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A Microlocal Characterization of Lipschitz
Continuity

by

Benôıt Jubin

Abstract

We study continuous maps between differential manifolds from a microlocal point of
view. In particular, we characterize the Lipschitz continuity of these maps in terms of
the microsupport of the constant sheaf on their graph. Furthermore, we give lower and
upper bounds on the microsupport of the graph of a continuous map and use these bounds
to characterize strict differentiability in microlocal terms.
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§1. Introduction

Microlocal analysis is the study of phenomena occurring on differential manifolds

via a study in their cotangent bundle, such as the study of the singularities of

solutions of a partial differential equation on a manifold M via the study of their

wavefront set in T ∗M . A general setting for microlocal analysis is the microlocal

theory of sheaves, developed by Kashiwara and Schapira (see [6]). In [7], Vich-

ery used this theory to study, from a microlocal viewpoint, continuous real-valued

functions on differential manifolds, and to define for these functions a good notion

of subdifferential. We extend this study to continuous maps between differential

manifolds. We study simultaneously the tangent aspects of the subject to empha-

size the parallelism between the tangent and cotangent sides.

Specifically, let f : M −→ N be a continuous map between differential mani-

folds. We denote its graph by Γf ⊆ M × N . We define its Whitney cone Cf as

the Whitney cone of its graph and its conormal Λf as the microsupport of the
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constant sheaf on its graph, that is,

Cf := C(Γf ,Γf ) ⊆ T (M ×N)(1.1)

and Λf := µsupp(kΓf ) ⊆ T ∗(M ×N),(1.2)

where k is any nonzero commutative ring of finite global dimension (for instance

Z or a field). All these terms and pieces of notation are precisely defined in the

article.

The Whitney cone Cf is a closed symmetric cone and the conormal Λf is a

coisotropic closed symmetric cone. If f is C1, then its Whitney cone is equal to

the tangent bundle of its graph and its conormal is equal to the conormal bundle

of its graph, that is, Cf = TΓf and Λf = (TΓf )⊥.

We prove that f is Lipschitz if and only if its Whitney cone contains no

nonzero “vertical” vectors, that is, Cf ∩ (0M × TN) ⊆ 0MN , if and only if its

conormal contains no nonzero “horizontal” covectors, that is, Λf ∩ (T ∗M × 0∗N ) ⊆
0∗MN .

To prove these results, we use the microlocal theory of sheaves of Kashiwara

and Schapira, which we review in Section 2.

In Section 3, we review the main properties of microsupports associated with

subsets. If A is a locally closed subset of M , we set µsupp(A) := µsupp(kA) and

denote its tangent cone by C(A) and its strict tangent cone by N(A). If C is a

cone in TM , we denote its polar by C◦. We give a direct proof of the following

known bounds: if Z ⊆M is closed, then π−1
M (Z) ∩ C(Z)◦ ⊆ µsupp(Z) ⊆ N(Z)◦.

In Section 4, we define the Whitney cone of a continuous map and give its

first properties. In particular, we characterize Lipschitz continuity and strict dif-

ferentiability in terms of the Whitney cone and extend these characterizations to

topological submanifolds. We also prove the following chain rule, which will be

needed later. Let fi : Mi−→Mi+1 be continuous maps between differential mani-

folds for i∈{1, 2}. If (01◦Cf1)∩ (Cf2 ◦03) ⊆ 02, for instance if f1 is Lipschitz, then

(1.3) Cf2◦f1 ⊆ Cf1 ◦ Cf2

with equality if f2 is C1.

In Section 5, we define the conormal of a continuous map and give its first

properties. We use the convolution of kernels to extend to continuous maps the

functorial properties of the microsupport for the four image operations. We also

use it to prove the following chain rule. With the notation above, if (0∗1 ◦ Λf1) ∩
(Λf2 ◦ 0∗3) ⊆ 0∗2, for instance if f2 is Lipschitz, then

(1.4) Λf2◦f1 ⊆ Λf1
a◦ Λg2
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with equality if f1 is a C1-submersion (and if f1 and f2 are both C1).

In Section 6, we study the case of real-valued functions. We define directional

Dini derivatives in order to describe more precisely the various cones associated

with a function. We also study local extrema and more generally “extrema at

first order”, which we define in that section. Namely, if x ∈ M , we set Cx(f) :=

(Cf )(x,f(x)) and Λx(f) := (Λf )(x,f(x)). Then we prove the following generalization

of Fermat’s lemma to continuous functions: if f : M −→ R is continuous and has a

first-order extremum at x ∈M , then

TxM × {0} ⊆ Cx(f)(1.5)

and {0} × R ⊆ Λx(f).(1.6)

Finally, we relate the conormal of a function to the microsupport of the constant

sheaf on its epigraph, studied by Vichery in [7], and we prove that the two points

of view are equivalent for Lipschitz functions.

Section 7 is the main section of the paper, where the claimed characteriza-

tions of Lipschitz continuity and strict differentiability are proved. First, we prove

analogues of Rolle’s lemma and the mean value theorem for continuous maps be-

tween vector spaces. This allows us to give the following upper bound on the

Whitney cone of a continuous map in terms of its conormal. To state it, we de-

fine the following analogues of the directional derivatives. If (x, u) ∈ TM and

(x, η) ∈M ×N T ∗N , we set

Cux (f) := Cx(f) ∩
(
R>0u× Tf(x)N

)
(1.7)

and Ληx(f) := Λx(f) ∩
(
T ∗xM × R>0η

)
.(1.8)

For a subset A of a vector space, we set Ȧ := A \ {0} and A> :=
⋃
v∈Ȧ v

⊥. Then,

(1.9) Cx(f) ⊆
⋂

η∈Ṫ∗
f(x)

M

Ληx(f)>

with equality if dimN = 1, in which case Cf = Λf
>. We use this bound to prove

the microlocal characterization of Lipschitz continuity. This allows us to prove the

following upper bound:

(1.10) Λx(f) ⊆
⋂

u∈ṪxM

Cux (f)>

with equality if dimM = 1, in which case Λf = Cf
>. This in turn allows us

to characterize strict differentiability in terms of the Whitney cone and of the

conormal. We give applications of these results to the theory of causal manifolds.
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In Section 8, we generalize some of these results to topological submanifolds,

and we give conditions in terms of the Whitney cone and of the conormal in or-

der that such submanifolds be locally graphs of Lipschitz or strictly differentiable

maps. For instance, if M is a closed topological submanifold of a differential man-

ifold, then

(1.11) µsupp(M) ⊆ C(M,M)>

with equality if dimM = 1.

Some results (but not all) also hold if one replaces “Lipschitz” (resp. “strictly

differentiable”, Lip, Cf , Λf ) with “pointwise Lipschitz” (resp. “differentiable”,

Lippw, C(Γf ), {Ppg(f)), but we do not state them.

Erratum. As explained in Remark 7.15, Proposition 1.12 of [4] is misstated. We

give in that remark the correct statement and explain why this has no consequences

for the rest of [4].

§2. Background material

§2.1. Notation and conventions

Unless otherwise specified,

• the symbol k denotes a nonzero commutative ring of finite global dimension

(for instance Z or a field);

• vector spaces and manifolds are real and finite-dimensional;

• manifolds are paracompact Hausdorff;

• manifolds, morphisms of manifolds, and submanifolds are smooth, that is, of

class C∞, and submanifolds are embedded (hence locally closed);

• topological (sub)manifolds are called C0-(sub)manifolds, and C0-submanifolds

are locally flatly embedded (that is, their inclusion is locally C0-isomorphic to

a linear inclusion Rm ↪→ Rn), hence locally closed.

We use the terms “function” and “map” interchangeably.

Sets. Given some sets Xi, we set for short Xij := Xi×Xj and similarly for Xijk,

and we write pi (resp. pij) for any projection from a product of the Xj ’s (which

will be clear from the context) to Xi (resp. to Xij). For a product of the form

X × Y , we also denote the projections by pX : X × Y −→ X and pY : X × Y −→ Y ,

and use the same notation for a pullback X ×Z Y . The diagonal map of X is

denoted by δX : X −→ X ×X, and the diagonal of X by ∆X := δX(X), or simply

by δ and ∆ if there is no risk of confusion.
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If Ri ⊆ Xi×Xi+1 for i ∈ {1, 2} are relations, we define the composite relation

(2.1) R1 ◦R2 := p13

(
p−1

12 (R1) ∩ p−1
23 (R2)

)
.

If a is an involution of X2, we set p12a := (idX1
×a) ◦ p12, and similarly for other

indices, and we set

(2.2) R1
a◦R2 := p13

(
p−1

12a(R1) ∩ p−1
23 (R2)

)
= p13

(
p−1

12 (R1) ∩ p−1
2a3(R2)

)
.

If there is a risk of confusion, we write the composition as ◦
2

and the twisted

composition as
a◦
2
.

If Ai ⊆ Xi for i ∈ {1, 2} and R ⊆ X1 × X2, then we define A1 ◦ R :=

p2

(
p−1

1 (A1) ∩ R
)

and R ◦ A2 := p1

(
R ∩ p−1

2 (A2)
)
, and if a is an involution of X1

or X2 respectively, A1
a◦ R := p2

(
p−1

1a (A1) ∩ R
)

and R
a◦ A2 := p1

(
R ∩ p−1

2a (A2)
)
.

These definitions can be considered as special cases of the previous paragraph, by

identifying, for instance, A1 with the relation R0 = {(∅, x) ∈ X0 ×X1 | x ∈ A1}
with X0 = {∅}.

If X and Y are two sets and f : X −→ Y is a function, we denote by Γf ⊆ X×Y
its graph. We will often use implicitly the isomorphism pX |Γf : Γf ∼−−→ X, with

inverse (idX , f). This is also an isomorphism of manifolds if f is a morphism of

manifolds. If fi : Xi −→ Xi+1 for i ∈ {1, 2}, then Γfi+1◦fi = Γfi ◦ Γfi+1 (note the

usual backward composition). If f : X1 −→ X2 and Ai ⊆ Xi for i ∈ {1, 2}, then

f(A1) = A1 ◦ Γf and f−1(A2) = Γf ◦ A2. If f : X −→ R, we set {f 6 0} := {x ∈
X | f(x) 6 0}, and similarly for “< 0”, etc.

Given a real-valued function f : X −→ R, we denote its epigraph and hypograph

by

(2.3) Γ±f := {(x, t) ∈ X × R | ±(t− f(x)) > 0}.

Topological spaces. Given any subset A of a topological space, we denote by A

its closure, by Int (A) its interior and by ∂A := A \ Int (A) its boundary.

A topological embedding is a continuous map that is an isomorphism onto its

image. A topological immersion is a map that is locally a topological embedding.

A continuous map is proper if it is universally closed (that is, all its pullbacks are

closed) or equivalently if it is closed with compact fibers.

Let Ri ⊆ Xi × Xi+1 for i ∈ {1, 2} be relations on topological spaces. If p13

is proper on p−1
12 (R1) ∩ p−1

23 (R2), then R1 ◦R2 ⊆ R1 ◦R2. In particular, if R1 and

R2 are closed, then under the above condition, R1 ◦R2 is closed.
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Given an extended real-valued function f : X −→ R, we define the function

lim inf f : X −→ R, x 7→ lim infy−→x f(y). It is characterized by Γ+
lim inf f = Γ+

f . An

extended real-valued function is lower semicontinuous if and only if its epigraph

is closed, if and only if it is equal to its lim inf. We define similarly lim sup f ,

characterized by Γ−lim sup f = Γ−f .

Vector spaces. Let V be a vector space and let A ⊆ V. We set Aa := −A and

Ȧ := A \ {0}. The subset A is conic (or is a cone) if R>0A = A and is symmetric

if A = Aa. Note that a nonempty symmetric convex cone is a vector subspace.

We denote respectively the orthogonal and the polar of A by

A⊥ := {ξ ∈ V∗ | ∀ v ∈ A, 〈ξ, v〉 = 0}(2.4)

and A◦ := {ξ ∈ V∗ | ∀ v ∈ A, 〈ξ, v〉 > 0}(2.5)

and we define

(2.6) A> := {ξ ∈ V∗ | ∃ v ∈ Ȧ, 〈ξ, v〉 = 0}.

Setting IV := {(v, ξ) ∈ V × V∗ | 〈ξ, v〉 = 0}, one has A> = Ȧ ◦ IV. Note that

A> =
⋃
v∈Ȧ v

⊥, so (−)> is increasing. One has V∗\A> = {ξ ∈ V∗ | ξ⊥∩A ⊆ {0}}.
If A is compact or is a closed cone, then A> is closed.

Vector bundles. Let p : E −→ B be a vector bundle. One denotes by aE : E −→ E

the antipodal map (that is, the fiberwise opposite) and by 0E the zero section (or

its image in E). If A ⊆ E and x ∈ B, we set Ax := A∩ p−1(x). A subset A of E is

defined to be a cone (resp. to be symmetric, convex, a vector subspace) if all the

Ax’s are. Note however that A being closed (resp. open) implies that all the Ax’s

are, but the converse is false in general. Similarly, the vector space operations, the

polar, orthogonal, removal of the origin and the operation (−)> are done fiberwise

(but not the operations of closure, interior and boundary). The polar of an open

subset of a vector bundle is a closed convex cone (see for instance [4, Lem. 1.2]).

Manifolds. Let M be a manifold. We denote by τM : TM −→ M the tangent

bundle of M and by πM : T ∗M −→ M its cotangent bundle, and simply write τ

and π if there is no risk of confusion. For short, we denote the antipodal maps aTM
and aT∗M by aM and the zero sections 0TM and 0T∗M by 0M and 0∗M respectively.

For various projections, we may write p1 instead of, for instance, pTM1
, etc.

For a submanifold N of M , we denote by TNM := (N ×M TM)/TN −→ N

its normal bundle and by T ∗NM −→ N its conormal bundle (the subbundle of

N ×M T ∗M −→ N orthogonal to TN −→ N).
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Let f : M −→ N be a morphism of manifolds. One has the following commu-

tative diagram, with the obvious maps.

(2.7) TM

τM
%%

f ′ //

Tf

##
M ×N TN

pM

��

fτ // TN

τN

��
M

f // N

Note that TΓf = ΓTf under the identification T (M×N) ' TM×TN . We denote

by

(2.8) Λf := T ∗Γf (M ×N)

the conormal bundle of the graph of f . The fiberwise transpose of f ′ is de-

noted by fd. The restrictions of the projections pT∗M : T ∗(M × N) −→ T ∗M and

pT∗N : T ∗(M ×N) −→ T ∗N to Λf will be denoted by pM and pN respectively. We

write paM := aM◦pM . The map πM×idT∗N : T ∗(M×N) ' T ∗M×T ∗N −→M×T ∗N
induces an isomorphism Λf ∼−−→M ×N T ∗N . We have the following commutative

diagram.

(2.9) Λf
paM

xx

pN

&&
T ∗M

πM
&&

M ×N T ∗N

o

OO

pM

��

fdoo fπ // T ∗N

πN

��
M

f // N

For A ⊆ T ∗M and B ⊆ T ∗N , one has

(2.10) fπf
−1
d (A) = A

a◦ Λf and fdf
−1
π (B) = Λf

a◦B.

Note that f is a submersion if and only if

(2.11) Λf ∩ (0∗M × T ∗N) ⊆ 0∗M×N .

More generally, if B ⊆ T ∗N is a closed cone, one says that f is noncharacteristic

for B if

(2.12) Λf ∩ (0∗M ×B) ⊆ 0∗M×N .
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§2.2. Sheaves

We recall in this and the next two subsections a few basic results on sheaves,

kernels and their microlocal theory, and we refer to [6] for a complete treatment.

The support of a presheaf is the complement of the union of the open subsets

sent by this presheaf to zero; in particular, it is a closed subset. Let X be a

topological space. We denote by kX the constant sheaf on X associated with k. If

f : X −→ Y is a continuous map, then f−1(kY ) = kX .

In the rest of this subsection, A, A1, A2 (resp. B) denote locally closed subsets

of the topological space X (resp. Y ), and i will denote the inclusion of that subset.

We define the constant sheaf on A associated with k extended by zero to X by

kX,A := i !i
−1kX . We will also denote it by kA if there is no risk of confusion. It is

characterized by kX,A|A = kX |A and kX,A|X\A = 0. If A1, A2 ⊆ X, then

(2.13) kX,A1
⊗ kX,A2

= kX,A1∩A2
.

Let Db(kX) denote the bounded derived category of the category of sheaves

of k-modules on X. Its objects will still be called sheaves. For F ∈ Db(kX) and

A ⊆ X, one sets

FA := F ⊗L kX,A(2.14)

and RΓA(F ) := RHom (kX,A, F ).(2.15)

The functor (−)A is exact.

By the Grothendieck spectral sequence, the derived functors of Γ(X;−)◦(−)A
and of ΓA(X;−) := Γ(X;−) ◦ ΓA(−) are respectively

RΓ(X; (−)A) ' RΓ(X;−) ◦ (−)A(2.16)

and RΓA(X;−) ' RΓ(X;−) ◦ RΓA(−).(2.17)

If Z is closed and U is open in X and i denotes either inclusion, then, for a

genuine sheaf F , one has FZ = i∗i
−1F and ΓUF = i∗i

−1F . Therefore, Γ(X;FZ) =

Γ(Z;F ) and Γ(X; ΓU (F )) = Γ(U ;F ). Therefore, in the derived category,

RΓ(X;FZ) ' RΓ(Z;F )(2.18)

and RΓ(X; RΓU (F )) ' RΓ(U ;F ).(2.19)

If f : X −→ Y is continuous and G ∈ Db(kY ) and B ⊆ Y , then f−1(GB) =

(f−1G)f−1(B) (see [6, (2.3.19)]), and in particular,

(2.20) f−1(kY,B) = kX,f−1(B).
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In the rest of this subsection, assumptions are made on the topological spaces

involved (hausdorffness, local compactness, finite c-soft dimension) and their mor-

phisms (finite cohomological dimension). All of these properties are satisfied by

topological manifolds and their morphisms.

