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Pro-p Grothendieck Conjecture for Hyperbolic
Polycurves

by

Koichiro Sawada

Abstract

In the present paper, we study the geometrically pro-p fundamental groups of hyperbolic
polycurves, i.e., successive extensions of families of hyperbolic curves. Among other re-
sults, we show that the isomorphism class of a hyperbolic polycurve of dimension ≤ 4
over a sub-p-adic field satisfying a certain group-theoretic condition is completely deter-
mined by the geometrically pro-p fundamental group equipped with surjection onto the
absolute Galois group of the base field.
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§1. Introduction

Let k be a field of characteristic zero, k an algebraic closure of k and X a variety

over k. (In this paper, a variety over k is defined to be a scheme that is of finite type,

separated and geometrically connected over k (cf. Definition 2.4).) Write Gk :=

Gal(k/k) for the absolute Galois group of k and ΠX for the étale fundamental

group of X. Then the structure morphism X → Spec k induces a natural surjection

ΠX � Gk. Write ∆X/k for the kernel of this surjection ΠX � Gk. Grothendieck

proposed the following philosophy (cf. [7], [8]):

For certain types of k, if X is an “anabelian variety” over k, then the iso-

morphism class of X is completely determined by the fundamental group

ΠX as a profinite group equipped with the surjection ΠX � Gk.

We often call this philosophy the “Grothendieck conjecture”. Although we do

not have any general definition of the notion of an “anabelian variety”, successive
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extensions of families of hyperbolic curves (hereinafter called “hyperbolic poly-

curves”; cf. Definition 3.1(ii)) have been regarded as typical examples of anabelian

varieties. The Grothendieck conjecture for hyperbolic polycurves of dimension ≤ 2

was proved in [11] (cf. [11, Thms. 16.5, a2.4]), and thereafter, in [10], it was ex-

tended to the case of hyperbolic polycurves of dimension ≤ 4 (cf. [10, Cor. 3.18]).

On the other hand, we may consider a pro-p version of the Grothendieck

conjecture. Let p be a prime number and X → Y a morphism between connected

noetherian schemes. Write ∆X/Y for the kernel of the (outer) homomorphism

ΠX → ΠY induced by the morphism X → Y , ∆p
X/Y for the maximal pro-p

quotient of ∆X/Y and Πp
X/Y := ΠX/ ker(∆X/Y � ∆p

X/Y ). Then let us consider

the following:

For certain types of k, if X is an “anabelian variety” over k, then is the

isomorphism class of X completely determined by the geometrically pro-p

fundamental group Πp
X/k as a profinite group equipped with the surjection

Πp
X/k � Gk?

In [11], a very strong form of the pro-p Grothendieck conjecture for hyperbolic

curves was proved (cf. [11, Thm. 16.5]). In the present paper, we consider the pro-p

Grothendieck conjecture for hyperbolic polycurves. Let

X = Xn → Xn−1 → · · · → X2 → X1 → Spec k = X0

be a sequence of parametrizing morphisms of a hyperbolic polycurve X over k (cf.

Definition 3.1(ii)). Then for any triplet of integers (i, j, l) such that 0 ≤ i < j <

l ≤ n, we have an exact sequence of profinite groups

1→ ∆Xl/Xj → ∆Xl/Xi → ∆Xj/Xi → 1

(cf. Remark 3.8), which plays an important role in the study of the Grothendieck

conjecture for hyperbolic polycurves of [10]. However, since the operation of taking

the maximal pro-p quotient of a profinite group is not exact, the sequence

1→ ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ ∆p
Xj/Xi

→ 1

is not exact in general. For this reason, let us introduce a condition that the above

sequence is exact, which we call (∗)p (cf. Definition 3.10), and consider the pro-p

Grothendieck conjecture for hyperbolic polycurves satisfying condition (∗)p. The

following is one of the main results of the present paper.

Theorem 1.1 (Cf. Theorems 4.4, 4.17, Corollaries 4.19, 4.21). Let p be a prime

number, n a positive integer, k a sub-p-adic field (cf. Definition 4.1), X a hyperbolic

polycurve of dimension n over k satisfying condition (∗)p, Y a normal variety over
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k and φ : Πp
Y/k → Πp

X/k an open homomorphism. Suppose that one of the following

conditions (1), (2), (3), (4) is satisfied:

(1) n = 1.

(2) The following conditions are satisfied:

(2-i) n = 2.

(2-ii) The kernel of φ is topologically finitely generated.

(3) The following conditions are satisfied:

(3-i) n = 3.

(3-ii) The kernel of φ is finite.

(3-iii) Y is of p-LFG-type (cf. Definition 3.25).

(3-iv) 3 ≤ dim(Y ).

(4) The following conditions are satisfied:

(4-i) n = 4.

(4-ii) φ is injective.

(4-iii) Y is a hyperbolic polycurve over k satisfying condition (∗)p.

(4-iv) 4 ≤ dim(Y ).

Then φ arises from a uniquely determined dominant morphism Y → X over k.

The next result follows from Theorem 1.1.

Theorem 1.2 (Cf. Corollary 4.22). Let p be a prime number, k a sub-p-adic field

and X, Y hyperbolic polycurves over k satisfying condition (∗)p. Suppose that

either X or Y is of dimension ≤ 4. Then the natural map

Isomk(Y,X)→ IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k)

is bijective.

This implies that the isomorphism class of a hyperbolic polycurve of dimension

≤ 4 over a sub-p-adic field satisfying condition (∗)p is completely determined by the

geometrically pro-p fundamental group equipped with surjection onto the absolute

Galois group of the sub-p-adic field. Condition (∗)p is (at least, in order to perform

the proofs in the present paper) essential. The majority of the proof of Theorem 1.1

is analogous to the proof of the Grothendieck conjecture for hyperbolic polycurves

in [10], together with Theorem 1.1 in the case where condition (1) is satisfied, which

was essentially proved in [11] (cf. [11, Thm. 16.5]). However, the difference between

the pro-p version and the original (profinite) version is the necessity of considering
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base schemes. In fact, Πp
X/Y depends on the base scheme Y , although ΠX does

not depend on Y . It seems (to the author) that choosing a suitable base scheme to

complete the proof is difficult. In the present paper, to avoid this problem, first we

assume a certain condition stronger than (∗)p and use the maximal pro-p quotient

Πp
X of ΠX (cf. Theorem 4.16, Corollaries 4.18, 4.20), which is independent of the

base scheme, instead of “Πp
X/Y ”, which essentially depends on the base scheme

“Y ”. Then, by replacing the base field k by a suitable Galois extension and then

descending, we complete the proof of Theorem 1.1.

Next, recall that, if X and Y are hyperbolic polycurves over a field k, it follows

that Isomk(Y,X) is finite (cf. Proposition 5.5). Thus, if the natural map discussed

in Theorem 1.2 is bijective without the assumption that “either X or Y is of

dimension ≤ 4” holds, then IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k) is finite. In general,

it is not known that the map discussed in Theorem 1.2 is bijective. However, we

can prove the finiteness of IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k).

Theorem 1.3 (Cf. Theorem 5.6). Let p be a prime number, k a sub-p-adic field

and X, Y hyperbolic polycurves over k. Suppose that at least one of X/k, Y/k

satisfies condition (∗)p. Then the set

IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k)

is finite.

Remark. A morphism (resp. k-morphism) Y → X between connected noetherian

schemes (resp. k-schemes) induces an outer homomorphism ΠY → ΠX (resp. outer

homomorphism ΠY → ΠX over Gk), i.e., a ΠX -conjugacy class of homomorphisms

ΠY → ΠX (resp. ∆X/k-conjugacy class of homomorphisms ΠY → ΠX over Gk).

However, we sometimes choose one homomorphism belonging to the ΠX - (resp.

∆X/k-) conjugacy class of homomorphisms ΠY → ΠX induced by Y → X, and we

call it the homomorphism induced by Y → X.

§2. Étale fundamental groups of varieties

In the present Section 2, we study étale fundamental groups of algebraic varieties.

Let k be a field of characteristic zero, k an algebraic closure of k, Gk := Gal(k/k)

and Primes the set of all prime numbers.

Definition 2.1. Let X be a connected noetherian scheme.

(i) We shall write

ΠX

for the étale fundamental group of X (for some choice of basepoint).
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(ii) Let Y be a connected noetherian scheme and f : X → Y a morphism. Then

we shall write

∆f = ∆X/Y ⊂ ΠX

for the kernel of the outer homomorphism ΠX → ΠY induced by f . If Y =

SpecA, then by abuse of notation we often write

∆X/A

instead of ∆X/Y . (Similar notation will be used for Πp
X/S , ∆p

f/S = ∆p
X→Y/S ,

∆
(p)
X/Y , which are defined below.)

Lemma 2.2 ([10, Lem. 1.2]). Let X be a connected noetherian normal scheme.

Write η → X for the generic point of X. Then the outer homomorphism Πη → ΠX

induced by the morphism η → X is surjective.

Lemma 2.3 ([10, Lem. 1.3]). Let X, Y be connected noetherian schemes and f :

X → Y a morphism. Suppose that Y is normal and that f is dominant and of

finite type. Then the outer homomorphism ΠX → ΠY induced by f is open.

Definition 2.4. Let X be a scheme over k. Then we shall say that X is a variety

over k if X is of finite type, separated and geometrically connected over k.

Lemma 2.5 ([10, Lem. 1.5]). Let X be a variety over k. Then the sequence of

schemes X ×k k
pr1→ X → Spec k determines an exact sequence of profinite groups

1→ ΠX×kk → ΠX → Gk → 1.

In particular, we obtain an isomorphism ΠX×kk
∼→ ∆X/k (which is well defined

up to ΠX-conjugation).

Lemma 2.6 ([10, Lem. 1.6]). Let X, Y be connected noetherian schemes and f :

X → Y a morphism. Suppose that f is of finite type, separated, dominant and

generically geometrically connected. Suppose, moreover, that Y is normal. Then

the outer homomorphism ΠX → ΠY induced by f is surjective.

Lemma 2.7 ([10, Lem. 1.7]). Let X be a variety over k. Suppose that Gk is topo-

logically finitely generated (e.g., the case where k = k). Then the profinite group

ΠX is topologically finitely generated.

Definition 2.8. Let X, Y be integral noetherian schemes and f : X → Y a

dominant morphism of finite type. Then we shall write

Nor(f) = Nor(X/Y )→ Y
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for the normalization of Y in the finite extension of the function field of Y obtained

by forming the algebraic closure of the function field of Y in the function field

of X. Note that Nor(f) = Nor(X/Y ) is integral and normal and the morphism

Nor(f) = Nor(X/Y )→ Y is dominant and affine.

Lemma 2.9 ([10, Lem. 1.9]). Let X, Y be integral noetherian schemes and f :

X → Y a dominant morphism of finite type. Suppose that X is normal. Then

f factors through the natural morphism Nor(f) → Y and the resulting morphism

X → Nor(f) is dominant and generically geometrically irreducible. If, moreover, X

and Y are varieties over k and f is a morphism over k, then the natural morphism

Nor(f)→ Y is finite and surjective and Nor(f) is a normal variety over k.

Lemma 2.10 ([10, Prop. 1.10(i)]). Let S, X and Y be connected noetherian nor-

mal schemes, Y → X → S morphisms of schemes and s→ S a geometric point of

S. Suppose that the following conditions are satisfied:

(1) Y → X is dominant and induces an outer surjection ΠY � ΠX .

(2) X → S is surjective, of finite type, separated and generically geometrically

integral.

(3) Y → S is of finite type, separated, faithfully flat, geometrically normal and

generically geometrically connected.

(4) For any connected finite étale covering X ′ → X and any geometric point s′ →
Nor(X ′/S) of Nor(X ′/S) that lifts the geometric point s of S, the geometric

fiber X ′ ×Nor(X′/S) s
′ of X ′ → Nor(X ′/S) at s′ → Nor(X ′/S) is connected.

(Note that it follows from Lemma 2.9 that condition (4) is satisfied if the image

of the geometric point s→ S is the generic point of S).

Then the sequence of connected schemes X ×S s
pr1→ X → S determines an exact

sequence of profinite groups

ΠX×Ss → ΠX → ΠS → 1.

Lemma 2.11 ([10, Cor. 1.11]). Let S, X be connected noetherian normal schemes

and X → S a morphism of schemes that is surjective, of finite type, separated

and generically geometrically irreducible. Suppose that the function field of S is

of characteristic zero. Suppose, moreover, that one of the following conditions is

satisfied:

(1) There exists an open subscheme U ⊂ X of X such that the composite U ↪→
X → S is surjective and smooth.
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(2) There exist a connected normal scheme Y and a morphism Y → X that is

proper, surjective and that induces an isomorphism between the respective func-

tion fields, such that the composite Y → X → S is smooth.

Then ∆X/S is topologically finitely generated.

Definition 2.12. Let G be a profinite group and Σ a subset of Primes. Then we

shall write

GΣ

for the maximal pro-Σ quotient of G. Let p be a prime number. Then we shall

write simply

Gp

for the pro-p group G{p}.

Remark 2.13. The right exactness of G 7→ GΣ is well known. Moreover, one

verifies easily that if U ⊂ GΣ is an open subgroup of GΣ and V is the inverse

image of U ⊂ GΣ by the natural surjection G � GΣ, then the natural surjection

G� GΣ induces an isomorphism V Σ ∼→ U .

Definition 2.14. Let p be a prime number, S, X connected noetherian schemes

and X → S a morphism of schemes. Then we shall write

Πp
X/S

for the quotient of ΠX by the kernel of the natural surjection ∆X/S � ∆p
X/S

(which is a characteristic subgroup of ∆X/S).

Remark 2.15. We shall use not only Πp
X/S but also the maximal pro-p quotient

of ΠX , which we shall write Πp
X (as Definition 2.12 above).

Remark 2.16. In the notation of Definition 2.14, let U be an open subgroup of

Πp
X/S (resp. Πp

X). In the present paper, we shall refer to the connected finite étale

covering of X corresponding to the inverse image of U by the natural surjection

ΠX � Πp
X/S (resp. ΠX � Πp

X) as the covering corresponding to U .

Definition 2.17. Let p be a prime number, S a connected noetherian scheme,

X, Y connected noetherian schemes over S and f : X → Y a morphism over S.

Then we shall write

∆p
f/S = ∆p

X→Y/S := ker(Πp
X/S → Πp

Y/S), ∆
(p)
f = ∆

(p)
X/Y := ker(Πp

X → Πp
Y ).

Note that ∆p
X→Y/S = ker(∆p

X/S → ∆p
Y/S), and that ker(∆X/S → ∆Y/S �

∆p
Y/S) ⊂ ∆X/S is the inverse image of ∆p

X→Y/S ⊂ ∆p
X/S by the natural surjection

∆X/S � ∆p
X/S .
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Lemma 2.18. Let p be a prime number, S, X, Y connected noetherian schemes

and X → Y → S morphisms of schemes. Suppose that the outer homomorphism

ΠX → ΠY induced by X → Y is surjective. Then ∆p
X→Y/S is the image of ∆X/Y ⊂

ΠX by the natural surjection ΠX � Πp
X/S.

Proof. Since ΠX � ΠY is surjective, the sequence of profinite groups

1→ ∆X/Y → ∆X/S → ∆Y/S → 1

is exact. Thus, the sequence of pro-p groups

∆p
X/Y → ∆p

X/S → ∆p
Y/S → 1

is exact. This induces a surjection ∆p
X/Y � ker(∆p

X/S → ∆p
Y/S) = ∆p

X→Y/S , hence

∆X/Y → ∆p
X→Y/S is surjective. This completes the proof of Lemma 2.18.

Definition 2.19. Let G be a profinite group. Then we shall say that G is slim if

every open subgroup of G is center-free.

Lemma 2.20. Let G be a profinite group and Π1, Π2 profinite groups over G. For

i = 1, 2, write ∆i = ker(Πi → G). Suppose that ∆2 is slim. Write Homopen
G (Π1,Π2)

for the set of open homomorphisms from Π1 to Π2 over G. Then the natural map

Homopen
G (Π1,Π2)→ Hom(∆1,∆2)

is injective.

Proof. Let ϕ,ψ ∈ Homopen
G (Π1,Π2) be elements of Homopen

G (Π1,Π2) that map to

the same element θ ∈ Hom(∆1,∆2) by the above map. Note that θ : ∆1 → ∆2

is an open homomorphism. Let a ∈ Π1 and b ∈ ∆1. Then we have ϕ(aba−1) =

θ(aba−1) = ψ(aba−1) and ϕ(b) = θ(b) = ψ(b), hence ψ(a)−1ϕ(a)θ(b) =

θ(b)ψ(a)−1ϕ(a). On the other hand, ψ(a)−1ϕ(a) ∈ ker(Π2 � G) = ∆2. Thus,

since b ∈ ∆1 is arbitrary, ψ(a)−1ϕ(a) ∈ Z∆2(Im θ). Now since ∆2 is slim and

Im θ ⊂ ∆2 is an open subgroup of ∆2, one verifies easily that Z∆2
(Im θ) = {1},

which implies that ϕ = ψ. This completes the proof of Lemma 2.20.

§3. Pro-p fundamental groups of hyperbolic polycurves

In the present Section 3, we study pro-p étale fundamental groups of hyperbolic

polycurves. Let k be a field of characteristic zero, k an algebraic closure of k,

Gk := Gal(k/k) and Primes the set of all prime numbers.

Definition 3.1 (Cf. [10, Def. 2.1]). Let S be a scheme and X a scheme over S.
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(i) We shall say that X is a hyperbolic curve (of type(g, r)) over S if there exist

• a pair of nonnegative integers (g, r);

• a scheme Xcpt which is smooth, proper, geometrically connected and of

relative dimension 1 over S;

• a (possibly empty) closed subscheme D ⊂ Xcpt of Xcpt which is finite

and étale over S

such that

• 2g − 2 + r > 0;

• any geometric fiber of Xcpt → S is (a necessarily smooth proper curve)

of genus g;

• the finite étale covering D ↪→ Xcpt → S is of degree r;

• X is isomorphic to Xcpt \D over S.

We shall refer to the above integer g as the genus of X over S.

(ii) We shall say that X is a hyperbolic polycurve (of relative dimension n) over S

if there exist a positive integer n and a (not necessarily unique) factorization

of the structure morphism X → S,

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

such that, for each i = 1, . . . , n, Xi → Xi−1 is a hyperbolic curve. We shall

refer to the above morphism X → Xn−1 as a parametrizing morphism for X

and refer to the above factorization of X → S as a sequence of parametrizing

morphisms (cf. Remark 3.3).

Remark 3.2. In the notation of Definition 3.1(ii), suppose that S is a normal

(resp. smooth) variety of dimension m over k. Then any hyperbolic polycurve of

relative dimension n over S is a normal (resp. smooth) variety of dimension n+m

over k.

Remark 3.3. A sequence of parametrizing morphisms of X → S,

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0,

is not necessarily unique. In the present paper, a hyperbolic polycurve is always

assumed to be equipped with a fixed sequence of parametrizing morphisms of the

hyperbolic polycurve unless otherwise specified.

Definition 3.4 (Cf. [10, Def. 2.2]). In the notation of Definition 3.1(i), suppose

that S is normal. Then the pair “(Xcpt, D)” is uniquely determined up to canonical
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isomorphism over S (cf. [12, §0]). We shall refer to Xcpt as the smooth compacti-

fication of X over S and refer to D as the divisor of cusps of X over S.

Proposition 3.5 ([10, Prop. 2.3]). Let n be a positive integer, S a connected noe-

therian separated normal scheme over k, X a hyperbolic polycurve of relative di-

mension n over S and Y → X a connected finite étale covering of X. For each

i = 0, . . . , n, write Yi := Nor(Y/Xi). Then the following hold:

(i) For each integer i such that 1 ≤ i ≤ n, Yi is a hyperbolic curve over Yi−1.

Moreover, if we write Y cpt
i for the smooth compactification of the hyperbolic

curve Yi over Yi−1, then the composite Y cpt
i → Yi−1 → Xi−1 is proper and

smooth. Furthermore, if we write Y cpt
i → Zi−1 → Xi−1 for the Stein fac-

torization of the proper morphism Y cpt
i → Xi−1, then Zi−1 is isomorphic to

Yi−1 over Xi−1.

(ii) For each integer i such that 0 ≤ i ≤ n, the natural morphism Yi → Xi is a

connected finite étale covering.

In particular, Y is a hyperbolic polycurve of relative dimension n over Nor(Y/S)

and the factorization

Y = Yn → Yn−1 → · · · → Y1 → Nor(Y/S) = Y0

is a sequence of parametrizing morphisms.

Remark 3.6. Hereafter, if X/S is a hyperbolic polycurve as in Proposition 3.5

and Y → X is a connected finite étale covering of X, we regard Y as the hyperbolic

polycurve over Nor(Y/S) with the natural sequence of parametrizing morphisms

as in Proposition 3.5 unless otherwise specified.

Proposition 3.7 ([10, Prop. 2.4 (i),(ii)]). Let (m,n) be a pair of integers such

that 0 ≤ m < n, S a connected noetherian separated normal scheme over k and X

a hyperbolic polycurve of relative dimension n over S. Then the following hold:

(i) For any geometric point xm → Xm of Xm, the sequence of connected schemes

X ×Xm xm
pr1→ X → Xm determines an exact sequence of profinite groups

1→ ΠX×Xmxm → ΠX → ΠXm → 1.

In particular, we obtain an isomorphism ΠX×Xmxm
∼→ ∆X/Xm (which is well

defined up to ΠX-conjugation).

(ii) Let T be a connected noetherian separated normal scheme over S and T →
Xm a morphism over S. Then the natural morphisms X ×Xm T

pr1→ X and

X ×Xm T
pr2→ T determine an outer isomorphism

ΠX×XmT
∼→ ΠX ×ΠXm

ΠT
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and an isomorphism

∆X×XmT/T
∼→ ∆X/Xm

(which is well defined up to ΠX-conjugation).

Remark 3.8. Note that, in the notation of Proposition 3.7, for any triplet of

integers (i, j, l) such that 0 ≤ i < j < l ≤ n, by considering the commutative

diagram of profinite groups

∆Xj/Xi
� _

��

1 // ∆Xl/Xj
//

��

ΠXl
// ΠXj

//

��

1

1 // ∆Xl/Xi
// ΠXl

// ΠXi
// 1

(cf. Proposition 3.7(i)), we obtain a natural exact sequence of profinite groups

1→ ∆Xl/Xj → ∆Xl/Xi → ∆Xj/Xi → 1.

Lemma 3.9. Let n be a positive integer, S a connected noetherian separated nor-

mal scheme over k and X a hyperbolic polycurve of relative dimension n over S.

Then the following hold:

(i) For any triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n, the outer

homomorphism ∆Xl/Xi → ∆Xj/Xi induced by the outer surjection ΠXl →
ΠXj (cf. Proposition 3.7(i)) is surjective, and ∆Xl/Xi is the inverse image

of ∆Xj/Xi ⊂ ΠXj by the outer surjection ΠXl � ΠXj .

(ii) Let Y → X be a connected finite étale covering of X. Let us fix a basepoint

of Y . Then, for any pair of integers (i, j) such that 0 ≤ i < j ≤ n, ΠYi (cf.

Proposition 3.5) naturally coincides with Im(ΠYj ↪→ ΠXj � ΠXi), and this

determines an equality ∆Yj/Yi = ∆Xj/Xi ∩ΠYj .

(iii) In the notation of (ii), suppose, moreover, given a pair of integers (i, j) such

that 0 ≤ i < j ≤ n and ∆Yj/Yi = ∆Xj/Xi . Then for any pair of integers

(l,m) such that i ≤ l < m ≤ j, we obtain an equality ∆Ym/Yl = ∆Xm/Xl .

