
Y/T , we have theorems

on Q-Gorenstein refinement mentioned in topic (4) above.

The implication (b′) ⇒ (b) in Proposition 3.7 is important. It is essential in

the proof of Corollary 3.10, and it is used in the proofs of Theorem 3.16 on a

criterion for a certain sheaf to be invertible, mentioned in the explanation of (1)

above and of Theorem 7.30 in (3) above. Corollary 3.10 is similar to a special case

of [28, Thm. 12], but to which we have found a counterexample (cf. Example 3.12).

Various other results and remarks

Most parts of Sections 2 and 4 are surveys: Section 2 discusses basic properties

of Sk-conditions and relative Sk-conditions, and Section 4 discusses the dualizing

complex and relative dualizing complex in a little detail. Even in the surveys, we

present the following results and remarks, which seem to be new or not well known.

• Some general properties on reflexive modules F over a locally Noetherian

scheme X are presented in Lemmas 2.21, 2.33, 2.34, and Corollary 2.22. These

are related to the S2-conditions and the relative S2-conditions for F and for

X. Similar properties can be found in [21, §3]. Note that reflexive modules are

well understood over an integral domain (cf. [6, VII, §4]).

• Every S2-morphism (cf. Definition 2.30) of locally Noetherian schemes locally

has pure relative dimension (cf. Lemma 2.38(1)).

• For a locally Noetherian scheme X admitting a dualizing complex and for a

coherent sheaf F on it, the Sk-locus Sk(F), the Cohen–Macaulay locus CM(F),

and the Gorenstein locus Gor(X) are open (cf. Proposition 4.11).

• Let X be a locally equi-dimensional and locally Noetherian scheme admit-

ting a dualizing complex. In this case, X has an ordinary dualizing complex

R• and the dualizing sheaf L = H0(R•) in the sense of Definition 4.13 (cf.

Lemma 4.14). Then L satisfies S2, and HomOX (L,L) is an OX-algebra defin-

ing the S2-ification of X (cf. Proposition 4.21 and its remark).

• (Cf. Corollary 4.38.) For a flat separated morphism Y → T of finite type of

Noetherian schemes and for the canonical inclusion morphism ψt : Yt → Y

from the fiber Yt = f−1(t) over a point t ∈ T , there is a quasi-isomorphism

Lψ∗t (f !OT ) 'qis ω
•
Yt/k(t)

of complexes of OYt-modules, where f !OT is the twisted inverse image of OT
by f (cf. Example 4.33), and ω•Yt/k(t) is the canonical dualizing complex of the

algebraic scheme Yt over the residue field k(t) of OT,t (cf. Definition 4.28).

When OT,t is regular, the assertion has been proved by [45, Prop. 3.3(1)].
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In the other Sections 3, 5, 6, and 7 can be found the following interesting

results and remarks which are not listed above as notable ones:

• A counterexample of Kollár’s theorem [28, Thm. 12] is given in Example 3.12.

The ideal sheaf J in Example 3.12 gives a counterexample to assertion (∗) in

Remark 3.13 on formal completions and direct images by open immersions,

which seems to be used implicitly in many articles. The referee informed us

that a modified version of [28, Thm. 12] is given in [30, Thm. 10.70].

• For an S2-morphism f : Y → T of locally Noetherian schemes and for the

open immersion j : Y [ ↪→ T from the relative Cohen–Macaulay locus Y [ =

CM(Y/T ), the pushforward j∗ωY [/T is coherent, and it is isomorphic to

H−d(f !OT ) locally on Y for the relative dimension d and the twisted inverse

image f !OT (cf. Proposition 5.5). Moreover, this sheaf is reflexive if every fiber

is Gorenstein in codimension one (cf. Proposition 5.6).

• In Section 6.2 we discuss affine cones X of connected polarized projective

schemes (S,A) over a field k. Here the projective scheme S is not assumed to

be reduced nor irreducible. In the sequel, we give useful conditions for ω
[r]
X/k

to satisfy Sk and for X to be Q-Gorenstein, in several situations of (S,A) (cf.

Proposition 6.13, Corollaries 6.14 and 6.15).

• By Lemma 7.8 and Example 7.9 we present a new example of naively Q-

Gorenstein morphisms which is not Q-Gorenstein in the case of morphisms of

algebraic varieties over an algebraically closed field of characteristic zero. For

known examples, see Fact 7.7.

• For a naively Q-Gorenstein morphism f : Y → T and a point t ∈ T , the

relative Gorenstein index of f along the fiber Yt = f−1(t) coincides with the

Gorenstein index of Yt under suitable conditions (cf. Proposition 7.11). This

covers [31, Lem. 3.16], but the proof has problems as explained in Remark 7.12.

• In Remark 7.28, applying Corollary 7.27, we verify the unboundedness of {rn}
for Kollár’s example of naively Q-Gorenstein morphisms over the spectra of

Artinian rings, explained in [16, 14.7] and [32, Exam. 7.6]. There, the proof

is left to the reader, but we are afraid that the expected proof might have a

problem similar to the second problem in Remark 7.12.

• For a famous example (Example 7.4) of deformations of the weighted projec-

tive plane P(1, 1, 4) which is not Q-Gorenstein, its Q-Gorenstein refinement is

determined in Example 7.33 by using Lemma 7.5.
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Organization of this article

In Section 2 we recall some basic notions and properties related to Serre’s Sk-

condition. Section 2.1 recalls basic properties on dimension, depth, and the Sk-

condition. The relative Sk-condition is explained in Section 2.2. In Section 3 we

proceed with the study of the relative S2-condition and give some criteria for

this condition. Section 3.1 is devoted to proving the key proposition (Proposi-

tion 3.7) and related properties. Some applications of Proposition 3.7 are given in

Section 3.2: Theorem 3.16 on a criterion for a certain sheaf to be invertible, Propo-

sition 3.19 on infinitesimal and valuative criteria, Theorem 3.26 on the relative S2

refinement, and its local version: Theorem 3.28.

The theory of Grothendieck duality is surveyed briefly in Section 4 with a

few original results. In Sections 4.1 and 4.2 we recall some well-known properties

on the dualizing complex based on arguments in [17] and [7]. The twisted inverse

image functor is explained in Section 4.3 with the famous Grothendieck duality

theorem for proper morphisms (cf. Theorem 4.30). The base change theorem for

the relative dualizing sheaf for a Cohen–Macaulay morphism is mentioned in Sec-

tion 4.4. In Section 5 we give some technical base change results for the relative

canonical sheaf of an S2-morphism. Section 5.2 is devoted to proving Theorem 5.10

on a criterion for a certain sheaf related to the relative canonical sheaf to be in-

vertible. This technical theorem also gives sufficient conditions for the base change

homomorphism of the relative canonical sheaf to the fiber to be an isomorphism,

and it is applied to the proof of Theorem 7.18 on virtually Q-Gorenstein morphism

(cf. topic (1) above).

In Section 6 we study Q-Gorenstein schemes. The definition and its basic

properties are given in Section 6.1. As an example of Q-Gorenstein schemes, in

Section 6.2 we consider the case of affine cones over polarized projective schemes

over a field. In Section 7 we study Q-Gorenstein morphisms, and two variants:

naively Q-Gorenstein morphisms and virtually Q-Gorenstein morphisms. The Q-

Gorenstein morphism and the naively Q-Gorenstein morphism are defined in Sec-

tion 7.1, and their basic properties are discussed. The virtually Q-Gorenstein mor-

phism is defined in Section 7.2, and we prove Theorem 7.18 on a criterion for a

virtually Q-Gorenstein morphism to be Q-Gorenstein (cf. topic (1) above). In Sec-

tion 7.3 several basic properties including base change of Q-Gorenstein morphisms

and of their variants are discussed. Theorems mentioned in topics (2)–(4) above

are proved in Section 7.4.

Some elementary facts on the local criterion of flatness and base change iso-

morphisms are explained in Appendix A for the readers’ convenience. In this arti-
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cle, we try to cite references as much as possible for the readers’ convenience and

for the authors’ assurance. We also try to refer to the original article if possible.

Notation and conventions

(1) For a complex K• = [· · · → Ki di−→ Ki+1 → · · · ] in an abelian category and

for an integer q, we denote by τ≤q(K•) (resp. τ≥q(K•)) the “truncation” of

K•, which is defined as the complex

[· · · → Kq−2 dq−2

−−−→ Kq−1 → Ker(dq)→ 0→ · · · ]

(resp. [· · · → 0→ Coker(dq−1)→ Kq+1 dq+1

−−−→ Kq+2 → · · · ])

(cf. [10, Déf. 1.1.13]). The complex K•[m] shifted by an integer m is defined

as the complex L• = [· · · → Li
diL−−→ Li+1 → · · · ] such that Li = Ki+m and

diL = (−1)mdi+m for any i ∈ Z. It is known that the mapping cone of the

natural morphism τ≤q(K•) → K• is quasi-isomorphic to τ≥q+1(K•) for any

q ∈ Z.

(2) For a complex K• in an abelian category (resp. for an object K• of the derived

category), the i-th cohomology of K• is denoted usually by Hi(K•). For a

complex K• of sheaves on a scheme, the i-th cohomology is a sheaf and is

denoted by Hi(K•).
(3) The derived category of an abelian category A is denoted by D(A). Moreover,

we write D+(A) (resp. D−(A), resp. Db(A)) for the full subcategory consisting

of bounded below (resp. bounded above, resp. bounded) complexes.

(4) An algebraic scheme over a field k means a k-scheme of finite type. An algebraic

variety over k is an integral separated algebraic scheme over k.

(5) For a scheme X, a sheaf of OX -modules is called an OX -module for simplicity.

A coherent (resp. quasi-coherent) sheaf on X means a coherent (resp. quasi-

coherent) OX -module. The (abelian) category of OX -modules (resp. quasi-

coherent OX -modules) is denoted by Mod(OX) (resp. QCoh(OX)).

(6) For a scheme X and a point x ∈ X, the maximal ideal (resp. the residue field)

of the local ring OX,x is denoted by mX,x (resp. k(x)). The stalk of a sheaf F
on X at x is denoted by Fx.

(7) For a morphism f : Y → T of schemes and for a point t ∈ T , the fiber f−1(t)

over t is defined as Y ×T Speck(t) and is denoted by Yt. For an OY -module F ,

the restriction F⊗OY OYt to the fiber Yt is denoted by F(t) (cf. Notation 2.24).

(8) The derived category of a scheme X is defined as the derived category of

Mod(OX) and is denoted by D(X). The full subcategory consisting of com-

plexes with quasi-coherent (resp. coherent) cohomology is denoted by Dqcoh(X)
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(resp. Dcoh(X)). For ∗ = +, −, b and for † = qcoh, coh, we set

D∗(X) = D∗(Mod(OX)) and D∗†(X) = D∗(X) ∩D†(X).

(9) For a sheaf F on a scheme X and for a closed subset Z, the i-th local coho-

mology sheaf of F with support in Z is denoted by HiZ(F) (cf. [18]).

(10) For a morphism X → Y of schemes, Ω1
X/Y denotes the sheaf of relative

one-forms. When X → Y is smooth, ΩpX/Y denotes the p-th exterior power∧p
Ω1
X/Y for integers p ≥ 0.

§2. Serre’s Sk-condition

We shall recall several fundamental properties on locally Noetherian schemes,

which are indispensable for understanding the explanation of dualizing complex

and Grothendieck duality in Section 4, as well as the discussion of relative canon-

ical sheaves and Q-Gorenstein morphisms in Sections 5 and 6, respectively. In

Section 2.1 we recall basic properties on dimension, depth, Serre’s Sk-condition

especially for k = 1 and 2, and reflexive sheaves. The relative Sk-condition is

discussed in Section 2.2.

§2.1. Basics on Serre’s condition

The Sk-condition is defined by “depth” and “dimension”. We begin by recalling

some elementary properties on dimension, codimension, and on depth.

Property 2.1 (Dimension, codimension). Let X be a scheme and let F be a quasi-

coherent OX -module of finite type (cf. [12, 0I, (5.2.1)]), i.e., F is quasi-coherent

and locally finitely generated as an OX -module. Then SuppF is a closed subset

(cf. [12, 0I, (5.2.2)]).

(1) If Y is a closed subscheme of X such that Y = SuppF as a set, then

dimFy = dimOY,y = codim({y}, Y )

for any point y ∈ Y , where dimFy is considered as the dimension of the closed

subset SuppFy of SpecOX,y (cf. [12, IV, (5.1.2), (5.1.12)]).

(2) The dimension of F , denoted by dimF , is defined as dim SuppF (cf. [12, IV,

(5.1.12)]). Then

dimF = sup{dimFx | x ∈ X}

(cf. [12, IV, (5.1.12.3)]). If X is locally Noetherian, then

dimF = sup{dimFx | x is a closed point of X}
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by [12, IV, (5.1.4.2), (5.1.12.1), Cor. (5.1.11)]. Note that the local dimension

of F at a point x, denoted by dimx F , is just the infimum of dimF|U for all

the open neighborhoods U of x.

(3) For a closed subset Z ⊂ X, the equality

codim(Z,X) = inf{dimOX,z | z ∈ Z}

holds, and moreover, if X is locally Noetherian, then

codimx(Z,X) = inf{dimOX,z | z ∈ Z, x ∈ {z}}

for any point x ∈ X (cf. [12, IV, Cor. (5.1.3)]). Note that codim(∅, X) =

+∞ and that codimx(Z,X) = +∞ if x 6∈ Z. Furthermore, if Z is locally

Noetherian, then the function x 7→ codimx(Z,X) is lower semi-continuous on

X (cf. [12, 0IV, Cor. (14.2.6)(ii)]).

Definition 2.2 (Equi-dimensional). Let X be a scheme and F a quasi-coherent

OX -module of finite type. Let A be a ring and M a finitely generated A-module.

(1) We call X (resp. F) equi-dimensional if all the irreducible components of X

(resp. SuppF) have the same dimension.

(2) We call A (resp. M) equi-dimensional if all the irreducible components of

SpecA (resp. SuppM) have the same dimension, where SuppM is the closed

subset of SpecA defined by the annihilator ideal Ann(M). Note that SuppM

equals SuppM∼ for the associated quasi-coherent sheaf M∼ on SpecA.

(3) We call X (resp. F) locally equi-dimensional if the local ring OX,x (resp. the

stalk Fx as an OX,x-module) is equi-dimensional for any point x ∈ X.

Property 2.3 (Catenary). A scheme X is said to be catenary if

codim(Y,Z) + codim(Z, T ) = codim(Y, T )

for any irreducible closed subsets Y ⊂ Z ⊂ T of X (cf. [12, 0IV, Prop. (14.3.2)]). A

ring A is said to be catenary if SpecA is so. Then, for a scheme X, it is catenary

if and only if every local ring OX,x is catenary (cf. [12, IV, Cor. (5.1.5)]). If X is

a locally Noetherian scheme and if OX,x is catenary for a point x ∈ X, then

codimx(Y,X) = dimOX,x − dimOY,x

for any closed subscheme Y of X containing x (cf. [12, IV, Prop. (5.1.9)]).

Property 2.4 (Depth). Let A be a Noetherian ring, I an ideal of A, and let M be a

finitely generated A-module. The I-depth of M , denoted by depthIM , is defined

as the length of any maximal M -regular sequence contained in I when M 6= IM ,



Grothendieck Duality and Q-Gorenstein Morphisms 529

and as +∞ when M = IM . Here an element a ∈ I is said to be M -regular if a is

not a zero divisor of M , i.e., the multiplication map x 7→ ax induces an injection

M →M , and a sequence a1, a2, . . . , an of elements of I is said to be M -regular if

ai is Mi-regular for any i, where Mi = M/(a1, . . . , ai−1)M . The following equality

is well known (cf. [18, Prop. 3.3], [14, III, Prop. 2.4], [37, Thms. 16.6, 16.7]):

depthIM = inf{i ∈ Z≥0 | ExtiA(A/I,M) 6= 0}.

If A is a local ring and if I is the maximal ideal mA, then depthIM is denoted

simply by depthM ; in this case, we have depthM ≤ dimM when M 6= 0 (cf. [12,

0IV, (16.4.5.1)], [37, Exer. 16.1, Thm. 17.2]).

Definition 2.5 (Z-depth). Let X be a locally Noetherian scheme and F a coher-

ent OX -module. For a closed subset Z of X, the Z-depth of F is defined as

depthZ F = inf{depthFz | z ∈ Z}

(cf. [18, p. 43, Def.], [12, IV, (5.10.1.1)], [2, III, Def. (3.12)]), where the stalk Fz
of F at z is regarded as an OX,z-module. Note that depthZ 0 = +∞.

Property 2.6 (Cf. [18, Thm. 3.8]). In the situation above, for a given integer k ≥ 1,

one has the equivalence

depthZ F ≥ k ⇐⇒ HiZ(F) = 0 for any i < k.

Here HiZ(F) stands for the i-th local cohomology sheaf of F with support in Z (cf.

[18], [14]). In particular, the condition depthZ F ≥ 1 (resp. ≥ 2) is equivalent to

the condition that the restriction homomorphism F → j∗(F|X\Z) is an injection

(resp. isomorphism) for the open immersion j : X \ Z ↪→ X. Furthermore, the

condition depthZ F ≥ 3 is equivalent to F ' j∗(F|X\Z) and R1j∗(F|X\Z) = 0.

Remark (Cf. [18, Cor. 3.6], [2, III, Cor. 3.14]). Let A be a Noetherian ring with

an ideal I and let M be a finitely generated A-module. Then

depthIM = depthZM
∼

for the closed subscheme Z = SpecA/I of X = SpecA and for the coherent

OX -module M∼ associated with M .

Remark 2.7 (Associated prime). Let F be a coherent OX -module on a locally

Noetherian scheme X. A point x ∈ X is called an associated point of F if the

maximal ideal mx is an associated prime of the stalk Fx (cf. [12, IV, Déf. (3.1.1)]).

This condition is equivalent to depthFx = 0. We denote by Ass(F) the set of

associated points. This is a discrete subset of SuppF . If an associated point x of
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F is not a generic point of F , i.e., depthFx = 0 and dimFx > 0, then x is called

the embedded point of F . If X = SpecA and F = M∼ for a Noetherian ring A

and for a finitely generated A-module M , then Ass(F) is just the set of associated

primes of M , and the embedded points of F are the embedded primes of M .

Remark 2.8. Let φ : F → j∗(F|X\Z) be the homomorphism in Property 2.6 and

set U = X \ Z. Then φ is an injection (resp. isomorphism) at a point x ∈ Z, i.e.,

the homomorphism

φx : Fx → (j∗(F|U ))x

of stalks is an injection (resp. isomorphism), if and only if

depthFx′ ≥ 1 (resp. ≥ 2)

for any x′ ∈ Z such that x ∈ {x′}. In fact, φx is identical to the inverse image

p∗x(φ) by a canonical morphism px : SpecOX,x → X, and it is regarded as the

restriction homomorphism of p∗x(F) to the open subset Ux = p−1
x (U) via the base

change isomorphism

p∗x(j∗(F|U )) ' jx∗((p∗xF)|Ux)

(cf. Lemma A.9 below), where jx stands for the open immersion Ux ↪→ SpecOX,x.

For the complement Zx = p−1
x (Z) of Ux in SpecOX,x, by Property 2.6 we know

that p∗x(φ) is an injection (resp. isomorphism) if and only if

depthZx p
∗
x(F) ≥ 1 (resp. ≥ 2).

This implies the assertion, since Zx is identical to the set of points x′ ∈ Z such

that x ∈ {x′}.

We recall Serre’s condition Sk (cf. [12, IV, Déf. (5.7.2)], [2, VII, Def. (2.1)],

[37, p. 183]).

Definition 2.9. Let X be a locally Noetherian scheme, F a coherent OX -module

and k a positive integer. We say that F satisfies Sk if the inequality

depthFx ≥ inf{k, dimFx}

holds for any point x ∈ X, where the stalk Fx at x is considered as an OX,x-

module. We say that F satisfies Sk at a point x ∈ X if

depthFy ≥ inf{k, dimFy}

for any point y ∈ X such that x ∈ {y}. We say that X satisfies Sk if OX does so.
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Remark. In the situation of Definition 2.9, assume that F = i∗(F ′) for a closed

immersion i : X ′ ↪→ X and for a coherent OX′ -module F ′. Then F satisfies Sk if

and only if F ′ does so. In fact,

depthFx = +∞ and dimFx = −∞

for any x 6∈ X ′, and

depthFx = depthF ′x and dimFx = dimF ′x

for any x ∈ X ′ (cf. [12, 0IV, Prop. (16.4.8)]).

Remark 2.10. Let A be a Noetherian ring and M a finitely generated A-module.

For a positive integer k, we say that M satisfies Sk if the associated coherent sheaf

M∼ on SpecA satisfies Sk. Then, for X, F and x in Definition 2.9, F satisfies Sk
at x if and only if the OX,x-module Fx satisfies Sk. In fact, by considering SuppFx
as a closed subset of SpecOX,x and by the canonical morphism SpecOX,x → X,

we can identify SuppFx with the set of points y ∈ SuppF such that x ∈ {y}.

Definition 2.11 (Cohen–Macaulay). Let A be a Noetherian local ring and M a

finitely generated A-module. Then M is said to be Cohen–Macaulay if depthM =

dimM unless M = 0 (cf. [12, 0IV, Déf. (16.5.1)], [37, §17]). In particular, if

dimA = depthA, then A is called a Cohen–Macaulay local ring. Let X be a

locally Noetherian scheme and F a coherent OX -module. If the OX,x-module Fx
is Cohen–Macaulay for any x ∈ X, then F is said to be Cohen–Macaulay (cf. [12,

IV, Déf. (5.7.1)]. If OX is Cohen–Macaulay, then X is called a Cohen–Macaulay

scheme.

Remark 2.12. For A and M above, it is known that if M is Cohen–Macaulay, then

the localization Mp is also Cohen–Macaulay for any prime ideal p of A (cf. [12,

0IV, Cor. (16.5.10)], [37, Thm. 17.3]). Hence, M is Cohen–Macaulay if and only if

M satisfies Sk for any k ≥ 1.

Definition 2.13 (Sk(F), CM(F)). Let X be a locally Noetherian scheme and let

F be a coherent OX -module. For an integer k ≥ 1, the Sk-locus Sk(F) of F is

defined to be the set of points x ∈ X at which F satisfies Sk (cf. Definition 2.9). The

Cohen–Macaulay locus CM(F) of F is defined to be the set of points x ∈ F such

that Fx is a Cohen–MacaulayOX,x-module. By definition and by Remark 2.12, one

has CM(F) =
⋂
k≥1 Sk(F). We define Sk(X) := Sk(OX) and CM(X) = CM(OX),

and call them the Sk-locus and the Cohen–Macaulay locus of X, respectively.
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Remark. It is known that Sk(F) and CM(F) are open subsets when X is locally a

subscheme of a regular scheme (cf. [12, IV, Prop. (6.11.2)(ii)]). In Proposition 4.11

below, we shall prove the openness when X admits a dualizing complex.

Remark. For a locally Noetherian scheme X, every generic point of X is contained

in the Cohen–Macaulay locus CM(X) because dimA = depthA = 0 for any

Artinian local ring A.

Lemmas 2.14 and 2.15 below are basic properties on the condition Sk.

Lemma 2.14. Let X be a locally Noetherian scheme and let G be a coherent OX-

module. For a positive integer k, the following conditions are equivalent to each

other:

(i) The sheaf G satisfies Sk.

(ii) The inequality

depthZ G ≥ inf{k, codim(Z,SuppG)}
holds for any closed (resp. irreducible and closed) subset Z ⊂ SuppG.

(iii) The sheaf G satisfies Sk−1 when k ≥ 2, and depthZ G ≥ k for any closed

(resp. irreducible and closed) subset Z ⊂ SuppG such that codim(Z,SuppG)

≥ k.

(iv) There is a closed subset Z ⊂ SuppG such that depthZ G ≥ k and G|X\Z
satisfies Sk.

Proof. We may assume that G is not zero. The equivalence (i) ⇔ (ii) follows from

Definitions 2.5 and 2.9 and from the equality dimGx = codim({x},SuppG) for x ∈
SuppG in Property 2.1(1). The equivalence (i) ⇔ (ii) implies the equivalence (ii)

⇔ (iii). We have (i)⇒ (iv) by taking a closed subset Z with codim(Z,SuppG) ≥ k
using the inequality in (ii). It is enough to show (iv) ⇒ (i). More precisely, it is

enough to prove that, in the situation of (iv), the inequality

depthGx ≥ inf{k, dimGx}

holds for any point x ∈ X. If x 6∈ Z, then this holds, since G|X\Z satisfies Sk. If x ∈
Z, then dimGx ≥ depthGx ≥ depthZ G ≥ k (cf. Property 2.4 and Definition 2.5),

and it induces the inequality above. Thus, we are done.

Lemma 2.15. Let X be a locally Noetherian scheme and G a coherent OX-module.

Then, for any closed subset Z of X, the following hold:

(1) One has the inequality

depthZ G ≤ codim(Z ∩ SuppG,SuppG).
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(2) For an integer k > 0, if G satisfies Sk and if codim(Z ∩ SuppG,SuppG) ≥ k,

then depthZ G ≥ k.

Proof. The inequality in (1) follows from the inequality depthGx ≤ dimGx for any

x ∈ SuppG, since

codim(Z ∩ SuppG,SuppG) = inf{dimGx | x ∈ Z ∩ SuppG} and

depthZ G = inf{depthGx | x ∈ Z ∩ SuppG}

when Z ∩ SuppG 6= ∅, by Property 2.1 and Definition 2.5. Assertion (2) is derived

from the equivalence (i) ⇔ (ii) of Lemma 2.14.

For the conditions S1 and S2, we have immediately the following corollary of

Lemma 2.14 by considering Property 2.6.

Corollary 2.16. Let X be a locally Noetherian scheme and let G be a coherent

OX-module. The following three conditions are equivalent to each other, where j

denotes the open immersion X \ Z ↪→ X:

(i) The sheaf G satisfies S1 (resp. S2).

(ii) For any closed subset Z ⊂ SuppG with codim(Z,SuppG) ≥ 1 (resp. ≥ 2), the

restriction homomorphism G → j∗(G|X\Z) is injective (resp. an isomorphism,

and G satisfies S1).

(iii) There is a closed subset Z ⊂ SuppG such that G|X\Z satisfies S1 (resp.

S2) and the restriction homomorphism G → j∗(G|X\Z) is injective (resp. an

isomorphism).

Remark. Let X be a locally Noetherian scheme and G a coherent OX -module.

Then, by definition, G satisfies S1 if and only if G has no embedded points (cf.

Remark 2.7). In particular, the following hold when G satisfies S1:

(1) Every coherent OX -submodule of G satisfies S1 (cf. Lemma 2.17(2) below).

(2) The sheaf HomOX (F ,G) satisfies S1 for any coherent OX -module F .

(3) Let T be the closed subscheme defined by the annihilator of G, i.e., OT is

the image of the natural homomorphism OX → HomOX (G,G). Then T also

satisfies S1.

Lemma 2.17. Let X be a locally Noetherian scheme and let G be the kernel of a

homomorphism E0 → E1 of coherent OX-modules.

(1) Let Z be a closed subset of X. If depthZ E0 ≥ 1, then depthZ G ≥ 1. If

depthZ E0 ≥ 2 and depthZ E1 ≥ 1, then depthZ G ≥ 2.

(2) If E0 satisfies S1, then G satisfies S1.
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(3) Assume that SuppG ⊂ Supp E1. If E1 satisfies S1 and E0 satisfies S2, then G
satisfies S2.

Proof. Let B be the image of E0 → E1. Then we have an exact sequence

0→ H0
Z(G)→ H0

Z(E0)→ H0
Z(B)→ H1

Z(G)→ H1
Z(E0)

and an injection H0
Z(B) → H0

Z(E1) of local cohomology sheaves with support in

Z (cf. [18, Prop. 1.1]). Thus, (1) is derived from Property 2.6. The remaining

assertions (2) and (3) are consequences of (1) above and the equivalence (i)⇔ (ii)

in Lemma 2.14.

Lemma 2.18. Let P be the n-dimensional projective space Pnk over a field k and

let G be a coherent OP -module such that G satisfies S1 and that every irreducible

component of SuppG has positive dimension. Then H0(P,G(m)) = 0 for any m�
0, where we write G(m) = G ⊗OP OP (m).

Proof. We shall prove by contradiction. Assume that H0(P,G(−m)) 6= 0 for in-

finitely many m > 0. There is a member D of |OP (k)| for some k > 0 such

that D ∩ Ass(G) = ∅ (cf. Remark 2.7). Thus, the inclusion OP (−D) ⊂ OP in-

duces an injection G(−D) := G ⊗OP OP (−D) → G. Hence, we have an injection

G(−k) ' G(−D)→ G, and we may assume that H0(P,G(−m)) = H0(P,G) 6= 0 for

any m > 0 by replacing G with G(−l) for some l > 0. Let ξ be a non-zero element

of H0(P,G), which corresponds to a non-zero homomorphism OP → G. Let T be

the closed subscheme of P such that OT is the image of OP → G. Then T is non-

empty and is contained in the affine open subset P \D, since ξ ∈ H0(P,G(−D)).

Therefore, T is a finite set, and T ⊂ Ass(G). Since G satisfies S1, every point of T

is an irreducible component of SuppG. This contradicts the assumption.

Remark. The referee pointed out that Lemma 2.18 is proved by a similar argument

in the proof of [19, III, Thm. 7.6(b)].

Definition 2.19 (Reflexive sheaf). For a scheme X and an OX -module F , we

write F∨ for the dual OX -module HomOX (F ,OX). The double-dual F∨∨ of F
is defined as (F∨)∨. The natural composition homomorphism F ⊗ F∨ → OX
defines a canonical homomorphism cF : F → F∨∨. Note that cF∨ is always an

isomorphism. If F is a quasi-coherent OX -module of finite type and if cF is an

isomorphism, then F is said to be reflexive.

Remark 2.20. Let π : Y → X be a flat morphism of locally Noetherian schemes.

Then the dual operation ∨ commutes with π∗, i.e., there is a canonical isomorphism

π∗HomOX (F ,OX) ' HomOY (π∗F ,OY )
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for any coherent OX -module F . In particular, if F is reflexive, then so is π∗F .

This isomorphism is derived from [12, 0I, (6.7.6)], since every coherent OX -module

has a finite presentation locally on X.

Lemma 2.21. Let X be a locally Noetherian scheme, Z a closed subset and G a

coherent OX-module.

(1) For an integer k = 1 or 2, assume that depthZ OX ≥ k and that G is reflexive.

Then depthZ G ≥ k.

(2) For an integer k = 1 or 2, assume that X satisfies Sk and that G is reflexive.

Then G satisfies Sk.

(3) Assume that depthZ OX ≥ 1 and that G|X\Z is reflexive. If depthZ G ≥ 2,

then G is reflexive.

Proof. For the proof of (1), by localizing X, we may assume that there is an exact

sequence E1 → E0 → G∨ → 0 for some free OX -modules E0 and E1 of finite rank.

Taking the dual, we have an exact sequence 0 → G ' G∨∨ → E∨0 → E∨1 (cf. the

proof of [20, Prop. 1.1]). The condition depthZ OX ≥ k implies that depthZ E∨i ≥ k
for i = 0, 1. Thus, depthZ G ≥ k by Lemma 2.17(1). This proves (1). Assertion (2)

is a consequence of (1) (cf. Definition 2.9). We shall show (3). Let j : X\Z ↪→ X be

the open immersion. Then G ' j∗(GX\Z) by Property 2.6, since depthZ G ≥ 2 by

assumption. Hence we have a splitting of the canonical homomorphism G → G∨∨

into the double-dual by the commutative diagram

G −−−−→ G∨∨

'
y y

j∗(G|X\Z)
'−−−−→ j∗(G∨∨|X\Z).

Thus, we have an injection C ↪→ G∨∨ from C := G∨∨/G, where Supp C ⊂ Z. The

injection corresponds to a homomorphism C ⊗ G∨ → OX , but this is zero, since

depthZ OX ≥ 1. Therefore, C = 0 and G is reflexive. This proves (3), and we are

done.

Remark. The proof of (1) is essentially the same as the proof of [21, Prop. 3.6].

Corollary 2.22. Let X be a locally Noetherian scheme, Z a closed subset, and G
a coherent OX-module. Assume that G|X\Z is reflexive and codim(Z,X) ≥ 1. Let

us consider the following three conditions:

(i) G satisfies S2 and codim(Z ∩ SuppG,SuppG) ≥ 2;

(ii) depthZ G ≥ 2;
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(iii) G is reflexive.

Then (i) ⇒ (ii) holds always. If depthZ OX ≥ 1, then (ii) ⇒ (iii) holds, and if

depthZ OX ≥ 2, then (ii) ⇔ (iii) holds. If X satisfies S2 and codim(Z,X) ≥ 2,

then these three conditions are equivalent to each other.

Proof. The implication (i) ⇒ (ii) is shown in Lemma 2.15(2). The next im-

plication (ii) ⇒ (iii) in the case depthZ OX ≥ 1 follows from Lemma 2.21(3),

and the converse implication (iii) ⇒ (ii) in the case depthZ OX ≥ 2 follows

from Lemma 2.21(1). Assume that X satisfies S2 and codim(Z,X) ≥ 2. Then

depthZ OX ≥ 2 by Lemma 2.15(2), and we have (ii)⇔ (iii) in this case. It remains

to prove (ii)⇒ (i). Assume that depthZ G ≥ 2. Then codim(Z∩SuppG,SuppG) ≥
2 by Lemma 2.15(1). On the other hand, the reflexive sheaf G|X\Z satisfies S2 by

Lemma 2.21(2), since X \ Z satisfies S2. Thus, G satisfies S2 by the equivalence

(i) ⇔ (iv) of Lemma 2.14, and we are done.

Remark. If X is a locally Noetherian scheme satisfying S1, then the support of

a reflexive OX -module is a union of irreducible components of X. In fact, if G is

reflexive, then depthZ G ≥ 1 for any closed subset Z with codim(Z,X) ≥ 1, by

Lemma 2.21(1), and we have codim(Z ∩ SuppG,SuppG) ≥ 1 by Lemma 2.15(1).

This means that SuppG is a union of irreducible components of X. In particular,

if X is irreducible and satisfies S1, and if G 6= 0, then SuppG = X. However,

SuppG 6= X in general when X is reducible. For example, let R be a Noetherian

ring with two R-regular elements u and v, and set X := SpecR/uvR and G :=

(R/uR)∼. Then we have an isomorphismHomOX (G,OX) ' G by the natural exact

sequence

0→ R/uR→ R/uvR
u×−−→ R/uvR→ R/uR→ 0.

Thus, G is a reflexive OX -module, but SuppG 6= X when u 6∈
√
vR.

We have discussed properties S1 and S2 for general coherent sheaves. Fi-

nally in Section 2.1, we note the following well-known facts on locally Noetherian

schemes satisfying S2.

Fact 2.23. Let X be a locally Noetherian scheme satisfying S2.

(1) If X is catenary (cf. Property 2.3), then X is locally equi-dimensional (cf.

Definition 2.2(3)) (cf. [12, IV, Cor. (5.1.5), (5.10.9)]).

(2) For any open subsetX◦ with codim(X\X◦, X) ≥ 2 and for any connected com-

ponent Xα of X, the intersection Xα∩X◦ is connected. This is a consequence

of a result of Hartshorne (cf. [12, IV, Thm. (5.10.7)], [14, III, Thm. 3.6]).
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§2.2. Relative Sk-conditions

Here we shall consider the relative Sk-condition for morphisms of locally Noethe-

rian schemes.

Notation 2.24. Let f : Y → T be a morphism of schemes. For a point t ∈ T ,

the fiber f−1(t) of f over t is defined as Y ×T Speck(t), and it is denoted by Yt.

For an OY -module F , the restriction F ⊗OY OYt ' F ⊗OT k(t) to the fiber Yt is

denoted by F(t).

Remark. The restriction F(t) is identified with the inverse image p∗t (F) for the pro-

jection pt : Yt → Y , and SuppF(t) is identified with Yt∩SuppF = p−1
t (SuppF). If

f is the identity morphism Y → Y , then F(y) is a sheaf on Spec k(y) corresponding

to the vector space Fy ⊗ k(y) for y ∈ Y .

Definition 2.25. For a morphism f : Y → T of schemes and for an OY -module

F , let Fl(F/T ) be the set of points y ∈ Y such that Fy is a flat OT,f(y)-module.

If Y = Fl(F/T ), then F is said to be flat over T , or f -flat. If S is a subset of

Fl(F/T ), then F is said to be flat over T along S, or f -flat along S.

Fact 2.26. Let f : Y → T be a morphism of locally Noetherian schemes and k a

positive integer. For a coherent OY -module F and a coherent OT -module G, the

following results are known, where in (2), (3), and (4), we fix an arbitrary point

y ∈ Y , and set t = f(y):

(1) If f is locally of finite type, then Fl(F/T ) is open.

(2) If Fy is flat over OT,t and if (F(t))y is a free OYt,y-module, then Fy is a free

OY,y-module. In particular, if F is flat over T and if F(t) is locally free for any

t ∈ T , then F is locally free.

(3) If Fy is non-zero and flat over OT,t, then the following equalities hold:

dim(F ⊗OY f∗G)y = dim(F(t))y + dimGt,(II-1)

depth(F ⊗OY f∗G)y = depth(F(t))y + depthGt.(II-2)

(4) If Fy is non-zero and flat over OT,t and if F ⊗OY f∗G satisfies Sk at y, then

G satisfies Sk at t.

(5) Assume that F is flat over T along the fiber Yt over a point t ∈ f(SuppF). If

F(t) satisfies Sk and if G satisfies Sk at t, then F ⊗OY f∗G also satisfies Sk at

any point of Yt.

(6) Assume that f is flat and that every fiber Yt satisfies Sk. Then f∗G satisfies

Sk at y if and only if G satisfies Sk at f(y).
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Assertion (1) is just [12, IV, Thm. (11.1.1)]. Assertion (2) is a consequence of

Proposition A.1 and Lemma A.5, since OYt,y = OY,y/I for the ideal I = mT,tOY,y
and we have

Tor
OY,y
1 (Fy,OY,y/I) = 0 and (F(t))y ' Fy/IFy

under the assumption of (2). The two equalities (II-1) and (II-2) in (3) follow from

[12, IV, Cor. (6.1.2), Prop. (6.3.1)], since

(F ⊗OY f∗G)y ' Fy ⊗OT,t Gt and (F(t))y ' Fy ⊗OT,t k(t).

Assertions (4) and (5) are shown in [12, IV, Prop. (6.4.1)] by equalities (II-1) and

(II-2), and assertion (6) is a consequence of (4) and (5) (cf. [12, IV, Cor. (6.4.2)]).

Corollary 2.27. Let f : Y → T be a flat morphism of locally Noetherian schemes.

