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Abstract

These notes are intended to be an invitation to differential calculus on RCD spaces. We
start by introducing the concept of an “L2-normed L∞-module” and show how it can
be used to develop a first-order (Sobolev) differential calculus on general metric measure
spaces. In the second part of the manuscript we see how, on spaces with Ricci curvature
bounded from below, a second-order calculus can also be built: objects like the Hessian,
covariant and exterior derivatives and Ricci curvature are all well defined and have many
of the properties they have in the smooth category.
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§1. Introduction

These are extended notes for the course given by the author at RIMS, Kyoto in

October 2016. The aim is to give a self-contained overview of the recently developed

approach to differential calculus on metric measure spaces, with most, but not all,

of the material coming from [27]. The effort is directed into giving as many ideas as

possible, without losing too much time in technical details and utmost generality:

for this reason many statements are given under some simplifying assumptions

and proofs are sometimes only sketched.

The notes are divided into two parts: in the first one we study the first-

order differential structure of general metric measure spaces, then, building on

this, in the second we study the second-order differential structure of spaces with

(Riemannian) Ricci curvature bounded from below.

In what concerns the first part, a crucial role is played by the concept of an

L2-normed L∞-module, which provides a convenient abstraction of the notion of

a “space of L2-sections of a vector bundle”. This is a variant of the similar notion

of L∞-module introduced by Weaver in [48] who was also interested in develop-

ing a calculus on non-smooth spaces. In fact, some of the statements which we

shall present in Sections 2.2 and 2.3 can be seen as technical variants of analogous

statements given in [48]. Still, our axiomatization and the study of Sobolev func-

tions carried out in [8] allow us to produce new and interesting links between the

abstract differential calculus and the structure of the space: for instance, in Theo-

rem 2.33 we shall see that we can associate to “almost every absolutely continuous

curve” a derivative whose modulus coincides with the metric speed of the curve

itself. This kind of statement, whose precise formulation requires the notions of

“test plan” and of “pullback of a module”, is crucial in applications to geometry;

see, for instance, [20].

We also remark that the definition of a cotangent module that we give here

can be canonically identified with the cotangent bundle as built by Cheeger in

[17]. We won’t insist on this point (referring to [27] for more details) because the

two approaches are very different in spirit: in [17], working on doubling spaces

supporting a Poincaré inequality, Cheeger gave a metric version of Rademacher’s

theorem, which results in much more than a mere definition of a cotangent bundle.

Here, instead, we are interested only in giving an abstract and weak notion of

differential of a Sobolev function and we shall do so without imposing any doubling
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or Poincaré inequality. In any case, our first-order theory should mostly be regarded

as foundational material for the second-order one on RCD spaces.

In the second part of the notes we shall work in RCD spaces, mostly without

imposing any dimension bound (we confine some recent results about calculus on

finite-dimensional spaces to the final Section 3.7). The definition of RCD(K,∞)

spaces that we shall adopt is the one, coming from [10], based on the appropriate

weak formulation of the Bochner inequality

(1.1) ∆
|∇f |2

2
≥ 〈∇f,∇∆f〉+K|∇f |2.

There is a certain amount of “cheating” in choosing this approach, because

it is the closest to differential calculus and the furthest from the fact, crucial for

the theory, that the class of RCD(K,∞) spaces is closed w.r.t. measured-Gromov–

Hausdorff convergence. Nevertheless, the validity of the Bochner inequality on RCD

spaces is now well established within the theory, so that possibly there is not much

harm in taking it as the starting point for our discussion. The reader interested

in the stability issue might want to start from the lecture notes [6] for an account

of the path which starts from the original approach of Lott–Sturm–Villani ([38],

[45]) and uses the heat flow ([24], [28], [8]) to isolate “Riemannian” spaces ([9]) by

also providing a stable version of the Bochner inequality ([10]).

From the technical point of view, the main result of this second part of the

notes (Lemmas 3.8 and 3.33) is the improvement of the Bochner inequality from

(1.1) to

(1.2) ∆
|X|2

2
≥ |∇X|2HS − 〈X, (∆HX

[)]〉+K|X|2

in the appropriate weak sense. This result builds on works of Bakry [16] and

Savaré [43]; see also Sturm’s contribution [46]. Notice that for X = ∇f , (1.2)

reduces to (1.1) with the additional non-negative contribution |Hessf |2HS on the

right-hand side. Here the language of L2-normed modules provides natural spaces

where objects like the Hessian or the covariant derivative belong, and one of the

effects of the improved formula (1.2) is the bound

(1.3)

∫
|Hessf |2HS dm ≤

∫
(∆f)2 −K|∇f |2 dm

obtained integrating (1.2) for X = ∇f (Corollary 3.10). Since functions with

gradient and Laplacian in L2 are easy to build using the heat flow, (1.3) grants

that there are “many” functions with Hessian in L2. Starting from this, it will

not be hard to build a second-order calculus and an indication of the novelty of
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the theory is in the fact that we can prove that the exterior differential is a closed

operator on the space of k-forms for any k ∈ N (Theorem 3.24), whereas previously

known results covered only the case k = 0 ([17], [48], [18]). In particular, quite

natural versions of the de Rham cohomology and of the Hodge theorem can be

provided (Section 3.5.3)

Another consequence of the fact that we have well-defined differential opera-

tors is that we can define the Ricci curvature as the quantity for which the Bochner

identity holds:

Ric(X,X) := ∆
|X|2

2
− |∇X|2HS + 〈X, (∆HX

[)]〉.