Proof. First, we verify assertion (i). It follows immediately that ∆Xl/Xi is the

inverse image of ∆Xj/Xi ⊂ ΠXj by the outer surjection ΠXl � ΠXj . Moreover,

it follows from the surjectivity of ΠXl → ΠXj that the outer homomorphism
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∆Xl/Xi → ∆Xj/Xi is surjective. This completes the proof of assertion (i). Next,

we verify assertion (ii). The commutative diagram of connected schemes

Yj //

��

Xj

��

Yi // Xi

determines a commutative diagram of profinite groups

ΠYj
//

��

ΠXj

��

ΠYi
// ΠXi ,

where the vertical arrows are surjective (cf. Propositions 3.5(i), 3.7(i)) and the

horizontal arrows are injective (cf. Proposition 3.5(ii)). Thus, it holds that ΠYi =

Im(ΠYj ↪→ ΠXj � ΠXi). Moreover, it follows immediately that ∆Yj/Yi ⊂ ∆Xj/Xi∩
ΠYj . On the other hand, it follows from the injectivity of ΠYi → ΠXi that ∆Yj/Yi ⊃
∆Xj/Xi∩ΠYj . This completes the proof of assertion (ii). Finally, we verify assertion

(iii). To verify assertion (iii), it suffices to verify that for each integer l such that

i < l < j, equalities

∆Yj/Yl = ∆Xj/Xl , ∆Yl/Yi = ∆Xl/Xi

hold. Now it follows from (i) and (ii) that

∆Yj/Yl = ∆Xj/Xl ∩ΠYj

= ∆Xj/Xl ∩ (∆Xj/Xi ∩ΠYj )

= ∆Xj/Xl ∩∆Yj/Yi

= ∆Xj/Xl ∩∆Xj/Xi = ∆Xj/Xl ,

∆Yl/Yi = Im(∆Yj/Yi ↪→ ΠYj � ΠYl)

= Im(∆Yj/Yi ↪→ ΠYj � ΠYl ↪→ ΠXl)

= Im(∆Xj/Xi ↪→ ΠXj � ΠXl)

= ∆Xl/Xi .

This completes the proof of assertion (iii).
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Definition 3.10. Let p be a prime number, n a positive integer, S a connected

noetherian separated normal scheme over k and X a hyperbolic polycurve of rela-

tive dimension n over S. We shall say that X/S satisfies condition (∗)p if for any

triplet of integers (i, j, l) such that 0 ≤ i < j < l ≤ n, the sequence of profinite

groups

1→ ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ ∆p
Xj/Xi

→ 1

is exact. We shall say that X/S satisfies condition (∗∗)p if for any pair of integers

(i, j) such that 0 ≤ i < j ≤ n, the sequence of profinite groups

1→ ∆p
Xj/Xi

→ Πp
Xj
→ Πp

Xi
→ 1

is exact.

Remark 3.11. The validity of conditions (∗)p and (∗∗)p depends on the sequence

of parametrizing morphisms (at least by definition). So, precisely, we should say

that

X = Xn → Xn−1 → · · · → X2 → X1 → S = X0

satisfies condition (∗)p (or (∗∗)p). However, we shall say it as in Definition 3.10

for simplicity. Moreover, if the base scheme S is clear from the context, then we

often say more simply that X satisfies condition (∗)p (or (∗∗)p).

Example 3.12. If X is a hyperbolic curve over S, i.e., n = 1, then X/S satisfies

condition (∗)p.

Example 3.13. It is well known that if X/S is a configuration space of a hyper-

bolic curve over S (cf. [14, Def. 2.1]), then X/S satisfies condition (∗)p (cf. [14,

Prop. 2.2]).

Remark 3.14. If X/S satisfies condition (∗)p, then ∆X/S admits various group-

theoretic properties (cf., e.g., Proposition 3.16(iii)). However, it is not known

whether the validity of condition (∗)p for X/S depends only on the profinite group

∆X/S or not.

Lemma 3.15. In the notation of Definition 3.10, X/S satisfies condition (∗∗)p
if and only if X/S satisfies condition (∗)p, and ∆p

X/S → Πp
X is injective.

Proof. Note that since the sequences of profinite groups

1→ ∆Xl/Xj → ∆Xl/Xi → ∆Xj/Xi → 1, 1→ ∆Xj/Xi → ΠXj → ΠXi → 1

are exact, the two sequences in Definition 3.10 are always right exact. If X/S

satisfies condition (∗∗)p, for any triplet of integers (i, j, l) such that 0 ≤ i < j <
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l ≤ n, the composite ∆p
Xl/Xj

→ ∆p
Xl/Xi

→ Πp
Xl

, hence also ∆p
Xl/Xj

→ ∆p
Xl/Xi

,

is injective. Thus, X/S satisfies condition (∗)p. The injectivity of ∆p
X/S → Πp

X is

trivial. Conversely, suppose that X/S satisfies condition (∗)p and that ∆p
X/S → Πp

X

is injective. Then for each integer i such that 0 ≤ i < n, ∆p
X/Xi

→ Πp
X is injective.

Thus, for any pair of integers (i, j) such that 0 ≤ i < j ≤ n, we have a commutative

diagram of profinite groups

1 // ∆p
X/Xj

// ∆p
X/Xi

//
� _

��

∆p
Xj/Xi

//

��

1

1 // ∆p
X/Xj

// Πp
X

// Πp
Xj

// 1,

where the horizontal sequences are exact and ∆p
X/Xi

→ Πp
X is injective. Then

∆p
Xj/Xi

→ Πp
Xj

is injective. Therefore, we conclude that X/S satisfies condition

(∗∗)p. This completes the proof of Lemma 3.15.

Proposition 3.16. Let p be a prime number, (m,n) a pair of integers such that

0 ≤ m < n, S a connected noetherian separated normal scheme over k and X a

hyperbolic polycurve of relative dimension n over S. Then the following hold:

(i) Suppose that X/S satisfies condition (∗)p. Then for any geometric point

xm → Xm of Xm, the sequence of connected schemes X×Xmxm
pr1→ X → Xm

determines an exact sequence of profinite groups

1→ Πp
X×Xmxm

→ Πp
X/S → Πp

Xm/S
→ 1.

In particular, we obtain an isomorphism Πp
X×Xmxm

∼→ ker(Πp
X/S → Πp

Xm/S
)

(which is well defined up to Πp
X/S-conjugation).

(ii) Suppose that X/S satisfies condition (∗)p (resp. (∗∗)p). Let T be a connected

noetherian separated normal scheme over S. Then the hyperbolic polycurve

X ×S T/T satisfies condition (∗)p (resp. (∗∗)p). Moreover, the natural mor-

phisms X ×S T
pr1→ X and X ×S T → Xm ×S T determine an outer isomor-

phism

Πp
X×ST/T

∼→ Πp
X/S×Πp

Xm/S
Πp
Xm×ST/T (resp. Πp

X×ST
∼→ Πp

X×ΠpXm
Πp
Xm×ST )

and an isomorphism

∆p
X×ST/Xm×ST

∼→ ∆p
X/Xm

(which is well defined up to Πp
X/Xm

- (resp. Πp
X-) conjugation).
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(iii) Suppose that X/S satisfies condition (∗)p. Then ∆p
X/Xm

is nontrivial, topo-

logically finitely generated, slim and torsion-free. In particular, ∆p
X/Xm

is

infinite.

(iv) ∆p
Xm+1/Xm

is elastic (cf. [13, Def. 1.1(ii)]), i.e., the following holds: let N ⊂
∆p
Xm+1/Xm

be a topologically finitely generated closed subgroup of ∆p
Xm+1/Xm

that is normal in an open subgroup of ∆p
Xm+1/Xm

; then N is nontrivial if and

only if N is open in ∆p
Xm+1/Xm

.

(v) Suppose that the hyperbolic curve Xm+1 over Xm is of type (g, r). Then the

abelianization of ∆p
Xm+1/Xm

is a free Zp-module of rank 2g + max{r− 1, 0};
∆p
Xm+1/Xm

is a free pro-p group if and only if r 6= 0.

(vi) For any positive integer N , there exists an open subgroup H ⊂ ∆p
Xm+1/Xm

of ∆p
Xm+1/Xm

such that the abelianization of H is a free Zp-module of rank

≥ N .

Proof. (Cf. [10, Prop. 2.4].) First, we verify assertion (i). Let us consider the

commutative diagram of profinite groups

1

��

1

��

∆p
X/Xm

��

ker(Πp
X/S � Πp

Xm/S
)

��

1 // ∆p
X/S

//

��

Πp
X/S

//

��

ΠS
// 1

1 // ∆p
Xm/S

//

��

Πp
Xm/S

//

��

ΠS
// 1

1 1.

Then since the two horizontal sequences and the two vertical sequences of the above

diagram are exact (cf. Proposition 3.7(i)), it holds that ∆p
X/Xm

= ker(Πp
X/S �

Πp
Xm/S

). Thus, we verify from Proposition 3.7(i) that assertion (i) holds. Next, we

verify assertion (ii). Suppose that X/S satisfies condition (∗)p. Let t → X ×S T
be a geometric point of X ×S T . Then for any triplet of integers (i, j, l) such that
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1 ≤ i < j < l ≤ n, we obtain from Proposition 3.7(ii) that

∆Xj×ST/Xi×ST
∼= Π(Xj×ST )×(Xi×ST )t

= ΠXj×Xi t
∼= ∆Xj/Xi .

In particular, since X/S satisfies condition (∗)p, X×S T/T also satisfies condition

(∗)p. On the other hand, we have the commutative diagram of profinite groups

1 // ∆p
X×ST/Xm×ST

// Πp
X×ST/T

//

��

Πp
Xm×ST/T

//

��

1

1 // ∆p
X/Xm

// Πp
X/S

// Πp
Xm/S

// 1,

where the horizontal sequences are exact (cf. assertion (i)). Thus, we obtain an

outer isomorphism

Πp
X×ST/T

∼→ Πp
X/S ×Πp

Xm/S
Πp
Xm×ST/T .

If X/S satisfies condition (∗∗)p, then it follows from the commutative diagram of

profinite groups

∆p
Xj×ST/Xi×ST

// Πp
Xj×ST

��

∆p
Xj/Xi

// Πp
Xj
,

together with the injectivity of ∆p
Xj/Xi

↪→ Πp
Xj

, that ∆p
Xj×ST/Xi×ST → Πp

Xj×ST
is injective. Thus, it follows from Lemma 3.15 that X ×S T/T satisfies condition

(∗∗)p. On the other hand, we have the commutative diagram of profinite groups

1 // ∆p
X×ST/Xm×ST

// Πp
X×ST

//

��

Πp
Xm×ST

//

��

1

1 // ∆p
X/Xm

// Πp
X

// Πp
Xm

// 1,

where the horizontal sequences are exact. Thus, we obtain an outer isomorphism

Πp
X×ST

∼→ Πp
X ×ΠpXm

Πp
Xm×ST .
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This completes the proof of assertion (ii). Next, we verify assertion (iii). Let us

observe that it follows from assertion (i) that, to verify assertion (iii), we may

assume without loss of generality that m = n − 1. On the other hand, if m =

n− 1, i.e., X is a hyperbolic curve over Xm, assertion (iii) is well known (cf., e.g.,

[16, Props. 1.1, 1.6], [14, Prop. 1.4]). This completes the proof of assertion (iii).

Assertion (iv) follows from [14, Prop. 1.5]. Assertion (v) is well known (cf., e.g.,

[16, Cor. 1.2]). Finally, we verify assertion (vi). Let x→ Xm be a geometric point

of Xm. Since ∆p
Xm+1/Xm

∼= Πp
Xm+1×Xmx

is an infinite profinite group, there exists

an open subgroup H ⊂ ∆p
Xm+1/Xm

of ∆p
Xm+1/Xm

such that d := [Πp
Xm+1×Xmx

:

H] ≥ N . Then, if Xm+1/Xm is of type (g, r) and H corresponds to a hyperbolic

curve of type (g′, r′), it follows from Hurwitz’s formula (cf., e.g., [9, Chap. IV,

Cor. 2.4]) that 2g′ − 2 + r′ = d(2g − 2 + r). Thus, it holds that rankZp H
ab =

2g′ + max{r′ − 1, 0} ≥ d(2g + r − 2) ≥ d ≥ N . This completes the proof of

assertion (vi).

Lemma 3.17.

(i) Let G be a profinite group, H ⊂ G a closed subgroup of G and V ⊂ H an

open subgroup of H. Then there exists an open subgroup U ⊂ G of G such

that V = H ∩ U .

(ii) Let G be a profinite group, H ⊂ G a closed subgroup of G, N ⊂ G a normal

closed subgroup of G and V ⊂ H an open subgroup of H such that V ⊃ H∩N .

Then there exists a normal open subgroup U ⊂ G of G such that U ⊃ N and

U ∩H ⊂ V .

Proof. Note that if G is a profinite group and H is a closed subgroup (resp.

normal closed subgroup) of G, then H is the intersection of all open subgroups

(resp. normal open subgroups) of G containing H (cf. [15, Prop. 2.1.4]). First, we

verify assertion (i). We have V =
⋂
W W =

⋂
W (W ∩H), where W runs over all

open subgroups of G containing V . Thus, since (W ∩H) \ V is a closed subset of

the compact set H \ V , there are open subgroups W1, . . . ,Wn of G containing V

such that H ∩
⋂n
i=1Wi ⊂ V . Write U :=

⋂n
i=1Wi. Then U is an open subgroup of

G. Moreover, since Wi ⊃ V , we obtain H ∩ U = V . This completes the proof of

assertion (i). Similarly, assertion (ii) follows from the fact that N =
⋂
W W , where

W runs over all normal open subgroups of G containing N .

Lemma 3.18 ([1, Prop. 3]). Let Σ ⊂ Primes be a set of prime numbers, G a

profinite group and N ⊂ G a normal closed subgroup of G. If the composite G→
Aut(N)→ Aut(NΣ) (where G→ Aut(N) is the map defined by g 7→ (h 7→ ghg−1)

and Aut(N)→ Aut(NΣ) is the natural map) factors through GΣ, then the kernel

of the map NΣ → GΣ is contained in the center of NΣ. In particular, if NΣ is
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center-free, then the map NΣ → GΣ is injective. If, for any positive integer n,

there are only finitely many open subgroups of index n in NΣ (e.g., the case where

NΣ is topologically finitely generated), then the map G→ Aut(NΣ) factors through

GΣ if and only if the image of G in the profinite group Aut(NΣ) is a pro-Σ group.

Lemma 3.19 ([15, Lem. 4.5.5]). Let p be a prime number and G a topologically

finitely generated pro-p group. Then Aut(G) has an open pro-p subgroup.

Proposition 3.20. Let Σ ⊂ Primes be a finite set of prime numbers, S a con-

nected noetherian separated normal scheme over k, X a hyperbolic polycurve over

S and X ′ → X a connected finite étale covering of X. Then there exists a con-

nected finite étale Galois covering Y → X of X such that the morphism Y → X

factors through X ′ → X and, moreover, for any p ∈ Σ, Y satisfies condition (∗)p.

Proof. Write n for the relative dimension of X over S. Then, to verify Proposi-

tion 3.20, it follows from Remark 3.8 that it suffices to verify that there exists

a connected finite étale Galois covering Y → X of X such that the morphism

Y → X factors through X ′ → X and, moreover, for any p ∈ Σ and for any pair of

integers (i, j) such that 0 ≤ i < j ≤ n, the homomorphism ∆p
Yj/Yi

→ ∆p
Yj/Y0

(cf.

Proposition 3.5) is injective. Now I claim that the following assertion holds:

Claim A: Fix an integer m such that 0 ≤ m < n. Suppose given a con-

nected finite étale Galois covering Y → X of X such that for any p ∈ Σ

and any pair of integers (i, j) such that m < i < j ≤ n, the homomor-

phism ∆p
Yj/Yi

→ ∆p
Yj/Y0

is injective. Then there exists a connected finite

étale Galois covering Z → X of X such that the morphism Z → X factors

through Y → X and, moreover, for any p ∈ Σ and any pair of integers

(i, j) such that m ≤ i < j ≤ n, the homomorphism ∆p
Zj/Zi

→ ∆p
Zj/Z0

(cf.

Proposition 3.5) is injective.

Indeed, for each p ∈ Σ, we consider the commutative diagram

∆Ym+1/Y0
//

��

∆Ym/Y0

��

Aut(∆Ym+1/Ym) //

��

Out(∆Ym+1/Ym)

��

Aut(∆p
Ym+1/Ym

) // Out(∆p
Ym+1/Ym

),
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which is obtained from the exact sequence

1→ ∆Ym+1/Ym → ∆Ym+1/Y0
→ ∆Ym/Y0

→ 1.

It follows from Proposition 3.16(iii) and Lemma 3.19 that Out(∆p
Ym+1/Ym

) has

an open pro-p subgroup. Fix such an open subgroup H ⊂ Out(∆p
Ym+1/Ym

) of

Out(∆p
Ym+1/Ym

), and write Wp ⊂ ∆Ym+1/Y0
for the subgroup obtained by forming

the inverse image of H ⊂ Out(∆p
Ym+1/Ym

) by the homomorphism ∆Ym+1/Y0
→

Out(∆p
Ym+1/Ym

). Then Wp is an open subgroup of ∆Ym+1/Y0
containing ∆Ym+1/Ym ,

and the image of the composite Wp ↪→ ∆Ym+1/Y0
→ Aut(∆p

Ym+1/Ym
) is pro-p.

On the other hand, we have ∆Ym+1/Y0
⊂ ∆Xm+1/X0

⊂ ΠXm+1
. Moreover, since

∆Ym+1/Ym = ∆Xm+1/Xm∩ΠYm+1
(cf. Lemma 3.9(ii)), ∆Ym+1/Ym is a normal closed

subgroup of ΠXm+1
. Thus, it follows from Lemma 3.17(ii) that there exists a normal

open subgroup Vp ⊂ ΠXm+1
of ΠXm+1

such that ∆Ym+1/Ym ⊂ Vp∩∆Ym+1/Y0
⊂Wp.

Now let us write V :=
⋂
p∈Σ Vp. Then V is a normal open subgroup of ΠXm+1

containing ∆Ym+1/Ym . Write U ⊂ ΠY for the subgroup (which is necessarily normal

open in ΠX) obtained by forming the inverse image of V ⊂ ΠYm+1 by the composite

of the outer injection ΠY ↪→ ΠX and the outer surjection ΠX � ΠXm+1
. Then

since U ⊂ ΠY , U ⊂ ΠX corresponds to a connected finite étale Galois covering

Z → X which factors through Y → X. To verify Claim A, it suffices to verify that

this covering Z → X of X satisfies the condition in the statement of Claim A.

Note that it follows from Lemma 3.9(ii) that

ΠZm+1 = Im(ΠZ = U ↪→ ΠY � ΠYm+1) = V ∩ΠYm+1 ,

∆Zm+1/Z0
= ∆Ym+1/Y0

∩ΠZm+1
⊂Wp,

∆Zm+1/Zm = ∆Ym+1/Ym ∩ΠZm+1
= ∆Ym+1/Ym ,

∆Z/Zm+1
= ∆Y/Ym+1

∩ΠZ = ∆Y/Ym+1
.

Let p ∈ Σ. It suffices to verify that for any pair of integers (i, j) such that m ≤
i < j ≤ n, the homomorphism ∆p

Zj/Zi
→ ∆p

Zj/Z0
is injective. If m < i, then, since

∆Z/Zm+1
= ∆Y/Ym+1

, it follows from Lemma 3.9(iii) that ∆Zj/Zi = ∆Yj/Yi . Thus,

since the homomorphism ∆p
Yj/Yi

→ ∆p
Yj/Y0

is injective, ∆p
Zj/Zi

→ ∆p
Zj/Z0

is also

injective. Now suppose that m = i. We verify the injectivity of ∆p
Zj/Zi

→ ∆p
Zj/Z0

by induction on j. If j = m + 1, it follows from our choice of Z → X that the

image of the composite

∆Zm+1/Z0
↪→Wp → Aut(∆p

Ym+1/Ym
) = Aut(∆p

Zm+1/Zm
)

is a pro-p subgroup. Thus, since ∆p
Zm+1/Zm

is topologically finitely generated and

center-free (cf. Proposition 3.16(iii)), it follows from Lemma 3.18 that ∆p
Zm+1/Zm

→



800 Koichiro Sawada

∆p
Zm+1/Z0

is injective. Now suppose that m + 1 < j ≤ n and that the induction

hypothesis is in force. Then we have the commutative diagram of profinite groups

1 // ∆p
Zj/Zj−1

// ∆p
Zj/Zm

//

��

∆p
Zj−1/Zm

//
� _

��

1

1 // ∆p
Zj/Zj−1

// ∆p
Zj/Z0

// ∆p
Zj−1/Z0

// 1,

where, since j − 1 > m, the two horizontal sequences are exact. Moreover, it

follows from the induction hypothesis that ∆p
Zj−1/Zm

→ ∆p
Zj−1/Z0

is injective.

Thus, ∆p
Zj/Zm

→ ∆p
Zj/Z0

is also injective. This completes the proof of Claim A.

Now we verify Proposition 3.20. First, let us write Y → X for the Galois

closure of X ′ → X. Then, if n − 1 > 0, by applying Claim A, where we take the

data “(m,Y → X)” to be (n − 1, Y → X), we obtain a covering Z → X. Next,

let us replace Y → X by Z → X. Then, we apply Claim A again, taking the data

“(m,Y → X)” to be (n−2, Y → X). If n−2 > 0, by applying an argument similar

to the above argument repeatedly until m = 0, we obtain a covering Z → X which

satisfies the condition imposed on “Y → X” in the statement of Proposition 3.20.

This completes the proof of Proposition 3.20.

Proposition 3.21. Let Σ ⊂ Primes be a finite set of prime numbers, S a con-

nected noetherian separated normal scheme over k and X a hyperbolic polycurve of

relative dimension n over S. Suppose that for any p ∈ Σ, X/S satisfies condition

(∗)p. Then there exists a connected finite étale Galois covering T → S of S such

that for any p ∈ Σ, X ×S T/T satisfies condition (∗∗)p.

Proof. For each p ∈ Σ, let us consider the sequence ΠS → Out(∆X/S) →
Out(∆p

X/S). Then it follows from Proposition 3.16(iii) and Lemma 3.19 that

Out(∆p
X/S) has an open pro-p subgroup. Fix such an open subgroup H ⊂

Out(∆p
X/S) of Out(∆p

X/S), and write Up ⊂ ΠS for the subgroup obtained by

forming the inverse image of H ⊂ Out(∆p
X/S) by the homomorphism ΠS →

Out(∆p
X/S). Let U ⊂ ΠS be a normal open subgroup of ΠS contained in

⋂
p∈Σ Up.

Write T → S for the connected finite étale Galois covering of S corresponding

to U ⊂ ΠS . Then X ×S T → X corresponds to the inverse image of U ⊂ ΠS

by the outer homomorphism ΠX → ΠS and, moreover, ∆X×ST/T = ∆X/S . Thus,

for any p ∈ Σ, the image of the homomorphism ΠX×ST → Aut(∆p
X×ST/T ) =

Aut(∆p
X/S) is a pro-p subgroup. Then, since ∆p

X/S is topologically finitely gener-

ated and center-free (cf. Proposition 3.16(iii)), it follows from Lemma 3.18 that

∆p
X/S → Πp

X×ST is injective. On the other hand, X ×S T/T satisfies condition
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(∗)p (cf. Proposition 3.16(ii)). Thus, it follows from Lemma 3.15 that X ×S T/T
satisfies condition (∗∗)p. This completes the proof of Proposition 3.21.

Lemma 3.22. Let p be a prime number, n a positive integer, S a connected

noetherian separated normal scheme over k and X a hyperbolic polycurve of rela-

tive dimension n over S. Then the following hold:

(i) Suppose that X/S satisfies condition (∗)p. Let U ⊂ Πp
X/S be an open sub-

group of Πp
X/S. Write Y → X for the connected finite étale covering of

X corresponding to U and S′ := Nor(Y/S). Then for each integer i such

that 0 ≤ i ≤ n, Πp
Yi/S′

(cf. Proposition 3.5) is canonically identified with

Im(U ↪→ Πp
X/S � Πp

Xi/S
) and, moreover, for any pair of integers (i, j) such

that 0 ≤ i < j ≤ n, ∆p
Yj/Yi

= Πp
Yj/S′

∩∆p
Xj/Xi

. In particular, Y/S′ satisfies

condition (∗)p.

(ii) Suppose that X/S satisfies condition (∗∗)p. Let U ⊂ Πp
X be an open subgroup

of Πp
X . Write Y → X for the connected finite étale covering of X correspond-

ing to U and S′ := Nor(Y/S). Then for each integer i such that 0 ≤ i ≤ n,

Πp
Yi

(cf. Proposition 3.5) is canonically identified with Im(U ↪→ Πp
X � Πp

Xi
)

and, moreover, for any pair of integers (i, j) such that 0 ≤ i < j ≤ n,

∆p
Yj/Yi

= Πp
Yj
∩∆p

Xj/Xi
. In particular, Y/S′ satisfies condition (∗∗)p.

