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A Microlocal Characterization of Lipschitz
Continuity

by

Benoit JUBIN

Abstract

We study continuous maps between differential manifolds from a microlocal point of
view. In particular, we characterize the Lipschitz continuity of these maps in terms of
the microsupport of the constant sheaf on their graph. Furthermore, we give lower and
upper bounds on the microsupport of the graph of a continuous map and use these bounds
to characterize strict differentiability in microlocal terms.
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81. Introduction

Microlocal analysis is the study of phenomena occurring on differential manifolds
via a study in their cotangent bundle, such as the study of the singularities of
solutions of a partial differential equation on a manifold M via the study of their
wavefront set in T*M. A general setting for microlocal analysis is the microlocal
theory of sheaves, developed by Kashiwara and Schapira (see [6]). In [7], Vich-
ery used this theory to study, from a microlocal viewpoint, continuous real-valued
functions on differential manifolds, and to define for these functions a good notion
of subdifferential. We extend this study to continuous maps between differential
manifolds. We study simultaneously the tangent aspects of the subject to empha-
size the parallelism between the tangent and cotangent sides.

Specifically, let f: M — N be a continuous map between differential mani-
folds. We denote its graph by I'y € M x N. We define its Whitney cone Cy as
the Whitney cone of its graph and its conormal Ay as the microsupport of the
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constant sheaf on its graph, that is,

(11) Cf = C(Ff,Ff) QT(MXN)
(1.2) and Ay = psupp(kr,) € T*(M x N),

where k is any nonzero commutative ring of finite global dimension (for instance
Z or a field). All these terms and pieces of notation are precisely defined in the
article.

The Whitney cone Cy is a closed symmetric cone and the conormal Ay is a
coisotropic closed symmetric cone. If f is C*, then its Whitney cone is equal to
the tangent bundle of its graph and its conormal is equal to the conormal bundle
of its graph, that is, Cy =TTy and Ay = (TTy)"*.

We prove that f is Lipschitz if and only if its Whitney cone contains no
nonzero “vertical” vectors, that is, Cy N (0ar X TN) C Opn, if and only if its
conormal contains no nonzero “horizontal” covectors, that is, Ay N (T*M x 0%) C

-

To prove these results, we use the microlocal theory of sheaves of Kashiwara
and Schapira, which we review in Section 2.

In Section 3, we review the main properties of microsupports associated with
subsets. If A is a locally closed subset of M, we set usupp(A4) := psupp(ks) and
denote its tangent cone by C(A) and its strict tangent cone by N(A). If C is a
cone in TM, we denote its polar by C°. We give a direct proof of the following
known bounds: if Z C M is closed, then 7, (Z) N C(Z)° C psupp(Z) C N(Z)°.

In Section 4, we define the Whitney cone of a continuous map and give its
first properties. In particular, we characterize Lipschitz continuity and strict dif-
ferentiability in terms of the Whitney cone and extend these characterizations to
topological submanifolds. We also prove the following chain rule, which will be
needed later. Let f;: M; — M; 1 be continuous maps between differential mani-
folds for ¢ € {1,2}. If (0, 0C,) N (Cy, 003) C 09, for instance if f; is Lipschitz, then

(1.3) Ctyof, € Cp 0 Ch,

with equality if fo is C!.

In Section 5, we define the conormal of a continuous map and give its first
properties. We use the convolution of kernels to extend to continuous maps the
functorial properties of the microsupport for the four image operations. We also
use it to prove the following chain rule. With the notation above, if (05 0o Ay ) N

(Ag, 0 03) C 05, for instance if f, is Lipschitz, then

(1'4) Af20f1 - Afl 8A92
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with equality if f; is a C'-submersion (and if f; and f» are both C1).

In Section 6, we study the case of real-valued functions. We define directional
Dini derivatives in order to describe more precisely the various cones associated
with a function. We also study local extrema and more generally “extrema at
first order”, which we define in that section. Namely, if z € M, we set C(f) =
(CF)(w,f(z)) and A (f) = (Af)(a,f(2))- Then we prove the following generalization
of Fermat’s lemma to continuous functions: if f: M — R is continuous and has a
first-order extremum at z € M, then

(1.5) T.M x {0} C Cu(f)
(1.6) and {0} x R CA.(f).

Finally, we relate the conormal of a function to the microsupport of the constant
sheaf on its epigraph, studied by Vichery in [7], and we prove that the two points
of view are equivalent for Lipschitz functions.

Section 7 is the main section of the paper, where the claimed characteriza-
tions of Lipschitz continuity and strict differentiability are proved. First, we prove
analogues of Rolle’s lemma and the mean value theorem for continuous maps be-
tween vector spaces. This allows us to give the following upper bound on the
Whitney cone of a continuous map in terms of its conormal. To state it, we de-
fine the following analogues of the directional derivatives. If (z,u) € TM and
(x,m) € M xny T*N, we set

(1.7) 3 (f)
(1.8) and  A7(f)

Cx(f) N (R}(ﬂi X Tf(I)N)

For a subset A of a vector space, we set A := A\ {0} and AT = Uyei vt Then,

(1.9) c.(He () AT

ne€Ts M
with equality if dim NV = 1, in which case C; = AfT. We use this bound to prove
the microlocal characterization of Lipschitz continuity. This allows us to prove the
following upper bound:

(1.10) AHS () cun’

uETzM

with equality if dim M = 1, in which case Ay = CfT. This in turn allows us
to characterize strict differentiability in terms of the Whitney cone and of the
conormal. We give applications of these results to the theory of causal manifolds.
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In Section 8, we generalize some of these results to topological submanifolds,
and we give conditions in terms of the Whitney cone and of the conormal in or-
der that such submanifolds be locally graphs of Lipschitz or strictly differentiable
maps. For instance, if M is a closed topological submanifold of a differential man-
ifold, then

(1.11) psupp(M) € C(M, M)T

with equality if dim M = 1.

Some results (but not all) also hold if one replaces “Lipschitz” (resp. “strictly
differentiable”, Lip, Cf, Ay) with “pointwise Lipschitz” (resp. “differentiable”,
Lip?, C(T'y), CPpg(f)), but we do not state them.

Erratum. As explained in Remark 7.15, Proposition 1.12 of [4] is misstated. We
give in that remark the correct statement and explain why this has no consequences
for the rest of [4].

§2. Background material
§2.1. Notation and conventions
Unless otherwise specified,

e the symbol k denotes a nonzero commutative ring of finite global dimension
(for instance Z or a field);

e vector spaces and manifolds are real and finite-dimensional,

e manifolds are paracompact Hausdorff;

e manifolds, morphisms of manifolds, and submanifolds are smooth, that is, of
class C*°, and submanifolds are embedded (hence locally closed);

e topological (sub)manifolds are called C°-(sub)manifolds, and C°-submanifolds
are locally flatly embedded (that is, their inclusion is locally C°-isomorphic to
a linear inclusion R™ < R™), hence locally closed.

We use the terms “function” and “map” interchangeably.

Sets. Given some sets X;, we set for short X;; := X; x X; and similarly for Xy,
and we write p; (resp. p;;) for any projection from a product of the X;’s (which
will be clear from the context) to X; (resp. to X;;). For a product of the form
X x Y, we also denote the projections by px: X XY — X and py: X XY =Y,
and use the same notation for a pullback X xz Y. The diagonal map of X is
denoted by dx: X — X x X, and the diagonal of X by Ax = §x(X), or simply
by § and A if there is no risk of confusion.



MICROLOCAL LiPscHITZ CONTINUITY 733

If R; C X; x X, 41 for i € {1,2} are relations, we define the composite relation
(21) R1 o RQ ‘= P13 (p1—21 (Rl) n p2_31 (RQ)) .

If a is an involution of X5, we set p1aa = (idx, Xa) o p12, and similarly for other

indices, and we set
(2.2) Ry © Ry = p13(piae (B1) N p3g (R2)) = p1s(pry (R1) N pads(R2)).

If there is a risk of confusion, we write the composition as 0 and the twisted
composition as é.

If A; C X; for i € {1,2} and R C X; x Xo, then we define 4; o R =
D2 (pl_l(Al) n R) and Ro Ay = py (R ﬂpgl(Ag)), and if a is an involution of X,

or Xs respectively, Ay OR = D2 (pfa,l (41) N R) and R6 Ay = 1 (R N pgal (Ag)).
These definitions can be considered as special cases of the previous paragraph, by
identifying, for instance, A; with the relation Ry = {(&,2) € Xo x X1 |z € A1}
with Xy = {@}.

If X and Y are two sets and f: X — Y is a function, we denote by I'y C X xY
its graph. We will often use implicitly the isomorphism px|r,: I'y =% X, with
inverse (idx, f). This is also an isomorphism of manifolds if f is a morphism of
manifolds. If f;: X; — Xiyy for i € {1,2}, then 'y, oy, = I'y, o'y, (note the
usual backward composition). If f: X; — X and A; C X, for i € {1,2}, then
f(A1)=AjoTfand f71(Ay) =Tjo0 A If f: X - R, weset {f <0} ={ze€
X | f(z) <0}, and similarly for “< 07, etc.

Given a real-valued function f: X — R, we denote its epigraph and hypograph
by

(2.3) I ={(z,t) € X xR | £(t - f(z)) > 0}.

Topological spaces. Given any subset A of a topological space, we denote by A
its closure, by Int (A) its interior and by dA := A\ Int (A) its boundary.

A topological embedding is a continuous map that is an isomorphism onto its
image. A topological immersion is a map that is locally a topological embedding.
A continuous map is proper if it is universally closed (that is, all its pullbacks are
closed) or equivalently if it is closed with compact fibers.

Let R; C X; x X;41 for ¢ € {1,2} be relations on topological spaces. If pi3
is proper on pl_zl(Rl) ﬂp2_31(R2), then Ry o Ry C Ry o Ry. In particular, if Ry and

Ry are closed, then under the above condition, Ry o Ry is closed.
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Given an extended real-valued function f: X — R, we define the function
liminf f: X — R,z — liminf,—, f(y). It is characterized by I'} inff = ﬁ An
extended real-valued function is lower semicontinuous if and only if its epigraph
is closed, if and only if it is equal to its liminf. We define similarly limsup f,

characterized by I'y, o =17

Vector spaces. Let V be a vector space and let A C V. We set A% := —A and

A= A\ {0}. The subset A is conic (or is a cone) if RugA = A and is symmetric

if A= A®. Note that a nonempty symmetric convex cone is a vector subspace.
We denote respectively the orthogonal and the polar of A by

(2.4) At ={ecV*|Vve A &) =0}
(2.5) and A° = {£€V*|Vove A/ v) =0}

and we define
(2.6) AT ={¢eV*|Tved ) =0}

Setting Iy = {(v,€) € V x V* | (€,v) = 0}, one has AT = A o Iy. Note that
AT =U,civ*, 50 (—) T is increasing. One has V*\ AT = {¢ € V* | £-NA C {0}}.
If A is compact or is a closed cone, then AT is closed.

Vector bundles. Let p: E — B be a vector bundle. One denotes by ag: E — E
the antipodal map (that is, the fiberwise opposite) and by 0g the zero section (or
its image in E). If AC E and z € B, we set A, .= ANp~1(x). A subset A of E is
defined to be a cone (resp. to be symmetric, convex, a vector subspace) if all the
A,’s are. Note however that A being closed (resp. open) implies that all the A,’s
are, but the converse is false in general. Similarly, the vector space operations, the
polar, orthogonal, removal of the origin and the operation (—) are done fiberwise
(but not the operations of closure, interior and boundary). The polar of an open
subset of a vector bundle is a closed convex cone (see for instance [4, Lem. 1.2]).

Manifolds. Let M be a manifold. We denote by 7p,: TM — M the tangent
bundle of M and by 7wy : T*M — M its cotangent bundle, and simply write 7
and 7 if there is no risk of confusion. For short, we denote the antipodal maps a7z
and a7+ by aps and the zero sections Orps and Or-pr by 0y and 03, respectively.
For various projections, we may write p; instead of, for instance, pras, , etc.

For a submanifold N of M, we denote by TyM = (N xp TM)/TN — N
its normal bundle and by Tx M — N its conormal bundle (the subbundle of
N xp T*M — N orthogonal to TN — N).
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Let f: M — N be a morphism of manifolds. One has the following commu-
tative diagram, with the obvious maps.

Tf

TN

(2.7) T™M Lo M xyTN L >TN

lpm‘ lTN
™
f

M N

Note that TT'y = I'r¢ under the identification T'(M x N) ~ TM x TN. We denote
by

(2.8) A= T¢, (M x N)

the conormal bundle of the graph of f. The fiberwise transpose of f’ is de-
noted by f;. The restrictions of the projections pr«pr: T*(M x N) — T*M and
pr=n: T*(M x N) = T*N to Ay will be denoted by pas and py respectively. We
write p%; = apopyr. The map mpy xidp«ny: T*(MXN) ~ T*MXT*N — MxT*N
induces an isomorphism Ay == M xy T*N. We have the following commutative
diagram.

(2.9) Ay
J
N
T*M <1 M oy TN L TN

lpM lﬂN
™M
f

M — N

For AC T*M and B C T*N, one has

(2.10) fofi (A)=ASA; and faf 7 (B)=As0B.
Note that f is a submersion if and only if

(2.11) Ay (05 x T*N) C 0%y -

More generally, if B C T*N is a closed cone, one says that f is noncharacteristic
for B if

(2.12) Ay (04 x B) C 0%y
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§2.2. Sheaves

We recall in this and the next two subsections a few basic results on sheaves,
kernels and their microlocal theory, and we refer to [6] for a complete treatment.

The support of a presheaf is the complement of the union of the open subsets
sent by this presheaf to zero; in particular, it is a closed subset. Let X be a
topological space. We denote by kx the constant sheaf on X associated with k. If
f: X — Y is a continuous map, then f~!(ky) = kx.

In the rest of this subsection, A, A, A5 (resp. B) denote locally closed subsets
of the topological space X (resp. Y), and 7 will denote the inclusion of that subset.
We define the constant sheaf on A associated with k extended by zero to X by
kx 4= i1i 'k x. We will also denote it by k4 if there is no risk of confusion. It is
characterized by kx a|la = kx|a and kx a|[x\a = 0. If A, A2 C X, then

(2.13) kx4, ®kx 4, =kx, a,n4,-

Let DP(ky) denote the bounded derived category of the category of sheaves
of k-modules on X. Its objects will still be called sheaves. For F' € DP(kx) and
A C X, one sets

(2.14) Fy=F@Ykxa
(2.15) and RI4(F):=RAom (kx a,F).

The functor (—) 4 is exact.
By the Grothendieck spectral sequence, the derived functors of T'(X; —)o(—)a
and of T4 (X;—) =T(X;—) oT'4(—) are respectively

(2.16) RI(X;(=)a) RI(X; =) o (—)a
(2.17) and RI4(X;—) ~RI'(X;—)oRITA(—).
If Z is closed and U is open in X and i denotes either inclusion, then, for a

genuine sheaf F, one has Fy = i,i ' F and 'y F = i,i~'F. Therefore, I'(X; Fz) =
I(Z;F) and T'(X; Ty (F)) =T'(U; F). Therefore, in the derived category,

(2.18) RI(X;Fz) ~RINZ; F)
(2.19) and RI(X;RIy(F)) ~RIU;F).