Let W be a closed subset of T contained in f(Y ). Then

codim(f−1(W ), Y ) = codim(W,T ) and depthf−1(W ) f
∗G = depthW G

for any coherent OT -module G.

Proof. We may assume that G 6= 0. Then

codim(f−1(W ), Y ) = inf{dimOY,y | y ∈ f−1(W )},
depthf−1(W ) f

∗G = inf{depth(f∗G)y | y ∈ f−1(W )},

by Property 2.1 and Definition 2.5. Thus, we can prove the assertion by applying

(II-1) to (F ,G) = (OY ,OT ) and (II-2) to (F ,G) = (OY ,G), since

dimOT,t = codim(W,T ) and dimOYt,y = 0

for a certain generic point t of W and a generic point y of Yt, and since

depthGt = depthW G and depth((f∗G)(t))y = depthOYt,y = 0

for a certain point t ∈W ∩ SuppG and for a generic point y of Yt.

Definition 2.28. Let f : Y → T be a morphism of locally Noetherian schemes

and F a coherent OY -module. As a relative version of Definition 2.13, for a positive

integer k, we define

Sk(F/T ) := Fl(F/T ) ∩
⋃

t∈T
Sk(F(t)) and

CM(F/T ) := Fl(F/T ) ∩
⋃

t∈T
CM(F(t)),
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and call them the relative Sk-locus and the relative Cohen–Macaulay locus of F
over T , respectively. We also write

Sk(Y/T ) = Sk(OY /T ) and CM(Y/T ) = CM(OY /T ),

and call them the relative Sk-locus and the relative Cohen–Macaulay locus for f ,

respectively. The relative Sk-condition and the relative Cohen–Macaulay condition

are defined as follows:

• For a point y ∈ Y (resp. a subset S ⊂ Y ), we say that F satisfies relative

Sk over T at y (resp. along S) if y ∈ Sk(F/T ) (resp. S ⊂ Sk(F/T )). We

also say that F is relatively Cohen–Macaulay over T at y (resp. along S) if

y ∈ CM(F/T ) (resp. S ⊂ CM(F/T )).

• We say that F satisfies relative Sk over T if Y = Sk(F/T ). We also say that

F is relatively Cohen–Macaulay over T if Y = CM(F/T ).

Fact 2.29. For f : Y → T and F in Definition 2.28, assume that f is locally of

finite type and F is flat over T . Then the following properties are known:

(1) The subset CM(F/T ) is open (cf. [12, IV, Thm. (12.1.1)(vi)]).

(2) If F(t) is locally equi-dimensional (cf. Definition 2.2(3)) for any t ∈ T , then

Sk(F/T ) is open for any k ≥ 1 (cf. [12, IV, Thm. (12.1.1)(iv)]).

(3) If Y → T is flat, then Sk(Y/T ) is open for any k ≥ 1 (cf. [12, IV, Thm.

(12.1.6)(i)]).

Definition 2.30 (Sk-morphism and Cohen–Macaulay morphism). Let f : Y →T

be a morphism of locally Noetherian schemes and k a positive integer. Then f is

called an Sk-morphism (resp. a Cohen–Macaulay morphism) if f is a flat morphism

locally of finite type and Y = Sk(Y/T ) (resp. Y = CM(Y/T )). For a subset S of

Y , f is called an Sk-morphism (resp. a Cohen–Macaulay morphism) along S if

f |V : V → T is so for an open neighborhood V of S (cf. Fact 2.29(3)).

Remark. The Sk-morphisms and the Cohen–Macaulay morphisms defined in [12,

IV, Déf. (6.8.1)] are not necessarily locally of finite type. The definition of a Cohen–

Macaulay morphism in [17, V, Ex. 9.7] coincides with ours. The notion of a “CM

map” in [7, p. 7] is the same as that of a Cohen–Macaulay morphism in our sense

for morphisms of locally Noetherian schemes.

Lemma 2.31. Suppose that we are given a Cartesian diagram

Y ′
p−−−−→ Y

f ′
y yf
T ′

q−−−−→ T
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of schemes consisting of locally Noetherian schemes. Let F be a coherent OY -

module, Z a closed subset of Y , k a positive integer, and let t′ ∈ T ′ and t ∈ T be

points such that t = q(t′).

(1) If f is flat, then, for the fibers Y ′t′ = f ′−1(t′) and Yt = f−1(t), one has

codim(p−1(Z) ∩ Y ′t′ , Y ′t′) = codim(Z ∩ Yt, Yt) and

depthp−1(Z)∩Y ′
t′
OY ′

t′
= depthZ∩Yt OYt .

(2) If F is flat over T , then

depthp−1(Z)∩Y ′
t′

(p∗F)(t′) = depthZ∩Yt F(t).

(3) If F is flat over T , then Sk(p∗F/T ′) ⊂ p−1Sk(F/T ). If f is locally of finite

type in addition, then Sk(p∗F/T ′) = p−1Sk(F/T ).

(4) If f is locally of finite type and if F satisfies relative Sk over T , then p∗F does

so over T ′.

(5) If f is an Sk-morphism (resp. Cohen–Macaulay morphism), then so is f ′.

Proof. Assertions (1) and (2) follow from Corollary 2.27 applied to the flat mor-

phism Y ′t′ → Yt and to G = OYt or G = F(t). The first half of (3) follows from

Definition 2.28 and Fact 2.26(4) applied to Y ′t′ → Yt and to (F ,G) = (OY ′
t′
,F(t)).

The latter half of (3) follows from Fact 2.26(6), since the fiber p−1(y) over a point

y ∈ Yt is isomorphic to Speck(y) ⊗k(t) k(t′) and since k(y) ⊗k(t) k(t′) is Cohen–

Macaulay (cf. [12, IV, Lem. (6.7.1.1)]). Assertion (4) is a consequence of (3), and

assertion (5) follows from (3) in the case F = OY , by Definition 2.30.

Lemma 2.32. Let Y → T be a morphism of locally Noetherian schemes and let

Z be a closed subset of Y . Let F be a coherent OY -module and k a positive integer.

(1) If F is flat over T , then

depthZ F ≥ inf{depthZ∩Yt F(t) | t ∈ f(Z)}.

(2) If F satisfies relative Sk over T and if

codim(Z ∩ SuppF(t),SuppF(t)) ≥ k

for any t ∈ T , then depthZ F ≥ k.

(3) If Y → T is flat and if one of the two conditions below is satisfied, then

depthZ OY ≥ k:

(a) depthYt∩Z OYt ≥ k for any t ∈ T ;

(b) Yt satisfies Sk and codim(Yt ∩ Z, Yt) ≥ k for any t ∈ T .
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Proof. For the first assertion (1), we may assume that Z ∩ SuppF 6= ∅. Then by

Definition 2.5 we have the inequality in (1) from equality (II-2) in Fact 2.26(3)

in the case where G = OT , since depthOT,t ≥ 0 for any t ∈ T . Assertion (2) is

a consequence of (1) and Lemma 2.15(2) applied to (Yt, Z ∩ Yt,F(t)). The last

assertion (3) is derived from (1) and (2) in the case where F = OY .

The following result gives some relations between the reflexive modules and

the relative S2-condition. Similar results can be found in [21, §3].

Lemma 2.33. Let f : Y → T be a flat morphism of locally Noetherian schemes,

F a coherent OY -module, and Z a closed subset of Y . Assume that

depthYt∩Z OYt ≥ 1

for any fiber Yt = f−1(t). Then the following hold for the open immersion j : Y \
Z ↪→ Y and for the restriction homomorphism F → j∗(F|Y \Z):

(1) If F|Y \Z is reflexive and if F ' j∗(F|Y \Z), then F is reflexive.

(2) If F is reflexive and if depthYt∩Z OYt ≥ 2 for any t ∈ T , then F ' j∗(F|Y \Z).

(3) If F is flat over T and if depthYt∩Z F(t) ≥ 2 for any t ∈ T , then F '
j∗(F|Y \Z).

(4) If Yt satisfies S2 and codim(Yt∩Z, Yt) ≥ 2 for any t ∈ T , and if F is reflexive,

then F ' j∗(F|Y \Z).

(5) If F satisfies relative S2 over T and if codim(Z ∩ SuppF(t),SuppF(t)) ≥ 2

for any t ∈ T , then F ' j∗(F|Y \Z).

(6) In the situation of (3) or (5), if F(t)|Yt\Z is reflexive, then F(t) is reflexive; if

F|Y \Z is reflexive, then F is reflexive.

Proof. Note that F ' j∗(F|Y \Z) if and only if depthZ F ≥ 2 (cf. Property 2.6).

We have depthZ OY ≥ 1 by Lemma 2.32(3). Hence, (1) is a consequence of

Lemma 2.21(3). In case (2) we have depthZ OY ≥ 2 by Lemma 2.32(3), and (2) is

a consequence of Lemma 2.21(1). Assertion (3) follows from Lemma 2.32(1) with

k = 2. Assertions (4) and (5) are special cases of (2) and (3), respectively. The

first assertion of (6) follows from Corollary 2.22. The second assertion of (6) is

derived from (1) and (3).

Remark. The assumption of Lemma 2.33 holds when Yt satisfies S1 and codim(Yt∩
Z, Yt) ≥ 1 for any t ∈ T (cf. Lemma 2.15(2)).

Lemma 2.34. In the situation of Lemma 2.31, assume that f is flat, F|Y \Z is

locally free, and

depthYt∩Z OYt ≥ 2
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for any t ∈ T . Then F∨∨ ' j∗(F|Y \Z) for the open immersion j : Y \Z ↪→ Y , and

(p∗F)∨∨ ' (p∗(F∨∨))∨∨.

Moreover, F and p∗F are reflexive if F is flat over T and

depthYt∩Z F(t) ≥ 2

for any t ∈ T .

Proof. Now, depthZ OY ≥ 2 by Lemma 2.32(3). Hence, depthZ F∨∨ ≥ 2 by

Lemma 2.21(1), and this implies the first isomorphism for F∨∨. We have

depthY ′
t′∩p

−1(Z)OY ′t′ ≥ 2

by Lemma 2.31(1). Hence, by the previous argument applied to p∗F and p∗(F∨∨),

we have isomorphisms

(p∗F)∨∨ ' j′∗(p∗F|Y ′\p−1(Z)) ' (p∗(F∨∨))∨∨

for the open immersion j′ : Y ′ \ p−1(Z) ↪→ Y ′. It remains to prove the last as-

sertion. In this case, F is reflexive by (1) and (3) of Lemma 2.33. Moreover, by

Lemma 2.31(2), we have

depthY ′
t′∩p

−1(Z)(p
∗F)(t′) ≥ 2

for any point t′ ∈ T ′. Thus, p∗F is reflexive by the same argument as above.

Lemma 2.35. Let f : Y → T be a morphism of locally Noetherian schemes, and

let Z be a closed subset of Y . Assume that f is quasi-flat (cf. [12, IV, (2.3.3)]),

i.e., there is a coherent OY -module F such that F is flat over T and SuppF = Y .

Then

(II-3) codimy(Z, Y ) ≥ codimy(Z ∩ Yf(y), Yf(y))

for any point y ∈ Z. If codim(Z ∩ Yt, Yt) ≥ k for a point t ∈ T and for an integer

k, then there is an open neighborhood V of Yt in Y such that codim(Z∩V, V ) ≥ k.

Proof. For the sheaf F above, we have SuppF(t) = Yt for any t ∈ T . If z ∈ Z ∩Yt,
then

(II-4) dimFz = dimOY,z and dim(F(t))z = dimOYt,z

by Property 2.1(1), and moreover,

(II-5) dimFz = dim(F(t))z + dimOT,t ≥ dim(F(t))z
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by (II-1) since F is flat over T . Thus, we have (II-3) from (II-4) and (II-5) by Prop-

erty 2.1(3). The last assertion follows from (II-3) and the lower semi-continuity

of the function x 7→ codimx(Z, Y ) (cf. [12, 0IV, Cor. (14.2.6)]). In fact, the set of

points y ∈ Y with codimy(Z, Y ) ≥ k is an open subset containing Yt.

We introduce the following notion (cf. [12, IV, Déf. (17.10.1)] and [7, p. 6]).

Definition 2.36 (Pure relative dimension). Let f : Y → T be a morphism locally

of finite type. The relative dimension of f at y is defined as dimy Yf(y), and it

is denoted by dimy f . We say that f has pure relative dimension d if d = dimy f

for any y ∈ Y ; this is equivalent to the condition that every non-empty fiber is

equi-dimensional and has dimension equal to d.

Remark 2.37. If a flat morphism f : Y → T is locally of finite type and it has pure

relative dimension, then it is an equi-dimensional morphism in the sense of [12,

IV, Déf. (13.3.2), (ErrIV, 35)]. In fact, a generic point of Y is mapped a generic

point of T by (II-1) applied to F = OY and G = OT , and condition (a′′) of [12,

IV, Prop. 13.3.1] is satisfied.

Lemma 2.38. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes. For a point y ∈ Y and its image t = f(y), assume

that the fiber Yt satisfies Sk at y for some k ≥ 2. Let Y ◦ be an open subset of Y

with y 6∈ Y ◦. Then there exists an open neighborhood U of y in Y such that

(1) f |U : U → T is an Sk-morphism having pure relative dimension and

(2) the inequality

codim(Ut′ \ Y ◦, Ut′) ≥ codimy(Yt \ Y ◦, Yt)

holds for any t′ ∈ f(U), where Ut′ = U ∩ Yt′ .

Proof. By Fact 2.29(3), replacing Y with an open neighborhood of y, we may

assume that f is an Sk-morphism. For any point y′ ∈ Y and for the fiber Yt′

over t′ = f(y′), the local ring OYt′ ,y′ is equi-dimensional by Fact 2.23(1), since

Yt′ is catenary satisfying S2. Moreover, the local ring has no embedded primes by

the condition S1. If an associated prime cycle Γ of Yt′ (cf. [12, IV, Déf. (3.1.1)])

contains y′, then Γ corresponds to an associated prime ideal p of OY ′,t′ , and we

have

dim Γ = dimy′ Γ = dimOYt′ ,y′/p + tr.deg k(y′)/k(t′)

by [12, IV, Prop. (5.2.1), Cor. (5.2.3)]. Since p is minimal and OYt′ ,y′ is equi-

dimensional, it follows that all the associated prime cycles of Yt′ containing y′

have the same dimension. Thus, by [12, IV, Thm. (12.1.1)(ii)], we may assume
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that f has pure relative dimension, by replacing Y with an open neighborhood

of y. Consequently, Y → T is an equi-dimensional morphism (cf. Remark 2.37).

Then the function

Y 3 y′ 7→ codimy′(Yf(y′) \ Y ◦, Yf(y′))

is lower semi-continuous by [12, IV, Prop. (13.3.7)]. Hence, we can take an open

neighborhood U of y satisfying the inequality in (2). Thus, we are done.

Corollary 2.39. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Assume that every fiber Yt is connected.

(1) If T are connected, then f has pure relative dimension. In particular, f is an

equi-dimensional morphism.

(2) If f is proper, then the function t 7→ codim(Yt∩Z, Yt) is lower semi-continuous

on T for any closed subset Z of Y .

Proof. We may assume that T is connected. We know that every fiber Yt is equi-

dimensional by the proof of Lemma 2.38, since Yt is connected. Moreover, dimYt is

independent of the choice of t ∈ T by Lemma 2.38(1), since T is connected. Hence,

f has pure relative dimension, and (1) has been proved. In case (2), f(Y ) = T ,

since f(Y ) is open and closed. Let us consider the set Fk of points y ∈ Y such that

codimy(Z ∩ Yf(y), Yf(y)) ≤ k

for an integer k. Then f(Fk) is the set of points t ∈ T with codim(Yt ∩Z, Yt) ≤ k.

Now, Fk is closed by (1) and by [12, IV, Prop. (13.3.7)]. Since f is proper, f(Fk)

is closed. This proves (2), and we are done.

§3. Relative S2-condition and flatness

We shall study restriction homomorphisms (cf. Definition 3.2 below) of coherent

sheaves to open subsets by applying the local criterion of flatness (cf. Section A.1),

and give several criteria for the restriction homomorphism on a fiber to be an

isomorphism. In Section 3.1 we prove the key proposition (Proposition 3.7) and

discuss related properties. Some applications of Proposition 3.7 are given in Sec-

tion 3.2: Theorem 3.16 is a criterion for a sheaf to be invertible, which is used in

the proof of Theorem 5.10 below. Proposition 3.19 gives infinitesimal and valua-

tive criteria for a reflexive sheaf to satisfy the relative S2-condition. Theorem 3.26

on the relative S2 refinement is analogous to the flattening stratification theorem

by Mumford in [39, Lect. 8] and to the representability theorem of unramified

functors by Murre [41]. Its local version is given as Theorem 3.28.
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§3.1. Restriction homomorphisms

In Section 3.1 we work under Situation 3.1 below unless otherwise stated.

Situation 3.1. We fix a morphism f : Y → T of locally Noetherian schemes, a

closed subset Z of Y , and a coherent OY -module F . The complement of Z in Y

is written as U , and j : U ↪→ Y stands for the open immersion.

Definition 3.2. The restriction morphism of F to U is defined as the canonical

homomorphism

φ = φU (F) : F → j∗(F|U ).

Similarly, for a point t ∈ T , the restriction homomorphism of F(t) to U (or to

U ∩ Yt) is defined as the canonical homomorphism

φt = φU (F(t)) : F(t) → j∗(F(t)|U∩Yt).

Here U ∩ Yt is identical to U ×Y Yt, and j stands also for the open immersion

U ∩ Yt ↪→ Yt.

Remark. The homomorphism φt is an isomorphism along U ∩Yt. In particular, φt
is an isomorphism if t 6∈ f(Z).

Remark. By Remark 2.8, we see that φ is an injection (resp. isomorphism) along

Yt if and only if

depthFy ≥ 1 (resp. ≥ 2)

for any point y ∈ Z such that Yt ∩ {y} 6= ∅.

We use the following notation only in Section 3.1.

Notation 3.3. For simplicity we write

F∗ := j∗(F|U ) and F(t)∗ := j∗(F(t)|U∩Yt).

When we fix a point t of f(Z), we write A for the local ring OT,t and m for the

maximal ideal mT,t, and for an integer n ≥ 0 we set

An := A/mn+1, Tn := SpecAn, Yn := Y ×T Tn,
Un = Yn ∩ U, Fn := F ⊗OY OYn , Fn∗ := j∗(Fn|Un).

In particular, Yt = Y0, F(t) = F0, F(t)∗ = F0∗, and Yn is a closed subscheme of Ym
for any m ≥ n. Furthermore, the restriction homomorphisms of Fn and (Fn∗)(t),

respectively, are written by

φn : Fn → Fn∗ = j∗(Fn|Un) and ϕn : (Fn∗)(t) = Fn∗ ⊗OYn OY0 → F0∗.
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Remark 3.4. The homomorphism φt in Definition 3.2 equals φ0, and the diagram

Fn ⊗OY OY0

φn⊗OY0−−−−−→ (Fn∗)⊗OY OY0

'
y yϕn
F0

φ0−−−−→ F0∗

is commutative for any n ≥ 0.

Lemma 3.5. Assume that F|U is flat over T .

(1) For a point y ∈ Z and t = f(y), if φt is injective at y, then Fy is flat over

OT,t.
(2) For a point y ∈ Z and t = f(y), if φt is an isomorphism at y, then the

restriction homomorphism φn : Fn → Fn∗ is an isomorphism at y for any

n ≥ 0.

(3) If φt is an isomorphism for any t ∈ f(Z), then φ is also an isomorphism.

Proof. First we shall prove (3) assuming (1) and (2). Since φt is an isomorphism

for any t ∈ f(Z), F is flat over T by (1), and we have

depthYt∩Z F(t) ≥ 2

by (2) (cf. Property 2.6). Then depthZ F ≥ 2 by Lemma 2.32(1), and φ is an

isomorphism (cf. Property 2.6).

Next, we shall prove (1) and (2). We may assume that T = SpecA for a

local Noetherian ring A in which t = f(y) corresponds to the maximal ideal m

of A and that Y = SpecOY,y for the given point y (cf. Remark 2.8). We write

k = A/m = k(t) and use Notation 3.3. From the standard exact sequence

0→ mn/mn+1 → An → An−1 → 0

of A-modules, by taking tensor products with F over A, we have an exact sequence

(III-1) mn/mn+1 ⊗k F0
un−−→ Fn → Fn−1 → 0

of OY -modules. Here the left homomorphism un is injective at y for any n ≥ 0 if

and only if Fy is flat overOT,t by the local criterion of flatness (cf. Proposition A.1).

Now, un is injective on the open subset Un, since F|U is flat over T , and u0 is the

identity morphism. For each n > 0, there is a natural commutative diagram

mn/mn+1 ⊗k F0
un−−−−→ Fn −−−−→ Fn−1

id⊗φ0

y φn

y φn−1

y
0 −−−−→ mn/mn+1 ⊗k j∗(F0|U0

)
j∗(un|Un )−−−−−−→ j∗(Fn|Un) −−−−→ j∗(Fn−1|Un−1

)
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of exact sequences. By assumption, φ0 =φt is an injection (resp. isomorphism) at y

in case (1) (resp. (2)) (cf. Remark 2.8). Thus, un is injective at y for any n by

the diagram. This shows (1). In case (2), by induction on n we see that φn is an

isomorphism at y for any n, by the diagram. Thus, (2) also holds, and we are done.

Applying Lemma 3.5 to F = OY , we have the following corollary.

Corollary 3.6. Suppose that U is flat over T . If the restriction homomorphism

φt(OY ) : OYt → j∗(OYt∩U ) is injective for a point t ∈ f(Z), then f is flat along

Yt. If φt(OY ) is an isomorphism for any t ∈ f(Z), then OY ' j∗(OU ).

Proposition 3.7 (Key proposition). Suppose that there is an exact sequence

0→ F → E0 → E1 → G → 0

of coherent OY -modules such that

(i) E0, E1, and G|U are flat over T , and

(ii) the inequalities

depthZ∩Yt E
0
(t) ≥ 2 and depthZ∩Yt E

1
(t) ≥ 1

hold for any t ∈ f(Z).

Then the following hold:

(1) The restriction homomorphism φ : F → F∗ = j∗(F|U ) is an isomorphism.

(2) For a fixed point t ∈ f(Z) and for any integer n ≥ 0, Fn∗ = j∗(Fn|Un) (cf.

Notation 3.3) is isomorphic to the kernel F ′n of the homomorphism

E0
n = E0 ⊗OY OYn → E1

n = E1 ⊗OY OYn

induced by E0 → E1. In particular, Fn∗ is coherent for any n ≥ 0, and F(t)∗ =

j∗(F(t)|U∩Yt) is coherent for any t ∈ f(Z).

(3) For any point y ∈ Y and t = f(y), the following conditions are equivalent to

each other, where we use Notation 3.3 in (a′), (b′), and (b′′):

(a) φt : F(t) → F(t)∗ is surjective at y;

(b) φt is an isomorphism at y;

(c) Gy is flat over OT,t;
(a′) ϕn : (Fn∗)(t) → F0∗ is surjective at y for any n ≥ 0;

(b′) ϕn is an isomorphism at y for any n ≥ 0;

(b′′) φn : Fn → Fn∗ is an isomorphism at y for any n ≥ 0.

Note that if (c) is satisfied, then Fy is also flat over OT,t.
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Proof. By (i), (ii) and by Lemma 2.32(1), we have depthZ E0 ≥ 2 and depthZ E1 ≥
1. Thus, depthZ F ≥ 2 by Lemma 2.17(1), and we have (1) (cf. Property 2.6). For

each n ≥ 0, the exact sequence

0→ F ′n → E0
n → E1

n → Gn → 0

on Yn satisfies conditions (i) and (ii) for the induced morphism Yn → Tn, where

Gn = G ⊗ OYn . Thus, by (1), the restriction homomorphism

φ(F ′n) : F ′n → (F ′n)∗ = j∗(F ′n|Un)

of F ′n is an isomorphism. On the other hand, there is a canonical homomorphism

ψn : Fn = F ⊗OYn → F ′n. Note that ψn is an isomorphism at a point y ∈ Yt = Y0

if Gy is flat over OT,t. In particular, ψn is an isomorphism on Un by condition

(i). Hence, (F ′n)∗ ' Fn∗, and we have an isomorphism F ′n ' Fn∗, by which φn
is isomorphic to ψn. This proves (2). For the proof of (3), we may assume that

y ∈ Z. We shall show that there is an exact sequence

(III-2) TorA2 (Gy,k)→ (F(t))y = Fy ⊗OY,y OYt,y
(ψ0)y−−−→ (F ′0)y → TorA1 (Gy,k)→ 0

of OY,y-modules, where A = OT,t and k = k(t). For the image B of E0 → E1, we

have two short exact sequences 0→ F → E0 → B → 0 and 0→ B → E1 → G → 0

on Y . Then the kernel of B0 = B ⊗ OY0
→ E1

0 = E1 ⊗ OY0
is isomorphic

to TorOT1 (G,k), and the kernel of F0 → E0
0 is isomorphic to TorOT1 (B,k) '

TorOT2 (G,k). Then we have the exact sequence (III-2) by applying the snake lemma

to the commutative diagram

F0 −−−−→ E0
0 −−−−→ B0 −−−−→ 0

ψ0

y =

y y
0 −−−−→ F ′0 −−−−→ E0

0 −−−−→ E1
0

of exact sequences. Note that ψ0 ' φ0 by the argument above. We shall prove (3)

using (III-2). If (a) holds, then TorA1 (Gy,k) = 0 by (III-2), and it implies (c) by

the local criterion of flatness (cf. Proposition A.1), since Gy ⊗ OYt,y ' Gy ⊗ k is

flat over k. If (c) holds, then TorAj (Gy,k) = 0 for j = 1 and 2, and it implies (b)

by (III-2). Thus, we have shown the equivalence of the three conditions (a), (b),

and (c). By applying the equivalence of the three conditions to F ′n ' Fn∗ and

Yn → Tn instead of F and Y → T , we see that (a′) and (b′) are both equivalent

to the condition that (Gn)y is flat over OTn,t for any n ≥ 0. This is also equivalent

to (c) by the local criterion of flatness (cf. (i) ⇔ (iv) in Proposition A.1). If (c)

holds, then ψn : Fn → F ′n is an isomorphism as we have noted before, and the
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isomorphism F ′n ' Fn∗ in (2) implies (b′′). Conversely, if (b′′) holds, then ϕn is

isomorphic to the canonical isomorphism (Fn)(t) ' F(t) for any n (cf. Remark 3.4),

and it implies (b′). Thus, we are done.

Remark. The exact sequence (III-2) is obtained as the “edge sequence” of the

spectral sequence

Ep,q2 = TorOT−p (Hq(E•), k(t))⇒ Ep+q = Hp+q(E•(t))

of OYt-modules (cf. [12, III, (6.3.2.2)]) arising from the quasi-isomorphism

E•(t) 'qis E• ⊗L
OT k(t),

where E• and E•(t) denote the complexes [0 → E0 → E1 → 0] and [0 → E0
(t) →

E1
(t) → 0], respectively.

Remark 3.8. In the situation of Proposition 3.7(2), the canonical homomorphism

φ∞ = lim←−n φn : lim←−n Fn → lim←−n Fn∗

is an isomorphism, where the projective limit lim←−n is taken in the category of OY -

modules. This is shown as follows. Since F ′n ' Fn∗, it is enough to show that the

homomorphism

ψ∞(V ) := lim←−n H0(V, ψn) : lim←−n H0(V,Fn)→ lim←−n H0(V,F ′n)

is an isomorphism for any open affine subset V of Y , where we note that the

global section functor H0(V, •) commutes with lim←−. For R = H0(V,OV ) and Rn =

R/mn+1R ' H0(V,OYn), we have two exact sequences:

0→ H0(V,F)→ H0(V, E0)→ H0(V, E1),

0→ H0(V,F ′n)→ H0(V, E0)⊗R Rn → H0(V, E1)⊗R Rn.

Since the mR-adic completion R̂ = lim←−Rn is flat over R and since lim←− is left exact,

we have an isomorphism

H0(V,F)⊗R R̂ ' Ker(H0(V, E0)⊗R R̂→ H0(V, E1)⊗R R̂) ' lim←−n H0(V,F ′n).

Then ψ∞(V ) is an isomorphism, since

lim←−n H0(V,Fn) ' lim←−n(H0(V,F)⊗R Rn) ' H0(V,F)⊗R R̂.

Corollary 3.9. In the situation of Proposition 3.7, assume that f is locally of

finite type. Then condition (c) of Proposition 3.7(3) for a point y ∈ Y is equivalent

to
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(d) there is an open neighborhood V of y in Y such that F|V is flat over T , and

φt is an isomorphism on V ∩ Yt for any t ∈ f(V ).

Furthermore, if F(t)|U∩Yt satisfies S2 for the point t = f(y) and if F(t′) is

equi-dimensional and

(III-3) codim(Z ∩ Yt′ ∩ SuppF , Yt′ ∩ SuppF) ≥ 2

for any t′ ∈ T , then (d) is equivalent to

(e) there is an open neighborhood V of y in Y such that F|V satisfies relative S2

over T , i.e., V = S2(F|V /T ).

Proof. For the first assertion, by Proposition 3.7(3), it is enough to show (c) ⇒
(d) assuming that f is locally of finite type and y ∈ Z. When (c) holds, G|V is flat

over T for an open neighborhood V of y in Y , by Fact 2.26(1). Thus, F|V is flat

over T by Proposition 3.7(i), and moreover, by Proposition 3.7(3) applied to any

point in V , we see that φt is an isomorphism on Yt∩V for any t ∈ f(V ∩Z). Since

φt is an isomorphism for any t 6∈ f(Z), we have proved (c) ⇒ (d).

We shall show (d) ⇔ (e) in the situation of the second assertion. In this case,

if φt is an isomorphism, then F(t) satisfies S2 by Corollary 2.16. Hence, we have

(d) ⇒ (e) by Fact 2.29(2). Conversely, if (e) holds with V = Y , then

depthYt′∩Z F(t′) ≥ 2

for any t′ ∈ f(Z) by Lemma 2.15(2), since F(t′) satisfies S2 and inequality (III-3)

holds. Hence, φt′ is an isomorphism for any t′ ∈ f(Z), and (d) holds. Thus, we are

done.

Corollary 3.10. In the situation of Proposition 3.7, for a point t ∈ f(Z), assume

that the coherent OYt-module F(t)∗ = j∗(F(t)|Yt∩U ) satisfies

(III-4) depthYt∩Z F(t)∗ ≥ 3.

Then the sheaves F and G are flat over T along Yt, and the restriction homomor-

phism φt : F(t) → F(t)∗ is an isomorphism.

Proof. By Proposition 3.7(3), it is enough to prove that φt is an isomorphism. By

(III-4), we have

R1j∗(F(t)|U∩Yt) = R1j∗(F0|U0
) = 0

(cf. Property 2.6). Hence, the exact sequence (III-1) in the proof of Lemma 3.5

induces an exact sequence

0→ mn/mn+1 ⊗k j∗(F0|U0)→ j∗(Fn|Un)→ j∗(Fn−1|Un−1)→ 0.
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Since Fn∗ = j∗(Fn|Un), the homomorphism ϕn is surjective for any n ≥ 0. There-

fore, φt is an isomorphism by (b′) ⇒ (b) of Proposition 3.7(3).

Remark 3.11. Corollary 3.10 is similar to a special case of [28, Thm. 12], where

the sheaf corresponding to F above may not have an exact sequence of Proposi-

tion 3.7. However, Example 3.12 below provides a counterexample to [28, Thm. 12].

The referee informed us that a modified version of [28, Thm. 12] is given in [30,

Thm. 10.70].

Example 3.12. Let Y be an affine space A8
k of dimension 8 over a field k with a

coordinate system (y1, y2, . . . , y8). Let T be a three-dimensional affine space A3
k

and let f : Y → T be the projection defined by (y1, . . . , y8) 7→ (y1, y2, y3). The

fiber Y0 = f−1(0) over the origin 0 = (0, 0, 0) of T is of dimension 5. We define

closed subschemes Z and V of Y by

Z := {y4 = y5 = y6 = 0} and

V := {y1 + y2y7 + y3y8 = y4 − y1 = y5 − y2 = y6 − y3 = 0}.

Then we can show the following properties:

(1) V ' A4
k, and V ∩ Y0 = V ∩ Z = Y0 ∩ Z ' A2;

(2) codim(Z, Y ) = codim(Z ∩ Y0, Y0) = 3 and codim(Z ∩ V, V ) = 2;

(3) V \ Y0 → T is a smooth morphism of relative dimension one, but the fiber

V ∩ Y0 of V → T over 0 is two-dimensional.

Let j : U ↪→ Y be the open immersion from the complement U := Y \ Z, and we

set F := OY ⊕OV and F0 := F ⊗OY OY0
. By (1) and (2), we have isomorphisms

j∗(F|U ) ' j∗OU ⊕ j∗OU∩V ' OY ⊕OV and(III-5)

j∗(F0|U∩Y0
) ' j∗OU∩Y0

' OY0
,(III-6)

since U ∩ V ∩ Y0 = ∅, depthZ OY ≥ 2, depthZ∩V OV ≥ 2 and depthZ∩Y0
OY0
≥ 2.

Thus, we have

(4) F|U = OU ⊕OU∩V is flat over T by (3);

(5) j∗(F|U ) is not flat over T by (3) and (III-5);

(6) j∗(F0|U∩Y0
) satisfies S3 by (III-6);

(7) the canonical homomorphism

j∗(F|U )⊗OY OY0
→ j∗(F0|U∩Y0

)

is not an isomorphism by (III-5) and (III-6).
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Thus, f : Y → T , F , and U give a counterexample to [28, Thm. 12]: The required

assumptions are satisfied by (2), (4), and (6), but the conclusion is denied by (5)

and (7).

The kernel J of OY → OV has also an interesting infinitesimal property. Let

A = k[y1, y2, y3] be the coordinate ring of T , m = (y1, y2, y3) the maximal ideal

at the origin 0 ∈ T , and set

An = A/mn+1, Tn = SpecAn, Yn = Y ×T Tn,
Vn = V ×T Tn, Jn = J ⊗OY OYn

for each n ≥ 0 as in Notation 3.3. Then we can prove

(III-7) J 6' OY , J |U 6' OU , J ' J∗ = j∗(J |U ), and Jn|U∩Yn ' OU∩Yn

for any n ≥ 0. In fact, the first two of (III-7) are consequences of the property

that the ideal sheaf J |U of V ∩U is not an invertible OU -module, and it is derived

from codim(V ∩ U,U) = 4 > 1. The third isomorphism of (III-7) follows from

depthZ OY ≥ 2 and depthZ OV ≥ 2 (cf. (2)), and the last one from the property

that the kernel of Jn → OYn is isomorphic to TorOY1 (OV ,OYn), which is supported

on V ∩ Y0 ⊂ Y \ U .

Remark 3.13. In the situation of Notation 3.3, we consider the following assertion:

(∗) If φ : F → j∗(F|U ) is an isomorphism, then the canonical morphism

φ∞ : lim←−n Fn → lim←−n j∗(j
∗Fn) ' j∗(lim←−n Fn|Un)

induced by φn : Fn → Fn∗ = j∗(j
∗Fn) is also an isomorphism.

Here lim←− stands for the projective limit in the category of OY -modules. In Re-

mark 3.8 above, we have proved (∗) for the sheaf F in Proposition 3.7. But (∗) is

not true in general. We shall show here that the ideal sheaf J of V in Example 3.12

provides a counterexample of (∗). In the situation of Example 3.12, we have

H0(Y, lim←−n Jn) ' lim←−nH
0(Yn,Jn) ' H0(Y,J )⊗R R̂

for R = k[y1, . . . , y8] and for the formal completion R̂ of R along the ideal mR =

(y1, y2, y3)R. On the other hand, we can show that

H0(Y, j∗(lim←−n Jn|Un)) ' lim←−nH
0(Un,Jn|Un)

' lim←−nH
0(Un,OUn) ' lim←−nH

0(Yn,OYn) ' R̂.

In fact, Jn|Un ' OUn for any n ≥ 0 by (III-7), and we have OYn ' j∗OUn for any

n ≥ 0 by depthZ∩Y0
OY0
≥ 2 and by applying Lemma 3.5(2) to OY . Hence, if (∗)
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holds true for J , then H0(Y,J )⊗R R̂ ' R̂, and it implies that Jy = OY,y for any

point y ∈ Y0 = SpecR/mR, i.e., the closed subscheme V defined by J does not

contain any point of Y0. This is a contradiction, since V ∩ Y0 ' A2.

In the situation of (∗), let Y be the formal scheme defined as the mOY -

adic completion of Y , and let U be the mOU -adic completion of U with an open

immersion ĵ : U ↪→ Y of formal schemes. Then, for the mOY -adic completion F of

F , the canonical morphism

φ̂ : F→ ĵ∗(F|U)

is not an isomorphism in general, since the direct image of φ̂ by Y→ Y is isomor-

phic to the morphism φ∞ of (∗).

In the rest of Section 3.1, in Lemmas 3.14 and 3.15 below, we shall give

sufficient conditions for F to admit an exact sequence of Proposition 3.7.

Lemma 3.14. Suppose that f ◦ j : U → T is flat and

depthYt∩Z OYt ≥ 2

for any t ∈ f(Z). If F is a reflexive OY -module and if F|U is locally free, then

there exists an exact sequence 0 → F → E0 → E1 → G → 0 locally on Y which

satisfies conditions (i) and (ii) of Proposition 3.7.

Proof. The morphism f is flat by Corollary 3.6. Since F is coherent, locally on Y ,

we have a finite presentation

O⊕mY
h−→ O⊕nY → F∨ → 0

of the dual OY -module F∨ = HomOY (F ,OY ). Let K be the kernel of the left

homomorphism h. Then K|U is locally free, since so is F|U . We have an exact

sequence

0→ F ' F∨∨ → O⊕nY
h∨−−→ O⊕mY

by taking the dual. Let G be the cokernel of h∨. Then G|U is isomorphic to the

locally free sheaf K∨|U . Thus, the exact sequence

0→ F → O⊕nY
h∨−−→ O⊕mY → G → 0

satisfies conditions (i) and (ii) of Proposition 3.7.

Lemma 3.15. Suppose that f : Y → T is a flat morphism and

(III-8) depthYt∩Z OYt ≥ 2
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for any t ∈ f(Z). Moreover, suppose that there is a bounded complex

E• = [· · · → E i → E i+1 → · · · ]

of locally free OY -modules of finite rank satisfying the following four conditions:

(i) Hi(E•)|Y \Z = 0 for any i > 0;

(ii) F ' H0(E•);
(iii) Hi(E•(t)) = 0 for any i < 0 and any t ∈ T , where E•(t) stands for the complex

[· · · → E i(t) → E
i+1
(t) → · · · ] 'qis E• ⊗L

OY OYt ;

(iv) the local cohomology group Hiy(M•) at the maximal ideal mY,y for the complex

M• =
(
τ≤1E•(t)

)
y

of OY,y-modules is zero for any i ≤ 1 and any y ∈ Z, where t = f(y).