Proof. First, we verify assertion (i). For each integer i such that 0 ≤ i ≤ n, we

have a commutative diagram of profinite groups

1

��

1

��

∆X/Xi
// //

��

∆p
X/Xi

��

1 // ker(∆X/S � ∆p
X/S) //

��

∆X/S
//

��

∆p
X/S

//

��

1

1 // ker(∆Xi/S � ∆p
Xi/S

) // ∆Xi/S
//

��

∆p
Xi/S

//

��

1

1 1,



802 Koichiro Sawada

where the two horizontal sequences and the two vertical sequences are exact. Thus,

the homomorphism ker(∆X/S � ∆p
X/S)→ ker(∆Xi/S � ∆p

Xi/S
) is surjective. On

the other hand, since the inverse image of U ⊂ Πp
X/S by the surjection ΠX � Πp

X/S

coincides with ΠY ⊂ ΠX , it follows that ker(∆X/S � ∆p
X/S) is contained in ΠY .

Thus, ker(∆Xi/S � ∆p
Xi/S

) is contained in ΠYi = Im(ΠY ↪→ ΠX � ΠXi), hence

also in ∆Yi/S′ = ∆Xi/S ∩ ΠYi (cf. Lemma 3.9(ii)). This implies that ∆Yi/S′ can

be obtained by taking the inverse image of some open subgroup V ⊂ ∆p
Xi/S

of

∆p
Xi/S

by the surjection ∆Xi/S � ∆p
Xi/S

and, moreover, ∆p
Yi/S′

coincides with

V ⊂ ∆p
Xi/S

. Thus, we have ker(∆Yi/S′ � ∆p
Yi/S′

) = ker(∆Xi/S � ∆p
Xi/S

), which

implies that Πp
Yi/S′

= ΠYi/ ker(∆Yi/S′ � ∆p
Yi/S′

) coincides with Im(ΠYi ↪→ ΠXi �
Πp
Xi/S

) and, moreover, ΠYi is the inverse image of Πp
Yi/S′

⊂ Πp
Xi/S

by the surjection

ΠXi � Πp
Xi/S

. In particular, we have U = Πp
Y/S′ = Im(ΠY ↪→ ΠX � Πp

X/S).

Thus, since ΠY → ΠYi is surjective (cf. Proposition 3.7(i)), by considering the

commutative diagram of profinite groups

ΠY
� � //

����

ΠX
// //

����

Πp
X/S

����

ΠYi
� � // ΠXi

// // Πp
Xi/S

,

it holds that Πp
Yi/S′

= Im(U ↪→ Πp
X/S � Πp

Xi/S
).

Now let (i, j) be a pair of integers such that 0 ≤ i < j ≤ n. Then, since it holds

that ∆Yj/Yi = ΠYj ∩∆Xj/Xi (cf. Lemma 3.9(ii)), by considering the commutative

diagram of profinite groups

∆Yj/Yi ΠYj ∩∆Xj/Xi
⊂

��

∆Xj/Xi
⊂

����

ΠXj

����

Πp
Yj/S′

∩∆p
Xj/Xi

⊂ ∆p
Xj/Xi

⊂ Πp
Xj/S

,

we obtain that ∆Yj/Yi is the inverse image of the open subgroup Πp
Yj/S′

∩∆p
Xj/Xi

⊂
∆p
Xj/Xi

by the surjection ∆Xj/Xi � ∆p
Xj/Xi

. Thus, it holds that ∆p
Yj/Yi

= Πp
Yj/S′

∩
∆p
Xj/Xi

. In particular, if 0 < i < j ≤ n, by considering the commutative diagram

of profinite groups
∆p
Yj/Yi

// ∆p
Yj/Y0

Πp
Yj/S′

∩∆p
Xj/Xi

� � // Πp
Yj/S′

∩∆p
Xj/X0

,
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we conclude that ∆p
Yj/Yi

→ ∆p
Yj/Y0

is injective, i.e., Y/S′ satisfies condition (∗)p.
This completes the proof of assertion (i). Assertion (ii) is proved similarly.

Lemma 3.23. Let p be a prime number, (m,n) a pair of integers such that

0 ≤ m < n, S a connected noetherian separated normal scheme over k and X

a hyperbolic polycurve of relative dimension n over S satisfying condition (∗∗)p.

Then the following hold:

(i) The natural surjections Πp
X/S � Πp

X ,Π
p
X/S � Πp

Xm/S
(cf. Proposition 3.16)

determine an isomorphism

Πp
X/S

∼→ Πp
X ×ΠpXm

Πp
Xm/S

.

(ii) Let Y be a connected noetherian scheme over Xm. Let us fix a homomorphism

Πp
Y/S → Πp

Xm/S
arising from Y → Xm. Then there exists a natural bijection

HomΠpXm
(Πp

Y ,Π
p
X)

1:1→ HomΠp
Xm/S

(Πp
Y/S ,Π

p
X/S).

If, moreover, Πp
Y/S→Πp

Xm/S
is surjective and the image of ϕ∈ HomΠpXm

(Πp
Y ,

Πp
X) by the above bijection is ψ ∈ HomΠp

Xm/S
(Πp

Y/S ,Π
p
X/S), then there is a

natural one-to-one correspondence between the left cosets of Imϕ ⊂ Πp
X in

Πp
X and the left cosets of Imψ ⊂ Πp

X/S in Πp
X/S. In particular, ϕ is an open

(resp. a surjective) homomorphism if and only if so is ψ.

Proof. Assertion (i) follows from the commutative diagram of profinite groups

1 // ∆p
X/Xm

// Πp
X/S

//

����

Πp
Xm/S

//

����

1

1 // ∆p
X/Xm

// Πp
X

// Πp
Xm

// 1,

where the horizontal arrows are exact (cf. Lemma 3.15). We verify assertion (ii).

Suppose that we are given an element ϕ ∈ HomΠpXm
(Πp

Y ,Π
p
X). Then a homomor-

phism Πp
Y/S → Πp

X/S over Πp
Xm/S

is obtained from the commutative diagram

Πp
Y/S

// //

��

Πp
Y

ϕ //

  

Πp
X

����

Πp
Xm/S

// // Πp
Xm
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(cf. assertion (i)). Thus, we obtain a natural map

HomΠpXm
(Πp

Y ,Π
p
X)→ HomΠp

Xm/S
(Πp

Y/S ,Π
p
X/S).

Conversely, since

Πp
X = (Πp

X/S)p, Πp
Y = (Πp

Y/S)p, Πp
Xm

= (Πp
Xm/S

)p,

we obtain a natural map

HomΠp
Xm/S

(Πp
Y/S ,Π

p
X/S)→ HomΠpXm

(Πp
Y ,Π

p
X).

It follows immediately that these maps are inverse to each other.

Now suppose that Πp
Y/S → Πp

Xm/S
is surjective. Let ϕ ∈ HomΠpXm

(Πp
Y ,Π

p
X).

Write ψ ∈ HomΠp
Xm/S

(Πp
Y/S ,Π

p
X/S) for the image of ϕ ∈ HomΠpXm

(Πp
Y ,Π

p
X) by

the bijection HomΠpXm
(Πp

Y ,Π
p
X)

1:1→ HomΠp
Xm/S

(Πp
Y/S ,Π

p
X/S). Then, we have a

commutative diagram of profinite groups

1 // ker(Πp
Y/S � Πp

Xm/S
) //

��

Πp
Y/S

//

����

Πp
Xm/S

//

����

1

1 // ∆
(p)
Y/Xm

//

��

Πp
Y

//

ϕ

��

Πp
Xm

// 1

1 // ∆
(p)
X/Xm

// Πp
X

// Πp
Xm

// 1,

where the horizontal sequences are exact and, moreover, since the operation of

taking the maximal pro-p quotient of a profinite group is right exact, the homo-

morphism ker(Πp
Y/S � Πp

Xm/S
)→ ∆

(p)
Y/Xm

is surjective. Thus, the above diagram

induces a one-to-one correspondence between the left cosets of Imϕ ⊂ Πp
X in Πp

X

and the left cosets of Im(ker(Πp
Y/S � Πp

Xm/S
) → ∆

(p)
X/Xm

) ⊂ ∆
(p)
X/Xm

in ∆
(p)
X/Xm

.

On the other hand, since X/S satisfies condition (∗∗)p, we have ∆
(p)
X/Xm

= ∆p
X/Xm

.

Thus, the commutative diagram of profinite groups

1 // ker(Πp
Y/S � Πp

Xm/S
) //

����

Πp
Y/S

//

ψ

��

Πp
Xm/S

// 1

1 // ∆p
X/Xm

// Πp
X/S

// Πp
Xm/S

// 1,
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where the horizontal sequences are exact, induces a one-to-one correspondence

between the left cosets of Im(ker(Πp
Y/S � Πp

Xm/S
) → ∆

(p)
X/Xm

) ⊂ ∆
(p)
X/Xm

in

∆
(p)
X/Xm

= ∆p
X/Xm

and the left cosets of Imψ ⊂ Πp
X/S in Πp

X/S . This completes

the proof of assertion (ii).

Remark 3.24. There are properties similar to Lemma 3.23 if X/S is a hyperbolic

polycurve satisfying condition (∗)p, i.e., the following hold:

(i) For each integer l such that 0 ≤ l ≤ m, the natural surjections Πp
X/Xl

�
Πp
X/S , Πp

X/Xl
� Πp

Xm/Xl
determine an isomorphism

Πp
X/Xl

∼→ Πp
X/S ×Πp

Xm/S
Πp
Xm/Xl

.

(ii) Let l be an integer such that 0 ≤ l ≤ m and Y a connected noetherian

scheme over Xm. Let us fix a homomorphism Πp
Y/Xl

→ Πp
Xm/Xl

arising from

Y → Xm. Then there exists a natural bijection

HomΠp
Xm/S

(Πp
Y/S ,Π

p
X/S)

1:1→ HomΠp
Xm/Xl

(Πp
Y/Xl

,Πp
X/Xl

).

If, moreover, Πp
Y/Xl

→ Πp
Xm/Xl

is surjective and the image of ϕ ∈
HomΠp

Xm/S
(Πp

Y/S ,Π
p
X/S) by the above bijection is ψ ∈ HomΠp

Xm/Xl

(Πp
Y/Xl

,

Πp
X/Xl

), then there is a natural one-to-one correspondence between the left

cosets of Imϕ ⊂ Πp
X/S in Πp

X/S and the left cosets of Imψ ⊂ Πp
X/Xl

in Πp
X/Xl

.

In particular, ϕ is an open (resp. a surjective) homomorphism if and only if

so is ψ.

Definition 3.25. Let p be a prime number and X a variety over k. Then we shall

say that X is of p-LFG-type if, for any normal variety Y over k and any morphism

Y → X ×k k over k that is not constant, the image of the outer homomorphism

Πp
Y → Πp

X×kk
is infinite.

Remark 3.26. Using an argument similar to the argument in [10, Rem. 2.5.1], it

follows that if k′/k is a field extension of k, then X is of p-LFG-type if and only

if X ×k k′ is of p-LFG-type. On the other hand, it follows immediately from the

definition that if X is of p-LFG-type, then X is of LFG-type (cf. [10, Def. 2.5]).

Lemma 3.27. Let p be a prime number and X, Y varieties over k. Suppose that

X is of p-LFG-type. Then the following hold:

(i) Suppose that there exists a quasi-finite morphism Y → X over k. Then Y is

of p-LFG-type.

(ii) Let f : X → Y be a morphism over k. Suppose that ∆p
f/k is finite. Then f

is quasi-finite. If, moreover, f is surjective, then Y is of p-LFG-type.
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(iii) Let f : X → Y be a morphism over k. Suppose that Πp

X×kk
→ Πp

X is injective

and ∆
(p)
f is finite. Then f is quasi-finite. If, moreover, f is surjective, then

Y is of p-LFG-type.

Proof. (Cf. [10, Lem. 2.6].) First, we verify assertion (i). It follows from the fact

that if Y → X is quasi-finite then so is the morphism Y ×kk → X×kk, determined

by Y → X, that to verify assertion (i), we may assume without loss of generality

that k = k. Let Z be a normal variety over k and Z → Y a nonconstant morphism

over k. Then since Y is quasi-finite over X, it follows that the composite Z →
Y → X is nonconstant. In particular, since X is of p-LFG-type, the image of the

composite Πp
Z → Πp

Y → Πp
X , hence also Πp

Z → Πp
Y , is infinite. This completes the

proof of assertion (i). Next, we verify assertion (ii). Note that we have equalities

∆p
f/k = ker(∆p

X/k → ∆p
Y/k) = ker(Πp

X×kk
→ Πp

Y×kk
) = ∆p

X×kk→Y×kk/k
.

Thus, it follows from the fact that if the morphism Y ×k k → X ×k k determined

by f is quasi-finite then so is f (cf. [2, Prop. 1.9.4]), together with the fact that if

f is surjective then so is the morphism Y ×k k → X ×k k determined by f , that

to verify assertion (ii), we may assume without loss of generality that k = k. Let

y → Y be a k-valued geometric point of Y and F a connected component (which is

necessarily a normal variety over k) of the normalization of the geometric fiber of

f at y. Then, since the composite of the outer homomorphism Πp
F → Πp

X induced

by the natural morphism F → X and Πp
X → Πp

Y factors through Πp
y = {1},

Πp
F → Πp

X factors through ∆p
f/k ⊂ Πp

X . In particular, since ∆p
f/k is finite, the

image of Πp
F → Πp

X is finite. Thus, since X is of p-LFG-type, it follows that F is

finite over k. This implies that f is quasi-finite.

Now suppose that f is surjective. Let Z be a normal variety over k and Z → Y

a nonconstant morphism over k. Then since f is a quasi-finite surjection, and

Z → Y is nonconstant, there exists a connected component C (which is necessarily

a normal variety over k) of the normalization of Z ×Y X such that the natural

morphism C → X over k is nonconstant. Thus, since X is of p-LFG-type, the

image of Πp
C → Πp

X , hence also that of Πp
C → Πp

X → Πp
Y , is infinite. In particular,

since the composite C → X → Y factors through Z → Y , it follows that the image

of Πp
Z → Πp

Y is infinite, which implies that Y is of p-LFG-type. This completes

the proof of assertion (ii). Finally, we verify assertion (iii). Let us observe that,

since if Πp

X×kk
= ∆p

X/k → Πp
X is injective then ∆

(p)
f ⊃ ker(Πp

X×kk
→ Πp

Y×kk
), it

follows from an argument similar to the argument used at the beginning of the

proof of assertion (ii) that to verify assertion (iii), we may assume without loss of

generality that k = k. But then assertion (iii) is the same as assertion (ii), which

has already been verified. This completes the proof of assertion (iii).
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Proposition 3.28. Let p be a prime number. Then every hyperbolic polycurve

over k satisfying condition (∗)p is of p-LFG-type.

Proof. (Cf. [10, Prop. 2.7].) First, let us observe that it follows that, to verify

Proposition 3.28, we may assume without loss of generality that k = k. Let X

be either Spec k or a hyperbolic polycurve over k satisfying condition (∗)p. Write

n := dim(X). We verify that X is of p-LFG-type by induction on n. If n = 0, i.e.,

X = Spec k, then X is clearly of p-LFG-type. Now suppose that n ≥ 1 and that

the induction hypothesis is in force. Let Y be a normal variety over k and Y → X

a nonconstant morphism over k. To verify Proposition 3.28, it suffices to verify

that the image of Πp
Y → Πp

X is infinite.

Now suppose that the composite Y → X → Xn−1 is nonconstant. It follows

from the induction hypothesis that Xn−1 is of p-LFG-type. Thus, the image of the

composite Πp
Y → Πp

X � Πp
Xn−1

, hence also that of Πp
Y → Πp

X , is infinite.

Next, suppose that the composite Y → X → Xn−1 is constant. Write x →
Xn−1 for the k-valued geometric point of Xn−1 through which the constant mor-

phism Y → X → Xn−1 factors. Then the composite Y → X → Xn−1 determines

a nonconstant morphism Y → X ×Xn−1 x over k. Since X ×Xn−1 x is a hyperbolic

curve over x, it follows that the morphism Y → X ×Xn−1
x is dominant. Thus, it

follows from Lemma 2.3 that the outer homomorphism ΠY → ΠX×Xn−1
x, hence

also Πp
Y → Πp

X×Xn−1
x, is open. Now let us observe that Πp

X×Xn−1
x
∼→ ∆p

X/Xn−1
(cf.

Proposition 3.7(i)) is infinite (cf. Proposition 3.16(iii)). Thus, since X/S satisfies

condition (∗)p, the image of the composite Πp
Y → Πp

X×Xn−1
x
∼→ ∆p

X/Xn−1
↪→ Πp

X

is infinite. This completes the proof of Proposition 3.28.

Lemma 3.29 (Cf. [16, Lem. 1.10]). Let p be a prime number, (g0, r0) a pair of

nonnegative integers and X a hyperbolic curve (resp. a nonproper hyperbolic curve)

over k. Then there exists a normal open subgroup U ⊂ ΠX×kk of ΠX×kk such that

ΠX×kk/U is a p-group, and that if we write (g, r) for the type of the hyperbolic

curve corresponding to U ⊂ ΠX×kk, then g ≥ g0 (resp. g ≥ g0, r ≥ r0).

Lemma 3.30. Let p be a prime number, (g0, r0) a pair of nonnegative integers, S

a connected noetherian separated normal scheme over k and X a hyperbolic curve

(resp. a nonproper hyperbolic curve) over S. Then there exists a connected finite

étale Galois covering Y → X of X such that if we write S′ := Nor(Y/S) and (g, r)

for the type of the hyperbolic curve Y/S′, then g ≥ g0 (resp. g ≥ g0, r ≥ r0), and

that Πp
Y/S′ → Πp

X/S is injective.
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Proof. Let s → S be a geometric point of S. Then it follows from Lemma 3.29

that there exists a normal open subgroup V ⊂ ∆X/S of ∆X/S
∼= ΠX×Ss (cf.

Proposition 3.7(i)) such that ∆X/S/V is a p-group and that the pair of integers

(g′, r′) corresponding to V satisfies g′ ≥ g0 (resp. g′ ≥ g0, r′ ≥ r0). On the

other hand, let us observe that ker(∆X/S � ∆p
X/S) ⊂ V ⊂ ∆X/S ⊂ ΠX . Thus,

since ker(∆X/S � ∆p
X/S) ⊂ ΠX is a normal closed subgroup of ΠX , it follows

from Lemma 3.17(ii) that there exists a normal open subgroup U ⊂ ΠX such

that ker(∆X/S � ∆p
X/S) ⊂ U ∩ ∆X/S ⊂ V . Write Y → X for the connected

finite étale Galois covering of X corresponding to U ⊂ ΠX , S′ := Nor(Y/S)

and (g, r) for the type of Y/S′. Then, since U ∩ ∆X/S = ∆Y/S′ ⊂ V , we ob-

tain g ≥ g′ ≥ g0 (resp. g ≥ g′ ≥ g0, r ≥ r′ ≥ r0). Moreover, since ∆Y/S′ ⊃
ker(∆X/S � ∆p

X/S), the homomorphism ∆p
Y/S′ → ∆p

X/S is injective. Thus, we

have

ker(∆Y/S′ � ∆p
Y/S′) = ker(∆X/S � ∆p

X/S) ∩∆Y/S′ = ker(∆X/S � ∆p
X/S).

This implies that Πp
Y/S′ → Πp

X/S is injective. This completes the proof of Lem-

ma 3.30.

Lemma 3.31. Let p be a prime number, S a connected noetherian separated nor-

mal scheme over k, X a hyperbolic curve over S, R a strictly henselian discrete

valuation ring over S, K the field of fractions of R and SpecK → X a morphism

over S. Then it holds that the morphism SpecK → X factors through the open

immersion SpecK ↪→ SpecR if and only if the image of the outer homomorphism

ΠSpecK → Πp
X/S induced by the morphism SpecK → X is trivial.

Proof. (Cf. [10, Lem. 2.8].) Since ΠSpecR = {1} (cf., e.g., [6, Thm. (18.5.11)]),

necessity is immediate. We verify sufficiency. Note that we have

Πp
X×SSpecR/ SpecR

∼→ Πp
X/S ×ΠS ΠSpecR = ker(Πp

X/S � ΠS)

(cf. Proposition 3.16(ii)). In particular, Πp
X×SSpecR/ SpecR → Πp

X/S is injective.

Thus, the image of ΠSpecK → Πp
X×SSpecR/ SpecR is trivial. This implies that, to

verify sufficiency, we may assume without loss of generality that S = SpecR.

Next, let us write R̂ for the completion of R and K̂ for the field of fractions

of R̂. Then, since Πp

X×RR̂/R̂
∼= Πp

X/R ×ΠR ΠR̂ = Πp
X/R (cf. Proposition 3.16(ii)),

it follows that if the image of ΠSpecK → Πp
X/R is trivial, then so is ΠSpec K̂ →

Πp

X×RR̂/R̂
. Thus, if we verify Lemma 3.31 in the case where R is complete, then

the morphism Spec K̂ → X ×R R̂ factors through Spec K̂ ↪→ Spec R̂. Then, it
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follows from the commutative diagram of schemes

Spec R̂ //

����

X ×R R̂
pr1 // X

� _

��

SpecR // Xcpt

that the image of the morphism SpecR→ Xcpt is contained in X. Thus, it follows

from the valuative criterion of properness (cf., e.g., [9, Chap. II, Thm. 4.7]) applied

to the morphism Xcpt → S that the given morphism SpecK → X factors through

SpecK ↪→ SpecR. This implies that, to verify sufficiency, we may assume without

loss of generality that R is complete.

Now, to verify sufficiency, assume that the given morphism SpecK → X does

not factor through S = SpecR. Then it follows from Lemma 3.30 that there exists

a connected finite étale covering Y → X of X such that if we write (g, r) for the

type of the hyperbolic curve Y/S (note that it follows easily from the fact that ΠS

is trivial, together with Proposition 3.5(ii), that Nor(Y/S)
∼→ S), then r ≥ 2, and

that Πp
Y/S → Πp

X/S is injective. For each cusp c of the hyperbolic curve X over

R, let c′ be a cusp of the hyperbolic curve Y over R which lies over c. Write Xcpt
c

(resp. Y cpt
c′ ) for the spectrum of the ring obtained by completing Xcpt (resp. Y cpt)

along c (resp. c′), and Xc := X ×Xcpt Xcpt
c , Yc′ := Y ×Y cpt Y cpt

c′ . Let y → S be a

geometric point of S. Then we have an exact sequence

0→ Ẑ(1)→
⊕
r

Ẑ(1)→ (ΠYy )ab

(cf. [16, (1–5)]), where the homomorphism Ẑ(1) →
⊕

r Ẑ(1) is the diagonal em-

bedding, and ΠYc′ is one of the direct summands Ẑ(1) of
⊕

r Ẑ(1). Thus, since

r ≥ 2, the morphism Πp
Yc′
→ (ΠYy )ab,p, hence also Πp

Yc′
→ Πp

Yy
= ∆p

Y/S ↪→ Πp
Y/S ,

is injective. Next, let h ∈ ker(Πp
Xc
→ Πp

X/S). Then, since Πp
Yc′

is an open sub-

group of Πp
Xc

, there exists a positive integer n such that hn ∈ Πp
Yc′

. Thus, since

Πp
Xc
∼= Zp is torsion-free, it follows from our choice of Y → X that h = 1. This

implies that Πp
Xc
→ Πp

X/S is injective. On the other hand, it follows from the

valuative criterion of properness applied to the morphism Xcpt → S that the mor-

phism SpecK → Xcpt factors through SpecK ↪→ S = SpecR. Thus, since the

given morphism SpecK → X does not factor through SpecK ↪→ S = SpecR,

SpecK → X factors through the natural morphism Xc → X associated to a

suitable cusp c of X. Thus, since the image of the natural outer homomorphism

ΠSpecK → Πp
X/S is trivial, it follows that the image of ΠSpecK → ΠXc is con-
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tained in ker(ΠXc � Πp
Xc

). Note that ker(ΠXc � Πp
Xc

) is the intersection of all

open subgroups U ⊂ ΠXc such that ΠXc/U is a p-group. Such an open subgroup of

U contains Im(ΠSpecK → ΠXc) ⊂ U and, moreover, the pull-back of the étale cov-

ering of Xc corresponding to U on SpecK is a disjoint union of copies of SpecK.

Now let us consider the diagram of affine schemes

SpecK //
� _

��

Xc

��

SpecR // Xcpt
c .

The diagram obtained by taking global sections of the structure sheaves of the

(affine) schemes in the above diagram is

R

[
1

π

]
R[[T ]]

[
1

T

]
oo

R

OO

R[[T ]],oo

OO

where π is a uniformizing parameter of R. Write a ∈ R for the image of T ∈ R[[T ]]

by the ring homomorphism R[[T ]]→ R. Then a is contained in the maximal ideal

of R. On the other hand, the covering of Xc corresponding to U is the spectrum of

R[[T 1/pm ]] for a suitable nonnegative integer m. Note that if U runs over all open

subgroups as above, then m runs over all nonnegative integers. Thus, we conclude

that for each nonnegative integer m there exists b ∈ K× such that a = bp
m

.