We recall the following fundamental result without proof.

Proposition 2.1 (Proper base change [6, Prop. 2.6.7, 3.1.9]). Let f : X −→Z and

g : Y −→ Z be continuous maps between Hausdorff locally compact spaces. Denote

their pullback as

(2.21)

Ty
q //

p

��

Y

g

��
X

f // Z

.

Then one has a natural isomorphism of functors

(2.22) Rq ! ◦ p−1 ∼= g−1 ◦ Rf !.

If g ! has finite cohomological dimension, then so does p !, and one has a natural

isomorphism of functors

(2.23) Rq∗ ◦ p ! ∼= g ! ◦ Rf∗.

If f : X −→ Y is a continuous map of finite cohomological dimension between

topological spaces, then the relative dualizing complex (see [6, Def. 3.1.16(i)]) of f

is ωX/Y := f ! kY . There is a natural transformation f−1(−) ⊗L ωY/X ⇒ f ! (−).

It is an isomorphism if f is a topological submersion between Hausdorff locally

compact spaces (see [6, Prop. 3.3.2(ii)]) and under microlocal conditions that we

give in Propositions 2.8(2b) and 5.8(2). We write ωX := ωX/{∗}. If X is a C0-

manifold, then ωX is isomorphic to the orientation sheaf shifted by the dimension

of X.

Now, assume that X is Hausdorff locally compact and has finite c-soft dimen-

sion. The duality functors on X (see [6, Def. 3.1.16(ii)]) are defined by

DX := RHom (−, ωX)(2.24)

and D′X := RHom (−,kX).(2.25)

Recall that if F ∈ Db(kX) is cohomologically constructible (see [6, Def. 3.4.1]),

then so are DX(F ) and D′X(F ), and F ' DX(DX(F )) ' D′X(D′X(F )) (this is [6,

Prop. 3.4.3]), that is, cohomologically constructible sheaves are reflexive.
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§2.3. Kernels

Let Xi be Hausdorff locally compact spaces for i ∈ {1, 2, 3}. A kernel from X1 to

X2 is an object of Db(kX12
). We consider the bifunctor of convolution of kernels

(see [6, Prop. 3.6.4]) defined on objects by

◦ : Db(kM12)×Db(kM23) −→Db(kM13),

(K1,K2) 7−→K1 ◦K2 := Rp13 !

(
p−1

12 (K1)⊗L p−1
23 (K2)

)
(2.26)

and similarly on morphisms. If there is a risk of confusion, we write this convolution

as ◦
2
. Recall that with our notation, pi, for instance, can stand for pMi

or pTMi

or pT∗Mi
, and the signification is clear from the context, for instance in the above

formula.

The convolution of kernels is associative. We spell out the special cases when

either X1 or X3 is a point. Adapting the notation, for K ∈ Db(kM×N ) and F ∈
Db(kM ) and G ∈ Db(kN ), one has

(2.27) F ◦K ' RpN !(p
−1
M F ⊗L K) and K ◦G ' RpM !(K ⊗L p−1

N G).

The following two standard results show that the convolution of kernels is a

generalization of the composition of functions.

If f : X −→ Y is a function between topological spaces, we set

(2.28) Kf := kX×Y,Γf

for the constant sheaf on the graph of f associated with k extended by zero to

X × Y .

Proposition 2.2. Let f : X −→ Y be a continuous map between Hausdorff locally

compact spaces.

(1) If F ∈ Db(kX), then F ◦Kf ' Rf !F .

(2) If G ∈ Db(kY ), then Kf ◦G ' f−1G.

Proof. This follows easily from the proper base change theorem applied to the

pullback of f and idY .

Proposition 2.3. If fi : Xi −→ Xi+1 for i ∈ {1, 2} are continuous maps between

Hausdorff locally compact spaces, then

(2.29) Kf2◦f1 = Kf1 ◦Kf2 .
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Proof. This follows easily from Equations (2.20) and (2.13) and the fact that p13

induces an isomorphism p−1
12 (Γf1) ∩ p−1

23 (Γf2) = Γf1 ×M2
Γf2

∼−−→
p13

Γf1 ◦ Γf2 =

Γf2◦f1 .

§2.4. Microsupport of sheaves

Let M be a manifold and let F ∈ Db(kM ). We define the propagation set of F by

Ppg(F ) :=
{

(x, ξ) ∈ T ∗M | for all φ ∈ C∞(U), where U is an open

neighborhood of x, with φ(x) = 0 and dφ(x) = ξ, one

has (RΓ{φ>0}(F ))x = 0
}
.(2.30)

We set Ppgx(F ) := Ppg(F )x. The microsupport of F (see [6, Def. 5.1.2(i)]) is

defined by

(2.31) µsupp(F ) := T ∗M \ Ppg(F ).

Therefore, the microsupport of a sheaf is the closure of the set of codirections of

nonpropagation. It is a coisotropic closed conic subset of T ∗M such that

πM (µsupp(F )) = supp(F ) and µsupp(F [i]) = µsupp(F ) for i ∈ Z, and satisfies the

following triangular inequality: if F1 −→ F2 −→ F3
+1−−→ is a distinguished triangle in

Db(kM ) and i, j, k ∈ {1, 2, 3} with j 6= k, then µsupp(Fi) ⊆ µsupp(Fj)∪µsupp(Fk)

(see [6, Prop. 5.1.3 and Thm. 6.5.4]). We set µsuppx(F ) := µsupp(F )x.

The following lemma gives a useful criterion for belonging to the propagation

set of a sheaf.

Lemma 2.4. Let M be a manifold, let F ∈ Db(kM ) and let x ∈ M . Then ξ ∈
Ppgx(F ) if and only if for all φ ∈ C∞(U), with U an open neighborhood of x, such

that φ(x) = 0 and dφ(x) = ξ, the morphism

(2.32) Fx −→ (RΓ{φ<0}(F ))x

induced by the inclusions (iV : V ∩ {φ < 0} ↪→ V )V 3x is an isomorphism.

Proof. The result follows by applying the stalk functor to the distinguished triangle

RΓ{φ>0}(F ) −→ RΓU (F ) −→ RΓ{φ<0}(F )
+1−−→ .

The following lemma will simplify some proofs below. The definition of strict

differentiability is recalled in Appendix A.

Lemma 2.5. Let M be a manifold and let F ∈ Db(kM ). If (x, ξ) /∈ µsupp(F ),

then for all functions φ : U −→ R, with U an open neighborhood of x, which are

strictly differentiable at x with dφ(x) = ξ, one has (RΓ{φ>φ(x)}(F ))x = 0.
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Proof. In the proof of [6, Prop. 5.1.1], the part (2)⇒(1)1 proves the lemma without

any change. Indeed, with the notation there, if φ : U −→ R is strictly differentiable

at x with dφ(x) ∈ Int (γ◦a), then {φ < 0} coincides with a γ-open set in a neigh-

borhood of x by Lemma A.3.

Remark 2.6. An analogous statement assuming only differentiability of φ is false.

Indeed, let Z = {(x, y) ∈ R2 | x + y = 0 or ∃n ∈ N>0 x + y = 1/n}. Then

µsupp(kZ) = Z×R(1, 1). Let φ : R2 −→ R, (x, y) 7→ 2x2 sin(π/x)+y. Then φ(0, 0) =

0 and dφ(0, 0) = (0, 1) /∈ µsupp(0,0)(kZ). For n ∈ N>0, set Un = ]−1/n, 1/n[
2
.

Then the inclusions in : Un∩Z ∩{φ < 0} ↪→ Un∩Z do not induce an isomorphism

in cohomology of the inductive limit. Indeed, setting Zm := {x + y = 1/m}, the

subsets Zm ∩ Un are connected, but for any n,m ∈ N with 2m > n, the subset

Z2m ∩ Un ∩ {φ < 0} is not.

Proposition 2.7 ([6, Exe. V.13]). Let M be a manifold and let F ∈ Db(kM ) be

cohomologically constructible. Then,

(2.33) µsupp(D′M (F )) = µsupp(F )a.

Proof. Since constructible sheaves are reflexive, it suffices to prove µsupp(D′M (F ))

⊆ µsupp(F )a. This is a special case of [6, Prop. 5.4.2] where one factor is reduced

to a point.

We recall the following functoriality properties of the microsupport. A mor-

phism is said to be noncharacteristic for a sheaf if it is noncharacteristic for its

microsupport.

Proposition 2.8 ([6, Prop. 5.4.4–5, 5.4.13–14]). Let M be a manifold.

(1) Let F1, F2 ∈ Db(kM ).

(a) Assume that µsupp(F1) ∩ µsupp(F2)a ⊆ 0∗M . Then µsupp(F1 ⊗L F2) ⊆
µsupp(F1) + µsupp(F2).

(b) Assume that µsupp(F1) ∩ µsupp(F2)⊆ 0∗M . Then µsupp(RHom (F1, F2))

⊆ µsupp(F1)a + µsupp(F2).

(2) Let f : M −→ N be a morphism of manifolds.

(a) Let F ∈ Db(kM ) and assume that f is proper on supp(F ). Then

µsupp(Rf∗F ) ⊆ µsupp(F )
a◦ Λf with equality if f is a closed embedding.

(b) Let G ∈ Db(kN ) and assume that f is noncharacteristic for G. Then the

morphism f−1G ⊗L ωM/N −→ f !G is an isomorphism and µsupp(f−1G)

⊆ Λf
a◦ µsupp(G) with equality if f is a submersion.
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Remark 2.9. The proof of the inclusion in item (2a) given in [6, Prop. 5.4.4]

actually proves that if f : M −→ N is a morphism of manifolds and F ∈ Db(kM ),

and if f is proper on supp(F ), then TN \Ppg(Rf∗F ) ⊆ (TM \Ppg(F ))
a◦Λf with

equality if f is an isomorphism.

Remark 2.10. By Lemma 2.5, the inclusion of item (2a) and the result of the

previous remark still hold at a point if the map f is required only to be strictly

differentiable at that point.

Finally, we give a standard upper bound on the microsupport of the convolute

of two kernels.

Proposition 2.11 ([2, §Kernels]). Let Mi be manifolds for i ∈ {1, 2, 3}. Let K1 ∈
Db(kM12

) and K2 ∈ Db(kM23
). Assume that

(1) p13 is proper on p−1
12 (supp(K1)) ∩ p−1

23 (supp(K2));

(2) (µsupp(K1)a × 0∗3) ∩ (0∗1 × µsupp(K2)) ⊆ 0∗123.

Then,

(2.34) µsupp(K1 ◦K2) ⊆ µsupp(K1)
a◦ µsupp(K2).

Proof. The two assumptions of the proposition allow us to apply items (1a), (2a)

and (2b) of Proposition 2.8 to conclude.

Remark 2.12. Note that the two assumptions of Proposition 2.11 are equivalent

to the following condition: p13 is proper on p−1
12a(µsupp(K1)) ∩ p−1

23 (µsupp(K2)).

§3. Microsupports associated with subsets

In this section, we study the microsupports of (constant sheaves on) subsets. We

first give a criterion for belonging to such microsupports and give results on the

microsupports of closed submanifolds and closed C0-submanifolds. We then offer

direct proofs of lower and upper bounds on the microsupport of a closed set.

§3.1. General properties

Let M be a manifold. If A ⊆ M is locally closed, we set for short Ppg(A) :=

Ppg(kM,A) and

(3.1) µsupp(A) := µsupp(kM,A),

and also Ppgx(A) := Ppg(A)x and µsuppx(A) := µsupp(A)x for x ∈M . Note that

(3.2) πM (µsupp(A)) = A.
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The following lemma gives a useful criterion for belonging to the propagation

set of a sheaf associated with a subset.

Lemma 3.1. Let M be a manifold, let Z ⊆M be a closed subset and let x ∈M .

Then ξ ∈ Ppgx(Z) if and only if for all φ ∈ C∞(U), with U an open neighborhood

of x, such that φ(x) = 0 and dφ(x) = ξ, the morphism

(3.3) (kZ)x −→ (RΓZ∩{φ<0}kZ)x

induced by the inclusions (iV : Z ∩ {φ < 0} ∩ V ↪→ Z ∩ V )V 3x is an isomorphism.

Proof. As for Lemma 2.4, the result follows by applying the stalk functor to the

distinguished triangle RΓZ∩{φ>0}(kZ) −→ RΓZ∩U (kZ) −→ RΓZ∩{φ<0}(kZ)
+1−−→ .

As for inverse images, Proposition 2.8(2b) and Equation (2.20) show that if

f : M −→ N is a morphism of manifolds and B ⊆ N is locally closed, and if f is

noncharacteristic for µsupp(B), then

(3.4) µsupp(f−1(B)) ⊆ Λf
a◦ µsupp(B)

with equality if f is a submersion. If f is an isomorphism and A ⊆ M is locally

closed, then Remark 2.9 gives

(3.5) Ppg(f(A)) = Ppg(A)
a◦ Λf .

In particular, if Φ: V −→ V′ is a linear isomorphism, A ⊆ V is locally closed and

x ∈ V, then

(3.6) Φᵀ(PpgΦ(x)(Φ(A))) = Ppgx(A).

We will also need the following result.

Proposition 3.2 ([6, Prop. 5.3.2]). Let N be a closed submanifold of a manifold

M . Then

(3.7) µsupp(N) = T ∗NM.

For closed C0-submanifolds, we have the following result.

Proposition 3.3. Let N be a closed C0-submanifold of a manifold M . Then kN
is a cohomologically constructible sheaf, self-dual up to a locally constant sheaf of

rank 1, and its microsupport is symmetric, that is,

(3.8) µsupp(N) = µsupp(N)a.
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Proof. The cohomological constructibility and self-duality results hold if N is a

vector subspace of a vector spaceM (in that case, DM (kM,N ) = RHom (kM,N , ωM )

= ωN by [6, Exa. 3.4.5(i)]), and they are of a local and topological nature. There-

fore, they hold for closed C0-submanifolds, and we can apply Proposition 2.7.

§3.2. Bounds on the microsupports associated with closed subsets

We have the following bounds on the microsupport associated with a closed subset.

For the tangent and strict tangent cones appearing in this proposition, we refer to

Appendix B.

Proposition 3.4. Let M be a manifold. If Z ⊆M is closed, then

(3.9) π−1
M (Z) ∩ C(Z)◦ ⊆ µsupp(Z) ⊆ N(Z)◦.

The upper bound is [6, Prop. 5.3.8]. The lower bound was proved in [5,

Prop. 3.1], where it was shown that π−1
M (Z) ∩ C(Z)◦ is equal to the 0-truncated

microsupport of kZ (see the definition there). We give direct proofs of both bounds.

The lower bound is not widely applicable, since Cx(Z)◦ is nonzero only if Z

is “at first order” contained in a half-space of TxM . On the other hand, the upper

bound is trivial if Z is a C0-submanifold. We will give another upper bound in

that case (Proposition 8.4).

For the proof, we will need the following two lemmas.

Lemma 3.5. Let M be a manifold, A ⊆ M and x ∈ M . Let U be an open

neighborhood of x and φ ∈ C∞(U) with φ(x) = 0 and dφ(x) /∈ Nx(A)◦. Then there

exist an open neighborhood V ⊆ U of x and α > 0 and for all β ∈ ]−α, α[, a

strong deformation retraction hβ : V × [0, 1] −→ V of V onto V ∩{φ 6 β} such that

hβ((V ∩A)× [0, 1]) ⊆ V ∩A.

Proof. Let u ∈ Nx(A) be such that 〈dφ(x), u〉 < 0. We can fix a chart at x with

domain V ⊆ U such that in that chart, x = 0 ∈ Rm and φ = dφ(0) (since

dφ(0) 6= 0). Since N(A) is open, we can suppose, reducing V if necessary, that for

all y ∈ V , one has u ∈ Ny(A). We can also suppose that the intersection of V with

any line parallel to u is connected, for instance by assuming that V is of the form

]−α, α[× V ′ and u ∈ R× {0}.
If β ∈ ]−α, α[ and y ∈ V and t ∈ [0, 1], we set hβ(y, t) := y−t (φ(y)−β)+

φ(u) u where

x+ := max(x, 0). This defines hβ : V × [0, 1] −→ V . If φ(y) 6 β and t ∈ [0, 1], then

hβ(y, t) = y. If y ∈ V , then hβ(y, 0) = y and φ(hβ(y, 1)) = φ(y) − (φ(y) − β)+ =

min(φ(y), β) 6 β. Finally, if y ∈ V ∩ A and t ∈ [0, 1], then the assumptions

−t (φ(y)−β)+

φ(u) > 0 and u ∈ Nhβ(y,s)(A) for any s ∈ [0, t] imply hβ(y, t) ∈ A.
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Lemma 3.6. Let A be a subset of a manifold M . Then,

C(A)◦ =
{

(x, ξ) ∈ A×M T ∗M | there exist an open neighborhood U of x and

φ ∈ C1(U) such that φ(x) = 0 and dφ(x) = ξ and φ(A ∩ U) ⊆ R>0

}
(3.10)

and this set is equal to the set defined similarly with the function φ required only

to be continuous on U and differentiable at x.