Then Hi(E•) = 0 for any i < 0, and F admits an exact sequence satisfying condi-

tions (i) and (ii) of Proposition 3.7.

Proof. For an integer k, the truncated complex τ≥k(E•) is expressed as

[· · · → 0→ Ck → Ek+1 → Ek+2 → · · · ],

where Ck is the cokernel of Ek−1 → Ek. First we shall show that E• 'qis τ
≥0(E•)

and C0 is flat over T . Note that it implies that Hi(E•) = 0 for any i < 0. Since

E• is bounded, we have an integer k < 0 such that E• 'qis τ
≥k(E•) and Ck is flat

over T . Then, by (iii), one has

Hk(E•(t)) ' Ker(Ck(t) → E
k+1
(t) ) = 0

for any t ∈ T . Hence, Ck → Ek+1 is injective and Ck+1 ' Ek+1/Ck is flat over T by

a version of local criterion of flatness (cf. Corollary A.2). Thus, E• 'qis τ
≥k+1(E•),

and we can increase k by one. Therefore, we can take k = 0, and consequently,

E• 'qis τ
≥0(E•), and C0 is flat over T . We write C := C0. Then

E•(t) 'qis [· · · → 0→ C(t) → E1
(t) → E

2
(t) → · · · ]

for any t ∈ T , since C and E i are all flat over T .

Second we shall prove that

(III-9) depthYt∩Z C(t) ≥ 2

for any t ∈ f(Z). We define Kt to be the kernel of E1
(t) → E

2
(t). Then

depthYt∩Z E
i
(t) ≥ 2 and depthYt∩Z Kt ≥ 2
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for i = 0, 1, and for any t ∈ f(Z), by (III-8) and by Lemma 2.17(1). In particular,

for any y ∈ Z ∩ Yt, we have the vanishing

(III-10) Hiy((Kt)y) = 0

of the local cohomology group at y for any i ≤ 1 (cf. Property 2.6). By construction,

we have a quasi-isomorphism

τ≤1(E•(t)) 'qis [· · · → 0→ C(t) → Kt → 0→ · · · ].

In view of the induced exact sequence

· · · → Hiy(M•)→ Hiy((C(t))y)→ Hiy((Kt)y)→ · · ·

of local cohomology groups, we have

Hiy((C(t))y) = 0

for any i ≤ 1 by (iv) and (III-10). Thus, we have (III-9) (cf. Property 2.6).

Finally, we consider the cokernel G of C → E1. Then G|U is flat over T by (i).

Therefore, the exact sequence 0 → F → C → E1 → G → 0 satisfies conditions (i)

and (ii) of Proposition 3.7.

§3.2. Applications of the key proposition

First we shall prove the following criterion for a sheaf to be invertible.

Theorem 3.16. Let f : Y → T be a morphism of locally Noetherian schemes, Z

a closed subset of Y , F a coherent OY -module, and t a point of f(Z). We set

U = Y \ Z, and write j : U ↪→ Y for the open immersion. Assume that

(i) depthZ OY ≥ 1,

(ii) F|U is flat over T , F|U is invertible, depthZ F ≥ 2, and

(iii) the direct image sheaf

F(t)∗ = j∗((F ⊗OY OYt)|U∩Yt)

(cf. Definition 3.2) is an invertible OYt-module.

Assume furthermore that one of conditions (a) and (b) below is satisfied:

(a) depthZ∩Yt OYt ≥ 3;

(b) the double-dual F [r] of F⊗r is invertible along Yt for a positive integer r co-

prime to the characteristic of the residue field k(t).

Then f is flat along Yt, and F is invertible along Yt.
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Proof. We may replace Y with its open subset, since the assertions are local on

Y . By (ii), U is flat over T . Moreover,

(III-11) depthZ∩Yt OYt ≥ 2

by (iii), since the isomorphism F(t)∗ ' j∗(F(t)∗|U∩Yt) implies that depth(F(t)∗)y =

depthOYt,y ≥ 2 for any y ∈ Z ∩ Yt. Hence, f : Y → T is flat along Yt by Corol-

lary 3.6 (cf. Property 2.6). Then F is a reflexive OY -module by Lemma 2.21(3),

since we have assumed depthZ OY ≥ 1 and depthZ F ≥ 2 in (i) and (ii). Therefore,

by (III-11) and Lemma 3.14, we may assume that F admits an exact sequence of

Proposition 3.7.

By Fact 2.26(2), we see that F is invertible along Yt if the two conditions

below are both satisfied:

(1) F is flat over T along Yt;

(2) φt : F(t) → F(t)∗ is an isomorphism.

Here (1) is a consequence of (2) by Proposition 3.7(3). When (a) holds, we have

depthYt∩Z F(t)∗ ≥ 3

by (iii), and hence, condition (2) is satisfied by Corollary 3.10. Thus, it remains

to prove (2) assuming condition (b).

We use Notation 3.3 for t. By replacing Y with its open subset, we may assume

that Y is affine, and there exist isomorphisms

OYt = OY0
' F(t)∗ = F0∗ and F [r] ' OY

in (iii) and in (b), respectively. Note that we have

depthYn∩Z OYn ≥ 2

for any n ≥ 0: this follows from (III-11) by Lemma 2.32(3) applied to the flat

morphism Yn → Tn. As a consequence,

H0(Yn,OYn) ' H0(Un,OUn)

for any n ≥ 0, and the restriction homomorphism

(III-12) H0(Un,OUn)→ H0(Un−1,OUn−1
)

is surjective for any n > 0, since we have assumed that Y is affine.

We set Nn := Fn|Un . It is enough to show that Nn ' OUn for all n. In fact,

if this is true, then we have an isomorphism

Fn∗ = j∗(Nn) ' j∗(OUn) ' OYn
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and, as a consequence, the restriction homomorphism ϕn : (Fn∗)(t) → F0∗ is an

isomorphism for any n ≥ 0. Hence, in this case φt : F(t) → F(t)∗ is an isomorphism

by (b′) ⇒ (b) of Proposition 3.7(3).

We shall prove Nn ' OUn by induction on n. When n = 0, we have the

isomorphism from the isomorphism F0∗ ' OY0 above. Assume that Nn−1 ' OUn−1

for an integer n > 0. Let J be the kernel of OYn → OYn−1
. Then J 2 = 0 as an

ideal of OYn , and

J ' mn/mn+1 ⊗k OY0
.

We have an exact sequence

0→ J → O?Yn → O
?
Yn−1

→ 1

of sheaves on |Yn| = |Y0| with respect to the Zariski topology, where ? stands for

the subsheaf of invertible sections of a sheaf of rings, and where a local section

ζ of J is mapped to the invertible section 1 + ζ of OYn . It induces a long exact

sequence

H0(Un,O?Un)
res0−−→ H0(Un−1,O?Un−1

)→ H1(U0,J )→ Pic(Un)
res1−−→ Pic(Un−1),

where res0 and res1 are restriction homomorphisms to Un−1. Note that res0 is sur-

jective, since so is (III-12). Hence, the kernel of res1 is a k-vector space isomorphic

to H1(U0,J ). Now, the isomorphism class of Nn in Pic(Un) belongs to the kernel

by Nn−1 ' OUn−1
, and its multiple by r is zero by (b), where r is coprime to

char(k). Thus, Nn ' OUn , and we are done.

We have the following by a direct application of Proposition 3.7.

Lemma 3.17. Let f : Y → T be a flat morphism of locally Noetherian schemes

and let Z be a closed subset of Y such that

depthYt∩Z OYt ≥ 2

for any fiber Yt. Let q : T ′ → T be a morphism from another locally Noetherian

scheme T ′ such that Y ′ = Y ×T T ′ is also locally Noetherian. We write f ′ : Y ′ → T ′

and p : Y ′ → Y for the projections. Let 0 → F → E0 → E1 → G → 0 be an exact

sequence of coherent OY -modules such that F|U , E0, E1, and G|U are locally free,

where U = Y \ Z. Then F is a reflexive OY -module, and

(p∗F)∨∨ ' Ker(p∗E0 → p∗E1) ' j′∗(p∗F|U ′)

for the open immersion j′ : U ′ = p−1(U) ↪→ Y ′. Moreover, (p∗F)∨∨ satisfies rela-

tive S2 over T ′ if and only if p∗G is flat over T ′.
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Proof. The exact sequence satisfies the assumptions of Proposition 3.7 for Y → T .

Hence, F ' j∗(F|U ), i.e., depthZ F ≥ 2, by Proposition 3.7(1). Moreover, F is

reflexive by Lemma 2.21(3), since we have depthZ OY ≥ 2 by Lemma 2.32(3). Let

F ′ be the kernel of p∗E0 → p∗E1. Then the exact sequence

0→ F ′ → p∗E0 → p∗E1 → p∗G → 0

on Y ′ satisfies the assumptions of Proposition 3.7 for f ′ : Y ′ → T ′, since

depthY ′
t′∩p

−1(Z)OY ′t′ = depthYt∩Z OYt ≥ 2

for any t′ ∈ T ′ and t = q(t′), by Lemma 2.31(1). Hence, F ′ ' j′∗(F ′|U ′) by

Proposition 3.7(1). Since F ′|U ′ ' p∗F|U ′ , we have F ′ ' (p∗F)∨∨ by Lemma 2.34.

Furthermore, by Proposition 3.7(3), we see that F ′ satisfies relative S2 over T ′ if

and only if p∗G is flat over T ′.

Here we introduce the following notion useful for stating results in the rest of

Section 3.2.

Definition 3.18. Let f : Y → T be a morphism of locally Noetherian schemes

and let F be a coherent OY -module. We say that F is locally free in codimension

one on each fiber of f if there is an open subset U ⊂ Y such that F|U is locally

free and codim(Yt \ U, Yt) ≥ 2 for any fiber Yt = f−1(t).

Proposition 3.19 (Infinitesimal and valuative criteria). Let f : Y → T be a flat

morphism locally of finite type between locally Noetherian schemes and let y ∈ Y be

a point such that f satisfies relative S2 over T at y. Let F be a reflexive OY -module

which is locally free in codimension one on each fiber of f . Then F satisfies relative

S2 over T at y if one of the following two conditions (I) and (II) is satisfied, where

YA = Y ×T SpecA and FA = p∗AF for the projection pA : YA → Y :

(I) Let SpecA → T be a morphism defined by a surjective local ring homo-

morphism OT,f(y) → A to an Artinian local ring A. Then the double-dual

(FA)∨∨ satisfies relative S2 over SpecA at the point yA = p−1
A (y).

(II) The local ring OT,f(y) is reduced. Let SpecA → T be a morphism defined

by a local ring homomorphism OT,f(y) → A to a discrete valuation ring A.

Then the double-dual (FA)∨∨ satisfies relative S2 over SpecA at any point

z ∈ YA lying over y ∈ Y and the closed point mA of SpecA.

Proof. We may assume that T = SpecB for the local ring B = OT,f(y) and we can

localize Y freely. Thus, we may assume that Y = SpecC for a finitely generated

B-algebra C and, moreover, that Y → T is an S2-morphism by Fact 2.29(3). By
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assumption, there is a closed subset Z ⊂ Y such that F|Y \Z is locally free and

codim(Yt ∩ Z, Yt) ≥ 2 for any t ∈ T . In particular,

depthYt∩Z OYt ≥ 2

for any t ∈ T (cf. Lemma 2.15(2)). As in the proof of Lemma 3.14, we have an

exact sequence 0 → F → E0 → E1 → G → 0 of coherent OY -modules such that

E0, E1 and G|U are locally free. By Proposition 3.7(3), we see that F satisfies

relative S2 over T at y if and only if the stalk Gy is flat over B. Let SpecA → T

be a morphism in (I) or (II). Then YA = SpecC⊗B A is Noetherian, since C⊗B A
is a finitely generated A-algebra. By Proposition 3.7(3) and Lemma 3.17, we see

also that (FA)∨∨ satisfies relative S2 over SpecA at a point z lying over y and

mA if and only if the stalk GA,z is flat over A for the pullback GA = p∗AG, where

GA,z ' (Gy ⊗B A)z. Therefore, the assertions in cases (I) and (II), respectively,

follow from the local criterion of flatness (cf. Proposition A.1(iv)) for Gy over B

and from the valuative criterion of flatness (cf. [12, IV, Thm. (11.8.1)]) for G over

T at y.

Definition 3.20 (Relative S2 refinement). Let Y → T be an S2-morphism of lo-

cally Noetherian schemes and let F be a reflexive OY -module which is locally free

in codimension one on each fiber. A morphism S → T from a locally Noetherian

scheme S is called a relative S2 refinement for F over T if the following conditions

are satisfied:

(i) S → T is a monomorphism in the category of schemes (cf. Fact 3.23);

(ii) for any morphism T ′ → T of locally Noetherian schemes, and for the pullback

F ′ of F to the fiber product Y ×T T ′, the double dual (F ′)∨∨ satisfies relative

S2 over T ′ if and only if T ′ → T factors through S → T .

Remark. The fiber product Y ×T T ′ in (ii) is locally Noetherian, since it is locally

of finite type over T ′. Thus, we can consider the relative S2-condition for (F ′)∨∨

(cf. Definition 2.28). By (i) and (ii), S → T is unique up to unique isomorphism.

Remark 3.21. In the situation of Definition 3.20(ii), we write F ×T T ′ for F ′, and

we set

F (T ′/T ) =

{
? if (F ×T T ′)∨∨ satisfies relative S2 over T ′,

∅ otherwise,

where ? denotes a one-point set. For any morphism T ′′ → T ′ from a locally Noethe-

rian scheme T ′′, we can show that if F (T ′/T ) = ?, then F (T ′′/T ) = ?. In fact, we
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have an isomorphism

(F ×T T ′′)∨∨ ' (F ×T T ′)∨∨ ×T ′ T ′′

by Lemma 2.34, and this sheaf satisfies relative S2 over T ′′ by Lemma 2.31(3).

Therefore, F is regarded as a functor (LNSch/T )op→Set for the category LNSch/T

of locally Noetherian T -schemes, and the relative S2 refinement is a T -scheme rep-

resenting F .

Remark 3.22. If T ′ = Speck for a field k, then F (T ′/T ) = ?, since (F ′)∨∨ satisfies

S2 by Corollary 2.22. In particular, if the relative S2 refinement S → T exists,

then it is bijective.

Fact 3.23. Let h : S → T be a morphism locally of finite type between locally

Noetherian schemes. Then h is a morphism locally of finite presentation (cf. [12,

IV, §1.4]), and we have the following properties:

(1) The morphism h is a monomorphism in the category of schemes if and only if

h is radicial and unramified, by [12, IV, Prop. (17.2.6)].

(2) If h is an unramified morphism, then it is étale locally a closed immersion, i.e.,

for any point s ∈ S, there exists an open neighborhood V of s such that the

induced morphism V → T is written as the composite of a closed immersion

V → W and an étale morphism W → T (cf. [12, IV, Cor. (18.4.7)], [13, I,

Cor. 7.8]).

Example 3.24. For a Noetherian scheme T and a finite number of locally closed

subschemes S1, S2, . . . , Sk of T , assume that T is equal to the disjoint union⊔k
i=1 Si as a set; the collection {Si} is called a stratification in [39, Lect. 8]. Then

immersions Si ⊂ T define a morphism h : S → T from the scheme-theoretic disjoint

union S =
⊔k
i=1 Si. This h is a separated surjective monomorphism of finite type

and is a local immersion (cf. [12, I, Déf. (4.5.1)]), i.e., a closed immersion Zariski-

locally.

Example 3.25. There is a separated monomorphism h : X → Y of finite type of

Noetherian schemes such that X is connected but h is not an immersion. An

example is given as follows. For an algebraically closed field k, let D be a reduced

effective divisor of degree three on the projective plane Y = P2
k having a node P .

For the blowing up M → Y at P , let X be the proper transform of D in M and

let Q ∈ X be one of the two points lying over P . We set X := X \ {Q}. Then X

is connected, the induced morphism h : X → Y is a separated monomorphism of

finite type inducing a bijection X → D, and h−1(Y \ {P}) ' D \ {P}. However, h

is not a closed immersion, since X is not isomorphic to D. If D is irreducible, then
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h is not a local immersion. On the other hand, if D is reducible, then h is a local

immersion. In fact, for another node P ′ of D, the inverse image h−1(Y \ {P ′}) is

isomorphic to a disjoint union of two locally closed subschemes of Y .

The following is analogous to the flattening stratification theorem by Mum-

ford in [39, Lect. 8] or to the representability theorem of unramified functors by

Murre [41]: A similar result is stated by Kollár in [29, Thm. 2] in the case where

f is projective but is not required to satisfy the S2-condition.

Theorem 3.26. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Let F be a reflexive OY -module which is locally free in codimension one on each

fiber (cf. Definition 3.18). If the following condition (i) is satisfied, then there is

a relative S2 refinement for F over T as a separated morphism S → T locally of

finite type:

(i) F|Y \Σ satisfies relative S2 over T for a closed subset Σ ⊂ Y such that Σ→ T

is proper.

Furthermore, the morphism S → T is a local immersion of finite type if

(ii) f is a projective morphism locally over T .

Proof. For the first assertion, by Fact 3.23(1), it is enough to prove that the functor

F in Remark 3.21 is representable by a separated morphism S → T locally of finite

type. We may replace T freely by an open subset, since S → T is unique up to

unique isomorphism and since the second assertion is also local on T . Thus, we

assume that T is an affine Noetherian scheme. We set U to be an open subset of

Y such that F|U is locally free and codim(Yt \ U, Yt) ≥ 2 for any fiber Yt.

We first consider case (ii). We may assume that Y is a closed subscheme of

PN × T for some N > 0. Let A be the f -ample invertible OY -module defined as

the pullback of O(1) on PN . Then we can construct an exact sequence

(A⊗−l
′
)⊕m

′
→ (A⊗−l)⊕m → F∨ → 0

on Y for some positive integers m, m′, l, and l′, where the kernel of the left

homomorphism is locally free on U , since F∨ is so. Taking the dual, we have an

exact sequence 0 → F → E0 → E1 → G → 0 of coherent OY -modules such that

E0, E1 and G|U are locally free (cf. the proof of Lemma 3.14). Let T ′ → T be an

arbitrary morphism from another locally Noetherian scheme T ′. Then F (T ′/T ) =

? if and only if G ×T T ′ is flat over T ′, by Lemma 3.17. Hence, the functor F

is nothing but the “universal flattening functor” G : (Sch/T )op → Set for G (cf.
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Remark 3.27 below) restricted to the category LNSch/T . Here

G(T ′/T ) =

{
? if G ×T T ′ is flat over T ′,

∅ otherwise,

for any T -scheme T ′. By the theorem of [39, Lect. 8], it is represented by a sepa-

rated morphism S → T of finite type which is a local immersion. Thus, we have

proved the assertion in case (ii).

In case (i), we can cover Σ by finitely many open affine subsets Yλ. We may

assume that Y =
⋃
Yλ, since F|Y \Σ satisfies relative S2 over T . By Lemma 3.14,

we may also assume that there exists an exact sequence

0→ F|Yλ → E0
λ → E1

λ → Gλ → 0

on each Yλ such that E0
λ and E1

λ are free OYλ -modules of finite rank, and that Gλ is

locally free on Uλ = U ∩ Yλ. Let T ′ → T be an arbitrary morphism from a locally

Noetherian scheme T ′. By Lemma 3.17, we see that F (T ′/T ) = ? if and only if

Gλ ×T T ′ is flat over T ′ for any λ. Let Gλ : (Sch/T )op → Set be the universal

flattening functor for Gλ, which is defined by

Gλ(T ′/T ) =

{
? if Gλ ×T T ′ is flat over T ′,

∅ otherwise.

Let G : (Sch/T )op → Set be the “intersection” functor of all Gλ, i.e., G(T ′/T ) =⋂
Gλ(T ′/T ) for any T/′T . By the argument above, F is the restriction of G to

LNSch/T . Every functor Gλ satisfies conditions (F1)–(F8) of [41] except (F3), by

the proof of [41, Thm. 2]. Hence, the intersection functor G satisfies the same con-

ditions except possibly (F3) and (F8). By [41, Thm. 1], we are reduced to checking

these two conditions for G. Since the two conditions concern only Noetherian

schemes, we may take F = G. We write F (T ′) = F (T ′/T ) for simplicity for a

morphism T ′ → T .

We shall show that F satisfies (F3) (cf. [41, (F3), p. 244]). Let A be a Noethe-

rian complete local ring with maximal ideal mA and let SpecA→ T be a morphism.

What we have to prove is the bijectivity of the canonical map

F (SpecA)→ lim←−n F (SpecA/mnA),

or equivalently that F (SpecA) = ? if F (SpecA/mnA) = ? for all n > 0. Assume

the latter condition. By Corollary 3.9 applied to Yλ ×T SpecA→ SpecA for each

λ, we have an open neighborhood Wλ of the closed fiber Yλ ×T SpecA/mA in

Yλ ×T SpecA such that (F ×T SpecA)∨∨|Wλ
satisfies relative S2 over SpecA. On

the other hand, the restriction of (F ×T SpecA)∨∨ to (Y \ Σ) ×T SpecA also
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satisfies relative S2 over SpecA. Then the union
⋃
Wλ ∪ ((Y \ Σ) ×T SpecA)

equals Y ×T SpecA, since the complement of the union is proper over SpecA but

its image does not contain the closed point mA. Therefore, F (SpecA) = ?.

Next we shall show that F satisfies (F8) (cf. [41, (F8), p. 246]). Let A be a

Noetherian ring containing a unique minimal prime ideal p and let I be a nilpotent

ideal of A such that Ip = 0. Note that p =
√

0. Let SpecA → T be a morphism

and assume that F (SpecA/I) = ? but F (SpecAp/I
′) = ∅ for any ideal I ′ of Ap

such that I ′ ( Ip. What we have to prove is the existence of an element a ∈ A \ p
having the following property:

(�) For any element b ∈ A \ p and for any ideal J of Aab = A[(ab)−1], if J ⊂ IAab
and if F (SpecAab/J) = ?, then J = IAab.

For each λ, we set Bλ to be an A-algebra such that SpecBλ ' Yλ ×T SpecA over

SpecA and let Mλ be a finitely generated Bλ-module such that the quasi-coherent

sheaf M∼λ on SpecBλ is isomorphic to Gλ ×T SpecA. Note that

Mλ ⊗A Ap/IAp

is a free Ap/IAp-module, since it is flat over Ap/IAp by Gλ(SpecAp/IAp) = ?

and since Ap is an Artinian local ring. Hence,

(Mλ ⊗A A/I)⊗A Aa = Mλ ⊗A Aa/IAa

is a free Aa/IAa-module for an element a ∈ A \ p. For each λ, let Sλ be the set of

ideals J of Aa such that Gλ(SpecAa/J) = ?, or equivalently, that Mλ ⊗A Aa/J
is a flat Aa/J-module. By [12, IV, Cor. (11.4.4)], there exists a unique minimal

element Iλ = Iλ,(a) in Sλ, and

(†) for any Aa-algebra A′, if Mλ ⊗A A′ is a flat A′-module, then A′ is an Aa/Iλ-

algebra.

Note that Iλ is nilpotent, since the nilpotent ideal IAa belongs to Sλ. We define

I(a) :=
∑
Iλ,(a) as an ideal of Aa. Then it has the following property:

(‡) For any Aa-algebra A′, it is an Aa/I(a)-algebra if and only if Mλ ⊗A A′ is flat

over A′ for any λ, i.e., F (SpecA′) = ?.

By the assumption of Ip, we have (I(a))p = I(a)Ap = IAp. Thus, there is an

element a′ ∈ A \ p such that I(a)Aaa′ = IAaa′ . Here Iλ,(aa′) = Iλ,(a)Aaa′ for any λ

by the property (†) of Iλ. Thus, I(aa′) = I(a)Aaa′ = IAaa′ . Therefore, aa′ satisfies

condition (�) by the property (‡). Thus, we have checked conditions (F3) and (F8),

and the assertion in case (i) has been proved.
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Remark 3.27. The (universal) flattening functor is introduced by Murre in [41],

but its origin seems to go back to Grothendieck as the subtitle says. Murre gives

a criterion of the representability of the functor in [41, §3, (A)], whose prototype

seems to be [12, IV, Prop. (11.4.5)]. Mumford considers the case of a projective

morphism in [39, Lect. 8], and proves the representability by using Hilbert poly-

nomials, where the representing scheme is called the “flattening stratification”. He

also mentioned that Grothendieck has proved a weaker result by a much deeper

method. Raynaud [47, Chap. 3] and Raynaud–Gruson [48, Part 1, §4] give fur-

ther criteria for the representability of the universal flattening functor by another

method. One of them is used in proving the following “local version” of the exis-

tence of relative S2 refinement.

Theorem 3.28. Let f : Y → T be an S2-morphism of locally Noetherian schemes

and F a reflexive OY -module which is locally free in codimension one on each fiber

(cf. Definition 3.18). Assume that T = SpecR for a Henselian local ring R and let

o ∈ T be the closed point. Then, for any point y of the closed fiber Yo = f−1(o),

there is a closed subscheme S ⊂ T having the following universal property. Let

T ′ = SpecR′ → T = SpecR be a morphism defined by a local ring homomorphism

R → R′ for a Noetherian local ring R′ and let o′ ∈ T ′ be the closed point. Let

f ′ : Y ′ = Y ×T T ′ → T ′ and p : Y ′ → Y be the induced morphisms. Then, for the

pullback F ′ := p∗F , its double-dual (F ′)∨∨ on Y ′ satisfies relative S2 over T ′ at

any point y′ of Y ′ with p(y′) = y and f ′(y′) = o′ if and only if T ′ → T factors

through S.

Proof. Replacing Y with an open neighborhood of y, we may assume that Y is

an affine R-scheme of finite type. Then, by the same argument as in the proof of

Lemma 3.14, we have an exact sequence 0→ F → E0 → E1 → G → 0 of coherent

OY -modules such that E0 and E1 are locally free and G|U is also locally free for

the maximal open subset U such that F|U is locally free. By Lemma 3.17, (F ′)∨∨

satisfies relative S2 over T ′ at a point y′ lying over y if and only if (p∗G)y′ is flat

over T ′. Therefore, the universal closed subscheme S ⊂ T exists by [48, Part 1,

Thm. (4.1.2)] or [47, Chap. 3, Thm. 1] applied to G.

§4. Grothendieck duality

We shall explain the theory of Grothendieck duality with some base change the-

orems by referring to [17], [7], [35], etc. We do not prove the main part of the

duality theory but show several consequences. Some of them are useful for study-

ing Q-Gorenstein schemes and Q-Gorenstein morphisms in Sections 6 and 7.
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Some well-known properties on the dualizing complex are mentioned in Sec-

tions 4.1 and 4.2 based on arguments in [17] and [7]. Section 4.1 explains some

basic properties and results on a locally Noetherian scheme admitting a dualizing

complex, mainly on the codimension function associated with the dualizing com-

plex and on interpretation of Sk-conditions for a coherent sheaf via the dualizing

complex. In Section 4.2 we introduce the useful notion of an ordinary dualizing

complex for locally equi-dimensional locally Noetherian schemes, and study coho-

mology sheaves of ordinary dualizing complexes. Section 4.3 explains the notion

of twisted inverse image and the relative duality theory referring mainly to [17],

[7], [35]. Our original base change result for the relative dualizing complex to the

fiber is proved in Corollary 4.38. In Section 4.4 we explain the relative dualizing

sheaf for a Cohen–Macaulay morphism (cf. Definition 2.30) and its base change

property referring to [7], [51], etc.

§4.1. Dualizing complex

We shall begin by recalling the notion of a dualizing complex, which is introduced

in [17, V].

Definition 4.1. A dualizing complex R• of a locally Noetherian scheme X is

defined to be a complex of OX -modules bounded below such that

• it has coherent cohomology and has finite injective dimension, i.e., R• ∈
D+

coh(X)fid in the sense of [17], and

• the natural morphism

OX → RHomOX (R•,R•)

is a quasi-isomorphism (cf. [17, V, Prop. 2.1]).

Remark. Every complex in D+
coh(X)fid is quasi-isomorphic to a bounded com-

plex of quasi-coherent injective OX -modules when X is quasi-compact (cf. [17, II,

Prop. 7.20]). The derived functor RHomOX of the bi-functor HomOX is considered

as a functor

D(X)op ×D(X) 3 (F•,G•) 7→ RHomOX (F•,G•) ∈ D(X)

(cf. [17, I, §6], [54, Thm. A(ii)]).

Example. A Noetherian local ring A is said to be Gorenstein if there is a finite

injective resolution of A. In particular, OX is a dualizing complex for X = SpecA.

Several conditions for a local ring A to be Gorenstein are known (e.g. [17, V,

Thm. 9.1], [37, Thm. 18.1]): for example, A is Gorenstein if and only if A is Cohen–

Macaulay and Extn(A/mA, A) ' A/mA for the maximal ideal mA and n = dimA.
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A locally Noetherian scheme Y is said to be Gorenstein if every local ring OY,y
is Gorenstein. For a locally Noetherian scheme Y , it is Gorenstein of finite Krull

dimension if and only if OY is a dualizing complex (cf. [17, II, Prop. 7.20]).

Example (Cf. [17, V, Prop. 3.4], [37, Thm. 18.6]). For an Artinian local ringA, let

I be an injective hull of the residue field A/mA. Then the associated quasi-coherent

sheaf I∼ on SpecA is a dualizing complex.

Remark 4.2 ([17, V, §10]). Let X be a locally Noetherian scheme. If there is a

morphism X → Y of finite type to a locally Noetherian scheme Y admitting a

dualizing complex in which the dimensions of fibers are bounded, then X also

admits a dualizing complex [17, VI, Cor. 3.5]. In particular, any scheme of finite

type over a Noetherian Gorenstein scheme of finite Krull dimension admits a du-

alizing complex. When X is connected, the dualizing complex is unique up to

quasi-isomorphism, shift, and up to tensor product with invertible sheaves (cf. [17,

V, Thm. 3.1], [7, (3.1.30)]).

Fact. For a Noetherian ring A, the affine scheme SpecA admits a dualizing com-

plex if and only if there is a surjection B → A from a Gorenstein ring B of finite

Krull dimension. This is conjectured by Sharp [53, Conj. (4.4)] and has been proved

by Kawasaki [25, Cor. 1.4].

We shall explain the notion of codimension function.

Definition 4.3 (Cf. [17, V, p. 283]). Let X be a scheme such that every local

ring OX,x has finite Krull dimension. A function d : X → Z is called a codimension

function if

d(x) = d(y) + codim({x}, {y})

for any points x and y such that x ∈ {y}.

Remark. Let X be a scheme whose local rings OX,x all have finite Krull dimension.

If X admits a codimension function, then X is catenary (cf. Property 2.3). In fact,

codim({x}, {z}) = codim({x}, {y}) + codim({y}, {z})

holds for any x, y, z ∈ X satisfying x ∈ {y} and y ∈ {z}. Moreover, if the

codimension function is bounded, then X has finite Krull dimension.

Lemma 4.4. Let X be a scheme such that every local ring OX,x has finite Krull

dimension, and let d : X → Z be a codimension function. Then

d(y)− dimOX,y ≥ d(x)− dimOX,x
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holds for any points x, y ∈ X with x ∈ {y}. Moreover, the following three condi-

tions are equivalent to each other:

(i) the equality

d(y)− dimOX,y = d(x)− dimOX,x
holds for any points x, y ∈ X with x ∈ {y};

(ii) the function X 3 x 7→ d(x)− dimOX,x ∈ Z is locally constant;

(iii) X is locally equi-dimensional (cf. Definition 2.2(3)).

Proof. The first inequality is derived from the well-known inequality

dimOX,x ≥ dimOY,y + codim({x}, {y})

(cf. Property 2.1(1), [12, 0IV, Prop. (14.2.2)]). To show the equivalence of the

three conditions (i)–(iii), we may assume that X is connected. Let S be the set of

generic points of irreducible components of X and, for a point x ∈ X, let S(x) be

the subset consisting of y ∈ S with x ∈ {y}. Note that OX,x is equi-dimensional if

and only if

(IV-1) codim({x}, {y}) = codim({x}, X)

for any y ∈ S(x). In fact, a point y ∈ S(x) corresponds to a minimal prime ideal

p of OX,x via the natural morphism SpecOX,x → X, and (IV-1) is written as

dimOX,x/p = dimOX,x

(cf. Property 2.1(1)). The implication (ii) ⇒ (i) is trivial, and (i) ⇒ (iii) is shown

by the equality dimOX,x = codim({x}, {y}) for any y ∈ S(x), which holds by

(i). It suffices to prove (iii) ⇒ (ii). In the situation of (iii), by (IV-1), we have

d(x) − dimOX,x = d(y) = d(y) − dimOX,y for any x ∈ X and y ∈ S(x). This

implies that x 7→ d(x) − dimOX,x is a constant function with value d(y) on {y}
for any y ∈ S, and d(y) = d(y′) for any points y, y′ ∈ S with {y} ∩ {y′} 6= ∅.
Consequently, x 7→ d(x)−dimOX,x is constant on X, since X is connected. Thus,

we are done.

The importance of the codimension function comes from the following.

Fact 4.5. Let X be a locally Noetherian scheme with a dualizing complex R•.
Then we can define a function d : X → Z by

ExtiOX,x(k(x),R•x) = Hi(RHomOX,x(k(x),R•x)) =

{
0 for i 6= d(x),

k(x) for i = d(x),
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where k(x) denotes the residue field at x and R•x denotes the stalk at x (cf.

[17, V, Prop. 3.4]). The function d is a bounded codimension function (cf. [17, V,

Cor. 7.2]), and we call d the codimension function associated with R•. In particular,

X is catenary and has finite Krull dimension.

The following result and Lemma 4.8 below are useful for checking Sk-condi-

tions for coherent sheaves.

Proposition 4.6. Let X be a locally Noetherian scheme admitting a dualizing

complex R• with codimension function d : X → Z. Let F be a coherent OX-module.

For an integer j, we set

G(j) := ExtjOX (F ,R•) := Hj(RHomOX (F ,R•)).

Then G(j) is a coherent OX-module and

G(j)
x ' ExtjOX,x(Fx,R•x)

for the stalk G(j)
x = (G(j))x at any point x ∈ X. Moreover, the following hold for a

point x ∈ X:

(1) if j − d(x) < −dimFx or j − d(x) > 0, then G(j)
x = 0;

(2) for an integer k, depthFx ≥ k if and only if G(j)
x = 0 for any j > d(x)− k;

(3) for an integer k, F satisfies Sk at x if and only if G(j)
y = 0 for any point y ∈ X

with x ∈ {y} and for any j > d(y)− inf{k,dimFy};
(4) Fx is a Cohen–Macaulay OX,x-module if and only if G(j)

x = 0 for any j 6=
d(x)− dimFx;

(5) if x ∈ SuppF , then G(i)
x 6= 0 for i = d(x)− dimFx.

Proof. The first assertion is derived from R• ∈ D+
coh(X)fid. Assertions (1) and (2)

are essentially proved in [17, V]: (1) is shown in the proof of [17, V, Prop. 3.4],

and (2) follows from the local duality theorem [17, V, Cor. 6.3]. Assertion (3)

follows from (2) and Definition 2.9. Assertion (4) is a consequence of (1) and (2),

since Fx is Cohen–Macaulay if and only if depthFx = dimFx unless Fx = 0.

Assertion (5) is shown as follows. For the given point x ∈ SuppF , we can find a

point y ∈ SuppF such that {y} is an irreducible component of SuppF containing

x and dimFx = codim({x}, {y}). Then d(x)− dimFx = d(y). If G(d(y))
x = 0, then

G(d(y))
y = 0, since x ∈ {y}. But in this case G(j)

y = 0 for any j ∈ Z by (1), i.e.,

RHomOX (F ,R•)y 'qis 0. This is a contradiction, since Fy 6= 0 and

F 'qis RHomOX (RHomOX (F ,R•),R•)

by [17, V, Prop. 2.1]. Therefore, G(i)
x 6= 0 for i = d(x)− dimFx = d(y).
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Corollary 4.7. Let X be a locally Noetherian scheme admitting a dualizing com-

plex R• and let F be a coherent OX-module.

(1) Assume that SuppF is connected. Then F is a Cohen–Macaulay OX-module

if and only if

RHomOX (F ,R•) 'qis G[−c]

for a coherent OX-module G and a constant c ∈ Z. In this case, G is also a

Cohen–Macaulay OX-module and SuppG = SuppF .

(2) Assume that X is connected. Then X is Cohen–Macaulay if and only if R• 'qis

L[−c] for a coherent OX-module L and a constant c ∈ Z. In this case, L is

also a Cohen–Macaulay OX-module and SuppL = X.

(3) Assume that F is a Cohen–Macaulay OX-module and let S be a closed sub-

scheme of X such that S= SuppF as a set. Then S is locally equi-dimensional.

Proof. It suffices to prove (1) and (3), since (2) is a special case of (1). Let d : X →
Z be the codimension function associated with R•. First we shall prove the “if”

part of (1). The quasi-isomorphism in (1) implies that G(j) := ExtjOX (F ,R•) = 0

for any j 6= c and G ' G(c). Then F is Cohen–Macaulay and c = d(x) − dimFx
for any x ∈ X by (4) and (5) of Proposition 4.6. Second we shall prove the

remaining part of (1) and (3). For the proof of (3), we may also assume that

SuppF is connected. Suppose that F is Cohen–Macaulay. Then d(x)− dimFx =

d(y) − dimFy holds for any points x, y ∈ S with x ∈ {y} by (4) and (5) of

Proposition 4.6, where we use the property that G(j)
x = 0 implies G(j)

y = 0. As a

consequence, c := d(x) − dimFx is constant on S = SuppF . We have dimFx =

dimOS,x for any x ∈ S by Property 2.1(1). Thus, S is locally equi-dimensional by

Lemma 4.4, and this proves (3). Furthermore, RHomOX (F ,R•) ' G[−c] for the

cohomology sheaf G = G(c). We have also

F ' RHomOX (G[−c],R•)

by [17, V, Prop. 2.1]. Thus, SuppG = SuppF , and G is also a Cohen–Macaulay

OX -module by the “if” part of (1). Thus, we are done.

Lemma 4.8. Let X, R•, F , and G(j) be as in Proposition 4.6. Then G(j) = 0

except for finitely many j. For a positive integer k, the following hold:

(1) F satisfies Sk at a point x ∈ SuppF if and only if

codimx(SuppG(i) ∩ SuppG(j), SuppF) ≥ k + i− j

for any i > j;
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(2) F satisfies Sk if and only if

codim(SuppG(i) ∩ SuppG(j), SuppF) ≥ k + i− j

for any i > j.