However, by considering the valuation, it follows that there is no such element

a ∈ R. This completes the proof of sufficiency, hence also that of Lemma 3.31.

Lemma 3.32. Let p be a prime number, k′ a finite extension field of k, S a normal

variety over k and Y , Z normal varieties over k′, X a hyperbolic polycurve over

S satisfying condition (∗)p, Z → Y a morphism over k′, Y → S a morphism over

k and f : Z → X a morphism over S. Suppose that the following conditions are

satisfied:

(1) Z → Y is dominant and generically geometrically irreducible. (Thus, it follows

from Lemma 2.6 that the natural outer homomorphism ΠZ → ΠY , hence also

Πp
Z/S → Πp

Y/S, is surjective.)
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(2) ∆p
Z→Y/S ⊂ ∆p

Z→X/S. (Thus, it follows from the surjectivity of Πp
Z/S → Πp

Y/S

that the natural outer homomorphism Πp
Z/S → Πp

X/S induced by f determines

an outer homomorphism Πp
Y/S → Πp

X/S.)

Then the morphism f : Z → X admits a unique factorization Z → Y → X such

that the morphism Y → X is an S-morphism.

Proof. (Cf. [10, Lem. 2.9].) First, let us observe that the asserted uniqueness of

the factorization under consideration follows from the fact that the morphism

Z → Y is dominant. Next, we verify that, to verify Lemma 3.32, it suffices to verify

Lemma 3.32 in the case whereX is a hyperbolic curve over S. To verify this, assume

that Lemma 3.32 holds if X is a hyperbolic curve over S. We verify Lemma 3.32 by

induction on the relative dimension n of the hyperbolic polycurve X/S. We have

already assumed that Lemma 3.32 in the case n = 1 holds. Now suppose that n ≥ 2

and that the induction hypothesis is in force. Then since ∆p
Z→Y/S ⊂ ∆p

Z→X/S ⊂
∆p
Z→X1/S

, it follows from the case n = 1 that the morphism Z → X1 admits a

unique factorization Z → Y → X1 such that Y → X1 is an S-morphism. On the

other hand, since X/S satisfies condition (∗)p, it follows that ∆p
X/X1

→ ∆p
X/S is

injective. Thus, since ker(∆Z/X1
→ ∆p

Y/X1
) ⊂ ker(∆Z/X1

→ ∆p
Y/X1

→ ∆p
X/S), we

obtain ∆p
Z→Y/X1

⊂ ∆p
Z→X/X1

. By the induction hypothesis, since X/X1 satisfies

condition (∗)p, the morphism f : Z → X admits a unique factorization Z → Y →
X such that Y → X is an X1-morphism (hence an S-morphism).

Now let us assume that X/S is a hyperbolic curve. Moreover, let us assume

that k = k′ until Claim F below. Write Γ0 ⊂ X ×S Y for the scheme-theoretic

image of the natural morphism Z → X ×S Y over S and Γ := Nor(Z/Γ0). Then

Γ0 is an integral variety over k and the natural morphism Z → Γ0 is dominant.

Moreover, it follows from Lemma 2.9 that Γ is a normal variety over k, the resulting

morphism Z → Γ is dominant and generically geometrically irreducible and the

natural morphism Γ→ Γ0 is finite and surjective.

Next, I claim that the following assertion holds:

Claim A: Let y → Y be a geometric point of Y . Then the image of the

morphism Z ×Y y → X ×S y determined by f consists of finitely many

closed points of X ×S y.

Indeed, let F → Z ×Y y be a connected component (which is necessarily a

normal variety over y) of the normalization of the reduced scheme associated to

Z×Y y. Then, since the composite of natural morphisms F → Z×Y y → Z → Y fac-

tors through the geometric point y → Y , we obtain Im(Πp
F → Πp

Z/S) ⊂ ∆p
Z→Y/S .

Thus, it follows from condition (2) that the image of the outer homomorphism

Πp
F → Πp

X/S is trivial. On the other hand, the composite of natural morphisms
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F → Z ×Y y
pr1→ Z → X factors through the projection X ×S y

pr1→ X. Thus, since

the outer homomorphism Πp
X×Sy → Πp

X/S induced by X ×S y
pr1→ X is injective

(cf. Proposition 3.16(i)), it follows that the image of the outer homomorphism

Πp
F → Πp

X×Sy induced by the morphism F → X×S y is trivial. In particular, since

X ×S y is a hyperbolic curve over y, hence of p-LFG-type (cf. Proposition 3.28),

and the morphism F → X ×S y is a morphism between varieties over y, it follows

that the image of F → X ×S y consists of a closed point of X ×S y. Thus, the

image of the morphism Z ×Y y → X ×S y consists of finitely many closed points

of X ×S y. This completes the proof of Claim A.

Next, I claim that the following holds:

Claim B: The composite Γ→ Γ0 ↪→ X×S Y
pr2→ Y , hence also the compos-

ite Γ0 ↪→ X×S Y
pr2→ Y , is dominant and induces an isomorphism between

the respective function fields.

Indeed, since Z → Y is dominant and generically geometrically irreducible (cf.

condition (1)) and factors through Γ → Y , it follows from [5, Prop. (4.5.9)] that

Γ → Y is dominant and generically geometrically irreducible. Since k, hence also

the respective function fields of Γ and Y , is of characteristic zero, to verify Claim B,

it suffices to verify that Γ→ Y is generically quasi-finite. To verify that Γ→ Y is

generically quasi-finite, let ηY → Y be a geometric point of Y whose image is the

generic point of Y . Then since the operation of forming the scheme-theoretic image

commutes with base-change by a flat morphism, Γ0×Y ηY is naturally isomorphic

to the scheme-theoretic image of the natural morphism Z ×Y ηY → X ×S ηY .

Thus, since the image of the morphism Z ×Y ηY → X ×S ηY consists of finitely

many closed points of X ×S ηY (cf. Claim A), it follows that the composite Γ0 ↪→
X ×S Y

pr2→ Y , hence (by the finiteness of Γ → Γ0) also the morphism Γ → Y , is

generically quasi-finite. This completes the proof of Claim B.

Next, I claim that the following assertion holds:

Claim C: ∆p
Γ→Y/S ⊂ ∆p

Γ→X/S .

Indeed, it follows from Lemma 2.6 that ΠZ → ΠΓ, hence also Πp
Z/S → Πp

Γ/S ,

is surjective. Thus, since ∆p
Γ→Y/S (resp. ∆p

Γ→X/S) is the image of the subgroup

∆p
Z→Y/S (resp. ∆p

Z→X/S) of Πp
Z/S by the surjection Πp

Z/S � Πp
Γ/S , it follows from

condition (2) that ∆p
Γ→Y/S ⊂ ∆p

Γ→X/S . This completes the proof of Claim C.

Next, I claim that the following assertion holds:

Claim D: Let y → Y be a geometric point of Y . Then the image of the

morphism Γ ×Y y → X ×S y determined by Γ → Γ0 ↪→ X ×S Y
pr1→ X

consists of finitely many closed points of X ×S y.
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Indeed, we obtain a proof of Claim D by replacing “Z” in the proof of Claim A

with Γ (cf. Claim C). This completes the proof of Claim D.

Next, I claim that the following assertion holds:

Claim E: The composite Γ0 ↪→ X ×S Y
pr2→ Y is an open immersion.

Indeed, let y → Y be a geometric point of Y . Then it follows from Claim D that

the image of the composite Γ ×Y y → Γ0 ×Y y ↪→ X ×S y consists of finitely

many closed points of X×S y. Thus, since Γ→ Γ0 is surjective, and the morphism

Γ0×Y y ↪→ X ×S y is a closed immersion, we conclude that Γ0×Y y is quasi-finite

over y. In particular, Γ0 ↪→ X ×S Y
pr2→ Y is quasi-finite. Thus, it follows from

Claim B, together with [4, Cor. (4.4.9)], that the composite Γ0 ↪→ X ×S Y
pr2→ Y

is an open immersion. This completes the proof of Claim E.

Next, I claim that the following assertion holds:

Claim F: If X is proper over S, then f : Z → X admits a factorization

Z → Y → X such that Y → X is an S-morphism.

Indeed, if X is proper over S, then the composite Γ0 ↪→ X ×S Y
pr2→ Y is proper.

Thus, it follows from Claim E that the composite Γ0 ↪→ X ×S Y
pr2→ Y is an

isomorphism over S. In particular, f : Z → X admits a factorization Z → Y → X

such that Y → X is an S-morphism. This completes the proof of Claim F.

Next, I claim that the following assertion holds (note that in Claims G and H

below, we do not assume that k = k′):

Claim G: If the genus of the hyperbolic curve X over S is ≥ 2, then f

admits a factorization Z → Y → X such that Y → X is an S-morphism.

Indeed, let us consider the commutative diagram of schemes

Z //

��

X ×k k′
pr1 //

��

X

��

Y // S ×k k′
pr1 //

pr2

��

S

��

Spec k′ // Spec k,

where X×k k′ is a hyperbolic curve of genus ≥ 2 over S×k k′. Since ΠS×kk′ → ΠS

is injective, it follows that ∆Z/S = ∆Z/S×kk′ , ∆Y/S = ∆Y/S×kk′ . Thus, we obtain

Πp
Z/S = Πp

Z/S×kk′ , Πp
Y/S = Πp

Y/S×kk′ . This implies that ∆p
Z→Y/S = ∆p

Z→Y/S×kk′ .
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Moreover, since Πp
X×kk′/S×kk′ is the inverse image of the open subgroup Gk′ ⊂ Gk

by the composite Πp
X/S → ΠS → Gk, Πp

Z/S = Πp
Z/S×kk′ → Πp

X/S factors through

Πp
X×kk′/S×kk′ . Thus, we conclude that ∆p

Z→X/S = ∆p
Z→X×kk′/S×kk′ . In particular,

to verify Claim G, we may assume without loss of generality that k = k′.

Now, since the genus of X/S is ≥ 2, Xcpt is a proper hyperbolic curve over S.

Thus, since ∆p
Z→Y/S ⊂ ∆p

Z→X/S ⊂ ∆p
Z→Xcpt/S , by applying Claim F, where we

take the data “(S, Y, Z,X)” to be (S, Y, Z,Xcpt), we conclude that the morphism

Z → Xcpt over S factors as a composite Z → Y → Xcpt, where Y → Xcpt is

an S-morphism. This implies that, to verify Claim G, it suffices to verify that

Y → Xcpt factors through X ⊂ Xcpt. Note that since Z → Y is dominant by

condition (1), it follows that the image of the generic point of Y by the morphism

Y → Xcpt is contained in X ⊂ Xcpt. Let y ∈ Y be a point of Y that is not the

generic point of Y and R0 a discrete valuation ring dominating OY,y (cf., e.g.,

[3, Prop. (7.1.7)]). Write R for the strict henselization of R0. Then R is a strict

henselian discrete valuation ring and, moreover, the image of the closed point of

SpecR by the composite SpecR → SpecR0 → SpecOY,y → Y is y. On the other

hand, since the composite ηR → SpecR→ Y , where we write ηR for the spectrum

of the quotient field of R, factors through Γ→ Y (cf. Claim B), it follows from the

fact that ΠSpecR = {1} that the image of the composite ΠηR
→ ΠSpecR → Πp

Y/S ,

hence also the composite ΠηR
→ Πp

Γ/S → Πp
X/S (cf. Claim C), is trivial. Thus,

it follows from Lemma 3.31 that ηR → Γ → X factors through ηR ↪→ SpecR.

In particular, the composite SpecR → Y → Xcpt factors through X ⊂ Xcpt.

This implies that the image of y ∈ Y by the morphism Y → Xcpt is contained

in X ⊂ Xcpt. Thus, the morphism Y → Xcpt factors through X ⊂ Xcpt. This

completes the proof of Claim G.

Finally, I claim that the following assertion holds:

Claim H: f admits a factorization Z → Y → X such that Y → X is an

S-morphism.

Indeed, it follows from an argument similar to the argument used at the beginning

of the proof of Claim G that to verify Claim H, we may assume without loss of gen-

erality that k = k′. Then, it follows from Lemma 3.30 that there exists a connected

finite étale Galois covering X ′ → X of X such that if we write S′ := Nor(X ′/S),

then the genus of X ′/S′ is ≥ 2 and, moreover, Πp
X′/S′ → Πp

X/S is injective. Write

Y ′ → Y for the connected finite étale Galois covering of Y corresponding to

the inverse image of Πp
X′/S′ ⊂ Πp

X/S by Πp
Y/S → Πp

X/S (cf. condition (2)), and

Z ′ := Z ×Y Y ′
pr1→ Z for the connected (cf. condition (1)) finite étale Galois cover-

ing of Z corresponding to Y ′ → Y . Then, since the image of ∆p
Z′→Y ′/S′ ⊂ Πp

Z′/S′

by the composite Πp
Z′/S′ → Πp

Y ′/S′ → Πp
Y/S → Πp

X/S is trivial, it follows from



Pro-p Grothendieck Conjecture for Hyperbolic Polycurves 815

the injectivity of Πp
X′/S′ → Πp

X/S that the image of ∆p
Z′→Y ′/S′ ⊂ Πp

Z′/S′ by

Πp
Z′/S′ → Πp

X′/S′ is trivial. Thus, we conclude that ∆p
Z′→Y ′/S′ ⊂ ∆p

Z′→X′/S′ .

On the other hand, the image of ΠS′ ⊂ ΠS (resp. ΠY ′ ⊂ ΠY ) by the surjection

ΠS � Gk (resp. ΠY � Gk) is an open subgroup of Gk, which corresponds to some

finite field extension k′ (resp. k′′). Then, (S′, Y ′, Z ′, X ′, k′, k′′) satisfies conditions

(1), (2) for “(S, Y, Z,X, k, k′)” in the statement of Lemma 3.32. Thus, since X ′ is

a hyperbolic curve over S′ of genus ≥ 2, it follows from Claim G that the natural

morphism Z ′ → X ′ over S′ factors as a composite Z ′ → Y ′ → X ′, where Y ′ → X ′

is an S′-morphism. In particular, the natural morphism Z ′ → X over S admits a

unique factorization Z ′ → Y ′ → X, where Y ′ → X is an S-morphism. Moreover,

in light of this uniqueness, the factorization Z ′ → Y ′ → X ′ is compatible with the

natural actions of Gal(Z ′/Z) ∼= Gal(Y ′/Y ). This compatibility with Galois actions

thus implies that we obtain a factorization Z → Y → X such that Y → X is an

S-morphism. This completes the proof of Claim H, hence also of Lemma 3.32.

Corollary 3.33. Let p be a prime number, k′ a finite extension field of k, S a

normal variety over k and Y , Z normal varieties over k′, X a hyperbolic polycurve

over S satisfying condition (∗∗)p, Z → Y a morphism over k′, Y → S a morphism

over k and f : Z → X a morphism over S. Suppose that the following conditions

are satisfied:

(1) Z → Y is dominant and generically geometrically irreducible.

(2) ∆
(p)
Z/Y ⊂ ∆

(p)
Z/X .

Then the morphism f : Z → X admits a unique factorization Z → Y → X, where

the morphism Y → X is an S-morphism.

Proof. It follows from Lemma 3.23(ii) that the outer homomorphism Πp
Y → Πp

X

over Πp
S (cf. condition (2)) determines an outer homomorphism Πp

Y/S → Πp
X/S

such that the composite Πp
Z/S → Πp

Y/S → Πp
X/S coincides with the outer homo-

morphism Πp
Z/S → Πp

X/S induced by f . Thus, we obtain ∆p
Z→Y/S ⊂ ∆p

Z→X/S . This

implies that it follows from Lemma 3.32 that the morphism f : Z → X admits a

unique factorization Z → Y → X. This completes the proof of Corollary 3.33.

Lemma 3.34. Let p be a prime number, S, Y normal varieties over k, Y → S a

morphism, X a hyperbolic polycurve over S satisfying condition (∗)p (resp. (∗∗)p)

and φ : Πp
Y/S → Πp

X/S (resp. φ : Πp
Y → Πp

X) a homomorphism. Write η → Y for

the generic point of Y . Then the following conditions are equivalent:

(1) The homomorphism φ arises from a morphism Y → X over S.

(2) There exists a morphism η → X over S such that the outer homomorphism

Πp
η/S → Πp

X/S (resp. Πp
η → Πp

X) induced by this morphism η → X coincides
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with the composite of the outer surjection (cf. Lemma 2.2) Πp
η/S � Πp

Y/S

(resp. Πp
η � Πp

Y ) induced by η → Y and the outer homomorphism determined

by φ.

Proof. (Cf. [10, Lem. 2.10].) The implication (1) ⇒ (2) is immediate. We verify

the implication (2) ⇒ (1). Suppose that condition (2) is satisfied. Let U ⊂ Y be

a nonempty open subscheme of Y such that the morphism η → X in condition

(2) extends to a morphism U → X over S. Then it follows from Lemma 2.2 that

the outer homomorphism Πη → ΠU , hence also Πp
η/S → Πp

U/S (resp. Πp
η → Πp

U ),

is surjective. Thus, it follows that the outer homomorphism Πp
U/S → Πp

X/S (resp.

Πp
U → Πp

X) coincides with the composite of the outer surjection Πp
U/S � Πp

Y/S

and the outer homomorphism determined by φ. By applying Lemma 3.32 (resp.

Corollary 3.33), where we take the data “(k, k′, S, Y, Z,X)” to be (k, k, S, Y, U,X),

we conclude that the homomorphism U → X factors through Y → X. This

completes the proof of Lemma 3.34.

Lemma 3.35. Let p be a prime number, X a hyperbolic curve over k, Y a normal

variety over k and f : Y → X a morphism over k. Write φf : ΠY → ΠX ,

φpf/k : Πp
Y/k → Πp

X/k, φpf : Πp
Y → Πp

X for the outer homomorphisms induced by f .

Consider the following conditions:

(1) f is surjective, smooth and generically geometrically connected.

(2) φf is surjective and the kernel ∆f of φf is topologically finitely generated.

(2)′ φpf/k is surjective and the kernel ∆p
f/k of φpf/k is topologically finitely gener-

ated.

(2)′′ φpf is surjective and the kernel ∆
(p)
f of φpf is topologically finitely generated.

(3) f is surjective and generically geometrically connected.

(4) Let C be a hyperbolic curve over k and C → X a morphism over k. Then if

f factors through C → X, then C → X is an isomorphism.

Then we have implications and an equivalence: (1) ⇒ (2) ⇒ (2)′ ⇒ (3) ⇔ (4),

(2)′ ⇒ (2)′′. Moreover, if Πp

X×kk
→ Πp

X and Πp

Y×kk
→ Πp

Y are injective, then we

have an equivalence (2)′ ⇔ (2)′′.

Proof. (Cf. [10, Lem. 2.11].) The implication (1) ⇒ (2) and the equivalence

(3)⇔ (4) are proved in [10, Lem. 2.11]. First, we verify the implication (2)⇒ (2)′.

Suppose that condition (2) is satisfied. Then, the surjectivity of φpf/k is immediate.

Moreover, since there is a surjection ∆f → ∆p
f/k (cf. Lemma 2.18), ∆p

f/k is topo-

logically finitely generated. This completes the proof of the implication (2)⇒ (2)′.

The implication (2)′ ⇒ (2)′′ may be proved similarly. Next, we verify the impli-

cation (2)′ ⇒ (4). Suppose that condition (2)′ is satisfied. Let C be a hyperbolic
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curve over k and C → X a morphism over k. Then, if C ×k k → X ×k k is

an isomorphism, then so is C → X (cf. [2, Cor. 1.8.4]). On the other hand, by

considering the commutative diagram of profinite groups

1 // Πp

Y×kk
//

��

Πp
Y/k

//

φp
f/k

����

Gk // 1

1 // Πp

X×kk
// Πp

X/k
// Gk // 1,

we obtain that Πp

Y×kk/k
= Πp

Y×kk
→ Πp

X×kk
= Πp

X×kk/k
is surjective and, more-

over, ∆p
f/k = ker(Πp

Y×kk
→ Πp

X×kk
). Thus, to verify that condition (4) is sat-

isfied, we may assume without loss of generality that k = k. Suppose that f

factors through C → X. Then, since X is a hyperbolic curve over k, it fol-

lows from Proposition 3.16(iii) that ∆p
X/k = Πp

X is infinite. Thus, since C is

a hyperbolic curve over k, the surjectivity of φpf/k implies that f , hence also

Y → C, is dominant. In particular, it follows from Lemma 2.3 that the induced

outer homomorphism ΠY → ΠC , hence also Πp
Y → Πp

C , is open. Moreover, since

φpf/k is surjective, Πp
C → Πp

X is surjective. On the other hand, since the ker-

nel of φpf/k is topologically finitely generated, it follows from the openness of

Πp
Y → Πp

C that ∆p
C→X/k admits an open subgroup which is topologically finitely

generated. Thus, ∆p
C→X/k is topologically finitely generated. Now the surjectiv-

ity of Πp
C → Πp

X implies that Πp
C/∆

p
C→X/k

∼→ Πp
X . Thus, since Πp

X is infinite,

∆p
C→X/k ⊂ Πp

C = ∆p
C/k is not open in ∆p

C/k. This implies that ∆p
C→X/k is trivial

(cf. Proposition 3.16(iv)). Thus, we conclude that ∆p
C/k = Πp

C → Πp
X = ∆p

X/k

is an outer isomorphism. Write (gX , rX), (gC , rC) for the type of X/k, C/k, re-

spectively. Then, since ∆p
C/k
∼= ∆p

X/k, it follows from Proposition 3.16(v) that

2gX + max{rX − 1, 0} = 2gC + max{rC − 1, 0} and, moreover, that rX = 0 if

and only if rC = 0. On the other hand, since C → X determines the surjection

Ccpt → Xcpt, we have rC ≥ rX . Moreover, it follows from Hurwitz’ formula (cf.,

e.g., [9, Chap. IV, Cor. 2.4]) that gC ≥ gX . Thus, it follows immediately that

gC = gX , rC = rX . Moreover, since Ccpt → Xcpt determines the bijection be-

tween the points of Ccpt \ C and the points of Xcpt \ X, Ccpt → Xcpt is totally

ramified over Ccpt \ C. Thus, if we write n for the degree of Ccpt → Xcpt and

eP for the ramification index at P ∈ Ccpt, then it follows from Hurwitz’ formula

that

2gC − 2 = n(2gX − 2) +
∑

P∈Ccpt

(eP − 1) = n(2gX − 2) + rC(n− 1) +
∑
P∈C

(eP − 1).
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This implies that n = 1, and that for any P ∈ C, eP = 1. Thus, we conclude that

C → X is an isomorphism. This completes the proof of the implication (2)′ ⇒ (4).

Finally, we verify the implication (2)′′ ⇒ (2)′, assuming that Πp

X×kk
→ Πp

X

and Πp

Y×kk
→ Πp

Y are injective. Suppose that condition (2)′′ is satisfied. Then, the

two commutative diagrams of profinite groups

1 // Πp

Y×kk
//

��

Πp
Y

//

φpf
����

Gpk
// 1

1 // Πp

X×kk
// Πp

X
// Gpk

// 1

and

1 // Πp

Y×kk
//

��

Πp
Y/k

//

φp
f/k

��

Gk // 1

1 // Πp

X×kk
// Πp

X/k
// Gk // 1,

where the horizontal sequences are exact, imply that condition (2)′ is satisfied. This

completes the proof of the implication (2)′′ ⇒ (2)′, hence also of Lemma 3.35.

Lemma 3.36. In the notation of Lemma 3.35, suppose, moreover, that Y is of

p-LFG-type. Then the following hold:

(i) Consider the following conditions:

(1) f is an isomorphism.

(2) φf is an outer isomorphism.

(3) φf is surjective and the kernel ∆f of φf is finite.

(4) φpf/k is an outer isomorphism.

(5) φpf/k is surjective and the kernel ∆p
f/k of φpf/k is finite.

(6) φpf is an outer isomorphism.

(7) φpf is surjective and the kernel ∆
(p)
f of φpf is finite.

Then we have implications and equivalences: (1)⇔ (2)⇔ (3)⇔ (4)⇔ (5)⇒
(6) ⇒ (7). Moreover, if Πp

X×kk
→ Πp

X and Πp

Y×kk
→ Πp

Y are injective, then

the above conditions are all equivalent.
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(ii) The following conditions are equivalent:

(1) f is a finite étale covering and the degree of the Galois closure of Y×kk →
X ×k k determined by f is a power of p.