Proof. (i) Let (x, ξ) ∈ A ×M T ∗M . Let U be an open neighborhood of x and

φ ∈ C0(U) be such that φ(x) = 0 and dφ(x) = ξ and φ(A ∩ U) ⊆ R>0. Let u ∈
Cx(A). There are sequences (xn) ∈ AN and (cn) ∈ (R>0)N such that xn

n−→ x and

cn(xn−x)
n−→ u. One has 0 6 cn(φ(xn)−φ(x)) = 〈dφ(x), cn(xn−x)〉+o(cn(xn−x)).

Therefore, 〈ξ, u〉 > 0. Therefore, (x, ξ) ∈ C(A)◦.

(ii) Conversely, let (x, ξ) ∈ C(A)◦. Fix a chart centered at x, with image in Rm.

If m = 0, the result is trivial, so we suppose m > 0. Denote by ‖−‖ the Euclidean

norm on Rm. If ξ = 0, then set φ := ‖−‖2 : Rm −→ R. Now, suppose ξ 6= 0. We can

suppose that ξ = (−1, 0, . . . , 0).

Let n ∈ N>0. We will prove that there exists αn > 0 such that, setting

En := {(u1, u
′) ∈ R × Rm−1 | 1

n‖u
′‖ 6 u1 6 αn} \ {0}, one has En ∩ A = ∅.

Indeed, suppose that there is a sequence of points (xm) =
(
(xm,1, x

′
m)
)
∈ AN

such that xm,1 > 1
n‖x

′
m‖ > 0 for all m ∈ N and xm,1

m−→ 0. Then xm
m−→ 0, so

up to extracting a subsequence, we can suppose that xm
‖xm‖

m−→ u ∈ Ċ0(A). Since

ξ ∈ Cx(A)◦, one has 〈ξ, u〉 > 0. But, writing u = (u1, u
′), one has 〈p, u〉 = −u1 6

− 1
n‖u

′‖ 6 0, and actually, 〈ξ, u〉 < 0, since otherwise, one would have u1 = u′ = 0,

so u = 0. This is a contradiction. This proves the existence of the desired αn > 0.

We can suppose that for n ∈ N>0, one has (n+1)αn+2 < nαn+1, and in particular

the sequence (αn) decreases to 0.

We can assume that the broken line connecting the points An = (nαn+1, αn+1)

∈ R2 defines a convex function f : [0, α2[ −→ R. Indeed, each line (AnAn+1) crosses

the x-axis at some λn > 0, and one can ensure recursively that (n+2)αn+2 6 λn.

It is elementary to construct a function ψ ∈ C1
(
]−α2, α2[

)
with ψ(t) > f(|t|) for

t ∈ ]−α2, α2[ and ψ(0) = ψ′(0) = 0. For instance, construct smooth functions

with graphs in the triangles formed by An+1 and the midpoints of [AnAn+1] and

[An+1An+2], which connect in a C1 fashion. Finally, setting φ : B(0, α2) −→ R,

(x1, x
′) 7→ ψ(‖x′‖) − x1, one has φ(0) = 0 and dφ(0) = ξ and φ(A ∩ B(0, α2)) ⊆

R>0.

Remark 3.7. In view of Lemma 2.5, we will need in the applications of the lemma

only that the function φ constructed in the proof is strictly differentiable at x, so

we could simply have defined ψ(t) := f(|t|).
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Remark 3.8. In the right-hand side in the lemma, we cannot require that φ ∈
C2(U). Consider for example the graph Γf of the function f : R −→ R, x 7→ |x|3/2.

Then (0, 1) ∈ C(0,0)(Γf )◦, but the Taylor–Lagrange formula shows that for any

neighborhood U ⊆ R of 0, there cannot be a function φ ∈ C2(U) with φ(0) = 0

and dφ(0) = 0 and f |U 6 φ. As a consequence, we see that in the definition of the

propagation set of a sheaf, the differentiability class of the test functions matters,

as opposed to the situation for the microsupport. Namely, in this example, (0, 1) ∈
Ppg2

(0,0)(Γf )\Ppg1
(0,0)(Γf ), where the superscript denotes the differentiability class

of the test functions.

Proof of Proposition 3.4. (i) Upper bound. Since N(Z) is open, its polar cone is

closed, so it is enough to prove that T ∗M \ Ppg(Z) ⊆ N(Z)◦. If x /∈ Z, then

µsuppx(Z) = ∅, so the inclusion is true. Let x ∈ Z and ξ ∈ T ∗xM \ Nx(Z)◦.

Let φ ∈ C∞(U) with U an open neighborhood of x be such that φ(x) = 0 and

dφ(x) = ξ. We will prove that the natural morphism (kZ)x −→ (RΓZ∩{φ<0}kZ)x
is an isomorphism. Then, by Lemma 3.1, we will have ξ ∈ Ppgx(Z).

By Lemma 3.5, there exist an open neighborhood V ⊆ U of x and α > 0

and for all β ∈ (−α, 0), a deformation retraction hβ : V × [0, 1] −→ V of V onto

V ∩ {φ 6 β} such that hβ((V ∩ Z)× [0, 1]) ⊆ V ∩ Z.

This proves that the inclusions iβ,V : Z ∩ V ∩ {φ 6 β} ↪→ Z ∩ V induce

isomorphisms iβ,V
] : RΓ(Z ∩ V ;kM ) ∼−−→ RΓ(Z ∩ V ∩ {φ 6 β};kM ). One has

RΓ(Z ∩ V ∩ {φ < 0};kM ) = lim
β
<−→0

RΓ(Z ∩ V ∩ {φ 6 β};kM ), and if β < β′,

then iβ′,V ◦ iβ,V = iβ,V . Therefore, the iβ,V ’s induce an isomorphism which is

iV
] : RΓ(Z ∩ V ;kM ) ∼−−→ RΓ(Z ∩ V ∩ {φ < 0};kM ).

Since in Lemma 3.5, the homotopies hβ can be restricted to arbitrarily small

neighborhoods V of x, this proves that the natural morphism (kZ)x −→
(RΓZ∩{φ<0}kZ)x is an isomorphism.

(ii) Lower bound. Let x ∈ Z and ξ ∈ Cx(Z)◦. Then, by Lemma 3.6, there exist

an open neighborhood U of x and a function φ ∈ C1(U) such that φ(x) = 0

and dφ(x) = ξ and φ(Z ∩ U) ⊆ R>0. Therefore, Z ∩ U ∩ {φ < 0} = ∅, so

(RΓZ∩{φ<0}kZ)x = 0 6' (kZ)x = k, so by Lemma 3.1, ξ /∈ Ppgx(Z).

Remark 3.9. The proof actually shows that π−1
M (Z)∩C(Z)◦ ⊆ T ∗M \Ppg1(Z).

Remark 3.10. Taking polars of the inclusions (3.9), we see that the fiberwise

closure of N(Z) is contained in µsupp(Z)◦, which is contained in C(Z), but the

inclusion N(Z) ⊆ µsupp(Z)◦ need not hold: if x ∈ ∂(Int (Z)), then N(Z)x = TxM

but µsuppx(Z) ) {0}.
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§4. Whitney cones of maps

In this section, we study the Whitney cones of continuous maps. The results are

elementary and their proofs do not require any sheaf theory. After the definitions

and general properties, we give characterizations of Lipschitz continuity and strict

differentiability in terms of the Whitney cone and extend these characterizations

to C0-submanifolds. Then we prove a chain rule involving Whitney cones. Finally,

we introduce directional Dini derivatives and relate them to the Whitney cone,

which will be used to prove an upper bound on the conormal of a continuous map

in Section 7.

§4.1. Definitions and first properties

The definitions of the strict tangent cone N(A), the tangent cone C(A), and the

Whitney cone C(A,B) of subsets A,B of a manifold, and their main properties,

are recalled in Appendix B. If f : M −→ N is a continuous map between manifolds,

we define its Whitney cone as the Whitney cone of its graph, that is,

(4.1) Cf := C(Γf ,Γf ).

This is a closed symmetric cone in T (M ×N).

Furthermore, if x ∈M , we set

(4.2) Cx(f) := C(x,f(x))(Γf ,Γf ).

This is a closed cone in T(x,f(x))(M ×N). We also set Cx(Γf ) := C(x,f(x))(Γf ) and

similarly for Nx(Γ+
f ).

Furthermore, if u ∈ TxM , we define the following analogue of the directional

derivatives:

(4.3) Cux (f) := Cx(f) ∩
(
R>0u× Tf(x)N

)
.

§4.2. Characterizations of Lipschitz continuity and strict

differentiability

We begin with two straightforward lemmas whose proofs are left to the reader.

For notions related to Lipschitz continuity and strict differentiability, we refer to

Appendix A. In particular, the notation Lipx(f) is defined in Definition A.1(3).

Lemma 4.1. Let f : V −→W be a map between normed vector spaces. Let x ∈ V.

Then,

(4.4) Lipx(f) = min
{
C ∈ R

∣∣∣ Cx(f) ⊆ {(v, w) ∈ V×W | ‖w‖ 6 C‖v‖}
}
.
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Lemma 4.2. If f : M −→ N is a continuous map between manifolds that is point-

wise Lipschitz at x ∈M , then pM (Cx(f)) = TxM .

The following proposition provides geometric characterizations of Lipschitz

continuity and strict differentiability.

Proposition 4.3. Let f : M −→ N be a continuous map between manifolds and let

x ∈M .

(1) The map f is Lipschitz on a neighborhood of x if and only if C0
x(f) = {0}.

(2) The map f is strictly differentiable at x if and only if C0
x(f) = {0} and Cx(f)

is contained in a (dimxM)-dimensional vector subspace, and in that case,

Cx(f) = ΓTxf .

Proof. (1) Fixing charts at x and f(x), one has C0
x(f) = {0} if and only if there

exists C ∈ R such that Cx(f) ⊆ {(u, v) ∈ Rm+n | ‖v‖ 6 C‖u‖}. Therefore, the

result follows from Lemma 4.1.

(2) Necessity is obvious. We prove sufficiency. We deduce from C0
x(f) = {0} and (1)

that f is Lipschitz at x. It follows from Lemma 4.2 that pM (Cx(f)) = TxM .

Therefore, Cx(f) is a (dimxM)-dimensional vector space and is the graph of the

linear map L := pN ◦ (pM |Cx(f))
−1 : TxM −→ Tf(x)N . From Lemma 4.1 applied to

f − L, we see that f is strictly differentiable at x with Txf = L.

These characterizations extend to C0-submanifolds as follows.

Proposition 4.4. Let M be a C0-submanifold of a manifold P and let x ∈M .

(1) Let F be a (codimxM)-dimensional vector subspace of TxP . The C0-subman-

ifold M is locally at x the graph of a Lipschitz map with codomain tangent to

F if and only if Cx(M,M) ∩ F = {0}.
(2) The C0-submanifold M is locally at x the graph of a map f strictly differen-

tiable at x if and only if Cx(M,M) is contained in a (dimxM)-dimensional

vector subspace of TxP , and in that case, Cx(M,M) = ΓTxf .

The condition that M be locally at x a graph means that there exist an open

neighborhood U of x and a chart φ = (φM , φN ) : U ∼−−→ UM × UN ⊆ Rm × Rn

and a map f : UM −→ UN such that φ(M ∩ U) = Γf . The condition “f strictly

differentiable at x” then means “f strictly differentiable at φM (x)”. One identifies

Cx(M,M) with its image in the chart Txφ(Cx(M,M)) = Cφ(x)(φ(M ∩U), φ(M ∩
U)). That the “codomain of f is tangent to F” means that Txφ(F ) = {0} × Rn.

Proof. In both cases, necessity is straightforward. As for sufficiency, fix a chart φ

of P at x. We set m := dimxM and n := codimxM . For the first equivalence of the
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proposition, F is given, and for the second equivalence, we let F be a complement

of a (dimxM)-dimensional vector subspace of TxP in which Cx(M,M) is included.

We can suppose that the chart φ is of the form φ = (φM , φN ) : U ∼−−→ UM ×UN ⊆
Rm × Rn with Txφ(F ) = {0} × Rn, hence Txφ(Cx(M,M)) ∩ ({0} × Rn) = {0}.
Being a C0-submanifold, M is locally at x the image of a continuous injection

f̃ : Rm −→ Rm+n with f̃(0) = x and f̃(Rm) = M ∩ U ′ for U ′ ⊆ P an open

neighborhood of x. We can suppose that U ′ = U .

The relation Txφ(Cx(M,M))∩ ({0}×Rn) = {0} implies that φM |M∩U : M ∩
U −→ Rm is injective in a neighborhood of x which we can suppose to be f̃(Rm) =

M ∩U . Therefore, φM ◦ f̃ : Rm −→ Rm is a continuous injection, so by the theorem

of invariance of domain, it is a topological isomorphism onto its image, say V ,

which is open in Rm.

Then define f := (φN ◦ f̃) ◦ (φM ◦ f̃)−1 = φN ◦ (φM |M∩U )−1 : V −→ Rn. In

particular, φN = f ◦φM on f̃(Rm) = M∩U . Therefore, φ(M∩U) = Γf . Therefore,

Cx(M,M) = CφM (x)(f). By Proposition 4.3, the hypothesis of item (1) (resp.

item (2)) on Cx(M,M) implies that f is Lipschitz (resp. strictly differentiable at 0

with derivative 0).

Remark 4.5. The analogous statements with the tangent cone Cx(M) and point-

wise Lipschitz continuity (resp. differentiability) are false, as M = Γf where

f =
√
|−| : R −→ R shows: one has C0(Γf ) = {0} × R>0, which intersects R× {0}

trivially. Another example is any wild enough curve contained in {(x, y) ∈ R2 |
|y| 6 x2}. Of course, one still has one implication.

Note that we did not assume that the embedding f̃ in the proof was locally

flat. The local flatness of M at x is a consequence of the hypothesis on Cx(M,M).

If codimxM = 1, then the condition of item (1) is equivalent to Cx(M,M) 6=
TxP .

Corollary 4.6. Let f : M −→ N be a continuous map between manifolds and let

x ∈ M . If Cx(f) is contained in a (dimxM)-dimensional vector subspace, then it

is equal to it.

In particular, if dimxM>0, then Cx(f) cannot be contained in a (dimxM−1)-

dimensional vector subspace. Contrast this to the case of Cx(Γf ): if f =
√
‖−‖ :

Rm −→ R, then C0(Γf ) = {0}×R>0 is contained in a 1-dimensional vector subspace.

We end this subsection with a result proving the lower hemicontinuity of

Cx(f) considered as a multivalued function from TxM to Tf(x)N .

Proposition 4.7. Let f : M −→ N be a Lipschitz map between manifolds and let

x ∈M . For any u ∈ TxM and any open set V ⊆ Tf(x)N such that Cx(f)∩ ({u}×
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V ) 6= ∅, there exists an open neighborhood U ⊆ TxM of u such that for all u′ ∈ U ,

one has Cx(f) ∩ ({u′} × V ) 6= ∅.

Proof. Let (u, v) ∈ Cx(f) and let (un) ∈ (TxM)N be a sequence converging to

u. We are going to construct a sequence (vn) ∈ (Tf(x)N)N converging to v such

that (un, vn) ∈ Cx(f), which proves the proposition. Fix charts at x and f(x)

in which f is C-Lipschitz. There exist sequences xn, yn
n−→ x and cn > 0 such

that cn(yn − xn, f(yn)− f(xn))
n−→ (u, v). Set ym,n := yn + (um − u)/cn. One has

cn(ym,n − xn)
n−→ um for all m ∈ N.

One has ‖cn(f(ym,n)−f(xn))−cn(f(yn)−f(xn))‖ = ‖cn(f(ym,n)−f(yn))‖ 6
C‖um−u‖. Therefore, cn(f(ym,n)−f(xn))

m−→ cn(f(yn)−f(xn)) uniformly in n. By

Lipschitz continuity of f , for any m ∈ N, the sequence (cn(f(ym,n)− f(xn)))n has

a converging subsequence, indexed by ρ, and we set vm := limn cρ(n)(f(ym,ρ(n))−
f(xρ(n))). Since the above convergence is uniform, one has vm

m−→ v. For any m ∈
N, one has cρ(n)(ym,ρ(n) − xρ(n), f(ym,ρ(n))− f(xρ(n)))

n−→ (um, vm), so (um, vm) ∈
Cx(f).

Remark 4.8. The Lipschitz continuity of f is needed, as the function R2 −→ R,

x 7→ (x1)1/3 shows. One also needs to fix the point x ∈ M . In other words, Cf is

not lower hemicontinuous, as the function |−| : R −→ R shows.

§4.3. Chain rule for Whitney cones

We begin with a “tangent analogue” of Proposition 2.11.

Proposition 4.9. Let Mi be manifolds for i ∈ {1, 2, 3}. Let A1, B1 ⊆ M12 and

A2, B2 ⊆M23. Assume that

(1) p13 is injective and proper on p−1
12 (A1) ∩ p−1

23 (A2) ∪ p−1
12 (B1) ∩ p−1

23 (B2);

(2) (C(A1, B1)× 03) ∩ (01 × C(A2, B2)) ⊆ 0123.