If f: X — Y is continuous and G € DP(ky) and B C Y, then f~1(Gp) =
(f7'G)-1(p) (see [6, (2.3.19)]), and in particular,

(2.20) f M ky,B) =kx f-1(p).
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In the rest of this subsection, assumptions are made on the topological spaces
involved (hausdorffness, local compactness, finite c-soft dimension) and their mor-
phisms (finite cohomological dimension). All of these properties are satisfied by
topological manifolds and their morphisms.

We recall the following fundamental result without proof.

Proposition 2.1 (Proper base change [6, Prop. 2.6.7, 3.1.9]). Let f: X — Z and
g: Y — Z be continuous maps between Hausdorff locally compact spaces. Denote
their pullback as

q
e

T Y
_I
(2.21) ,,i iq .
x-—t.z
Then one has a natural isomorphism of functors

(2.22) Rgiop !t 2g toRf..

If g1 has finite cohomological dimension, then so does pi, and one has a natural
isomorphism of functors

(2.23) Rg.op' =g' oRf,.

If f: X = Y is a continuous map of finite cohomological dimension between
topological spaces, then the relative dualizing complex (see [6, Def. 3.1.16(i)]) of f
is wy/y = f'ky. There is a natural transformation f~'(—) ®" wy;x = (=)
It is an isomorphism if f is a topological submersion between Hausdorff locally
compact spaces (see [6, Prop. 3.3.2(ii)]) and under microlocal conditions that we
give in Propositions 2.8(2b) and 5.8(2). We write wx = wy . If X is a C°-
manifold, then wyx is isomorphic to the orientation sheaf shifted by the dimension
of X.

Now, assume that X is Hausdorff locally compact and has finite c-soft dimen-
sion. The duality functors on X (see [6, Def. 3.1.16(ii)]) are defined by

(2.24) Dx = Rs#tom (—,wx)
(2.25) and Dy = Rsfom (—,kx).

Recall that if F € DP(kx) is cohomologically constructible (see [6, Def. 3.4.1]),
then so are Dx (F) and D’y (F), and F ~ Dx(Dx(F)) ~ D’y (D’x (F)) (this is [6,
Prop. 3.4.3]), that is, cohomologically constructible sheaves are reflexive.
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§2.3. Kernels

Let X; be Hausdorff locally compact spaces for i € {1,2,3}. A kernel from X; to
X, is an object of DP(ky,,). We consider the bifunctor of convolution of kernels
(see [6, Prop. 3.6.4]) defined on objects by

o: Db(ka) X Db(kM%) _>Db(kM13)a
(2.26) (K1, K2) — K 0 Ks = Rpu3z, (p15 (K1) ®" pag (K2))

and similarly on morphisms. If there is a risk of confusion, we write this convolution
as . Recall that with our notation, p;, for instance, can stand for pas, or pray,

or pr«u,, and the signification is clear from the context, for instance in the above
formula.

The convolution of kernels is associative. We spell out the special cases when
either X; or X3 is a point. Adapting the notation, for K € DP(kp;xn) and F €
DP(kys) and G € DP(ky), one has

2.27 FoK ~Rpn,(p;;F®"K) and K oG~ Rpy (K @ py'Q).
M N

The following two standard results show that the convolution of kernels is a
generalization of the composition of functions.
If f: X — Y is a function between topological spaces, we set

(2.28) Ky =kxxvr;

for the constant sheaf on the graph of f associated with k extended by zero to
X xY.

Proposition 2.2. Let f: X — Y be a continuous map between Hausdorff locally
compact spaces.

(1) If F € D’(kx), then F o Kf ~ Rf\F.
(2) If G € DP(ky), then Kfo G ~ f71G.

Proof. This follows easily from the proper base change theorem applied to the
pullback of f and idy. O

Proposition 2.3. If f;: X; — X;41 fori € {1,2} are continuous maps between
Hausdorff locally compact spaces, then

(2'29) Kf20f1 = Kfl OKf2'
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Proof. This follows easily from Equations (2.20) and (2.13) and the fact that p;3

induces an isomorphism pi, (Uy,) N pos (Ty,) = Tp Xag, Uy, = Ty, 0Ty, =
P13

Lfyop- O

§2.4. Microsupport of sheaves
Let M be a manifold and let F' € D"(ky;). We define the propagation set of F by

Ppg(F) :={(z,£) € T*M | for all ¢ € C*(U), where U is an open
neighborhood of x, with ¢(x) = 0 and d¢(z) = &, one
(2.30) has (Rl (403 (F))z = 0}.

We set Ppg,(F) = Ppg(F),. The microsupport of F (see [6, Def. 5.1.2(1)]) is
defined by

(2.31) psupp(F) == T*M \ Ppg(F).

Therefore, the microsupport of a sheaf is the closure of the set of codirections of
nonpropagation. It is a coisotropic closed conic subset of T*M such that
mar (psupp(F')) = supp(F') and psupp(F[i]) = psupp(F) for i € Z, and satisfies the
following triangular inequality: if Fy — Fy — F3 oisa distinguished triangle in
DP(kys) and 4, j, k € {1,2,3} with j # k, then usupp(F;) C psupp(F};)Upusupp(F},)
(see [6, Prop. 5.1.3 and Thm. 6.5.4]). We set usupp, (F') = psupp(F),.

The following lemma gives a useful criterion for belonging to the propagation
set of a sheaf.

Lemma 2.4. Let M be a manifold, let F € DP(kys) and let + € M. Then & €
Ppg, (F) if and only if for all $ € C(U), with U an open neighborhood of x, such
that ¢(x) = 0 and dé(x) = &, the morphism

(2.32) Fo — (RI{p<0y(F))a
induced by the inclusions (iy: VN {¢p < 0} = V)ys, is an isomorphism.

Proof. The result follows by applying the stalk functor to the distinguished triangle
RT {450y (F) = RTy(F) = RT 4.0y (F) 5 . O

The following lemma will simplify some proofs below. The definition of strict
differentiability is recalled in Appendix A.

Lemma 2.5. Let M be a manifold and let F € DP(kys). If (x,€) ¢ usupp(F),
then for all functions ¢: U — R, with U an open neighborhood of x, which are
strictly differentiable at x with d¢(x) = &, one has (RT' (4> ¢(2)} (F))z = 0.



740 B. JuBIN

Proof. In the proof of [6, Prop. 5.1.1], the part (2)=>(1); proves the lemma without
any change. Indeed, with the notation there, if ¢: U — R is strictly differentiable
at x with d¢(x) € Int (v°%), then {¢ < 0} coincides with a y-open set in a neigh-
borhood of z by Lemma A.3. O

Remark 2.6. An analogous statement assuming only differentiability of ¢ is false.
Indeed, let Z = {(z,y) € R? | x +y = 0Oor In € Nug 2 +y = 1/n}. Then
psupp(kz) = ZxR(1,1). Let ¢: R? = R, (x,y) + 222 sin(n/2)+y. Then ¢(0,0) =
0 and d¢(0,0) = (0,1) ¢ usupp(gg)(kz). For n € Nsg, set U, = |-1/n, 1/n[.
Then the inclusions i,,: U, NZN{¢ < 0} — U, NZ do not induce an isomorphism
in cohomology of the inductive limit. Indeed, setting Z,, = {z + y = 1/m}, the
subsets Z,, N U, are connected, but for any n,m € N with 2m > n, the subset
Zom N U, N{¢ < 0} is not.

Proposition 2.7 ([6, Exe. V.13]). Let M be a manifold and let F € D"(kys) be
cohomologically constructible. Then,

(2.33) psupp(D'y; (F)) = psupp(F)*.

Proof. Since constructible sheaves are reflexive, it suffices to prove usupp(D’,(F))
C psupp(F)“. This is a special case of [6, Prop. 5.4.2] where one factor is reduced
to a point. O

We recall the following functoriality properties of the microsupport. A mor-
phism is said to be noncharacteristic for a sheaf if it is noncharacteristic for its
microsupport.

Proposition 2.8 ([6, Prop. 5.4.4-5, 5.4.13-14]). Let M be a manifold.
(1) Let Fl,FQ S Db(kM)
(a) Assume that psupp(Fy) N psupp(F2)® C 0%,. Then psupp(F @Y Fp) C
psupp(F1) + psupp(F).
(b) Assume that usupp(F1) N psupp(Fy) C0%,. Then usupp(Rsom (Fi, Fy))
C psupp(F1)* + psupp(Fh).
(2) Let f: M — N be a morphism of manifolds.
(a) Let F € DP(ky) and assume that f is proper on supp(F). Then
usupp(R f« F') C usupp(F) gAf with equality if [ is a closed embedding.
(b) Let G € DP(ky) and assume that f is noncharacteristic for G. Then the
morphism f~'G @ wyyn — f1G is an isomorphism and psupp(f~'G)
C Ay 6 usupp(G) with equality if f is a submersion.
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Remark 2.9. The proof of the inclusion in item (2a) given in [6, Prop. 5.4.4]
actually proves that if f: M — N is a morphism of manifolds and F' € D" (kys),
and if f is proper on supp(F), then TN \ Ppg(Rf,F) C (T'M \ Ppg(F)) & Ay with
equality if f is an isomorphism.

Remark 2.10. By Lemma 2.5, the inclusion of item (2a) and the result of the
previous remark still hold at a point if the map f is required only to be strictly
differentiable at that point.

Finally, we give a standard upper bound on the microsupport of the convolute
of two kernels.

Proposition 2.11 ([2, §Kernels]). Let M; be manifolds fori € {1,2,3}. Let Ky €
DP(kar,,) and Ko € DP(kpy,, ). Assume that

(1) pi3 is proper on piy (supp(K1)) N pys (supp(K2));
(2) (psupp(K1)® x 05) N (07 x psupp(Ka)) C 07os.
Then,

(2.34) psupp(K1 o K3) C pusupp(K1) 6 psupp(Ks).

Proof. The two assumptions of the proposition allow us to apply items (1a), (2a)
and (2b) of Proposition 2.8 to conclude. O

Remark 2.12. Note that the two assumptions of Proposition 2.11 are equivalent
to the following condition: p;3 is proper on pjy. (usupp(K1)) N pay (usupp(Kz)).

83. Microsupports associated with subsets

In this section, we study the microsupports of (constant sheaves on) subsets. We
first give a criterion for belonging to such microsupports and give results on the
microsupports of closed submanifolds and closed C°-submanifolds. We then offer
direct proofs of lower and upper bounds on the microsupport of a closed set.

§3.1. General properties

Let M be a manifold. If A C M is locally closed, we set for short Ppg(4) :=
Ppg(kas,4) and

(3.1) psupp(A) = psupp(Kaz,a),
and also Ppg, (A) := Ppg(A), and psupp,(A) = psupp(A), for x € M. Note that

(3.2) mar (psupp(A)) = A.
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The following lemma gives a useful criterion for belonging to the propagation
set of a sheaf associated with a subset.

Lemma 3.1. Let M be a manifold, let Z C M be a closed subset and let x € M.
Then £ € Ppg,(Z) if and only if for all ¢ € C=(U), with U an open neighborhood
of x, such that ¢(x) =0 and d¢(x) = &, the morphism

(33) (]l(z)z — (RFZQ{¢<0}kz)z
induced by the inclusions (iv: ZN{p <0} NV — ZNV)ysy is an isomorphism.

Proof. As for Lemma 2.4, the result follows by applying the stalk functor to the
distinguished triangle RI'zn(¢>0)(kz) — Rl znu(kz) = RIzAagg<0y(kz) 2N
O

As for inverse images, Proposition 2.8(2b) and Equation (2.20) show that if
f: M — N is a morphism of manifolds and B C N is locally closed, and if f is
noncharacteristic for usupp(B), then

(3.4) psupp(f~1(B)) € Ay & psupp(B)

with equality if f is a submersion. If f is an isomorphism and A C M is locally
closed, then Remark 2.9 gives

(3.5) Ppg(f(A)) = Ppg(A) o A

In particular, if ®: V — V' is a linear isomorphism, A C V is locally closed and
z €V, then

(3.6) PT(Ppgg(,)(P(A4))) = Ppg,(A).
We will also need the following result.

Proposition 3.2 ([6, Prop. 5.3.2]). Let N be a closed submanifold of a manifold
M. Then

(3.7) usupp(N) = TN M.
For closed CY-submanifolds, we have the following result.

Proposition 3.3. Let N be a closed C°-submanifold of a manifold M. Then ky
is a cohomologically constructible sheaf, self-dual up to a locally constant sheaf of
rank 1, and its microsupport is symmetric, that is,

(3-8) psupp(N) = psupp(N)*.
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Proof. The cohomological constructibility and self-duality results hold if N is a
vector subspace of a vector space M (in that case, Das(kar,n) = RZom (ks v, wir)
= wy by [6, Exa. 3.4.5(i)]), and they are of a local and topological nature. There-
fore, they hold for closed C°-submanifolds, and we can apply Proposition 2.7. [0

§3.2. Bounds on the microsupports associated with closed subsets

We have the following bounds on the microsupport associated with a closed subset.
For the tangent and strict tangent cones appearing in this proposition, we refer to
Appendix B.

Proposition 3.4. Let M be a manifold. If Z C M is closed, then
(3.9) T (Z) N C(2)° C psupp(Z) € N(Z)°.

The upper bound is [6, Prop. 5.3.8]. The lower bound was proved in [5,
Prop. 3.1], where it was shown that 7, (Z) N C(Z)° is equal to the O-truncated
microsupport of kz (see the definition there). We give direct proofs of both bounds.

The lower bound is not widely applicable, since C,(Z)° is nonzero only if Z
is “at first order” contained in a half-space of T, M. On the other hand, the upper
bound is trivial if Z is a C°-submanifold. We will give another upper bound in
that case (Proposition 8.4).

For the proof, we will need the following two lemmas.

Lemma 3.5. Let M be a manifold, A C M and x € M. Let U be an open
neighborhood of © and ¢ € C*°(U) with ¢(x) =0 and dp(x) ¢ N, (A)°. Then there
exist an open neighborhood V. C U of x and a > 0 and for all f € |—a,q[, a
strong deformation retraction hg: V x[0,1] =V of V onto VN {¢ < B} such that
he((VNA)x[0,1]) CV NA.

Proof. Let u € N, (A) be such that (d¢(z),u) < 0. We can fix a chart at = with
domain V' C U such that in that chart, z = 0 € R™ and ¢ = d¢(0) (since
dp(0) # 0). Since N(A) is open, we can suppose, reducing V' if necessary, that for
all y € V, one has u € N, (A). We can also suppose that the intersection of V' with
any line parallel to u is connected, for instance by assuming that V is of the form
]—a,a] x V' and v € R x {0}.