(2) φpf/k is an outer open injection.

(3) φpf/k is open and the kernel ∆p
f/k of φpf/k is finite.

(iii) Suppose that Πp

X×kk
→ Πp

X and Πp

Y×kk
→ Πp

Y are injective. Then the fol-

lowing conditions are equivalent:

(1) f is a finite étale covering and the degree of the Galois closure of f is a

power of p.

(2) φpf is an outer open injection.

(3) φpf is open and the kernel ∆
(p)
f of φpf is finite.

Proof. (Cf. [10, Lem. 2.12].) First, we verify assertion (i). The implication (3) ⇒
(5) follows from Lemma 2.18 and, moreover, the implications (1) ⇒ (2) ⇒ (3),

(2) ⇒ (4) ⇒ (5) and (2) ⇒ (6) ⇒ (7) are immediate. Now we verify the implica-

tion (5) ⇒ (1). Suppose that condition (5) is satisfied. Then it follows from the

implication (2)′ ⇒ (3) of Lemma 3.35 that f is surjective and generically geo-

metrically connected. On the other hand, it follows from Lemma 3.27(ii) that f

is quasi-finite. Thus, it follows from [4, Cor. (4.4.9)] that f is an open immersion,

hence an isomorphism. This completes the proof of the implication (5)⇒ (1). Sim-

ilarly, the implication (7)⇒ (1) (assuming that Πp

X×kk
→ Πp

X and Πp

Y×kk
→ Πp

Y

are injective) follows from the implication (2)′′ ⇒ (3) of Lemma 3.35, together

with Lemma 3.27(iii).

Next, we verify assertion (ii). First, we verify the implication (1) ⇒ (2).

Suppose that condition (1) is satisfied. Then, since the open subgroup ΠY ⊂ ΠX

corresponding to f contains ker(∆X/k � ∆p
X/k), it follows that Πp

Y/k is the image

of ΠY ⊂ ΠX by the surjection ΠX � Πp
X/k. This completes the implication

(1) ⇒ (2). The implication (2) ⇒ (3) is immediate. Thus, it remains to verify

the implication (3) ⇒ (1). To verify this implication, suppose that condition (3)

is satisfied. Write X ′ → X for the connected finite étale covering corresponding

to the open subgroup Im(φpf/k) ⊂ Πp
X/k of Πp

X/k. Then the degree of the Galois

closure of X ′ ×k k → X ×k k determined by X ′ → X is a power of p. Moreover,

since ΠX′ is the inverse image of Im(φpf/k) ⊂ Πp
X/k by the surjection ΠX � Πp

X/k,

it follows that φf : ΠY → ΠX factors through ΠX′ ↪→ ΠX . Thus, Y → X factors

through X ′ → X. On the other hand, it follows from our choice of X ′ → X that

Πp
Y/k → Πp

X′/k is surjective and, moreover, ∆p
Y→X′/k = ∆p

f/k. Thus, it follows from

the implication (5) ⇒ (1) of (i) that the morphism Y → X ′ is an isomorphism.
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This completes the proof of the implication (3) ⇒ (1), hence also of assertion

(ii). Similarly, assertion (iii) follows from the implication (7) ⇒ (1) of (i). This

completes the proof of Lemma 3.36.

Lemma 3.37. In the notation of Lemma 3.35, suppose, moreover, that Y is a

hyperbolic curve over k. Then the following hold:

(i) Consider the following conditions:

(1) f is an isomorphism.

(2) φf is an outer isomorphism.

(3) φf is surjective and the kernel ∆f of φf is topologically finitely generated.

(4) φpf/k is an outer isomorphism.

(5) φpf/k is surjective and the kernel ∆p
f/k of φpf/k is topologically finitely

generated.

(6) φpf is an outer isomorphism.

(7) φpf is surjective and the kernel ∆
(p)
f of φpf is topologically finitely gener-

ated.

Then we have implications and equivalences: (1)⇔ (2)⇔ (3)⇔ (4)⇔ (5)⇒
(6) ⇒ (7). Moreover, if Πp

X×kk
→ Πp

X and Πp

Y×kk
→ Πp

Y are injective, then

the above conditions are all equivalent.

(ii) The following conditions are equivalent.

(1) f is a finite étale covering and the degree of the Galois closure of Y×kk →
X ×k k determined by f is a power of p.

(2) φpf/k is an outer open injection.

(3) φpf/k is open and the kernel ∆p
f/k of φpf/k is topologically finitely gener-

ated.

(iii) Suppose that Πp

X×kk
→ Πp

X and Πp

Y×kk
→ Πp

Y are injective. Then the fol-

lowing conditions are equivalent:

(1) f is a finite étale covering and the degree of the Galois closure of f is a

power of p.

(2) φpf is an outer open injection.

(3) φpf is open and the kernel ∆
(p)
f of φpf is topologically finitely generated.

Proof. (Cf. [10, Lem. 2.13].) If we verify assertion (i), then assertions (ii) and (iii)

follow from an argument similar to the argument used in the proof of Lemma 3.36.
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Thus, it remains to verify assertion (i). Since Y is of p-LFG-type (cf. Proposi-

tion 3.28), the implications (1)⇔ (2)⇔ (4) follow from Lemma 3.36. The implica-

tions (2)⇒ (3)⇒ (5) follow from Lemma 2.18. The implications (2)⇒ (6)⇒ (7)

are immediate. Now we verify the implication (5) ⇒ (4). Suppose that condition

(5) is satisfied. Let us observe that it follows from the commutative diagram of

profinite groups

1 // Πp

Y×kk
//

��

Πp
Y/k

//

φp
f/k

����

Gk // 1

1 // Πp

X×kk
// Πp

X/k
// Gk // 1

that, to verify that condition (4) is satisfied, we may assume without loss of gen-

erality that k = k. Then, it follows from Proposition 3.16(iii), together with the

surjectivity of φpf/k, that the image of φpf/k is infinite, i.e., ∆p
f/k is not open in

Πp
Y = ∆p

Y/k. Thus, it follows from Proposition 3.16(iv) that ∆p
f/k is trivial. This

completes the proof of the implication (5)⇒ (4). Finally, we verify the implication

(7)⇒ (5), assuming that Πp

X×kk
→ Πp

X and Πp

Y×kk
→ Πp

Y are injective. It follows

from an argument similar to the argument used in the proof of the implication

(2)′′ ⇒ (2)′ of Lemma 3.35 that, to verify the implication (7) ⇒ (5), we may

assume without loss of generality that k = k. But then condition (7) is the same

as condition (5). This completes the proof of the implication (7)⇒ (5), hence also

of Lemma 3.37.

Lemma 3.38. Suppose that k = k. Let p be a prime number, n a positive integer,

X a hyperbolic polycurve over k satisfying condition (∗)p, F a normal variety

over k of dimension ≥ n and F → X a quasi-finite morphism over k. (Thus, it

holds that n ≤ dim(F ) ≤ dim(X).) Write Πp
F→X/k := Πp

F/k/∆
p
F→X/k. (Note that

Πp
F→X/k is canonically identified with the image of Πp

F/k → Πp
X/k, and that since

k = k, it holds that Πp
F/k = Πp

F ,Π
p
X/k = Πp

X .) Then there exists a sequence of

normal closed subgroups of Πp
F→X/k,

1 = H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 ⊂ Hn = Πp
F→X/k,

such that, for each integer i such that 0 < i ≤ n, the closed subgroup Hi is

topologically finitely generated and the quotient Hi/Hi−1 is infinite.

Proof. (Cf. [10, Lem. 2.14].) Write d := dim(X). For each integer j such that

0 ≤ j ≤ d, write F [j] → Xj for the normalization in F of the scheme-theoretic
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image of the composite F → X → Xj . Then we obtain a commutative diagram of

normal varieties over k,

F //

��

F [d] //

��

· · · // F [1] //

��

Spec k = F [0]

X Xd
// · · · // X1

// Spec k = X0,

where the horizontal arrows are dominant and generically geometrically connected

and the vertical arrows (except for the morphism F→X) are finite (cf. Lemma 2.9),

which implies that dimF [i] ≤ i, 0 ≤ dim(F [i + 1]) − dim(F [i]) ≤ 1. Now since

dim(F ) ≥ n, there exists a uniquely determined subset {D0, . . . , Dn−1} ⊂ {0, . . . ,
d − 1} of cardinality n such that, for each integer i such that 0 ≤ i < n, the

normal variety F [Di + 1] is of dimension i + 1, but the normal variety F [Di] is

of dimension i. Write F [Dn] := F . Next, since k is of characteristic zero, and the

horizontal arrows in the above commutative diagram are dominant and generically

geometrically connected, one verifies easily that, for each integer i such that 0 ≤
i ≤ n, there exists a nonempty open subscheme U [Di] ⊂ F [Di] of F [Di] such that,

for each integer i such that 1 ≤ i ≤ n, the image of the open subscheme U [Di] ⊂
F [Di] by the morphism F [Di−1] → F [Di−1] is contained in U [Di−1] ⊂ F [Di−1]

and, moreover, the resulting morphism U [Di] → U [Di−1] is surjective, smooth

and geometrically connected. Thus, we obtain a commutative diagram of normal

varieties over k,

U [Dn] //

��

U [Dn−1] //

��

· · · // U [D1] //

��

Spec k = U [D0]

F [Dn] // F [Dn−1] // · · · // F [D1] // Spec k = F [D0],

where the vertical arrows are open immersions and the upper horizontal arrows

are surjective, smooth and geometrically connected.

Now, for each integer i such that 0 ≤ i ≤ n, let us write

Hi := Im(∆p
U [Dn]→U [Dn−i]/k

↪→ Πp
U [Dn] � Πp

F � Πp
F→X/k).

Let us observe that since ∆p
U [Dn]→U [Dn−i]/k

is a normal subgroup of Πp
U [Dn], Hi is

a normal subgroup of Πp
F→X/k. We verify that the sequence of normal subgroups

of Πp
F→X/k,

1 = H0 ⊂ H1 ⊂ · · · ⊂ Hn−1 ⊂ Hn = Πp
F→X/k,
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satisfies the condition in the statement of Lemma 3.38. Fix an integer i such that

0 < i ≤ n. First, by applying Lemma 2.11, where we take the data “(X,S,U)” to be

(U [Dn], U [Dn−1], U [Dn]), it follows that ∆U [Dn]/U [Dn−1] ⊂ ΠU [Dn] is topologically

finitely generated. On the other hand, since ΠU [Dn] → ΠU [Dn−i] is surjective (cf.

Lemma 2.6), it follows from Lemma 2.18 that ∆p
U [Dn]→U [Dn−i]/k

⊂ Πp
U [Dn] is the

image of ∆U [Dn]/U [Dn−i] ⊂ ΠU [Dn] by ΠU [Dn] � Πp
U [Dn]. Thus, Hi is the image of

∆U [Dn]/U [Dn−i] ⊂ ΠU [Dn] by the composite ΠU [Dn] � Πp
U [Dn] � Πp

F � Πp
F→X/k.

In particular, Hi is topologically finitely generated. Thus, it remains to verify

that the quotient Hi/Hi−1 is infinite. Write Ω for an algebraic closure of the

function field of U [Dn−i], a = Spec Ω → U [Dn−i] for the generic geometric point

of U [Dn−i] determined by Ω, and UDn−i+1/Dn−i := U [Dn−i+1] ×U [Dn−i] a, which

is a smooth variety over Ω of dimension 1 (resp. dim(F ) − n + 1) if i 6= 1 (resp.

i = 1). Then, since the morphism U [Dn−i+1] → U [Dn−i] is surjective, smooth,

geometrically connected (hence geometrically integral), it follows from our choice

of the geometric point a → U [Dn−i] that (U [Dn−i], U [Dn−i+1], U [Dn−i+1], a →
U [Dn−i]) satisfies conditions (1), (2), (3), (4) for “(S,X, Y, s→ S)” of Lemma 2.10.

Thus, the sequence of profinite groups

ΠUDn−i+1/Dn−i
// ΠU [Dn−i+1]

// ΠU [Dn−i]
// 1

is exact, which determines a surjection ΠUDn−i+1/Dn−i
� ∆U [Dn−i+1]/U [Dn−i]. On

the other hand, the exact sequence of profinite groups

1→ ∆U [Dn]/U [Dn−i+1] → ∆U [Dn]/U [Dn−i] → ∆U [Dn−i+1]/U [Dn−i] → 1

determines an isomorphism

∆U [Dn]/U [Dn−i]/∆U [Dn]/U [Dn−i+1]
∼→ ∆U [Dn−i+1]/U [Dn−i].

Thus, we obtain a sequence of profinite groups

ΠUDn−i+1/Dn−i
� ∆U [Dn]/U [Dn−i]/∆U [Dn]/U [Dn−i+1] � Hi/Hi−1.

On the other hand, since Hi (resp. Hi−1) is the image of ∆p
U [Dn]→U [Dn−i]/k

(resp.

∆p
U [Dn]→U [Dn−i+1]/k) ⊂ Πp

U [Dn] by the composite Πp
U [Dn] � Πp

F � Πp
F→X/k =

Πp
F /∆

p
F→X/k and, moreover, the subgroups ∆p

U [Dn]→X/k and ∆p
U [Dn]→U [Dn−i+1]/k

of Πp
U [Dn] are contained in the kernel of the composite Πp

U [Dn] � Πp
F → Πp

X �
Πp
XDn−i+1

(where we write XDn := X), it follows that there is a natural homo-

morphism Hi/Hi−1 → Πp
XDn−i+1

. Thus, the composite of natural morphisms

UDn−i+1/Dn−i = U [Dn−i+1]×U [Dn−i] a
pr1→ U [Dn−i+1]→ XDn−i+1
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determines a sequence of profinite groups

Πp
UDn−i+1/Dn−i

→ Hi/Hi−1 → Πp
XDn−i+1

.

On the other hand, since the natural morphism F [Dn−i+1]→ XDn−i+1
, hence also

U [Dn−i+1] ↪→ F [Dn−i+1]→ XDn−i+1 , is quasi-finite, it follows that

UDn−i+1/Dn−i = U [Dn−i+1]×U [Dn−i] a

= (U [Dn−i+1]×k Ω)×(U [Dn−i]×kΩ) a→ XDn−i+1
×k Ω

is quasi-finite, hence nonconstant. Moreover, since XDn−i+1
×k Ω is a hyperbolic

polycurve over Ω satisfying condition (∗)p, it follows from Proposition 3.28 that

XDn−i+1
×k Ω is of p-LFG-type. This implies that the image of the composite

Πp
UDn−i+1/Dn−i

→ Πp
XDn−i+1

×kΩ
∼→ Πp

XDn−i+1
, hence also the image of Hi/Hi−1 →

Πp
XDn−i+1

, is infinite. Thus, we conclude that Hi/Hi−1 is infinite. This completes

the proof of Lemma 3.38.

§4. Pro-p Grothendieck conjecture for hyperbolic polycurves

In the present Section 4, we consider the pro-p version of the Grothendieck conjec-

ture for hyperbolic polycurves. Let k be a field of characteristic zero, k an algebraic

closure of k and Gk := Gal(k/k).

Definition 4.1 (Cf. [11, Def. 15.4(i)]). Let p be a prime number. Then we shall

say that k is sub-p-adic if k is isomorphic to a subfield of a finitely generated

extension of Qp.

Proposition 4.2. Let p be a prime number, X a hyperbolic polycurve over k

satisfying condition (∗)p and Y a geometrically integral variety over k. Then the

following hold:

(i) Write Homdom
k (Y,X) ⊂ Homk(Y,X) for the subset of dominant morphisms

from Y to X over k and Homopen
Gk

(Πp
Y/k,Π

p
X/k) ⊂ HomGk(Πp

Y/k,Π
p
X/k) for

the subset of open homomorphisms from Πp
Y/k to Πp

X/k over Gk. Then the

natural map

Homdom
k (Y,X)→ Homopen

Gk
(Πp

Y/k,Π
p
X/k)/ Inn(∆p

X/k)

(cf. Lemma 2.3) is injective.

(ii) Suppose that k is sub-p-adic. Then the natural map

Homk(Y,X)→ HomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k)

is injective.
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Proof. (Cf. [10, Prop. 3.2].) Write n := dim(X). First, we verify assertion (i). I

claim that the following assertion holds:

Claim A: If n = 1, then assertion (i) holds.

Indeed, since k is of characteristic zero, it follows that Y contains a dense open

subscheme which is smooth over k. Thus, by replacing Y by such an open sub-

scheme, we may assume without loss of generality that Y is smooth over k. Then,

if k is sub-p-adic, Claim A follows from [11, Thm. A]. Now we verify Claim A for

an arbitrary k. Let f, g ∈ Homdom
k (Y,X) be elements of Homdom

k (Y,X) that map

to the same element by the above map. Then there exist a subfield k′ of k which is

finitely generated over Q, a hyperbolic curve X ′ over k′, a smooth variety Y ′ over

k′ and f ′, g′ ∈ Homdom
k′ (Y ′, X ′) such that the base-change of f ′, g′ to k is f , g, re-

spectively. Then, since k′ is finitely generated over Q (hence sub-p-adic), the map

Homdom
k′ (Y ′, X ′) → Homopen

Gk′
(Πp

Y ′/k′ ,Π
p
X′/k′)/ Inn(∆p

X′/k′) is injective. Moreover,

since ∆p
X′/k′ is slim (cf. Proposition 3.16(iii)), it follows from Lemma 2.20 that

Homopen
Gk′

(Πp
Y ′/k′ ,Π

p
X′/k′)/ Inn(∆p

X′/k′)→ Hom(∆p
Y ′/k′ ,∆

p
X′/k′)/ Inn(∆p

X′/k′)

is injective. Then, since f ′, g′ ∈ Homdom
k′ (Y ′, X ′) map to the same element in

Hom(∆p
Y ′/k′ ,∆

p
X′/k′)/ Inn(∆p

X′/k′) = Hom(∆p
Y/k,∆

p
X/k)/ Inn(∆p

X/k),

it follows that f ′ = g′, which implies that f = g. This completes the proof of

Claim A.

Next, we verify assertion (i) by induction on n. If n = 1, then assertion (i) is

the same as Claim A. Now suppose that n ≥ 2 and that the induction hypothesis

is in force. Let f, g ∈ Homdom
k (Y,X) be elements of Homdom

k (Y,X) that map

to the same element by the above map. Write fn−1, gn−1 for the composites of

X → Xn−1 and f , g, respectively. Then fn−1, gn−1 induce the same ∆p
Xn−1/k

-

conjugacy class of homomorphisms Πp
Y/k → Πp

Xn−1/k
. Thus, it follows from the

induction hypothesis that fn−1 = gn−1. Let η → Xn−1 be a generic geometric

point of Xn−1. Let C ⊂ Y ×Xn−1
η (where we take Y → Xn−1 to be fn−1 = gn−1)

be an irreducible component of Y ×Xn−1 η with the reduced induced structure.

Write f ′, g′ : Y ×Xn−1
η → X ×Xn−1

η for the base-change of f , g, respectively.

Now let us fix a basepoint of C and consider the diagram of profinite groups

Πp
C/η

////

��

Πp
X×Xn−1

η/η
//

��

Πη = {1}

��

Πp
Y/k

//// Πp
X/k

// Πp
Xn−1/k
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induced by the diagram of schemes

C
� � //

##

Y ×Xn−1 η
f ′ //
g′
//

��

X ×Xn−1 η
pr1 //

��

η

��

Y
f //
g

// X // Xn−1.

Then, since X ×Xn−1
η is a hyperbolic curve over η, it follows from Proposi-

tion 3.16(ii) that

Πp
X×Xn−1

η/η

∼→ Πp
X/Xn−1

×ΠXn−1
Πη = ∆p

X/Xn−1
⊂ ∆p

X/k ⊂ Πp
X/k.

Thus, φf ′ , φg′ : Πp
C/η → Πp

X×Xn−1
η/η induced by the dominant morphisms f ′,

g′, respectively, are determined by φf , φg : Πp
Y/k → Πp

X/k induced by f , g, re-

spectively. On the other hand, since φf is a ∆p
X/k-conjugate of φg, we can choose

an element a ∈ ∆p
X/k such that φg = aφfa

−1. Write ψ : Πp
X/k → Πp

Xn−1/k
for

the right-hand lower horizontal arrow of the above diagram of profinite groups.

Then the composites ψ ◦ φf and ψ ◦ φg = ψ(a) · (ψ ◦ φf ) · ψ(a)−1 are induced by

fn−1 = gn−1, hence ψ ◦ φf = ψ ◦ φg. Thus, since ψ(a) ∈ ∆p
Xn−1/k

, it follows that

ψ(a) ∈ Z∆p
Xn−1/k

(Im(ψ ◦φf )∩∆p
Xn−1/k

). On the other hand, since φf is open and

ψ is surjective (cf. Proposition 3.7(i)), Im(ψ ◦φf )∩∆p
Xn−1/k

⊂ ∆p
Xn−1/k

is an open

subgroup of ∆p
Xn−1/k

, which implies that Z∆p
Xn−1/k

(Im(ψ ◦ φf ) ∩∆p
Xn−1/k

) = {1}
(cf. Proposition 3.16(iii)). Thus, it follows that a ∈ kerψ = ∆p

X/Xn−1
, i.e., that φf

is a ∆p
X/Xn−1

-conjugate of φg, which implies that φf ′ is a ∆p
X/Xn−1

-conjugate of

φg′ . In particular, by applying Claim A, where we take the data “(Spec k,X, Y )” to

be (η,X×Xn−1 η, C), we obtain that f ′=g′. Since the morphism C→Y is schemat-

ically dense, we conclude that f=g. This completes the proof of assertion (i).

Next, we verify assertion (ii). Write η → Y for the generic point of Y .

Note that the hyperbolic polycurve X ×k η/η satisfies condition (∗)p (cf. Proposi-

tion 3.16(ii)). Fix a homomorphism Πη → Πp
Y/k arising from the natural morphism

η → Y . Then we have a natural Πp
X/k-conjugacy class of isomorphisms ∆p

X×kη/η
∼→

∆p
X/k (cf. Proposition 3.16(ii)), a natural outer isomorphism Πp

X×kη/η
∼→ Πp

X/k×Gk
Πη (cf. Proposition 3.16(ii)) and a commutative diagram

Homk(Y,X) //

��

HomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k)

��

Homη(η,X ×k η) // HomΠη (Πη,Π
p
X×kη/η)/ Inn(∆p

X×kη/η).



Pro-p Grothendieck Conjecture for Hyperbolic Polycurves 827

Now, since η → Y is schematically dense, the left-hand vertical arrow of the

above diagram is injective. Thus, since the function field of Y is finitely gener-

ated over the sub-p-adic field k (hence the function field of Y itself is sub-p-adic),

by replacing k by the function field of Y and Y by Spec k, to verify assertion

(ii), we may assume without loss of generality that Y = Spec k. Now we ver-

ify assertion (ii) by induction on n. If n = 1, then assertion (ii) follows from

[11, Thm. C]. Now suppose that n ≥ 2 and that the induction hypothesis is in

force. Let f, g ∈ Homk(Spec k,X) be elements of Homk(Spec k,X) that deter-

mine the same element of HomGk(Gk,Π
p
X/k)/ Inn(∆p

X/k). Then, it follows from

the induction hypothesis that the composite of X → Xn−1 and f coincides with

that of g. Write x ∈ Xn−1 for the image of the morphism Spec k → Xn−1 de-

termined by f (i.e., by g), and φf , φg : Gk → Πp
X/k for the homomorphism in-

duced by f , g, respectively. Choose an element a ∈ ∆p
X/k such that φg = aφfa

−1.

Then it follows immediately that k(x) = k. Moreover, since Xx := X ×Xn−1
x

is a hyperbolic curve over Spec k(x), it follows from Proposition 3.16(ii) that

∆p
Xx/k(x)

∼→ ∆p
X/Xn−1

⊂ ∆p
X/k, which implies that Πp

Xx/k(x) → Πp
X/k is injec-

tive. Thus, if we write ψ : Πp
X/k → Πp

Xn−1/k
for the outer homomorphism induced

by X → Xn−1, then it follows from an argument similar to the argument used in

the proof of assertion (i) that it suffices to show that ψ(a) = 1. Now, the section

ψ◦φf = ψ◦φg induced by Spec k → Xn−1, together with the action of Πp
Xn−1/k

on

∆p
Xn−1/k

by conjugation, determines an action of Gk on ∆p
Xn−1/k

. Then, it follows

from the easily verified fact that ψ(a) ∈ (∆p
Xn−1/k

)Gk that to verify assertion (ii),

it suffices to verify that the following assertion holds:

Claim B: Suppose that k is sub-p-adic. Let X be a hyperbolic polycurve

over k satisfying condition (∗)p and Spec k → X a k-rational point. Then,

on the group action of Gk on ∆p
X/k determined by the section of Πp

X/k �

Gk induced by Spec k → X, we have (∆p
X/k)Gk = {1}.