Then,

(4.5) C(A1 ◦A2, B1 ◦B2) ⊆ C(A1, B1) ◦ C(A2, B2).

The reverse inclusion holds if A2 = B2 is the graph of a C1-map f (without the

above two assumptions); furthermore, if M1 = {∗}, it reads Tf(C(A1, B1)) ⊆
C(f(A1), f(B1)).

Proof. (1) Let (u1, u3) ∈ C(x1,x3)(A1◦A2, B1◦B2). There exist sequences (x1
n, x

3
n) ∈

A1 ◦A2 and (y1
n, y

3
n) ∈ B1 ◦B2 both converging to (x1, x3), and a sequence cn > 0

such that cn(y1
n − x1

n, y
3
n − x3

n)
n−→ (u1, u3). There exists a sequence (x2

n) ∈ M2
N

such that (x1
n, x

2
n, x

3
n) ∈ p−1

12 (A1) ∩ p−1
23 (A2), and similarly a sequence (y2

n) ∈M2
N
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such that (y1
n, y

2
n, y

3
n) ∈ p−1

12 (B1) ∩ p−1
23 (B2). Since p13 is injective and proper on

p−1
12 (A1) ∩ p−1

23 (A2)∪p−1
12 (B1) ∩ p−1

23 (B2), one can extract subsequences (x2
ρ(n)) and

(y2
ρ(n)) both converging to some x2 ∈M2.

If the sequence (cn(y2
n − x2

n)) has a converging subsequence, let u2 ∈ Tx2M2

be a limit of a converging subsequence. Then (u1, u2) ∈ C(x1,x2)(A1, B1) and

(u2, u3) ∈ C(x2,x3)(A2, B2). If not, then cn‖y2
n − x2

n‖
n−→ +∞ (in some chart

of M2 at x2). Let dn := ‖y2
n − x2

n‖
−1

. We extract a converging subsequence of

(dn(y2
n − x2

n)) and call u2 ∈ Tx2M2 its limit. One has dn
cn

n−→ 0, so dn(yin − xin) =
dn
cn
cn(yin − xin)

n−→ 0 for i ∈ {1, 3}. Therefore, the sequences (x1
n, x

2
n), (y1

n, y
2
n) and

dn show that (0, u2) ∈ C(x1,x2)(A1, B1) and the sequences (x2
n, x

3
n), (y2

n, y
3
n) and

dn show that (u2, 0) ∈ C(x2,x3)(A2, B2) with u2 6= 0. This contradicts the second

assumption.

(2) Suppose that A2 = B2 = Γf with f a C1-map, so that C(A2, B2) = ΓTf . Let

(u1, u3) ∈ C(x1,x2)(A1, B1) ◦ C(x2,x3)(A2, B2). Therefore, there exists u2 ∈ Tx2M2

such that (u1, u2) ∈ C(x1,x2)(A1, B1) and Tx2f(u2) = u3. Therefore, there exist

sequences ((x1
n, x

2
n)) ∈ A1

N and ((y1
n, y

2
n)) ∈ B1

N both converging to (x1, x2),

and (cn) ∈ (R>0)N such that cn(y1
n − x1

n, y
2
n − x2

n)
n−→ (u1, u2). Set x3

n := f(x2
n)

and y3
n := f(y2

n). The sequences ((x1
n, x

3
n)) and ((y1

n, y
3
n)) and (cn) show that

(u1, u3) ∈ C(x1,x3)(A1 ◦ Γf , B1 ◦ Γf ).

Note that the first assumption of the proposition is satisfied if A1 = B1 is

the graph of a continuous map f . Furthermore, if M3 = {∗}, then the second

assumption means that f is Lipschitz for C(A2, B2) (see the definition below) and

the conclusion reads C(f−1(A2), f−1(B2)) ⊆ Cf ◦C(A2, B2). The consideration of

the second assumption motivates the following definition.

Definition 4.10. Let fi : Mi −→Mi+1 for i ∈ {1, 2} be continuous maps between

manifolds. The pair (f1, f2) is Whitney-regular if

(4.6) (Cf1 × 03) ∩ (01 × Cf2) ⊆ 0123.

It will also be convenient to use the following definitions.

Definition 4.11. Let f : M −→ N be a continuous map between manifolds and

A ⊆ TM and B ⊆ TN be closed cones. The map f is

(1) Whitney-immersive if Cf ∩ (TM × 0N ) ⊆ 0M×N ;

(2) Whitney-immersive for A if Cf ∩ (A× 0N ) ⊆ 0M×N ;

(3) Lipschitz for B if Cf ∩ (0M ×B) ⊆ 0M×N .
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By Proposition 4.3(1), a continuous map f : M −→ N is Lipschitz if and only

if it is Lipschitz for TN . One can characterize Whitney immersions via a reversed

Lipschitz inequality, using arguments similar to the proof of Proposition 4.3(1).

A Whitney immersion is a topological immersion, and a C1-map is a Whitney

immersion if and only if it is a C1-immersion. However, a topological immersion

which is smooth need not be a Whitney immersion, as the function R −→ R, x 7→ x3

shows.

In view of Proposition 4.3(1), the next proposition is obvious.

Proposition 4.12. Let fi : Mi −→Mi+1 for i ∈ {1, 2} be continuous maps between

manifolds. If f1 is Lipschitz or f2 is a Whitney immersion, then the pair (f1, f2)

is Whitney-regular.

We can now prove the chain rule for Whitney cones.

Proposition 4.13 (Chain rule). Let fi : Mi −→Mi+1 for i ∈ {1, 2} be continuous

maps between manifolds. If the pair (f1, f2) is Whitney-regular, then

(4.7) Cf2◦f1 ⊆ Cf1 ◦ Cf2 .

The reverse inclusion holds if f2 is C1 (without assuming the pair Whitney-

regular).

Proof. We apply Proposition 4.9 with Ai = Bi = Γfi for i ∈ {1, 2}.

Example 4.14. Let f2 : R −→ R, t 7→ t3 and f1 = f−1
2 . Then f2 is C1 and

C0(f2 ◦ f1) ) C0(f1) ◦ C0(f2). This shows that the hypothesis that (f1, f2) is

Whitney-regular is needed. Similarly, (f2, f1) is Whitney-regular and C0(f1 ◦ f2) (
C0(f2) ◦ C0(f1). This shows that for the reverse inclusion, the hypothesis that f2

is C1 is needed.

Corollary 4.15. The set of Whitney immersions is closed under composition.

Proof. If fi : Mi −→Mi+1 for i ∈ {1, 2} are Whitney immersions, then Cf2◦f1 ◦03 ⊆
Cf1 ◦ Cf2 ◦ 03 ⊆ Cf1 ◦ 02 ⊆ 01, so f2 ◦ f1 is a Whitney immersion.

We end this section with a characterization of Whitney immersions. By invari-

ance of domain, a Whitney immersion between manifolds of the same dimension

is a homeomorphism with Lipschitz inverse. If the dimensions of the domain and

codomain differ, we proceed as follows. We say that a continuous map f : M −→ N

between manifolds has Lipschitz local retractions if for any x ∈M , there are open

neighborhoods U of x and V of f(x) such that f(U) ⊆ V and a Lipschitz map

r : V −→ U such that r ◦ f |U = idU .
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Proposition 4.16. A continuous map between manifolds is a Whitney immersion

if and only if it has Lipschitz local retractions.

Proof. Let f : M −→ N be a Whitney immersion and let x ∈ M . A Whitney

immersion is locally injective, so there is an open neighborhood U of x such that

f is injective on U . One can shrink U so that f(U) be included in a chart of N

with domain W . The map f |−1
U is defined on f(U) ⊆W , which need not be open,

and is not known yet to be continuous. However, the definition of the Whitney

cone and Proposition 4.3(1) still hold in this case. The cone Cf |−1
U

is the image

of Cf |U by the “flip” T (U × W ) −→ T (W × U). Therefore, C0(f |−1
U ) ⊆ 0W×U ,

so f |−1
U : f(U) −→ U is Lipschitz. Therefore, there exists an open neighborhood

V1 of f(x) such that f |−1
U is globally Lipschitz on f(U) ∩ V1, and we can assume

f(U) ⊆ V1. Therefore, we can extend f |−1
U to a Lipschitz map r1 : V1 −→M (see for

instance [3, §2]). The set V := r−1
1 (U) is open and contains f(U). We set r := r1|V .

One has r◦f |U = idU . The converse is clear, since the relation r◦f |U = idU implies

Cf |U ⊆ flip(Cr) (as seen by applying the definition of the Whitney cone).

§5. Conormals of maps

In this section, we define the conormal of a continuous map and give its first

properties. We use the convolution of kernels to extend to continuous maps the

functorial properties of the microsupport for the four image operations, and we

prove a chain rule involving conormals.

§5.1. Definition and first properties

If f : M −→ N is a continuous map between manifolds, we set Ppg(f) := Ppg(Γf )

and

(5.1) Λf := µsupp(Γf )

and also Ppgx(f) := Ppg(x,f(x))(Γf ) and Λx(f) := µsupp(x,f(x))(Γf ) for x ∈ M .

We call Λf the conormal of f . This definition is consistent with Equation (2.8),

as Proposition 3.2 shows.

Proposition 5.1. The conormal of f : M −→ N is a coisotropic closed symmetric

cone in T ∗(M ×N) satisfying πM×N (Λf ) = Γf .

Proof. A microsupport is always a coisotropic closed cone. Since Γf is closed, one

has πM×N (Λf ) = Γf by Equation (3.2). The graph of a continuous map is a closed

C0-submanifold, so its conormal is symmetric by Proposition 3.3.



Microlocal Lipschitz Continuity 753

Remark 5.2. The conormal of a map need not be a C0-submanifold of half di-

mension (that is, a C0-Lagrangian), as the following two examples show. There is

a 1-Lipschitz function f : R −→ R such that Λf = Γf × {(ξ, η) ∈ R2| |η| 6 |ξ|}. In

particular, Λ̇f is a Lipschitz submanifold with boundary of dimension 3. There is

a continuous function g : R −→ R such that Λg = Γg × R2. In particular, Λg is a

C0-submanifold of dimension 3. The idea of the following constructions is taken

from a talk by David Preiss. Let (Ui)i∈N be a decreasing sequence of open subsets

of R with
⋂
i Ui = Q (or any dense subset of R of measure 0) such that each

Un+1 has at most half measure in each connected component of Un. For x ∈ R,

let ψ(x) be the largest index n such that x ∈ Un and 0 if x /∈
⋃
i Ui or x ∈ Q. Let

f(x) :=
∫ x

0
(−1)ψ(x) dx and g(x) :=

∫ x
0

(−3/2)ψ(x) dx. Then f is 1-Lipschitz, g is

continuous and their conormals are as claimed by the case of equality of the upper

bound on the conormal (Theorem 7.9).

The following lemma gives a useful criterion for belonging to the propagation

set of a sheaf associated with a continuous map.

Lemma 5.3. Let f : M −→ N be a continuous map between manifolds and let

x ∈ M . Then ν ∈ Ppgx(f) if and only if for all φ ∈ C∞(W ), with W an open

neighborhood of (x, f(x)), such that φ(x, f(x)) = 0 and dφ(x, f(x)) = ν, the mor-

phism

(5.2) k −→ (RΓΓf∩{φ<0}kΓf )(x,f(x))

induced by the topological embeddings (pM ◦ iW ′ : Γf ∩ {φ < 0} ∩ W ′ ↪→
pM (W ′))W ′3(x,f(x)) is an isomorphism. This implies in particular that the germ

of Γf ∩ {φ < 0} at (x, f(x)) has the cohomology of a point.

Proof. We apply Lemma 3.1 with Z = Γf . The result follows since the isomorphism

pM |Γf : Γf −→M induces an isomorphism k = (kM )x ∼−−→ (kΓf )(x,f(x)).

Remark 5.4. In most of the proofs below, we use only the fact that having the

cohomology of a point implies being nonempty. So in a sense, we use only crude

estimates, which shows the efficiency of sheaf theoretical methods.

We will need the following result in later sections. It shows that adding a

strictly differentiable map to a continuous map shears its tangent cone and its

conormal.
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Lemma 5.5 (Shearing lemma). Let f, g : M −→ Rn be continuous maps on a man-

ifold with g strictly differentiable at x ∈M . Then,

Cx(f + g) = (pM , pN + g′(x) ◦ pM )(Cx(f))(5.3)

and Λx(f + g) = (pM − g′(x)ᵀ ◦ pN , pN )(Λx(f)).(5.4)

Proof. (i) The case of the Whitney cone is straightforward (directly or using

Proposition B.1(8).

(ii) Fix a chart of M at x. We introduce the topological automorphism Φ: Rm+n −→
Rm+n, (x, y) 7→ Φ(x, y) = (x, y − g(x)). Then Φ(Γf ) = Γf+g. Since Φ is strictly

differentiable on {x} × Rn as well as its inverse, it follows from Remark 2.10

that Λx(f) = Λ(x,f(x))(Φ)
a◦ Λx(f + g) and a simple computation completes the

proof.

§5.2. Chain rule for conormals

In this subsection, we will apply Proposition 2.11 to kernels associated with maps,

in order to derive upper bounds on microsupports of direct and inverse images of

sheaves, and then on the conormal of a composite map.

By analogy with the smooth case (cf. Equations (2.11) and (2.12)), we make

the following definitions (compare with Definition 4.11).

Definition 5.6. Let f : M −→ N be a continuous map between manifolds, and

A ⊆ T ∗M and B ⊆ T ∗N be closed cones. The map f is

(1) a microlocal submersion if Λf ∩ (0∗M × T ∗N) ⊆ 0∗M×N ;

(2) noncharacteristic for B if Λf ∩ (0∗M ×B) ⊆ 0∗M×N ;

(3) Lipschitz for A if Λf ∩ (A× 0∗N ) ⊆ 0∗M×N .

A C1-map is obviously Lipschitz for T ∗M . We will see in Theorem 7.8 that

“Lipschitz for T ∗M” is equivalent to “Lipschitz”.

Example 5.7. For f : R2 −→ R, x 7→ (x1)1/3, one has Λx(f) = R(−1, 0, 3|x1|2/3),

so f is Lipschitz for the constant cone R2 × {(ξ1, ξ2) ∈ R2 | |ξ1| 6 C|ξ2|} for any

C ∈ R.

We first prove the following generalization of Proposition 2.8(2) to continuous

maps. A continuous map is said to be Lipschitz (resp. noncharacteristic) for a sheaf

if it is Lipschitz (resp. noncharacteristic) for its microsupport.

Proposition 5.8. Let f : M −→ N be a continuous map between manifolds.
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(1) Let F ∈ Db(kM ) and assume that f is Lipschitz for F and proper on supp(F ).

Then µsupp(Rf∗F ) ⊆ µsupp(F )
a◦ Λf .

(2) Let G ∈ Db(kN ) and assume that f is noncharacteristic for G. Then the

morphism f−1G ⊗L ωM/N −→ f !G is an isomorphism and µsupp(f−1G) ⊆
Λf

a◦ µsupp(G).

Proof.1 The bounds on the microsupport are straightforward applications of Propo-

sition 2.11 (using Proposition 2.2). As for the morphism f−1G⊗LωM/N −→ f !G, we

first note that it is functorial in f . Therefore, the lemma following this proof shows

that it is enough to prove that it is an isomorphism when f is a closed embedding

and when f is a submersion. Indeed, we use the decomposition f = pN ◦ (idM , f),

that is, the inclusion in the graph of f (which is a closed embedding) followed by

the projection on the second factor (which is a smooth submersion). The submer-

sion case is treated in [6, Prop. 3.3.2].

Suppose that f is a closed embedding of M into N . For a conic sheaf F ∈
Db(kT∗N ), one has the Sato distinguished triangle Rπ !F −→ Rπ∗F −→ Rπ̇∗F

+1−−→.

When F = µhom(kM , G) (with kM = kN,M ∈ Db(kN )), one has Rπ ! µhom(kM , G)

= RHom (kM ,kN ) ⊗L G and Rπ∗ µhom(kM , G) = RHom (kM , G) = RΓMG

(by [6, Prop. 4.4.2(i)]). Noncharacteristicness says that µsupp(G) ∩ µsupp(kM ) ⊆
0∗N . By [6, Cor. 5.4.10(ii)], one has supp(µhom(kM , G)) ⊆ µsupp(G)∩µsupp(kM ) ⊆
0∗N , so Rπ̇∗ µhom(kM , G) = 0. Therefore, RΓMG ' RHom (kM ,kN )⊗L G.

Since f is a closed embedding, one has f !G' f−1(RΓMG) by [6, Prop. 3.1.12].

Applying this formula to kN , we also have ωM/N = f ! kN ' f−1(RHom (kM ,kN )).

Therefore, f !G ' f−1(RΓMG) ' f−1(RHom (kM ,kN )⊗L G) ' ωM/N ⊗L f−1G.

Lemma 5.9. Let f : M −→ N be a continuous map between manifolds. Let

s : T ∗M ×M T ∗M −→ T ∗M be the fiberwise subtraction. Then Λ(idM ,f) ⊆ (s ×
idT∗N )−1(Λf ). In particular, if f is noncharacteristic for G ∈ Db(kN ), then the

closed embedding (idM , f) is noncharacteristic for p−1
N (G).

Proof. We set f̂ := (idM , f) and P := ∆M × N . The latter is a closed sub-

manifold of M × M × N . One has Γf̂ = P ∩ p−1
MN (Γf ), so Kf̂ = (p−1

MNKf )P .