If€]l—a,alandy € Vand t € [0, 1], we set hg(y,t) == y—t%u where
z = max(z,0). This defines hg: V x [0,1] = V. If ¢(y) < B and ¢ € [0, 1], then
ha(y,t) =y. If y € V, then hg(y,0) = y and ¢(hs(y, 1)) = ¢(y) — (6(y) — B)T =
min(¢(y), ) < B. Finally, if y € VN A and ¢t € [0,1], then the assumptions

Za)t '
_t% > 0and u € Nhﬁ(y,s)(A) for any s € [0,¢] imply hﬁ(y’t) € A. -
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Lemma 3.6. Let A be a subset of a manifold M. Then,

C(A)° ={(z,€) € A xp T*M | there exist an open neighborhood U of z and
(3.10) ¢ € C'(U) such that ¢(z) =0 and dp(z) = & and (ANU) C Rxo}

and this set is equal to the set defined similarly with the function ¢ required only
to be continuous on U and differentiable at x.

Proof. (i) Let (x,€) € A x5 T*M. Let U be an open neighborhood of z and
¢ € C°(U) be such that ¢(z) = 0 and dop(z) = € and p(ANU) C Rxg. Let u €
C.(A). There are sequences (z,,) € AN and (c,,) € (Rso)" such that x, = 2 and
n (T —x) = u. One has 0 < ¢, (d(z,)— () = (dp (), cp(xp—1))+0(Cpn(Tn—1)).
Therefore, (£, u) > 0. Therefore, (z,£) € C(A)°.

(ii) Conversely, let (z,£) € C(A)°. Fix a chart centered at x, with image in R™.
If m = 0, the result is trivial, so we suppose m > 0. Denote by ||—|| the Euclidean
norm on R™. If £ = 0, then set ¢ == ||—||2: R™ — R. Now, suppose £ # 0. We can
suppose that £ = (—1,0,...,0).
Let n € Nyg. We will prove that there exists «, > 0 such that, setting
E, = {(u1,v) € Rx R™ | 1||/|| < uy < oy} \ {0}, one has E, N A = 2.
Indeed, suppose that there is a sequence of points (z,) = ((zm,1,25,)) € AV
| > 0 for all m € N and z, 1 2 0. Then z,, — 0, so
up to extracting a subsequence, we can suppose that IIi::H Due C‘O(A). Since
& € Cy(A)°, one has (€,u) > 0. But, writing v = (u1,u’), one has (p,u) = —u; <
—L)lw/|| €0, and actually, (¢, u) < 0, since otherwise, one would have u; = v’ = 0,

such that z,,1 > %||$;n|

so u = 0. This is a contradiction. This proves the existence of the desired a,, > 0.
We can suppose that for n € Nyg, one has (n+1)a,42 < nag41, and in particular
the sequence (o) decreases to 0.

We can assume that the broken line connecting the points A,, = (na,+1, @nt1)
€ R? defines a convex function f: [0, as[ — R. Indeed, each line (A4, A, 1) crosses
the z-axis at some A, > 0, and one can ensure recursively that (n+2)a,42 < Ap.
It is elementary to construct a function ¢ € C*(]—ag, az[) with (t) > f(|t]) for
t € ]—ag,az] and ¥(0) = ¢'(0) = 0. For instance, construct smooth functions
with graphs in the triangles formed by A, 1 and the midpoints of [A, A, 1] and
[A,+1An12], which connect in a C! fashion. Finally, setting ¢: B(0,a2) — R,
(x1,2") = Y(||2'||) — 21, one has ¢(0) = 0 and d¢(0) = £ and ¢(A N B(0,az)) C
R>o. O

Remark 3.7. In view of Lemma 2.5, we will need in the applications of the lemma
only that the function ¢ constructed in the proof is strictly differentiable at x, so
we could simply have defined ¢ (t) :== f(|¢]).
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Remark 3.8. In the right-hand side in the lemma, we cannot require that ¢ €
C?(U). Consider for example the graph I'y of the function f: R — R, z |x|3/2.
Then (0,1) € C(,0)(I'y)°, but the Taylor-Lagrange formula shows that for any
neighborhood U C R of 0, there cannot be a function ¢ € C?(U) with ¢(0) = 0
and do(0) = 0 and f|y < ¢. As a consequence, we see that in the definition of the
propagation set of a sheaf, the differentiability class of the test functions matters,
as opposed to the situation for the microsupport. Namely, in this example, (0,1) €
Ppg?o)o) (Ty) \Ppg%mo) (T's), where the superscript denotes the differentiability class
of the test functions.

Proof of Proposition 3.4. (i) Upper bound. Since N(Z) is open, its polar cone is
closed, so it is enough to prove that T*M \ Ppg(Z) C N(Z)°. If © ¢ Z, then
psupp,(Z) = @, so the inclusion is true. Let x € Z and & € TxM \ N,y(Z2)°.
Let ¢ € C(U) with U an open neighborhood of x be such that ¢(x) = 0 and
dp(x) = €. We will prove that the natural morphism (kz), — (RI'zn{g<01kz)z
is an isomorphism. Then, by Lemma 3.1, we will have £ € Ppg,(Z).

By Lemma 3.5, there exist an open neighborhood V' C U of z and a > 0
and for all 5 € (—,0), a deformation retraction hg: V x [0,1] — V of V onto
V Nn{¢ < B} such that hg((VNZ) x[0,1]) CV N Z.

This proves that the inclusions igy: ZNV N{¢ < B} — ZNV induce
isomorphisms igy*: RT(Z N Viky) °5 RO(Z NV N {p < B};kar). One has
RO(Z NV N { < 0}iky) = lim <, RI(ZNV {6 < k), and if 8 < 3
then ig v oigy = igy. Therefore, the igy’s induce an isomorphism which is
ivi: RT(ZNViky) 25 RO(ZNV N {g < 0};ka).

Since in Lemma 3.5, the homotopies hg can be restricted to arbitrarily small
neighborhoods V' of z, this proves that the natural morphism (kz), —
(RT'zA{¢<0ykz)s is an isomorphism.

(ii) Lower bound. Let € Z and £ € C,(Z)°. Then, by Lemma 3.6, there exist
an open neighborhood U of x and a function ¢ € C1(U) such that ¢(z) = 0
and do(x) = § and ¢(Z NU) C Ryg. Therefore, ZNU N{¢p < 0} = &, so
(Rl zA¢<0rkz)z = 02 (kz). =k, so by Lemma 3.1, £ ¢ Ppg,(2). O

Remark 3.9. The proof actually shows that 7, (Z) N C(Z)° C T*M \ Ppg'(Z).

Remark 3.10. Taking polars of the inclusions (3.9), we see that the fiberwise
closure of N(Z) is contained in usupp(Z)°, which is contained in C(Z), but the

inclusion N(Z) C psupp(Z)° need not hold: if € 9(Int (Z)), then N(Z), = T, M
but psupp, (Z) 2 {0}
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84. Whitney cones of maps

In this section, we study the Whitney cones of continuous maps. The results are
elementary and their proofs do not require any sheaf theory. After the definitions
and general properties, we give characterizations of Lipschitz continuity and strict
differentiability in terms of the Whitney cone and extend these characterizations
to CY-submanifolds. Then we prove a chain rule involving Whitney cones. Finally,
we introduce directional Dini derivatives and relate them to the Whitney cone,
which will be used to prove an upper bound on the conormal of a continuous map
in Section 7.

84.1. Definitions and first properties

The definitions of the strict tangent cone N(A), the tangent cone C(A), and the
Whitney cone C(A, B) of subsets A, B of a manifold, and their main properties,
are recalled in Appendix B. If f: M — N is a continuous map between manifolds,
we define its Whitney cone as the Whitney cone of its graph, that is,

(4.1) Cy = Oy, Ty).

This is a closed symmetric cone in T'(M x N).
Furthermore, if x € M, we set

(4.2) Co(f) = Cla 5Ty, Ty).

This is a closed cone in T{,, () (M x N). We also set C,(I'y) = C(y f(2))(I'y) and
similarly for Nm(F]f).

Furthermore, if u € T, M, we define the following analogue of the directional
derivatives:

(4.3) C;f(f) =C.(f)N (R)(ﬂl X Tf(I)N).

84.2. Characterizations of Lipschitz continuity and strict
differentiability

We begin with two straightforward lemmas whose proofs are left to the reader.
For notions related to Lipschitz continuity and strict differentiability, we refer to
Appendix A. In particular, the notation Lip, (f) is defined in Definition A.1(3).

Lemma 4.1. Let f: V— W be a map between normed vector spaces. Let x € V.
Then,

(44)  Lip,(f) =min {C € R| Colf) € {(v,w) € Vx W | [lw]| < Cllel}}}.
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Lemma 4.2. If f: M — N is a continuous map between manifolds that is point-
wise Lipschitz at x € M, then pp(Cy(f)) = TuM.

The following proposition provides geometric characterizations of Lipschitz
continuity and strict differentiability.

Proposition 4.3. Let f: M — N be a continuous map between manifolds and let
reM.

(1) The map f is Lipschitz on a neighborhood of x if and only if CO(f) = {0}.
(2) The map f is strictly differentiable at x if and only if CO(f) = {0} and C,(f)

is contained in o (dim, M)-dimensional vector subspace, and in that case,

Co(f) =T

Proof. (1) Fixing charts at z and f(x), one has CJ(f) = {0} if and only if there
exists C' € R such that C.(f) C {(u,v) € R™™ | ||v|]] < C|lu||}. Therefore, the
result follows from Lemma 4.1.

(2) Necessity is obvious. We prove sufficiency. We deduce from C2(f) = {0} and (1)
that f is Lipschitz at z. It follows from Lemma 4.2 that py (C.(f)) = T. M.
Therefore, Cy(f) is a (dim, M)-dimensional vector space and is the graph of the
linear map L = py o (pM\Cm(f))_lz Ty M — Ty N. From Lemma 4.1 applied to
f — L, we see that f is strictly differentiable at x with T, f = L. O

These characterizations extend to C°-submanifolds as follows.

Proposition 4.4. Let M be a C°-submanifold of a manifold P and let x € M.

(1) Let F be a (codim, M)-dimensional vector subspace of T P. The C°-subman-
ifold M s locally at x the graph of a Lipschitz map with codomain tangent to
F if and only if Co,(M, M) N F = {0}.

(2) The CY-submanifold M is locally at x the graph of a map f strictly differen-
tiable at x if and only if Cop (M, M) is contained in a (dim, M)-dimensional
vector subspace of Ty P, and in that case, Cp(M, M) =T, ;.

The condition that M be locally at x a graph means that there exist an open
neighborhood U of = and a chart ¢ = (én,¢n): U = Uy x Uy € R™ x R
and a map f: Uy — Uy such that ¢(M NU) = I'y. The condition “f strictly
differentiable at £” then means “f strictly differentiable at ¢as(z)”. One identifies
Cz (M, M) with its image in the chart T, ¢(Cyp (M, M)) = Cyz)(@(M NU), (M N
U)). That the “codomain of f is tangent to F” means that T,¢(F) = {0} x R™.

Proof. In both cases, necessity is straightforward. As for sufficiency, fix a chart ¢
of P at z. We set m := dim, M and n := codim, M. For the first equivalence of the
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proposition, F' is given, and for the second equivalence, we let F' be a complement
of a (dim, M)-dimensional vector subspace of T, P in which C, (M, M) is included.
We can suppose that the chart ¢ is of the form ¢ = (¢pr,on): U =5 Uy x Uy C
R™ x R™ with T,6(F) = {0} x R, hence T,¢(Cy(M, M)) N ({0} x R*) = {0}.
Being a C%-submanifold, M is locally at = the image of a continuous injection
f:R™ — R™" with f(0) = = and f(R™) = M N U’ for U C P an open
neighborhood of z. We can suppose that U’ = U.

The relation T, ¢(C (M, M)) N ({0} x R™) = {0} implies that ¢rr|arnv: M N
U — R™ is injective in a neighborhood of x which we can suppose to be f(Rm) =
M NU. Therefore, ¢pr 0 f: R™ — R™ is a continuous injection, so by the theorem
of invariance of domain, it is a topological isomorphism onto its image, say V,
which is open in R™.

Then define f = (¢n 0 Ho(dmof) ™ =oéno(bulynw)t:V — R In
particular, ¢ = foga on f(R™) = MNU. Therefore, p(MNU) =T'y. Therefore,
Ce(M,M) = Cg,,()(f). By Proposition 4.3, the hypothesis of item (1) (resp.
item (2)) on C,(M, M) implies that f is Lipschitz (resp. strictly differentiable at 0
with derivative 0). O

Remark 4.5. The analogous statements with the tangent cone C, (M) and point-
wise Lipschitz continuity (resp. differentiability) are false, as M = I'y where
f=+/]-]: R — R shows: one has Cy(I';) = {0} x Rsg, which intersects R x {0}
trivially. Another example is any wild enough curve contained in {(x,y) € R? |
ly| < 2%}. Of course, one still has one implication.

Note that we did not assume that the embedding f in the proof was locally
flat. The local flatness of M at z is a consequence of the hypothesis on C,. (M, M).

If codim, M = 1, then the condition of item (1) is equivalent to C, (M, M) #
T.P.

Corollary 4.6. Let f: M — N be a continuous map between manifolds and let
x € M. If C.(f) is contained in a (dim, M)-dimensional vector subspace, then it
is equal to it.

In particular, if dim, M >0, then C,(f) cannot be contained in a (dim, M —1)-
dimensional vector subspace. Contrast this to the case of C,(T'y): if f = /|- :
R™ — R, then Cy(T'y) = {0} xR is contained in a 1-dimensional vector subspace.

We end this subsection with a result proving the lower hemicontinuity of
C:(f) considered as a multivalued function from T, M to T N.

Proposition 4.7. Let f: M — N be a Lipschitz map between manifolds and let
x € M. For anyu € T, M and any open set V. C Ty) N such that Co(f) N ({u} x
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V) # &, there exists an open neighborhood U C T, M of u such that for allu’ € U,
one has Co(f)N ({v'} x V) # 2.

Proof. Let (u,v) € C.(f) and let (u,) € (T,M)N be a sequence converging to
u. We are going to construct a sequence (vy,) € (TN )N converging to v such
that (up,v,) € Cy.(f), which proves the proposition. Fix charts at = and f(x)
in which f is C-Lipschitz. There exist sequences T,y — « and ¢, > 0 such
that ¢, (Yn — T, f(Yn) — f(20)) = (4, v). Set Ym.n = Yn + (Uy, — u)/cn. One has
en(Ymon — Tn) 2w,y for all m € N.