Proof. The first assertion follows from Proposition 4.6(1), since d : X → Z is

bounded and dimX <∞ by Fact 4.5. For integers i, j with i > j, we set

Z(i,j) := SuppG(i) ∩ SuppG(j).

Note that codim(Z(i,j),SuppF) = +∞ if Z(i,j) = ∅. Assertion (1) is derived from

(2) applied to the coherent sheaf (Fx)∼ on SpecOX,x associated with Fx (cf.

Remark 2.10), since

codimx(Z(i,j), SuppF) = codim(SuppG(i)
x ∩ SuppG(j)

x , SuppFx)

(cf. Property 2.1(3)). Hence, it is enough to prove (2). Assume first that F satisfies

Sk. For integers i > j with Z(i,j) 6= ∅, we can find a generic point x of Z(i,j) such

that

codim(Z(i,j), SuppF) = codim({x},SuppF) = dimFx.
If dimFx ≤ k, then i = j = d(x)− dimFx by (1) and (3) of Proposition 4.6. This

is a contradiction, since i > j. Thus, dimFx > k, and

d(x)− dimFx ≤ j < i ≤ d(x)− k

also by (1) and (3) of Proposition 4.6. Hence, i − j ≤ dimFx − k, and this is

equivalent to the inequality in (2).

Conversely, assume that the inequality in (2) holds for any i > j. For a point

x ∈ SuppF , we set c(x) := d(x) − dimFx. By (1) and (5) of Proposition 4.6, we

know that x ∈ SuppG(c(x)) and x 6∈ SuppG(i) for any i < c(x). If G(i)
x 6= 0 for some

i 6= c(x), then i > c(x) and

dimFx ≥ codim(Z(i,c(x)), SuppF) ≥ k + i− c(x) = k + i− d(x) + dimFx.

Hence, i ≤ d(x) − k and dimFx > k. Thus, F satisfies Sk by Proposition 4.6(3).

Therefore, (2) has been proved, and we are done.

Corollary 4.9. Let X, R•, F , and G(j) be as in Proposition 4.6. Let k be a

positive integer.

(1) Assume that SuppF is connected and locally equi-dimensional. Then there is

a positive integer c such that c = d(x)−dimFx for any x ∈ X. For the integer

c, one has SuppG(c) = SuppF . Moreover, F satisfies Sk if and only if

codim(SuppG(j), SuppF) ≥ k + j − c
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for any j > c.

(2) Assume that SuppF is connected, equi-dimensional and equi-codimensional

(cf. [12, 0IV, Déf. (14.2.1)]). Furthermore, assume that SuppF is Noetherian.

Let c be the integer in (1). Then F satisfies Sk if and only if

dim SuppG(j) ≤ dim SuppF + c− j − k

for any j > c.

(3) Assume that Fx 6= 0 and Fx is equi-dimensional (cf. Definition 2.2). Then F
satisfies Sk at x if and only if dimG(j)

x ≤ d(x)−j−k for any j 6= d(x)−dimFx.

Proof. (1): For a closed subscheme S with S = SuppF , we have the integer c such

that c = d(x)−dimOS,x = d(x)−dimFx for any x ∈ SuppF by Lemma 4.4. Then

SuppG(c) = SuppF by Proposition 4.6(5). Assume that F satisfies Sk. Then

codim(SuppG(j), SuppF) = codim(SuppG(j) ∩ SuppG(c), SuppF) ≥ k + j − c

for any j > c by Lemma 4.8. Conversely, assume that the inequality in (1) holds

for any j > c. If G(j)
x 6= 0 for some j > c, then

dimFx ≥ codim(SuppG(j),SuppF) ≥ k + j − c = k + j − d(x) + dimFx

as in the proof of Lemma 4.8(2). Hence, G(j)
x 6= 0 implies that dimFx > k and

j ≤ d(x)− k. This means that F satisfies Sk by Proposition 4.6(3).

(2): The closed subset S = SuppF is a bi-equi-dimensional Kolmogorov

Noetherian space in the sense of EGA (cf. [12, 0IV, Prop. (14.3.3)]), since it is

catenary and has finite Krull dimension (cf. Fact 4.5). Then

x 7→ dimOS,x = codim({x}, S)

is a codimension function on S by [12, 0IV, (14.3.3.2)], and it implies that S is

locally equi-dimensional by Lemma 4.4. Moreover, dimZ + codim(Z, S) = dimS

for any closed subset Z ⊂ S by [12, 0IV, Cor. (14.3.5)]. Thus, (2) follows from (1).

(3): The closed subset SuppFx of SpecOX,x is equi-codimensional, since x

is the unique closed point of it. Hence, SuppFx is also a connected bi-equi-

dimensional Kolmogorov Noetherian space and it is locally equi-dimensional by

the same reason as above. Thus, we can apply (1) to the coherent sheaf F∼x on

SpecOX,x associated with Fx. Hence, F satisfies Sk at x (cf. Remark 2.10) if and

only if

codim(SuppG(j)
x , SuppFx) ≥ k + j − c(x)

for any j > c(x), where c(x) := d(x) − dimFx. Here the left-hand side equals

dimFx − dimG(j)
x by [12, 0IV, Cor. (14.3.5)]. Therefore, the Sk-condition at x is
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equivalent to

dimG(j)
x ≤ c(x)− k − j + dimFx = d(x)− k − j

for any j > c(x) = d(x) − dimFx. Thus, we have (3) by Proposition 4.6(1), and

we are done.

Definition 4.10 (Gor(X)). The Gorenstein locus Gor(X) of a locally Noetherian

scheme X is defined to be the set of points x ∈ X such that OX,x is Gorenstein.

Note that X is Gorenstein if and only if X = Gor(X). The following is a general-

ization of [12, IV, Prop. (6.11.2)(ii)] (cf. [52, Prop. (3.2)] for Gor(X)).

Proposition 4.11. Let X be a locally Noetherian scheme admitting a dualizing

complex locally on X and let F be a coherent OX-module. Then Sk(F) for all

k ≥ 1 and CM(F) are open subsets of X. In particular, CM(X) is open. Moreover,

Gor(X) is also open.

Proof. Localizing X, we may assume that X is an affine Noetherian scheme with

a dualizing complex R•. The openness of Gor(X) follows from that of CM(X). In

fact, if X is Cohen–Macaulay, then we may assume that R• 'qis L for a coherent

OX -module L by Corollary 4.7(2), and Gor(X) is the maximal open subset on

which L is invertible. The openness of CM(F) is derived from Corollary 4.7(1).

This follows also from the openness of Sk(F) for all k ≥ 1. In fact, CM(F) = Sk(F)

for k � 0, since dimF ≤ dimX <∞ (cf. Fact 4.5 and Remark 2.12). The openness

of Sk(F) is derived from Lemma 4.8(1), since x 7→ codimx(Z,SuppF) is lower

semi-continuous for any closed subset Z ⊂ SuppF (cf. Property 2.1(3)).

Remark. In the situation of Proposition 4.11, all Sk(F) are open if and only if the

map

SuppF 3 x 7→ codepthFx := dimFx − depthFx ∈ Z≥0

is upper semi-continuous (cf. [12, IV, Rem. (6.11.4)]).

The following analogy of Fact 2.26(6) for G = OY is known.

Fact 4.12 (Cf. [37, Thm. 23.4], [17, V, Prop. 9.6]). Let Y → T be a flat morphism

of locally Noetherian schemes. Then Y is Gorenstein if and only if T and every

fiber are Gorenstein.

§4.2. Ordinary dualizing complex

We introduce the notion of an ordinary dualizing complex R• and that of a dual-

izing sheaf as the cohomology sheaf H0(R•) for locally Noetherian schemes which
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are locally equi-dimensional (cf. Definition 2.2(3)), especially for locally Noethe-

rian schemes satisfying S2. In many articles, the dualizing sheaf is usually defined

for a Cohen–Macaulay scheme, and it coincides with the dualizing sheaf in our

sense (cf. Remark 4.15 below).

Definition 4.13. Let X be a locally Noetherian scheme.

(1) A dualizing complexR• of X is said to be ordinary if the codimension function

d associated with R• satisfies d(x) = dimOX,x for any x ∈ X.

(2) A coherent sheaf L on X is called a dualizing sheaf of X if L ' H0(R•) for

an ordinary dualizing complex R• of X.

As a corollary to Lemma 4.4 above, we have the following.

Lemma 4.14. Let X be a locally Noetherian scheme admitting a dualizing com-

plex. Then X admits an ordinary dualizing complex if and only if X is locally

equi-dimensional. In particular, X admits an ordinary dualizing complex if X sat-

isfies S2.

Proof. We may assume that X is connected. Let R• be a dualizing complex of

X with codimension function d : X → Z. If it is ordinary, then X is locally equi-

dimensional by Lemma 4.4. Conversely, ifX is locally equi-dimensional, then d(x)−
dimOX,x is a constant c by Lemma 4.4, and hence, the shift R•[c] is an ordinary

dualizing complex. The last assertion follows from Facts 4.5 and 2.23(1).

Remark. For a locally Noetherian scheme, the ordinary dualizing complex is unique

up to quasi-isomorphism and tensor product with an invertible sheaf (cf. Re-

mark 4.2). Similarly, the dualizing sheaf is unique up to isomorphism and tensor

product with an invertible sheaf.

Remark 4.15. Let X be a locally Noetherian Cohen–Macaulay scheme admitting a

dualizing complex. Then X has an ordinary dualizing complex R• which is quasi-

isomorphic to the dualizing sheaf L = H0(R•). Here L is also a Cohen–Macaulay

OX -module. These are derived from Proposition 4.6(4) and Corollary 4.7(2). In

many articles, L is called a “dualizing sheaf” for a locally Noetherian Cohen–

Macaulay scheme.

Lemma 4.16. Let X be a locally Noetherian scheme admitting an ordinary dual-

izing complex R•. Let Z(i) be the support of the cohomology sheaf Hi(R•) for any

i ∈ Z. Then Z(i) = ∅ for any i < 0, Z(0) = X, and the following hold for any

x ∈ X:

(1) x 6∈ Z(i) for any i > dimOX,x;
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(2) depthOX,x = dimOX,x − sup{j | x ∈ Z(j)};
(3) for an integer k ≥ 1, X satisfies Sk at x if and only if

codimx(Z(j), X) ≥ k + j

for any j > 0; this is also equivalent to

dimx Z
(j) ≤ dimOX,x − k − j

for any j > 0;

(4) OX,x is Cohen–Macaulay if and only if x 6∈ Z(j) for any j > 0.

Proof. Now, d(x) = dimOX,x for the codimension function d : X → Z associated

with R•, and X is locally equi-dimensional by Lemma 4.4. Thus, applying Propo-

sition 4.6 to F = OX , we have the assertions except (3). The remaining assertion

(3) is obtained by Corollary 4.9(3) (cf. Property 2.1).

Remark. Let X be a connected locally Noetherian scheme with a dualizing com-

plex R• such that Hi(R•) = 0 for any i < 0 and H0(R•) 6= 0. The sheaf H0(R•)
is called the “canonical module” in many articles. But as in Example 4.17 below,

the support of the sheaf H0(R•) is not always X. This is one of the reasons why

we do not consider H0(R•) as the dualizing sheaf for arbitrary locally Noetherian

schemes.

Example 4.17. Let P be a polynomial ring k[x, y, z] of three variables over a field

k. For the ideals I = (x, y) and J = (z) of P , we set A := P/IJ and R• :=

RHomP (A,P [1]). Then we have a Noetherian affine scheme X = SpecA and a

dualizing complex R• on X associated with R• (cf. Example 4.23 below). The

X is a union of a plane SpecP/J and a line SpecP/I in the three-dimensional

affine space SpecP ' A3
k, where the plane and the line intersect at the origin O

corresponding to the maximal ideal (x, y, z). Note that the local ring OX,O is not

equi-dimensional. We can calculate the cohomology modules of R• as

Hi(R•) ' Exti+1
P (A,P ) '


0 for any i < 0 and i > 1,

P/J for i = 0,

P/I for i = 1,

by the free resolution

0→ P
g−→ P⊕2 f−→ P → A→ 0,

where f and g are defined by

f(a, b) = xza+ yzb and g(c) = (yc,−xc)
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for any a, b, and c ∈ P . Consequently, SuppH0(R•) = SpecR/J is a proper subset

of X.

Lemma 4.18. Let X be a locally Noetherian scheme admitting an ordinary dual-

izing complex R•. We set

G(j)
≤b := ExtjOX (τ≤b(R•),R•) and G(j)

≥b := ExtjOX (τ≥b(R•),R•)

for integers b ≥ 0 and j, where τ≤b and τ≥b stand for the truncations of a complex

(cf. Notation and conventions, (1)). Then the following hold:

(1) One has G(0)
≥0 ' OX and G(i)

≥0 = 0 for any i 6= 0.

(2) There exist an exact sequence

0→ G(−1)
≤b → G(0)

≥b+1 → OX → G
(0)
≤b → G

(1)
≥b+1 → 0

and an isomorphism

G(j)
≤b ' G

(j+1)
≥b+1

for any j 6= {0,−1}. Moreover, G(j)
≤0 = 0 for any j < 0.

(3) For any integers b ≥ 0 and j, one has

• codim(SuppG(j)
≥b , X) ≥ j + b for any j ∈ Z,

• codim(SuppG(j)
≤b , X) ≥ j + b+ 2 for any j 6= 0, and

• codim(SuppG(0)
≤b , X) = 0.

(4) If X satisfies Sk for some k ≥ 1, then

• G(j)
≥b = 0 for any b > 0 and j < k , and

• G(i)
≤b = 0 for any 0 < i < k − 1.

Proof. We have a quasi-isomorphism R• 'qis τ
≥0(R•) by Lemma 4.16. Hence, the

first assertion (1) interprets the quasi-isomorphism

RHomOX (R•,R•) 'qis OX .

The exact sequence and the isomorphism in the second assertion (2) are derived

from the canonical distinguished triangle

· · · → τ≤b(R•)→ R• → τ≥b+1(R•)→ τ≤b(R•)[1]→ · · · .

The last vanishing in (2) is expressed as ExtjOX (L,R•) = 0 for any j < 0, where

L := H0(R•), and this is a consequence of Proposition 4.6(1) applied to F = L
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with the property X = SuppL shown in Lemma 4.16. For the remaining assertions

(3) and (4), it is enough to consider only the sheaves G(j)
≥b . In fact, by (2), we have an

injection G(i)
≤b → G

(i+1)
≥b+1 for any i 6= 0, and an exact sequence G(0)

≥b+1 → OX → G
(0)
≤b ,

where codim(SuppG(0)
≥b+1, X) > 0 by the assertion for G(0)

≥b+1. Hence,

codim(SuppG(i)
≤b, X) ≥ codim(SuppG(i+1)

≥b+1, X)

for any i 6= 0 and codim(SuppG(0)
≤b , X) = 0. In order to prove (3) and (4) for G(j)

≥b ,

let us consider the spectral sequence

(IV-2) Ep,q2 = ExtpOX (H−q(τ≥b(R•)),R•)⇒ Ep+q = G(p+q)
≥b

of OX -modules (cf. Remark 4.19 below). Assume that (Ep,q2 )x 6= 0 for a point

x ∈ X. Then −q ≥ b, and

(IV-3) dimOX,x ≥ p ≥ dimOX,x−dimH−q(R•)x = codimx(SuppH−q(R•), X)

by Proposition 4.6(1), since d(x) = dimOX,x for the codimension function d of

R•. In particular, p + q ≤ dimOX,x − b. Therefore, if j + b > dimOX,x, then

x 6∈ SuppG(j)
≥b , since (Ep,q2 )x = 0 for any integers p, q with p + q = j. Thus, we

have (3). Assume that X satisfies Sk. If (Ep,q2 )x 6= 0 and q < 0, then p+ q ≥ k by

(IV-3), since

codimx(SuppH−q(R•), X) ≥ k − q

for any q < 0 by Lemma 4.16(3). Hence, G(j)
≥b = 0 for any b > 0 and j < k, since

Ep,q2 = 0 for any integers p, q with p+ q = j. This proves (4), and we are done.

Remark 4.19. The spectral sequence (IV-2) is obtained by the same method as

follows. Let A be a commutative ring and let M• and N• be complexes of A-

modules such that N• is bounded below. We shall construct a spectral sequence

Ep,q2 = ExtpA(H−q(M•), N•)⇒ Ep+q = Extp+qA (M•, N•),

where ExtpA denotes the p-th hyper-ext group. Since there is a quasi-isomorphism

from N• into a complex of injective A-modules bounded below, we may assume

that N• itself is a complex of injective A-modules bounded below. We consider the

hom complex K• = Hom•(M•, N•) (cf. [17, I, Thm. 6.4], [10, Exem. 1.1.10(ii)],

[35, (1.5.3)]): this is the total complex of a double complex K•,• such that Kp,q =

HomA(M−q, Np) for p, q ∈ Z and that the differentials dp,qI : Kp,q → Kp+1,q and

dp,qII : Kp,q → Kp,q+1 are induced by dpN : Np → Np+1 and (−1)qd−q−1
M : M−q−1 →

M−q, respectively. Then ExtkA(M•, N•) ' Hk(K•) for any k. We have

Hq
II(K

p,•) ' HomA(H−q(M•), Np)
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for any p and q, since Np is assumed to be injective. Thus, we have the spectral

sequence above as the well-known spectral sequence Hp
I Hq

II(K
•,•) ⇒ Hp+q(K•)

associated with the double complex K•,•.

Corollary 4.20. Let X be a locally Noetherian scheme admitting an ordinary

dualizing complex R•. For a point x ∈ X and for an integer b ≥ 0, the vanishing

Hix(τ≤b(R•)x) = 0

holds for any i < b + 2 except i = dimOX,x, where Hix(M•) stands for the local

cohomology group at the maximal ideal mx for a complex M• of OX,x-modules

bounded below.

Proof. By the local duality theorem [17, V, Thm. 6.2], we have

Hix(τ≤b(R•)x) ' HomOX,x(Ext−iOX,x(τ≤b(R•)x,R•x[d(x)]), Ix)

for the injective OX,x-module Ix = Hd(x)
x (R•x), where d(x) = dimOX,x. In partic-

ular,

Hix(τ≤b(R•)x) 6= 0 if and only if x ∈ SuppG(d(x)−i)
≤b .

If d(x)− i 6= 0, then the non-vanishing above implies that

d(x) = dimOX,x ≥ codim(SuppG(d(x)−i)
≤b , X) ≥ d(x)− i+ b+ 2

by Lemma 4.18(3). Thus, we have the vanishing for i < b+ 2 except i = d(x).

Proposition 4.21. Let X be a locally Noetherian scheme admitting an ordinary

dualizing complex R•. Then the dualizing sheaf L = H0(R•) satisfies S2 and

SuppL = X. If X satisfies S2, then HomOX (L,L) ' OX . If X satisfies S3, then

Ext1
OX (L,L) = 0.

Proof. We have SuppL = X by Lemma 4.16. Hence,

dimLx = codim({x},SuppL) = dimOX,x

for any x ∈ X. Applying Corollary 4.9(1) to L, where c = d(x)− dimLx = 0, we

see that L satisfies S2 by Lemma 4.18(3), since codim(SuppG(i)
≤0, X) ≥ i + 2 for

any i > 0, where G(i)
≤0 = Ext iOX (L,R•). For the remaining assertions, we assume

that X satisfies S2 or S3. Note that we have an isomorphism

HomOX (L,L) ' Ext0
OX (L,R•) = G(0)

≤0

and an injection

Ext1
OX (L,L)→ Ext1

OX (L,R•) = G(1)
≤0
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by L 'qis τ
≤0(R•). If X satisfies S2, then G(0)

≥1 = G(1)
≥1 = 0 by Lemma 4.18(4), and

hence, OX ' G(0)
≤0 by Lemma 4.18(2); thus, OX ' HomOX (L,L). If X satisfies S3,

then G(1)
≤0 = 0 by Lemma 4.18(4), and consequently, Ext1

OX (L,L) = 0.

Remark. The S2-condition forL is proved in [55, (46),Lem.23.3] by another method.

Remark (S2-ification). For a locally Noetherian scheme X admitting an ordinary

dualizing complex R• and for the dualizing sheaf L = H0(R•), we consider the

coherent OX -module A := HomOX (L,L). Then we can show that

• A has the structure of an OX -algebra,

• OX → A is an isomorphism on the S2-locus S2(X) (cf. Definition 2.13), and

• A satisfies S2.

Therefore, the finite morphism SpecX A → X is regarded as the so-called “S2-

ification” of X (cf. [12, IV, (5.10.11), Prop. (5.11.1)], [4, Prop. 2], [5, Thm. 3.2],

[22, Prop. 2.7]). The three properties above are shown as follows: We know that L
satisfies S2, U := S2(X) is an open subset by Proposition 4.11 and that OX → A
is an isomorphism on U by Proposition 4.21. In particular, A ' j∗(A|U ) for the

open immersion j : U ↪→ X, since it is expressed as

A = HomOX (L,L)→ j∗(A|U ) ' HomOX (L, j∗(L|U )).

Thus, A satisfies S2 by Corollary 2.16, and consequently, A ' j∗OU has an OX -

algebra structure.

Corollary 4.22. Let X be a locally Noetherian scheme admitting a dualizing com-

plex R•, and set L := H0(R•). Let X◦ ⊂ X be an open subset such that

codim(X \X◦, X) ≥ 1 and R•|X◦ 'qis L|X◦ .

Then R• is ordinary and L satisfies S2. In particular, if codim(X \X◦, X) ≥ 2,

then L ' j∗(L|X◦) for the open immersion j : X◦ ↪→ X.

Proof. It is enough to prove that R• is ordinary. In fact, if so, then the du-

alizing sheaf L satisfies S2 by Proposition 4.21, and we have the isomorphism

L ' j∗(L|X◦) by Corollary 2.16 when codim(X \ X◦, X) ≥ 2. Let d : X → Z
be the codimension function associated with R•. Then d(x) = dimOX,x for any

x ∈ X◦ by Proposition 4.6(5) applied to F = OX◦ . For a point x ∈ X \ X◦, we

have a generic point y of X such that x ∈ {y} and codim({x}, {y}) = dimOX,x.

Then d(y) = 0, since y ∈ X◦, and we have

d(x) = d(y) + codim({x}, {y}) = dimOX,x.

Thus, R• is ordinary.
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§4.3. Twisted inverse image

We shall explain the twisted inverse image functor, the relative duality theorem,

and some base change theorems referring to [17], [7], [35]. Let f : Y → T be a

morphism of locally Noetherian schemes which is locally of finite type. In the

theory of Grothendieck duality, the “twisted inverse image functor” f ! plays an

essential role, which is unfortunately defined only when some suitable conditions

are satisfied (cf. [17, III, Thm. 8.7; VII, Cor. 3.4], [9, no. 4] [44], [7], [35]). However,

f !OT has a unique meaning at least locally on Y , where f !OT is expressed as

a complex of OY -modules with coherent cohomology which vanish in sufficiently

negative degree, i.e., f !OT ∈ D+
coh(Y ). We write ω•Y/T := f !OT whenever f !OT is

defined, and call it the relative dualizing complex for Y/T (or, with respect to f).

When T = SpecA, we write ω•Y/A for ω•Y/ SpecA.

Example 4.23. For a scheme S, an S-morphism f : Y → T of locally Noethe-

rian schemes over S is called an S-embeddable morphism if f = p ◦ i for a finite

morphism i : Y → P ×S T and the second projection p : P ×S T → T for a lo-

cally Noetherian S-scheme P such that P → S is a smooth separated morphism

of pure relative dimension (cf. [7, (2.8.1)], [17, III, p. 189]). When S = T , an

S-embeddable morphism is called simply an embeddable morphism. There is a

theory of f ! : D+
qcoh(T ) → D+

qcoh(Y ) (resp. f ! : D+
coh(T ) → D+

coh(Y )) for the S-

embeddable morphisms f : Y → T of locally Noetherian S-schemes as in [17, III,

Thm. 8.7] (cf. [7, Thm. 2.8.1]). For a complex G• ∈ D+
qcoh(T ), if f is separated

and smooth of pure relative dimension d (cf. Definition 2.36), then

f !(G•) = ΩdY/T [d]⊗L
OY Lf∗(G•),

and if f is a finite morphism, then f !(G•) is defined by

Rf∗(f
!(G•)) = RHomOT (f∗OY ,G•).

In both cases, f !(G•) ∈ D+
coh(Y ) if G• ∈ D+

coh(T ). If f = g◦h for two S-embeddable

morphisms h : Y → Z and g : Z → T , then f ! ' h! ◦ g! as functors D+
qcoh(T ) →

D+
qcoh(Y ) (resp. D+

coh(T )→ D+
coh(Y )).

Example 4.24. Let f : Y → T be a morphism of finite type between Noetherian

schemes. Then the dimensions of fibers are bounded. Assume that T admits a

dualizing complex R•T . In this situation, we have the twisted inverse image functor

f ! : D+
coh(T )→ D+

coh(Y ) as follows (cf. [17, VI], [7, §3]). For the dualizing complex

R•T of T , we have the corresponding residual complex E(R•T ) on T (cf. [17, VI,

Prop. 1.1], [7, Lem. 3.2.1]) and the “twisted inverse image” f4(E(R•T )) on Y as a

residual complex on Y (cf. [17, VI, Thm. 3.1, Cor. 3.5], [7, §3.2]), which corresponds
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to a dualizing complex

R•Y := f !(R•T ) := Q(f4(E(R•T )))

of Y (cf. [17, VI, Prop. 1.1, Remarks in p. 306], [7, §3.3]). Then one can define

f ! : D+
coh(T )→ D+

coh(Y ) by

f !(G•) = DY (Lf∗(DT (G•))),

where DY and DT are the dualizing functors defined by

DY (F•) := RHomOY (F•,R•Y ) and DT (G•) := RHomOT (G•,R•T ).

The definition of f ! does not depend on the choice of R•T (cf. [7, §3.3]), and f !

satisfies expected compatible properties in [17, VII, Cor. 3.4] (cf. [7, Thm. 3.3.1]).

Moreover, when f is an embeddable morphism, this f ! is isomorphic to the functor

f ! defined in Example 4.23 (cf. [17, VI, Thm. 3.1; VII, Cor. 3.4], [7, §3.3]).

The following is shown in [17, V, Cor. 8.4; VI, Prop. 3.4] but with an error

concerning ± (cf. [7, (3.1.25), (3.2.4)]).

Lemma 4.25. Let f : Y → T be a morphism of finite type between Noetherian

schemes such that T admits a dualizing complex R•T . Let R•Y be the induced du-

alizing complex f !(R•T ) of Y . Let dT : T → Z and dY : Y → Z be the codimension

functions associated with R•T and R•Y , respectively. Then

dY (y) = dT (t)− tr.deg k(y)/k(t)

for any y ∈ Y with t = f(y), where k(t) and k(y) denote the residue fields of OT,t
and OY,y, respectively.

Proof. Since the assertion is local on Y , we may assume that Y → T is an embed-

dable morphism. Hence, it is enough to prove assuming that f is a finite morphism

or a smooth and separated morphism. Assume first that f is finite. Then

Rf∗RHomOY (F ,R•Y ) ' RHomOT (f∗F ,R•T )

for any coherent OY -module F by [17, III, Thm. 6.7] (cf. Theorem 4.30 below).

Applying this to F = OZ for the closed subscheme Z = {y} with reduced structure,

and localizing Y , we have

RHomOY,y (k(y), (R•Y )y) 'qis RHomOT,t(k(y), (R•T )t).

Since k(y) is a finite-dimensional k(t)-vector space, we have tr.deg k(y)/k(t) = 0

and dY (y) = dT (t). Thus, we are done in the case where f is finite. Assume next
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that f is smooth and separated. We may assume furthermore that f has pure

relative dimension d by localizing Y . Then

R•Y 'qis Ω
d
Y/T [d]⊗L

OY Lf∗(R•T )

as in Example 4.23, and it implies that

Hi(R•Y )y ' Hi+d(R•T )t ⊗OT,t OY,y,

since f is flat. Here Hi(R•Y )y 6= 0 if and only if Hi+d(R•T )t 6= 0, since f is faithfully

flat. We know that

dT (t)− dimOT,t = inf{i | Hi(R•T )t 6= 0}

by (1) and (5) of Proposition 4.6. A similar formula holds also for (Y, y) and R•Y .

Thus,

dY (y)− dimOY,y = dT (t)− dimOT,t − d.

Since f is flat, we have

dimOY,y = dimOT,t + dimOYt,y

for the fiber Yt = f−1(t) by (II-1). Furthermore, we have

d = dimy Yt = dimOYt,y + tr.deg k(y)/k(t),

since Yt is algebraic over k(t) (cf. [12, IV, Cor. (5.2.3)]). Therefore,

dY (y) = dT (t)− d+ dimOY,y − dimOT,t = dT (t)− tr.deg k(y)/k(t).

Definition 4.26 (Canonical dualizing complex). Let X be an algebraic scheme

over a field k, i.e., a k-scheme of finite type. We define the canonical dualizing

complex ω•X/k ofX to be the twisted inverse image f !(k) for the structure morphism

f : X → Speck.

The dualizing complex ω•X/k has the following property related to Serre’s

conditions Sk.

Lemma 4.27. Let X be an n-dimensional algebraic scheme over a field k. For

an integer i, let Zi be the support of H−i(ω•X/k). Then Zi = ∅ for any i > n,

and Zn is the union of irreducible components of X of dimension n. If X is equi-

dimensional, then ω•X/k[−n] is an ordinary dualizing complex, and the following

holds for integers k ≥ 1: X satisfies Sk if and only if dimZi ≤ i−k for any i 6= n.
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Proof. By Lemma 4.25, d(x) = − tr.deg k(x)/k for the codimension function d : X

→ Z associated with the dualizing complex ω•X/k (cf. Example 4.24). Moreover,

(IV-4) n ≥ dimxX = dimOX,x + tr.deg k(x)/k

by [12, IV, Cor. (5.2.3)]. Thus, d(x)−dimOX,x = −dimxX ≥ −n, and H−i(ω•X/k)

= 0 for any i > n by Proposition 4.6(1) applied to the case where (R•,F) =

(ω•X/k,OX). Thus, Zi = ∅ for any i > n. If dimxX = n, then H−n(ω•X/k)x 6= 0 by

Proposition 4.6(5). If dimxX < n, then H−n(ω•X/k)x = 0 by Proposition 4.6(1).

Therefore, Zn is just the union of irreducible components of X of dimension n.

Assume that X is equi-dimensional, i.e., dimxX = n for any x ∈ X. Then

ω•X/k[−n] is an ordinary dualizing complex, since the associated codimension func-

tion is x 7→ d(x) + n = dimOX,x. Moreover, X is equi-codimensional, since

n = dimzX = dimOX,z for any closed point z of X by (IV-4). Thus, the as-

sertion on Sk is a consequence of Corollary 4.9(2), since d(x)−dimOX,x = −n for

any x ∈ X.

Definition 4.28 (Canonical sheaf). Let X be an algebraic scheme over a field k.

Assume that X is locally equi-dimensional. This is satisfied for example when X

satisfies S2 (cf. Fact 2.23(1)). Then we define the canonical sheaf ωX/k by

ωX/k|Xα := H− dimXα(ω•X/k)|Xα

for any connected component Xα of X.

Remark. The canonical sheaf ωX/k is a dualizing sheaf of X in the sense of Defi-

nition 4.13. In fact,

ω•Xα/k[−dimXα] = ω•X/k[−dimXα]|Xα

is an ordinary dualizing complex of the connected component Xα by Lemma 4.27.

In particular, if X is connected and Cohen–Macaulay, then ω•X/k 'qis ωX/k[dimX].

By Corollary 4.22, we have the following.

Corollary 4.29. For an algebraic scheme X over k, if it is locally equi-dimen-

sional, then ωX/k satisfies S2.

For a proper morphism f : Y → T of Noetherian schemes, we have the follow-

ing general result on the twisted inverse image functor f !, which is derived from

[35, Thm. 4.1.1].

Theorem 4.30 (Grothendieck duality for a proper morphism). Let f : Y → T be

a proper morphism of Noetherian schemes. Then there is a triangulated functor
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f ! : Dqcoh(T ) → Dqcoh(Y ) which induces D+
coh(T ) → D+

coh(Y ) and which is right

adjoint to the derived functor Rf∗ : Dqcoh(Y )→ Dqcoh(T ) in the sense that there

is a functorial isomorphism

RHomOT (Rf∗(F•),G•) 'qis RHomOY (F•, f !(G•))

for F• ∈ Dqcoh(Y ) and G• ∈ Dqcoh(T ).

Remark. In [35, Thm. 4.1.1], the existence of a similar right adjoint f× is proved

for a quasi-compact and quasi-separated morphism f : Y → T of quasi-compact

and quasi-separated schemes Y and T . When f is proper, it is written as f ! (cf. the

paragraph just before [35, Cor. 4.2.2]). By [54, Thm. A], the total derived functor

RHomOX of HomOX exists for any scheme X as a bi-functor D(X)op ×D(X)→
D(Z), and there exists also the total right derived functor Rf∗ : D(Y )→ D(T ) of

the direct image functor f∗. When f : Y → T is a proper morphism of Noetherian

schemes, we have

• Rf∗(Dqcoh(Y )) ⊂ Dqcoh(T ) by [35, Prop. 3.9.1],

• Rf∗(D
+
coh(Y )) ⊂ D+

coh(T ) by [17, II, Prop. 2.2], and

• Rf∗(D
−
coh(Y )) ⊂ D−coh(T ) by the explanation just before [35, Cor. 4.2.2].

The functor f ! is bounded below (cf. [35, Def. 11.1.1]). Thus, f !(D+
qcoh(T )) ⊂

D+
qcoh(Y ). The inclusion f !(D+

coh(T )) ⊂ D+
coh(Y ) is proved by first reducing to

the case where T is the spectrum of a Noetherian local ring by the base change

isomorphism (cf. [35, Cor. 4.4.3]), and second applying [57, Lem. 1].

Remark. When T admits a dualizing complex (or a residual complex), Theo-

rem 4.30 for G• ∈ D+
coh(T ) is a consequence of [17, VII, Cor. 3.4]. In [9, Thm. 2],

Deligne proved Theorem 4.30 for F• ∈ Db
coh(Y ) without assuming the existence of

a dualizing complex of T . These results are summarized by Verdier as [57, Thm. 1],

which is almost the same as Theorem 4.30 in the case where T has finite Krull

dimension. Neeman [44] gives a new idea toward the proof of Theorem 4.30 by us-

ing Brown representability. He generalizes Theorem 4.30 to the case where Y and

T are only quasi-compact and separated schemes but Dqcoh(T ) and Dqcoh(Y ) are

replaced with D(QCoh(OT )) and D(QCoh(OY )), respectively (cf. [44, Exam. 4.2]).

Neeman’s idea is used in Lipman’s article [35], which contains generalizations of

Theorem 4.30 to non-proper and non-Noetherian cases.

The sheafified form of the duality theorem is as follows (cf. [35, Thm. 4.2]).
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Corollary 4.31. In the situation of Theorem 4.30, there exists a canonical quasi-

isomorphism

Rf∗RHomOY (F•, f !G•) 'qis RHomOT (Rf∗F•,G•)

for any F• ∈ Dqcoh(Y ) and G• ∈ Dqcoh(T ).

As a special case of Theorem 4.30, we have the following, which is called the

Serre duality theorem for coherent sheaves.

Corollary 4.32. Let X be a projective scheme over a field k. Then there is a

canonical quasi-isomorphism

RHomOX (F•, ω•X/k) 'qis RHomk(RΓ(X,F•),k)

for any F• ∈ D+
coh(X). In particular,

ExtiOX (F•, ω•X/k) ' Homk(Hi(X,F•),k)

for any i, where Exti and Hi stand for the i-th hyper-Ext group and i-th hyper

cohomology group, respectively.

Example 4.33. Let f : Y → T be a separated morphism of finite type between

Noetherian schemes. By the Nagata compactification theorem (cf. [42], [43], [36],

[8], [11]), f is expressed as the composite π ◦ j of an open immersion j : Y ↪→ Z

and a proper morphism π : Z → T . Using the functor π! : D+
qcoh(T ) → D+

qcoh(Z)

in Theorem 4.30, we define the twisted inverse image functor f ! : D+
qcoh(T ) →

D+
qcoh(Y ) as Lj∗ ◦ π!. This is well defined up to functorial isomorphism, i.e., it is

independent of the choice of factorization f = π ◦ j, by [9, Thm. 2], [57, Cor. 1].

Deligne [9] defines a functor Rf! : pro Db
coh(Y ) → pro Db

coh(T ) and shows in [9,

Thm. 2] that f ! above is a right adjoint of Rf!.

Fact 4.34. The twisted inverse image functors in Example 4.33 have the follow-

ing properties. Let f : Y → T be a separated morphism of finite type between

Noetherian schemes.

(1) Let h : X → Y be a separated morphism of finite type from another Noetherian

scheme X. Then there is a functorial isomorphism (f ◦ h)! ' h! ◦ f !.

(2) If f : Y → T is a smooth morphism of pure relative dimension d, then f !(G•)
'qis Ω

d
Y/T [d]⊗L

OY Lf∗(G•).

(3) If T admits a dualizing complex, then f ! is functorially isomorphic to the

twisted inverse image functor DY ◦ Lf∗ ◦DT in Example 4.24.
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(4) For a flat morphism g : T ′ → T from a Noetherian scheme T ′, let Y ′ be the

fiber product Y ×T T ′ and let f ′ : Y ′ → T ′ and g′ : Y ′ → Y be the induced

morphisms. Then g′∗ ◦ f ! ' f ′! ◦ g∗.

Property (1) is derived from the isomorphism R(f ◦ h)! ' Rf! ◦Rh! shown in [9,

no. 3]. This is also proved in [35, Thm. 4.8.1]. Properties (2) and (3) are proved in

[57, Thm. 3, Cor. 3] and [35, (4.9.4.2), Prop. 4.10.1]. In order to prove property (4),

we may assume that f is proper, and in this case, this is shown in [35, Cor. 4.4.3]

(cf. [57, Thm. 2]). As a refinement of property (1), f 7→ f ! can be regarded as a

pseudo-functor, and Lipman proves in [35, Thm. 4.8.1] the uniqueness of f 7→ f !

under three conditions corresponding to

• f ! is right adjoint to Rf∗ when f is proper (Theorem 4.30);

• property (2) for étale f ;

• property (4) for proper f and étale g.

Fact 4.35. The following are also known for a flat separated morphism f : Y → T

of finite type between Noetherian schemes:

(1) The twisted inverse image f !OT is an f -perfect complex in Dcoh(Y ) (cf. [23,

III, Prop. 4.9], [35, Thm. 4.9.4]). For the definition of “f -perfect”, see [23, III,

Déf. 4.1] (cf. Remark 4.36 below). Note that a coherent OY -module flat over

T is f -perfect.