One has µsupp(p−1
MNKf ) = ΛpMN

a◦ Λf = 0∗M × Λf and T ∗P (M × M × N) =

{(ξ,−ξ, 0) | ξ ∈ T ∗M}. Therefore, µsupp(p−1
MNKf ) ∩ T ∗P (M ×M ×N) ⊆ 0∗MMN ,

so by [6, Cor. 5.4.11(i)], one has Λf̂ ⊆ µsupp(p−1
MNKf ) + T ∗P (M × M × N) =

(s× idT∗N )−1(Λf ).

1This proof was obtained jointly with Pierre Schapira.
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As for the second claim, let G ∈ Db(kN ). Then µsupp(p−1
N G) = ΛpN

a◦
µsupp(G) = 0∗M × µsupp(G). Therefore, Λf̂ ∩ (0∗M × µsupp(p−1

N G)) ⊆ (s ×
idT∗N )−1(Λf ) ∩ (0∗MM × µsupp(G)) ⊆ 0∗M × (Λf ∩ (0∗M × µsupp(G))).

As an application, let f : M −→ N be a closed topological embedding between

manifolds. If f is a closed C1-embedding, we know that T ∗f(M)N = 0∗M ◦ Λf . In

the continuous case, we have Rf∗kM ' kf(M), so the proposition tells us that

µsupp(f(M)) ⊆ 0∗M ◦ Λf .

Now, we will apply Proposition 2.11 when both kernels are associated with

maps, in order to derive an upper bound on the conormal of a composite map.

This constitutes an analogue for continuous maps of the usual chain rule for differ-

entiable maps. The hypotheses of Proposition 2.11 applied to Ki := Kfi (notation

introduced in Equation (2.28)) with fi : Mi −→ Mi+1 continuous maps between

manifolds for i ∈ {1, 2}, read

(1) p13 is proper on p−1
12 (Γf1) ∩ p−1

23 (Γf2);

(2) (Λf1 × 0∗3) ∩ (0∗1 × Λf2) ⊆ 0∗123

(one can remove the antipodal map from the second condition since conormals of

maps are symmetric). Since f1 is continuous, the first hypothesis is satisfied. This

motivates the following definition.

Definition 5.10. Let fi : Mi −→Mi+1 for i ∈ {1, 2} be continuous maps between

manifolds. The pair (f1, f2) is regular if

(5.5) (Λf1 × 0∗3) ∩ (0∗1 × Λf2) ⊆ 0∗123.

It is convenient to define

(5.6) Ληx(f) := Λx(f) ∩
(
T ∗xM × R>0η

)
for (x, η) ∈M ×N T ∗N and

(5.7) Λ0(f) := Λf ∩
(
T ∗M × 0∗N

)
.

Therefore, a map is Lipschitz for T ∗M if and only if

(5.8) Λ0(f) ⊆ 0∗M×N .

Example 5.11. The function f : R −→ R, t 7→ t3 is a topological automorphism

which is smooth but is not microlocally submersive and its inverse is not Lipschitz

for T ∗R, and the pair (f, f−1) is not regular. In particular, a topological submersion

need not be a microlocal submersion, even if it is smooth.
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The next proposition is obvious.

Proposition 5.12. Let fi : Mi −→Mi+1 for i ∈ {1, 2} be continuous maps between

manifolds. If f1 is microlocally submersive or if f2 is Lipschitz for T ∗M3, then the

pair (f1, f2) is regular.

We can now prove the chain rule for conormals.

Proposition 5.13 (Chain rule). Let fi : Mi −→Mi+1 for i ∈ {1, 2} be continuous

maps between manifolds. If the pair (f1, f2) is regular, then

(5.9) Λf2◦f1 ⊆ Λf1
a◦ Λf2

with equality if f1 is a C1-submersion (and if f1 and f2 are both C1).

Proof. As we have seen above, both hypotheses of Proposition 2.11 are satisfied

when the pair (f1, f2) is regular, so the inclusion follows from Proposition 2.3.

If f1 is a C1-submersion, then f̃1 := f1× id3 : M13 −→M23 is a C1-submersion

and Γf2◦f1 = f̃−1
1 (Γf2). By Equation (3.4) (case of equality), one has Λf2◦f1 =

µsupp(Γf2◦f1) = µsupp(f̃−1
1 (Γf2)) = Λf̃1

a◦
23
µsupp(Γf2) = Λf̃1

a◦
23

Λf2 . The result

follows since for any B ⊆ T ∗M23, one has Λf̃1
a◦
23
B = Λf1

a◦
2
B (since f1 is C1).

Example 5.14. The inclusion in the chain rule may be strict: take f2 : R −→ R,

t 7→ t3 and f1 = f−1
2 .

If the pair (f1, f2) is not regular, then the chain rule need not hold. For

example, take f1 : R −→ R, t 7→ t3 and f2 = f−1
1 .

Corollary 5.15. The set of microlocal submersions is closed under composition.

Proof. If fi : Mi −→ Mi+1 for i ∈ {1, 2} are microlocal submersions, then 0∗1 ◦
Λf2◦f1 ⊆ 0∗1 ◦ Λf1

a◦ Λf2 ⊆ 0∗2 ◦ Λf2 ⊆ 0∗3, so f2 ◦ f1 is a microlocal submersion.

We end this section with a result giving sufficient conditions for the direct

and inverse images of closed cones in a (co)tangent bundle to be closed.

Proposition 5.16. Let f : M −→ N be a continuous map between manifolds.

(1) If f is Lipschitz for the closed cone B ⊆ TN , then Cf ◦B is closed in TM .

(2) If f is noncharacteristic for the closed cone B ⊆ T ∗N , then Λf ◦ B is closed

in T ∗M .

(3) If f is Whitney-immersive for the closed cone A ⊆ TM and proper on τM (A),

then A ◦ Cf is closed in TN .
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(4) If f is Lipschitz for the closed cone A ⊆ T ∗M and proper on πM (A), then

A ◦ Λf is closed in T ∗N .

In the smooth case, the proof of item (2) is sketched in the paragraph following

the definition of noncharacteristic morphisms in [6, Def. 5.4.12].

Proof. The four claims have similar proofs, so we give a proof of the second one

only. Let K ⊆ M × N be compact and contained in a chart. Since Λf ∩ (0∗M ×
B) ⊆ 0∗M×N and Λf is closed, there exists αK > 0 such that π−1

M×N (K) ∩ Λf ∩
(T ∗M × B) ⊆ {(ξ, η) ∈ T ∗(M × N) | ‖ξ‖ > αK‖η‖}. Therefore, pM is proper

on π−1
M×N (K) ∩ Λf ∩ (T ∗M × B). This implies that pM (π−1

M×N (K)) ∩ (Λf ◦ B) is

closed. The requirement that K be contained in a chart can be dropped. Note that

pM ◦ π−1
M×N = π−1

M ◦ pM .

Let x ∈ M . Let KN be a compact neighborhood of f(x). There exists a

compact neighborhood KM of x included in f−1(KN ). Set U := pM (π−1
M×N (KM ×

KN )) = π−1
M (KM ). Then U ∩(Λf ◦B) is closed. Therefore, any point (x, ξ) ∈ T ∗M

has a neighborhood U such that U ∩ (Λf ◦B) is closed. This implies that Λf ◦B
is closed.

Remark 5.17. With the notation of Definition 5.10, if x1 ∈ M1, one says that

the pair (f1, f2) is regular at x1 if (Λx1(f1) × {0}) ∩ ({0} × Λf(x1)(f2)) = {0}. If

(f1, f2) is regular at x1, then it is so in a neighborhood of x1, since conormals

are closed cones. The same remark applies for the notions of a Whitney-regular

pair and of microlocally submersive, noncharacteristic, Whitney immersive and

Lipschitz maps.

As for a characterization of microlocal submersions, in view of Proposition 4.16

a reasonable conjecture is that the microlocal submersions are the continuous maps

which have Lipschitz local sections. Here is a result in that direction.2

Proposition 5.18. A microlocal submersion with 1-dimensional codomain is an

open map.

Proof. Let f : M −→ R be a microlocal submersion and let x0 ∈ M . We can

suppose that M is open in Rm. Define φ : M × R −→ R, (x, y) 7→ y − f(x0). Then

φ(x0, f(x0)) = 0 and dφ(x0, f(x0)) = (0, 1) ∈ Ppgx0
(f). Therefore, by Lemma 5.3,

for any neighborhood U of (x0, f(x0)), one has U ∩Γf ∩{φ < 0} 6= ∅. This means

that arbitrarily close to x0, there are points x with f(x) < f(x0), and similarly,

2Pierre Schapira showed me how an adaptation of the proof of the microlocal Bertini–Sard
theorem [6, Prop. 8.3.12] shows that subanalytic microlocal submersions are open maps.
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points y with f(y) > f(x0). Since M is locally connected, this implies that f is

open.

§6. Real-valued functions

In this section, we study more precisely the case of real-valued functions. We

introduce directional Dini derivatives, which permit us to give precise descriptions

of the Whitney cones related to the graph and epigraph of a function. Then we

study extrema of real-valued functions and prove an analogue of Fermat’s lemma

for continuous functions. In the third subsection, we relate the conormal of a

continuous function to the microsupport of the constant sheaf on its epigraph.

§6.1. Directional Dini derivatives

If V is a vector space, f : V −→ R and (x, u) ∈ TV, we define the supremal derivative

and supremal quotient of f at (x, u) respectively by

Df(x, u) := lim sup
t−→0+

v−→u

f(x+ tv)− f(x)

t
(6.1)

and Qf(x, u) := lim sup
t−→0+

(y,v)−→(x,u)

f(y + tv)− f(y)

t
.(6.2)

One has Qf = lim supDf : TV −→ R. The functions Df(x,−) and Qf(x,−)

are R>0-homogeneous on TxV for any x ∈ V. The functions Df and Qf are defined

similarly with lim inf. One has Qf(x,−u) = −Qf(x, u) for any (x, u) ∈ TV. If

V = R, we recover the usual Dini derivatives: for instance, Df(x, 1) = D+f(x)

and Df(x,−1) = −D−f(x).

Once a norm is fixed in V, one has (with the notation introduced in Defini-

tion A.1; the maxima are in R)

Lippw f(x) = max
u∈V
‖u‖=1

(
|Df(x, u)|, |Df(x, u)|

)
(6.3)

and Lip f(x) = max
u∈V
‖u‖=1

∣∣Qf(x, u)
∣∣.(6.4)

The following proposition, which relates the Whitney cone to the directional

Dini derivatives, will be needed in the proof of the upper bound on the conormal

of a map.
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Proposition 6.1. Let V be a vector space and f : V −→ R. For any x ∈ V, one

has

Cx(Γf ) =
{

(u, t) ∈ TxV× R
∣∣∣ Df(x, u) 6 t 6 Df(x, u)

}
,(6.5)

Cx(f) =
{

(u, t) ∈ TxV× R
∣∣∣ Qf(x, u) 6 t 6 Qf(x, u)

}
(6.6)

and Nx(Γ+
f ) =

{
(u, t) ∈ TxV× R

∣∣∣ t > Qf(x, u)
}
.(6.7)

Proof. We treat the case of extremal quotients, the case of extremal derivatives

being similar.

(i) Inclusion “⊆”. Let (u, t) ∈ Cx(f). There are sequences xn, yn
n−→ x and cn > 0

such that cn(yn−xn, f(yn)−f(xn))
n−→ (u, t). Since yn = xn+ 1

cn
(cn(yn−xn)), one

has Qf(x, u) > limn cn(f(yn)−f(xn)) = t. One proves similarly that Qf(x, u) 6 t.

(ii) Inclusion “⊇”. If u ∈ TxV and t ∈ [Qf(x, u), Qf(x, u)] ∩ R, then by definition

of the lim inf and lim sup, for any ε > 0, there exist sequences yn, zn
n−→ x and

vn, wn
n−→ u and an, bn

n−→ 0+ such that

(6.8)
f(yn + anvn)− f(yn)

an
− ε 6 t 6

f(zn + bnwn)− f(zn)

bn
+ ε

for all n ∈ N. By the intermediate value theorem, there exists tn ∈ [0, 1] such that

for (xn, dn, un) := (1− tn)(yn, an, vn) + tn(zn, bn, wn), one has

(6.9)

∣∣∣∣f(xn + dnun)− f(xn)

dn
− t
∣∣∣∣ 6 ε

for all n ∈ N. Then, with cn := d−1
n and sn := xn + dnun, one has xn, sn

n−→ x and

cn > 0 and cn(sn − xn) = un
n−→ u and lim supn|cn(f(sn) − f(xn)) − t| 6 ε. In

particular, there exists a ∈ [−ε, ε] such that (u, t + a) ∈ Cx(f). Since this is true

for any ε > 0, the result follows from the closedness of Cx(f).

(iii) The proof for Nx(Γ+
f ) is similar.

Remark 6.2. In particular, if f is Lipschitz at x, then Qf(x, 0) = Qf(x, 0) = 0,

else Qf(x, 0) = −Qf(x, 0) = +∞.

Corollary 6.3. Let f : M −→ R be a function on a manifold. For any x ∈M , one

has a partition

(6.10) Cx(f) tNx(Γ+
f ) tNx(Γ−f ) = TxM × R.

Proof. It follows easily from the proposition and Proposition B.3.
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§6.2. First-order extrema

Since Whitney cones and microsupports depend only on the C1-structure of a

manifold, it is natural to introduce the notion of a first-order extremum. If V is a

normed vector space, f : V −→ R and x ∈ V, we define

df(x) := lim inf
v−→0

f(x+ v)− f(x)

‖v‖
,(6.11)

df(x) := lim sup
v−→0

f(x+ v)− f(x)

‖v‖
.(6.12)

Let M be a manifold. If f : M −→ R and x ∈ M and ‖−‖ is a norm on TxM ,

then lim infv−→0
1
‖v‖
(
f(φ−1(φ(x) + φ′(x)v))− f(x)

)
does not depend on the chart

φ at x. Therefore, when no norm is specified, the extended reals df(x) and df(x)

are well defined up to multiplication by a strictly positive real number. Therefore,

properties like “df(x) > 0” still make sense.

Using implicitly the canonical identifications T (M × R) ' TM × TR and

TR ' R× R, we define

(6.13) T>0(M × R) := TM × (R× R>0)

and similarly for the cotangent bundle, for T=0(M × R), etc.

Definition 6.4 (First-order extremum). Let f : M −→ R be a function on a man-

ifold. A point x ∈M is a first-order minimum (or f-o minimum) of f if df(x) > 0.

It is an f-o maximum if df(x) 6 0, and an f-o extremum if it is either an f-o

minimum or an f-o maximum.

A local minimum (resp. maximum, extremum) is obviously an f-o minimum

(resp. maximum, extremum). A point which is both an f-o minimum and an f-o

maximum is a stationary point : the function is differentiable at that point with

derivative zero. We have the following characterization of f-o extrema.

Proposition 6.5. Let M be a manifold, x ∈ M and f : M −→ R be a function.

Then the following are equivalent:

(1) x is an f-o minimum of f ;

(2) Cx(Γf ) ⊆ T>0(M × R);

(3) (0, 1) ∈ Cx(Γf )◦;

(4) there exist an open neighborhood U of x and a function ψ ∈ C1(U) such that

ψ(x) = f(x) and dψ(x) = 0 and ψ 6 f |U .

Proof. (4)⇒(1)⇒(2)⇒(3) are obvious.
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(3)⇒(4). Since (0, 1) ∈ Cx(Γf )◦, Lemma 3.6 gives an open neighborhood W of

(x, f(x)) and φ ∈ C1(W ) with φ(x, f(x)) = 0 and dφ(x, f(x)) = (0, 1) and φ(Γf ∩
W ) ⊆ R>0. The implicit function theorem gives an open neighborhood U×V ⊆W
of (x, f(x)) and ψ ∈ C1(U) with ψ(x) = 0 and dψ(x) = 0 such that for (x, y) ∈
U × V , φ(x, y) > 0 is equivalent to y > ψ(x). Therefore, ψ 6 f |U .

We obtain the following corollary of independent interest.

Corollary 6.6. Let M be a manifold and W be a normed vector space. Let x ∈M
and f : M −→ W be a function differentiable at x with df(x) = 0. Then there

exist an open neighborhood U of x and a function ψ ∈ C1(U) with ψ(x) = 0

and dψ(x) = 0 such that ‖f |U − f(x)‖W 6 ψ (that is, for any y ∈ U , one has

‖f(y)− f(x)‖W 6 ψ(y)).

Proof. The hypothesis df(x) = 0 implies that x is an f-o maximum of ‖f −f(x)‖W
and the result follows from Proposition 6.5.

Remark 6.7. One cannot strengthen the conclusion of this corollary nor of Prop-

osition 6.5(4) to ψ ∈ C2(U), as the example of Remark 3.8 shows.

As in standard calculus, the following Fermat lemma will be used to prove

Rolle’s lemma and the mean value theorem for continuous functions.

Proposition 6.8 (Fermat lemma). Let M be a manifold and f : M −→ R be a

continuous function. If f has an f-o extremum at x ∈M , then

TxM × {0} ⊆ Cx(f)(6.14)

and {0} × R ⊆ Λx(f).(6.15)

Proof. (i) Whitney cone. We can suppose that x is an f-o minimum. First, suppose

that M = R and x = 0. Let ε > 0 and set fε(t) := f(t) + ε|t|. Then 0 is a local

strict minimum of fε. We can suppose that it is a global strict minimum.