Indeed, let us observe that it follows from induction on the dimension of X that,

to verify Claim B, we may assume without loss of generality that X is a hyperbolic

curve over k. Now assume that (∆p
X/k)Gk 6= {1}. Let us choose an element a ∈

(∆p
X/k)Gk \ {1}. Then there exists a characteristic open subgroup V ⊂ ∆p

X/k

of ∆p
X/k such that a /∈ V (cf. Proposition 3.16(iii), [15, Prop. 2.5.1(b)]). Write

U := V · 〈a〉. Then U is an open subgroup of ∆p
X/k. Moreover, since V ⊂ ∆p

X/k is

normal, it follows that [U,U ] ⊂ V . In particular, a ∈ U \ [U,U ], which implies that

(Uab)Gk 6= {1}. Write W for the (necessarily open) subgroup of Πp
X/k generated

by U and the image of the section Gk � Πp
X/k induced by the given k-rational

point Spec k → X. Then W ⊂ Πp
X/k corresponds to a hyperbolic curve X ′ over

k. Thus, to verify Claim B, by replacing X/k by X ′/k, it suffices to verify that
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(∆p,ab
X/k)Gk is trivial. Moreover, by replacing k by its finite extension if necessary,

we may assume that S(k) = S(k), where we write S := Xcpt \X. Write (g, r) for

the type of the hyperbolic curve X/k, J for the Jacobian variety of Xcpt and TpJ

for the p-adic Tate module of J . Then, if r = 0, we have a canonical isomorphism

∆p,ab
X/k
∼= TpJ (cf. [16, (1–3)]). If r > 0, then we have the exact sequence

0→ Zp(1)→
⊕

x∈S(k)

Zp(1)→ ∆p,ab
X/k → TpJ → 0

(cf. [16, (1–5)]). Thus, to verify Claim B, it suffices to verify that (Zp(1))Gk and

(TpJ)Gk are trivial. First, we verify that (Zp(1))Gk is trivial. Since k is sub-p-adic,

there exists an injection k ↪→ K, where K is a finitely generated field extension of

Qp. Then, the action of Gk on Zp(1) determines a character χ : Gk → Z×p . Now

let us consider the commutative diagram of profinite groups

GK //

��

GQp

��

Gk χ
// Z×p .

Then, since GQp → Z×p is surjective and GK → GQp is open, the image of GK →
Z×p , hence also that of χ, is nontrivial. Thus, we conclude that (Zp(1))Gk is trivial.

Next, we verify that (TpJ)Gk is trivial. It follows from the sequence GK → Gk →
Aut(TpJ) that, to verify that (TpJ)Gk is trivial, we may assume without loss of

generality that k is finitely generated over Qp. Then there exist a normal domain R

with quotient field k which is finitely generated over Qp and an abelian scheme A
over R such that J → Spec k is the base-change of A → SpecR by the morphism

Spec k → SpecR. Let x be a closed point of SpecR. Then, by considering the

action Gk(x) → Aut(TpAx)
∼← Aut(TpJ), we conclude that to verify that (TpJ)Gk

is trivial, it suffices to verify that, for each finite extension k of Qp and abelian

variety A over k, the module (TpA)Gk of Gk-invariants is trivial. Now let us observe

that

(TpA)Gk = lim←−
n

A[pn](k)Gk = lim←−
n

A[pn](k) = lim←−
n

A(k)[pn].

On the other hand, since A(k) is a compact abelian p-adic Lie group, it follows

that A(k) is isomorphic, as a topological group, to the direct sum of Zmp for a

suitable nonnegative integer m and a finite abelian group. Thus, we conclude

that lim←−nA(k)[pn] is trivial. This completes the proof of Claim B, hence also of

Proposition 4.2.
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Corollary 4.3. Let p be a prime number, X a hyperbolic polycurve over k sat-

isfying condition (∗∗)p and Y a geometrically integral variety over k. Then the

following hold:

(i) Write Homdom
k (Y,X) ⊂ Homk(Y,X) for the subset of dominant morphisms

from Y to X over k and Homopen
Gpk

(Πp
Y ,Π

p
X) ⊂ HomGpk

(Πp
Y ,Π

p
X) for the subset

of open homomorphisms from Πp
Y to Πp

X over Gpk. Then the natural map

Homdom
k (Y,X)→ Homopen

Gpk
(Πp

Y ,Π
p
X)/ Inn(∆p

X/k)

(cf. Lemma 2.3) is injective.

(ii) Suppose that k is sub-p-adic. Then the natural map

Homk(Y,X)→ HomGpk
(Πp

Y ,Π
p
X)/ Inn(∆p

X/k)

is injective.

Proof. This follows from Proposition 4.2, together with Lemma 3.23(ii).

Theorem 4.4. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

curve over k (resp. a hyperbolic curve over k satisfying condition (∗∗)p), Y a

normal variety over k and φ : Πp
Y/k → Πp

X/k (resp. φ : Πp
Y → Πp

X) an open

homomorphism over Gk (resp. Gpk). Then φ arises from a uniquely determined

dominant morphism Y → X over k.

Proof. (Cf. [10, Thm. 3.3].) First, let us observe that, if X/k satisfies condition

(∗∗)p, then it follows from Lemma 3.23(ii) that the homomorphism Πp
Y → Πp

X

canonically determines Πp
Y/k → Πp

X/k. Thus, in light of Proposition 4.2(i) and

Corollary 4.3(i), to verify Theorem 4.4, it suffices to verify that an open homo-

morphism φ : Πp
Y/k → Πp

X/k over Gk arises from a dominant morphism Y → X

over k. Now, let us observe that there exists a dense open subscheme U of Y which

is smooth over k. Then, it follows from [11, Thm. A] that the composite Πp
U/k →

Πp
Y/k

φ→ Πp
X/k arises from a uniquely determined morphism U → X over k. Write

η → U for the generic point of U . Then, since Πp
η/k → Πp

U/k → Πp
Y/k

φ→ Πp
X/k

is induced by η → U → X, it follows from Lemma 3.34 that φ arises from a

morphism Y → X over k. Moreover, since φ is open, it follows that the morphism

Y → X is dominant. This completes the proof of Theorem 4.4.

Lemma 4.5. Let p be a prime number, n a positive integer, S, Y normal varieties

over k, X a hyperbolic polycurve of relative dimension n over S and φ : Πp
Y → Πp

X

an open homomorphism over Gpk. Suppose that the composite Πp
Y

φ→ Πp
X � Πp

S

arises from a morphism Y → S over k. Write S′ ⊂ S for the scheme-theoretic
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image of the morphism Y → S, Z := Nor(Y/S′) and η → Z for the generic point

of Z. Then the following hold:

(i) The morphism Y → Z over k is dominant and generically geometrically

connected. In particular, Yη := Y ×Zη is a (nonempty) normal variety over η.

(ii) There exist nonempty open subschemes UY ⊂ Y , UZ ⊂ Z of Y , Z, respec-

tively, such that the image of UY ⊂ Y by the natural morphism Y → Z is

contained in UZ ⊂ Z and, moreover, the resulting morphism UY → UZ is

surjective, smooth and geometrically connected.

(iii) Write N ⊂ Πp
Y for the normal closed subgroup of Πp

Y obtained by forming

the image of the normal closed subgroup ∆
(p)
UY /UZ

⊂ Πp
UY

of Πp
UY

by Πp
UY
→

Πp
Y . Then the image of the composite ∆

(p)
Yη/η

↪→ Πp
Yη
→ Πp

Y , hence also the

composite ΠYη
∼→ ∆Yη/η � ∆

(p)
Yη/η

↪→ Πp
Yη
→ Πp

Y , coincides with N ⊂ Πp
Y .

(iv) The image of N ⊂ Πp
Y by the composite Πp

Y → Πp
X → Πp

S is trivial. In

particular, we obtain a natural Πp
X-conjugacy class of homomorphisms N →

∆
(p)
X/S.

(v) If, moreover, dim(Y ) > dim(S), Y is of p-LFG-type and Πp

Y×kk
→ Πp

Y is

injective, then N is infinite.

(vi) If moreover, dim(Y ) > dim(S) and Y is a hyperbolic polycurve over k satis-

fying condition (∗∗)p, then there exists a sequence of normal closed subgroups

of N ,

{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hdim(Y )−dim(S)−1 ⊂ Hdim(Y )−dim(S) = N,

such that, for each integer i such that 1 ≤ i ≤ dim(Y ) − dim(S), the closed

subgroup Hi is topologically finitely generated and the quotient Hi/Hi−1 is

infinite.

(vii) If, moreover, n = 1, k is sub-p-adic, X/S satisfies condition (∗∗)p and the

image of N → ∆
(p)
X/S of (iv) is nontrivial, then φ arises from a morphism

Y → X over S.

Proof. (Cf. [10, Lems. 3.4, 3.5].) Assertion (i) follows from Lemma 2.9. Assertion

(ii) follows from assertion (i) and the fact that k is of characteristic zero. Next,

we verify assertion (iii). Let η → UZ be a generic geometric point of UZ . Write

Yη := Y ×Z η and (UY )η := UY ×UZ η. Then it follows from Lemma 2.10, together

with the right exactness of the operation of taking the maximal pro-p quotient,

that we obtain a surjection Π(UY )η → ∆
(p)
UY /UZ

. Thus, N is the image of the

composite Π(UY )η � ∆
(p)
UY /UZ

↪→ Πp
UY
→ Πp

Y , which coincides with the composite

Π(UY )η → ΠYη
∼→ ∆Yη/η → ∆

(p)
Yη/η

↪→ Πp
Yη
→ Πp

Y . On the other hand, it follows
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from Lemma 2.2 that the homomorphism Π(UY )η → ΠYη is surjective. Moreover, it

follows from the surjectivity of ΠYη � Πη, together with the right exactness of the

operation of taking the maximal pro-p quotient, that ∆Yη/η → ∆
(p)
Yη/η

is surjective.

Thus, N is the image of the composite ∆
(p)
Yη/η

↪→ Πp
Yη
→ Πp

Y . This completes the

proof of assertion (iii). Assertion (iv) follows from assertion (iii), together with the

fact that the composite Yη ↪→ Y → S factors through η → S. Next, we verify

assertion (v). It follows from our choice of (UY , UZ) that the geometric fiber F

of UY → UZ at a k-valued geometric point of UZ is a smooth variety over k of

dimension ≥ dim(Y )−dim(S) > 0. In particular, the natural morphism F → Y ×k
k over k is nonconstant. Thus, since Y is of p-LFG-type, the image of Πp

F → Πp

Y×kk
,

hence also that of Πp
F → Πp

Y , is infinite. On the other hand, it follows from our

choice of F that Πp
F → Πp

Y factors through the composite ∆
(p)
UY /UZ

↪→ Πp
UY
→ Πp

Y .

Thus, we conclude that N is infinite. This completes the proof of assertion (v).

Next, we verify assertion (vi). The morphism Yη = Y ×Z η
pr1→ Y factors through a

natural closed immersion Yη ↪→ Y ×kη. Then, since Yη is a normal variety over η of

dimension ≥ dim(Y )−dim(S) and, moreover, Y ×kη is a hyperbolic polycurve over

η satisfying condition (∗)p (cf. Proposition 3.16(ii)), it follows from Lemma 3.38

that the image of Πp
Yη
→ Πp

Y×kη admits a sequence of closed subgroups as in the

statement of assertion (vi). On the other hand, any homomorphism Πp
Y×kη →

Πp
Y induced by Y ×k η → Y determines an isomorphism Πp

Y×kη
∼→ ∆p

Y/k (cf.

Lemma 2.5, Proposition 3.16(ii)). Thus, the image of Πp
Yη
→ Πp

Y×kη is isomorphic

to that of Πp
Yη
→ Πp

Y , which coincides with N (cf. assertion (iii)). This completes

the proof of assertion (vi). Finally, we verify assertion (vii). Note that since X/S

satisfies condition (∗∗)p, we have ∆
(p)
X/S = ∆p

X/S . It follows from assertion (iii)

that the image of ∆
(p)
Yη/η

⊂ Πp
Yη

by the composite Πp
Yη
→ Πp

Y

φ→ Πp
X coincides with

the image of N → ∆p
X/S , which is assumed to be nontrivial. On the other hand,

it follows from Lemma 2.2 that ΠYη → ΠY , hence also Πp
Yη
→ Πp

Y , is surjective.

Thus, since ∆
(p)
Yη/η

⊂ Πp
Yη

is a normal subgroup of Πp
Yη

, in light of the openness

of φ, it follows that Im(Πp
Yη
→ Πp

X) ∩ ∆p
X/S is an open subgroup of ∆p

X/S and,

moreover, Im(∆
(p)
Yη/η

→ ∆p
X/S) is a normal subgroup of Im(Πp

Yη
→ Πp

X)∩∆p
X/S . On

the other hand, it follows from Lemmas 2.5 and 2.7 that ∆Yη/η, hence also ∆
(p)
Yη/η

,

is topologically finitely generated. Thus, we conclude that Im(∆
(p)
Yη/η

→ ∆p
X/S)

is an open subgroup of ∆p
X/S (cf. Proposition 3.16(iv)). Write Xη := X ×S η.

Let us fix an isomorphism Πp
Xη

∼→ Πp
X ×ΠpS

Πp
η (cf. Proposition 3.16(ii)) over

Πp
η arising from morphisms Xη

pr1→ X, Xη
pr2→ η over S and a homomorphism

Πp
Yη
→ Πp

Y ×ΠpZ
Πp
η over Πp

η arising from morphisms Yη
pr1→ Y , Yη

pr2→ η over Z.
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Then φ determines a homomorphism

φη : Πp
Yη
→ Πp

Y ×ΠpZ
Πp
η → Πp

X ×ΠpS
Πp
η
∼← Πp

Xη

over Πp
η. On the other hand, we have ∆

(p)
Xη/η

= ∆p
Xη/η

∼→ ∆p
X/S (cf. Proposi-

tion 3.16(ii)). Thus, it follows from the openness of ∆
(p)
Yη/η

→ ∆p
X/S , together with

the commutative diagram of profinite groups

1 // ∆
(p)
Yη/η

//

��

Πp
Yη

//

φη

��

Πp
η

// 1

1 // ∆
(p)
Xη/η

// Πp
Xη

// Πp
η

// 1,

that the image of φη is a closed subgroup of Πp
Xη

of finite index, hence open. Thus,

since Xη is a hyperbolic curve over η satisfying condition (∗∗)p and, moreover, η is

the spectrum of a sub-p-adic field, it follows from Theorem 4.4 that φη arises from a

morphism Yη → Xη over η. Write ξ → Yη for the generic point of Yη = Y ×Zη ⊂ Y .

Let us consider Πp
ξ → Πp

X induced by the morphism ξ → Yη → Xη → X over S.

Then we obtain a commutative diagram of profinite groups

Πp
ξ

// Πp
Y ×ΠpZ

Πp
η

//

��

Πp
X ×ΠpS

Πp
η

��

Πp
Y φ

// Πp
X .

Thus, Πp
ξ → Πp

X coincides with the composite of φ and Πp
ξ → Πp

Y arising from ξ →
Y , which implies that φ arises from a morphism Y → X over S (cf. Lemma 3.34).

This completes the proof of assertion (vii).

Definition 4.6. Let p be a prime number, X, Y normal varieties over k and

φ : Πp
Y → Πp

X a homomorphism over Gpk.

(i) We shall say that φ is nondegenerate if φ is open and, moreover, for any open

subscheme U ⊂ Y of Y , any normal variety Z over k such that dim(Z) <

dim(X) and any smooth, geometrically connected, surjective morphism U →
Z over k, the composite Πp

U → Πp
Y

φ→ Πp
X does not factor through Πp

U → Πp
Z .

(ii) Suppose that X is a hyperbolic polycurve of relative dimension n over k.

Then we shall say that the homomorphism φ is poly-nondegenerate if there
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exists a sequence of parametrizing morphisms

X = Xn → Xn−1 → · · · → X1 → Spec k = X0

such that X/k satisfies condition (∗∗)p with respect to this sequence and that

for each integer i such that 0 ≤ i ≤ n, the composite Πp
Y → Πp

X � Πp
Xi

is

nondegenerate.

Theorem 4.7. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

polycurve over k satisfying condition (∗∗)p and Y a normal variety over k. Write

Homdom
k (Y,X) ⊂ Homk(Y,X) for the subset of dominant morphisms from Y

to X over k and HomPND
Gpk

(Πp
Y ,Π

p
X) ⊂ HomGpk

(Πp
Y ,Π

p
X) for the subset of poly-

nondegenerate homomorphisms from Πp
Y to Πp

X over Gpk. Then the natural map

Homdom
k (Y,X)→ HomGpk

(Πp
Y ,Π

p
X)/ Inn(∆p

X/k)

determines a bijection

Homdom
k (Y,X)

1:1→ HomPND
Gpk

(Πp
Y ,Π

p
X)/ Inn(∆p

X/k).

Proof. (Cf. [10, Thm. 3.7].) First, I claim that the following assertion holds:

Claim A: Any homomorphism φf : Πp
Y → Πp

X over Gpk that arises from a

dominant morphism f : Y → X over k is poly-nondegenerate.

Indeed, suppose that there exist an integer i, an open subscheme U ⊂ Y of Y , a

normal variety Z over k, a smooth, geometrically connected, surjective morphism

U → Z over k and a sequence of parametrizing morphisms

X = Xn → Xn−1 → · · · → X1 → Spec k = X0

such that 0 ≤ i ≤ n, X/k satisfies condition (∗∗)p with respect to this sequence

and, moreover, the composite Πp
U → Πp

Y

φf→ Πp
X � Πp

Xi
factors through Πp

U → Πp
Z .

Then, by applying Corollary 3.33, where we take the data “(k, k′, S, Y, Z,X, f)”

to be (k, k,Spec k, Z, U,Xi, U ↪→ Y
f→ X → Xi), we conclude that the composite

U ↪→ Y
f→ X → Xi factors through U → Z. In particular, since f is dominant, it

holds that dim(Z) ≥ dim(Xi). This completes the proof of Claim A.

It follows from Claim A that we have a natural map

Homdom
k (Y,X)→ HomPND

Gpk
(Πp

Y ,Π
p
X)/ Inn(∆p

X/k).

Moreover, it follows from Corollary 4.3(i) that this natural map is injective. Thus,

to verify Theorem 4.7, it suffices to verify the surjectivity of the above map. Let

φ ∈ HomPND
Gpk

(Πp
Y ,Π

p
X) be a poly-nondegenerate homomorphism over Gpk and

X = Xn → Xn−1 → · · · → X1 → Spec k = X0,
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a sequence of parametrizing morphisms as in Definition 4.6(ii). Now I claim that

the following assertion holds:

Claim B: Suppose that there exists a morphism f : Y → X over k from

which φ arises. Then f is dominant.

Indeed, assume that f is not dominant. Write X ′ ⊂ X for the scheme-theoretic

image of f and S := Nor(Y/X ′). Then since the natural morphism Y → S is

dominant and generically geometrically irreducible (cf. Lemma 2.9) and k is of

characteristic zero, there exist open subschemes UY ⊂ Y , US ⊂ S of Y , S, respec-

tively, such that the image of UY ⊂ Y by the morphism Y → S is contained in

US ⊂ S and, moreover, the resulting morphism UY → US is surjective, smooth and

geometrically connected. On the other hand, since f is not dominant, it follows

that X ′, hence also US , is of dimension < dim(X). However, since Πp
UY
→ Πp

X fac-

tors through Πp
UY
→ Πp

US
and φ is poly-nondegenerate, we obtain a contradiction.

This completes the proof of Claim B.

It follows from the discussion preceding Claim B that, to verify Theorem 4.7,

it suffices to verify that the following assertion holds:

Claim C: For each integer i such that 0 ≤ i < n, if the composite Πp
Y →

Πp
X � Πp

Xi
arises from a dominant morphism Y → Xi over k, then

the composite Πp
Y → Πp

X � Πp
Xi+1

arises from a dominant morphism

Y → Xi+1 over k.

To verify Claim C, let us write Z := Nor(Y/Xi), η → Z for the generic point of Z

and Yη := Y ×Z η. Now I claim that the following assertion holds:

Claim C.1: The image of any homomorphism that belongs to the Πp
Xi+1

-

conjugacy class of homomorphisms N → ∆
(p)
Xi+1/Xi

of Lemma 4.5(iv),

where we take the data “(S, Y,X)” to be (Xi, Y,Xi+1), is nontrivial.

Indeed, assume that the image of N → ∆
(p)
Xi+1/Xi

is trivial. Let UY ⊂ Y , UZ ⊂ Z

be open subschemes of Y , Z, respectively, as in Lemma 4.5(ii). Then it follows from

Lemma 4.5(iii) that the image of ∆
(p)
UY /UZ

⊂ Πp
UY

by the composite Πp
UY

φ→ Πp
X �

Πp
Xi+1

is trivial. Thus, it follows that the composite Πp
UY
→ Πp

Y

φ→ Πp
X � Πp

Xi+1

factors through Πp
UY
→ Πp

UZ
. On the other hand, since dim(UZ) = dim(Z) = i <

i + 1 = dim(Xi+1), and φ is poly-nondegenerate, we obtain a contradiction. This

completes the proof of Claim C.1.

It follows from Claim C.1, together with Lemma 4.5(vii), that the composite

Πp
Y → Πp

X � Πp
Xi+1

arises from a morphism Y → Xi+1 over k. Moreover, it

follows from Claim B that this morphism is dominant. This completes the proof

of Claim C, hence also of Theorem 4.7.
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Remark 4.8. It follows from Theorem 4.7, together with the proof of Claim A in

Theorem 4.7, that a poly-nondegenerate homomorphism satisfies the condition in

Definition 4.6(ii) with respect to an arbitrary sequence of parametrizing morphisms

of X/S with respect to which X/S satisfies condition (∗∗)p.

Theorem 4.9. Let p be a prime number, k a sub-p-adic field, Y , S normal vari-

eties over k, X a hyperbolic curve over S satisfying condition (∗∗)p and φ : Πp
Y →

Πp
X a homomorphism over Gpk. Suppose that the following conditions are satisfied:

(1) The composite Πp
Y

φ→ Πp
X → Πp

S arises from a morphism Y → S over k.

(2) φ is open and its kernel is finite.

(3) Y is of p-LFG-type and, moreover, Πp

Y×kk
→ Πp

Y is injective.

(4) dim(X) (= dim(S) + 1) ≤ dim(Y ).

Then φ arises from a quasi-finite dominant morphism Y → X over S. In partic-

ular, dim(X) = dim(Y ).

Proof. (Cf. [10, Thm 3.8].) It follows from conditions (3), (4), together with

Lemma 4.5(v), that the closed subgroup N ⊂ Πp
Y defined in Lemma 4.5(iii) is infi-

nite. Thus, it follows from condition (2) that the image of N ⊂ Πp
Y by φ is nontriv-

ial. This implies that φ arises from a morphism Y → X over S (cf. Lemma 4.5(vii)).

Moreover, it follows from conditions (2), (3), together with Lemma 3.27(iii), that

Y → X is quasi-finite, hence dominant (cf. condition (4)). This completes the

proof of Theorem 4.9.

Definition 4.10. Let p be a prime number, n a positive integer and C a condi-

tion on a connected noetherian separated normal scheme S over k, a hyperbolic

polycurve X over S and a sequence of parametrizing morphisms

X = Xm → Xm−1 → · · · → X1 → S = X0

which satisfies the following conditions:

(1) If X/S satisfies condition C and, moreover, m ≥ 2, then X/X1 satisfies condi-

tion C.
(2) If X/S satisfies condition C, then, for any connected noetherian separated

normal scheme T over k and any morphism T → S, X ×S T/T satisfies con-

dition C.
(3) If X/S satisfies condition C, then, for any open subgroup U ⊂ Πp

X of Πp
X , the

hyperbolic polycurve corresponding to U satisfies condition C.

Then we shall say that the assertion (†n)Cp holds if, for any hyperbolic polycurve

X of relative dimension n over k satisfying conditions (∗∗)p and C, Πp
X does not
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admit a sequence of closed subgroups of Πp
X ,

{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hn ⊂ Hn+1 = Πp
X ,

such that, for each integer i such that 0 ≤ i ≤ n, the closed subgroup Hi is

topologically finitely generated and normal in Hi+1 and the quotient Hi+1/Hi is

infinite.

Example 4.11. Suppose that C is one of the following:

• X/S is an arbitrary hyperbolic polycurve.