(2) For an f -perfect complex E•,

DY/T (E•) := RHomOY (E•, f !OT )

is also f -perfect and the canonical morphism

E• → DY/T (DY/T (E•))

is a quasi-isomorphism (cf. [23, III, Cor. 4.9.2]). In particular,

(IV-5) OY → RHomOY (f !OT , f !OT )

is a quasi-isomorphism (cf. [35, p. 234]).

(3) There is a quasi-isomorphism

f !(F•)⊗L
OY Lf∗(G•) 'qis f

!(F• ⊗L
OT G

•)

for any F•, G• ∈ D+
qcoh(T ) with F•⊗L

OT G
• ∈ D+

qcoh(T ) (cf. [35, Thm. 4.9.4]).

In particular,

(IV-6) f !OT ⊗L
OY Lf∗(G•) 'qis f

!(G•)
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for any G• ∈ D+
qcoh(T ). Similar results are proved in [17, V, Cor. 8.6], [57,

Cor. 2], and [44, Thm. 5.4].

Remark 4.36 (Cf. [23, III, Prop. 4.4]). Let f : Y → T be a morphism of finite type

between Noetherian schemes and let F• be an object of Dqcoh(Y ). Assume that

f is the composite g ◦ i of a closed immersion i : Y → P and a smooth separated

morphism g : P → T . Then F• is f -perfect if and only if Ri∗(F•) is perfect (cf.

[23, I, Déf. 4.7]), i.e., locally on P , it is quasi-isomorphic to a bounded complex of

free OP -modules.

Lemma 4.37. Let f : Y → T be a flat separated morphism of finite type between

Noetherian schemes in which T admits a dualizing complex. Let g : T ′ → T be a

finite morphism from another Noetherian scheme T ′. For the fiber product Y ′ =

Y ×T T ′, let f : Y ′ → T ′ and g′ : Y ′ → Y be the projections. Thus, we have a

Cartesian diagram:

Y ′
g′−−−−→ Y

f ′
y yf
T ′

g−−−−→ T.
In this situation, there is a natural quasi-isomorphism

Lg′∗(f !OT ) 'qis f
′ !OT ′ .

Proof. Let DT , DY , DT ′ , and DY ′ , respectively, be the dualizing functors on T , Y ,

T ′, and Y ′ defined by a dualizing complex on T and their transforms by f !, g!, and

(f ◦ g′)! ' (g ◦ f ′)! (cf. Fact 4.34(1)) as in Example 4.24. For any G• ∈ D+
coh(T ′),

we have

f !(Rg∗(G•)) 'qis DY ◦ Lf∗ ◦DT (Rg∗(G•)) 'qis DY ◦ Lf∗ ◦Rg∗(DT ′(G•))
'qis DY ◦Rg′∗ ◦ Lf ′∗(DT ′(G•)) 'qis Rg′∗ ◦DY ′(Lf

′∗(DT ′(G•)))
'qis Rg′∗(f

′ !(G•)),

where we use the flat base change isomorphism Lf∗ ◦ Rg∗ 'qis Rg′∗ ◦ Lf ′∗ (cf.

Proposition A.10), and the duality isomorphisms DT ◦ Rg∗ 'qis Rg∗ ◦ DT ′ and

DY ◦Rg′∗ 'qis Rg′∗ ◦ DY ′ for the finite morphisms g and g′ (cf. Corollary 4.31).

On the other hand, we have

f !(Rg∗(G•)) 'qis f
!OT ⊗L

OY Lf∗(Rg∗G•) 'qis f
!OT ⊗L

OY Rg′∗(Lf
′∗(G•))

by the quasi-isomorphism (IV-6) in Fact 4.35 and by the flat base change isomor-

phism. Substituting G• = OT ′ , we have a quasi-isomorphism

f !OT ⊗L
OY Rg′∗OY ′ 'qis Rg′∗(f

′ !OT ′).
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It is associated with a morphism Lg′∗(f !OT )→ f ′ !OT ′ in D+
coh(Y ′) which induces

a quasi-isomorphism by taking Rg′∗. Hence, Lg′∗(f !OT ) 'qis f
′ !OT ′ .

Corollary 4.38 (Cf. [45, Prop. 3.3(1)]). Let f : Y → T be a flat separated mor-

phism of finite type between Noetherian schemes. For a point t ∈ T , let φt :

Speck(t)→ T be the canonical morphism for the residue field k(t), and let ψt : Yt =

f−1(t) → Y be the base change of φt by f : Y → T . Then the canonical dualizing

complex ω•Yt/k(t) defined in Definition 4.26 is quasi-isomorphic to Lψ∗t (f !OT ).

Proof. Let SpecOT,t → T be the canonical morphism from the spectrum of the

local ring OT,t. Considering the completion ÔT,t of OT,t and the surjection ÔT,t →
k(t) to the residue field, we have a flat morphism

τ : T [ := Spec ÔT,t → SpecOT,t → T

and a closed immersion ι : Speck(t) ↪→ T [. Let Y [ be the fiber product Y ×T T [

and let f [ : Y [ → T [ and τ ′ : Y [ → Y be projections, which make a Cartesian

diagram:

Y [
τ ′−−−−→ Y

f[
y yf
T [

τ−−−−→ T.

By Fact 4.34(4), we have a quasi-isomorphism

Lτ ′∗(f !OT ) 'qis f
[!OT [ .

Hence, we may assume from the beginning that T = T [. Then φt is the closed

immersion ι. Now, T admits a dualizing complex, since we have a surjection to

ÔT,t from a complete regular local ring by Cohen’s structure theorem. Thus, we

are done by Lemma 4.37.

§4.4. Cohen–Macaulay morphisms and Gorenstein morphisms

The notions of a Cohen–Macaulay morphism and a Gorenstein morphism are in-

troduced in [12, IV, Déf. (6.8.1)] and [17, V, Ex. 9.7]. By [7, Sect. 3.5] or [51,

Thm. 2.2.3], one can define the relative dualizing sheaf for a Cohen–Macaulay

morphism (cf. Definition 4.43 below), and prove a base change property (cf. The-

orem 4.46 below). We shall explain these facts.

We defined the notion of a Cohen–Macaulay morphism in Definition 2.30. The

notion of a Gorenstein morphism is defined as follows.
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Definition 4.39 (Gor(Y/T )). Let Y and T be locally Noetherian schemes and

f : Y → T a flat morphism locally of finite type. We define

Gor(Y/T ) :=
⋃

t∈T
Gor(Yt),

and call it the relative Gorenstein locus for f . The flat morphism f is called a

Gorenstein morphism if Gor(Y/T ) = Y .

Remark. The Gorenstein locus Gor(Y/T ) is open. In fact, this is characterized as

the maximal open subset of the relative Cohen–Macaulay locus Y [ = CM(Y/T )

on which the relative dualizing sheaf ωY [/T is invertible (cf. Lemma 4.40 below),

where Y [ is open by Fact 2.29(1).

The following characterizations of a Cohen–Macaulay morphism and a Goren-

stein morphism are known.

Lemma 4.40 ([17, V, Exer. 9.7], [7, Thm. 3.5.1]). Let f : Y → T be a flat mor-

phism locally of finite type between locally Noetherian schemes. Then f is Cohen–

Macaulay if and only if, locally on Y , the twisted inverse image f !OT is quasi-

isomorphic to an f -flat coherent OY -module ωY/T up to shift. Here f is Gorenstein

if and only if ωY/T is invertible.

Proof. We may assume that f is a separated morphism of finite type between

affine Noetherian schemes by localizing Y and T . Assume first that f !OT 'qis

ωY/T [d] for a coherent OY -module ωY/T flat over T and for an integer d. For an

arbitrary fiber Yt, the dualizing complex ω•Yt/k(t) is quasi-isomorphic to ωY/T ⊗OY
OYt [d] by Corollary 4.38. Hence, Yt is Cohen–Macaulay by Corollary 4.7(2) or

Lemma 4.16(4).

Conversely, assume that every fiber Yt is Cohen–Macaulay. Then we may

assume that f has pure relative dimension d by Lemma 2.38. We shall show that

f !OT 'qis ωY/T [d]

for the cohomology sheaf ωY/T := H−d(f !OT ) and that ωY/T is flat over T . For a

point t ∈ T and the inclusion morphism ψt : Yt → Y , we have a quasi-isomorphism

(IV-7) Lψ∗t (f !OT ) 'qis ωYt/k(t)[d]

for the canonical sheaf ωYt/k(t) by Corollary 4.38. Now, f !OT belongs to D−coh(OY ).

In fact, f !OT is f -perfect by Fact 4.35(1). For the stalk (f !OT )y at a point y ∈ Yt,
we have

(f !OT )y[−d]⊗L
OT,t k(t) 'qis (ωYt/k(t))y
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by (IV-7). By applying Lemma 4.41 below to (f !OT )y[−d] and OT,t → OY,y, we

see that Hi(f !OT )y = 0 for any i 6= −d and H−d(f !OT )y is a flat OT,t-module

with an isomorphism

H−d(f !OT )y ⊗OT,t k(t) ' (ωYt/k(t))y.

Since these hold for an arbitrary point y ∈ Y , there is a quasi-isomorphism

f !OT 'qis ωY/T [d] and ωY/T is flat over T . Therefore, we have proved the first

assertion on a characterization of a Cohen–Macaulay morphism. For the second

assertion, we assume that f is a Cohen–Macaulay morphism. Then ωY/T is flat

over T . Thus, ωY/T is invertible along a fiber Yt if and only if ωY/T ⊗OY OYt is

invertible (cf. Fact 2.26(2)). By the isomorphism ωY/T ⊗OY OYt ' ωYt/k(t), we see

that Yt is Gorenstein if and only if ωY/T is invertible along Yt. Thus, the second

assertion follows, and we are done.

The following is used in the proof of Lemma 4.40 above.

Lemma 4.41. Let A be a Noetherian local ring with residue field k and let A→ B

be a local ring homomorphism to another Noetherian local ring B. Let L• be a

complex of B-modules such that Hl(L•) = 0 for l � 0 and Hi(L•) is a finitely

generated B-module for any i ∈ Z, i.e., L• ∈ D−coh(B). Assume that

Hi(L• ⊗L
A k) = 0

for any i > 0. Then Hi(L•) = 0 for any i > 0, and there exist an isomorphism

H0(L•)⊗A k ' H0(L• ⊗L
A k)

and an exact sequence

TorA2 (H0(L•),k)→ H−1(L•)⊗A k h−→ H−1(L• ⊗L
A k)→ TorA1 (H0(L•),k)→ 0.

Consequently, the following hold:

(1) H0(L•) is flat over A if and only if the homomorphism h above is surjective;

(2) If Hi(L• ⊗L
A k) = 0 for any i 6= 0, then L• is quasi-isomorphic to a flat

A-module.

Proof. There is a standard spectral sequence

Ep,q2 = TorA−p(H
q(L•),k)⇒ Ep+q = Hp+q(L• ⊗L

A k)

(cf. [12, III, (6.3.2.2)]), where Ep,q2 = 0 for any p > 0. Let a be an integer such that

Hl(L•) = 0 for any l > a. Then Ep,q2 = 0 for any q > a, and we have Ea ' E0,a
2
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and an exact sequence

E−2,a
2 → E0,a−1

2 → Ea−1 → E−1,a
2 → 0.

Hence, if a > 0, then Ha(L•) = 0 by E0,a
2 = 0, and we may decrease a by 1. Thus,

we can choose a = 0, and we have the required isomorphism and exact sequence.

Assertion (1) is derived from the local criterion of flatness (cf. Proposition A.1),

since H0(L•) is flat over A if and only if TorA1 (H0(L•),k) = 0. Assertion (2) follows

from (1) and τ≤−1(L•) 'qis 0, the latter of which is obtained by applying the result

above to the complex τ≤−1(L•) instead of L•.

Fact 4.42. Let f : Y → T be a Cohen–Macaulay morphism having pure relative

dimension d (cf. Definition 2.36). In [7, Sect. 3.5], Conrad defines a sheaf ωf , called

the dualizing sheaf for f , on Y such that

ωf |U ' H−d((f |U )!OT )

for any open subset U ⊂ Y such that the restriction f |U : U → T factors as

a closed immersion U ↪→ P followed by a smooth separated morphism P → T

with pure relative dimension. Here the sheaf ωf is obtained by gluing the sheaves

H−d((f |U )!OT ) along natural isomorphisms, where the compatibility of gluing is

checked by explicit calculation of Ext groups. In [51, Thms. 2.3.3, 2.3.5], Sas-

try defines the same sheaf ωf by another method: this is obtained by gluing

H−d((f |V )!OT ) for open subsets V ⊂ Y such that f |V factors as an open im-

mersion V ↪→ V followed by a d-proper morphism V → T in the sense of [51,

Def. 2.2.1].

Definition 4.43 (Relative dualizing sheaf). Let f : Y → T be a Cohen–Macaulay

morphism. For any connected component Yα of Y , it is shown in Lemma 2.38 that

the restriction morphism fα = f |Yα : Yα → T has pure relative dimension. Thus,

one can consider the dualizing sheaf ωfα in Fact 4.42 for fα. We define the relative

dualizing sheaf ωY/T of Y over T by

ωY/T |Yα = ωfα

for any connected component Yα. The ωY/T is also called the relative dualizing

sheaf for f or the relative canonical sheaf of Y over T (cf. Definition 5.3 below).

We sometimes write ωf for ωY/T .

By Corollary 4.7(2) and Lemma 4.40, we have the following.

Corollary 4.44. For a Cohen–Macaulay morphism f : Y → T , the relative du-

alizing sheaf ωY/T is relatively Cohen–Macaulay over T (cf. Definition 2.28) and

SuppωY/T = Y .
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By Lemma 2.33(5), we also have the following.

Corollary 4.45. For a Cohen–Macaulay morphism f : Y → T , let Y ◦ be an open

subset of Y such that codim(Yt \ Y ◦, Yt) ≥ 2 for any fiber Yt = f−1(t). Then

ωY/T ' j∗(ωY ◦/T ) for the open immersion j : Y ◦ ↪→ Y .

The following base change property is known for the relative dualizing sheaves

(cf. [7, Thm. 3.6.1], [26, Prop. (9)], [51, Thm. 2.3.5]).

Theorem 4.46. Let f : Y → T be a Cohen–Macaulay morphism. For an arbitrary

morphism T ′ → T from a locally Noetherian scheme T ′, let Y ′ be the fiber product

Y ×T T ′ and let p : Y ′ → Y be the projection. Then p∗(ωY/T ) ' ωY ′/T ′ .

Remark. Conrad [7, Thm. 3.6.1] and Sastry [51, Thm. 2.3.5] prove Theorem 4.46

assuming that f has pure relative dimension, but it is enough for the proof, since

the restriction of f to any connected component of Y has pure relative dimen-

sion (cf. Lemma 2.38). When f is proper, Theorem 4.46 is shown by Kleiman [26,

Prop. (9)(iii)], whose proof uses another version of the twisted inverse image func-

tor f !. The proof of [7, Thm. 3.6.1] is based on arguments in [17, V], while the

proof of [51, Thm. 2.3.5] is based on arguments in [9], [57], [26], and [35].

§5. Relative canonical sheaves

As a generalization of the relative dualizing sheaf for a Cohen–Macaulay morphism,

we introduce the notion of relative canonical sheaf for an arbitrary S2-morphism

(cf. Definition 2.30). We give some base change properties of the relative canonical

sheaf and its “multiple”. These are used for studying Q-Gorenstein morphisms in

Section 7. In Section 5.1 we shall study the relative canonical sheaf and the condi-

tions for it to satisfy relative S2. Section 5.2 is devoted to proving Theorem 5.10

which shows that a certain sheaf related to the relative canonical sheaf is invert-

ible. This provides sufficient conditions for the base change homomorphism of the

relative canonical sheaf to the fiber to be an isomorphism.

§5.1. Relative canonical sheaf for an S2-morphism

First of all, we shall give a partial generalization of the notion of canonical sheaf

in Definition 4.28 as follows.

Definition 5.1. Let X be a k-scheme locally of finite type for a field k. Assume

that

• X is locally equi-dimensional and

• codim(X \X[, X) ≥ 2 for the Cohen–Macaulay locus X[ = CM(X).
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Note that this assumption is verified when X satisfies S2. For the relative dualizing

sheaf ωX[/k over Speck in Definition 4.43 and for the open immersion j[ : X[ ↪→ X,

we set

ωX/k := j[∗(ωX[/k)

and call it the canonical sheaf of X.

Remark. By Corollaries 4.22 and 4.29, we have the following properties in the

situation of Definition 5.1:

(1) Let U be an arbitrary open subset of X which is of finite type over Speck. Then

ωX/k|U is isomorphic to the canonical sheaf ωU/k defined in Definition 4.28.

Thus, the use of the same symbol ωX/k for the canonical sheaf causes no

confusion.

(2) The canonical sheaf ωX/k is coherent and satisfies S2.

Lemma 5.2. Let X be a scheme locally of finite type over a field k. Assume that

X is Gorenstein in codimension one and satisfies S2. Then ωX/k is reflexive, and

every reflexive OX-module satisfies S2. In particular, the double-dual ω
[m]
X/k of ω⊗mX/k

satisfies S2 for any m ∈ Z.

Proof. Let Z be the complement of the Gorenstein locus of X (cf. Definition 4.10).

Then codim(Z,X) ≥ 2 and ωX/k|X\Z is invertible. Hence, ωX/k is reflexive by

Corollary 2.22, since ωX/k satisfies S2 and SuppωX/k = X. Every reflexive OX -

module satisfies S2 by Lemma 2.21(2).

Remark. Lemma 5.2 is derived also from [21, Prop. 3.5, Cor. 3.7].

The definition of the canonical sheaf above is partially extended to the relative

situation as follows.

Definition 5.3 (Relative canonical sheaf). Let f : Y → T be an S2-morphism of

locally Noetherian schemes. Let j : Y [ ↪→ Y be the open immersion from the

relative Cohen–Macaulay locus Y [ = CM(Y/T ). Note that codim(Yt \ Y [, Yt) ≥ 3

for any fiber Yt = f−1(t), since Yt satisfies S2. In this situation, we define

ωY/T := j∗(ωY [/T )

for the relative dualizing sheaf ωY [/T for f |Y [ in the sense of Definition 4.43. We

also call ωY/T the relative canonical sheaf of Y over T .
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Lemma 5.4. Let f : Y → T be an S2-morphism of locally Noetherian schemes

and let

Y ′
p−−−−→ Y

f ′
y y
T ′ −−−−→ T

be a Cartesian diagram such that T ′ is a locally Noetherian scheme flat over T .

Then ωY ′/T ′ ' p∗(ωY/T ).

Proof. Let Y [ (resp. Y ′[) be the relative Cohen–Macaulay locus for f (resp. f ′) and

let j : Y [ ↪→ Y (resp. j′ : Y ′[ ↪→ Y ′) be the open immersion. Then Y ′[ = p−1(Y [)

by Lemma 2.31(3) for F = OY , and j′ is induced from j. Let p[ : Y ′[ → Y [ be the

restriction of p. Then ωY ′[/T ′ ' p[∗(ωY [/T ) by Theorem 4.46. Thus, we have

ωY ′/T ′ ' j′∗(p[∗(ωY [/T )) ' p∗(j∗(ωY [/T )) ' p∗ωY/T

by the flat base change isomorphism (cf. Lemma A.9) for the Cartesian diagram

composed of p, p[, j, and j′.

Proposition 5.5. Let f : Y → T be an S2-morphism of locally Noetherian

schemes. Then the relative canonical sheaf ωY/T defined in Definition 5.3 is co-

herent, and moreover, if f is a separated morphism of pure relative dimension d,

then

Hi(f !OT ) '

{
0 if i < −d,
ωY/T if i = −d,

for the twisted inverse image f !OT . Let Y ◦ be an open subset of CM(Y/T ) such

that codim(Yt \ Y ◦, Yt) ≥ 2 for any fiber Yt = f−1(t). For a point t ∈ T , let

φt : ωY/T ⊗OY OYt → ωYt/k(t) = jt∗(ωY ◦∩Yt/k(t))

be the homomorphism induced from the base change isomorphism

(V-1) ωY ◦/T ⊗OY ◦ OY ◦∩Yt ' ωY ◦∩Yt/k(t)

(cf. Theorem 4.46), where jt : Y
◦ ∩ Yt ↪→ Yt denotes the open immersion. Then,

for any point y ∈ Y , the following three conditions are equivalent to each other:

(a) φf(y) is surjective at y;

(b) φf(y) is an isomorphism at y;

(c) there is an open neighborhood U of y in Y such that ωY/T |U satisfies relative

S2 over T (cf. Definition 2.28).
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Proof. The coherence of ωY/T and conditions (a)–(c) are local on Y . Hence, we

may assume that f is a separated morphism of pure relative dimension d by

Lemma 2.38(1). Then we have the twisted inverse image f !OT with a quasi-

isomorphism

(f !OT )|Y [ 'qis ωY [/T [d]

for Y [ = CM(Y/T ) by Lemma 4.40, and we have a canonical homomorphism

φ : H−d(f !OT )→ j[∗(ωY [/T ) = ωY/T

for the open immersion j[ : Y [ ↪→ Y . In order to prove that φ is an isomorphism,

since it is a local condition, we may replace Y with an open subset freely. Thus,

we may assume that

• f is the composite p ◦ ι of a closed immersion ι : Y ↪→ P and a smooth affine

morphism p : P → T .

By Fact 4.35(1) and Remark 4.36, we know that Rι∗(f
!OT ) is perfect. Hence,

by localizing Y , we may assume that

• Rι∗(f
!OT ) is quasi-isomorphic to a bounded complex E• = [· · · → E i →

E i+1 → · · · ] of free OP -modules of finite rank.

Then we have an isomorphism Hi(E•) ' ι∗Hi(f !OT ) for any i ∈ Z. Moreover,

there exist quasi-isomorphisms

E• ⊗L
OP OPt 'qis Rι∗(f

!OT ⊗L
OY Lι∗OPt) 'qis Rι∗(f

!OT ⊗L
OY Lf∗k(t))

'qis Rι∗(f
!OT ⊗L

OY OYt) 'qis Rιt∗(ω
•
Yt/k(t))

for any t ∈ T and for the induced closed immersion ιt : Yt ↪→ Pt = p−1(t). In

fact, the first quasi-isomorphism is known as the projection formula (cf. [17, II,

Prop. 5.6]), the quasi-isomorphisms

OPt 'qis Lp∗k(t) and Lf∗k(t) 'qis OYt

are derived from the flatness of p and f , and the quasi-isomorphism

f !OT ⊗L
OY OYt 'qis ω

•
Yt/k(t)

is obtained by Corollary 4.38. We shall show that the three data

E•[−d], Z := ι(Y \ Y ◦), F := H0(E•[−d]) ' ι∗H−d(f !OT )

satisfy the conditions of Lemma 3.15 for the morphism P → T . The required

inequality (III-8) of Lemma 3.15 is derived from

depthPt∩Z OPt = codim(Pt ∩ Z,Pt) = codim(Yt ∩ Z,Pt) ≥ codim(Yt ∩ Z, Yt) ≥ 2
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(cf. Lemma 2.14). Condition (i) of Lemma 3.15 is derived from (cf. Lemma 4.40)

Hi(E•)|P\Z ' ι∗(Hi(f !OT ))|P\Z '

{
0 if i 6= −d,
ι∗ωY ◦/T if i = −d,

and the next condition (ii) has no meaning now. Condition (iii) follows from

Hi(E ⊗L
OP OPt) ' ιt∗(H

i(ω•Yt/k(t))) = 0

for any i < −d (cf. Lemma 4.27). The last condition (iv) of Lemma 3.15 is a con-

sequence of Corollary 4.20 applied to the ordinary dualizing complex ω•Yt/k(t)[−d]

(cf. Lemma 4.27) and to b = 1, since

• the complex M• in Lemma 3.15(iv) is quasi-isomorphic to the stalk of

τ≤1(Rι∗ω
•
Yt/k(t)[−d]) 'qis Rι∗(τ

≤1(ω•Yt/k(t)[−d])) and

• dimOPt,z ≥ codim(Z ∩ Yt, Yt) ≥ 2 for any z ∈ Z with t = f(z).

Therefore, all the conditions of Lemma 3.15 are satisfied, and consequently,

Hi(E•) ' ι∗Hi(f !OT ) = 0

for any i < −d, and we can apply Proposition 3.7 to F via Lemma 3.15. Then

F ' j∗(F|P\Z) for the open immersion j : P \Z ↪→ P by Proposition 3.7(1), and it

implies that the morphism φ above is an isomorphism. Moreover, the three condi-

tions (a)–(c) are equivalent to each other by Proposition 3.7(3) and Corollary 3.9.

Thus, we are done.

Proposition 5.6. Let f : Y → T be an S2-morphism of locally Noetherian schemes

and let j : Y ◦ ↪→ Y be the open immersion from an open subset Y ◦ of the relative

Gorenstein locus Gor(Y/T ) for f . Assume that

• codim(Yt \ Y ◦, Yt) ≥ 2 for any fiber Yt = f−1(t).

For an integer m and for the relative canonical sheaf ωY/T , let ω
[m]
Y/T denote the

double-dual of ω⊗mY/T . Then

ω
[m]
Y/T ' j∗(ω

⊗m
Y ◦/T )

for any m. In particular, ωY/T is reflexive. For an integer m and a point t ∈ T ,

let

φ
[m]
t : ω

[m]
Y/T ⊗OY OYt → ω

[m]
Yt/k(t) = jt∗(ω

⊗m
Y ◦∩Yt/k(t))

be the homomorphism induced from the base change isomorphism (V-1), where

jt : Y
◦ ∩ Yt ↪→ Yt denotes the open immersion. Then, for any integer m and any

point y ∈ Y , the following three conditions are equivalent to each other:
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(a) φ
[m]
f(y) is surjective at y;

(b) φ
[m]
f(y) is an isomorphism at y;

(c) there is an open neighborhood V of y in Y such that ω
[m]
Y/T |V satisfies relative

S2 over T .

Proof. We apply some results in Section 3.1 to the reflexive sheaf F = ω
[m]
Y/T

and the closed subset Z := Y \ Y ◦. By assumption, F|Y \Z is invertible and

depthYt∩Z OYt ≥ 2 (cf. Lemma 2.14(ii)). Thus, we can apply Lemma 3.14, and

consequently, we can assume that F has an exact sequence of Proposition 3.7, by

replacing Y with its open subset. Then ω
[m]
Y/T ' j∗(ω

⊗m
Y ◦/T ) by Proposition 3.7(1).

In the case m = 1, we have ω
[1]
Y/T ' ωY/T ' j∗(ωY ◦/T ) by Corollary 4.45 and Def-

inition 5.3, and as a consequence, ωY/T is reflexive. The equivalence of the three

conditions (a)–(c) is derived from Proposition 3.7(3) and Corollary 3.9.

Corollary 5.7. Let us consider a Cartesian diagram

Y ′
p−−−−→ Y

f ′
y yf
T ′

q−−−−→ T

of locally Noetherian schemes in which f is a flat morphism locally of finite type.

Then p−1 CM(Y/T ) = CM(Y ′/T ′) and p−1 Gor(Y/T ) = Gor(Y ′/T ′). Assume in

addition that f is an S2-morphism.

(1) If ωY/T satisfies relative S2 over T , then p∗ωY/T ' ωY ′/T ′ .
(2) If every fiber Yt = f−1(t) is Gorenstein in codimension one, then for any

m ∈ Z, there is a canonical isomorphism

(p∗ω
[m]
Y/T )∨∨ ' ω[m]

Y ′/T ′ .

Here, if ω
[m]
Y/T satisfies relative S2 over T , then p∗ω

[m]
Y/T ' ω

[m]
Y ′/T ′ .

Proof. The equality for CM is derived from Lemma 2.31(3) for F = OY . If f

is a Cohen–Macaulay morphism, then p∗ωY/T ' ωY ′/T ′ by Theorem 4.46. This

implies the equality for Gor by the remark of Definition 4.39. Assume that f is an

S2-morphism. Then f ′ is so by Lemma 2.31(5). For open subsets Y [ := CM(Y/T )

and Y ′[ := p−1(Y [), we have

codim(Y ′t′ \ Y ′[, Y ′t′) = codim(Yt \ Y [, Yt) ≥ 3
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for any t′ ∈ T ′ and t = q(t) by Lemma 2.31(1) and by the S2-condition of Yt. If

ωY/T satisfies relative S2 over T , then the canonical base change isomorphism

(V-2) p∗ωY [/T ' ωY ′[/T ′

in Theorem 4.46 induces an isomorphism

p∗ωY/T ' j′∗(p∗ωY/T |Y ′[) ' j′∗ωY ′[/T ′ = ωY ′/T ′

for the open immersion j′ : Y ′[ ↪→ Y ′, by Lemma 2.32(2) applied to (F , Z) =

(p∗ωY/T , Y
′ \ Y ′[). This proves (1). In the situation of (2), codim(Yt \ Y ◦, Yt) ≥ 2

for any t ∈ T , where Y ◦ = Gor(Y/T ). In particular,

depthYt\Y ◦ F ⊗OY OYt ≥ 2

for any coherent OY -module F satisfying relative S2 over T , by Lemma 2.15(2).

Thus, (2) is a consequence of Lemma 2.34 via the isomorphism (V-2).

Proposition 5.8. Let f : Y → T be an S2-morphism of locally Noetherian

schemes. Then

HomOY (ωY/T , ωY/T ) ' OY
for the relative canonical sheaf ωY/T in the sense of Definition 5.3. If every fiber

satisfies S3, then

Ext1
OY (ωY/T , ωY/T ) = 0.

Proof. Let j : Y [ ↪→ Y be the open immersion from the relative Cohen–Macaulay

locus Y [ = CM(Y/T ). Now, we have a quasi-isomorphism

OY [ ' RHomO
Y [

(ωY [/T , ωY [/T )

by (IV-5) in Fact 4.35(2). This induces another quasi-isomorphism

RHomOY (ωY/T ,Rj∗(ωY [/T )) 'qis Rj∗RHomO
Y [

(ωY [/T , ωY [/T ) ' Rj∗OY [

and the spectral sequence

Ep,q2 = ExtpOY (ωY/T , R
qj∗(ωY [/T ))⇒ Ep+q = Rp+qj∗OY [ .

Since ωY/T = j∗(ωY [/T ), the isomorphism E0,0
2 ' E0 and the injection E1,0

2 ↪→ E1,

respectively, correspond to an isomorphism HomOY (ωY/T , ωY/T ) ' j∗OY [ and an

injection Ext1
OY (ωY/T , ωY/T ) ↪→ R1j∗OY [ . Therefore, it suffices to prove that

(1) OY ' j∗OY [ and

(2) if every fiber satisfies S3, then R1j∗OY [ = 0.
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Here (1) (resp. (1) with the conclusion of (2)) is equivalent to depthZ OY ≥ 2

(resp. ≥ 3) for Z := Y \ Y [ (cf. Property 2.6). If a fiber Yt satisfies Sk, then

codim(Z ∩Yt, Yt) > k, and depthZ∩Yt OYt ≥ k by Lemma 2.15(2). Hence, we have

depthZ OY ≥ 2 (resp. ≥ 3) by Lemma 2.32(3) when every fiber Yt satisfies S2

(resp. S3). Thus, we are done.

§5.2. Some base change theorems for the relative canonical sheaf

For an S2-morphism f : Y → T of locally Noetherian schemes and for a fiber

Yt = f−1(t), let

φt(ωY/T ) : ωY/T ⊗OY OYt → ωYt/k(t) = j[∗(ωY [t /k(t))

be the canonical homomorphism induced from the base change isomorphism

ωY [/T ⊗OY [ OY [t ' ωY [t /k(t)

(cf. Theorem 4.46), where Y [ = CM(Y/T ), Y [t = Y [ ∩ Yt and j[ is the open im-

mersion Y [ ↪→ Y . The homomorphism φt(ωY/T ) is not necessarily an isomorphism

(e.g., Fact 7.7 below). We shall give a sufficient condition for φt(ωY/T ) to be an

isomorphism in Theorem 5.10 below.

Lemma 5.9. Let f : Y → T be a Cohen–Macaulay morphism of locally Noethe-

rian schemes. Let L be a coherent OY -module flat over T with an isomorphism

(V-3) L ⊗OY OYt ' ωYt/k(t)

for the fiber Yt = f−1(t) over a given point t ∈ T . Then, for the sheaf M :=

HomOY (L, ωY/T ), the canonical homomorphism L ⊗ M → ωY/T is an isomor-

phism along Yt, and M is an invertible sheaf along Yt with an isomorphism

M⊗OY OYt 'OYt .

Proof. Since the assertions are local on Yt, we may assume that

(1) f has pure relative dimension d (cf. Lemma 2.38) and

(2) f is the composite p ◦ ι of a closed immersion ι : Y ↪→ P and a smooth affine

morphism p : P → T of pure relative dimension e.

Then f !OT ' ωY/T [d] and ωY/T is flat over T by Lemma 4.40. The complex

RHomOY (L, f !OT ) is f -perfect by Fact 4.35(2), and there is a quasi-isomorphism

Rι∗RHomOY (L, f !OT ) 'qis RHomOP (ι∗L, ωP/T [e])

by Corollary 4.31, where p!OT = ωP/T [e] by (2) above. Localizing Y , by Re-

mark 4.36, we may assume furthermore that



Grothendieck Duality and Q-Gorenstein Morphisms 599

(3) Rι∗RHomOY (L, f !OT ) is quasi-isomorphic to a bounded complex E• = [· · · →
E i → E i+1 → · · · ] of free OP -modules of finite rank.

Note that we have an isomorphism

H−d(E•) ' ι∗HomOY (L, ωY/T ) ' ι∗M.

For the closed immersion ι : Y ↪→ P and the induced closed immersion ιt : Yt ↪→
Pt = p−1(t), we have quasi-isomorphisms

E• ⊗L
OP OPt 'qis RHomOPt ((ι∗L)⊗L

OP OPt , ωP/T [e]⊗L
OP OPt)

'qis RHomOPt (ιt∗(L ⊗OY OYt), ωPt/k(t)[e])

by [23, I, Prop. 7.1.2], since L is flat over T , ι∗L is perfect (cf. Fact 4.35(1) and

Remark 4.36), and since P → T is smooth. From the isomorphism (V-3) and the

base change isomorphism

φt(ωY/T ) : ωY/T ⊗OY OYt ' ωYt/k(t)

(cf. Theorem 4.46), by duality for ιt (cf. Corollary 4.31) we have quasi-isomorphisms

E• ⊗L
OT k(t) 'qis E• ⊗L

OP OPt 'qis Rιt∗RHomOYt (L ⊗OY OYt , ωYt/k(t)[d])

'qis Rιt∗RHomOYt (ωYt/k(t), ωYt/k(t)[d]) 'qis ιt∗OYt [d],

where the last quasi-isomorphism follows from the fact that ωYt/k(t)[d] is a dualizing

complex of Yt. Then, by Lemma 4.41, we see that

(4) E•[−d] is quasi-isomorphic to H−d(E•) ' ι∗M along Yt,

(5) ι∗M is flat over T along Yt, and

(6) there is an isomorphism

ι∗M⊗OP OPt ' H−d(E• ⊗L
OT k(t)) ' ιt∗OYt .

Hence, M is flat over T along Yt with an isomorphism M⊗OY OYt ' OYt by (5)

and (6). As a consequence,M is an invertible OY -module along Yt by Fact 2.26(2).

Now, we have a quasi-isomorphism

RHomOY (L, ωY/T ) 'qis M

along Yt by (3) and (4). By the duality quasi-isomorphism

L 'qis RHomOY (RHomOY (L, ωY/T ), ωY/T )

(cf. Fact 4.35(2)), we have an isomorphism

L ' HomOY (M, ωY/T ) ' ωY/T ⊗OY M−1

along Yt, since M is invertible along Yt. Thus, we are done.



600 Y. Lee and N. Nakayama

Theorem 5.10. For an S2-morphism f : Y → T of locally Noetherian schemes,

let L be a coherent OY -module and setM := HomOY (L, ωY/T ). For an open subset

U of Y and for the fiber Yt = f−1(t) over a given point t ∈ T , assume that

(i) codim(Yt \ U, Yt) ≥ 2,

(ii) L is flat over T with an isomorphism L ⊗OY OYt ' ωYt/k(t), and

(iii) one of the following two conditions is satisfied:

(a) Yt satisfies S3 and codim(Yt \ U, Yt) ≥ 3;

(b) there is a positive integer r coprime to the characteristic of k(t) such

that L[r] = (L⊗r)∨∨ and ω
[r]
Y/T = (ω⊗rY/T )∨∨ are invertible OY -module

along Yt.

Then M is an invertible OY -module along Yt with an isomorphism M⊗OY OYt '
OYt , and the canonical homomorphism L⊗OYM→ ωY/T is an isomorphism along

Yt. Moreover, the “base change homomorphism”

φt(ωY/T ) : ωY/T ⊗OY OYt → ωYt/k(t)

is an isomorphism.

Proof. Since the assertions are local on Yt, we may replace Y with an open subset

freely. Let Y [ be the relative Cohen–Macaulay locus CM(Y/T ), which is an open

subset by Fact 2.29(1). Then codim(Yt \ Y [, Yt) ≥ 3 (resp. ≥ 4 in case (a)), since

Yt satisfies S2 (resp. S3). We set U [ := U ∩ Y [. Then

(V-4) codim(Yt \ U [, Yt) = codim((Yt \ U) ∪ (Yt \ Y [), Yt) ≥ 2 (resp. ≥ 3).

By Lemma 5.9 applied to the Cohen–Macaulay morphism U [ → T , there is an

isomorphism

(1) M|U[ ⊗OU[ OU[∩Yt ' OU[∩Yt ,

and there is an open neighborhood U ′ of U [ ∩ Yt in U [ such that

(2) M|U ′ is an invertible sheaf, and

(3) the canonical homomorphism L ⊗OY M→ ωY/T is an isomorphism on U ′.

We set Z = Y \U ′. Then codim(Yt∩Z, Yt) = codim(Yt\U [, Yt) ≥ 2 by (V-4). Since

f is an S2-morphism, by Lemma 2.38, we may assume that codim(Yt′ ∩Z, Yt′) ≥ 2

for any t′ ∈ T by replacing Y with an open subset. Then depthZ OY ≥ 2 by

Lemma 2.32(3), and

ωY/T ' j∗(ωU/T ) ' j′∗(ωU ′/T )
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for the open immersion j′ : U ′ ↪→ Y by Corollary 4.45. In particular, depthZM≥
2, i.e., M' j′∗(M|U ′), by the isomorphism

HomOY (L, ωY/T ) ' HomOY (L, j′∗(ωU ′/T )) ' j′∗HomOU′ (L|U ′ , ωU ′/T ).