If fε(−1) 6 fε(1), then set x0 := −1 and y0 := min{z ∈ ]0, 1] | fε(z) =

fε(x0)} (which exists by the intermediate value theorem and is a minimum by

continuity of fε). If fε(−1) > fε(1), then set y0 := 1 and x0 := max{z ∈ [−1, 0[ |
fε(z) = fε(y0)}. Use the same procedure with the points ±1 replaced with the

points ±min(−x0, y0)/2, to construct (x1, y1). This way, one constructs sequences

xn, yn
n−→ 0 that show that (1, 0) ∈ C0(fε), so there exists αε ∈ [−ε, ε] such that

(1, αε) ∈ C0(f). Since this is true for any ε > 0, the closedness of C0(f) implies

that R× {0} ⊆ C0(f).

In the general case, suppose that M is open in Rm. Let u ∈ ṪxM and set

γ : ]−α, α[ −→ M , t 7→ x + tu. By the previous paragraph, R × {0} ⊆ C0(f ◦ γ),
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and by the chain rule for Whitney cones (γ being Lipschitz), one has C0(f ◦ γ) ⊆
C0(γ) ◦ Cx(f). But C0(γ) = R(1, u), so (u, 0) ∈ Cx(f).

(ii) Conormal. If x is an f-o minimum of f , then (0, 1) ∈ Cx(Γf )◦ by Proposi-

tion 6.5, so the result follows from Proposition 3.4. If x is an f-o maximum of f ,

then it is an f-o minimum of −f , so by the above, one has {0}×R ⊆ Λx(−f). Then

the result follows from the fact that Λf and Λ−f are mapped onto each other by the

involutive automorphism of T ∗(M × R) given by (x, t;u, τ) 7→ (x,−t;u,−τ).

§6.3. Microsupports of epigraphs

In [7], Vichery studied the microsupport of the constant sheaf on the epigraph of

a real-valued function, rather than on its graph. In this subsection, we show that

the two points of view are equivalent for Lipschitz functions.

Let M be a manifold and let f : M −→ R be a continuous function. We intro-

duce the microsupports

(6.16) Λ±f := µsupp(Γ±f ).

One has the exact sequences (by [6, Prop. 2.3.6(v-vi)])

0 −→ kM×R −→ kΓ+
f
⊕ kΓ−f

−→ kΓf −→ 0(6.17)

and 0 −→ kInt(Γ±f ) −→ kM×R −→ kΓ∓f
−→ 0.(6.18)

It follows from [6, Exe. III.4] that if U is a convex open subset of a vector

space, then kU is cohomologically constructible and

(6.19) D′M (kU ) ' kU ,

so by Proposition 2.7 one has

(6.20) µsupp(U) = µsupp(U)a.

Note that these properties are of a topological and local nature.

Proposition 6.9. Let M be a manifold and let f : M −→ R be a continuous func-

tion. Then,

(1) Λ̇f = Λ̇+
f ∪ Λ̇−f ;

(2) Λ̇−f = (Λ̇+
f )a;

(3) Λ+
f ⊆ T ∗>0(M × R).

This proposition implies that the knowledge of Λf is equivalent to that of Λ+
f

outside T ∗=0(M×R), and in particular it is equivalent for Lipschitz functions. Note

that item (2) was proved in essence by Vichery (see [7, Lem. 4.12]).
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Proof. (1) This follows from the triangular inequality applied to the exact se-

quence (6.17).

(2) Consider the topological automorphism of M × R given by Φ(x, t) := (x, t −
f(x)). Then Φ(Γ±f ) = M × (±R>0). Therefore, since Int(Γ+

f ) = Γ+
f , we have

µsupp(Γ+
f ) = µsupp(Int(Γ+

f ))a by Equation (6.20) and the fact that it is a topo-

logical and local property. On the other hand, the triangular inequality applied to

the exact sequence (6.18) implies that Λ̇−f = ˙µsupp(Int(Γ+
f )).

(3) The result is clear if f is C1. Now, let f be continuous. Since the result to

prove is local, we can assume that M is compact. We define an increasing se-

quence (fn)n∈N of smooth real-valued functions on M converging pointwise (in-

deed, uniformly) to f as follows. Let f0 be the constant function equal everywhere

to (minM f) − 1, and given fn < f , let εn := minM (f − fn) > 0 and by density

of smooth functions in the space of continuous functions with the compact-open

topology, let fn+1 be a smooth function such that f − εn/2 < fn+1 < f .

Then Γ+
f ⊆ Γ+

fn+1
⊆ Γ+

fn
and

⋂
n∈N Γ+

fn
= Γ+

f . It follows that the inclusions

induce an isomorphism lim−→
n

kΓ+
fn

∼−−→ kΓ+
f

. Applying [6, Exe. V.7], one gets Λ+
f ⊆⋃

n Λ+
fn
⊆ T ∗>0(M × R).

Example 6.10. It can happen that (Λ+
f )x = T ∗xM×R>0. An example is given by

f : R −→ R, x 7→ x sin(1/x), for which (Λ+
f )0 = R×R>0. In particular, the union in

item (1) need not be disjoint (although it is disjoint outside T ∗=0(M × R) in view

of items (2) and (3), and in particular for Lipschitz functions).

§7. Main results

This is the main section of the paper, where we prove the characterizations of

Lipschitz continuity and strict differentiability in terms of the conormal. We also

prove upper bounds on the Whitney cone and on the conormal of a continuous

map.

§7.1. Mean value theorem

In the case of a continuous map between vector spaces, we can give a lower bound

on the conormal in the form of a mean value theorem. As in the classical treatment,

we prove it first for maps of a real variable. Recall that the conormal Λf of a

continuous map f was defined in Equation (5.1).

Lemma 7.1 (Rolle’s lemma). Let a, b ∈ R with a < b. If f : [a, b] −→ R is a

continuous function with f(a) = f(b), then there exists c ∈ ]a, b[ such that {0} ×
R ⊆ Λc(f).
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Proof. Apply Fermat’s lemma (Proposition 6.8) at a local extremum of f in ]a, b[.

Lemma 7.2 (Mean value theorem for real-valued functions of a real variable).

Let a, b ∈ R with a < b. If f : [a, b] −→ R is a continuous function, then there

exists c ∈ ]a, b[ such that (f(b)− f(a), a− b) ∈ Λc(f).

Proof. As in the classical case, we apply Rolle’s lemma to the function x 7→ f(x)−
f(b)−f(a)

b−a x and we use the shearing lemma (Lemma 5.5).

The previous Rolle lemma is not true for real-valued functions of several

variables. For instance, consider p2 : R2 −→ R. Then p2(0, 0) = p2(1, 0) = 0, but

for all t ∈ [0, 1], one has Λ(t,0)(p2) = R(−1, 1), which intersects {0} × R only at

{(0, 0)}. However, if we slightly relax the conclusion, there is a mean value theorem

for continuous maps, which we prove first in the case of real-valued functions.

Recall that we defined Ȧ := A \ {0}.

Lemma 7.3 (Mean value theorem for real-valued functions). Let U be an open

subset of a vector space. Let f : U −→ R be a continuous function. Let a, b ∈
U be such that a 6= b and [a, b] ⊆ U . Then there exists c ∈ ]a, b[ such that

Λ̇c(f) ∩
(
b− a, f(b)− f(a)

)⊥ 6= ∅.

Proof. Set u := b− a and v := f(b)− f(a). Define γ : ]0, 1[ −→ U , t 7→ (1− t)a+ tb.

One has Λt(γ) = Γγ
⊥ = (1, u)⊥ for any t ∈ ]0, 1[.

If the pair (γ, f) is not regular, then there exists a nonzero vector ξ ∈ (0∗R ◦
Λγ)∩(Λf ◦0∗R) with ξ ∈ T ∗c U for some c = γ(s) ∈ ]a, b[. Therefore, (0, ξ) ∈ Λs(γ) =

(1, u)⊥, so 〈ξ, u〉 = 0, so (ξ, 0) ∈ Λ̇c(f) ∩ (u, v)⊥, which completes the proof.

If the pair (γ, f) is regular, then the chain rule for conormals (Proposi-

tion 5.13) applies, and one has Λf◦γ ⊆ Λγ
a◦Λf . We apply the mean value theorem

for real-valued functions of a real variable (Lemma 7.2) to f ◦ γ extended by con-

tinuity to [0, 1]. It gives an s ∈ ]0, 1[ such that (v,−1) ∈ Λs(f ◦ γ). Let c := γ(s).

By the chain rule, there exists ξ ∈ T ∗c U such that (v, ξ) ∈ Λs(γ) = (1, u)⊥ and

(ξ, 1) ∈ Λc(f). One has 〈(ξ, 1), (u, v)〉 = 〈ξ, u〉+ v = 0.

We can now prove a mean value theorem for continuous maps between vector

spaces. Recall that the notation Λ̇η0c (f) was defined in Equation (5.6).

Theorem 7.4 (Mean value theorem). Let V and W be vector spaces and U ⊆ V
be open. Let f : U −→W be a continuous map. Let a, b ∈ U be such that a 6= b and

[a, b] ⊆ U . Let η0 ∈ Ẇ∗. Then there exists c ∈ ]a, b[ such that

(7.1) Λ̇η0c (f) ∩
(
b− a, f(b)− f(a)

)⊥ 6= ∅.
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In particular, if f is Lipschitz at c for (b−a)⊥, then there exists ξ0 ∈ V∗ such that

(ξ0, η0) ∈ Λc(f) ∩
(
b− a, f(b)− f(a)

)⊥
.

Proof. Set u := b − a and v := f(b) − f(a) and v0 := 〈η0, v〉. Since η0 : W −→ R is

Lipschitz for T ∗R, the chain rule gives Λη0◦f ⊆ Λf
a◦Λη0 . One has Λx(η0) = Γη0

⊥ =

R(−η0, 1) for all x ∈ ]a, b[. Applying Lemma 7.3 to this real-valued function, we

obtain c ∈ ]a, b[ and a nonzero vector (ξ, τ) ∈ Λ̇c(η0 ◦ f) ∩ (u, v0)⊥.

By the chain rule, there exists η ∈W∗ such that (ξ, η) ∈ Λc(f) and (−η, τ) ∈
Λf(c)(η0) = R(−η0, 1). This implies η = τη0. Therefore, (ξ, τη0) ∈ Λη0c (f), and it

is nonzero since (ξ, τ) 6= 0. Moreover, 〈(ξ, τη0), (u, v)〉 = 〈(ξ, τ), (u, v0)〉 = 0.

Finally, if f is Lipschitz at c for (b− a)⊥, then τ 6= 0, and since the conormal

of f is symmetric, we can suppose by R-homogeneity that η = η0.

§7.2. Lower bound on the conormal

We immediately obtain from the mean value theorem an upper bound on the

Whitney cone of a continuous map in terms of its conormal. We will also consider

it as a sort of lower bound on its conormal in terms of its Whitney cone. Recall

that we defined A> :=
⋃
v∈Ȧ v

⊥.

Theorem 7.5 (Lower bound on the conormal). Let f : M −→ N be a continuous

map between manifolds and let x ∈M . Then,

(7.2) Cx(f) ⊆
⋂

η∈Ṫ∗
f(x)

N

Ληx(f)>

with equality if dimf(x)N = 1, in which case it reads

(7.3) Cx(f) = Λx(f)>.

In particular, if w ∈ Cx(f) and η ∈ T ∗f(x)N and f is Lipschitz at x for pM (w)⊥,

then there exists ξ ∈ T ∗xM such that (ξ, η) ∈ Λx(f) ∩ w⊥. In particular, if f is

Lipschitz at x for T ∗xM , then pN (Λx(f)) = T ∗f(x)N .

Proof. (i) Let w ∈ Ċx(f) and η ∈ Ṫ ∗f(x)N and fix charts at x and f(x). There

exist sequences yn, zn
n−→ x and cn > 0 such that cn(zn − yn, f(zn)− f(yn))

n−→ w.

Since w 6= 0, we can suppose that yn 6= zn for all n ∈ N. By the mean value

theorem (Theorem 7.4), there exist sequences xn ∈ ]yn, zn[ and νn ∈ Λ̇ηxn(f)∩(zn−
yn, f(zn)−f(yn))⊥. Since xn

n−→ x, up to extracting a subsequence and normalizing

νn, we can suppose that (νn) converges. Its limit, say ν, is in Λ̇ηx(f) ∩ w⊥.

(ii) For the case of equality, suppose that dimf(x)N = 1, and let w = (u, v) ∈
Λx(f)> \ {0}.
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Suppose first that f is Lipschitz. There exists (ξ, η) ∈ Λ̇x(f) such that 〈ξ, u〉+
ηv = 0. Since f is Lipschitz, u 6= 0, so by the upper bound on the conormal

(Theorem 7.93), there exists v′ ∈ R such that (u, v′) ∈ Ċx(f) and 〈ξ, u〉+ ηv′ = 0.

So η(v − v′) = 0. Since f is Lipschitz, η 6= 0, so v = v′, so w = (u, v′) ∈ Cx(f).

In the general case, suppose that w /∈ Cx(f). By Proposition 4.4(1), this

implies that Γf is the graph (in other coordinates) of a Lipschitz map. The result

then follows from the previous paragraph, since Cx(f) and Λx(f) depend on f

only via its graph.

(iii) For the last claim, let w ∈ Cx(f) and η ∈ T ∗f(x)N . The case η = 0 is trivial

since 0 ∈ Λx(f) ∩ w⊥, so we suppose η 6= 0. By (i), there exist ξ ∈ T ∗xM and

t ∈ R>0 such that (ξ, tη) ∈ Λ̇x(f) ∩ w⊥. Since f is Lipschitz at x for pM (w)⊥, we

have t 6= 0, so we can suppose t = 1, so (ξ, η) ∈ Λx(f) ∩ w⊥.

Remark 7.6. The condition in the theorem that f be Lipschitz at x for pM (w)⊥

is necessary, as the function 3
√
− : R −→ R shows.

§7.3. Characterization of Lipschitz continuity

In this subsection, we prove that a continuous map between manifolds f : M −→ N

is Lipschitz if and only if it is “Lipschitz for T ∗M” (Definition 5.6(3) or Equa-

tion (5.8)). The definitions and properties we use related to Lipschitz continuity

are recalled in Appendix A. We first need a technical lemma.

Lemma 7.7. Let A be a topological space and a0 ∈ A. Let n ∈ N and C,D ∈ R>0

with CD < 1. Let f : R×A −→ Rn be a continuous map with f(0, a0) = 0 which is

C-Lipschitz in its first variable in a neighborhood of (0, a0). Let ψ : A×Rn −→ R be

a continuous map with ψ(a0, 0) = 0 which is D-Lipschitz in its last n variables in

a neighborhood of (a0, 0). Then there exist η > 0, an open neighborhood U of a0,

and a continuous map Ψ: U −→ R such that for all (t, a) ∈ ]−η, η[ × U , one has

t = ψ(a, f(t, a)) ⇔ t = Ψ(a).

Proof. It suffices to apply the Banach fixed-point theorem with continuous param-

eter to the map g : R×A −→ R, (t, a) 7→ ψ(a, f(t, a)) in a suitable neighborhood of

(0, a0) of the form [−η, η]×U with η > 0 and U an open neighborhood of a0.

Recall that we defined C0
x(f) := Cx(f)∩ ({0}×Tf(x)N) and Λ0

x(f) := Λx(f)∩
(T ∗xM × {0}).

Theorem 7.8. Let f : M −→ N be a continuous map between manifolds and let

x ∈M . The following are equivalent:

3This does not create any circular argument.
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(1) f is Lipschitz on a neighborhood of x;

(2) C0
x(f) = {0};

(3) Λ0
x(f) = {0}.

The implication (1)⇒(3) for real-valued maps was proved in essence in [7,

Thm. 3.9(6)]. We recall the proof here: if f : M −→ R is, say, C-Lipschitz at x0 ∈M
in a given chart, then, setting γ := {(x, t) ∈ Rm+1 | t > C‖x‖}, one has Γ+

f +

γ ⊆ Γ+
f , so Nx0

(Γ+
f ) ⊇ Int (γ), so by Proposition 3.4, Λ+

x0
(f) ⊆ Nx0

(Γ+
f )◦ ⊆ γ◦.

Therefore, Λ+
x0

(f) ◦ {0} ⊆ γ◦ ◦ {0} = {0}, and we conclude by Proposition 6.9(1).

Proof of Theorem 7.8.

(2)⇒(1) is (one implication of) Proposition 4.3(1).

(3)⇒(2). Let (0, v) ∈ C0
x(f). Let η ∈ Ṫ ∗f(x)N . By the lower bound on the conormal

(Theorem 7.5), there exist ξ ∈ T ∗xM and t ∈ R>0 such that (ξ, tη) ∈ Λx(f) and

〈(ξ, tη), (0, v)〉 = 0. Condition (3) implies that t 6= 0. Therefore, for all η ∈ T ∗f(x)N ,

one has 〈η, v〉 = 0. Therefore, v = 0.

(1)⇒(3). Let (x0, ξ0) ∈ Ṫ ∗M . We may suppose that M is open in Rm, that N = Rn

and that f is C-Lipschitz for some C ∈ R>0.