One has [len (f (gmn) — (@) —n(f () — £ @) = len(f W)~ F )] <
C ||t —u||. Therefore, ¢, (f(Ym.n)—f(@n)) —= cn(f(yn)—f(2,)) uniformly in n. By
Lipschitz continuity of f, for any m € N, the sequence (¢, (f(Ym,n) — f(zn)))n has
a converging subsequence, indexed by p, and we set vy, = limy, ¢, (n) (f (Ym,pn)) —
f(2p(ny))- Since the above convergence is uniform, one has v,,, — v. For any m €
N, one has ¢,(n) (Ym,p(n) = o) f Um,pm)) = F(Tpm))) 25 (Uns U )y 50 (U, Uyn) €
Cu(f) O

Remark 4.8. The Lipschitz continuity of f is needed, as the function R? — R,
x> (x)Y3

not lower hemicontinuous, as the function |—|: R — R shows.

shows. One also needs to fix the point x € M. In other words, Cy is

84.3. Chain rule for Whitney cones
We begin with a “tangent analogue” of Proposition 2.11.

Proposition 4.9. Let M; be manifolds for i € {1,2,3}. Let Ay, By C M2 and
As, By C Msz. Assume that

(1) p1s is injective and proper on p1_21(A1) ﬁp2_31(A2) Upl_Q1 (By1) ﬂp2_31 (B2);
(2) (C(A1, By) x 03) N (01 x C(Ag, B2)) C 0123.

Then,
(45) C(Al OAQ,Bl OBQ) g C(A]_,Bl) OC(A27B2).

The reverse inclusion holds if Ay = By is the graph of a C*-map f (without the

above two assumptions); furthermore, if My = {x}, it reads Tf(C(Ay,By1)) C

C(f(A1), f(B1)).

Proof. (1) Let (u',u?) € Cy1 43)(A10Az, BioBs). There exist sequences (z;,,23) €

Ao Ay and (y},y3) € By o By both converging to (z!, %), and a sequence ¢,, > 0
1

such that ¢, (y: — 2L, y3 —23) & (u!,u?). There exists a sequence (z2) € My"

n
such that (z},22,23) € p3 (A1) Npyy (Ag), and similarly a sequence (y2) € My"

n’ n? n
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such that (y),v2,v2) € plo (B1) mp2_31(82). Since pi3 is injective and proper on

Pis (A1) N oy (A2)Uply (B1) N pys (Ba), one can extract subsequences (xi(n)) and
(yi(n)) both converging to some z2 € Ms.

If the sequence (c,(y2 — 22)) has a converging subsequence, let u? € T2 My
be a limit of a converging subsequence. Then (u',u®) € Cu1 42)(A1, B1) and
(u?,u®) € Cly243)(A2, B2). If not, then ¢,lly2 — 22| = +oo (in some chart
of My at #2). Let dy, = |jy2 — 22||"". We extract a converging subsequence of
(dy(y2 — 22)) and call u? € T2 M, its limit. One has ({f—: 50, 50 dp(yl, — 2) =
i—ch(y% — %) = 0 for i € {1,3}. Therefore, the sequences (z.,z2), (y.,y2) and
dp, show that (0,u?) € C(z1 42)(A1, By) and the sequences (z2,23), (y2,y5) and
dy, show that (u?,0) € C(y2 43)(Az, By) with u? # 0. This contradicts the second
assumption.

(2) Suppose that Ay = By = I'y with f a C'-map, so that C(As, B2) = I'ry. Let
(ut,ud) € Cla1,22) (A1, B1) 0 C(32 43y(Az, By). Therefore, there exists u? € T2 My
such that (u',u?) € C(y1 42)(A1, B1) and T2 f(u?) = u®. Therefore, there exist
sequences ((z1,22)) € A" and ((y},%2)) € B" both converging to (z',?),
and (c,) € (Rso)Y such that ¢, (y) — 2L, 92 —22) & (u',u?). Set x5 = f(a2)
and y2 = f(y2). The sequences ((zl,23)) and ((y.,y3)) and (c,) show that

n’ n

(ul’u?)) EC(wl,zii)(Alorval Orf). ]

Note that the first assumption of the proposition is satisfied if A; = By is
the graph of a continuous map f. Furthermore, if M3 = {x}, then the second
assumption means that f is Lipschitz for C'(As, Bs) (see the definition below) and
the conclusion reads C(f~!(Az), f~(Bz2)) C CfoC(As, B). The consideration of
the second assumption motivates the following definition.

Definition 4.10. Let f;: M; — M, for i € {1,2} be continuous maps between
manifolds. The pair (f1, fo) is Whitney-regular if

(46) (Cfl X 03) n (01 X sz) - 0123.
It will also be convenient to use the following definitions.

Definition 4.11. Let f: M — N be a continuous map between manifolds and
ACTM and B C TN be closed cones. The map f is

(1) Whitney-immersive if Cy N (T'M x On) C Oprx n;
(2) Whitney-immersive for A if Cy N (A X On) € Oprxn;
(3) Lipschitz for B if Cy N (0pr X B) C Oprxn-
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By Proposition 4.3(1), a continuous map f: M — N is Lipschitz if and only
if it is Lipschitz for TN. One can characterize Whitney immersions via a reversed
Lipschitz inequality, using arguments similar to the proof of Proposition 4.3(1).
A Whitney immersion is a topological immersion, and a C'-map is a Whitney
immersion if and only if it is a C'-immersion. However, a topological immersion
which is smooth need not be a Whitney immersion, as the function R — R, x — 23
shows.

In view of Proposition 4.3(1), the next proposition is obvious.

Proposition 4.12. Let f;: M; — M;yq fori € {1,2} be continuous maps between
manifolds. If f1 is Lipschitz or fo is a Whitney immersion, then the pair (f1, f2)
is Whitney-reqular.

We can now prove the chain rule for Whitney cones.

Proposition 4.13 (Chain rule). Let f;: M; — M, fori € {1,2} be continuous
maps between manifolds. If the pair (f1, f2) is Whitney-regular, then

(4.7) Chyofs € Cp 0 Cpy.

The reverse inclusion holds if fo is C' (without assuming the pair Whitney-
regular).

Proof. We apply Proposition 4.9 with A; = B, =T, for i € {1,2}. O

Example 4.14. Let fo: R — R, t +— t3 and f; = fy; ' Then f, is C' and
Co(fao f1) 2 Co(f1) o Co(f2). This shows that the hypothesis that (f1, f2) is
Whitney-regular is needed. Similarly, (f2, f1) is Whitney-regular and Cy(f1 o f2) &
Co(f2) o Co(f1). This shows that for the reverse inclusion, the hypothesis that f,
is C'! is needed.

Corollary 4.15. The set of Whitney immersions is closed under composition.

Proof. 1f f;: M; — M; 44 for i € {1,2} are Whitney immersions, then C',of, 003 C
Cy 00y, 003 CCp 00y C01, 50 fo0 f1is a Whitney immersion. O

We end this section with a characterization of Whitney immersions. By invari-
ance of domain, a Whitney immersion between manifolds of the same dimension
is a homeomorphism with Lipschitz inverse. If the dimensions of the domain and
codomain differ, we proceed as follows. We say that a continuous map f: M — N
between manifolds has Lipschitz local retractions if for any x € M, there are open
neighborhoods U of x and V of f(z) such that f(U) C V and a Lipschitz map
r: V — U such that r o f|y = idy.
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Proposition 4.16. A continuous map between manifolds is a Whitney immersion

if and only if it has Lipschitz local retractions.

Proof. Let f: M — N be a Whitney immersion and let x € M. A Whitney
immersion is locally injective, so there is an open neighborhood U of x such that
f is injective on U. One can shrink U so that f(U) be included in a chart of N
with domain W. The map f|(}1 is defined on f(U) C W, which need not be open,
and is not known yet to be continuous. However, the definition of the Whitney
cone and Proposition 4.3(1) still hold in this case. The cone Cf‘al is the image
of Cyy, by the “fip” T(U x W) — T(W x U). Therefore, C°(f|;') € Owxu,
so fl;': f(U) — U is Lipschitz. Therefore, there exists an open neighborhood
Vi of f(x) such that f|;' is globally Lipschitz on f(U) N Vi, and we can assume
f(U) C V;. Therefore, we can extend f\al to a Lipschitz map r1: V3 — M (see for
instance [3, §2]). The set V := 77 (U) is open and contains f(U). We set == 71|y .
One has ro f|y = idy. The converse is clear, since the relation ro f|y = idy implies
Cy), € flip(C;) (as seen by applying the definition of the Whitney cone). O

85. Conormals of maps

In this section, we define the conormal of a continuous map and give its first
properties. We use the convolution of kernels to extend to continuous maps the
functorial properties of the microsupport for the four image operations, and we
prove a chain rule involving conormals.

§5.1. Definition and first properties

If f: M — N is a continuous map between manifolds, we set Ppg(f) := Ppg(I'y)
and

(5.1) Ay = psupp(L'y)

and also Ppg,(f) = Ppg,, () (I'r) and Ay (f) = usupp(, s (L) for @ € M.
We call Ay the conormal of f. This definition is consistent with Equation (2.8),
as Proposition 3.2 shows.

Proposition 5.1. The conormal of f: M — N is a coisotropic closed symmetric
cone in T*(M x N) satisfying mprxn(Ay) =Ty

Proof. A microsupport is always a coisotropic closed cone. Since I'; is closed, one
has marx N (Af) =Ty by Equation (3.2). The graph of a continuous map is a closed
C°-submanifold, so its conormal is symmetric by Proposition 3.3. O



MICROLOCAL LiPscHITZ CONTINUITY 753

Remark 5.2. The conormal of a map need not be a C%submanifold of half di-
mension (that is, a CY-Lagrangian), as the following two examples show. There is
a 1-Lipschitz function f: R — R such that Ay =Ty x {(£,n) € R?||n| < [¢|}. In
particular, A ¢ is a Lipschitz submanifold with boundary of dimension 3. There is
a continuous function g: R — R such that A, = I'; x R? In particular, Ay is a
C%-submanifold of dimension 3. The idea of the following constructions is taken
from a talk by David Preiss. Let (U;);en be a decreasing sequence of open subsets
of R with (), U; = Q (or any dense subset of R of measure 0) such that each
U,+1 has at most half measure in each connected component of U,. For x € R,
let (x) be the largest index n such that x € U,, and 0 if z ¢ |J, U; or « € Q. Let
f(x) = [{(=1)¥® dz and g(z) = [;(—3/2)¥®) dz. Then f is 1-Lipschitz, g is
continuous and their conormals are as claimed by the case of equality of the upper
bound on the conormal (Theorem 7.9).

The following lemma gives a useful criterion for belonging to the propagation
set of a sheaf associated with a continuous map.

Lemma 5.3. Let f: M — N be a continuous map between manifolds and let
x € M. Then v € Ppg,(f) if and only if for all $ € C(W), with W an open
neighborhood of (x, f(x)), such that ¢(z, f(x)) =0 and dé(x, f(x)) = v, the mor-
phism

(5.2) k — (RI'r;nig<orkr,) (e, f(2))

induced by the topological embeddings (pap o iw: Ty N {p < 0} N W —
P (W) wis(a,f(x)) @5 an isomorphism. This implies in particular that the germ
of Ty N{¢ < 0} at (z, f(x)) has the cohomology of a point.

Proof. We apply Lemma 3.1 with Z = I'y. The result follows since the isomorphism
pumlr,: Iy — M induces an isomorphism k = (kns)e == (kr, ) (2, f(2))- O

Remark 5.4. In most of the proofs below, we use only the fact that having the
cohomology of a point implies being nonempty. So in a sense, we use only crude
estimates, which shows the efficiency of sheaf theoretical methods.

We will need the following result in later sections. It shows that adding a
strictly differentiable map to a continuous map shears its tangent cone and its
conormal.
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Lemma 5.5 (Shearing lemma). Let f,g: M — R™ be continuous maps on a man-
ifold with g strictly differentiable at x € M. Then,

(5:3) Co(f +9) = (P, pv +9'(x) 0 ) (Ca(£))
and  Ao(f +9) = (pa — ' (2)T o pv, o) (e (f))-

Proof. (i) The case of the Whitney cone is straightforward (directly or using
Proposition B.1(8).

(ii) Fix a chart of M at z. We introduce the topological automorphism ®: R™*" —
R™ ™ (2,y) = ®(z,y) = (z,y — g(x)). Then ®(T'y) = I'y44. Since P is strictly
differentiable on {z} x R™ as well as its inverse, it follows from Remark 2.10
that Az(f) = MA@, f@)(P) gAw(f + ¢g) and a simple computation completes the
proof. O

§5.2. Chain rule for conormals

In this subsection, we will apply Proposition 2.11 to kernels associated with maps,
in order to derive upper bounds on microsupports of direct and inverse images of
sheaves, and then on the conormal of a composite map.

By analogy with the smooth case (cf. Equations (2.11) and (2.12)), we make
the following definitions (compare with Definition 4.11).

Definition 5.6. Let f: M — N be a continuous map between manifolds, and
ACT*M and B CT*N be closed cones. The map f is

(1) a microlocal submersion if Ay N (0%, x T*N) C 0%, s
(2) noncharacteristic for B if Ay N (03, x B) C 03/ N
(3) Lipschitz for Aif Ay N (A x0%) C 0%y n-

A C'-map is obviously Lipschitz for 7% M. We will see in Theorem 7.8 that
“Lipschitz for T*M?” is equivalent to “Lipschitz”.

Example 5.7. For f: R? — R, x ~ (x1)'/?, one has A,(f) = R(—1,0,3|x1|2/3),
so f is Lipschitz for the constant cone R? x {(£1,&2) € R? | |&1] < C|&2|} for any
CeR.

We first prove the following generalization of Proposition 2.8(2) to continuous
maps. A continuous map is said to be Lipschitz (resp. noncharacteristic) for a sheaf
if it is Lipschitz (resp. noncharacteristic) for its microsupport.

Proposition 5.8. Let f: M — N be a continuous map between manifolds.
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(1) Let F € D"(kys) and assume that f is Lipschitz for F and proper on supp(F).
Then psupp(Rf.F) C pusupp(F) gAf.

(2) Let G € DP(ky) and assume that f is noncharacteristic for G. Then the
morphism f~1G @ WM/N f'G is an isomorphism and psupp(f~'G) C
A 6 psupp(G).

Proof.' The bounds on the microsupport are straightforward applications of Propo-
sition 2.11 (using Proposition 2.2). As for the morphism f_1G®LwM/N — f'G, we
first note that it is functorial in f. Therefore, the lemma following this proof shows
that it is enough to prove that it is an isomorphism when f is a closed embedding
and when f is a submersion. Indeed, we use the decomposition f = py o (idas, f),
that is, the inclusion in the graph of f (which is a closed embedding) followed by
the projection on the second factor (which is a smooth submersion). The submer-
sion case is treated in [6, Prop. 3.3.2].

Suppose that f is a closed embedding of M into N. For a conic sheaf F' €
DP (k7 ), one has the Sato distinguished triangle Rm|F — R F — R, F ANy
When F = phom(kys, G) (with kys = ky as € DP(ky)), one has Ry phom(kyy, G)
= Ro#om (kyr,ky) ®% G and R, phom(ky, G) = R#om (ky,G) = RTyG
(by [6, Prop. 4.4.2(1)]). Noncharacteristicness says that psupp(G) N psupp(kas) C
0%- By [6, Cor. 5.4.10(ii)], one has supp(phom(kys, G)) C psupp(G)Nusupp (ki) C
0%, so Rir, phom(kys, G) = 0. Therefore, RI'y/G ~ R#om (kyr, ky) @ G.