• X/S is a hyperbolic polycurve such that X → S is proper.

• X/S is a hyperbolic polycurve such that, for each integer i such that 1 ≤ i ≤ m
(where we write m for the relative dimension of X/S), if we write (gi, ri) for

the type of the hyperbolic curve Xi/Xi−1, then ri > 0.

Then C satisfies conditions (1), (2), (3) in Definition 4.10.

Lemma 4.12. For an arbitrary condition C as in Definition 4.10, the assertion

(†1)Cp holds.

Proof. (Cf. [10, Lem. 3.10].) This follows from Proposition 3.16(iv).

Theorem 4.13. Let p be a prime number, n a positive integer, k a sub-p-adic

field, C a condition as in Definition 4.10, S a normal variety over k, X a hyperbolic

polycurve of relative dimension n over S satisfying condition (∗∗)p, Y a hyperbolic

polycurve over k satisfying condition (∗∗)p and φ : Πp
Y → Πp

X a homomorphism

over Gpk. Suppose that the following conditions are satisfied:

(1) The composite Πp
Y

φ→ Πp
X → Πp

S arises from a morphism Y → S over k.

(2) φ is an open injection.

(3) dim(X) (= dim(S) + n) ≤ dim(Y ).

(4) If n ≥ 2, then X/X1 satisfies condition C.

(5) For each integer i such that 0 < i < n, the assertion (†i)Cp holds.

Then φ arises from a quasi-finite dominant morphism Y → X over S. In partic-

ular, dim(X) = dim(Y ).

Proof. (Cf. [10, Thm. 3.11].) Fix a surjection Πp
X � Πp

X1
over Gpk arising from the

morphism X → X1 over k. First, I claim that the following assertion holds:

Claim A: If n ≥ 2, then the composite Πp
Y

φ→ Πp
X → Πp

X1
arises from a

morphism Y → X1 over S.
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Indeed, write S′ ⊂ S for the scheme-theoretic image of the morphism Y → S, Z :=

Nor(Y/S′), η → Z for the generic point of Z and Yη := Y ×Z η. Then, by applying

Lemma 4.5(vii), where we take the data “(S, Y,X, φ)” to be (S, Y,X1,Π
p
Y

φ→ Πp
X �

Πp
X1

), it suffices to verify that the image of the closed subgroup N ⊂ Πp
Y defined

in Lemma 4.5(iii) by the homomorphism Πp
Y → Πp

X1
is nontrivial. To verify this,

assume that the image of N ⊂ Πp
Y by Πp

Y → Πp
X1

is trivial, i.e., that the image

of N ⊂ Πp
Y by φ is contained in ∆

(p)
X/X1

= ∆p
X/X1

⊂ Πp
X . Then, since N ⊂ Πp

Y is

normal in Πp
Y and φ is open, it follows that the image φ(N) is normal in the open

subgroup Imφ ⊂ Πp
X of Πp

X . On the other hand, it follows from Lemma 4.5(vi)

that there exists a sequence of normal closed subgroups of N ,

{1} = H0 ⊂ H1 ⊂ · · · ⊂ Hdim(Y )−dim(S) = N,

such that, for each integer i such that 1 ≤ i ≤ dim(Y ) − dim(S), the closed

subgroup Hi is topologically finitely generated, and that the quotient Hi/Hi−1

is infinite. Write U := Imφ ∩ ∆p
X/X1

⊂ ∆p
X/X1

and, for each integer i such that

0 ≤ i ≤ dim(Y ) − dim(S), HU
i := φ(Hi) ⊂ ∆p

X/X1
. Then, since Imφ ⊂ Πp

X is

open in Πp
X , U is an open subgroup of ∆p

X/X1
. Moreover, since φ is injective, the

following hold:

• HU
dim(Y )−dim(S) is a normal closed subgroup of U =: HU

dim(Y )−dim(S)+1.

• For each integer i such that 1 ≤ i ≤ dim(Y )−dim(S) + 1, HU
i is topologically

finitely generated.

• For each integer i such that 1 ≤ i ≤ dim(Y ) − dim(S), HU
i is normal in

HU
dim(Y )−dim(S) and, moreover, the quotient HU

i /H
U
i−1 is infinite.

Now suppose that HU
dim(Y )−dim(S)+1/H

U
dim(Y )−dim(S) is finite. Since HU

dim(Y )−dim(S)

is an open subgroup of ∆p
X/X1

, then it follows from Proposition 3.16(ii) and

Lemma 3.22(ii), together with conditions (2) and (3) in Definition 4.10, that

HU
dim(Y )−dim(S) may be regarded as the maximal pro-p quotient of the funda-

mental group of a hyperbolic polycurve of dimension n − 1 over k satisfying

conditions (∗∗)p and C. Thus, since we have assumed that the assertion (†n−1)Cp
holds, for each integer i such that 1 ≤ i ≤ n, by taking the “Hi” in Defini-

tion 4.10 to be HU
dim(Y )−dim(S)−n+i, we obtain a contradiction. Next, suppose that

HU
dim(Y )−dim(S)+1/H

U
dim(Y )−dim(S) is infinite. Then, for each integer i such that

1 ≤ i ≤ n, by taking the “Hi” in Definition 4.10 to be HU
dim(Y )−dim(S)−n+1+i, we

obtain a contradiction. This completes the proof of Claim A.

By applying Claim A and using condition (1) in Definition 4.10 inductively,

to verify Theorem 4.13, we may assume without loss of generality that X is a
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hyperbolic curve over S. Then it follows from Proposition 3.28 and Theorem 4.9

that φ arises from a quasi-finite dominant morphism Y → X over S.

Corollary 4.14. Let p be a prime number, k a sub-p-adic field, S a normal variety

over k, X a hyperbolic polycurve of relative dimension 2 over S satisfying condition

(∗∗)p, Y a hyperbolic polycurve over k satisfying condition (∗∗)p and φ : Πp
Y → Πp

X

a homomorphism over Gpk. Suppose that the following conditions are satisfied:

(1) The composite Πp
Y

φ→ Πp
X → Πp

S arises from a morphism Y → S over k.

(2) φ is an open injection.

(3) dim(X) (= dim(S) + 2) ≤ dim(Y ).

Then φ arises from a quasi-finite dominant morphism Y → X over S. In partic-

ular, dim(X) = dim(Y ).

Proof. (Cf. [10, Cor. 3.12].) This follows from Theorem 4.13, together with Lem-

ma 4.12.

Lemma 4.15 ([10, Lem. 3.13]). Let G1, G2 be profinite groups, H1 ⊂ G1, H2 ⊂
G2 closed subgroups of G1, G2, respectively, and φ : G1 → G2 a homomorphism.

Suppose that φ(H1) ⊂ H2. Then the homomorphism H1 → H2 induced by φ is

surjective if and only if the following condition is satisfied: for any open subgroup

U ⊂ G2 of G2 and any normal open subgroup N ⊂ U of U , if the composite

H2 ∩U ↪→ U � U/N is surjective, then the composite H1 ∩ φ−1(U) ↪→ φ−1(U)
φ→

U � U/N is surjective.

Theorem 4.16. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

polycurve of dimension 2 over k satisfying condition (∗∗)p, Y a normal variety over

k and φ : Πp
Y → Πp

X an open homomorphism over Gpk. Suppose that Πp

Y×kk
→ Πp

Y

is injective and, moreover, that the kernel of φ is topologically finitely generated.

Then φ arises from a uniquely determined dominant morphism Y → X over k. In

particular, dim(Y ) ≥ 2.

Proof. (Cf. [10, Thm. 3.14].) First, by replacing X by the connected finite étale

covering of X corresponding to φ(Πp
Y ) ⊂ Πp

X , to verify Theorem 4.16, we may

assume without loss of generality that φ is surjective. (Note that it follows from

Lemma 3.22(ii) that X satisfies condition (∗∗)p even if we replace X as above.)

Then since φ and Πp
X → Πp

X1
are surjective (cf. Proposition 3.16(i)) and their

kernels are topologically finitely generated (cf. Proposition 3.16(iii)), the composite

Πp
Y

φ→ Πp
X � Πp

X1
is surjective and its kernel is topologically finitely generated.

Thus, since X1 is a hyperbolic curve over k satisfying condition (∗∗)p, it follows
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from Theorem 4.4, together with the implication (2)′′ ⇒ (3) of Lemma 3.35, that

Πp
Y → Πp

X1
arises from a uniquely determined morphism Y → X1 over k which is

surjective and generically geometrically connected. Write η → X1 for the generic

point of X1, Yη := Y ×X1
η and Xη := X ×X1

η. (Thus, Yη is a normal variety

over η.) Now I claim that the following assertion holds:

Claim A: Any homomorphism that belongs to the Πp
X -conjugacy class of

homomorphisms N → ∆p
X/X1

of Lemma 4.5(iv), where we take the data

“(S, Y,X)” to be (X1, Y,X), is surjective.

Let us observe that N → ∆p
X/X1

is surjective if and only if ∆Yη/η → ∆p
X/X1

is

surjective (cf. Lemma 4.5(iii)). Thus, it follows from Lemma 4.15 that, to verify

Claim A, it suffices to verify that the following assertion holds:

Claim A.1: Let U ⊂ Πp
X be an open subgroup of Πp

X and V ⊂ U a

normal open subgroup of U . Write X ′ → X for the connected finite

étale covering of X corresponding to U ⊂ Πp
X , X ′′ → X ′ for the con-

nected finite étale Galois covering of X ′ corresponding to V ⊂ U = Πp
X′ ,

Y ′ → Y for the connected finite étale covering of Y corresponding to

φ−1(U) ⊂ Πp
Y , Y ′′ → Y ′ for the connected finite étale Galois cover-

ing of Y ′ corresponding to φ−1(V ) ⊂ φ−1(U) = Πp
Y ′ , Y

′
η := Y ′ ×X1 η

(= Y ′ ×Y Yη) and Y ′′η := Y ′′ ×X1
η (= Y ′′ ×Y Yη) (note that it follows

from Lemma 2.2 that Yη → Y induces an outer surjection ΠYη → ΠY ,

which implies that Y ′η and Y ′′η are connected). Suppose that the composite

∆p
X/X1

∩ Πp
X′ ↪→Πp

X′�Πp
X′/Π

p
X′′=U/V is surjective. Then the composite

∆Yη/η∩ΠY ′η ↪→ΠY ′η�ΠY ′η
/ΠY ′′η

is surjective.

Indeed, it follows from Proposition 3.5 and Lemma 3.22(ii) that the sequence

of schemes X ′ → X ′1 := Nor(X ′/X1) → X ′0 := Nor(X ′/ Spec k) determines a

structure of hyperbolic polycurve of dimension 2 on X ′ which satisfies condition

(∗∗)p and, moreover, the natural morphisms X ′1 → X1, η′ → η, where we write

η′ → X ′1 for the generic point of X ′1, are connected finite étale coverings. In

particular, it follows from Lemma 3.9(ii) that the natural inclusions Πp
X′ ↪→ Πp

X ,

ΠY ′η
↪→ ΠYη determine equalities

∆p
X/X1

∩Πp
X′ = ∆p

X′/X′1
, ∆Yη/η ∩ΠY ′η

= ∆Y ′η/η
′ .

Thus, to verify Claim A.1, by replacing X by X ′, it suffices to verify that for any

covering X ′′ → X corresponding to a normal open subgroup of Πp
X , if ∆p

X/X1
→

Πp
X/Π

p
X′′ is surjective, then ∆Yη/η → ΠYη/ΠY ′′η

is surjective. Moreover, since ΠX′′

is the inverse image of Πp
X′′ ⊂ Πp

X by the surjection ΠX � Πp
X , it follows that

the natural homomorphism ΠX/ΠX′′ → Πp
X/Π

p
X′′ is an isomorphism. Thus, to
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verify Claim A.1, it suffices to verify that if ∆X/X1
→ ΠX/ΠX′′ is surjective, then

∆Yη/η → ΠYη/ΠY ′′η
is surjective. Let η → X1 be a generic geometric point of X1.

Then it follows from the natural isomorphism ΠX×X1
η
∼→ ∆X/X1

(resp. ΠYη×ηη =

ΠY×X1
η
∼→ ∆Yη/η) that ΠX×X1

η → ΠX/ΠX′′ (resp. ΠYη×X1
η → ΠYη/ΠY ′′η

) is

surjective if and only if X ′′×X (X ×X1
η) = X ′′×X1

η (resp. Y ′′η ×Yη (Y ×X1
η) =

Y ′′η ×X1 η) is connected. Thus, we conclude that to verify Claim A.1, it suffices to

verify that if X ′′ ×X1
η is connected, then Y ′′η ×η η is connected. To verify this,

assume that X ′′ ×X1
η is connected, i.e., X ′′ → X1 is generically geometrically

connected. Then, since the composite X ′′ → X → X1 is smooth and surjective,

it follows from the implication (1) ⇒ (2)′′ of Lemma 3.35 that the composite

Πp
X′′ ↪→ Πp

X � Πp
X1

is surjective and its kernel is topologically finitely generated.

On the other hand, we have assumed that φ is surjective and kerφ is topologically

finitely generated. Thus, it holds that the composite Πp
Y ′′ � Πp

X′′ ↪→ Πp
X � Πp

X1
is

surjective and its kernel is topologically finitely generated. In particular, it follows

from the implication (2)′′ ⇒ (3) of Lemma 3.35 that the morphism Y ′′ → X1 is

generically geometrically connected, which implies that Y ′′ ×X1
η is connected.

This completes the proof of Claim A.1, hence also of Claim A.

It follows from Claim A, together with Proposition 3.16(iii) and Lemma

4.5(vii), that φ arises from a morphism Y → X over k. Moreover, it follows from

Corollary 4.3(i) that Y → X is unique. On the other hand, it follows from Claim A,

together with Lemma 4.5(iii), that ΠY×Zη → Πp
X×X1

η (where Z := Nor(Y/X1)

and η → Z is a generic geometric point of Z) is surjective. Thus, since X ×X1 η is

a hyperbolic curve over η, it follows from Proposition 3.16(iii) that the morphism

Y ×Z η → X ×X1
η, hence also Y ×X1

η → X ×X1
η, is dominant. This implies

that Y → X is dominant. This completes the proof of Theorem 4.16.

Theorem 4.17. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

polycurve of dimension 2 over k satisfying condition (∗)p, Y a normal variety over

k and φ : Πp
Y/k → Πp

X/k an open homomorphism over Gk. Suppose that the kernel

of φ is topologically finitely generated. Then φ arises from a uniquely determined

dominant morphism Y → X over k. In particular, dim(Y ) ≥ 2.

Proof. There exists a finite Galois extension k1 of k such that X×k k1/k1 satisfies

condition (∗∗)p (cf. Proposition 3.21). We can choose a finite extension k2 of k1

such that Y ×k k2 has a k2-rational point. Then the section of ΠY×kk2 � Gk2
induced by a k2-rational point determines a homomorphism Gk2 → Aut(Πp

Y×kk
).

On the other hand, it follows from Lemma 2.7 that ΠY×kk, hence also Πp

Y×kk
, is

topologically finitely generated. Thus, Aut(Πp

Y×kk
) has an open pro-p subgroup U

(cf. Lemma 3.19). Let us choose a finite Galois extension k′ of k such that Gk′ ⊂ Gk
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is contained in the inverse image of U ⊂ Aut(Πp

Y×kk
) by Gk2 → Aut(Πp

Y×kk
).

Then k′ is a finite extension of k2. Moreover, since the image of the composite

Gk′ ↪→ Gk2 → Aut(Πp

Y×kk
) is pro-p, Gk′ ↪→ Gk2 → Aut(Πp

Y×kk
) factors through

the surjection Gk′ � Gpk′ . Thus we obtain a homomorphism Gpk′ → Aut(Πp

Y×kk
),

which determines a semidirect product Πp

Y×kk
o Gpk′ . Then by construction, we

obtain a surjection ΠY×kk o Gk′ � Πp

Y×kk
o Gpk′ . Now ΠY×kk o Gk′ ∼= ΠY×kk′

(cf. Lemma 2.5) and, moreover, the image of ΠY×kk ⊂ ΠY×kk′ by ΠY×kk′ �
Πp

Y×kk
o Gpk′ is Πp

Y×kk
. Since Πp

Y×kk
o Gpk′ is pro-p, the composite ΠY×kk ⊂

ΠY×kk′ � Πp

Y×kk
oGpk′ determines a sequence Πp

Y×kk
→ Πp

Y×kk′ � Πp

Y×kk
oGpk′ .

In particular, since Πp

Y×kk
→ Πp

Y×kk
oGpk′ is injective, we conclude that Πp

Y×kk
→

Πp
Y×kk′ is injective.

Now Πp
X×kk′/k′ , Πp

Y×kk′/k′ are the inverse images of the normal open sub-

group Gk′ ⊂ Gk by the surjections Πp
X/k � Gk, Πp

Y/k � Gk, respectively. Thus,

if we write φ′ : Πp
Y×kk′/k′ → Πp

X×kk′/k′ for the open homomorphism over Gk′

determined by φ, then kerφ′ = kerφ. Write φ̃′ : Πp
Y×kk′ → Πp

X×kk′ for the open

homomorphism over Gpk′ determined by φ′. Then since Πp

Y×kk
→ Πp

Y×kk′ is in-

jective, we have kerφ′ = ker φ̃′. On the other hand, since X ×k k1/k1 satisfies

condition (∗∗)p, it follows from Proposition 3.16(ii) that X ×k k′/k′ satisfies con-

dition (∗∗)p. Thus, φ̃′ arises from a dominant morphism Y ×k k′ → X ×k k′ over

k′ (cf. Theorem 4.16). Since the image of φ̃′ by the map of Lemma 3.23(ii) is φ′,

this implies that φ′ arises from the above dominant morphism Y ×k k′ → X ×k k′,
which is compatible with the natural actions of Gal(k′/k) (cf. Proposition 4.2(i)).

Thus, by descending the morphism, we obtain a dominant morphism Y → X

over k. Since ∆p
X/k is slim (cf. Proposition 3.16(iii)), it follows from Lemma 2.20

that Πp
Y/k → Πp

X/k induced by the morphism Y → X belongs to the same ∆p
X/k-

conjugacy class determined by φ, which implies that φ arises from a dominant

morphism Y → X. Moreover, it follows from Proposition 4.2(i) that Y → X is

unique. This completes the proof of Theorem 4.17.

Corollary 4.18. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

polycurve of dimension 3 over k satisfying condition (∗∗)p, Y a normal variety

over k and φ : Πp
Y → Πp

X a homomorphism over Gpk. Suppose that the following

conditions are satisfied:

(1) φ is open and its kernel is finite.

(2) Y is of p-LFG-type and, moreover, Πp

Y×kk
→ Πp

Y is injective.

(3) 3 ≤ dim(Y ).

Then φ arises from a uniquely determined quasi-finite dominant morphism

Y → X over k. In particular, dim(Y ) = 3.
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Proof. (Cf. [10, Cor. 3.15].) It follows from condition (1), together with Propo-

sition 3.16(iii), that the kernel of the composite Πp
Y

φ→ Πp
X � Πp

X2
is topolog-

ically finitely generated. Thus, it follows from Theorem 4.16 that the composite

Πp
Y

φ→ Πp
X � Πp

X2
arises from a dominant morphism Y → X2 over k. In particular,

it follows from Theorem 4.9 that φ arises from a quasi-finite dominant morphism

Y → X over k. Moreover, it follows from Corollary 4.3(i) that Y → X is unique.

This completes the proof of Corollary 4.18.

Corollary 4.19. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

polycurve of dimension 3 over k satisfying condition (∗)p, Y a normal variety over

k and φ : Πp
Y/k → Πp

X/k a homomorphism over Gk. Suppose that the following

conditions are satisfied:

(1) φ is open and its kernel is finite.

(2) Y is of p-LFG-type.

(3) 3 ≤ dim(Y ).

Then φ arises from a uniquely determined quasi-finite dominant morphism Y → X

over k. In particular, dim(Y ) = 3.

Proof. This follows from Corollary 4.18, together with an argument similar to the

argument used in the proof of Theorem 4.17.

Corollary 4.20. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

polycurve of dimension 4 over k satisfying condition (∗∗)p, Y a hyperbolic poly-

curve over k satisfying condition (∗∗)p and φ : Πp
Y → Πp

X a homomorphism over

Gpk. Suppose that the following conditions are satisfied:

(1) φ is an open injection (resp. isomorphism).

(2) 4 ≤ dim(Y ).

Then φ arises from a uniquely determined finite étale covering (resp. isomorphism)

Y → X over k. In particular, dim(Y ) = 4.

Proof. (Cf. [10, Cor. 3.16].) First, by replacing X by the connected finite étale

covering of X corresponding to φ(Πp
Y ) ⊂ Πp

X (cf. Proposition 3.5, Lemma 3.22(ii)),

to verify Corollary 4.20, we may assume without loss of generality that φ is an

isomorphism. Then it follows from Proposition 3.16(iii) that the kernel of the

composite Πp
Y

φ→ Πp
X � Πp

X2
is topologically finitely generated. Thus, it follows

from Theorem 4.16 that the composite Πp
Y

φ→ Πp
X � Πp

X2
arises from a dominant

morphism Y → X2 over k. In particular, it follows from Corollary 4.14 that φ

arises from a quasi-finite dominant morphism Y → X over k, which implies that
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4 = dim(X) = dim(Y ). By applying an argument similar to the above argument to

φ−1, we obtain a quasi-finite dominant morphism X → Y over k. Then it follows

from Corollary 4.3(i) that the two morphisms Y → X and X → Y are inverse to

each other. In particular, this morphism Y → X is an isomorphism. Moreover, it

follows from Corollary 4.3(i) that Y → X is unique. This completes the proof of

Corollary 4.20.

Corollary 4.21. Let p be a prime number, k a sub-p-adic field, X a hyperbolic

polycurve of dimension 4 over k satisfying condition (∗)p, Y a hyperbolic polycurve

over k satisfying condition (∗)p and φ : Πp
Y/k → Πp

X/k a homomorphism over Gk.

Suppose that the following conditions are satisfied:

(1) φ is an open injection (resp. isomorphism).

(2) 4 ≤ dim(Y ).

Then φ arises from a uniquely determined finite étale covering (resp. isomorphism)

Y → X over k. In particular, dim(Y ) = 4.

Proof. This follows from Corollary 4.20, together with an argument similar to the

argument used in the proof of Theorem 4.17.

Corollary 4.22. Let p be a prime number, nX , nY positive integers, k a sub-p-

adic field and X, Y hyperbolic polycurves of dimension nX , nY over k satisfying

condition (∗)p, respectively. Suppose that either nX ≤ 4 or nY ≤ 4. Then the

natural maps

Isomk(Y,X)→ IsomGk(ΠY ,ΠX)/ Inn(∆X/k)→ IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k)

are bijective.

Proof. The bijectivity of the map

Isomk(Y,X)→ IsomGk(ΠY ,ΠX)/ Inn(∆X/k)

is proved in [10, Cor. 3.18], and the injectivity of the map

Isomk(Y,X)→ IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k)

follows from Proposition 4.2(i). Thus, it remains to verify the surjectivity of the

latter map. Let φ : Πp
Y/k

∼→ Πp
X/k be an isomorphism over Gk. Then, by replacing

(X,Y, φ) by (Y,X, φ−1) if necessary, we may assume without loss of generality

that nX ≤ nY . In particular, nX ≤ 4. Thus, it follows from Proposition 3.28,

Theorems 4.4, 4.17 and Corollaries 4.19, 4.21 that φ arises from a uniquely deter-

mined quasi-finite dominant morphism Y → X over k. In particular, we obtain
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that nX = nY ≤ 4. Thus, by applying an argument similar to the above argu-

ment to φ−1, we obtain a quasi-finite dominant morphism X → Y over k. Then

it follows from Corollary 4.3(i) that the two morphisms Y → X and X → Y are

inverse to each other. Thus, Y → X is an isomorphism. This completes the proof

of Corollary 4.22.

Remark 4.23. It seems that the assertion (†n)Cp holds for every positive integer

n. However, it is not known whether there exists an integer n > 1 such that the

assertion (†n)Cp can be proven (with a sufficiently general condition C). If one proves

that the assertion (†n)Cp holds for every positive integer n, then, by applying an

argument similar to the argument applied in the proof of Corollary 4.22, except

that instead of applying Theorems 4.4, 4.17 and Corollaries 4.19, 4.21, one applies

Theorem 4.13, we can prove the assertion obtained by replacing the assumption

“either nX ≤ 4 or nY ≤ 4” of Corollary 4.22 by “X, Y satisfy condition C”.