It turns out that Ric(X,X) is a measure-valued tensor and the role of (1.2) is to

grant that the Ricci curvature is bounded from below by K, as expected.

Finally, a feature of the language proposed here is that the differential opera-

tors are stable w.r.t. measured-Gromov-Hausdorff convergence of the base spaces

in a quite natural sense. To keep the presentation short we won’t discuss this—

important and under continuous development—topic, referring to [34], [13], [11]

for recent results.

§2. First-order theory for general metric measure spaces

§2.1. Sobolev functions on metric measure spaces

For the purpose of this note a metric measure space (X, d,m) is a complete separa-

ble metric space (X, d) endowed with a non-negative (and not zero) Borel measure

m giving finite mass to bounded sets.

We denote by P(X) the space of Borel probability measures on X, and by

C([0, 1],X) the space of continuous curves with value in X endowed with the sup

norm. For t ∈ [0, 1] the evaluation map et : C([0, 1],X)→ X is defined by

et(γ) := γt ∀ γ ∈ C([0, 1],X).

Recall that γ : [0, 1] → X is absolutely continuous provided there is f ∈ L1(0, 1)

such that

(2.1) d(γt, γs) ≤
∫ s

t

f(r) dr ∀ t, s ∈ [0, 1], t < s.

In this case, for a.e. t ∈ [0, 1] there exists |γ̇t| := limh→0
d(γt+h,γt)
|h| and |γ̇t| is the

least, in the a.e. sense, function f ∈ L1(0, 1) for which (2.1) holds (see, e.g., [5,

Thm. 1.1.2] for a proof).
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By LIP(X) (resp. LIPb(X)) we mean the space of Lipschitz (resp. Lipschitz

and bounded) functions on X.

There are several equivalent definitions of Sobolev functions on a metric mea-

sure space ([17], [44], [8]); here we shall adopt one of those proposed in the latter

reference, where the notion of a Sobolev function is given in duality with that of

a test plan.

Definition 2.1 (Test plans). Let π ∈ P(C([0, 1],X)). We say that π is a test

plan provided that for some C > 0 we have

(et)∗π ≤ Cm ∀ t ∈ [0, 1],∫∫ 1

0

|γ̇t|2 dtdπ(γ) <∞.

The least such C is called the compression constant of π and denoted Comp(π).

Recall that L0(X) is the space of (equivalence classes w.r.t. m-a.e. equality of)

Borel real-valued functions on X.

Definition 2.2 (The Sobolev class S2(X, d,m)). The Sobolev class S2(X, d,m), or

simply S2(X)m, is the space of all functions f ∈ L0(X) such that there exists a

non-negative G ∈ L2(X), called the weak upper gradient of f , for which

(2.2)

∫
|f(γ1)− f(γ0)|dπ(γ) ≤

∫∫ 1

0

G(γt)|γ̇t|dtdπ(γ) ∀π test plan.

Notice that the assumptions on π grant that the integrals are well defined

and that the one in the right-hand side is finite. With an argument based on the

stability of the class of test plans by “restriction” and “rescaling”, it is not hard

to check that f ∈ S2(X), with G being a weak upper gradient, if and only if for

any test plan π and any t, s ∈ [0, 1], t < s,

(2.3) |f(γs)− f(γt)| ≤
∫ s

t

G(γr)|γ̇r|dr π-a.e. γ.

Then an application of Fubini’s theorem (see [7] for the details) shows that this is

in turn equivalent to the following: for any test plan π and π-a.e. γ, the function

t 7→ f(γt) is in W 1,1(0, 1) and

(2.4)
∣∣∣ d

dt
f(γt)

∣∣∣ ≤ G(γt)|γ̇t| a.e. t.

It is then easy to check that there exists a minimal G in the m-a.e. sense for which

(2.2) holds: such a G will be called the minimal weak upper gradient and

denoted |Df |.
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From the definitions it is clear that S2(X) is a vector space and that

(2.5) |D(αf + βg)| ≤ |α| |Df |+ |β| |Dg| ∀ f, g ∈ S2(X), α, β ∈ R.

Besides this, we shall use the two following crucial properties of minimal weak

upper gradients:

Lower semicontinuity of minimal weak upper gradients. Let (fn) ⊂ S2(X)

and f ∈ L0(X) be such that fn → f as n → ∞ in L0(X) (i.e., m-a.e.). Assume

that (|Dfn|) converges to some G ∈ L2(X) weakly in L2(X). Then

(2.6) f ∈ S2(X) and |Df | ≤ G, m-a.e.