Since f is a closed embedding, one has f' G ~ f~'(RI'y;G) by [6, Prop. 3.1.12].
Applying this formula to ky, we also have wyy/n = f'ky = f =1 (RA#om (kar, kn)).
Therefore, f'G ~ f~Y(RTyG) ~ f~H(RAom (kar, ky) @ G) ~ wyyn % f71G.

O

Lemma 5.9. Let f: M — N be a continuous map between manifolds. Let
s T*M xp T*M — T*M be the fiberwise subtraction. Then Agq,, 5y € (s X
idp«n)"Y(Ay). In particular, if f is noncharacteristic for G € DP(ky), then the
closed embedding (iday, f) is noncharacteristic for py' (G).

Proof. We set f := (ida, f) and P == Ay x N. The latter is a closed sub-
manifold of M x M x N. One has Ty = P N pyn(Ty), so Ky = (py/nEys)p-
One has pusupp(py/nKr) = Apyry gAf = 03 x Ay and TH(M x M x N) =
{(¢,-€,0) | € € T*M}. Therefore, psupp(py,nKy) NTH(M x M x N) C 04555
so by [6, Cor. 5.4.11(i)], one has Ay C psupp(an K ) + TH(M x M x N) =
(s x idp-n) " (Af).

IThis proof was obtained jointly with Pierre Schapira.
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As for the second claim, let G € DP(ky). Then usupp(py'G) = A,y 3

psupp(G) = 03, x psupp(G). Therefore, Ay N (03, x psupp(py' G)) C (s x
idr-n) T (Ag) N (03gar X psupp(G)) € 07 x (Ay N (03, x psupp(Q)))- M

As an application, let f: M — N be a closed topological embedding between
manifolds. If f is a closed C'-embedding, we know that T]ﬁ(M)N =03, 0Af. In
the continuous case, we have Rf.ky =~ kg, so the proposition tells us that
psupp(f(M)) S 03 0 A

Now, we will apply Proposition 2.11 when both kernels are associated with
maps, in order to derive an upper bound on the conormal of a composite map.
This constitutes an analogue for continuous maps of the usual chain rule for differ-
entiable maps. The hypotheses of Proposition 2.11 applied to K; := K, (notation
introduced in Equation (2.28)) with f;: M; — M;;1 continuous maps between
manifolds for i € {1, 2}, read

(1) P13 is proper on p1_21 (Ff1) ﬁ172_31 (Ffz);
(2) (Ap, x03)N (07 x Ay,) € 07g3

(one can remove the antipodal map from the second condition since conormals of
maps are symmetric). Since f1 is continuous, the first hypothesis is satisfied. This
motivates the following definition.

Definition 5.10. Let f;: M; — M, for i € {1,2} be continuous maps between
manifolds. The pair (fi, f2) is regular if

(5.5) (g, x 03) 1 (0F x Ap,) C O,
It is convenient to define

(5.6) AI(S) = Aa(F) N (T3 M % Rzon)

for (z,n) € M xny T*N and

(5.7) A°(f) = Ap 0 (T*M x 0%).

Therefore, a map is Lipschitz for 7% M if and only if

(5-8) A°(f) S O

Example 5.11. The function f: R — R, t ~ ¢3 is a topological automorphism
which is smooth but is not microlocally submersive and its inverse is not Lipschitz
for T*R, and the pair (f, f~!) is not regular. In particular, a topological submersion
need not be a microlocal submersion, even if it is smooth.
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The next proposition is obvious.

Proposition 5.12. Let f;: M; — M, fori € {1,2} be continuous maps between
manifolds. If f1 is microlocally submersive or if fo is Lipschitz for T* Ms, then the
pair (f1, f2) is reqular.

We can now prove the chain rule for conormals.

Proposition 5.13 (Chain rule). Let f;: M; — M, fori € {1,2} be continuous
maps between manifolds. If the pair (f1, f2) is reqular, then

(5'9) Af20f1 < Afl gAfz
with equality if f1 is a Ct-submersion (and if fi and fo are both C').

Proof. As we have seen above, both hypotheses of Proposition 2.11 are satisfied
when the pair (f1, f2) is regular, so the inclusion follows from Proposition 2.3.

If f1 is a Cl-submersion, then f; := f1 x ids: My3 — Mas is a C''-submersion
and Tjyop, = f1'(Ts,). By Equation (3.4) (case of equality), one has Af,of, =
psupp(T fy05,) = psupp(fi ' (T,)) = A 2ggusupp(lﬂf,z) = Aj, 283Af2. The result

follows since for any B C 1™ M3, one has A, ;%B =Ap §B (since f1is C1). O

Example 5.14. The inclusion in the chain rule may be strict: take fo: R — R,
tt3and f; = fy '

If the pair (f1, f2) is not regular, then the chain rule need not hold. For
example, take f1: R = R, t — t3 and fo = ffl.

Corollary 5.15. The set of microlocal submersions is closed under composition.

Proof. If fi: M; — M;41 for i € {1,2} are microlocal submersions, then 07 o
Apop, COT0 Ay, gAf2 C050Ay, €03, s0 fao fiis a microlocal submersion. [

We end this section with a result giving sufficient conditions for the direct
and inverse images of closed cones in a (co)tangent bundle to be closed.

Proposition 5.16. Let f: M — N be a continuous map between manifolds.

(1) If f is Lipschitz for the closed cone B C TN, then Cy o B is closed in TM.

(2) If f is noncharacteristic for the closed cone B C T*N, then Ay o B is closed
m T*M.

(3) If f is Whitney-immersive for the closed cone A CTM and proper on Tpr(A),
then Ao Cy is closed in TN.
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(4) If f is Lipschitz for the closed cone A C T*M and proper on mwp(A), then
Ao Ay is closed in T*N.

In the smooth case, the proof of item (2) is sketched in the paragraph following
the definition of noncharacteristic morphisms in [6, Def. 5.4.12].

Proof. The four claims have similar proofs, so we give a proof of the second one
only. Let K C M x N be compact and contained in a chart. Since Ay N (0}, x
B) C 0%, v and Ay is closed, there exists ax > 0 such that 7/, y(K) N Af N
(T*M x B) C {(&,n) € T*(M x N) | €]l = axl|n|l}. Therefore, pys is proper
on 7y v (K) N Ay N (T*M x B). This implies that pas (73, y(K)) N (Ay o B) is
closed. The requirement that K be contained in a chart can be dropped. Note that
PM © 7T1T/I1><N = 7r;41 opM-.

Let € M. Let Kn be a compact neighborhood of f(x). There exists a
compact neighborhood K of x included in f~!(Ky). Set U := pM(7rIT/leN(KM X
Ky)) = 73 (Kar). Then UN (Ao B) is closed. Therefore, any point (z,&) € T*M
has a neighborhood U such that U N (Af o B) is closed. This implies that Ay o B
is closed. O

Remark 5.17. With the notation of Definition 5.10, if 1 € M7, one says that
the pair (f1, f2) is regular at @y if (Ag, (f1) x {0}) N ({0} x Apyy(f2)) = {0}. If
(f1, f2) is regular at z, then it is so in a neighborhood of z;, since conormals
are closed cones. The same remark applies for the notions of a Whitney-regular
pair and of microlocally submersive, noncharacteristic, Whitney immersive and
Lipschitz maps.

As for a characterization of microlocal submersions, in view of Proposition 4.16
a reasonable conjecture is that the microlocal submersions are the continuous maps
which have Lipschitz local sections. Here is a result in that direction.?

Proposition 5.18. A microlocal submersion with 1-dimensional codomain is an
open map.

Proof. Let f: M — R be a microlocal submersion and let xyp € M. We can
suppose that M is open in R™. Define ¢: M x R — R, (z,y) — y — f(zo). Then
d(wo, f(x0)) = 0 and dé(xo, f(z0)) = (0,1) € Ppg,, (f). Therefore, by Lemma 5.3,
for any neighborhood U of (x¢, f(x0)), one has UNT ;N {¢ < 0} # @. This means
that arbitrarily close to g, there are points & with f(z) < f(z¢), and similarly,

2Pierre Schapira showed me how an adaptation of the proof of the microlocal Bertini-Sard
theorem [6, Prop. 8.3.12] shows that subanalytic microlocal submersions are open maps.
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points y with f(y) > f(xo). Since M is locally connected, this implies that f is
open. O

86. Real-valued functions

In this section, we study more precisely the case of real-valued functions. We
introduce directional Dini derivatives, which permit us to give precise descriptions
of the Whitney cones related to the graph and epigraph of a function. Then we
study extrema of real-valued functions and prove an analogue of Fermat’s lemma
for continuous functions. In the third subsection, we relate the conormal of a
continuous function to the microsupport of the constant sheaf on its epigraph.

§6.1. Directional Dini derivatives

If V is a vector space, f: V — R and (z,u) € TV, we define the supremal derivative
and supremal quotient of f at (x,u) respectively by

flz+tv) - f(z)

(6.1) Df(x,u) = limsup
t—07 t
v—u
(6.2) and @f(x, u) == lim sup w
o+

t—>
(y,v) = (z,u)

One has Qf = limsup Df: TV — R. The functions Df(z,—) and Qf(x,—)
are R o-homogeneous on T,V for any x € V. The functions D f and @ f are defined
similarly with liminf. One has Qf(z, —u) = —Qf(x,u) for any (z,u) € TV. If
V = R, we recover the usual Dini derivatives: for instance, Df(x,1) = DT f(z)
and Df(z,—1) = —D_ f(x).

Once a norm is fixed in V, one has (with the notation introduced in Defini-
tion A.1; the maxima are in R)

(63) Lip™ f(x) = max ([Df(x.w),|Df(x,u))
flull=1

(6.4) and Lip f(z) = max Qf (z,u)).
lull=1

The following proposition, which relates the Whitney cone to the directional
Dini derivatives, will be needed in the proof of the upper bound on the conormal
of a map.
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Proposition 6.1. Let V be a vector space and f: V — R. For any x € V, one

has

(6.5) Co(Ty) = {(u,t) €T,V xR ‘ Df(x,u) <t < ﬁf(x,u)} ,
(6.6) Colf) = {(wt) e LV x R | Qf (2,w) <t < Qf(w,u)}
(6.7) and N, (T}) = {(u,t) €T,V xR ‘ ¢ >@f(x,u)}.

Proof. We treat the case of extremal quotients, the case of extremal derivatives
being similar.

(i) Inclusion “C”. Let (u,t) € Cy(f). There are sequences ,,,y, — x and ¢, > 0

n

such that ¢, (Yn —Tn, f(yn) — f(zn)) = (u,t). Since y,, = xn—i—ci(cn(yn—xn)), one

n

has Q f (2, u) = limy, ¢, (f(yn)— f(25)) = t. One proves similarly that Q f(z, u) < t.

(ii) Inclusion “2”. If u € T,V and t € [Qf(z,u), Qf(x,u)] N R, then by definition

of the liminf and limsup, for any € > 0, there exist sequences y,, 2z, — « and
Uy Wn — w and ap, by, — 0 such that

Ay, bn

+ €

for all n € N. By the intermediate value theorem, there exists ¢, € [0,1] such that
for (zy, dn,un) = (1 = t)(Yn, @, Vn) + tn(2n, b, wy,), one has

f(l'n + dnun) - f(xn)
dy

(6.9) —t| <e

for all n € N. Then, with ¢, == d; ! and s,, == x,, + d,uy,, one has z,, s, 2y 2z and
cn > 0 and ¢, (s, — Tn) = Up — u and limsup,, |c, (f(sn) — f(zn)) —t| < e. In
particular, there exists a € [—e¢, €] such that (u,t + a) € C,(f). Since this is true
for any € > 0, the result follows from the closedness of C,(f).

(iii) The proof for N, (1";{) is similar. O

Remark 6.2. In particular, if f is Lipschitz at 2, then Qf(z,0) = Qf(x,0) =0,
else Qf(x,0) = —Qf(z,0) = +o0.

Corollary 6.3. Let f: M — R be a function on a manifold. For any x € M, one
has a partition

(6.10) Co(f) UNL(TF)UN,(T7) = .M x R.

Proof. 1t follows easily from the proposition and Proposition B.3. O
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86.2. First-order extrema

Since Whitney cones and microsupports depend only on the Cl-structure of a
manifold, it is natural to introduce the notion of a first-order extremum. If V is a
normed vector space, f: V— R and x € V, we define

(6.11) df () =lim inf W
(6.12) df(x) = liinjng

Let M be a manifold. If f: M - R and x € M and ||—|| is a norm on T, M,
then lim inf,—so ”?Tu(f(gb*l((;ﬁ(z) + ¢'(z)v)) — f(x)) does not depend on the chart
¢ at x. Therefore, when no norm is specified, the extended reals df(z) and df(x)
are well defined up to multiplication by a strictly positive real number. Therefore,
properties like “df(x) > 07 still make sense.

Using implicitly the canonical identifications T(M x R) ~ TM x TR and
TR ~ R x R, we define

(6.13) Tso(M xR) =TM x (R x Rxg)
and similarly for the cotangent bundle, for T—o(M x R), etc.

Definition 6.4 (First-order extremum). Let f: M — R be a function on a man-
ifold. A point x € M is a first-order minimum (or f-o minimum) of f if df(z) > 0.
It is an f-o maximum if df(z) < 0, and an f-o extremum if it is either an f-o
minimum or an f-o maximum.

A local minimum (resp. maximum, extremum) is obviously an f-o minimum
(resp. maximum, extremum). A point which is both an f-o minimum and an f-o
maximum is a stationary point: the function is differentiable at that point with
derivative zero. We have the following characterization of f-o extrema.

Proposition 6.5. Let M be a manifold, x € M and f: M — R be a function.
Then the following are equivalent:

(1) x is an f-o minimum of f;
(2) Cx(T'y) CT>o(M x R);

(3) (0,1) € Co(Ly)°;

(4) there exist an open neighborhood U of x and a function 1 € CY(U) such that
() = f(x) and dib(x) =0 and ¥ < flu.

Proof. (4)=(1)=(2)=-(3) are obvious.
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(3)=(4). Since (0,1) € Cy(T')°, Lemma 3.6 gives an open neighborhood W of
(z, f(z)) and ¢ € CY(W) with ¢(z, f(x)) = 0 and d¢(x, f(z)) = (0,1) and ¢(I'f N
W) C Rxo. The implicit function theorem gives an open neighborhood UxV C W
of (x, f(z)) and ¥ € C1(U) with 9 (z) = 0 and di)(x) = 0 such that for (z,y) €
UxV,¢(x,y) = 0 is equivalent to y > ¢ (x). Therefore, ¥ < fly. O

We obtain the following corollary of independent interest.