Proposition 4.24 ([10, Prop. 3.19]). Let kX , kY be finitely generated extension

fields of Q. Then the following hold:

(i) Let H ⊂ GkX be a closed subgroup of GkX . Suppose that H is topologically

finitely generated and normal in an open subgroup of GkX . Then H is trivial.

(ii) The natural map Isom(kX/kX , kY /kY )→ Isom(GkY , GkX ) is bijective.

Corollary 4.25. Let p be a prime number, kX , kY fields of characteristic zero,

n a positive integer, X a hyperbolic polycurve of dimension n over kX satisfying

condition (∗)p, Y a normal variety over kY and φ : Πp
Y/kY

→ Πp
X/kX

an open

homomorphism. Suppose that one of the following conditions (1), (2), (3), (4) is

satisfied:

(1) n = 1.

(2) The following conditions are satisfied:

(2-i) n = 2.

(2-ii) The kernel of φ is topologically finitely generated.

(3) The following conditions are satisfied:

(3-i) n = 3.

(3-ii) The kernel of φ is finite.

(3-iii) Y is of p-LFG-type.

(3-iv) 3 ≤ dim(Y ).

(4) The following conditions are satisfied:
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(4-i) n = 4.

(4-ii) φ is injective.

(4-iii) Y is a hyperbolic polycurve over kY satisfying condition (∗)p.

(4-iv) 4 ≤ dim(Y ).

Then the following hold:

(i) Suppose that both kX , kY are finitely generated over Q. Then the open ho-

momorphism φ lies over an open homomorphism GkY → GkX .

(ii) In situation (i), suppose that the homomorphism GkY → GkX obtained in (i)

is injective. Then φ arises from a dominant morphism Y → X.

(iii) Suppose that both kX , kY are sub-p-adic and, moreover, that the open ho-

momorphism φ lies over an open homomorphism GkY → GkX that arises

from a homomorphism kX ↪→ kY of fields. Then φ arises from a dominant

morphism Y → X.

Proof. (Cf. [10, Cor. 3.20].) First, we verify assertion (i). It follows from Lemma 2.7

and Proposition 3.7(i) that ΠYkY

∼→ ∆Y/kY , hence also the image of the compos-

ite ∆Y/kY � ∆p
Y/kY

↪→ Πp
Y/kY

φ→ Πp
X/kX

→ GkX , is topologically finitely gen-

erated. Moreover, the image of the composite ∆Y/kY � ∆p
Y/kY

↪→ Πp
Y/kY

φ→

Πp
X/kX

→ GkX is normal in the image of Πp
Y/kY

φ→ Πp
X/kX

� GkX , which

is an open subgroup of GkX . Thus it follows from Proposition 4.24(i) that the

image of the composite ∆Y/kY � ∆p
Y/kY

→ GkX is trivial. In particular, the

composite Πp
Y/kY

φ→ Πp
X/kX

� GkX factors through Πp
Y/kY

� GkY . Then φ

lies over a resulting homomorphism GkY → GkX . Moreover, since φ is open

and the outer homomorphism Πp
X/kX

� GkX is surjective, we conclude that

GkY → GkX is open. This completes the proof of assertion (i). Next, we ver-

ify assertion (ii). Let us observe that, by replacing X by the connected finite

étale covering of X corresponding to φ(Πp
Y/kY

) ⊂ Πp
X/kX

(cf. Proposition 3.5,

Lemma 3.22(i)), to verify assertion (ii), we may assume without loss of general-

ity that φ, hence also the injection GkY → GkX , is surjective. Then it follows

from Proposition 4.24(ii) that the isomorphism GkY
∼→ GkX arises from an iso-

morphism kX
∼→ kY that determines an isomorphism kX

∼→ kY . In particular,

by replacing (X ×kX kY , kY , kY ) by (X, kX , kX), we may assume without loss of

generality that (kX , kX) = (kY , kY ), and that the homomorphism GkY → GkX
of (i) is the identity automorphism of GkX . Then it follows from Theorems 4.4,

4.17 and Corollaries 4.19, 4.21 that φ arises from a dominant morphism Y → X.

This completes the proof of assertion (ii). Finally, we verify assertion (iii). Since
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Πp
X×k

X
kY /kY

∼→ Πp
X/kX

×Gk
X
GkY (cf. Proposition 3.16(ii)), it follows that φ de-

termines a homomorphism Πp
Y/kY

→ Πp
X×k

X
kY /kY

, which arises from a dominant

morphism Y → X ×kX kY (cf. Theorems 4.4, 4.17, Corollaries 4.19, 4.21). Thus,

φ arises from the composite Y → X ×kX kY
pr1→ X. This completes the proof of

assertion (iii).

§5. Finiteness of the set of outer isomorphisms between geometrically

pro-p étale fundamental groups of hyperbolic polycurves

In the present Section 5, we discuss the finiteness of a certain set of outer isomor-

phisms between the pro-p étale fundamental groups of hyperbolic polycurves. Let

k be a field of characteristic zero, k an algebraic closure of k and Gk := Gal(k/k).

Lemma 5.1 ([10, Lem. 4.1]). Let G be a profinite group, H ⊂ G an open subgroup

of G, A a group and A → Aut(G) a homomorphism. Write AH ⊂ A for the

subgroup of A consisting of a ∈ A such that the automorphism of G obtained by

forming the image of a in Aut(G) preserves H ⊂ G. Suppose that G is topologically

finitely generated. Then AH is of finite index in A.

Lemma 5.2. Let p be a prime number, n a positive integer, S a connected noethe-

rian separated normal scheme over k and X a hyperbolic polycurve of relative di-

mension n over S satisfying condition (∗)p. Then there exists an open subgroup

H ⊂ ∆p
X/S of ∆p

X/S such that, if we write Hi := H ∩ ∆p
X/Xi

for each integer i

such that 0 ≤ i ≤ n, then, for each integer i such that 0 < i < n, it holds that

rankZp((Hi/Hi+1)ab) < rankZp((Hi−1/Hi)
ab).

Proof. (Cf. [10, Lem. 4.2(i)].) We verify Lemma 5.2 by induction on n. If n = 1,

then Lemma 5.2 is immediate. Now suppose that n ≥ 2, and that the induction

hypothesis is in force. Then it follows from the induction hypothesis that there

exists an open subgroup U ⊂ ∆p
X/X1

of ∆p
X/X1

such that, if we write Ui :=

U ∩ ∆p
X/Xi

for each integer i such that 1 ≤ i ≤ n, then, for each integer i such

that 1 < i < n, it holds that

rankZp((Ui/Ui+1)ab) < rankZp((Ui−1/Ui)
ab).

Now it follows from Lemma 3.17(i) that there exists an open subgroup V ⊂ ∆p
X/S

of ∆p
X/S such that U = V ∩∆p

X/X1
. Write W for the image of V ⊂ ∆p

X/S by the

surjection ∆p
X/S � ∆p

X1/S
. Then since W is an open subgroup of ∆p

X1/S
, there

exists an open subgroup Q ⊂W of W such that

rankZp(Qab) > rankZp((U1/U2)ab)
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(cf. Proposition 3.16(vi)). Write H for the inverse image of Q ⊂W by the surjec-

tion V � W . Then H is an open subgroup of V , hence also of ∆p
X/S . Moreover,

since U = V ∩ ∆p
X/X1

⊂ H ⊂ V , we have H ∩ ∆p
X/X1

= U . Thus, if we write

Hi := H ∩∆p
X/Xi

for each integer i such that 0 ≤ i ≤ n, then, for each integer i

such that 1 ≤ i ≤ n, it holds that Hi = Ui. Moreover, since H0 = H and H1 = U ,

it follows from the exact sequence 1→ U → H → Q→ 1 that we have an isomor-

phism H0/H1
∼→ Q. In particular, for each integer i such that 1 ≤ i ≤ n − 1, it

holds that

rankZp((Hi/Hi+1)ab) < rankZp((Hi−1/Hi)
ab).

This completes the proof of Lemma 5.2.

Lemma 5.3. Let p be a prime number, n a positive integer and X, Y hyperbolic

polycurves of dimension n over k satisfying condition (∗)p. Then the following

hold:

(i) Let φ : ∆p
Y/k

∼→ ∆p
X/k be an isomorphism from ∆p

Y/k to ∆p
X/k. Suppose

that there exists an open subgroup H ⊂ ∆p
Y/k of ∆p

Y/k such that, if we write

Hi := H∩∆p
Y/Yi

, H ′i := φ(H)∩∆p
X/Xi

for each integer i such that 0 ≤ i ≤ n,

then, for any integers i, j such that 0 ≤ i < j < n, it holds that

rankZp((Hi/Hi+1)ab) > rankZp((H ′j/H
′
j+1)ab),

rankZp((H ′i/H
′
i+1)ab) > rankZp((Hj/Hj+1)ab).

Then, for each integer i such that 0 ≤ i ≤ n, it holds that φ(∆p
Y/Yi

) = ∆p
X/Xi

.

(ii) Let ψ : Πp
Y/k

∼→ Πp
X/k be an isomorphism from Πp

Y/k to Πp
X/k over Gk.

Suppose that k is sub-p-adic, and that for each integer i such that 0 ≤ i ≤ n,

it holds that ψ(∆p
Y/Yi

) = ∆p
X/Xi

(e.g., the case where ψ|∆p
Y/k

satisfies the

condition appearing in the statement of assertion (i)). Then ψ arises from

an isomorphism Y
∼→ X over k.

Proof. (Cf. [10, Lem. 4.2(ii),(iii)].) First, we verify assertion (i) by induction on n.

If n = 1, then assertion (i) is immediate. Now suppose that n ≥ 2 and that the

induction hypothesis is in force. To verify assertion (i), I claim that the following

assertion holds:

Claim A: φ(Hn−1) = H ′n−1.

Indeed, there exists a unique integer m such that 0 ≤ m < n, and the image of

the composite Hn−1 ↪→ H
φ→ φ(H) � φ(H)/H ′m+1 is nontrivial, but the image of

the composite Hn−1 ↪→ H
φ→ φ(H) � φ(H)/H ′m is trivial. Then the composite

Hn−1 ↪→ H
φ→ φ(H) � φ(H)/H ′m+1 determines a nontrivial homomorphism
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Hn−1 → H ′m/H
′
m+1. Now since H

φ→ φ(H) � φ(H)/H ′m+1 is surjective, and

Hn−1 ⊂ H is normal in H, it follows that the image of Hn−1 → H ′m/H
′
m+1 is

normal in H ′m/H
′
m+1. On the other hand, it follows from the commutative diagram

of profinite groups

1 // H ′m+1
//

��

H ′m //

��

H ′m/H
′
m+1

//

��

1

1 // ∆p
X/Xm+1

// ∆p
X/Xm

// ∆p
Xm+1/Xm

// 1

that the image of H ′m/H
′
m+1 ↪→ ∆p

Xm+1/Xm
is open. Thus, H ′m/H

′
m+1 may be

regarded as the maximal pro-p quotient of the fundamental group of a hyperbolic

curve over an algebraically closed field, which implies that H ′m/H
′
m+1 is elastic (cf.

Proposition 3.16(iv)). In particular, since Hn−1 is topologically finitely generated,

the image ofHn−1→H ′m/H
′
m+1 is open, which implies that rankZp((H ′m/H

′
m+1)ab)

≤ rankZp(Hab
n−1). Thus, it follows from our assumption that m = n − 1, i.e.,

φ(Hn−1) ⊂ H ′n−1. Moreover, by applying an argument similar to the above ar-

gument to φ−1, we conclude that φ(Hn−1) = H ′n−1. This completes the proof of

Claim A. Next, I claim that the following assertion holds:

Claim B: φ(∆p
Y/Yn−1

) = ∆p
X/Xn−1

.

Indeed, if we write N for the intersection of all ∆p
Y/k-conjugates of Hn−1, then N

is a normal subgroup of ∆p
Y/k. Moreover, since ∆p

Y/Yn−1
is topologically finitely

generated (cf. Proposition 3.16(iii)) and normal in ∆p
Y/k, and Hn−1 ⊂ ∆p

Y/Yn−1
is

open in ∆p
Y/Yn−1

, N is a finite intersection of open subgroups of ∆p
Y/Yn−1

of the

form gHn−1g
−1 (where g ∈ ∆p

Y/k), hence N is also open. Thus, ∆p
Y/Yn−1

/N ⊂
∆p
Y/k/N is a finite subgroup of ∆p

Y/k/N . In particular, since ∆p
Yn−1/k

is torsion-

free (cf. Proposition 3.16(iii)), ∆p
Y/Yn−1

/N ⊂ ∆p
Y/k/N is the unique maximal

torsion subgroup of ∆p
Y/k/N . On the other hand, it follows from Claim A that

the image of N ⊂ ∆p
Y/k by the isomorphism φ is the intersection of all ∆p

X/k-

conjugates of H ′n−1. Thus, it follows from an argument similar to the above argu-

ment that ∆p
X/Xn−1

/φ(N) ⊂ ∆p
X/k/φ(N) is the unique maximal torsion subgroup

of ∆p
X/k/φ(N). In particular, the image of ∆p

Y/Yn−1
/N ⊂ ∆p

Y/k/N by the isomor-

phism ∆p
Y/k/N

∼→ ∆p
X/k/φ(N) determined by φ is ∆p

X/Xn−1
/φ(N) ⊂ ∆p

X/k/φ(N).

Thus, we conclude that φ(∆p
Y/Yn−1

) = ∆p
X/Xn−1

. This completes the proof of

Claim B.

It follows from Claim B that φ determines an isomorphism φ : ∆p
Yn−1/k

∼→
∆p
Xn−1/k

. Write H for the image of H ⊂ ∆p
Y/k by the surjection ∆p

Y/k � ∆p
Yn−1/k

.
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For each integer i such that 0 ≤ i < n, write, moreover,

Hi := H ∩∆p
Yn−1/Yi

,

H
′
i := φ(H) ∩∆p

Xn−1/Xi
.

Then, since the inverse image of Hi ⊂ ∆p
Yn−1/k

by the surjection ∆p
Y/k � ∆p

Yn−1/k

is Hi∆
p
Y/Yn−1

, for each integer i such that 0 ≤ i < n− 1, it holds that Hi/Hi+1
∼=

Hi/Hi+1. Similarly, for each integer i such that 0 ≤ i < n − 1, it holds that

H ′i/H
′
i+1
∼= H

′
i/H

′
i+1. Thus, it follows from the induction hypothesis that for each

integer i such that 0 ≤ i < n, φ(∆p
Yn−1/Yi

) = ∆p
Xn−1/Xi

. On the other hand, for

each integer i such that 0 ≤ i ≤ n−1, the image of ∆p
Y/Yi

⊂ ∆p
Y/k by the surjection

∆p
Y/k � ∆p

Yn−1/k
is ∆p

Yn−1/Yi
. Thus, since φ(∆p

Yn−1/Yi
) = ∆p

Xn−1/Xi
, the image of

φ(∆p
Y/Yi

) ⊂ ∆p
X/k by the surjection ∆p

X/k � ∆p
Xn−1/k

is ∆p
Xn−1/Xi

. In particular,

φ(∆p
Y/Yi

) is contained in the inverse image of ∆p
Xn−1/Xi

by the surjection ∆p
X/k �

∆p
Xn−1/k

, which coincides with ∆p
X/Xi

. Now, by applying an argument similar to

the above argument to φ−1, we conclude that φ(∆p
Y/Yi

) = ∆p
X/Xi

. This completes

the proof of assertion (i).

Finally, we verify assertion (ii). It follows from Proposition 3.16(i) that, for

each integer i such that 0 ≤ i ≤ n, ψ induces an isomorphism ψi : Πp
Yi/k

∼→ Πp
Xi/k

over Gk. By induction on i, to verify assertion (ii), it suffices to verify that the

following assertion holds:

Claim C: For each integer i such that 0 ≤ i < n, if the isomorphism ψi
arises from an isomorphism fi : Yi

∼→ Xi over k, then ψi+1 arises from an

isomorphism Yi+1
∼→ Xi+1 over k.

Indeed, write η → Yi for the generic point of Yi, (Yi+1)η := Yi+1 ×Yi η, and

(Xi+1)η := Xi+1 ×Xi η (where η → Xi is the composite η → Yi
fi→ Xi). Then it

follows from Proposition 3.16(ii) that

Πp
(Yi+1)η/η

∼→ Πp
Yi+1/Yi

×Πp
Yi/Yi

Πp
Yi×Yiη/η

= Πp
Yi+1/Yi

×ΠYi
Πη.

Moreover, it follows from Remark 3.24(i) that Πp
Yi+1/Yi

∼→ Πp
Yi+1/k

×Πp
Yi/k

ΠYi ,

which implies that Πp
(Yi+1)η/η

∼→ Πp
Yi+1/k

×Πp
Yi/k

Πη. Similarly, it holds that

Πp
(Xi+1)η/η

∼→Πp
Xi+1/k

×Πp
Xi/k

Πη. Thus, ψi+1 determines an isomorphism Πp
(Yi+1)η/η

∼→ Πp
(Xi+1)η/η

over Πη. Now it follows from Theorem 4.4 that the isomorphism

Πp
(Yi+1)η/η

∼→ Πp
(Xi+1)η/η

arises from a dominant morphism (Yi+1)η → (Xi+1)η
over η, which is actually an isomorphism (cf. Lemma 3.37(i)). Write ξ → (Yi+1)η
for the generic point of (Yi+1)η ⊂ Yi+1. Then it follows from the commutative
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diagram of profinite groups

Πξ
//

��

Πp
(Yi+1)η/η

∼ //

��

Πp
(Xi+1)η/η

��

Πp
ξ/k

// Πp
Yi+1/k ψi+1

// Πp
Xi+1/k

,

together with Lemma 3.34, that ψi+1 arises from a morphism Yi+1 → Xi+1 over

k. Moreover, by applying an argument similar to the above argument to ψ−1
i+1, we

conclude that ψ−1
i+1 arises from a morphism Xi+1 → Yi+1 over k. Then it follows

from Proposition 4.2(i) that the two morphisms Yi+1 → Xi+1 and Xi+1 → Yi+1

are inverse to each other. Thus, Yi+1
∼→ Xi+1 is an isomorphism. This completes

the proof of Claim C, hence also of assertion (ii).

Theorem 5.4. Let p be a prime number, n a positive integer, k a sub-p-adic field

and X, Y hyperbolic polycurves of dimension n over k satisfying condition (∗)p.

For each integer i such that 1 ≤ i ≤ n, write (gi, ri) for the type of the hyperbolic

curve Xi/Xi−1, and (g′i, r
′
i) for the type of the hyperbolic curve Yi/Yi−1. Suppose

that, for any integers i, j such that 0 ≤ i < j < n,

2gi + max{ri − 1, 0} > 2g′j + max{r′j − 1, 0},
2g′i + max{r′i − 1, 0} > 2gj + max{rj − 1, 0}.

Then the natural map

Isomk(Y,X)→ IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k)

is bijective, i.e., every isomorphism Πp
Y/k

∼→ Πp
X/k over Gk arises from a uniquely

determined isomorphism Y → X over k.

Proof. (Cf. [10, Thm. 4.3].) The injectivity of the map in question holds from

Proposition 4.2(i). The surjectivity of the map in question follows from Lemma 5.3

(where we take “H” to be ∆p
Y/k), together with Proposition 3.16(v).

Proposition 5.5 ([10, Prop. 4.5]). Let S, Y be integral varieties over k, Y → S

a dominant morphism over k and X a hyperbolic polycurve over S. Then the set

Homdom
S (Y,X) of dominant morphisms from Y to X over S is finite.

Theorem 5.6. Let p be a prime number, k a sub-p-adic field and X, Y hyperbolic

polycurves over k. Suppose that at least one of X/k, Y/k satisfies condition (∗)p.

Then the set
IsomGk(Πp

Y/k,Π
p
X/k)/ Inn(∆p

X/k)

is finite.
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Proof. (Cf. [10, Thm. 4.4].) If IsomGk(Πp
Y/k,Π

p
X/k) = ∅, then Theorem 5.6 is imme-

diate. Thus, to verify Theorem 5.6, we may assume without loss of generality that

IsomGk(Πp
Y/k,Π

p
X/k) 6= ∅. Then any element of IsomGk(Πp

Y/k,Π
p
X/k) determines a

bijection between IsomGk(Πp
Y/k,Π

p
X/k)/ Inn(∆p

X/k) and AutGk(Πp
X/k)/ Inn(∆p

X/k).

Thus, to verify Theorem 5.6, we may assume without loss of generality that

X = Y and X/k satisfies condition (∗)p. Let H ⊂ ∆p
X/k be an open subgroup

of ∆p
X/k that satisfies the condition appearing in the statement of Lemma 5.2.

Then, by applying Lemma 5.1, where we take the data “(G,H,A)” to be (∆p
X/k, H,

AutGk(Πp
X/k)) (note that there exists a natural homomorphism AutGk(Πp

X/k) →
Aut(∆p

X/k)), we conclude that there exists a subgroup A ⊂ AutGk(Πp
X/k) of

AutGk(Πp
X/k) of finite index such that each φ ∈ A preserves H ⊂ ∆p

X/k. Then

it follows from Lemma 5.3(ii) that every element of A arises from an automor-

phism of X over k, i.e., the image of the composite

A ↪→ AutGk(Πp
X/k) � AutGk(Πp

X/k)/ Inn(∆p
X/k)

is contained in the image of the natural injection Autk(X) ↪→ AutGk(Πp
X/k)/

Inn(∆p
X/k) (cf. Proposition 4.2(i)). On the other hand, Autk(X), hence also the

image of the composite

A ↪→ AutGk(Πp
X/k) � AutGk(Πp

X/k)/ Inn(∆p
X/k)

is finite (cf. Proposition 5.5). Thus, it follows from our choice of A that

AutGk(Πp
X/k)/ Inn(∆p

X/k) is finite. This completes the proof of Theorem 5.6.

Corollary 5.7. Let p be a prime number, kX , kY finite extensions of Q and X, Y

hyperbolic polycurves over kX , kY , respectively. Suppose that at least one of X/kX ,

Y/kY satisfies condition (∗)p. Then the set

Isom(Πp
Y/kY

,Πp
X/kX

)/ Inn(Πp
X/kX

)

is finite.

Proof. (Cf. [10, Cor. 4.6].) It follows from an argument similar to the argument

used at the beginning of the proof of Theorem 5.6 that to verify Corollary 5.7, we

may assume without loss of generality that X = Y , and X satisfies condition (∗)p.
Then, for each φ ∈ Aut(Πp

X/kX
), the image of the composite ∆p

X/kX
↪→ Πp

X/kX

φ→
Πp
X/kX

� GkX is a topologically finitely generated normal closed subgroup of GkX ,

hence trivial (cf. Proposition 4.24(i)). Thus, since Πp
X/kX

/∆p
X/kX

∼→ GkX , there
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exists a unique homomorphism GkX → GkX such that

Πp
X/kX

φ //

��

Πp
X/kX

��

GkX
// GkX

is commutative. Moreover, by applying an argument similar to the above argument

to φ−1, we conclude that the homomorphismGkX → GkX is an isomorphism. Thus,

we have a natural exact sequence

1→ AutGk
X

(Πp
X/kX

)→ Aut(Πp
X/kX

)→ Aut(GkX ).

Write N ⊂ Out(Πp
X/kX

) for the image of AutGk
X

(Πp
X/kX

) ⊂ Aut(Πp
X/kX

) by

Aut(Πp
X/kX

) � Out(Πp
X/kX

). Then since Πp
X/kX

→ GkX is surjective, the sequence

1→ N → Out(Πp
X/kX

)→ Out(GkX )

induced by the above exact sequence is exact. Thus, to verify Corollary 5.7, it

suffices to verify that N and Out(GkX ) are finite. Now since AutGk
X

(Πp
X/kX

)/

Inn(∆p
X/kX

) is finite (cf. Theorem 5.6), it follows that N is finite. Finally, we

verify the finiteness of Out(GkX ). It follows from Proposition 4.24(ii) that the

natural map

Isom(kX/kX , kX/kX) 3 ϕ 7→ (GkX 3 σ 7→ ϕσϕ−1 ∈ GkX ) ∈ Aut(GkX )

is bijective. Let f, g ∈ Aut(GkX ). Then, if we write ϕf , ϕg ∈ Isom(kX/kX , kX/kX)

for the element of Isom(kX/kX , kX/kX) corresponding to f , g, respectively, then

one verifies easily that f and g are GkX -conjugate if and only if ϕf |kX = ϕg|kX .

Thus, it holds that Out(GkX ) ∼= Aut(kX), which implies that Out(GkX ) is finite.

This completes the proof of Corollary 5.7.
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