(1) We first prove that (ξ0, 0) ∈ Ppgx0
(f). Let φ : M×N −→ R be a function of class

C1 with φ(x0, f(x0)) = 0 and dφ(x0, f(x0)) = (ξ0, 0). We will construct a basis

of open neighborhoods W of (x0, f(x0)) such that each topological embedding

pM ◦ iW : Γf ∩ {φ < 0} ∩W ↪→ pM (W ) induces an isomorphism in cohomology.

Then Lemma 5.3 will imply that (ξ0, 0) ∈ Ppgx0
(f).

Since pM (dφ(x0, f(x0))) = ξ0 6= 0, we may suppose that φ(x, y) = x1−ψ(x′, y)

in some neighborhood W0 of (x0, f(x0)), where x = (x1, x
′) ∈ Rm. Therefore, for

any W ⊆W0, one has

Γf ∩ {φ < 0} ∩W = {(x, f(x)) ∈W | x1 < ψ(x′, f(x))}.

Since ∂ψ
∂y (x′0, f(x0)) = −pN (dφ(x0, f(x0))) = 0, there exists an open neighborhood

of (x′0, f(x0)) where ψ is 1/(C + 1)-Lipschitz in its last n variables. Therefore, by

Lemma 7.7, there exist η > 0, an open neighborhood U ′ of x′0 and a continuous

map Ψ: U ′ −→ R such that, setting U0 := ](x0)1 − η, (x0)1 + η[ × U ′, we have for

x ∈ U0,

x1 < ψ(x′, f(x)) ⇔ x1 < Ψ(x′).

Then, for any open neighborhood W ⊆ W0 ∩ (U0 × N) of (x0, f(x0)), one has

Γf ∩ {φ < 0} ∩ W = {(x, f(x)) ∈ W | x1 < Ψ(x′)}. Set U := pM (W ∩ Γf ).

The projection pM : {(x, f(x)) ∈ W | x1 < Ψ(x′)} −→ {x ∈ U | x1 < Ψ(x′)} is

an isomorphism. If W is convex, then so is U , and the inclusion iU : {x ∈ U |
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x1 < Ψ(x′)} ↪→ U induces an isomorphism in cohomology. Therefore, so does

pM ◦ iW = iU ◦ pM : Γf ∩ {φ < 0} ∩W ↪→ U .

Finally, we can find a basis of open convex neighborhoods W of (x0, f(x0))

such that pM (W ∩ Γf ) = pM (W ). For instance, we may set Un := B(x0, 1/n)

and Wn := Un × B
(
f(Un), 1/n

)
for n ∈ N>0, where B

(
f(Un), 1/n

)
denotes the

1/n-neighborhood of f(Un).

(2) We will prove that B∞
(
(ξ0, 0), ‖ξ0‖/(C + 2)

)
⊆ Ppgx0

(f), where the left-hand

side denotes the open ball in Rm+n centered at (ξ0, 0) with radius ‖ξ0‖/(C + 2)

for the sup norm.

Let (ξ, η) ∈ T ∗(x0,f(x0))(M×N) with ‖ξ‖, ‖η‖ < ‖ξ0‖/(C+2). Define the linear

automorphism Φ := id +(ξ, η) ⊗ (e, 0) of T(x0,f(x0))(M × N), where e ∈ Tx0
M is

such that ‖e‖ = ‖ξ0‖−1
and 〈ξ0, e〉 = 1.

One has Φ−1 = id− 1
1+〈ξ,e〉 (ξ, η) ⊗ (e, 0). Therefore, if v ∈ Tf(x0)N , then

Φ−1(0, v) = (− 〈η,v〉
1+〈ξ,e〉e, v). One has ‖ 〈η,v〉1+〈ξ,e〉e‖ 6

‖η‖‖v‖
1−‖ξ‖‖e‖‖e‖ 6

1/(C+2)
1−(1/(C+2))‖v‖ =

‖v‖/(C+1). Since f is C-Lipschitz, this implies Φ(Cx0
(f))∩({0}×Tf(x0)N) = {0}.

By Proposition B.1(8), one has C(x0,f(x0))(Φ(Γf ),Φ(Γf )) = Φ(Cx0
(f)). Therefore,

by Proposition 4.4(1), Φ(Γf ) is locally the graph of a Lipschitz map, say g. The re-

lation Φ(Γf ) = Γg and Equation (3.6) imply Φᵀ
(

Ppgx0
(g)
)

= Ppgx0
(f). From (1),

one has (ξ0, 0) ∈ Ppgx0
(g). Therefore, (ξ0 + ξ, η) = Φᵀ(ξ0, 0) ∈ Ppgx0

(f).

(3) Finally, there is a neighborhood U of x0 (contained in the fixed chart) such that

f is C-Lipschitz on U and (1) and (2) apply with x0 replaced by any x ∈ U . On the

other hand, if (x, y) /∈ Γf , then Ppg(x,y)(Γf ) = T ∗(x,y)(M×N). Therefore, there is a

neighborhoodW of (x0, f(x0)) such thatW×B∞
(
(ξ0, 0), ‖ξ0‖/(C+2)

)
⊆ Ppg(Γf ),

which proves that (ξ0, 0) /∈ Λx0(f).

§7.4. Upper bound on the conormal

In this subsection, we give an upper bound on the conormal of a map in terms of

its Whitney cone. Recall that the notation Cux (f) was defined in Equation (4.3).

Theorem 7.9 (Upper bound on the conormal). Let f : M −→ N be a continuous

map between manifolds and let x ∈M . Then

(7.4) Λx(f) ⊆
⋂

u∈ṪxM

Cux (f)>

with equality if dimxM = 1, in which case it reads

(7.5) Λx(f) = Cx(f)>.

In particular, if u ∈ TxM and ν ∈ Λx(f) and f is Lipschitz at x for pN (ν)⊥,

then there exists v ∈ Tf(x)N such that (u, v) ∈ Cx(f) ∩ ν⊥.
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Proof. (i) Let ξ ∈ T ∗(x,f(x))(M ×N) and u ∈ ṪxM be such that ξ⊥ ∩Cux (f) = {0}.
We have to prove that ξ /∈ Λx(f). Since u 6= 0, there is a linear automorphism Φ

of T(x,f(x))(M ×N) such that Φ−1({0} × Tf(x)N) ⊆ ξ⊥ ∩ (Ru× Tf(x)N).

Let (0, v) ∈ C(x,f(x))(Φ(Γf ),Φ(Γf )) = Φ(Cx(f)). Then Φ−1(0, v) ∈ Cx(f) ∩
(Ru×Tf(x)N)∩ξ⊥ ⊆ C±ux (f)∩ξ⊥ = {0}, so v = 0. Therefore, Φ(Γf ) is locally the

graph of a Lipschitz map, say g. By Equation (3.6), one has Φᵀ(Λx(g)) = Λx(f).

Let v ∈ Tf(x)N . One has 〈Φᵀ−1(ξ), (0, v)〉 = 〈ξ,Φ−1(0, v)〉 = 0, so

pN (Φᵀ−1(ξ)) = 0, so by Theorem 7.8((1)⇒(3)), one has Φᵀ−1(ξ) /∈ Λx(g). There-

fore, ξ /∈ Φᵀ(Λx(g)) = Λx(f).

(ii) The case of equality is a special case of Proposition 8.4.4

(iii) For the last claim, let u ∈ TxM and ν ∈ Λx(f). The case u = 0 is trivial since

0 ∈ Cx(f) ∩ ν⊥, so we suppose u 6= 0. By (i) and (ii), there exist v ∈ Tf(x)M and

t ∈ R>0 such that (tu, v) ∈ Ċx(f) ∩ ν⊥. Since f is Lipschitz at x for pN (ν)⊥, we

have t 6= 0, so we can suppose t = 1, so (u, v) ∈ Cx(f) ∩ ν⊥.

Remark 7.10. In view of Proposition 4.3(1), the implication (1)⇒(3) of Theo-

rem 7.8 is a special case of this upper bound on the conormal.

Example 7.11. Let f : R2 −→ R, (x1, x2) 7→ x2
1 sin(1/x1). One has C0(f) = {u ∈

R3 | |u3| 6 |u1|}, so
⋂
v∈Ṫ0M

Cv0 (f)> = {(ξ1, 0, ξ3) ∈ R3 | |ξ1| 6 |ξ3|}. In this case,

the upper bound is easily seen to be an equality.

§7.5. Characterization of strict differentiability

The lower and upper bounds on the conormal allow us to derive the following

characterization of strict differentiability.

Proposition 7.12. Let f : M −→ N be a continuous map between manifolds and

let x ∈M . The following are equivalent:

(1) f is strictly differentiable at x;

(2) C0
x(f) = {0} and Cx(f) is contained in a (dimxM)-dimensional vector sub-

space;

(3) Λ0
x(f) = {0} and Λx(f) is contained in a (dimf(x)N)-dimensional vector sub-

space;

and in that case, Cx(f) = ΓTxf and Λx(f) = (ΓTxf )⊥.

Proof. (2)⇒(1). This is (one implication of) Proposition 4.3(2), which also proves

Cx(f) = ΓTxf .

4This does not create any circular argument.
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(3)⇒(2). Condition (3) implies that f is Lipschitz, so the lower bound theorem

reads as follows: for any (u, v) ∈ Cx(f) and any η ∈ Ṫ ∗f(x)N , there exists ξ ∈
T ∗xM such that (ξ, η) ∈ Λx(f) and 〈ξ, u〉 + 〈η, v〉 = 0. Therefore, Λx(f) is an n-

dimensional vector subspace and is the graph of a linear map L : T ∗f(x)N −→ T ∗xM

such that 〈L(η), u〉 + 〈η, v〉 = 0 for all (u, v) ∈ Cx(f) and η ∈ T ∗f(x)N . Therefore,

〈η, Lᵀ(u) + v〉 = 0, so v = −Lᵀ(u), so Cx(f) is the graph of −Lᵀ, which is an

m-dimensional vector subspace.

(1)⇒(3). This is a consequence of the upper bound on the conormal, since when f

is strictly differentiable at x, one has
⋂
u∈ṪxM Cux (f)> =

⋂
u∈ṪxM{(u, f

′(x)u)}⊥ =(∑
u∈ṪxM R

(
u, f ′(x)u

))⊥
= (ΓTxf )⊥.

§7.6. Applications to real-valued functions of a real variable

In this subsection, we present easy applications of the bounds on the conormal

to the case of real-valued functions of a real variable. First, note that (−)> is an

involution on nonzero pointed symmetric cones in a two-dimensional space. Let I

be an open interval of R and f : I −→ R be a continuous function. By the case of

equality in the upper bound theorem, one has Λf = Cf
>, hence also Cf = Λf

>.

If f is Lipschitz and x ∈ I, then Λ+
x (f) = Nx(Γ+

f )◦, as is easily deduced from

Propositions 6.1 and 6.9(3), that is, the general upper bound on the microsupport

of a closed subset (Proposition 3.4) is an equality for the epigraph of a Lipschitz

function of a real variable.

We set P := {(x, y, u, v) ∈ T (I × R) | uv > 0} and N := {(x, y, ξ, η) ∈
T ∗(I × R) | ξη 6 0}. Note that N = P> and Int (N) = Int (P )

> \ 0∗I×R.

Proposition 7.13. Let I be an open interval of R and f : I −→ R be a continuous

function.

(1) The following conditions are equivalent:

(a) f is nondecreasing;

(b) Cf ⊆ P ;

(c) Λf ⊆ N .

(2) The following conditions are equivalent:

(a) f is injective with Lipschitz inverse;

(b) f is a Whitney immersion;

(c) f is a microlocal submersion.

(3) The following conditions are equivalent:

(a) f is a strictly increasing Lipschitz-embedding;
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(b) Ċf ⊆ Int (P );

(c) Λ̇f ⊆ Int (N).

Proof. (1) The equivalence (1b)⇔(1c) follows from the discussion preceding the

proposition. The implication (1a)⇒(1b) is straightforward. As for the implication

(1c)⇒(1a), let a < b ∈ I. By Lemma 7.2, there exists c ∈ ]a, b[ such that (f(a)−
f(b), b− a) ∈ Λc(f). Therefore, the hypothesis Λ̇f ⊆ Int (N) implies f(a) < f(b).

(One could prove (1b)⇒(1a) in a similar way, via an analogue of Lemma 7.2 for

Whitney cones.)

(2) The equivalence (2b)⇔(2c) follows from the discussion preceding the proposi-

tion. Namely, one has Cf ∩ (TI×0R) ⊆ 0I×R if and only if Λf ∩ (0∗I ×TR) ⊆ 0∗I×R,

and in that case, f is injective and an open map by the Fermat lemma. If f is in-

jective and open, then Cf−1 is the image of Cf by the “flip” T (I×R) −→ T (R× I),

so C0(f−1) ⊆ 0R×I is equivalent to Cf ∩(TI×0R) ⊆ 0I×R, that is, f−1 is Lipschitz

if and only if f is Whitney immersive.

(3) follows from (1) and (2) and Proposition 4.3(1).

Remark 7.14. The implication (2b)⇒(2a) follows directly from invariance of do-

main, but we gave the preceding proof for its elementary nature.

§7.7. Application to causal manifolds

In [4], the authors introduced the category of causal manifolds, in which the cate-

gory of spacetimes (time-oriented connected Lorentzian manifolds) up to conformal

isomorphisms embeds. In [4, Def. 1.7], a causal manifold (M,γM ) was defined to

be a connected manifold M equipped with an open convex cone γM ⊆ TM which

is nowhere empty (γx 6= ∅ for all x ∈ M), and a causal morphism f : (M,γM ) −→
(N, γN ) was defined to be a morphism of manifolds such that Tf(γM ) ⊆ γN .

In a vector bundle, we denote by clfw(−) the fiberwise closure. Note that for

a nowhere empty convex cone γ in a vector bundle, one has γ◦◦ = clfw(γ).

Remark 7.15. The proof of [4, Prop. 1.12] actually proves that if (M,γM ) and

(N, γN ) are causal manifolds and f : M −→ N is a morphism of manifolds, then

Λf
a◦ γ◦N ⊆ γ◦M if and only if Tf(clfw(γM )) ⊆ clfw(γN ) (and not, as stated there,

Tf(γM ) ⊆ γN ). These conditions imply that f is causal and are satisfied when f

is strictly causal or when f is causal and clfw(γN ) = γN . Since time functions are

R-valued, this misstatement has no consequences for the rest of the paper, with

the exception of [4, Cor. 2.10], in which the morphism f should be assumed strictly

causal.
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Here, we make the additional assumptions that the cone γM of a causal man-

ifold (M,γM ) is proper, in the sense that (γM )x does not contain any line for any

x ∈ M , and is continuous, in the sense that γM = clfw(γM ). One can check that

continuity as defined here is equivalent to the continuity of the map x 7→ (γM )x
for any reasonable topology on the space of cones (as for instance defined in [1]

using the Hausdorff distance). We set γR := R × R>0, so that (R, γR) is a causal

manifold.

We will extend some of the results of [4] from smooth maps to continuous

maps.

Definition 7.16. A causal morphism f : (M,γM ) −→ (N, γN ) is a continuous map

such that γM ◦ Cf ⊆ γN .

Proposition 7.17. A causal morphism is Lipschitz.

Proof. Let f : (M,γM ) −→ (N, γN ) be a causal morphism and let x ∈ M . One

has 0 ∈ (γM )x. If (0, v) ∈ Cx(f), then Rv ⊆ (γN )x, but that cone is proper, so

v = 0.

We have the following extension of [4, Prop. 1.12].

Proposition 7.18. Let (M,γM ) and (N, γN ) be causal manifolds and let f : M −→
N be a continuous map. Then f is a causal morphism if and only if Λf

a◦γ◦N ⊆ γ◦M .

If (M,γM ) = (R, γR), then this is equivalent to Cf ⊆ R({1} × γN ). If (N, γN ) =

(R, γR), then this is equivalent to Λf ⊆ R(γ◦M × {−1}).

Proof. (i) The condition is necessary. Let x ∈ M and ξ ∈ Λx(f)
a◦ (γ◦N )f(x). Let

u ∈ (γM )x. There exists η ∈ (γ◦N )f(x) such that (ξ,−η) ∈ Λx(f). By the upper

bound on the conormal, one has (ξ,−η) ∈ Cux (f)>. Therefore, since f is Lipschitz,

there exists v ∈ Tf(x)N such that (u, v) ∈ Ċx(f) and 〈(ξ,−η), (u, v)〉 = 0. Since

f is causal and u ∈ γM , one has v ∈ γN = γ◦◦N . Therefore, since η ∈ γ◦N , one has

〈ξ, u〉 = 〈η, v〉 > 0. This proves that ξ ∈ γ◦M .

(ii) The condition is sufficient. First, note that the inclusion Λf
a◦γ◦N ⊆ γ◦M implies

that f is Lipschitz. Indeed, for x ∈ M , one has 0 ∈ (γ◦N )f(x). If (ξ, 0) ∈ Λx(f),

then Rξ ⊆ (γ◦M )x, but that cone is proper, so ξ = 0.

Let x ∈M and v ∈ (γM )x ◦Cx(f). There exists u ∈ (γM )x such that (u, v) ∈
Cx(f). Let η ∈ (γ◦N )f(x) \ {0}. By the lower bound on the conormal, one has

(u, v) ∈ Λ−ηx (f)>. Therefore, since f is Lipschitz, there exists ξ ∈ T ∗xM such that

(ξ,−η) ∈ Λx(f) and 〈(ξ,−η), (u, v)〉 = 0. By the hypothesis, one has ξ ∈ (γ◦M )x.