Corollary 6.6. Let M be a manifold and W be a normed vector space. Let x € M
and f: M — W be a function differentiable at x with df(x) = 0. Then there
exist an open neighborhood U of x and a function v € CY(U) with (x) = 0
and dip(xz) = 0 such that || flu — f(2)|lw < ¢ (that is, for any y € U, one has

1£(y) = f(@)llw < ¥ (y))-

Proof. The hypothesis df (x) = 0 implies that « is an f-o maximum of || f — f(x) ||y
and the result follows from Proposition 6.5. O

Remark 6.7. One cannot strengthen the conclusion of this corollary nor of Prop-
osition 6.5(4) to ¢ € C?(U), as the example of Remark 3.8 shows.

As in standard calculus, the following Fermat lemma will be used to prove
Rolle’s lemma and the mean value theorem for continuous functions.

Proposition 6.8 (Fermat lemma). Let M be a manifold and f: M — R be a
continuous function. If f has an f-o extremum at x € M, then

(6.14) T, M x {0} C Cu(f)
(6.15) and {0} x R CA,(f).

Proof. (i) Whitney cone. We can suppose that z is an f-o minimum. First, suppose
that M = R and = = 0. Let € > 0 and set fc(t) == f(t) + €|t|. Then 0 is a local
strict minimum of f.. We can suppose that it is a global strict minimum.

If fo(—1) < fc(1), then set zp := —1 and yo = min{z € ]0,1] | fe(2) =
fe(zo)} (which exists by the intermediate value theorem and is a minimum by
continuity of f.). If fo(—1) > fc(1), then set yo := 1 and zp := max{z € [-1,0[ |
fe(2) = fe(yo)}. Use the same procedure with the points +1 replaced with the
points +min(—xg, yo)/2, to construct (x1,y;). This way, one constructs sequences
Tp,Yn — 0 that show that (1,0) € Co(f.), so there exists o, € [—¢, €] such that
(1, ) € Co(f). Since this is true for any € > 0, the closedness of Co(f) implies
that R x {0} C Co(f).

In the general case, suppose that M is open in R™. Let u € T, M and set
v:|—a,af = M, t — x + tu. By the previous paragraph, R x {0} C Cy(f o~),
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and by the chain rule for Whitney cones (v being Lipschitz), one has Co(f o) C
Co(y) o Co(f). But Co(y) =R(1,u), so (u,0) € C..(f).

(ii) Conormal. If z is an f-o minimum of f, then (0,1) € C,(I'f)° by Proposi-
tion 6.5, so the result follows from Proposition 3.4. If z is an f-o maximum of f,
then it is an f-o minimum of — f, so by the above, one has {0} xR C A, (—f). Then
the result follows from the fact that Ay and A_; are mapped onto each other by the
involutive automorphism of 7*(M x R) given by (x,t;u, 7) — (x, —t;u, —7). O

§6.3. Microsupports of epigraphs

In [7], Vichery studied the microsupport of the constant sheaf on the epigraph of
a real-valued function, rather than on its graph. In this subsection, we show that
the two points of view are equivalent for Lipschitz functions.

Let M be a manifold and let f: M — R be a continuous function. We intro-
duce the microsupports
(6.16) AJjE = usupp(F]jf).

One has the exact sequences (by [6, Prop. 2.3.6(v-vi)])
(6.17) 0—>kMxR—>kF?@kF; — kp, =0
(6.18) and 0 — klnc(rf) — kyrxr = kF? — 0.

It follows from [6, Exe. II1.4] that if U is a convex open subset of a vector
space, then kg is cohomologically constructible and

(6.19) Dy (kv) ~ kg,

so by Proposition 2.7 one has

(6.20) psupp(U) = psupp(U)*.
Note that these properties are of a topological and local nature.
Proposition 6.9. Let M be a manifold and let f: M — R be a continuous func-
tion. Then,
C i
(2) Ay = (Ap)
(3) A CT%(M xR).
This proposition implies that the knowledge of Ay is equivalent to that of A}"

outside T (M x R), and in particular it is equivalent for Lipschitz functions. Note
that item (2) was proved in essence by Vichery (see [7, Lem. 4.12]).
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Proof. (1) This follows from the triangular inequality applied to the exact se-
quence (6.17).

(2) Consider the topological automorphism of M x R given by ®(x,t) = (z,t —
f(x)). Then @(F?) = M x (£Rs¢). Therefore, since Int(F}") = F;f, we have
Msupp(F}f) = ,usupp(Int(F}'))“ by Equation (6.20) and the fact that it is a topo-
logical and local property. On the other hand, the triangular inequality applied to
the exact sequence (6.18) implies that J\JT = ,usﬁpp(Int(F}“)).

(3) The result is clear if f is C'. Now, let f be continuous. Since the result to
prove is local, we can assume that M is compact. We define an increasing se-
quence (fn)nen of smooth real-valued functions on M converging pointwise (in-
deed, uniformly) to f as follows. Let fo be the constant function equal everywhere
to (minys f) — 1, and given f, < f, let €, = minp (f — f,) > 0 and by density
of smooth functions in the space of continuous functions with the compact-open
topology, let f,4+1 be a smooth function such that f —€,/2 < fr11 < f.

Then F;f - F}:H C F;{n and (), cy F}"n = F}'. It follows that the inclusions
induce an isomorphism hénqu?n = kl‘j' Applying [6, Exe. V.7], one gets A}' -

n

U.Af CT50(M xR). O

Example 6.10. It can happen that (A;{)T =T} M xR>. An example is given by
f:R = R, z— xsin(l/x), for which (A;f)o = R xRyg. In particular, the union in
item (1) need not be disjoint (although it is disjoint outside T (M x R) in view
of items (2) and (3), and in particular for Lipschitz functions).

87. Main results

This is the main section of the paper, where we prove the characterizations of
Lipschitz continuity and strict differentiability in terms of the conormal. We also
prove upper bounds on the Whitney cone and on the conormal of a continuous
map.

87.1. Mean value theorem

In the case of a continuous map between vector spaces, we can give a lower bound
on the conormal in the form of a mean value theorem. As in the classical treatment,
we prove it first for maps of a real variable. Recall that the conormal Ay of a
continuous map f was defined in Equation (5.1).

Lemma 7.1 (Rolle’s lemma). Let a,b € R with a < b. If f:[a,b] = R is a
continuous function with f(a) = f(b), then there exists ¢ € |a,b[ such that {0} x
R C Ac(f)-
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Proof. Apply Fermat’s lemma (Proposition 6.8) at a local extremum of f in ]a, b][.
O

Lemma 7.2 (Mean value theorem for real-valued functions of a real variable).
Let a,b € R with a < b. If f: [a,b] — R is a continuous function, then there
exists ¢ € |a, b such that (f(b) — f(a),a —b) € A.(f).

Proof. As in the classical case, we apply Rolle’s lemma to the function x — f(z)—
%g(a)x and we use the shearing lemma (Lemma 5.5). O

The previous Rolle lemma is not true for real-valued functions of several
variables. For instance, consider py: R? — R. Then p5(0,0) = p2(1,0) = 0, but
for all ¢ € [0, 1], one has A ) (p2) = R(—1,1), which intersects {0} x R only at
{(0,0)}. However, if we slightly relax the conclusion, there is a mean value theorem
for continuous maps, which we prove first in the case of real-valued functions.
Recall that we defined A == A\ {0}.

Lemma 7.3 (Mean value theorem for real-valued functions). Let U be an open
subset of a vector space. Let f: U — R be a continuous function. Let a,b €
U be such that a # b and [a,b] C U. Then there exists ¢ € |a,b] such that

Ad(f)n (b—a, f(b) - fla))" # 2.

Proof. Set u:=b—a and v := f(b) — f(a). Define v: 10,1[ = U, t — (1 —t)a + tb.
One has Ay(y) =Tyt = (1,u)* for any t € ]0, 1].

If the pair (v, f) is not regular, then there exists a nonzero vector £ € (03 o
A )N (Afo0f) with € € TU for some ¢ = y(s) € ]a, b. Therefore, (0,€) € As(y) =
(1,u)*, so (€,u) =0, so (£,0) € A.(f) N (u,v)L, which completes the proof.

If the pair (v, f) is regular, then the chain rule for conormals (Proposi-
tion 5.13) applies, and one has Afo, C A, oA ¢. We apply the mean value theorem
for real-valued functions of a real variable (Lemma 7.2) to f o~ extended by con-
tinuity to [0,1]. It gives an s € ]0, 1] such that (v, —1) € As(f o). Let ¢ :== ~(s).
By the chain rule, there exists ¢ € TU such that (v,£) € Ag(y) = (1,u)* and
(€,1) € Ac(f)- One has ((&,1), (u,v)) = ({,u) + v =0. O

We can now prove a mean value theorem for continuous maps between vector
spaces. Recall that the notation A (f) was defined in Equation (5.6).

Theorem 7.4 (Mean value theorem). Let V and W be vector spaces and U C 'V
be open. Let f: U — W be a continuous map. Let a,b € U be such that a # b and
[a,b] CU. Let ng € W*. Then there exists ¢ € a,b| such that

(7.1) A (£)n (b= a, f(0) = fla) " # 2.
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In particular, if f is Lipschitz at ¢ for (b—a)*, then there exists & € V* such that
T
(§o0,m0) € Ac(f) N (b —a, f(b) — f(a)) .

Proof. Set uw:=b—a and v := f(b) — f(a) and vy := (ng, v). Since ng: W — R is
Lipschitz for T*R, the chain rule gives Ay of C Ang,,O. One has A, (19) = Tyt =
R(—ng, 1) for all x € ]a,b[. Applying Lemma 7.3 to this real-valued function, we
obtain ¢ € Ja,b[ and a nonzero vector (£,7) € A(no o f) N (u,v0)L.

By the chain rule, there exists n € W* such that (§,7) € A.(f) and (—n,7) €
Afeey(no) = R(—=no,1). This implies 1 = 71n9. Therefore, (£, 71m0) € A°(f), and it
is nonzero since (£, 7) # 0. Moreover, ((&,710), (u,v)) = ((£,7), (u,vg)) = 0.

Finally, if f is Lipschitz at ¢ for (b —a)*, then 7 # 0, and since the conormal
of f is symmetric, we can suppose by R-homogeneity that n = ng. O

87.2. Lower bound on the conormal

We immediately obtain from the mean value theorem an upper bound on the
Whitney cone of a continuous map in terms of its conormal. We will also consider
it as a sort of lower bound on its conormal in terms of its Whitney cone. Recall
that we defined AT := Upe i vt

Theorem 7.5 (Lower bound on the conormal). Let f: M — N be a continuous
map between manifolds and let © € M. Then,

(7.2) c.(Hc () AN’

neT;(I)N
with equality if dimy,) N =1, in which case it reads

(7.3) Co(f) = Aal )T
L

In particular, if w € C,(f) and n € T;(x)N and f is Lipschitz at x for py(w)—,
then there exists & € TXM such that (£,m) € Au(f) Nwt. In particular, if f is

Lipschitz at x for Ty M, then pn(Aa(f)) =T}, N.

Proof. (i) Let w € Cy(f) and 7 € T}‘(x)N and fix charts at = and f(z). There

exist sequences ¥y, 2z, — x and ¢, > 0 such that ¢, (2, — Yn, f(2n) — f(yn)) = w.
Since w # 0, we can suppose that vy, # z, for all n € N. By the mean value
theorem (Theorem 7.4), there exist sequences x,, € |yn, 2n[ and v, € Agn (H)N(zn—
Yns f(2n) = f(yn))*. Since z,, = x, up to extracting a subsequence and normalizing
Vp, we can suppose that (v,) converges. Its limit, say v, is in Ag(f) Nw.

(ii) For the case of equality, suppose that dims,y N = 1, and let w = (u,v) €
AL (f)T\ {0}
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Suppose first that f is Lipschitz. There exists (€,7) € A, (f) such that (€, u)+
nuv = 0. Since f is Lipschitz, u # 0, so by the upper bound on the conormal
(Theorem 7.9%), there exists v’ € R such that (u,v') € Cy(f) and (£,u) +nv’ = 0.
So n(v —v") = 0. Since f is Lipschitz, n # 0, so v = ', so w = (u,v") € Cy(f).

In the general case, suppose that w ¢ C.(f). By Proposition 4.4(1), this
implies that I'; is the graph (in other coordinates) of a Lipschitz map. The result
then follows from the previous paragraph, since C,(f) and A,(f) depend on f
only via its graph.

(ili) For the last claim, let w € Cy(f) and n € T7)N. The case n = 0 is trivial
since 0 € A,(f) Nw, so we suppose n # 0. By (i), there exist £ € T*M and
t € Ryg such that (§,tn) € AT(f) Nw™. Since f is Lipschitz at = for pas(w)*, we
have t # 0, so we can suppose t = 1, so (£,7) € A.(f) Nw™. O

Remark 7.6. The condition in the theorem that f be Lipschitz at a for pys(w)=*
is necessary, as the function /—: R — R shows.

87.3. Characterization of Lipschitz continuity

In this subsection, we prove that a continuous map between manifolds f: M — N
is Lipschitz if and only if it is “Lipschitz for T*M” (Definition 5.6(3) or Equa-
tion (5.8)). The definitions and properties we use related to Lipschitz continuity
are recalled in Appendix A. We first need a technical lemma.

Lemma 7.7. Let A be a topological space and ag € A. Letn € N and C, D € Ry
with CD < 1. Let f: Rx A — R"™ be a continuous map with f(0,a0) = 0 which is
C-Lipschitz in its first variable in a neighborhood of (0,ap). Let : AXR™ — R be
a continuous map with 1 (ag,0) = 0 which is D-Lipschitz in its last n variables in
a neighborhood of (ag,0). Then there exist n > 0, an open neighborhood U of ag,
and a continuous map V: U — R such that for all (t,a) € |—n,n[ x U, one has

t=1v(a, f(t,a)) & t=Y(a).

Proof. 1t suffices to apply the Banach fixed-point theorem with continuous param-
eter to the map g: Rx A = R, (¢,a) — ¥(a, f(t,a)) in a suitable neighborhood of
(0,ag) of the form [—n,n] x U with n > 0 and U an open neighborhood of ag. O

Recall that we defined C3(f) = Co(f) N ({0} x Ty N) and AY(f) := A (f)N
(T M x {0}).

Theorem 7.8. Let f: M — N be a continuous map between manifolds and let
x € M. The following are equivalent:

3This does not create any circular argument.
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(1) f i4s Lipschitz on a neighborhood of x;
(2) C2(f) = {0}
(3) A2(f) = {0}

The implication (1)=-(3) for real-valued maps was proved in essence in [7,
Thm. 3.9(6)]. We recall the proof here: if f: M — R is, say, C-Lipschitz at g € M
in a given chart, then, setting v := {(z,t) € R™*! | t > C|z||}, one has I’;{ +
v C 1"f7 S0 NmO(F ) 2 Int (), so by Proposition 3.4, A (f) C NM(F;{)O C 7.
Therefore, A}, (f) o {0} € ~4° 0 {0} = {0}, and we conclude by Proposition 6.9(1).

Proof of Theorem 7.8.
(2)=(1) is (one implication of) Proposition 4.3(1).