By (ii), L satisfies relative S2 over T along Yt, since ωYt/k(t) satisfies S2 by Corol-

lary 4.29. Hence, we have also an isomorphism L ' j′∗(L|U ′) by Lemma 2.33(5).

We shall show that M is invertible along Yt by applying Theorem 3.16 to

Y → T , the closed subset Z = Y \ U ′, and to the sheaf M as F . By the previous

argument, we have checked conditions (i) and (ii) of Theorem 3.16. Condition (iii)

is derived from (1): in fact, we have

(V-5) M(t)∗ = j′∗((M⊗OY OYt)|U ′∩Yt) ' j′∗(OU ′∩Yt) ' OYt ,

since we have depthYt∩Z OYt ≥ 2 by the S2-condition on Yt and by codim(Yt ∩
Z, Yt) ≥ 2 (cf. Lemma 2.14). Similarly, in the situation of (a), we can verify

condition (a) of Theorem 3.16 by the S3-condition on Yt and by codim(Yt∩Z, Yt) =

codim(Yt \ U [, Yt) ≥ 3 (cf. (V-4)). In the situation of (b), M[r] is an invertible

OY -module along Yt. In fact, the restriction homomorphisms

M[r] → j′∗(M[r]|U ′) and ω
[r]
Y/T → j′∗(ω

[r]
U ′/T )

are isomorphisms by Lemma 2.33(4), since M[r] and ω
[r]
Y/T are reflexive, and the

isomorphism

L[r]|U ′ ⊗OU′ M
[r]|U ′ ' ω[r]

U ′/T

obtained by (2) and (3) induces an isomorphism

M[r] ' j′∗(M[r]|U ′) ' j′∗HomOU′ (L
[r]|U ′ , ω[r]

U ′/T )

' HomOY (L[r], j′∗(ω
[r]
U ′/T )) ' HomOY (L[r], ω

[r]
Y/T ).

Thus, condition (b) of Theorem 3.16 is also satisfied in the situation of (b). Hence,

we can apply Theorem 3.16, and as a result, we see that M is an invertible sheaf

along Yt.

Then we have an isomorphismM⊗OY OYt ' OYt by (V-5), and the canonical

homomorphism L ⊗OY M→ ωY/T is an isomorphism along Yt by (3). In fact, it

is expressed as the composite

L ⊗OY M' j′∗(L|U ′)⊗OY M→ j′∗(L|U ′ ⊗M|U ′) ' j′∗(ωU ′/T ) ' ωY/T ,

where the middle arrow is an isomorphism along Yt by the projection formula,

since M is invertible along Yt. In particular, ωY/T ⊗OY OYt satisfies S2, and as a

consequence, φt(ωY/T ) is an isomorphism by (V-4). Thus, we are done.
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§6. Q-Gorenstein schemes

A normal algebraic variety defined over a field is said to be Q-Gorenstein if some

positive multiple of the canonical divisor is Cartier. We shall generalize the notion

of Q-Gorenstein to locally Noetherian schemes. In Section 6.1 a Q-Gorenstein

scheme is defined and its basic properties are given. In Section 6.2 we consider the

case of affine cones over polarized projective schemes over a field, and determine

when it is a Q-Gorenstein scheme.

§6.1. Basic properties of Q-Gorenstein schemes

Definition 6.1 (Q-Gorenstein scheme). Let X be a locally Noetherian scheme

admitting a dualizing complex locally on X and assume that X is Gorenstein in

codimension one, i.e., codim(X \X◦) ≥ 2 for the Gorenstein locus X◦ = Gor(X)

(cf. Definition 4.10).

(1) The scheme X is said to be quasi-Gorenstein (or 1-Gorenstein) at a point P

if there exist an open neighborhood U of P and a dualizing complex R• of U

such that H0(R•) is invertible at P . If X is quasi-Gorenstein at every point,

then X is said to be quasi-Gorenstein (or 1-Gorenstein).

(2) The scheme X is said to be Q-Gorenstein at P if there exist an open neigh-

borhood U of P , a dualizing complex R• of U , and an integer r > 0 such that

L = H0(R•) is invertible on the Gorenstein locus U◦ = U ∩X◦ and

j∗
(
L⊗r|U◦

)
is invertible at P , where j : U◦ ↪→ U denotes the open immersion. If X is

Q-Gorenstein at every point, then X is said to be Q-Gorenstein.

Definition 6.2 (Gorenstein index). For a Q-Gorenstein scheme X, the Goren-

stein index of X at P ∈ X is defined to be the smallest positive integer r satisfying

condition (2) of Definition 6.1 for an open neighborhood of P . The least common

multiple of Gorenstein indices of X at all the points is called the Gorenstein index

of X, which might be +∞.

Remark. Conditions (1) and (2) of Definition 6.1 do not depend on the choice of

R• by the essential uniqueness of the dualizing complex (cf. Remark 4.2).

Lemma 6.3. (1) A quasi-Gorenstein (1-Gorenstein) scheme is nothing but a Q-

Gorenstein scheme of Gorenstein index one.

(2) Every Q-Gorenstein scheme satisfies S2.

Proof. (1): Let X be a locally Noetherian scheme admitting a dualizing complex

R• such that it is Gorenstein in codimension one and that L := H0(R•) is in-
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vertible on the Gorenstein locus X◦. Then L satisfies S2 and L → j∗(L|X◦) is an

isomorphism by Corollary 4.22. Hence, X is Q-Gorenstein with Gorenstein index

one if and only if L is invertible, equivalently, X is quasi-Gorenstein.

(2): We may assume that X admits a dualizing complex R• such that L =

H0(R•) is invertible on the Gorenstein locus X◦, since the S2-condition is local.

Then Mr := j∗(L⊗r|X◦) is invertible for some r by Definition 6.1(2). Hence, Mr

satisfies S2 by Corollary 2.16. Therefore, X satisfies S2.

Lemma 6.4. Let X be a locally Noetherian scheme admitting a dualizing com-

plex R•. For the cohomology sheaf L := H0(R•) and for an open subset U with

codim(X \ U,X) ≥ 2, assume that L|U is invertible and R•|U 'qis L|U . Then the

following hold:

(1) If X satisfies S1, then R• is an ordinary dualizing complex of X and the

dualizing sheaf L is a reflexive OX-module satisfying S2.

(2) If X satisfies S2, then the double-dual L[m] of L⊗m satisfies S2 for any integer

m, and in particular,

L[m] ' j∗(L⊗m|U )

for the open immersion j : U ↪→ X.

(3) The scheme X is Q-Gorenstein if and only if X satisfies S2 and, locally on

X, there is a positive integer r such that L[r] is invertible.

Proof. (1): This follows from Corollary 4.22 with Lemmas 2.14 and 2.21(3).

(2): Since depthX\U OX ≥ 2 by the S2-condition, we have the isomorphism

L[m] ' j∗(L⊗m|U ) by Lemma 2.21(1). Hence, L[m] satisfies S2 by Corollary 2.16,

since L|U is invertible.

(3): This is a consequence of (2) above and Lemma 6.3(2) by the uniqueness

of the dualizing complex, explained in Remark 4.2.

Example 6.5. Let X be a k-scheme locally of finite type for a field k. Assume that

X satisfies S2 and codim(X \X◦, X) ≥ 2 for the Gorenstein locus X◦ = Gor(X).

Let ωX/k be the canonical sheaf defined in Definition 5.1 and let ω
[m]
X/k denote the

double-dual of ω⊗mX/k for any m ∈ Z (cf. Proposition 5.6). Then X is Q-Gorenstein

at a point x if and only if ω
[r]
X/k is invertible at x for some r > 0.

Example 6.6. Let X be a normal algebraic k-variety for a field k, i.e., a normal

integral separated scheme of finite type over k. Then X is Q-Gorenstein if and

only if the multiple rKX of the canonical divisor KX is Cartier for some r > 0. In

fact, X satisfies S2, ωX◦/k ' OX◦(KX) for the Gorenstein locus X◦ = Gor(X),

where codim(X \X◦, X) ≥ 2, and hence ω
[m]
X/k ' OX(mKX) for any m ∈ Z.
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Lemma 6.7. Let X be a locally Noetherian scheme and let π : Y → X be a smooth

surjective morphism. Then, for any integer k ≥ 1, Y satisfies Sk if and only if X

satisfies Sk. In particular, Y is Cohen–Macaulay if and only if X is so. Moreover,

Y is Gorenstein if and only if X is so. Assume that X admits a dualizing complex

locally on X. Then Y is quasi-Gorenstein (resp. Q-Gorenstein of index r) if and

only if X is so.

Proof. The first assertion follows from Fact 2.26(6). In particular, we have the

equivalence for the Cohen–Macaulay property (cf. Remark 2.12). The Gorenstein

case follows from Fact 4.12. It remains to prove the case of the Q-Gorenstein

property, since “quasi-Gorenstein” is nothing but “Q-Gorenstein of index one”

(cf. Lemma 6.3(1)). Since the Q-Gorenstein property is local and it implies S2, we

may assume that

• X has a dualizing complex R•X ,

• X and Y are affine schemes satisfying S2, and

• π = p ◦ λ for an étale morphism λ : Y → X × Ad and the first projection

p : X × Ad → X for the “d-dimensional affine space” Ad = SpecZ[x1, . . . , xd]

for some integer d ≥ 0 (cf. [12, IV, Cor. (17.11.4)]).

In particular, π has pure relative dimension d. We may assume also that R•X is an

ordinary dualizing complex by Lemma 4.14. We set LX to be the dualizing sheaf

H0(R•X).

By Examples 4.23 and 4.24, we see that R•Y := π!(R•X) is a dualizing complex

of Y , and we have an isomorphism

ωY/X ' ΩdY/X ' λ
∗(ωX×Ad/X) ' OY

for the relative dualizing sheaf ωY/X . Thus, π!(OX) 'qis OY [d], and

R•Y 'qis π
!(OX)⊗L

OY Lπ∗(R•X) 'qis Lπ∗(R•X)[d]

(cf. Example 4.23, Fact 4.34(2)). Since Y satisfies S2, the shift R•Y [−d] is an

ordinary dualizing complex on Y by the proof of Lemma 4.14. Here the associated

dualizing sheaf LY := H0(R•Y [−d]) is isomorphic to π∗(LX). Since π is faithfully

flat, we see that LY is invertible if and only if LX is so (cf. Lemma A.7). For

an integer m, let L[m]
X (resp. L[m]

Y ) be the double-dual of L⊗mX (resp. L⊗mY ). Then

L[m]
Y ' π∗(L[m]

X ) for any m ∈ Z by Remark 2.20. Hence, for a given integer r,

L[r]
Y is invertible if and only if L[r]

X is invertible by the same argument as above.

Therefore, by Lemma 6.4(3), Y is Q-Gorenstein of index r if and only if X is so.

Thus, we are done.
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Remark 6.8. By Lemma 6.7, we see that the Q-Gorenstein property is local even

in the étale topology. More precisely, for an étale morphism X ′ → X, for a point

P ∈ X, and for a point P ′ ∈ X ′ lying over P , X is Q-Gorenstein of index r at P

if and only if X ′ is so at P ′.

§6.2. Affine cones of polarized projective schemes over a field

For an affine cone over a projective scheme over a field k, we shall determine when

it is Cohen–Macaulay, Gorenstein, Q-Gorenstein, etc., under suitable conditions.

We fix a field k which is not necessarily algebraically closed.

Definition 6.9 (Affine cone). A polarized projective scheme over k is a pair (S,A)

consisting of a projective scheme S over k and an ample invertible sheaf A on S.

The polarized projective scheme (S,A) is said to be connected if S is connected.

For a connected polarized projective scheme (S,A), the affine cone of (S,A) is

defined to be SpecR for the graded k-algebra

R = R(S,A) :=
⊕

m≥0
H0(S,A⊗m).

We denote the affine cone by Cone(S,A). Note that the closed subscheme of

Cone(S,A) = SpecR defined by the ideal

R+ =
⊕

m>0
H0(S,A⊗m)

of R is isomorphic to Spec H0(S,OS), and the support of the closed subscheme is

a point, since the finite-dimensional k-algebra H0(S,OS) is an Artinian local ring

by the connectedness of S. The point is called the vertex of Cone(S,A).

Remark. The k-algebra R(S,A) above is finitely generated, since S is projective

and A is ample. Moreover, S ' ProjR(S,A). In some articles, the affine cone of

(S,A) is defined to be SpecR′ for the graded subring R′ of R such that R′n = Rn
for any n > 0 and R′0 = k.

Similar results to the following are well known on the structure of affine cones

(cf. [12, II, Props. (8.6.2), (8.8.2)]).

Lemma 6.10. For a connected polarized projective scheme (S,A) over k, let X be

the affine cone Cone(S,A). Let π : Y → S be the geometric line bundle associated

with A, i.e., Y = V(A) = SpecS R, where R =
⊕

m≥0A⊗m. Let E be the zero-

section of π corresponding to the projection R → OS to the component of degree

zero. Then E is a relative Cartier divisor over S (cf. [12, IV, Déf. (21.15.2)]) with

an isomorphism OY (−E) ' π∗A. Moreover, there exists a projective k-morphism

µ : Y → X such that
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(1) OX → µ∗OY is an isomorphism,

(2) π∗A is µ-ample,

(3) µ−1(P ) = E as a closed subset of Y for the vertex P of X, and

(4) µ induces an isomorphism Y \ E ' X \ P .

Proof. For an open subset U = SpecB of S with an isomorphism ε : A|U ' OU , we

have an isomorphism ϕ : π−1(U) ' SpecB[t] for the polynomial B-algebra B[t]

of one variable such that ϕ induces an isomorphism

H0(π−1(U),OY ) =
⊕

m≥0
H0(U,A⊗m) ' B[t] =

⊕
m≥0

Btm

of graded B-algebras. Then E|π−1(U) is a Cartier divisor corresponding to div(t)

on SpecB[t], which is relatively Cartier over SpecB (cf. [12, IV, (21.15.3.3)]).

Thus, E is a relative Cartier divisor over S, since such open subsets U cover S.

The exact sequence 0→ OY (−E)→ OY → OE → 0 induces an isomorphism

π∗OY (−E) '
⊕

m≥1
A⊗m ' A⊗OS R(−1)

of graded R-modules, where R(−1) denotes the twisted graded module. In partic-

ular, OY (−E) ' π∗A.

The canonical homomorphisms H0(S,A⊗m) ⊗k OS → A⊗m induce a graded

homomorphism Φ: R⊗kOS → R of graded OS-algebras, where R := R(S,A). The

cokernel of Φ is a finitely generated OS-module, since A⊗m is generated by global

sections for m� 0. Hence, R is a finitely generated R ⊗k OS-module. Therefore,

Φ defines a finite morphism

ν : Y = SpecS R → SpecS(R⊗k OS) ' X ×Spec k S

over S. Let p1 : X ×Spec k S → X and p2 : X ×Spec k S → S be the first and second

projections. Then µ := p1 ◦ ν : Y → X is a projective morphism, since S is projec-

tive over k. Here, OX ' µ∗OY , since H0(Y,OY ) ' H0(S,R) ' R. Moreover, π∗A is

µ-ample, since p∗2A is relatively ample over X and π∗A is the pullback by the finite

morphism ν. Thus, µ satisfies conditions (1) and (2). Since the projection R → OS
defining E induces the projection R = H0(S,R) → H0(S,OS) to the component

of degree zero, the scheme-theoretic image µ(E) is the zero-dimensional closed

subscheme Spec H0(S,OS) of X defined by the ideal R+ =
⊕

m>0 H0(S,A⊗m) of

R. Hence, the image µ(E) is set-theoretically the vertex P . We shall show that

the morphism

µ′ : Y ′ := Y \ µ−1(P )→ X ′ := X \ P
induced by µ is an isomorphism. Since µ is proper, so is µ′. Moreover, the structure

sheaf OY ′ is µ′-ample, since π∗A ' OY (−E) is µ-ample by (2). Hence, µ′ is a
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finite morphism. Thus, µ′ is an isomorphism by (1), since OX′ ' µ′∗OY ′ . As a

consequence, (4) is derived from (3), and it remains to prove (3) for µ and P .

For a global section f of A⊗m for some m > 0, we set V (f) to be the closed

subscheme Spec(R/fR) of X = SpecR by regarding f as a homogeneous element

of R of degree m. We also set a closed subscheme W (f) of S to be the “zero-

subscheme” of f , i.e., it is defined by the exact sequence

A⊗−m ⊗f−−→ OS → OW (f) → 0.

Condition (3) is derived from the following (∗) for any f and for any affine open

subsets U = SpecB with an isomorphism ε : A|U ' OU :

(∗) µ−1V (f) ∩ π−1(U) = (π−1W (f) ∪ E) ∩ π−1(U) as a subset of π−1(U).

In fact, if (∗) holds for all U and f , then µ−1V (f) = π−1W (f) ∪ E for any f ,

and we have µ−1(P ) = E by
⋂
f V (f) = P and

⋂
f W (f) = ∅. Here

⋂
f V (f) = P

and
⋂
f W (f) = ∅ hold, since all of such f ∈ R generate the ideal R+ and since

A is ample. We shall prove (∗) as follows. Let ϕ : π−1(U) ' SpecB[t] be the

isomorphism above defined by ε. We set

b = ε⊗m(f |U ) ∈ H0(U,OU ) = B

for the induced isomorphism ε⊗m : A⊗m|U ' OU . Then W (f) ∩ U = SpecB/bB,

and ϕ induces isomorphisms µ−1V (f)∩π−1(U) ' SpecB[t]/(btm) and E∩π−1(U)

' SpecB[t]/(t). This implies (∗), and we are done.

Corollary 6.11. In the situation of Lemma 6.10, for an integer k ≥ 1, S satis-

fies Sk if and only if X \ P satisfies Sk. Moreover, S is Cohen–Macaulay (resp.

Gorenstein, resp. quasi-Gorenstein, resp. Q-Gorenstein of Gorenstein index r) if

and only if X \ P is so.

Proof. This is a consequence of Lemmas 6.7 and 6.10, since X \ P ' Y \ E is

smooth and surjective over S.

The following result is essentially well known (cf. [38, Prop. 1.7], [45, Lem. 4.3]).

Proposition 6.12. Let X be the affine cone of a connected polarized projective

scheme (S,A) over k and let P be the vertex of X. For a coherent OS-module G,

we set F = µ∗(π
∗G) for the morphisms µ : Y → X and π : Y → S in Lemma 6.10

for the geometric line bundle Y = VS(A) over S. We define also F̃ := j∗(F|X\P )

for the open immersion j : X \ P ↪→ X, and for simplicity we define

Hi(G(m)) := Hi(S,G ⊗OS A⊗m)

for m ∈ Z and i ≥ 0. Then the following hold:
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(0) If G = OS, then F ' OX .

(1) The inequality depthFP ≥ 1 holds; equivalently, F ↪→ F̃ is injective.

(2) The inequality depthFP ≥ 2 holds if and only if H0(G(m)) = 0 for any m < 0.

This condition is also equivalent to F ' F̃ .

(3) The quasi-coherent OX-module F̃ is coherent if and only if H0(G(m)) = 0 for

m � 0. In particular, F̃ is coherent if G satisfies S1 and every irreducible

component of SuppG has positive dimension.

(4) Assume that F̃ is coherent. Then, for an integer k ≥ 3, depth F̃P ≥ k holds if

and only if Hi(G(m)) = 0 for any m ∈ Z and 0 < i < k − 1.

(5) The F satisfies S1 if and only if G satisfies S1.

(6) The F satisfies S2 if and only if G satisfies S2 and H0(G(m)) = 0 for any

m < 0.

(7) Assume that F̃ is coherent. Then, for an integer k ≥ 3, F̃ satisfies Sk if and

only if G satisfies Sk and Hi(G(m)) = 0 for any m ∈ Z and 0 < i < k − 1.

(8) Assume that F̃ is coherent. Then F̃ is a Cohen–Macaulay OX-module if and

only G is a Cohen–Macaulay OS-module and Hi(G(m)) = 0 for any m ∈ Z
and 0 < i < dim SuppG.

Proof. Assertion (0) is a consequence of Lemma 6.10(1). We consider the local

cohomology sheaves HiP (F ′) with support in P for F ′ = F or F ′ = F̃ . These are

quasi-coherent sheaves on X supported on P (cf. [18, Prop. 2.1]). Thus,

Hi
P (X,F ′) ' H0(X,HiP (F ′))

and it is also isomorphic to the stalk (HiP (F ′))P at P . Note that, for a positive

integer k, when F ′ is coherent, depthF ′P ≥ k if and only if (HiP (F ′))P = 0 for any

i < k (cf. Property 2.6). There exist an exact sequence

0→ H0
P (X,F ′)→ H0(X,F ′)→ H0(X \ P,F ′)→ H1

P (X,F ′)→ 0

and isomorphisms Hi(X \ P,F ′) ' Hi+1
P (X,F ′) for all i ≥ 1 (cf. [18, Prop. 2.2]).

Hence, if F ′ is a coherent OX -module, then depthF ′P ≥ k if and only if

(i) H0(X,F ′)→ H0(X \ P,F ′) is injective when k = 1,

(ii) H0(X,F ′)→ H0(X \ P,F ′) is an isomorphism when k = 2, and

(iii) H0(X,F ′)→ H0(X \P,F ′) is an isomorphism, and Hi(X \P,F ′) = 0 for any

0 < i < k − 1 when k ≥ 3.

By construction and by Lemma 6.10(4), we have isomorphisms

H0(X,F) ' H0(Y, π∗G) '
⊕

m≥0
H0(G(m)), and
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Hi(X \ P,F) ' Hi(Y \ E, π∗G) '
⊕

m∈Z
Hi(G(m))

for any i ≥ 0, where the homomorphism H0(Y, π∗G) → H0(Y \ E, π∗G) is an

injection and is the identity on each component H0(G(m)) of degree m ≥ 0. We

have (1), (2), and (4) by considering conditions (i)–(iii) above. Moreover, (3) holds,

since F̃ is coherent if and only if F̃P /FP is a finite-dimensional k-vector space,

and since we have an isomorphism

F̃P /FP '
⊕

m<0
H0(G(m))

by the argument above. This implies the first half of (3), and the second half

follows from Lemma 2.18.

For an integer k > 0, F|X\P satisfies Sk if and only if G satisfies Sk by [12,

IV, Cor. (6.4.2)], since Y \ E ' X \ P . Thus, assertion (5) (resp. (6), resp. (7))

follows from (1) (resp. (2), resp. (4)) by the equivalence (i) ⇔ (iv) in Lemma 2.14

applied to Z = P . The last assertion (8) is a consequence of (7), since dim F̃P =

dim SuppG + 1.

Proposition 6.13. Let (S,A) be a connected polarized projective scheme over k
and let X be the affine cone Cone(S,A). Let π : Y → S and µ : Y → X be the

morphisms in Lemma 6.10. Assume that X satisfies S2 and n := dimS > 0. Then

(0) S and Y also satisfy S2, and the schemes S, Y , and X are all equi-dimensional.

Let ωX/k (resp. ωY/k, resp. ωS/k) be the canonical sheaf of X (resp. Y , resp. S) in

the sense of Definition 4.28, and let ω
[r]
X/k (resp. ω

[r]
S/k) denote the double-dual of

ω⊗rX/k (resp. ω⊗rS/k) for an integer r.

(1) There exist isomorphisms

ωY/k ' π∗(ωS/k ⊗OS A) and(VI-1)

ω
[r]
Y/k ' π

∗(ω
[r]
S/k ⊗OS A

⊗r)(VI-2)

for any integer r. Moreover, ω
[r]
X/k is isomorphic to the double-dual of µ∗(ω

[r]
Y/k)

for any integer r.

(2) For any integer r and for any integer k ≥ 3,

depth(ω
[r]
X/k)P ≥ k

holds for the vertex P of X if and only if

Hi(S, ω
[r]
S/k ⊗OS A

⊗m) = 0
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for any m ∈ Z and any 0 < i < k − 1. Moreover, ω
[r]
X/k satisfies Sk for the

same r and k if and only if ω
[r]
S/k satisfies Sk and

Hi(S, ω
[r]
S/k ⊗OS A

⊗m) = 0

for any m ∈ Z and any 0 < i < k − 1.

(3) For any positive integer r, the following three conditions are equivalent to each

other:

(i) ω
[r]
X/k ' OX ;

(ii) ω
[r]
X/k is invertible;

(iii) ω
[r]
S/k ' A

⊗l for an integer l.

Proof. Assertion (0) is a consequence of Proposition 6.12(6) for G=OS , Lemma

6.7, and Fact 2.23(1). Let ω•S/k (resp. ω•Y/k, resp. ω•X/k) be the canonical dualizing

complex of S (resp. Y , resp. X) in the sense of Definition 4.26. Note that ω•S/k[−n]

(resp. ω•Y/k[−n − 1], resp. ω•X/k[−n − 1]) is an ordinary dualizing complex by

Lemma 4.27 for n = dimS. Then

ω•Y/k 'qis Ω
1
Y/S [1]⊗L

OY Lπ∗(ω•S/k) 'qis Lπ∗(A⊗L
OS ω

•
S/k)[1],

since π is separated and smooth (cf. Example 4.23) and since there is an iso-

morphism Ω1
Y/S ' π

∗A (cf. [12, IV, Cor. 16.4.9]). Thus, we have the isomorphism

(VI-1). By taking the double-dual of tensor powers of both sides of (VI-1), we have

the isomorphism (VI-2) for any integer r by Remark 2.20. Since X satisfies S2, any

reflexiveOX -module F satisfies S2 by Corollary 2.22, and moreover, depthP F ≥ 2,

since codim(P,X) = dimX = n+ 1 ≥ 2. Thus, we have isomorphisms

ω
[r]
X/k ' j∗(ω

[r]
X\P/k) ' j∗(µ∗(ω[r]

Y/k)|X\P ) ' (µ∗(ω
[r]
Y/k))∨∨

for any integer r and for the open immersion j : X \ P ↪→ X. This proves (1).

By (1), we see that (2) is a consequence of (4) and (7) of Proposition 6.12

applied to the case G = ω
[r]
S/k ⊗ A

⊗r, where F̃ ' ω
[r]
X/k. It remains to prove the

equivalence of conditions (i)–(iii) of (3). Since (i) ⇒ (ii) is trivial, it is enough to

prove (ii) ⇒ (iii) and (iii) ⇒ (i).

Proof of (iii)⇒ (i): Assume that ω
[r]
S/k ' A

⊗l for some r > 0 and l ∈ Z. Since

OY (−E) ' π∗A for the zero-section E of Lemma 6.10, we have

ω
[r]
Y/k ⊗OY OY ((r + l)E) ' π∗(ω[r]

S/k ⊗A
⊗r ⊗OS A⊗−(r+l)) ' OY

from the isomorphism in (1). By taking µ∗, we have ω
[r]
X/k ' π∗OY ' OX .
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Proof of (ii) ⇒ (iii): Assume that ω
[r]
X/k is invertible. Then ω

[r]
Y/k is invertible

on Y \ E, since Y \ E ' X \ P . Moreover, ω
[r]
S/k is invertible by (VI-2), since

Y \ E → S is faithfully flat (cf. Lemma A.7). Thus, ω
[r]
Y/k is also invertible again

by (VI-2). There is an injection

φ : ω
[r]
Y/k ⊗OY OY (−bE) ↪→ µ∗(ω

[r]
X/k)

for some integer b such that the cokernel of φ is supported on E. In fact, for any

integer b, we have a canonical homomorphism

µ∗(ω
[r]
Y/k ⊗OY OY (−bE)) ↪→ j∗(µ∗(ω

[r]
Y/k ⊗OY OY (−bE))|X\P )

' j∗(µ∗(ω[r]
Y/k)|X\P ) ' ω[r]

X/k,

whose cokernel is supported on P , and if b is sufficiently large, then

µ∗µ∗(ω
[r]
Y/k ⊗OY OY (−bE))→ ω

[r]
Y/k ⊗OY OY (−bE)

is surjective, since OY (−E) ' π∗A is relatively ample over X. Thus,

µ∗µ∗(ω
[r]
Y/k ⊗OY OY (−bE))→ µ∗(ω

[r]
X/k)

induces the injection φ, since the invertible sheaf µ∗(ω
[r]
X/k) does not contain a

non-zero coherent OY -submodule whose support is contained in E, by the S1-

condition on Y . Let b be a minimal integer with an injection φ above. Then φ is

an isomorphism. This is shown as follows. The homomorphism

φ|E : (ω
[r]
Y/k ⊗OY OY (−bE))⊗OY OE → µ∗(ω

[r]
X/k)⊗OY OE

is not zero by the minimality of b. Here φ|E corresponds to a non-zero homomor-

phism

ω
[r]
S/k ⊗OS A

⊗(r+b) → OS
by the isomorphism π|E : E ' S and by (VI-2). In particular, there is a non-empty

open subset U ⊂ S such that φ is an isomorphism on π−1(U). On the other hand,

since φ is an injection between invertible sheaves, there is an effective Cartier

divisor D on Y such that the cokernel of φ is isomorphic to OD ⊗OY π∗(ω
[r]
X/k)

and that SuppD ⊂ E. Then D is a relative Cartier divisor over S, since every

fiber of π is A1 (cf. [12, IV, (21.15.3.3)]). Thus, π|D : D → S is a flat and finite

morphism. If D 6= 0, then π(D) = S by the connectedness of S, and it contradicts

SuppD ∩ π−1(U) = ∅. Thus, D = 0, and consequently, φ is an isomorphism.

Therefore, we have an isomorphism

ω
[r]
S/k ⊗OS A

⊗(r+b) ' OS
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corresponding to the isomorphism φ|E , and condition (iii) is satisfied for l = −(r+

b). Thus, we have proved the equivalence of (i)–(iii), and we are done.

Corollary 6.14. Let X be the affine cone of a connected polarized scheme (S,A)

over k. Assume that n = dimS > 0 and H0(S,A⊗m) = 0 for any m < 0. Then

the following hold:

(1) The scheme X is Gorenstein if and only if

• S is Gorenstein,

• Hi(S,A⊗m) = 0 for any 0 < i < n and any m ∈ Z and

• ωS/k ' A⊗l for some integer l.

(2) The scheme X is quasi-Gorenstein if and only if S is quasi-Gorenstein and

ωS/k ' A⊗l for some integer l.

(3) The scheme X is Q-Gorenstein if and only if S is Q-Gorenstein and ω
[r]
S/k '

A⊗l for some integers r > 0 and l.

Proof. Assertion (1) follows from (2) and Proposition 6.12(8). The “only if” parts

of (2) and (3) are shown as follows. Assume that X is Q-Gorenstein of Gorenstein

index r. Note that X is quasi-Gorenstein if and only if r = 1 by Lemma 6.3(1).

Then S is Q-Gorenstein by Corollary 6.11. Moreover, ω
[r]
S/k ' A

⊗l for some l ∈ Z
by the implication (ii) ⇒ (iii) of Proposition 6.13(3). Thus, the “only if” parts

are proved. The “if” parts of (2) and (3) are shown as follows. Assume that S

is Q-Gorenstein. Then X \ P is Q-Gorenstein by Corollary 6.11. In particular,

codim(X \ X◦, X) ≥ 2 for the Gorenstein locus X◦ = Gor(X). Moreover, X

satisfies S2 by Proposition 6.12(6), since S satisfies S2 and H0(S,A⊗m) = 0 for

any m < 0 by assumption. If ω
[r]
S/k ' A

⊗l for integers r > 0 and l, then ω
[r]
X/k

is invertible by the implication (iii) ⇒ (ii) of Proposition 6.13(3). Thus, X is Q-

Gorenstein. This proves the “if” part of (3). The “if” part of (2) follows also from

the argument above by setting r = 1. Thus, we are done.

Corollary 6.15. Let X be the affine cone of a connected polarized scheme (S,A)

over k. Assume that S is Cohen–Macaulay, n := dimS > 0, and

Hi(S,A⊗m) = Hi(S, ωS/k ⊗A⊗m) = 0

for any i > 0 and m > 0. Then the following hold:

(1) The affine cone X satisfies S2. In particular, S is reduced (resp. normal) if

and only if X is so.

(2) The following conditions are equivalent to each other for an integer k ≥ 3:
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(a) depthOX,P ≥ k;

(b) X satisfies Sk;

(c) Hi(S,OS) = 0 for any 0 < i < k − 1.

(3) The affine cone X is Cohen–Macaulay if and only if Hi(S,OS) = 0 for any

0 < i < n.

(4) The following conditions are equivalent to each other for an integer k ≥ 3:

(a) depth(ωX/k)P ≥ k;

(b) ωX/k satisfies Sk;

(c) Hi(S,OS) = 0 for any n− k + 1 < i < n.

(5) When S is Gorenstein, X is Q-Gorenstein if and only if ω⊗rS/k ' A
⊗l for some

integers r > 0 and l.

(6) When S is Gorenstein, X is Gorenstein if and only if ωS/k ' A⊗l for some

l ∈ Z and if Hi(S,OS) = 0 for any 0 < i < n.

Proof. By duality (cf. Corollary 4.32), we have

Hi(S,A⊗m) ' Hn−i(S, ωS/k ⊗OS A⊗−m)∨

for any integers m and i, and by assumption, this is zero either if m > 0 and i > 0

or if m < 0 and i < n. Thus, X satisfies S2 by considering the case m < 0 and i = 0

and by Proposition 6.12(6) applied to G = OS . This proves (1). Assertion (2) (resp.

(4)) is a consequence of (4) and (7) of Proposition 6.12 applied to G = OS (resp.

G = ωS/k ⊗ A). Similarly, assertion (3) is a consequence of Proposition 6.12(8)

applied to G = OS . Moreover, assertion (5) (resp. (6)) is derived from (3) (resp.

(1)) of Corollary 6.14. Thus, we are done.

§7. Q-Gorenstein morphisms

Section 7 introduces the notion of “Q-Gorenstein morphisms” and their weak

forms: “naively Q-Gorenstein morphisms” and “virtually Q-Gorenstein morph-

isms”. We inspect relations between these three notions, and prove basic properties

and several theorems on Q-Gorenstein morphisms.

In Sections 7.1 and 7.2 we define the notions of a Q-Gorenstein morphism, a

naively Q-Gorenstein morphism, and a virtually Q-Gorenstein morphism, and we

discuss their properties giving some criteria for a morphism to be Q-Gorenstein.

A Q-Gorenstein morphism is always naively and virtually Q-Gorenstein. In Sec-

tion 7.1 we provide a new example of naively Q-Gorenstein morphisms which are

not Q-Gorenstein, by Lemma 7.8 and Example 7.9, and we discuss the relative
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Gorenstein index for a naively Q-Gorenstein morphism in Proposition 7.11. In

Section 7.2 we shall prove Theorem 7.18, which is one of our main results and

which shows that a virtually Q-Gorenstein morphism is a Q-Gorenstein morphism

under some mild conditions. In Section 7.3 several basic properties including base

change of Q-Gorenstein morphisms and of their variants are discussed.

Finally, in Section 7.4, we shall prove notable theorems. We prove three crite-

ria for a morphism to be Q-Gorenstein: an infinitesimal criterion (Theorem 7.25), a

valuative criterion (Theorem 7.29), and a criterion by S3-conditions on fibers (The-

orem 7.30). Moreover, we prove the existence theorem of Q-Gorenstein refinement

(Theorem 7.32) and its variants (Theorems 7.34 and 7.35).

§7.1. Q-Gorenstein morphisms and naively Q-Gorenstein morphisms

Definition 7.1. Let f : Y → T be an S2-morphism of locally Noetherian schemes

such that every fiber is Q-Gorenstein. Let ωY/T denote the relative canonical sheaf

in the sense of Definition 5.3 and let ω
[m]
Y/T denote the double-dual of ω⊗mY/T for

m ∈ Z.

(1) The morphism f is said to be naively Q-Gorenstein at a point y ∈ Y if ω
[r]
Y/T

is invertible at y for some integer r > 0. If f is naively Q-Gorenstein at every

point of Y , then it is called a naively Q-Gorenstein morphism.

(2) If ω
[m]
Y/T satisfies relative S2 over T (cf. Definition 2.28) for any m ∈ Z, then f is

called a Q-Gorenstein morphism. If f |U : U → T is a Q-Gorenstein morphism

for an open neighborhood U of a point y ∈ Y , then f is said to be Q-Gorenstein

at y.

Remark. We explain origins of (naively) Q-Gorenstein morphisms (cf. Section 1).

The origin of naively Q-Gorenstein morphisms goes back to the Q-Gorenstein one-

parameter deformations studied in [31, §3]. It is generalized in the situation of a

moduli problem of polarized Q-Gorenstein schemes in [58, Def. 1.23], which is re-

ferred to as Viehweg’s functor in [21, §2]. The Q-Gorenstein deformation satisfying

the Kollár condition is the source of our definition of a Q-Gorenstein morphism.

The origin of the Kollár condition seems to be in [27, 2.1.2]. In [21, §2], Kollár’s

functor is defined as a moduli functor of polarized Q-Gorenstein schemes satis-

fying the Kollár condition. In these references (and most references for moduli

of Q-Gorenstein schemes in the 2000s), Q-Gorenstein schemes are assumed to be

Cohen–Macaulay.

Remark 7.2. For an S2-morphism f : Y → T of locally Noetherian schemes, if

every fiber is Gorenstein in codimension one and if ωY/T is an invertible OY -

module, then f is a Q-Gorenstein morphism. In fact, ω
[m]
Y/T ' ω

⊗m
Y/T satisfies relative
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S2 over T for any m ∈ Z and every fiber Yt = f−1(t) is Q-Gorenstein of Gorenstein

index one, since ωY/T ⊗OY OYt ' ωYt/k(t) (cf. Proposition 5.5).

The Q-Gorenstein morphism and the naively Q-Gorenstein morphism are

characterized as follows.

Lemma 7.3. Let Y and T be locally Noetherian schemes and f : Y → T a flat

morphism locally of finite type. Let j : Y ◦ ↪→ Y be the open immersion from an

open subset Y ◦ of the relative Gorenstein locus Gor(Y/T ). For a point y ∈ Y , the

fibers Yt = f−1(t) and Y ◦t = Y ◦ ∩ Yt over t = f(y), and for a positive integer r,

let us consider the following conditions:

(i) The fiber Yt satisfies S2 at y and codimy(Yt \ Y ◦, Yt) ≥ 2.

(ii) The direct image sheaf j∗(ω
⊗r
Y ◦/T ) is invertible at y.

(iii) The fiber Yt is Q-Gorenstein at y, and r is divisible by the Gorenstein index

of Yt at y.

(iv) For any 0 < k ≤ r, the base change homomorphism

φ
[k]
t : j∗(ω

⊗k
Y ◦/T )⊗OY OYt → ω

[k]
Yt/k(t) = j∗(ω

⊗k
Y ◦t /k(t))

induced from the base change isomorphism ωY ◦/T⊗OYt ' ωY ◦t /k(t) (cf. Propo-

sition 5.6) is surjective at y.