Therefore, since u ∈ (γM )x = (γM )x, one has 〈η, v〉 = 〈ξ, u〉 > 0. This proves that

v ∈ γ◦◦N = γN .
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(iii) The cases where the domain or the codomain is (R, γR) are obvious.

Lemma 7.19. Let f : (M,γM ) −→ (N, γN ) be a causal morphism and A ⊆ T ∗M

be a closed cone. If A ∩ γ◦M ⊆ 0∗M and f is noncharacteristic for γ◦N , then (A
a◦

Λf ) ∩ γ◦N ⊆ 0∗N .

Proof. One has

Λf ∩ (A× γ◦aN ) ⊆ Λf ∩ ((A ∩ γ◦M )× γ◦aN )

⊆ Λf ∩ (0∗M × γ◦aN )

⊆ 0∗MN

respectively because f is a causal morphism (and by Proposition 7.18), by hypoth-

esis and because f is noncharacteristic for γ◦N . This implies (A
a◦Λf )∩γ◦N ⊆ 0∗N .

This lemma shows that the proof of [4, Thm. 2.9] extends from the case of

the causal morphism f being C1 to f being merely continuous. Namely, we have

the following theorem.

Theorem 7.20 (Extending [4, Thm. 2.9]). Let f : (M,γM ) −→ (N, γN ) be a mor-

phism of causal manifolds, let � be a closed causal preorder on M and let F ∈
Db(kM ). Assume that

(1) f is noncharacteristic for γ◦N ;

(2) for any x ∈M , the map f is proper on J−(x);

(3) µsupp(F ) ∩ γ◦M ⊆ 0∗M .

Then,

(7.6) µsupp(Rf∗F ) ∩ Int (γ◦N ) = ∅.

In [4], a time function on (M,γM ) was defined to be a smooth submersive

causal morphism τ : (M,γM ) −→ (R, γR). By the extension of [4, Thm. 2.9] that we

just proved, we see that all subsequent results of [4], in particular Theorem 2.13

and Corollary 3.8, continue to hold if the definition of a time function is weakened

as follows.

Definition 7.21. A time function on a causal manifold (M,γM ) is a microlocally

submersive causal morphism τ : (M,γM ) −→ (R, γR). A Cauchy time function is a

time function which is proper on the cc-future5 and cc-past of any point.

5The cc-future (closed causal future) is the future for the cc-preorder, which is the finest
closed preorder containing the causal preorder (see [4, Def. 1.44]).
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Proposition 7.22. Let τ : (M,γM ) −→ (R, γR) be a time function. Then γM ◦Cτ ⊆
γR and τ is an open map.

Proof. Let (u, v) ∈ Cx(f) with u ∈ γM . Let η ∈ ˙γ◦N . By the lower bound on the

conormal, and since τ is causal hence Lipschitz, there exists ξ ∈ T ∗xM such that

(ξ,−η) ∈ Λx(f) and 〈(ξ,−η), (u, v)〉 = 0. Since f is causal, one has ξ ∈ γ◦M by

Proposition 7.18, and since τ is microlocally submersive, one has ξ 6= 0. Therefore,

〈η, v〉 = 〈ξ, u〉 > 0. Therefore, v ∈ γN .

A time function is an open map by Proposition 5.18.

§8. Topological submanifolds

In this section, we extend some of the previous bounds and characterizations of

Lipschitz continuity and strict differentiability to topological submanifolds.

Proposition 8.1. Let M be a C0-submanifold of a manifold P and let x ∈ M .

The following are equivalent:

(1) M is locally at x the graph of a Lipschitz map;

(2) Cx(M,M) intersects trivially a (codimxM)-dimensional vector space F ⊆
TxP ;

and in that case,

µsuppx(M) ⊆
⋂

w∈TxP\F

(
Cx(M,M) ∩ (w + F )

)>
(8.1)

and Cx(M,M) ⊆
⋂

ν∈T∗xP\F⊥

(
µsuppx(M) ∩ (ν + F⊥)

)>
(8.2)

and in particular, µsuppx(M) ∩ F⊥ = {0}.
If codimxM = 1 and Cx(M,M) 6= TxP , then both conditions are satisfied

and

(8.3) Cx(M,M) = µsuppx(M)>.

Proof. The equivalence of the two conditions is given by Proposition 4.4(1). The

other claims are restatements of the upper and lower bounds on the conormal.

We have the following strengthening of Proposition 3.2. A C0-submanifold is

said to be strictly differentiable at a point if it is locally at that point the graph

of a map which is strictly differentiable at that point.

Proposition 8.2. Let M be a C0-submanifold of a manifold P and let x ∈ M .

The following are equivalent:
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(1) M is strictly differentiable at x;

(2) Cx(M,M) is included in a (dimxM)-dimensional vector subspace of TxP ;

and in that case, the inclusion in item (2) is an equality and µsuppx(M) =

Cx(M,M)⊥.

Proof. The equivalence of the two conditions is Proposition 4.4(2). If these con-

ditions are fulfilled, then there exist an open neighborhood U of x and a chart

φ = (φM , φN ) : U ∼−−→ UM × UN ⊆ Rm × Rn and a map f : UM −→ UN strictly

differentiable at φM (x) such that φ(M ∩ U) = Γf . We write Txf for TφM (x)f and

similarly for the Whitney cone and the conormal of f . The equality µsuppx(M) =

Cx(M,M)⊥ follows from Λx(f) = Cx(f)⊥ (by Proposition 7.12), Txφ(Cx(M,M))

= ΓTxf = Cx(f) (Propositions 4.4(2) and 7.12) and µsuppx(M) = φ′(x)ᵀ(Λx(f))

(consequence of φ(M ∩ U) = Γf and Equation (3.4)).

The following lemma is an analog ue of Rolle’s lemma (or the mean value

theorem) for one-dimensional C0-submanifolds.

Lemma 8.3. Let V be a vector space and f : [0, 1] −→ V be a continuous injection.

Set M := f
(
]0, 1[

)
. If η ∈

(
f(1) − f(0)

)⊥
, then there exists t ∈ ]0, 1[ such that

η ∈ µsuppf(t)(M).

Proof. Since η ∈ (f(1) − f(0))⊥, the continuous function η ◦ f has an extremum

at some t ∈ ]0, 1[, say a maximum. We set x := f(t). One has M ⊆ {v ∈ V | 〈η, v−
x〉 6 0}, so −η ∈ Cx(M)◦. By Proposition 3.4, this implies −η ∈ µsuppx(M),

which is enough by Proposition 3.3 (since f is injective and [0, 1] is compact, M

is an embedded submanifold, and it is locally flat since it is 1-dimensional).

Proposition 8.4. Let M be a closed C0-submanifold of a manifold P . Then,

(8.4) µsupp(M) ⊆ C(M,M)>

with equality if dimM = 1.

Recall that on the other hand, one has π−1
P (M) ∩ C(M)◦ ⊆ µsupp(M).

Proof. Let (x, η) ∈ ˙µsupp(M). Then η /∈ Cx(M,M)> is equivalent to Cx(M,M)∩
η⊥ = {0}. If this is the case, then by Proposition 8.1, the submanifold M is locally

at x the graph of a map f . Then, by the upper bound on the conormal, we obtain

µsuppx(M) = Λx(f) ⊆ Cx(f)> = Cx(M,M)>.

In the 1-dimensional case, equality follows from Lemma 8.3. Indeed, let u ∈
Ċx(M,M) and ξ ∈ u⊥. Let f : ]−1, 1[ −→ M be a parametrization of M in a

neighborhood of x. Then there exist sequences or reals xn, yn ∈ ]−1, 1[ and cn > 0
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with xn, yn
n−→ 0 and cn(f(yn)−f(xn))

n−→ u. Since u⊥ = −u⊥, we can suppose that

xn < yn for all n ∈ N. For each n ∈ N, let ξn be the vector of (f(yn) − f(xn))⊥

closest to ξ. Then ξn
n−→ ξ. Applying Lemma 8.3 in each interval [xn, yn] gives

zn ∈ ]xn, yn[ such that ξn ∈ µsuppf(zn)(M). One has zn
n−→ 0, so f(zn)

n−→ x, so

ξ ∈ µsuppx(M).

Appendix A. Lipschitz continuity and strict differentiability

In this appendix, we recall standard definitions related to Lipschitz continuity and

differentiability, mainly to set the notation.

Definition A.1 ((Pointwise) C-Lipschitz function). Let f : X −→ Y be a function

between metric spaces and let C ∈ R.

(1) The function f is C-Lipschitz if

(A.1) dY (f(x1), f(x2)) 6 C dX(x1, x2)

for any x1, x2 ∈ X.

(2) Let x0 ∈ X. The function f is C-Lipschitz (resp. pointwise C-Lipschitz ) at

x0 if for all ε > 0 there exists a neighborhood U of x0 such that f is (C + ε)-

Lipschitz on U (resp. such that dY (f(x0), f(x)) 6 (C + ε) dX(x0, x) for any

x ∈ U).

(3) The infimum of the numbers C such that f is C-Lipschitz (resp. pointwise

C-Lipschitz) at x0 is called the Lipschitz constant (resp. pointwise Lipschitz

constant) of f at x0 and is denoted by Lipx0
(f) (resp. Lippw

x0
(f)).

It is easy to prove that

(A.2) Lip(f) = lim sup(Lippw(f)) : X −→ R.

The extended reals Lipx0
(f) and Lippw

x0
(f) in Definition A.1(3) are actually minima

when finite.

For maps between manifolds, one can read Lipschitz properties in charts, and

because of rescaling, the notion of C-Lipschitz continuity makes no sense anymore.

One can only require a map to be C-Lipschitz for some C > 0, or for all C > 0,

in the following sense.

Definition A.2 ((Pointwise) Lipschitz and (strictly) differentiable maps). Let

f : M −→ N be a continuous map between manifolds and let x0 ∈M .

(1) The map f is Lipschitz (resp. pointwise Lipschitz ) at x0 if there exist charts

U at x0 and V at f(x0) and a constant C ∈ R such that in these charts f is
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C-Lipschitz (resp. C-pointwise Lipschitz) at x0. It is Lipschitz if it is Lipschitz

at x for all x ∈M .

(2) The map f is strictly differentiable (resp. differentiable) at x0 if there exist a

linear map L : Tx0M −→ Tf(x0)N and charts U at x0 and V at f(x0) such that

in these charts, for all ε > 0, the map f − L is ε-Lipschitz (resp. pointwise

ε-Lipschitz) at x0, that is, there exists a neighborhood Uε ⊆ U of x such that

f − L is ε-Lipschitz on Uε.

The second item of this definition is of course a rewording of the usual defi-

nitions (if L exists, it is unique and equal to Tx0
f). It emphasizes the naturality

of the notion of strict differentiability. Strict differentiability is the good notion

of “C1 at a point”: if a map is differentiable on a neighborhood of a point, then

it is strictly differentiable at that point if and only if its derivative is continuous

at that point. It is also the natural hypothesis for the inverse function theorem.

Strict differentiability at a point implies Lipschitz continuity in a neighborhood of

that point.

The following lemma is used to prove Lemma 2.5.

Lemma A.3. Let U be an open subset of Rn and x ∈ U . Let γ ⊆ Rn be a closed

cone. Let φ : U −→ R be a function which is strictly differentiable at x with φ(x) = 0

and dφ(x) ∈ Int (γ◦a). Then there exists an open neighborhood V ⊆ U of x such

that V ∩ ((V ∩ {φ < 0}) + γ) ⊆ V ∩ {φ < 0}, that is, V ∩ {φ < 0} is γ-open in V

in the sense of [6, Def. 3.2.1].

Proof. Set L := dφ(x) and ε := min{|〈L, u〉| | u ∈ γ and ‖u‖ = 1}. Let V ⊆ U be

an open neighborhood of x where the function φ−L is ε-Lipschitz. Let y ∈ V ∩{φ <
0} and u ∈ γ be such that y+u ∈ V . Then φ(y+u) 6 φ(y)+〈L, u〉+ε‖u‖ < 0.

Appendix B. Tangent cones

In this appendix, we recall the definitions of the tangent cone C(A), the strict

tangent cone N(A) and the Whitney cone C(A,B) of subsets A, B of a manifold,

and their main properties. The (elementary) proofs can be found in [4, App. A].

Let M be a manifold. Let x ∈ M , let xn, yn
n−→ x and (cn) ∈ RN be three

sequences, and let u ∈ TxM . We write “cn(yn − xn)
n−→ u” to mean that in some

chart φ at x, one has cn(φ(yn)− φ(xn))
n−→ Txφ(u). This then holds for any chart

at x. If A,B ⊆ M , their Whitney cone (see [6, Def. 4.1.1 and Prop. 4.1.2]) is

defined as

Cx(A,B) :=
{
u ∈ TxM | ∃ (xn) ∈ AN, ∃ (yn) ∈ BN, ∃ (cn) ∈ (R>0)N

such that xn
n−→ x and yn

n−→ x and cn(yn − xn)
n−→ u

}
.(B.1)
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We write C(A,B) :=
⋃
x∈M Cx(A,B) (and similarly for the cones defined below).

We define the tangent cone of A as

(B.2) Cx(A) := Cx({x}, A).

We define the strict tangent cone (or strict normal cone; see [6, Def. 5.3.6]) of A

as

(B.3) N(A) := TM \ C(A,M \A).

One has

(B.4) τ−1
M (A) ∩N(A) ⊆ C(A) ⊆ C(A,A).

Proposition B.1 (Elementary properties of the Whitney cone).Let M be a man-

ifold and A,B,A1, A2 ⊆M .

(1) The Whitney cone C(A,B) ⊆ TM is a closed cone.

(2) Antisymmetry: C(A,B) = −C(B,A).

(3) Monotony: if A1 ⊆ A2, then C(A1, B) ⊆ C(A2, B).

(4) Additivity: C(A1 ∪A2, B) = C(A1, B) ∪ C(A2, B).

(5) Stability under closure: C(A,B) = C(A,B).

(6) Projection on the manifold: τM (C(A,B)) = A ∩B.

(7) If x ∈ Int (A) ∩B, then Cx(A,B) = TxM .

(8) If f : M −→ N is strictly differentiable at x ∈ M , then Txf(Cx(A,B)) ⊆
Cf(x)(f(A), f(B)).

These properties imply corresponding properties for the tangent cone C(A)

(and in that case, strict differentiability in item (8) can be replaced by differentia-

bility). The tangent cone C(A) is pointwise closed but need not be closed, and one

can have C(A) ( C(A) ( C(A,A). Note also that C(A,A) is a closed symmetric

cone but need not be convex.

Example B.2. Let A be the graph of the function |−| : R −→ R. Then C0(A) =

C(A)0 = A ( C0(A,A) = {(u, v) ∈ R2 | |v| 6 |u|}.
Let A be the graph of the function R −→ R, x 7→ x2 sin(1/x). Then C0(A) =

R× {0} ( C(A)0 = C0(A,A) = {(u, v) ∈ R2 | |v| 6 |u|}.

The strict tangent cone N(A) of a subset A of a manifold M is an open convex

cone. Let V be a chart at x ∈ M . One has u ∈ Nx(A) if and only if there exist

an open neighborhood U ⊆ V of x and an open conic neighborhood γ ⊆ TxU of u

such that in a chart, U ∩ ((U ∩A) + γ) ⊆ A.
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Proposition B.3. Let A be a subset of a manifold M . One has C(∂A, ∂A) ∩
N(A) = ∅ and Nx(A) ∩Nx(M \A) = ∅ for any x ∈ ∂A.

Proof. (i) Cx(∂A, ∂A) ∩ Nx(A) = ∅ for x ∈ M . This is trivial if x /∈ ∂A, so

let x ∈ ∂A. Let u ∈ Cx(∂A, ∂A). There exist sequences (xn), (x′n) ∈ (∂A)N both

converging to x and a sequence (cn) ∈ (R>0)N such that cn(x′n − xn)
n−→ u. If

u = 0, the result is trivial, so we can suppose that xn 6= x′n for any n ∈ N. For each

n ∈ N, there exist sequences (xn,m)m ∈ AN and (x′n,m)m ∈ (M \ A)N converging

respectively to xn and x′n. Let ρ : N −→ N be a strictly increasing function such that

cn(xn,ρ(n) − xn − x′n,ρ(n) + x′n)
n−→ 0. Then the sequences (xn,ρ(n)) and (x′n,ρ(n))

and (cn) show that u ∈ Cx(A,M \A) = TxM \Nx(A).

(ii) Nx(A) ∩Nx(M \A) = ∅ for x ∈ ∂A. Fix a chart at x and suppose that there

exists u ∈ Nx(A) ∩Nx(M \ A). There exist an open neighborhood U of x and an

open conic neighborhood γ ⊆ TxM of u such that U ∩ ((U ∩ A) + γ) ⊆ A and

U ∩ ((U \ A) + γ) ⊆ U \ A. Therefore, U ∩ ((U ∩ A) + γ) ∩ ((U \ A) + γ) = ∅.

In particular, since the only conic neighborhood of 0 is TxM , one has u 6= 0. Let

(xn) ∈ (U ∩ A)N and (yn) ∈ (U \ A)N be sequences converging to x. Rescaling u,

we can suppose that x+ u ∈ U . The set (x+ u)− γ is a neighborhood of x, so for

n large enough, one has x+ u ∈ U ∩ (xn + γ)∩ (yn + γ) 6= ∅, a contradiction.
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