(3)=(2). Let (0,v) € C(f). Let n € T}‘(I)N. By the lower bound on the conormal
(Theorem 7.5), there exist £ € TX*M and t € Ry such that (£,tn) € A,(f) and
(& 1), (0,v)) = 0. Condition (3) implies that ¢ # 0. Therefore, for all n € T}, N,
one has (n,v) = 0. Therefore, v = 0.

(1)=(3). Let (g, &) € T* M. We may suppose that M is open in R, that N = R"
and that f is C-Lipschitz for some C' € Ry .

(1) We first prove that (£o,0) € Ppg,, (f). Let ¢: M x N — R be a function of class
C! with ¢(zo, f(z0)) = 0 and dé(xo, f(
of open neighborhoods W of (xg, f(20)) such that each topological embedding
pvoiw: TpN{sd <0} NW — py (W) induces an isomorphism in cohomology.
Then Lemma 5.3 will imply that (£,0) € Ppg,, (f).

Since par (A6(zo0, £ (z0))) = €0 0, we may suppose that §(z,4) = 1~ (a’,y)
in some neighborhood Wy of (z¢, f(x¢)), where x = (x1,2") € R™. Therefore, for
any W C Wy, one has

Tpn{o <O}NW ={(z, f(2)) €W [ 21 < (2, f(2))}.
o

Since 3 (x0, f(20)) = —pn (dé(zo, f(x0))) = 0, there exists an open neighborhood
of (x{, f(xg)) where v is 1/(C + 1)-Lipschitz in its last n variables. Therefore, by
Lemma 7.7, there exist n > 0, an open neighborhood U’ of z{, and a continuous
map ¥: U’ — R such that, setting Uy = |(z0)1 — 7, (x0)1 + n[ x U’, we have for
z € Uy,

x0)) = (£0,0). We will construct a basis

z <P, f(z) & z <Y
Then, for any open neighborhood W C Wy N (Uy x N) of (xg, f(z0)), one has
Frn{e <0}nNW = {(z,f(z)) € W | 21 < ¥(z)}. Set U = pu(W NTy).
The projection pas: {(z, f(x)) € W | 21 < ¥(2)} = {x € U | 1 < ¥(z')} is
an isomorphism. If W is convex, then so is U, and the inclusion iy: {z € U |
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z1 < ¥U(z')} — U induces an isomorphism in cohomology. Therefore, so does
pmoiw =igopm: IyN{p <0} NW < U.

Finally, we can find a basis of open convex neighborhoods W of (xg, f(xo))
such that pp(W NTy) = py(W). For instance, we may set U,, = B(zg,1/n)
and W,, == U, x B(f(Uy),1/n) for n € N5, where B(f(U,),1/n) denotes the
1/n-neighborhood of f(U,).

(2) We will prove that B ((£0,0), [[€l|/(C +2)) € Ppg,, (f), where the left-hand
side denotes the open ball in R™*" centered at (&p,0) with radius [|&]|/(C + 2)
for the sup norm.

Let (§,1) € T, t(xoy (M x N) with [|€]], [|n]| < [|€]|/(C+2). Define the linear
automorphism @ := id +(£,1) ® (e,0) of T4y, f(z0)) (M x N), where e € T, M is
such that [le] = [|&]| ™" and (&, e) = 1.

One has &~ ! = id— 1+<1£ F(&n) ® ( 0). Therefore, if v € Ty, )N, then

(0, ) = (— ke, v). One has || el < slpgrpllell < =7y vl =
lv]|/(C+1). Since f is C-Lipschitz, this implies ®(Cy, (f))N({0} X T¢(ze)N) = {0}.
By Proposition B.1(8), one has C(4, f(20)) (®(L's), ®(I'y)) = ®(Cs, (f)). Therefore,
by Proposition 4.4(1), ®(I's) is locally the graph of a Lipschitz map, say g. The re-
lation ®(I'y) = I'y and Equation (3.6) imply ®T(Ppg,,(9)) = Ppg,, (f). From (1),

one has (£p,0) € Ppg,, (g9). Therefore, ({o +&,m) = ®7(&,0) € Ppg,, (f)-

(3) Finally, there is a neighborhood U of z( (contained in the fixed chart) such that
f is C-Lipschitz on U and (1) and (2) apply with z( replaced by any « € U. On the
other hand, if (z,y) ¢ T'y, then Ppg(, ,,(I'y) = T(*w’y)(Mx N). Therefore, there is a

neighborhood W of (o, f(z0)) such that W x B ((£0,0), [[€0]|/(C+2)) € Ppg(T'y),
which proves that (£,0) ¢ Ay, (f). O

§7.4. Upper bound on the conormal

In this subsection, we give an upper bound on the conormal of a map in terms of
its Whitney cone. Recall that the notation C¥(f) was defined in Equation (4.3).

Theorem 7.9 (Upper bound on the conormal). Let f: M — N be a continuous
map between manifolds and let x € M. Then

(7.4) A () cun’
uETwM

with equality if dim, M = 1, in which case it reads

In particular, if u € TyM and v € A,(f) and f is Lipschitz at x for py(v)*,
then there exists v € Ty(y)N such that (u,v) € Cy(f) Nv+.
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Proof. (i) Let & € T(,, ;(,)(M x N) and u € T,, M be such that ¢~ C2(f) = {0}.
We have to prove that & ¢ A,(f). Since u # 0, there is a linear automorphism ®
of T(ac,f(w))(M x N) such that @71({0} X Tf(w)N) - §J‘ N (Ru x Tf(w)N)

Let (0,0) € Clovy(a (@(T), (7)) = (C,(f)). Then &1(0,v) € C,(f) N
(Rux Ty N)NEH C CE(f)n&t = {0}, so v = 0. Therefore, ®(T'y) is locally the
graph of a Lipschitz map, say g. By Equation (3.6), one has ®T(A,(g)) = AL (f).

Let v € Ty N. One has (®T7HE),(0,v)) = (£,71(0,v)) = 0, so
pn(PT7H(€)) = 0, so by Theorem 7.8((1)=(3)), one has ®T7(¢) ¢ A,(g). There-
fore, € ¢ B7(A,(g)) = Au(f).

(ii) The case of equality is a special case of Proposition 8.4.%

(iii) For the last claim, let u € T, M and v € A, (f). The case u = 0 is trivial since
0 € Cu(f) Nvt, so we suppose u # 0. By (i) and (ii), there exist v € Ty(,)M and
t € Rsg such that (tu,v) € C,.(f) N v+, Since f is Lipschitz at « for py(v)*, we
have t # 0, so we can suppose t = 1, so (u,v) € C,(f) Nv+. O

Remark 7.10. In view of Proposition 4.3(1), the implication (1)=-(3) of Theo-
rem 7.8 is a special case of this upper bound on the conormal.

Example 7.11. Let f: R? — R, (z1,22) — 23sin(1/x1). One has Co(f) = {u €

B3 | Jug] < [url}, 50 Nyezyar C3 ()T = {(61,0,6) € B | |&1] < [&}. In this case,
the upper bound is easily seen to be an equality.

§7.5. Characterization of strict differentiability

The lower and upper bounds on the conormal allow us to derive the following
characterization of strict differentiability.

Proposition 7.12. Let f: M — N be a continuous map between manifolds and

let x € M. The following are equivalent:

(1) f is strictly differentiable at x;

(2) CUf) = {0} and C.(f) is contained in a (dim, M)-dimensional vector sub-
space;

(3) AY(f) = {0} and A, (f) is contained in a (dimg,) N)-dimensional vector sub-
space;

and in that case, Cp(f) = Tr,; and A, (f) = (Tr, )+

Proof. (2)=-(1). This is (one implication of) Proposition 4.3(2), which also proves

4This does not create any circular argument.
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(3)=(2). Condition (3) implies that f is Lipschitz, so the lower bound theorem
reads as follows: for any (u,v) € Cy(f) and any 7 € T.]T(l,)N, there exists £ €
TxM such that (§,n) € Ax(f) and (&, u) + (n,v) = 0. Therefore, A,(f) is an n-
dimensional vector subspace and is the graph of a linear map L: T}‘(w)N - T M
such that (L(n),u) + (n,v) = 0 for all (u,v) € Cy(f) and n € T, N. Therefore,
(n, LT(u) + v) = 0,80 v = —LT(u), so C,(f) is the graph of —LT, which is an
m-dimensional vector subspace.

(1)=-(3). This is a consequence of the upper bound on the conormal, since when f
is strictly differentiable at , one has (¢4, 5/ CHfT = Nued, art(w, f(z)u)}t =

1
(Xuer,m R(ws f'(@)u))” = T p)* O
§7.6. Applications to real-valued functions of a real variable

In this subsection, we present easy applications of the bounds on the conormal
to the case of real-valued functions of a real variable. First, note that (=)' is an
involution on nonzero pointed symmetric cones in a two-dimensional space. Let I
be an open interval of R and f: I — R be a continuous function. By the case of
equality in the upper bound theorem, one has Ay = CfT, hence also C'y = AfT.

If f is Lipschitz and = € I, then AJ(f) = N, (F;{)O, as is easily deduced from
Propositions 6.1 and 6.9(3), that is, the general upper bound on the microsupport
of a closed subset (Proposition 3.4) is an equality for the epigraph of a Lipschitz
function of a real variable.

We set P = {(z,y,u,v) € T(I xR) | wv > 0} and N = {(z,y,&,n) €
T*(I x R) | £ < 0}. Note that N = PT and Int (N) = Int (P) " \ 07 k-

Proposition 7.13. Let I be an open interval of R and f: I — R be a continuous
Sfunction.

(1) The following conditions are equivalent:

(a) f is nondecreasing;
(b) Cy C P;
(C) Af C N.

(2) The following conditions are equivalent:
(a) f is injective with Lipschitz inverse;
(b) f is a Whitney immersion;
(¢) f is a microlocal submersion.

(3) The following conditions are equivalent:

(a) f is a strictly increasing Lipschitz-embedding;
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Proof. (1) The equivalence (1b)«<(1c) follows from the discussion preceding the
proposition. The implication (1a)=-(1b) is straightforward. As for the implication
(1c)=(1la), let @ < b € I. By Lemma 7.2, there exists ¢ € ]a, b[ such that (f(a) —
f(b),b—a) € A(f). Therefore, the hypothesis A; C Int (N) implies f(a) < f(b).
(One could prove (1b)=-(1a) in a similar way, via an analogue of Lemma 7.2 for
Whitney cones.)

(2) The equivalence (2b)<(2c) follows from the discussion preceding the proposi-
tion. Namely, one has Cy N (T x Or) C Orxr if and only if Ay N (07 x TR) C 07 g,
and in that case, f is injective and an open map by the Fermat lemma. If f is in-
jective and open, then C;-1 is the image of Cy by the “flip” T'(I xR) — T(R x I),
50 CO(f~1) C Ogx7 is equivalent to CyN(TIx0r) C O7«g, that is, f~! is Lipschitz
if and only if f is Whitney immersive.

(3) follows from (1) and (2) and Proposition 4.3(1). O

Remark 7.14. The implication (2b)=-(2a) follows directly from invariance of do-
main, but we gave the preceding proof for its elementary nature.

§7.7. Application to causal manifolds

In [4], the authors introduced the category of causal manifolds, in which the cate-
gory of spacetimes (time-oriented connected Lorentzian manifolds) up to conformal
isomorphisms embeds. In [4, Def. 1.7], a causal manifold (M,~yyr) was defined to
be a connected manifold M equipped with an open convex cone yy; € T'M which
is nowhere empty (v, # @& for all x € M), and a causal morphism f: (M,vy) —
(N,~vn) was defined to be a morphism of manifolds such that Tf(Fa7) C .

In a vector bundle, we denote by clg, (—) the fiberwise closure. Note that for
a nowhere empty convex cone v in a vector bundle, one has v°° = clgy (7).

Remark 7.15. The proof of [4, Prop. 1.12] actually proves that if (M, ~yys) and
(N,~vn) are causal manifolds and f: M — N is a morphism of manifolds, then
Ay gfy]‘{, C ~% if and only if T'f(clgw (yar)) C cliw(yn) (and not, as stated there,
Tf(7ar) € 7n). These conditions imply that f is causal and are satisfied when f
is strictly causal or when f is causal and clgy (yn) = Fn. Since time functions are
R-valued, this misstatement has no consequences for the rest of the paper, with
the exception of [4, Cor. 2.10], in which the morphism f should be assumed strictly
causal.
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Here, we make the additional assumptions that the cone ;s of a causal man-
ifold (M, ~ar) is proper, in the sense that (Fa7), does not contain any line for any
x € M, and is continuous, in the sense that 37 = clgy (yar). One can check that
continuity as defined here is equivalent to the continuity of the map = — (var)s
for any reasonable topology on the space of cones (as for instance defined in [1]
using the Hausdorff distance). We set 7g := R x R+, so that (R,~g) is a causal
manifold.

We will extend some of the results of [4] from smooth maps to continuous
maps.

Definition 7.16. A causal morphism f: (M,~yp) — (N,7n) is a continuous map
such that 737 o Cy C N.

Proposition 7.17. A causal morphism is Lipschitz.

Proof. Let f: (M,vy) — (N,yn) be a causal morphism and let © € M. One
has 0 € (a7)z- If (0,v) € Cu(f), then Rv C (FN),, but that cone is proper, so
v=0. O

We have the following extension of [4, Prop. 1.12].
Proposition 7.18. Let (M,~y) and (N,vn) be causal manifolds and let f: M —

N be a continuous map. Then f is a causal morphism if and only if Afg'yfv C vy
If (M, vm) = (R, ), then this is equivalent to Cy C R({1} x Fn). If (N,yn) =
(R,yr), then this is equivalent to Ay C R(v5,; x {—1}).

Proof. (i) The condition is necessary. Let 2 € M and ¢ € A,(f) © (V) f()- Let
u € (Ym)e. There exists n € (V%) s(e) such that (§,—n) € A.(f). By the upper
bound on the conormal, one has (£, —n) € C¥(f) . Therefore, since f is Lipschitz,
there exists v € Ty, N such that (u,v) € C.(f) and ((&,—n), (u,v)) = 0. Since
f is causal and u € 77, one has v € Jy = 737. Therefore, since n € v3;, one has
(&, u) = (n,v) > 0. This proves that £ € ~3,.

(ii) The condition is sufficient. First, note that the inclusion Ay 8710\, C ~%, implies
that f is Lipschitz. Indeed, for x € M, one has 0 € (V%)) If (£,0) € AL(f),
then R C (v%,)z, but that cone is proper, so £ = 0.