(v) There is an open neighborhood U of y such that f |U : U → T is a naively

Q-Gorenstein morphism and ω
[r]
U/T is invertible.

(vi) There is an open neighborhood U of y such that f |U : U → T is a Q-

Gorenstein morphism and ω
[r]
U/T is invertible.

Then one has the following equivalences and implication on these conditions:

• (i) + (ii) ⇔ (v);

• (i) + (ii) ⇒ (iii);

• (iii) + (iv) ⇔ (vi).

Proof. First, we shall prove (i) + (ii) ⇒ (iii). We set Mr := j∗(ω
⊗r
Y ◦/T ). Then

Mr ⊗OY OYt is invertible at y by (ii), and

Mr ⊗OY OYt → j∗ ((Mr ⊗OY OYt)|Y ◦) ' j∗(ω⊗rY ◦t /k(t)) ' ω
[r]
Yt/k(t)

is an isomorphism at y by (i). In particular, ω
[r]
Yt/k(t) is invertible at y. Thus, (iii)

holds (cf. Definitions 6.1(2) and 6.2).

Second, we shall prove (v)⇒ (i) + (ii) and (vi)⇒ (iii) + (iv). We may assume

that f is naively Q-Gorenstein. Since every fiber Yt is a Q-Gorenstein scheme, we
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have (i) (cf. Definition 6.1). Moreover,

ω
[k]
Y/T ' j∗(ω

⊗k
Y ◦/T )

for any k ∈ Z by Proposition 5.6. Hence, (ii) is also satisfied, since ω
[r]
Y/T is invertible

for an integer r > 0. If f is Q-Gorenstein, then ω
[k]
Y/T is flat over T and ω

[k]
Y/T⊗OY OYt

satisfies the S2-condition for any t ∈ T (cf. Definition 7.1(2)); thus, φ
[k]
t is an

isomorphism for any t ∈ T and k ∈ Z, and in particular, (iii) and (iv) are satisfied.

Finally, we shall prove (i) + (ii)⇒ (v) and (iii) + (iv)⇒ (vi). Assume that (i)

holds. By Lemma 2.38, there is an open neighborhood U of y such that f |U : U → T

is an S2-morphism having pure relative dimension and codim(Ut′ \ Y ◦, Ut′) ≥ 2

for any t′ ∈ f(U), where Ut′ = U ∩ Yt′ ; thus,

ω
[k]
U/T ' j∗(ω

⊗k
U∩Y ◦/T )

for any k ∈ Z by Lemma 2.33(4). Therefore, if (ii) also holds, then ω
[r]
U ′/T is

invertible for an open neighborhood U ′ of y in U , and f |U ′ : U ′ → T is a naively

Q-Gorenstein morphism. This proves (i) + (ii) ⇒ (v). Next assume that (iii) and

(iv) hold. Note that (iii) implies (i). Thus, we have the same open neighborhood

U of y as above. For any integer 0 < k ≤ r, there is an open neighborhood U ′k
of y in U ′ above such that ω

[k]
U ′k/T

satisfies relative S2 over T , by (iv) and by

Proposition 5.6. In particular, ω
[r]
Y/T is invertible at y by Fact 2.26(2). In fact, it is

flat over T at y and its restriction to the fiber Yt is invertible at y. Then ω
[r]
Y/T is

invertible on an open neighborhood U ′′r of y in U ′r. We set U ′′ to be the intersection

of U ′k for all 0 < k < r and U ′′r . Then ω
[l]
U ′′/T satisfies relative S2 over T for any

l ∈ Z, since

ω
[l]
U ′′/T ' (ω

[r]
U ′′/T )⊗m ⊗ ω[k]

U ′′/T

for integers m and k such that l = mr + k and 0 ≤ k < r. This means that

f |U ′′ : U ′′ → T is a Q-Gorenstein morphism, and it proves (iii) + (iv) ⇒ (vi).

Thus, we are done.

Remark. For f : Y → T and j : Y ◦ ↪→ Y in Lemma 7.3, we have the following

properties:

(1) The set of points y ∈ Y satisfying condition (i) of Lemma 7.3 is open.

(2) If every fiber of f satisfies S2 and is Gorenstein in codimension one, then

OY ' j∗OY ◦ and codim(Y \ Y ◦, Y ) ≥ 2. Here, if Y is connected in addition,

then f has pure relative dimension.

(3) The set of points y ∈ Y at which f is naively Q-Gorenstein is open.
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(4) The set of points y ∈ Y at which f is Q-Gorenstein is open.

In fact, property (1) is mentioned in the proof of Lemma 7.3, and property (2) is

derived from Lemmas 2.33(4), 2.35, and 2.38. Properties (3) and (4) are deduced

from Definition 7.1.

An S2-morphism of locally Noetherian schemes is not necessarily naively Q-

Gorenstein even if every fiber is Q-Gorenstein. The following example is well

known.

Example 7.4. Let S = P(O⊕O(4)) be the Hirzebruch surface of degree four over an

algebraically closed field k. By contracting of the unique (−4)-curve Γ, we have a

birational morphism S → X to the weighted projective plane X = P(1, 1, 4). Note

that X is Q-Gorenstein and its Gorenstein index is two. Let η be the extension

class in Ext1
P1(O(4),OP1) of an exact sequence

(VII-1) 0→ OP1 → O(2)⊕O(2)→ O(4)→ 0

on P1. We set T = A1 = Speck[t] and P = P1 ×k T , and let p : P → P1 and

q : P → T be projections. Let us consider the element ηP of Ext1
P (p∗O(4),OP )

corresponding to η ⊗ t by the isomorphism

Ext1
P (p∗O(4),OP ) ' Ext1

P1(O(4),OP1)⊗k H0(T,OT ),

and let

(VII-2) 0→ OP → E → p∗O(4)→ 0

be an exact sequence on P whose extension class is ηP . Let π : V → P be the

P1-bundle associated with E , and let f : Y → T be the T -scheme defined as

Proj T q∗(Sym(E)) for the symmetric OP -algebra Sym(E). Then Y is a normal

projective variety and there is a birational morphism µ : V → Y over T such that

the induced morphism µt : Vt → Yt of fibers over t ∈ T is described as follows:

• µ0 is isomorphic to the contraction morphism S → X of Γ, and

• µt is isomorphic to the identity morphism of P1
k(t) ×k(t) P1

k(t) for any t 6= 0.

In fact, L ' µ∗H for the tautological invertible sheaf L on V associated with E and

for the f -ample tautological invertible sheaf H on Y associated with the graded

algebra q∗(Sym E). In particular, f is a flat projective morphism whose fibers are

all Q-Gorenstein. However, f is not naively Q-Gorenstein. For, if the canonical

divisor KY is Q-Cartier, then K2
Yt

is constant for t ∈ T , but we have K2
Y0

= 9 and

K2
Yt

= 8 for t 6= 0.
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Lemma 7.5. In the situation of Example 7.4, let SpecA ⊂ T = A1 be the closed

immersion defined by k[t]→ A = k[t]/(t2). Then, for the base change fA : YA →
SpecA of f : Y → T by the closed immersion, the reflexive sheaf ω

[2]
YA/A

on YA

is not invertible. Moreover, ω
[2]
YA/A

does not satisfy relative S2 over SpecA, and

YA → SpecA is not a Q-Gorenstein morphism.

Proof. The last assertion follows from the previous one by Fact 2.26(2) and Propo-

sition 5.6, since ω
[2]
X/k is invertible. Let gA : VA → SpecA be the base change of

g := q ◦π : V → T , and let µA : VA → YA and πA : VA → PA := P ×SpecT SpecA '
P1
A be the induced morphisms from the morphisms µ and π over T , respectively.

Note that the further base change by Speck → SpecA produces the contraction

morphism S → X and the ruling S → P1 from µA and πA, respectively. Assume

that ω
[2]
YA/A

is invertible. Then

M := ω⊗2
VA/A

⊗ µ∗A(ω
[2]
YA/A

)−1

is invertible on VA. We have canonical homomorphisms

(µA)∗ω
⊗2
VA/A

→ ω
[2]
YA/A

and µ∗A

(
(µA)∗ω

⊗2
VA/A

)
→ ω⊗2

VA/A
.

The first one is obtained by taking double-dual. The second one is surjective, since

ωVA/A ' ωV/T ⊗OV OVA '
(
π∗p∗OP1(2)⊗OV L⊗−2

)
⊗OV OVA

and since L ' µ∗H. Therefore, there is a homomorphism M→ OVA which is an

isomorphism outside Γ. Since VA ×SpecA Speck ' S, we have depthΓM ≥ 1 by

Lemma 2.32(3), and it implies thatM→OVA is injective andM⊗OVA OS → OS
is also injective. Therefore, the closed subscheme D of VA defined by the ideal

sheaf M is an effective Cartier divisor, and it is flat over SpecA by the local

criterion of flatness (cf. Proposition A.1(ii)). Moreover, D ×SpecA Speck ' Γ by

the isomorphism

ω⊗2
S/k ⊗OS OS(Γ) ' µ∗0(ω

[2]
X/k).

Hence, the composite D ⊂ VA → PA is a finite morphism, and the corresponding

ring homomorphism OPA → πA∗OD is an isomorphism, since its base change by

A→ k is isomorphic to the isomorphism OP1 → OΓ and since πA∗OD is flat over

A. Therefore, D is a section of πA : VA → PA. Then the pullback of the exact

sequence (VII-2) to PA is split by the surjection

E ⊗OP OPA ' πA∗(L ⊗OV OVA)→ πA∗(L ⊗OV OD) ' πA∗OD ' OPA .

This means that the morphism SpecA→ T factors through Speck ⊂ T ; this is a

contradiction. Therefore, ω
[2]
YA/A

is not invertible.
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Remark 7.6. Let f : Y → T be an S2-morphism of locally Noetherian schemes

whose fibers are all Gorenstein in codimension one. The Kollár condition for f

along a fiber Yt = f−1(t) is a condition that the base change homomorphism

φ
[m]
t : ω

[m]
Y/T ⊗OY OYt → ω

[m]
Yt/k(t)

is an isomorphism for any m ∈ Z. By Proposition 5.6 the Kollár condition is

equivalent to the condition that ω
[m]
Y/T satisfies relative S2 over T along Yt for any

m ∈ Z. Therefore, when Yt is Q-Gorenstein, the Kollár condition for f is satisfied

along Yt if and only if f is Q-Gorenstein along Yt. The Kollár condition has been

considered for deformations of Q-Gorenstein algebraic varieties of characteristic

zero in [27, 2.1.2], [21, §2, Property K], etc.

Fact 7.7. Some naively Q-Gorenstein morphisms are not Q-Gorenstein. Kollár

gives an example of a naively Q-Gorenstein morphism which is not Q-Gorenstein

in the positive characteristic case (cf. [16, 14.7], [32, Exam. 7.6]). See Remark 7.28

below for detail. Patakfalvi has constructed an example of characteristic zero in

[45, Thm. 1.2] using some example of projective cones (cf. [45, Prop. 5.4]): This is

a projective flat morphism H → B of normal algebraic varieties over a field k of

characteristic zero such that

• B is an open subset of P1
k,

• a closed fiber H0 has a unique singular point, but other fibers are all smooth

of dimension ≥ 3,

• ω[r]
H/B is invertible for some r > 0, but

ωH/B ⊗OH OH0
6' ωH0/k.

Recently, Altmann and Kollár [3] constructed several examples of natively Q-

Gorenstein morphisms which are not Q-Gorenstein as infinitesimal deformations

of two-dimensional cyclic quotient singularities.

We can construct another example by the following lemma, which is inspired

by Patakfalvi’s work [45].

Lemma 7.8. Let S be a non-singular projective variety of dimension ≥ 2 over

an algebraically closed field k of characteristic zero, and let L be an invertible OS-

module of order l > 1, i.e., l is the smallest positive integer such that L⊗l ' OS.

Assume that H1(S,OS) = 0, H1(S,L) 6= 0 and that KS is ample. For an integer

r ≥ 2, we set

A := OS(rKS)⊗ L−1 = ω⊗rS/k ⊗ L
−1,

and let X be the affine cone Cone(S,A) with a vertex P . Then
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(1) X is a normal Q-Gorenstein variety with one isolated singularity P of Goren-

stein index lr.

Moreover, for any non-constant function f : X → T := A1
k, the following hold:

(2) f is a naively Q-Gorenstein morphism along the fiber F = f−1(f(P ));

(3) ω
[r]
X/T ' ω

[r]
X/k does not satisfy relative S2 over T at P , in particular, f is not

Q-Gorenstein at P .

Proof. (1): The affine cone X is Q-Gorenstein by Corollary 6.14(3). Here X \ P
is a non-singular variety by Lemma 6.10(4). Therefore, X is a normal variety. We

have ω
[lr]
X/k ' OX by Proposition 6.13(3). If ω

[m]
X/k is invertible for some m > 0,

then ω⊗mS/k ' A
⊗l′ for some integer l′ by Proposition 6.13(3), but it implies that

m = l′r, and L⊗l′ ' OS . Hence, the Gorenstein index of X is lr.

(2): For any i > 0 and m > 0, we have

Hi(S,A⊗m) = Hi(S, ωS/k ⊗OS A⊗m) = 0

by the Kodaira vanishing theorem, since

A⊗m ⊗OS ω−1
S/k ' A

⊗m−1 ⊗OS ω⊗r−1
S/k ⊗ L−1

is ample. Then we can apply Corollary 6.15(2). As a consequence, X satisfies

S3, since H1(S,OS) = 0. Now, f is a flat morphism, since X is irreducible and

dominates T . Hence, F satisfies S2 by the equality

depthOF,x = depthOX,x − depthOT,f(x) = depthOX,x − 1

for any closed point x ∈ F (cf. (II-2) in Fact 2.26). Thus, f is an S2-morphism

along F , and f is a naively Q-Gorenstein morphism along F (cf. Definition 7.1(1)),

since ω
[lr]
X/T ' ω

[lr]
X/k is invertible by (1).

(3): By assumption, we have

H1(S, ω
[r]
S/k ⊗A

−1) ' H1(S,L) 6= 0.

Then depth(ω
[r]
X/k)P = 2 by Proposition 6.13(2). Since ω

[r]
X/k is flat over T , we have

depth(ω
[r]
X/k ⊗OX OF )P = depth(ω

[r]
X/k)P − depthOT,f(P ) = 1

by (II-2) in Fact 2.26. This implies that ω
[r]
X/k ' ω

[r]
X/T does not satisfy relative S2

over T at P . Therefore, f is not Q-Gorenstein at P (cf. Definition 7.1(2)).

We have the following example of non-singular projective varieties S with

invertible OS-module L of order l = 2 in Lemma 7.8.
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Example 7.9. Let V be an abelian variety of dimension d ≥ 3 and let ι : V → V

be the involution defined by ι(v) = −v with respect to the group structure on V .

Let W be the quotient variety V/〈ι〉. Then W is a normal projective variety with

only isolated singular points, and

(VII-3) H1(W,OW ) = 0,

since it is isomorphic to the invariant part of H1(V,OV ) by the induced action of

ι, which is just the multiplication map by −1. The quotient morphism π : V →W

is a double-cover étale outside the singular locus of W , and we have isomorphisms

π∗OV ' OW ⊕ ωW/k and ω
[2]
W/k ' OW . In particular,

(VII-4) H1(W,ωW/k) ' H1(V,OV ) ' k⊕d

by (VII-3). We can take a smooth ample divisor S on W away from the singular

locus of W . Then dimS = d − 1 ≥ 2. By the Kodaira vanishing theorem applied

to the ample divisor π∗S on V , we have Hi(V, π∗OW (−S)) = 0 for any 0 < i <

d = dimW . Hence,

(VII-5) Hi(W,OW (−S)) = Hi(W,ωW/k ⊗OW OW (−S)) = 0

for i = 1 and 2. The canonical divisor KS is ample by

ω⊗2
S/k ' (ω

[2]
W/k ⊗OW OW (2S))⊗OW OS ' OS(2S).

We define L := ωW/k ⊗OW OS . This is invertible and L⊗2 ' OS . We have

H1(S,OS) = 0 and H1(S,L) ' k⊕d

by applying (VII-3), (VII-4), and (VII-5) to the cohomology long exact sequences

derived from the exact sequences

0→ OW (−S)→ OW → OS → 0,

0→ ωW/k ⊗OW OW (−S)→ ωW/k → L → 0.

The order of L is two by H1(S,L) 6' H1(S,OS). Therefore, S and L satisfy the

conditions of Lemma 7.8.

Definition 7.10 (Relative Gorenstein index). For a naively Q-Gorenstein mor-

phism f : Y → T and for a point y ∈ Y , the relative Gorenstein index of f at y

is the smallest positive integer r such that ω
[r]
Y/T is invertible at y. The least com-

mon multiple of relative Gorenstein indices at all the points is called the relative

Gorenstein index of f , which might be +∞.
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Proposition 7.11. Let f : Y → T be a naively Q-Gorenstein morphism. For a

point y ∈ Y , let m be the relative Gorenstein index of f at y and let r be the

Gorenstein index of Yt = f−1(t) at y, where t = f(y). Then m = r in the following

three cases:

(i) f is Q-Gorenstein at y;

(ii) Yt is Gorenstein in codimension two and satisfies S3 at y;

(iii) m is coprime to the characteristic of k(t).

Proof. Note that m is divisible by r. In fact, the base change homomorphism

ω
[m]
Y/T ⊗OY OYt → ω

[m]
Yt/k(t)

is an isomorphism at y, since the source is invertible at y and since Yt satisfies

S2. We set M := ω
[r]
Y/T . It is enough to prove that M is invertible at y. Let Z be

the complement of the relative Gorenstein locus Gor(Y/T ) and let j : Y \ Z ↪→ Y

be the open immersion. Note that codim(Z ∩ Yt, Yt) ≥ 2 (≥ 3 in case (ii)) and

codim(Z, Y ) ≥ 2. If f is Q-Gorenstein, then M satisfies relative S2 over T ; in

particular,

M⊗OY OYt ' j∗
(
(M⊗OY OYt)|Yt\Z

)
' ω[r]

Yt/k(t)

and hence, M is invertible at y by Fact 2.26(2). Thus, it is enough to consider

cases (ii) and (iii). By replacing Y with an open neighborhood of y, we may assume

the following:

(1) depthZ OY ≥ 2 (cf. Lemma 2.32(3));

(2) M|Y \Z is invertible and depthZM≥ 2 (cf. Proposition 5.6);

(3) j∗(M⊗OY OYt |Yt\Z) ' ω[r]
Yt/k(t) is invertible;

(4) one of the following holds:

(a) depthZ∩Yt OYt ≥ 3;

(b) M[m/r] ' ω
[m]
Y/T is invertible, where m/r is coprime to the characteristic

of k(t).

Then M is invertible by Theorem 3.16, and we are done.

Remark 7.12. A special case of Proposition 7.11 for naively Q-Gorenstein mor-

phisms is stated in [31, Lem. 3.16], where T is the spectrum of a complete Noethe-

rian local C-algebra and the closed fiber Yt is a normal complex algebraic surface.

However, the proof of [31, Lem. 3.16] has two problems. We explain them using

the notation there, where (X → S, 0 ∈ S) corresponds to (Y → T, t ∈ T ) in our

situation, and 0 is the closed point of S. The central fiber X0 is only a germ of a
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complex algebraic surface in [31, §3], but here, for simplicity, we consider X0 as a

usual algebraic surface and hence consider X → S as a morphism of finite type.

The authors of [31] write X0 for Gor(X/S) and write Y 0 → X0 for the cyclic étale

cover associated with an isomorphism ω
[m]
X/S ' OX . They want to prove that m is

equal to the Gorenstein index r of the fiber X0 of X → S over 0.

The first problem lies in the case where S = SpecA is Artinian. This is minor

and is caused by omitting an explanation of the isomorphism ω
[m]
X/S ' OX . In this

situation, they assert that it is enough to prove the fiber Y 0
0 of Y 0 → S over 0 to

be connected. However, Y 0
0 is connected even if r 6= m. In fact, for isomorphisms

u : ω
[r]
X0/C ' OX0 and v : ω

[m]
X/S ' OX , we have an invertible element θ of OX0 such

that

v|X0 = θu⊗m/r

as an isomorphism ω
[m]
X/S ⊗OX OX0

' OX0
. Here we can take v so that θ has no

k-th roots in OX0 for any integer k dividing r. Then Y 0
0 is connected for such a

v. Of course, this problem is resolved by replacing the isomorphism v with v(θ̃)−1

for a function θ̃ ∈ OX which is a lift of θ ∈ OX0 .

The second problem lies in the reduction to the Artinian case. They set An =

A/mn, Sn = SpecAn, and X0
n = X0 ×S Sn, for n ≥ 1 and for the maximal ideal

m of A, and they obtain an isomorphism

Φn : ω⊗rX0
n/Sn

' OX0
n

for any n by applying the assertion m = r, to the Artinian case. However, just

after the isomorphism Φn, they deduce an isomorphism ω⊗rX0/S ' OX0 without

mentioning any reason. This is thought of as a lack of a proof. In fact, the ideal

sheaf J in Example 3.12 is a counterexample of a similar deduction, where we

have isomorphisms J |Un ' OUn for all n ≥ 0, but J |U 6' OU (cf. (III-7)). In the

hidden argument, the authors of [31] might apply assertion (∗) of Remark 3.13

without any doubt, but (∗) does not hold true in general.

§7.2. Virtually Q-Gorenstein morphisms

Definition 7.13. Let f : Y → T be a morphism locally of finite type between

locally Noetherian schemes. For a given point y ∈ Y and the image o = f(y), the

morphism f is said to be virtually Q-Gorenstein at y if

• f is flat at y,

• the fiber Yo = f−1(o) is Q-Gorenstein at y,

and if there exist an open neighborhood U of y in Y and a reflexive OU -module

L satisfying the following conditions:
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(i) L ⊗OU OUo ' ωUo/k(o), where Uo = U ∩ Yo;
(ii) for any integer m, the double-dual L[m] of L⊗m satisfies relative S2 over T

at y.

If f is virtually Q-Gorenstein at every point of Y , then it is called a virtually

Q-Gorenstein morphism.

Remark 7.14. If the morphism f above is virtually Q-Gorenstein at y, then there

exist an open neighborhood U of y in Y and a reflexive OU -module L such that

(1) f |U : U → T is an S2-morphism of pure relative dimension,

(2) every non-empty fiber Ut = U ∩ Yt of f |U is Gorenstein in codimension one,

i.e., codim(Ut \ Y ◦, Ut) ≥ 2 for any t ∈ f(U), where Y ◦ = Gor(Y/T ),

(3) L ⊗OU OUo ' ωUo/k(o),

(4) L|U∩Y ◦ is invertible,

(5) L[r] is invertible for some integer r > 0, and

(6) L[m] satisfies relative S2 over T for any integer m.

In fact, we have an open neighborhood U satisfying (1) and (2) by Lemma 2.38.

By shrinking U and by Fact 2.26(2), we may assume the existence of L satisfying

(3), (4), and (5), where r is a multiple of the Gorenstein index of Yo at y. Then,

for any point t ∈ f(U), the coherent sheaf L[m]
(t) = L[m] ⊗ OUt is locally equi-

dimensional by Fact 2.23(1), since SuppL[m] = U , SuppL[m]
(t) = Ut, and since

Ut is catenary satisfying S2. Hence, the relative S2-locus S2(L[m]/T ) is an open

subset of U by Fact 2.29(2), and now, y ∈ S2(L[m]/T ) for any m ∈ Z. We have

S2(L[m+r]/T ) = S2(L[m]/T ) for any m by L[m+r] ' L[r] ⊗ L[m], and hence the

intersection of S2(L[m]/T ) for all m is still an open neighborhood of y. Thus, we

can also assume (6). As a consequence of (1)–(6), we see that

(7) Uo = U ∩ Yo is Q-Gorenstein and

(8) L[m] ⊗OU OUo ' ω
[m]
Uo/k(o) for any m ∈ Z.

In fact, L[m]⊗OU OUo satisfies S2 by (6) and its depth along Uo \Y ◦ is ≥ 2 by (1)

and (2) (cf. Lemma 2.15(2)); this implies (8). Condition (7) follows from (5) and

(8).

Remark. The set of points y ∈ T at which f is virtually Q-Gorenstein is not open

in general. Even if a morphism f : Y → T is virtually Q-Gorenstein at any point

of a fiber Yo, the other fibers Yt are not necessarily Q-Gorenstein even if t ∈ T is

sufficiently close to the point o. The following gives such an example.
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Example 7.15. Let X be a non-singular projective variety over an algebraically

closed field k of characteristic zero such that the dualizing sheaf ωX/k is ample,

H1(X,OX) 6= 0, and H1(X,ωX/k) = 0. Then n := dimX ≥ 3. As an example

of X, we can take the product C × S of a non-singular projective curve C of

genus ≥ 2 and a non-singular projective surface S such that ωS/k is ample and

H1(S,OS) = H2(S,OS) = 0. Let us take a positive-dimensional non-singular affine

subvariety T = SpecA of the Picard scheme Pic0(X) which contains the origin 0

of Pic0(X). Then there is an invertible sheaf N on XA := X ×Spec k T such that

• N(t) is algebraically equivalent to zero for any t ∈ T and

• N(t) ' OXt if and only if t = 0,

where Xt = X ×Spec k Speck(t) and N(t) = N ⊗OXA OXt (cf. Notation 2.24). We

define a Z≥0-graded A-algebra R =
⊕

m≥0Rm by

Rm := H0(XA, (p
∗(ωX/k)⊗OXA N )⊗m)

for the projection p : XA → X, and let f : Y := SpecR → T = SpecA be the in-

duced affine morphism. We shall prove the following by replacing T with a suitable

open neighborhood of 0:

(1) f is a flat morphism;

(2) for any t ∈ T , the fiber Yt = f−1(t) is isomorphic to the affine cone of the

polarized scheme (Xt, ωXt/k(t) ⊗N(t));

(3) the set of points t ∈ T such that Yt is Q-Gorenstein, is a countable set ;

(4) f is virtually Q-Gorenstein at any point of the fiber Y0.

For the proof, we consider a graded k(t)-algebra Rt =
⊕

m≥0R
t
m defined by

Rtm = H0(Xt, (ωXt/k(t) ⊗OXt N(t))
⊗m).

Then SpecRt is the affine cone associated with (Xt, ωXt ⊗ N(t)). On the other

hand, Yt = Spec(R⊗A k(t)), and we have a natural homomorphism

ϕt : R⊗A k(t)→ Rt

of graded k(t)-algebras, since (p∗ωX/k) ⊗OXA OXt ' ωXt/k(t). Let ϕtm be the

homomorphism Rm ⊗A k(t)→ Rtm of the m-th graded piece of ϕt. Note that

H1(Xt, (ωXt/k(t) ⊗OXt N(t))
⊗m) = 0

for any m ≥ 2 by the Kodaira vanishing theorem, since ωX/k is ample and N(t) is

algebraically equivalent to zero. Moreover, there is an open neighborhood U of 0

in T such that

H1(Xt, ωXt/k(t) ⊗OXt N(t)) = 0
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for any t ∈ U by the upper semi-continuity theorem (cf. [12, III, Thm. (7.7.5)

I], [40, §5, Cor., p. 50]), since we have assumed that H1(X,ωX/k) = 0. We may

replace T with U . Then ϕtm is an isomorphism for any m ≥ 1 and for any t ∈ T
by [12, III, Thm. (7.7.5) II] (cf. [40, §5, Cor. 3, p. 53]). Since ϕt0 is obviously an

isomorphism, ϕt is an isomorphism and Yt ' SpecRt for any t ∈ T . Moreover, Rm
is a flat A-module for any m ≥ 0 by [12, III, Cor. (7.5.5)] (cf. [19, III, Thm. 12.11]),

and it implies that Y = SpecR is flat over T . This proves (1) and (2).

By Corollary 6.15(5), Yt is Q-Gorenstein if and only if N⊗r(t) ' OXt for some

r > 0. For an integer r > 0, let Fr be the kernel of the r-th power map Pic0(X)→
Pic0(X) which sends an invertible sheaf L to L⊗r. Then Fr is a finite set, and Fr∩T
is just the set of points t ∈ T such that N⊗r(t) ' OXt . Thus, Yt is Q-Gorenstein if

and only if t is contained in the countable set
⋃
r>0 Fr ∩ T . This proves (3).

Note that ωY0/k ' OY0
by Proposition 6.13(3). Hence, f : Y → T is virtually

Q-Gorenstein at any point of Y0, since OY plays the role of L in Definition 7.13.

This proves (4).

Lemma 7.16. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes and let o ∈ T be a point such that Yo = f−1(o) is

Q-Gorenstein. For a given isomorphism u : ω
[r]
Yo/k(o) → OYo for a positive integer

r, we set

R =
⊕r−1

i=0
ω

[i]
Yo/k(o)

to be the Z/rZ-graded OYo-algebra defined by the isomorphism u. Then the follow-

ing two conditions are equivalent to each other:

(1) Locally on Y , there exists a Z/rZ-graded coherent OY -algebra R∼ flat over T

with an isomorphism

R∼ ⊗OY OYo ' R
as a Z/rZ-graded OYo-algebra.

(2) The morphism f is virtually Q-Gorenstein along Yo.

Proof. We write X = Yo and k = k(o) for short. First, we shall show (1) ⇒ (2).

We may assume that R∼ is defined on Y . Thus, there exist coherent OY -modules

Li for 0 ≤ i ≤ r − 1 such that

R∼ =
⊕r−1

i=0
Li

as a Z/rZ-graded OY -algebra. Hence, Li are all flat over T , and moreover,

• Li ⊗OY OX ' ω
[i]
X/k for any 0 ≤ i ≤ r − 1,

• the multiplication map L⊗i1 → Li restricts to the canonical homomorphism

ω⊗iX/k → ω
[i]
X/k for any 1 ≤ i ≤ r − 1, and
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• the multiplication map L⊗r1 → OY induces the isomorphism u : ω
[r]
X/k → OX .

We shall show that L[r]
1 ' OY and Li ' L[i]

1 for any 1 ≤ i ≤ r − 1 along X = Yo.

Now, Li satisfies relative S2 over T along X for any 0 ≤ i ≤ r − 1, since ω
[i]
X/k

satisfies S2 (cf. Lemma 5.2). Thus, there is a closed subset Z of Y such that

• Gor(X) ⊂ X \ Z,

• Li|Y \Z is invertible for any 0 ≤ i ≤ r − 1 (cf. Fact 2.26(2)),

• the multiplication maps L⊗i1 → Li and L⊗r1 → OY are isomorphisms on Y \Z.

By replacing Y with its open subset, we may assume that codim(Yt∩Z, Yt) ≥ 2 for

any t ∈ T by Lemma 2.38, since codim(Yo ∩ Z, Yo) ≥ codim(X \ Gor(X), X) ≥ 2

and we may assume that Li satisfies relative S2 over T for all i (cf. Fact 2.29(2)).

Then, for any m ≥ 1 and any 1 ≤ i ≤ r − 1, we have

L[m]
1 ' j∗(L⊗m1 |Y \Z) and Li ' j∗(Li|Y \Z)

for the open immersion j : Y \Z ↪→ Y by (4) and (5) of Lemma 2.33, respectively.

This argument shows that Li ' L[i]
1 and OY ' L[r]

1 along X = Yo.

As a consequence, L1 satisfies the conditions in Definition 7.13 for any point

of Yo, and we have proved (1) ⇒ (2).

Next, we shall show (2) ⇒ (1). We may assume the existence of a reflexive

OY -module L which satisfies the conditions of Remark 7.14 for U = Y and for the

fiber Yo = X. By replacing Y with an open neighborhood of an arbitrary point of

Yo, we may assume that there is an isomorphism u∼ : L[r] → OY which restricts

to the composite of the isomorphism L[r] ⊗OY OX ' ω
[r]
X/k and the isomorphism

u : ω
[r]
X/k → OX . Then u∼ defines a Z/rZ-graded OY -algebra

R∼ =
⊕r−1

i=0
L[i],

which satisfies condition (1). Thus, we are done.

Remark 7.17. The Q-Gorenstein deformation in the sense of Hacking [15, Def. 3.1]

is considered as a virtually Q-Gorenstein deformation by Lemma 7.16. Hack-

ing’s notion is generalized to the notion of a Kollár family of Q-line bundles by

Abramovich–Hassett (cf. [1, Def. 5.2.1]). This is related to the notion of a virtually

Q-Gorenstein morphism as follows. Let f : Y → T be an S2-morphism between

Noetherian schemes such that every fiber is connected, reduced and Q-Gorenstein.

Let L be a reflexive OY -module. Then L satisfies conditions (i) and (ii) of Defi-

nition 7.13 for U = Y and for any y ∈ Y , if and only if (Y → T,L) is a Kollár

family of Q-line bundles with L ⊗ OYt ' ωYt/k(t) for all t ∈ T . However, in their
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study of Kollár families (Y → T,L) for L = ωY/T , every fiber and every ω
[m]
Y/T are

assumed to be Cohen–Macaulay (cf. [1, Rems. 5.3.9, 5.3.10]).

A Q-Gorenstein morphism is always virtually Q-Gorenstein. The following

theorem shows, conversely, that a virtually Q-Gorenstein morphism is a Q-Goren-

stein morphism under some mild conditions. In particular, we see that a virtually

Q-Gorenstein morphism is Q-Gorenstein if it is a Cohen–Macaulay morphism.

Theorem 7.18. Let Y and T be locally Noetherian schemes and f : Y → T a

flat morphism locally of finite type. For a point t ∈ T , assume that f is virtually

Q-Gorenstein at any point of the fiber Yt = f−1(t) and that one of the following

two conditions is satisfied:

(a) Yt satisfies S3;

(b) there is a positive integer r coprime to the characteristic of k(t) such that ω
[r]
Y/T

is invertible along Yt.

Then f is Q-Gorenstein along Yt.

Proof. Since the assertion is local, by Remark 7.14, we may assume that f is an

S2-morphism and there is a reflexive OY -module L satisfying the following two

conditions:

(1) L[m] = (L⊗m)∨∨ satisfies relative S2 over T for any integer m;

(2) there is an isomorphism L ⊗OY OYt ' ωYt/k(t).

We can prove the following for M := HomOY (L, ωY/T ) applying Theorem 5.10:

(3) M is an invertible OY -module along Yt;

(4) L ' ωY/T ⊗OY M−1 along Yt.

In fact, condition (ii) of Theorem 5.10 holds by (1) and (2) above, and condition

(i) of Theorem 5.10 holds for U = CM(Y/T ) (resp. U = Gor(Y/T )) in case (a)

(resp. (b)). The remaining condition (iii) of Theorem 5.10 is checked as follows.

In case (a), condition (iii)(a) of Theorem 5.10 is satisfied for U above. In case (b),

L[r] is invertible along Yt by (1) and (2), since

L[r] ⊗OY OYt ' ω
[r]
Yt/k(t) ' ω

[r]
Y/T ⊗OY OYt

is invertible (cf. Fact 2.26(2)); thus, condition (iii)(b) of Theorem 5.10 is satisfied

in this case. Therefore, we can apply Theorem 5.10 and obtain (3) and (4).

As a consequence, we have an isomorphism

ω
[m]
Y/T ' L

[m] ⊗OY M⊗m
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for any m ∈ Z along Yt. Therefore, ω
[m]
Y/T satisfies relative S2 over T along Yt by

(1), and hence f : Y → T is Q-Gorenstein along Yt.

Corollary 7.19. Let Y and T be locally Noetherian schemes and f : Y → T a flat

morphism locally of finite type. For a point t ∈ T , assume that the fiber Yt = f−1(t)

is quasi-Gorenstein. If ω
[r]
Y/T is invertible for a positive integer r coprime to the

characteristic of k(t), then f is Q-Gorenstein along Yt.

Proof. The morphism f is virtually Q-Gorenstein at any point of Yt, since OY
plays the role of L in Definition 7.13. Thus, we are done by Theorem 7.18 in

case (b).

§7.3. Basic properties of Q-Gorenstein morphisms

We shall prove some basic properties of Q-Gorenstein morphisms and their vari-

ants. The following is a criterion for a morphism to be naively Q-Gorenstein.

Lemma 7.20. Let f : Y → T be an S2-morphism of locally Noetherian schemes.

Assume that T is Q-Gorenstein and that every fiber of f is Gorenstein in codi-

mension one. Then f is a naively Q-Gorenstein morphism if and only if Y is

Q-Gorenstein.

Proof. Since the Q-Gorenstein properties are local, we may assume that T and Y

are affine and that f is of finite type with pure relative dimension (cf. Lemma 2.38).

Since the Q-Gorenstein scheme T satisfies S2 (cf. Lemma 6.3(2)), we may assume

the following (cf. Lemma 6.4):

• T admits an ordinary dualizing complex R• (cf. Lemma 4.14) with the dual-

izing sheaf ωT := H0(R•);
• the double-dual ω

[m]
T of ω⊗mT satisfies S2 for any integer m;

• ω[r]
T is invertible for a positive integer r.

For the Gorenstein locus T ◦ := Gor(T ) and the relative Gorenstein locus Y ◦ :=

Gor(Y/T ), we set U := f−1(T ◦) and U◦ := U ∩ Y ◦. Then codim(Y \U, Y ) ≥ 2 by

(II-1) in Fact 2.26 and Property 2.1(3), since f is flat and codim(T \ T ◦, T ) ≥ 2.

Hence, codim(Y \U◦, Y ) ≥ 2 by codim(Y \Y ◦, Y ) ≥ 2, since f is an S2-morphism

(cf. Lemma 2.35). The twisted inverse image R•Y := f !(R•) is a dualizing complex

of Y (cf. Example 4.24) with a quasi-isomorphism

R•Y 'qis f
!OT ⊗L

OY Lf∗(R•)

by (IV-6) in Fact 4.35, where

ωY ◦/T [d] 'qis f
!OT |Y ◦
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for the relative dimension d of f . Note that Y satisfies S2 by Fact 2.26(6). Thus,

R•Y [−d] is an ordinary dualizing complex of Y , and ωY := H−d(R•Y ) is a dualizing

sheaf of Y . In particular, U◦ is a Gorenstein scheme with the dualizing sheaf

ωY |U◦ = H−d(R•Y )|U◦ ' ωY ◦/T |U◦ ⊗OU◦ (f |U◦)∗(ωT◦).

By Lemma 6.4, we have an isomorphism

(VII-6) ω
[m]
Y ' ω[m]

Y/T ⊗OY f
∗(ω

[m]
T )

for any integer m. For a point y ∈ Y , Y is Q-Gorenstein at y if and only if ω
[m]
Y

is invertible at y for some m > 0. On the other hand, f is naively Q-Gorenstein

at y if and only if ω
[m]
Y/T is invertible at y for some m > 0. Since ω

[r]
T is invertible,

the isomorphism (VII-6) implies that Y is Q-Gorenstein if and only if f is naively

Q-Gorenstein.