Let x € M and v € (a7), 0 Cy(f). There exists u € (7). such that (u,v) €
Cx(f). Let n € (V3)f) \ {0}. By the lower bound on the conormal, one has
(u,v) € A7"(f) 7. Therefore, since f is Lipschitz, there exists ¢ € T M such that
(&, —n) € Ax(f) and ((§,—n), (u,v)) = 0. By the hypothesis, one has £ € (v4,)z-
Therefore, since u € (Fa7)z = (Yar)x, one has (n,v) = (£, u) > 0. This proves that

v E YN =TN-
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(iii) The cases where the domain or the codomain is (R, yg) are obvious. O

Lemma 7.19. Let f: (M,vm) — (N,7vn) be a causal morphism and A C T*M
be a closed cone. If AN~3, C 03, and f is noncharacteristic for v3;, then (Ag

Ag) Ny €0y
Proof. One has

Ap N (AxAR) S Ap N ((ANTa) X W)
C Ay (0 x7y")

COyn

respectively because f is a causal morphism (and by Proposition 7.18), by hypoth-
esis and because f is noncharacteristic for vg;. This implies (ASA Ny C0y. O

This lemma shows that the proof of [4, Thm. 2.9] extends from the case of
the causal morphism f being C' to f being merely continuous. Namely, we have
the following theorem.

Theorem 7.20 (Extending [4, Thm. 2.9]). Let f: (M,vn) — (N,vn) be a mor-
phism of causal manifolds, let < be a closed causal preorder on M and let F €
DP(kys). Assume that

(1) f is noncharacteristic for v3;;
(2) for any x € M, the map f is proper on J~(x);
(3) psupp(F) Nyqy € 03y

Then,
(7.6) pusupp(Rf« F) NInt (73) = @.

In [4], a time function on (M, ~,s) was defined to be a smooth submersive
causal morphism 7: (M, va) = (R, yr). By the extension of [4, Thm. 2.9] that we
just proved, we see that all subsequent results of [4], in particular Theorem 2.13
and Corollary 3.8, continue to hold if the definition of a time function is weakened
as follows.

Definition 7.21. A time function on a causal manifold (M, vas) is a microlocally
submersive causal morphism 7: (M,vy) = (R,7r). A Cauchy time function is a
time function which is proper on the cc-future® and cc-past of any point.

5The cc-future (closed causal future) is the future for the cc-preorder, which is the finest
closed preorder containing the causal preorder (see [4, Def. 1.44]).



MICROLOCAL LiPscHITZ CONTINUITY 775

Proposition 7.22. Let : (M,vym) — (R,r) be a time function. Then yp0C, C
Yr and T is an open map.

Proof. Let (u,v) € Cp(f) with u € . Let n € ’y.fv. By the lower bound on the
conormal, and since 7 is causal hence Lipschitz, there exists £ € Tx M such that
(&, —n) € Ay(f) and ((&,—n), (u,v)) = 0. Since f is causal, one has £ € ~3,; by
Proposition 7.18, and since 7 is microlocally submersive, one has & # 0. Therefore,
(n,v) = (&, u) > 0. Therefore, v € yy.

A time function is an open map by Proposition 5.18. O

88. Topological submanifolds

In this section, we extend some of the previous bounds and characterizations of
Lipschitz continuity and strict differentiability to topological submanifolds.

Proposition 8.1. Let M be a C°-submanifold of a manifold P and let x € M.
The following are equivalent:

(1) M is locally at x the graph of a Lipschitz map;

(2) Cp(M, M) intersects trivially a (codim, M)-dimensional vector space F C
T, P;

and in that case,

(8.1) psupp, (M) € () (ColM, M) N (w+ F)) '
wET, P\F

(8.2) and Cy(M,M) C ﬂ (usuppgc(M)ﬁ(VJrFJ‘))T
veTr P\F+

and in particular, psupp, (M) N F+ = {0}.
If codim, M = 1 and C,(M,M) # T,P, then both conditions are satisfied
and

(8.3) Co(M, M) = psupp, (M)T.

Proof. The equivalence of the two conditions is given by Proposition 4.4(1). The
other claims are restatements of the upper and lower bounds on the conormal. [

We have the following strengthening of Proposition 3.2. A C°-submanifold is
said to be strictly differentiable at a point if it is locally at that point the graph
of a map which is strictly differentiable at that point.

Proposition 8.2. Let M be a C°-submanifold of a manifold P and let x € M.
The following are equivalent:
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(1) M is strictly differentiable at x;
(2) C.(M, M) is included in a (dim, M )-dimensional vector subspace of Ty P;

and in that case, the inclusion in item (2) is an equality and psupp,(M) =
O (M, M)*.

Proof. The equivalence of the two conditions is Proposition 4.4(2). If these con-
ditions are fulfilled, then there exist an open neighborhood U of = and a chart
¢ = (o, 0n): U = Uy x Uy € R™ x R™ and a map f: Uy — Uy strictly
differentiable at ¢as(z) such that ¢(M NU) =T'y. We write T, f for Ty, (. f and
similarly for the Whitney cone and the conormal of f. The equality usupp, (M) =
Cr (M, M)+ follows from A, (f) = C.(f)* (by Proposition 7.12), T.¢(C(M, M))
=Trp, s = Cu(f) (Propositions 4.4(2) and 7.12) and psupp, (M) = ¢'(x)T(A(f))
(consequence of (M NU) =Ty and Equation (3.4)). O

The following lemma is an analog ue of Rolle’s lemma (or the mean value
theorem) for one-dimensional C°-submanifolds.

Lemma 8.3. Let V be a vector space and f: [0,1] = V be a continuous injection.
Set M = f(]0,1]). If n € (f(1) — f(O))l, then there exists t € 10,1[ such that
1 € psupp y( (M).

Proof. Since n € (f(1) — f(0))*, the continuous function 7 o f has an extremum
at some ¢ € ]0, 1], say a maximum. We set .= f(t). One has M C{v € V| (n,v—
z) < 0}, so —n € C,(M)°. By Proposition 3.4, this implies —n € usupp, (M),
which is enough by Proposition 3.3 (since f is injective and [0, 1] is compact, M
is an embedded submanifold, and it is locally flat since it is 1-dimensional). O

Proposition 8.4. Let M be a closed C°-submanifold of a manifold P. Then,
(8.4) psupp(M) € C(M, M)"
with equality if dim M = 1.

Recall that on the other hand, one has 75 (M) N C(M)° C psupp(M).

Proof. Let (z,n) € ustipp(M). Thenn ¢ C,(M, M) is equivalent to C, (M, M)N
n+ = {0}. If this is the case, then by Proposition 8.1, the submanifold M is locally
at x the graph of a map f. Then, by the upper bound on the conormal, we obtain
psupp, (M) = Az (f) € Cw(f)T = C(M, M)T'

In the 1-dimensional case, equality follows from Lemma 8.3. Indeed, let u €
C’w(M,M) and ¢ € ut. Let f:]-1,1] — M be a parametrization of M in a
neighborhood of z. Then there exist sequences or reals z,,y, € |-1,1[ and ¢, > 0
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with 2, ¥, — 0and ¢, (f(yn)—f(2n)) — . Since ut = —u't, we can suppose that
T, < yp for all n € N. For each n € N, let &, be the vector of (f(yn) — f(xn))*
closest to &. Then &, =% €. Applying Lemma 8.3 in each interval [z,,,y,] gives
Zn € |Tn,yn| such that &, € usuppf(zn)(M). One has z, = 0, so f(zn) — , 50
& € psupp, (M). O

Appendix A. Lipschitz continuity and strict differentiability

In this appendix, we recall standard definitions related to Lipschitz continuity and
differentiability, mainly to set the notation.

Definition A.1 ((Pointwise) C-Lipschitz function). Let f: X — Y be a function
between metric spaces and let C' € R.

(1) The function f is C-Lipschitz if
(A1) dy (f(x1), f(22)) < Cdx (1, 22)

for any 1,24 € X.

(2) Let 9 € X. The function f is C-Lipschitz (resp. pointwise C-Lipschitz) at
xg if for all € > 0 there exists a neighborhood U of z( such that f is (C + ¢)-
Lipschitz on U (resp. such that dy (f(xo), f(z)) < (C + €) dx(xg, ) for any
zeU).

(3) The infimum of the numbers C such that f is C-Lipschitz (resp. pointwise
C-Lipschitz) at zq is called the Lipschitz constant (resp. pointwise Lipschitz
constant) of f at x¢ and is denoted by Lip, (f) (resp. Liphy (f)).

It is easy to prove that
(A.2) Lip(f) = limsup(Lip”¥(f)): X — R.

The extended reals Lip, (f) and Lip}"' (f) in Definition A.1(3) are actually minima
when finite.

For maps between manifolds, one can read Lipschitz properties in charts, and
because of rescaling, the notion of C-Lipschitz continuity makes no sense anymore.
One can only require a map to be C-Lipschitz for some C > 0, or for all C' > 0,
in the following sense.

Definition A.2 ((Pointwise) Lipschitz and (strictly) differentiable maps). Let
f: M — N be a continuous map between manifolds and let xg € M.

(1) The map f is Lipschitz (resp. pointwise Lipschitz) at xq if there exist charts
U at xg and V at f(xp) and a constant C' € R such that in these charts f is
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C-Lipschitz (resp. C-pointwise Lipschitz) at xg. It is Lipschitz if it is Lipschitz

at x for all z € M.

(2) The map f is strictly differentiable (resp. differentiable) at xq if there exist a
linear map L: Ty M — Ty(z,)N and charts U at xg and V' at f(xo) such that
in these charts, for all € > 0, the map f — L is e-Lipschitz (resp. pointwise
e-Lipschitz) at xq, that is, there exists a neighborhood U, C U of z such that
f — L is e-Lipschitz on U..

The second item of this definition is of course a rewording of the usual defi-
nitions (if L exists, it is unique and equal to T, f). It emphasizes the naturality
of the notion of strict differentiability. Strict differentiability is the good notion
of “C' at a point”: if a map is differentiable on a neighborhood of a point, then
it is strictly differentiable at that point if and only if its derivative is continuous
at that point. It is also the natural hypothesis for the inverse function theorem.
Strict differentiability at a point implies Lipschitz continuity in a neighborhood of
that point.

The following lemma is used to prove Lemma 2.5.

Lemma A.3. Let U be an open subset of R™ and x € U. Let v CR™ be a closed
cone. Let ¢: U — R be a function which is strictly differentiable at x with ¢(x) =0
and dp(x) € Int (v°%). Then there exists an open neighborhood V. C U of x such
that VN (VN{p <0})+v) CVN{p <0}, that is, VN {¢p < 0} is y-open in V
in the sense of [6, Def. 3.2.1].

Proof. Set L := d¢(z) and € := min{|(L,u)| | u € v and ||u|]| = 1}. Let V. C U be
an open neighborhood of « where the function ¢— L is e-Lipschitz. Let y € VN{¢ <
0} and u € « be such that y+u € V. Then ¢(y+u) < ¢(y)+{L,u)+e|lul| <0. O

Appendix B. Tangent cones

In this appendix, we recall the definitions of the tangent cone C(A), the strict
tangent cone N(A) and the Whitney cone C(A, B) of subsets A, B of a manifold,
and their main properties. The (elementary) proofs can be found in [4, App. A].

Let M be a manifold. Let € M, let z,,y, — « and (c,) € RY be three
sequences, and let u € T, M. We write “cp,(yn — Tn) 2y 47 to mean that in some
chart ¢ at x, one has ¢, (¢(yn) — ¢(2n)) = Tpp(u). This then holds for any chart
at . If A,B C M, their Whitney cone (see [6, Def. 4.1.1 and Prop. 4.1.2]) is
defined as

Cu(A, B) ={u € T,M | 3(z,) € A", 3(ya) € BY, 3 (cn) € (Rs0)"

(B.1) such that z,, = z and y,, — = and ¢, (yn — 2,) — u}
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We write C'(A, B) == U, Cz(A, B) (and similarly for the cones defined below).
We define the tangent cone of A as

(B.2) Cu(A) = Ce({z}, A).
We define the strict tangent cone (or strict normal cone; see [6, Def. 5.3.6]) of A
as
(B.3) N(A) =TM\ C(A,M\ A).
One has
(B.4) o (A) N N(A) C CO(A) C C(A, A).

Proposition B.1 (Elementary properties of the Whitney cone). Let M be a man-
ifold and A, B, A1, As C M.

(1) The Whitney cone C(A,B) C TM is a closed cone.

(2) Antisymmetry: C(A,B) = —C(B, A).

(3) Monotony: if A1 C Ag, then C(A1,B) C C(Az, B).

(4) Additivity: C(A1 U Ag, B) = C(A41, B) UC(A,, B).

(5) Stability under closure: C(A, B) = C(A, B).

(6) Projection on the manifold: Tp;(C(A, B)) = AN B.

(7) If z € Int (A) N B, then C,(A,B) = T, M.

(8) If f+ M — N is strictly differentiable at x € M, then T,f(C,(A,B)) C
Cr@) (f(A), f(B)).

These properties imply corresponding properties for the tangent cone C(A)
(and in that case, strict differentiability in item (8) can be replaced by differentia-
bility). The tangent cone C'(A) is pointwise closed but need not be closed, and one
can have C(A) C C(A) € C(A, A). Note also that C(A, A) is a closed symmetric
cone but need not be convex.

Example B.2. Let A be the graph of the function |—|: R — R. Then Cy(A) =
CA)y = A S Co(A, A) = {(u,0) € B2 | Ju] < Jul}.

Let A be the graph of the function R — R, 2 + x?sin(1/x). Then Co(A) =
R x {0} € C(A), = Co(A, A) = {(u,0) € B2 | [o] < [u]}.

The strict tangent cone N (A) of a subset A of a manifold M is an open convex
cone. Let V' be a chart at € M. One has v € N, (A) if and only if there exist
an open neighborhood U C V of x and an open conic neighborhood v C T,U of u
such that in a chart, UN ((UN A) ++v) C A.
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Proposition B.3. Let A be a subset of a manifold M. One has C(0A,0A) N

Proof. (i) C(0A,0A) N N,(A) = @ for x € M. This is trivial if 2 ¢ A, so
let z € OA. Let u € C,(0A,0A). There exist sequences (z,), (z,) € (0A)N both
converging to x and a sequence (c,) € (Rso)Y such that c,(z!, — x,) = u. If
u = 0, the result is trivial, so we can suppose that x,, # z/, for any n € N. For each
n € N, there exist sequences (Zpm)m € A" and (2], ,,)m € (M \ A)N converging
respectively to x,, and /.. Let p: N — N be a strictly increasing function such that
Cn(Zn,p(n) — Tn — x;w)(n) + 2,) = 0. Then the sequences (2, ,(,)) and (a:;l’p(n))
and (cy,) show that u € C,(A, M\ A) =T, M \ N,(A).

(ii) Ny(A)N Ny (M \ A) = @ for x € OA. Fix a chart at « and suppose that there
exists u € Ny (A) N Ny (M \ A). There exist an open neighborhood U of z and an
open conic neighborhood v C T, M of u such that U N (U N A) +v) C A and
UN U\ A)+~) C U\ A. Therefore, UN (UNA)+~)N((U\ A) +7) = 2.
In particular, since the only conic neighborhood of 0 is T,,M, one has u # 0. Let
(r,) € (UN AN and (y,) € (U\ A)N be sequences converging to x. Rescaling u,
we can suppose that @ 4+« € U. The set (z + u) — 7 is a neighborhood of z, so for
n large enough, one has x +u € U N (z, +7v) N (yn +7) # &, a contradiction. [
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