The following is a criterion for a morphism to be Q-Gorenstein.

Proposition 7.21. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes. For a point t ∈ T , assume that the fiber Yt = f−1(t) is

a Q-Gorenstein scheme. If there exist coherent OY -modules Mm for m ≥ 1 such

that

Mm ⊗OY OYt ' ω
[m]
Yt/k(t) and Mm|Y ◦ ' ω⊗mY ◦/T ,

where Y ◦ is the relative Gorenstein locus Gor(Y/T ), then f is a Q-Gorenstein

morphism along Yt.

Proof. We set M0 = OY . Then Mm,(t) =Mm ⊗OY OYt satisfies S2 along Yt for

any m ≥ 0. For the complement Z = Y \ Y ◦, we have codim(Z ∩ Yt, Yt) ≥ 2, since

Yt is Q-Gorenstein. Hence, Mm is flat over T along Yt by Lemma 3.5(1), since

Mm|Y ◦ ' ω⊗mY ◦/T is flat over T and

depthZ∩YtMm,(t) ≥ 2

(cf. Lemma 2.15(2)). As a consequence, Mm satisfies relative S2 over T along Yt
for any m ≥ 0. In particular, f is an S2-morphism along Yt by considering the

case m = 0. By replacing Y with an open neighborhood of Yt, we may assume

that f is an S2-morphism and that codim(Z ∩ Yt′ , Yt′) ≥ 2 for any t′ ∈ f(Y ), by

Lemma 2.38.

Now, SuppMm = Y , since it contains the dense open subset Y ◦. Hence,

SuppMm,(t′) =Yt′ for any t′ ∈ T , and it is locally equi-dimensional by Fact 2.23(1).

Thus, Um := S2(Mm) is open by Fact 2.29(2), and

depthZ∩UmMm|Um ≥ 2
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by Lemma 2.32(1). It implies that, for the open immersion j : Y ◦ ↪→ Y ,

Mm → j∗(Mm|Y ◦) ' j∗(ω⊗mY ◦/T ) = ω
[m]
Y/T

is an isomorphism along Yt. As a consequence, ω
[m]
Y/T satisfies relative S2 over T

along Yt for any m ≥ 0. Therefore, f is a Q-Gorenstein morphism along Yt.

We have the following base change properties for Q-Gorenstein morphisms

and for their variants.

Proposition 7.22. Let f : Y → T be a flat morphism locally of finite type between

locally Noetherian schemes and let

Y ′
p−−−−→ Y

f ′
y yf
T ′

q−−−−→ T

be a Cartesian diagram of schemes such that T ′ is also locally Noetherian.

(1) If f is a naively Q-Gorenstein morphism, then so is f ′. Here, if ω
[r]
Y/T is

invertible, then ω
[r]
Y ′/T ′ ' p

∗(ω
[r]
Y/T ).

(2) In the case q : T ′ → T is a flat and surjective morphism, if f ′ is naively Q-

Gorenstein, then so is f .

(3) If every fiber of f is Q-Gorenstein, then every fiber of f ′ is so. The converse

holds if q is surjective.

(4) If f is virtually Q-Gorenstein at a point y ∈ Y , then f ′ is so at any point of

p−1(y).

(5) If f is Q-Gorenstein, then f ′ is so and ω
[m]
Y ′/T ′ ' p

∗(ω
[m]
Y/T ) for any m ∈ Z.

(6) In the case q : T ′ → T is a flat and surjective morphism, if f ′ is Q-Gorenstein,

then so is f .

Proof. Note that Y ′◦ = p−1(Y ◦) for Y ′◦ := Gor(Y ′/T ′) (cf. Corollary 5.7) and

that

(VII-7) codim(Yt \ Y ◦, Yt) = codim(Y ′t′ \ Y ′◦, Y ′)

for any t′ ∈ T ′ and t = q(t′) (cf. Lemma 2.31(1)).

(1): The base change f ′ is an S2-morphism by Lemma 2.31(5), and we have an

isomorphism ω
[r]
Y ′/T ′ ' p

∗(ω
[r]
Y/T ) by Corollary 5.7(2). In particular, f ′ is a naively

Q-Gorenstein morphism.

(2): The morphism f is an S2-morphism by Lemma 2.31(3) applied to F =

OY , since p : Y ′ → Y is surjective. Moreover, every fiber of f is Gorenstein in



632 Y. Lee and N. Nakayama

codimension one by (VII-7). Now, p∗(ω
[m]
Y/T ) is reflexive for any m by Remark 2.20,

since p is flat. Hence, p∗(ω
[m]
Y/T ) ' ω[m]

Y ′/T ′ for any m by Corollary 5.7(2). If p∗(ω
[r]
Y/T )

is invertible, then so is ω
[r]
Y/T , since p is fully faithful (cf. Lemma A.7). Therefore,

f is naively Q-Gorenstein.

(3): This is obtained by applying (1) and (2) to the case where T = Spec k(t)

and T ′ = Spec k(t′) and by Lemma 7.20.

(4): We may assume that the conditions of Remark 7.14 are satisfied for

U = Y , a certain reflexive OY -module L, and for o = f(y). Then conditions (1)

and (2) of Remark 7.14 imply

depthYt\Y ◦ OYt ≥ 2

for any t ∈ f(Y ), by Lemma 2.15(2). Hence, p∗(L[m]) is a reflexive OY ′ -module and

(p∗L)[m] ' p∗(L[m]) for any m, by Lemma 2.34 applied to Z = Y \Y ◦ and to L[m].

Here (p∗L)[m] satisfies relative S2 over T ′ by Remark 7.14(6) and Lemma 2.31(4).

Furthermore, for any point t′ ∈ T ′ and t = q(t′), we have isomorphisms

p∗L ⊗OY ′ OY ′t′ ' (L ⊗OY OYt)⊗k(t) k(t′) ' ωYt/k(t) ⊗k(t) k(t′) ' ωY ′
t′/k(t′),

by applying Lemma 5.4 to Spec k(t′) → Speck(t). Therefore, f ′ is virtually Q-

Gorenstein at any point of p−1(y), since p∗L plays the role of L in Definition 7.13.

(5): By (1), f ′ is an S2-morphism whose fibers are all Q-Gorenstein. If ω
[m]
Y/T

satisfies relative S2 over T , then p∗ω
[m]
Y/T does so over T ′ by Lemma 2.31(4), and

p∗ω
[m]
Y/T ' ω

[m]
Y ′/T ′ by Corollary 5.7(2). Therefore, f ′ is Q-Gorenstein (cf. Defini-

tion 7.1(2)).

(6): By (2) above, f is naively Q-Gorenstein. By Lemma 7.3, it is enough to

prove that the base change homomorphism

φ
[m]
t : ω

[m]
Y/T ⊗OY OYt → ω

[m]
Yt/k(t)

is an isomorphism for any m ∈ Z and any point t ∈ T . For any point t′ ∈ q−1(t),

the base change morphism

φ
[m]
t′ : ω

[m]
Y ′/T ′ ⊗OY ′ OY ′t′ → ω

[m]
Y ′
t′/k(t′)

is an isomorphism, since f ′ is Q-Gorenstein. Now, φ
[m]
t′ is isomorphic to the homo-

morphism p∗t′(φ
[m]
t ) for the morphism pt′ : Y

′
t′ → Yt induced from p, since we have

an isomorphism ω
[m]
Y ′/T ′ ' p

∗ω
[m]
Y/T as in the proof of (2). Since pt′ is faithfully flat,

φ
[m]
t is an isomorphism for any m ∈ Z and t ∈ T . Therefore, f is Q-Gorenstein.

We have the following properties for compositions of Q-Gorenstein morphisms

and of their variants.
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Proposition 7.23. Let f : Y → T and g : X → Y be flat morphisms of locally

Noetherian schemes.

(1) If f and g are naively Q-Gorenstein, then f ◦ g is so, and

ω
[r]
X/T ' ω

[r]
X/Y ⊗OX g

∗(ω
[r]
Y/T )

for an integer r > 0 such that ω
[r]
X/Y and ω

[r]
Y/T are invertible.

(2) Assume that g is a Q-Gorenstein morphism. If f is virtually Q-Gorenstein at

a point y, then f ◦ g is virtually Q-Gorenstein at any point of g−1(y).

(3) If f and g are Q-Gorenstein morphisms, then f ◦ g is so, and

ω
[m]
X/T ' ω

[m]
X/Y ⊗OX g

∗(ω
[m]
Y/T )

for any integer m.

Proof. (1): Every fiber of the composite f ◦g is Q-Gorenstein by Lemma 7.20 and

by Proposition 7.22(1). In particular, f ◦ g is an S2-morphism. For the relative

Gorenstein loci Y ◦ := Gor(Y/T ) and X◦ := Gor(X/Y ), let V be the intersection

X◦ ∩ g−1(Y ◦). Then V ⊂ Gor(X/T ) and codim(Xt \ V,Xt) ≥ 2 for any fiber

Xt = (f ◦ g)−1(t) of f ◦ g. We set

Mr := ω
[r]
X/Y ⊗ g

∗(ω
[r]
Y/T )

for an integer r > 0 such that ω
[r]
X/Y and ω

[r]
Y/T are invertible. Then Mr|V ' ω⊗rV/T

and

Mr ' j∗(ω⊗rV/T ) = ω
[r]
Y/T

for the open immersion j : V ↪→ X, since f ◦ g is an S2-morphism. Thus, f ◦ g is

naively Q-Gorenstein.

(2): We may assume that the conditions of Remark 7.14 are satisfied for

U = Y , a certain reflexive OY -module L, and for o = f(y). We set

Nm := ω
[m]
X/Y ⊗OX g

∗(L[m])

for an integer m. This is flat over T , since L[m] is so over T and ω
[m]
X/Y is so

over Y . Let go = g|Xo : Xo → Yo be the induced Q-Gorenstein morphism (cf.

Proposition 7.22(5)). Then Xo = g−1(Yo) is Q-Gorenstein by Remark 7.14(7) and

Lemma 7.20, and we have isomorphisms

Nm ⊗OX OXo ' (ω
[m]
X/Y ⊗OX OXo)⊗OXo g

∗
o(ω

[m]
Yo/k(o))

' ω[m]
Xo/Yo

⊗OXo g
∗
o(ω

[m]
Yo/k(o)) ' ω

[m]
Xo/k(o),
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where the first isomorphism is derived from Remark 7.14(8) and the last one from

(VII-6) in the proof of Lemma 7.20. In particular, Nm satisfies relative S2 over T

along Xo. Then, for N := N1, we have isomorphisms

Nm ' j∗(Nm|V ) ' j∗
(
ω⊗mV/Y ⊗OV (g∗L)⊗m|V

)
' j∗(N⊗m|V ) = N [m]

along Xo by Lemma 2.33(5), where j : V ↪→ X is the open immersion in the

proof of (1). Hence, N [m] satisfies relative S2 over T along Xo for any m, and

N ⊗OX OXo ' ωXo/k(o). Therefore, f ◦ g is virtually Q-Gorenstein at any point of

g−1(y), since N plays the role of L in Definition 7.13.

(3): We can apply the argument in the proof of (2) by setting L = ωY/T .

Then

N [m] ' j∗(Nm|V ) ' j∗
(
ω⊗mV/Y ⊗OV (g∗ω⊗mY/T )|V

)
' j∗(ω⊗mV/T ) = ω

[m]
X/T

along Xo. Hence, ω
[m]
X/T satisfies relative S2 over T for any m. Consequently, f ◦ g

is Q-Gorenstein with an isomorphism ω
[m]
X/T ' ω

[m]
X/Y ⊗OX g

∗(ω
[m]
Y/T ) for any m ∈ Z.

Thus, we are done.

Corollary 7.24. Let Y and T be locally Noetherian schemes and f : Y → T a

flat morphism locally of finite type. Let g : X → Y be a smooth separated surjective

morphism from a locally Noetherian scheme X. Then f is Q-Gorenstein if and

only if f ◦ g : X → Y → T is so.

Proof. For the relative Gorenstein loci Y ◦ := Gor(Y/T ) and X◦ := Gor(X/T ),

we have X◦ = g−1(Y ◦) by Lemma 6.7. Let g◦ : X◦ → Y ◦ be the induced smooth

morphism. Then

(VII-8) ωX◦/T ' ωX◦/Y ◦ ⊗OX◦ g
◦∗(ωY ◦/T )

for the relative canonical sheaves ωY ◦/T , ωX◦/T , and ωX◦/Y ◦ (cf. (1) and (2) of

Fact 4.34). For a point t ∈ T , let gt : Xt → Yt be the smooth morphism induced

on the fibers Yt = f−1(t) and Xt = (f ◦ g)−1(t).

By Proposition 7.23(2), it is enough to prove the “if” part. Assume that f ◦ g
is Q-Gorenstein. Then every fiber Yt is Q-Gorenstein by Lemma 6.7. In particular,

Yt satisfies S2 and codim(Yt \ Y ◦, Yt) ≥ 2. Hence, by Lemma 2.33(4),

ω
[m]
Y/T ' j∗(ω

⊗m
Y ◦/T )

for any m ∈ Z, where j : Y ◦ ↪→ Y is the open immersion. For the open immersion

jX : X◦ ↪→ X, we have an isomorphism

g∗(ω
[m]
Y/T ) ' g∗(j∗(ω⊗mY ◦/T )) ' jX∗(g◦∗(ω⊗mY ◦/T ))
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by the flat base change isomorphism (cf. Lemma A.9). Thus,

ω
[m]
X/T ' jX∗(ω

⊗m
X◦/T ) ' jX∗(j∗X(ω⊗mX/Y )⊗OX◦ g

◦∗(ω⊗mY ◦/T◦))

' ω⊗mX/Y ⊗OY g
∗(ω

[m]
Y/T )

for any m ∈ Z by (VII-8). In particular, ω
[m]
Y/T is flat over T , since g is faithfully

flat (cf. Lemma A.6). Moreover,

g∗t (ω
[m]
Y/T ⊗OY OYt) ' ω

⊗−m
Xt/Yt

⊗OXt (ω
[m]
X/T ⊗OX OXt) ' ω

⊗−m
Xt/Yt

⊗OXt ω
[m]
Xt/k(t)

satisfies S2 for any t ∈ T (cf. Lemma 6.4(2)). As a consequence, ω
[m]
Y/T ⊗OY OYt

satisfies S2 by Fact 2.26(6). Therefore, ω
[m]
Y/T satisfies relative S2 over T for any

m, and Y → T is a Q-Gorenstein morphism.

Remark. Considering an étale morphism g in Corollary 7.24, we see that, for a

given flat morphism f : Y → T locally of finite type between locally Noetherian

schemes, the Q-Gorenstein condition at a point of Y is not only Zariski local but

also étale local (cf. Remark 6.8).

§7.4. Theorems on Q-Gorenstein morphisms

First of all, we shall prove some infinitesimal criteria for a morphism to be Q-

Gorenstein or naively Q-Gorenstein.

Theorem 7.25 (Infinitesimal criterion). Let f : Y → T be a flat morphism locally

of finite type between locally Noetherian schemes. For a point y ∈ Y and its image

t = f(y), assume that the fiber Yt = f−1(t) is Q-Gorenstein at y. Then, for a

positive integer m, the following two conditions (i) and (ii) are equivalent to each

other:

(i) The sheaf ω
[m]
Y/T satisfies relative S2 over T at y.

(ii) Let OT,t → A be a surjective local ring homomorphism to an Artinian local

ring A and let YA = Y ×T SpecA → SpecA be the base change of f by the

associated morphism SpecA → T . Then ω
[m]
YA/A

satisfies relative S2 over A

at the point yA ∈ YA lying over y.

Moreover, the following two conditions (iii) and (iv) are also equivalent to each

other:

(iii) The sheaf ω
[m]
Y/T is invertible at y.

(iv) For the same morphism YA → SpecA in (ii), ω
[m]
YA/A

is invertible at yA.
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Proof. Since the fiber Yt satisfies S2 at y, by localizing Y , we may assume that f

is an S2-morphism (cf. Fact 2.29(3)). Moreover, we may assume that every fiber

of f is Gorenstein in codimension one by Lemma 2.38(2), since

codimy(Yt \ U, Yt) ≥ 2

for the relative Gorenstein locus U = Gor(Y/T ). Let pA : YA → Y be the projec-

tion for a morphism SpecA → T in (ii). Then, by Corollary 5.7(2), we have an

isomorphism

(p∗Aω
[m]
Y/T )∨∨ ' ω[m]

YA/A
,

and, moreover, the base change homomorphism

p∗Aω
[m]
Y/T → ω

[m]
YA/A

is an isomorphism at yA when (i) holds. In particular, we have (i) ⇒ (ii), and

the converse (ii) ⇒ (i) is a consequence of Proposition 3.19 in case (I) applied to

F = ω
[m]
Y/T . If (i) or (ii) holds, then the base change homomorphisms

ω
[m]
Y/T ⊗OY OYt → ω

[m]
Yt/k(t) and ω

[m]
YA/A

⊗OYA OYt → ω
[m]
Yt/k(t)

are isomorphisms at y or yA, again by Corollary 5.7(2). Hence, by Fact 2.26(2), we

have equivalences (iii)⇔ (i) + (v) and (iv)⇔ (ii) + (v) for the following condition:

(v) The sheaf ω
[m]
Yt/k(t) is invertible at y.

Thus, we have (iii) ⇔ (iv).

By the equivalence (i)⇔ (ii) in Theorem 7.25 for all m ∈ Z and for any y ∈ Yt,
we have the following infinitesimal criterion for a morphism to be Q-Gorenstein.

Corollary 7.26 (Infinitesimal criterion). Let f : Y → T be a flat morphism lo-

cally of finite type between locally Noetherian schemes. Then, for a given point

t ∈ T , the morphism f is Q-Gorenstein along the fiber Yt = f−1(t) if and only if

the base change fA : YA = Y ×T SpecA → SpecA is Q-Gorenstein for any mor-

phism SpecA → T defined by a surjective local ring homomorphism OT,t → A to

any Artinian local ring A.

Remark. For an Artinian local ring A, a flat morphism YA → SpecA of finite

type is not necessarily a Q-Gorenstein morphism even if YA is Q-Gorenstein and

A is Gorenstein. For example, let us consider a naively Q-Gorenstein morphism

f : Y → T = SpecR for a discrete valuation ring R such that f is not Q-Gorenstein

along the closed fiber Yo = f−1(o), where o is the closed point of T corresponding

to the maximal ideal mR. See Fact 7.7 or Lemma 7.8 and Example 7.9 for such
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an example of f . Let SpecA→ T be a closed immersion for a local Artinian ring

A. Then A is Gorenstein, and the base change fA : YA = Y ×T SpecA → SpecA

of f is a naively Q-Gorenstein morphism by Proposition 7.22(1). Hence, YA is

Q-Gorenstein by Lemma 7.20. However, fA is not a Q-Gorenstein morphism for

some A by Corollary 7.26.

By the equivalence (iii) ⇔ (iv) in Theorem 7.25 for any y ∈ Yt, we have the

following version of an infinitesimal criterion for naively Q-Gorenstein morphisms

with bounded relative Gorenstein index.

Corollary 7.27 (Infinitesimal criterion). Let f : Y → T be a flat morphism lo-

cally of finite type between locally Noetherian schemes. For a point t ∈ T and a

positive integer m, the following two conditions are equivalent to each other:

(i) The morphism f is naively Q-Gorenstein along Yt and the relative Gorenstein

index of f along Yt is a divisor of m.

(ii) The sheaf ω
[m]
YA/A

is invertible for the base change fA : YA = Y ×T SpecA→
SpecA by any morphism SpecA → T defined by a surjective local ring ho-

momorphism OT,t → A to any Artinian local ring A.

Remark 7.28. The infinitesimal criterion does not hold for naively Q-Gorenstein

morphisms without boundedness conditions for the relative Gorenstein index. Let

f : Y → T be a flat morphism of finite type of Noetherian schemes such that

T = SpecR for a discrete valuation ring R. For an integer n, we set Rn := R/mn+1
R ,

Tn = SpecRn and let Yn = Y ×T Tn → Tn be the base change of f by the closed

immersion Tn ⊂ T . Assume that the special fiber Y0 is a Q-Gorenstein scheme

and the residue field k = R/mR has characteristic p > 0. Then Yn → Tn is

naively Q-Gorenstein for any n ≥ 0 by an argument of Kollár in [16, 14.7] or

[32, Exam. 7.6]. But, there is an example of f : Y → T above such that f is not

naively Q-Gorenstein (cf. Example 7.4). Let rn be the relative Gorenstein index

of Yn → Tn; this equals the Gorenstein index of Yn. Then {rn}n≥0 is not bounded

by Corollary 7.27 if f is not naively Q-Gorenstein.

By a similar argument in the proof of Theorem 7.25 and by Proposition 3.19 in

the case (II) instead of (I), we have the following valuative criterion for a morphism

to be Q-Gorenstein.

Theorem 7.29 (Valuative criterion). Let f : Y → T be a flat morphism locally of

finite type between locally Noetherian schemes. Assume that T is reduced. Then f is

a Q-Gorenstein morphism if and only if the base change fR : YR = Y ×T SpecR→
SpecR is a Q-Gorenstein morphism for any discrete valuation ring R and for any

morphism SpecR→ T .
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Proof. It is enough to check the “if” part by Proposition 7.22(5). Then every

fiber Yt is Q-Gorenstein, since we can consider R as the localization at the prime

ideal (x) of the polynomial ring k(t)[x] for the residue field k(t) and consider the

morphism SpecR → T defined by the composite OT,t → k(t) ⊂ R. Therefore, it

is enough to prove that ω
[m]
Y/T satisfies relative S2 over T for any m ∈ Z. For the

base change morphism fR : YR → SpecR and the projection p : YR → Y , we have

an isomorphism

(p∗ω
[m]
Y/T )∨∨ ' ω[m]

YR/R

for any m by Corollary 5.7(2). Therefore, the assertion is a consequence of Propo-

sition 3.19 in case (II).

The following theorem gives a criterion for a morphism to be Q-Gorenstein

only by conditions on fibers.

Theorem 7.30. Let Y and T be locally Noetherian schemes and f : Y → T be

a flat morphism locally of finite type. For a point t ∈ T , if the following three

conditions are all satisfied, then f is Q-Gorenstein along the fiber Yt = f−1(t):

(i) Yt is Q-Gorenstein;

(ii) Yt is Gorenstein in codimension two;

(iii) ω
[m]
Yt/k(t) satisfies S3 for any m ∈ Z.

Proof. As in the first part of the proof of Theorem 7.25, by (i) and (ii), we may

assume that Y → T is an S2-morphism and its fibers are all Gorenstein in codi-

mension one. Then it is enough to prove that F = ω
[m]
Y/T satisfies relative S2 over

T along Yt for any m. Since F is reflexive, we can apply Proposition 3.7 and its

corollaries to the morphism Y → T and the closed subset Z = Y \Gor(Y/T ). Then

(ii) and (iii) imply inequality (III-4) of Corollary 3.10. Thus, F satisfies relative

S2 over T along Yt by Corollaries 3.9 and 3.10.

Definition 7.31 (Q-Gorenstein refinement). Let f : Y → T be an S2-morphism

of locally Noetherian schemes such that every fiber is Q-Gorenstein. A morphism

S → T from a locally Noetherian scheme S is called a Q-Gorenstein refinement of

f if the following two conditions are satisfied:

(i) S → T is a monomorphism in the category of schemes;

(ii) for any morphism T ′ → T from a locally Noetherian scheme T ′, the base

change Y ′ ×T T ′ → T ′ is a Q-Gorenstein morphism if and only if T ′ → T

factors through S → T .

Remark. If the Q-Gorenstein refinement S → T exists, then it is bijective, since

every fiber is Q-Gorenstein.
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Theorem 7.32. Let f : Y → T be an S2-morphism of locally Noetherian schemes

whose fibers are all Q-Gorenstein. Assume that

(i) Y \Σ→ T is a Q-Gorenstein morphism for a closed subset Σ proper over T

and

(ii) the Gorenstein indices of all the fibers Yt = f−1(t) are bounded above.

Then f admits a Q-Gorenstein refinement as a separated morphism S → T locally

of finite type. Furthermore, S → T is a local immersion of finite type if assumption

(i) is replaced with

(iii) f is a projective morphism locally on T .

Proof. By (ii), we have a positive integer m such that ω
[m]
Yt/k(t) is invertible for any

t ∈ T . Let S → T be the relative S2 refinement for the reflexive OY -module

F =
⊕m

i=1
ω

[i]
Y/T .

It exists as a separated morphism S → T locally of finite type by Theorem 3.26,

since F|U is locally free for the relative Gorenstein locus U = Gor(Y/T ) in which

codim(Yt \ U, Yt) ≥ 2 for any t ∈ T , and since F|Y \Σ satisfies relative S2 over T

by (i). Moreover, S → T is a local immersion of finite type in case (iii), also by

Theorem 3.26. It is enough to show that S → T is the Q-Gorenstein refinement.

Let T ′ → T be a morphism from a locally Noetherian scheme T ′. Then T ′ → T

factors through S → T if and only if ω
[i]
Y ′/T ′ satisfies relative S2 over T ′ for the

base change Y ′ = Y ×T T ′ → T ′ for any 0 ≤ i ≤ m, since we have an isomorphism

ω
[i]
Y ′/T ′ ' (p∗ω

[i]
Y/T )∨∨

by Corollary 5.7(2) for the projection p : Y ′ → Y . This is also equivalent to the

condition that Y ′ → T ′ is Q-Gorenstein. Therefore, S → T is the relative Q-

Gorenstein refinement.

Example 7.33. Let f : Y → T be the morphism in Example 7.4. Then the Q-

Gorenstein refinement S → T of f is just the disjoint union of T \ {0} and the

closed point {0}. This is shown as follows. Since f is smooth over T \{0} and since

K2
Y0

= 9 and K2
Yt

= 8 for t 6= 0, we see that S ' (T \ {0}) t SpecA over T for a

closed immersion SpecA → T defined by a surjection k[t] → k[t]/(tn) = A. On

the other hand, if n ≥ 2, the base change fA : YA → SpecA is not a Q-Gorenstein

morphism by Lemma 7.5. Therefore, A = k.

The following theorem is a local version of Theorem 7.32.
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Theorem 7.34. Let f : Y → T be a flat morphism locally of finite type from a

locally Noetherian scheme Y such that T = SpecR for a Noetherian Henselian local

ring R. For the closed point o ∈ T and for a point y of the closed fiber Yo = f−1(o),

assume that Yo is Q-Gorenstein at y. Then there is a closed subscheme S ⊂ T

having the following universal property: Let T ′ = SpecR′ → T be a morphism

defined by a local ring homomorphism R→ R′ to a Noetherian local ring R′. Then

T ′ → T factors through S if and only if the base change Y ′ = Y ×T T ′ → T ′ is

a Q-Gorenstein morphism at any point y′ ∈ Y ′ lying over y and the closed point

of T ′.

Proof. As in the first part of the proof of Theorem 7.25, we may assume that

f is an S2-morphism and every fiber is Gorenstein in codimension one. For the

Gorenstein index m of Yo at y, we consider the reflexive sheaf

F =
⊕m

i=1
ω

[i]
Y/T

on Y . This is locally free in codimension one on each fiber. Let S ⊂ T be the

universal subscheme in Theorem 3.28 for F . We shall show that S satisfies the

required condition. Let T ′ = SpecR → T be the morphism above. Then we have

an isomorphism

(p∗ω
[i]
Y/T )∨∨ ' ω[i]

Y ′/T ′

for any i ∈ Z by Corollary 5.7(2). Thus, T ′ → T factors through S if and only if

ω
[i]
Y ′/T ′ satisfies relative S2 over T ′ at any point y′ lying over y and the closed point

o′ of T ′, for any 1 ≤ i ≤ m. In this case, ω
[m]
Y ′/T ′ is invertible at y′ by Fact 2.26(2),

since ω
[m]
Yo/k(o) is so at y and since the canonical morphism

ω
[m]
Y ′/T ′ ⊗OY ′ OY ′o′ → ω

[m]
Y ′
o′/k(o′) ' ω

[m]
Yo/k(o) ⊗OYo OY ′o′

is an isomorphism at y′ (cf. Corollary 5.7(2)). Therefore, the latter condition at

y′ is equivalent to the condition that ω
[i]
Y ′/T ′ satisfies relative S2 over T at y′ for

any i ∈ Z; this means that Y ′ → T ′ is a Q-Gorenstein morphism at y′. Thus, S

satisfies the required condition.

The following theorem is similar to Theorem 7.32, and it links a projective S2-

morphism Gorenstein in codimension one in each fiber, to a naively Q-Gorenstein

morphism by a specific base change.

Theorem 7.35. Let f : Y → T be a projective S2-morphism of locally Noetherian

schemes such that every fiber is Gorenstein in codimension one. Then, for any

positive integer r > 0, there exists a separated monomorphism Sr → T from a

locally Noetherian scheme Sr satisfying the following conditions:
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(i) The morphism Sr → T is a local immersion of finite type.

(ii) Let T ′ → T be a morphism from a locally Noetherian scheme T ′. Then it

factors through Sr → T if and only if Y ×T T ′ → T ′ is a naively Q-Gorenstein

morphism whose relative Gorenstein index is a divisor of r.

Proof. By Theorem 3.26, there is a relative S2 refinement S → T for the reflexive

OY -module F = ω
[r]
Y/T . In fact, F|U is locally free for the relative Gorenstein locus

U = Gor(Y/T ) and codim(Yt\U, Yt) ≥ 2 for any t ∈ T by assumption. Here S → T

is a separated monomorphism and a local immersion of finite type, since f is a

projective morphism. By the universal property of relative S2 refinement and by

Corollary 5.7(2), we see that, for a morphism T ′ → T from a locally Noetherian

scheme T ′, it factors through S → T if and only if ω
[r]
Y ′/T ′ satisfies relative S2

over T ′ for the base change morphism Y ′ = Y ×T T ′ → T ′. Note that ω
[r]
Y ′/T ′ is

invertible if and only if Y ′ → T ′ is a naively Q-Gorenstein morphism whose relative

Gorenstein index is a divisor of r. Let Br be the set of points P ∈ YS := Y ×T S
such that ω

[r]
YS/S

is not invertible at P . Then Br is a closed subset of YS . Let Sr ⊂ S
be the complement of the image of Br in S. Then Sr is an open subset. For the

morphism T ′ → T above, if ω
[r]
Y ′/T ′ is invertible, then T ′ → T factors through

S → T , and for the induced morphism h : Y ′ → YS lying over T ′ → S, we have an

isomorphism

ω
[r]
Y ′/T ′ ' h

∗(ω
[r]
YS/S

)

by Corollary 5.7(2). This implies that h(Y ′)∩Br = ∅ and that the image of T ′ → S

is contained in the open subset Sr. Therefore, the composite Sr ⊂ S → T is the

required morphism.

Remark. When f : Y → T is a projective morphism, similar results to Theo-

rems 7.32 and 7.35 are found in [29, Cors. 24, 25].

Appendix A. Some basic properties in scheme theory

For readers’ convenience, we collect here some famous results on the local criterion

of flatness and the base change isomorphisms.

Appendix A.1. Local criterion of flatness

Here we summarize results related to the “local criterion of flatness”. It is usually

considered as Proposition A.1 below. But the subsequent Corollaries A.2, A.3, A.4

are also useful in the scheme theory. For detail, the reader is referred to [13, IV,

§5], [6, III, §5], [12, 0III, §10.2], [2, V, §3], [37, §22], etc. We also mention a “local
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criterion of freeness” as Lemma A.5, and explain two more results on flatness and

local freeness for sheaves on schemes.

Proposition A.1 (Local criterion of flatness). For a ring A, an ideal I of A and

for an A-module M , assume that

(1) I is nilpotent or

(2) A is Noetherian and M is I-adically ideally separated, i.e., a⊗AM is separated

for the I-adic topology for all ideals a of A.

Then the following four conditions are equivalent to each other:

(i) M is flat over A;

(ii) M/IM is flat over A/I and TorA1 (M,A/I) = 0;

(iii) M/IM is flat over A/I and the canonical homomorphism

M/IM ⊗A/I Ik/Ik+1 → IkM/Ik+1M

is an isomorphism for any k ≥ 0;

(iv) M/IkM is flat over A/Ik for any k ≥ 1.

Remark. The proof is found in [13, IV, Cor. 5.5, Thm. 5.6], [6, III, §5.2, Thm. 1],

[12, 0III, (10.2.1)], [2, V, Thm. (3.2)], [37, Thm. 22.3]. The second assumption,

(2), is satisfied, for example, when there is a ring homomorphism A → B of

Noetherian rings such that M is originally a finitely generated B-module and that

IB is contained in the Jacobson radical rad(B) of B (cf. [6, III, §5.4, Prop. 2], [12,

0III, (10.2.2)], [37, p. 174]).

Corollary A.2. Let A → B be a local ring homomorphism of Noetherian local

rings and let u : M → N be a homomorphism of B-modules such that M and N

are finitely generated B-modules and that N is flat over A. Then the following two

conditions are equivalent to each other:

(i) u is injective and the cokernel of u is flat over A;

(ii) u⊗A k : M ⊗A k→ N ⊗A k is injective for the residue field k of A.

The proof is given in [13, IV, Cor. 5.7], [12, 0III, (10.2.4)], [2, VII, Lem. (4.1)],

[37, Thm. 22.5].

Corollary A.3 (Cf. [12, 0IV, Prop. (15.1.16)], [37, Cor. to Thm. 22.5]). Let A →
B be a local ring homomorphism of Noetherian local rings and let M be a finitely

generated B-module. Let k be the residue field of A and let x̄ denote the image of

x ∈ B in B⊗A k. For elements x1, . . . , xn in the maximal ideal mB, the following

two conditions are equivalent to each other:
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(i) (x1, . . . , xn) is an M -regular sequence and M/
∑n
i=1 xiM is flat over A;

(ii) (x̄1, . . . , x̄n) is an M ⊗A k-regular sequence and M is flat over A.

Corollary A.4. Let A→ B and B → C be local ring homomorphisms of Noethe-

rian local rings and let k be the residue field of A. Assume that B is flat over A.

Then, for a finitely generated C-module M , the following conditions are equivalent

to each other:

(i) M is flat over B;

(ii) M is flat over A and M ⊗A k is flat over B ⊗A k.

The proof is given in [13, IV, Cor. 5.9], [6, III, §5.4, Prop. 3], [12, 0III, (10.2.5)],

[2, V, Prop. (3.4)].

Next, we shall give the “local criterion of freeness” as Lemma A.5 below, which

is similar to Proposition A.1. This result is well known (cf. [13, IV, Prop. 4.1], [6,

II, §3.2, Prop. 5], [12, 0III, (10.1.2)]), but is not usually called the “local criterion

of freeness” in articles.

Lemma A.5 (Local criterion of freeness). Let A be a ring, I an ideal of A and

M an A-module such that

• I is nilpotent or

• A is Noetherian, I ⊂ rad(A), and M is a finitely generated A-module.

Then the following conditions are equivalent to each other:

(i) M is a free A-module;

(ii) M/IM is a free A/I-module and TorA1 (M,A/I) = 0;

(iii) M/IM is a free A/I-module and the canonical homomorphism

M/IM ⊗A/I Ik/Ik+1 → IkM/Ik+1M

is an isomorphism for any k ≥ 0.

Remark. Applying Lemma A.5 to the case where A is a Noetherian local ring and

I is the maximal ideal, we have the equivalence of flatness and freeness for finitely

generated A-modules (cf. [13, IV, Cor. 4.3], [12, 0III, (10.1.3)]). On the other hand,

the equivalence of flatness and freeness can be proved by other methods (cf. [37,

Thm. 7.10], [2, Lem. 5.8]), and using the equivalence, we obtain Lemma A.5 for

the same local ring (A, I) and for a finitely generated A-module M , as a corollary

of Proposition A.1.
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Remark. The equivalence explained above implies the following well-known fact:

for a locally Noetherian scheme X, a coherent flat OX-module is nothing but a

locally free OX-module of finite rank.

The following is proved immediately from the definitions of flatness and faith-

ful flatness (cf. [6, I, §3, no. 2, Prop. 4]).

Lemma A.6. Let f : X → Y and g : Y → Z be morphisms of schemes such that

f is faithfully flat, i.e., flat and surjective. Then, for an OY -module G, it is flat

over Z if and only if f∗G is flat over Z.

As a corollary in the case where Y = Z, we have the following descent property

of locally freeness by the relation with flat coherent sheaves.

Lemma A.7. Let f : X → Y be a flat surjective morphism of locally Noetherian

schemes. For a coherent OY -module G, it is locally free if and only if f∗G is so.

The authors could not find a good reference for Lemma A.7. For example, we have

a weaker result as a part of [13, VIII, Prop. 1.10], where f is assumed additionally

to be quasi-compact; however, the quasi-compactness is related to the other part.

Appendix A.2. Base change isomorphisms

Let us consider a Cartesian diagram

X ′
g′−−−−→ X

f ′
y yf
S′

g−−−−→ S

of schemes, i.e., X ′ ' X ×S S′. Then, for any quasi-coherent OX -module F , one

has a functorial canonical homomorphism

θ(F) : g∗(f∗F)→ f ′∗(g
′∗F)

of OS′ -modules, and more generally, a functorial canonical homomorphism

θi(F) : g∗(Rif∗F)→ Rif ′∗(g
′∗F)

for each i ≥ 0. We have the following assertions on θ(F) and θi(F).

Lemma A.8 (Affine base change). If f is an affine morphism, then θ(F) is an

isomorphism.

Lemma A.9 (Flat base change). Assume that g is flat and that f is quasi-

compact and quasi-separated. Then θi(F) is an isomorphism for any i.
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A proof of Lemma A.8 is given [12, II, Cor. (1.5.2)], and a proof of Lemma A.9

is given in [12, III, Prop. (1.4.15)] (cf. [12, IV, (1.7.21)]). Here the morphism

f : X → S is said to be “quasi-separated” if the diagonal morphism X → X ×S X
is quasi-compact (cf. [12, IV, Déf. (1.2.1)]).

We have also the following generalization of Lemma A.9 to the case of com-

plexes by [17, II, Prop. 5.12], [23, IV, Prop. 3.1.0], and [35, Prop. 3.9.5].

Proposition A.10. In the situation of Lemma A.9, let F• be a complex of OX-

modules in D+
qcoh(X). Then there is a functorial quasi-isomorphism

Lg∗(Rf∗(F•))→ Rf ′∗(Lg
′∗(F•)).
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[11] P. Deligne, Le théorème de plongement de Nagata, Kyoto J. Math. 50 (2010), 661–670.
Zbl 1208.14012 MR 2740689
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