Locality. The minimal weak upper gradient is local in the sense that

(2.7) |Df | = 0 m-a.e. on {f = 0}, ∀ f ∈ S2(X).

Equation (2.6) follows quite easily from the very definition of S2(X), while (2.7)

comes from the characterization (2.4) and the analogous property of functions in

W 1,1(0, 1).

The lower semicontinuity of minimal weak upper gradients ensures that the

space W 1,2(X) := L2 ∩ S2(X) endowed with the norm

‖f‖2W 1,2(X) := ‖f‖2L2(X) + ‖ |Df |‖2L2(X)

is a Banach space. It is trivial to check that Lipschitz functions with bounded

support are in W 1,2(X) with

|Df | ≤ lip(f) m-a.e.,

where

lip(f)(x) :=

limy→x
|f(y)− f(x)|

d(x, y)
if x is not isolated,

0 otherwise.

In particular, W 1,2(X) is dense in L2(X). On the other hand, it is non-trivial that

for every f ∈ W 1,2(X) there exists a sequence (fn) of Lipschitz functions with

bounded support converging to f in L2 such that∫
|Df |2 dm = lim

n

∫
lip2(fn) dm.

We shall not use this fact (see [8] for the proof).

We conclude by recalling that, as shown in [2],

(2.8) if W 1,2(X) is reflexive, then it is separable.
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This can be proved by considering a countable L2-dense set D of the unit ball B

of W 1,2(X). Then for f ∈ B, find (fn) ⊂ D converging to f in L2(X): (fn) being

bounded in W 1,2(X), up to subsequences it must have a weak limit in W 1,2(X)

and this weak limit must be f . Hence the weak closure of D is precisely B and by

Mazur’s lemma this is sufficient to conclude.

§2.2. L2-normed modules, cotangent module and differential

2.2.1. L2-normed modules.

Definition 2.3 (L2(X)-normed L∞(X)-modules). An L2(X)-normed L∞(X)-

module, or simply an L2(X)-normed module, is a structure (M, ‖ · ‖, ·, | · |) where

(i) (M, ‖ · ‖) is a Banach space;

(ii) · is a bilinear map from L∞(X) ×M to M, called multiplication by L∞(X)-

functions, such that

f · (g · v) = (fg) · v,(2.9a)

1 · v = v,(2.9b)

for every v ∈M and f, g ∈ L∞(X), where 1 is the function identically equal

to 1;

(iii) | · | is a map from M to L2(X), called the pointwise norm, such that

|v| ≥ 0 m-a.e.;(2.10a)

|fv| = |f | |v| m-a.e.;(2.10b)

‖v‖ =

√∫
|v|2 dm.(2.10c)

An isomorphism between two L2(X)-normed modules is a linear bijection which

preserves the norm, the product with L∞(X)-functions and the pointwise norm.

We shall typically write fv in place of f · v for the product with an L∞(X)-

function.

Notice that thanks to (2.9b), for λ ∈ R and v ∈M the values of λv intended

as coming from the vector space structure and as the product with the function

constantly equal to λ agree, so that the expression is unambiguous. Also, from

(2.10b) and (2.10c) we obtain

‖fv‖ ≤ ‖f‖L∞‖v‖.
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We also remark that the pointwise norm satisfies

|λv| = |λ| |v|,
|v + w| ≤ |v|+ |w|,

m-a.e. for every v, w ∈ M and λ ∈ R. Indeed, the first comes from (2.10b), while

for the second we argue by contradiction. If it was false, for some v, w ∈M, Borel

set E ⊂ X with m(E) ∈ (0,∞) and positive real numbers a, b, c with a+ b < c we

would have m-a.e. on E,

|v + w| ≥ c, |v| ≤ a, |w| ≤ b.

However, this creates a contradiction with (2.10c) and the fact that ‖ · ‖ is a norm

because

‖χEv‖+ ‖χEw‖ = ‖χE |v|‖L2 + ‖χE |w|‖L2 ≤
√
m(E) (a+ b)

<
√
m(E) c ≤ ‖ |χE(v + w)|‖L2 = ‖χE(v + w)‖ = ‖χEv + χEw‖.

In the following, for given v, w ∈M and Borel set E ⊂ X we shall say that v = w

m-a.e. on E, provided that

χE(v − w) = 0 or equivalently if |v − w| = 0 m-a.e. on E.

Example 2.4. Consider a manifold X equipped with a reference measure m and

with a normed vector bundle. Then the space of L2(X,m)-sections of the bundle

naturally carries the structure of an L2(X)-normed module. This is the example

which motivates the abstract definition of an L2(X)-normed module. �

We say that f ∈ L∞(X) is simple provided it attains only a finite number of

values.

Definition 2.5 (Generators). We say that V ⊂ M generates M provided finite

sums of the form
∑
i
χEi

vi with (Ei) Borel partition of X and (vi) ⊂ V are dense

in M.

By approximating L∞-functions with simple ones, it is easy to see that V

generates M if and only if L∞-linear combinations of elements of V are dense

in M.

A particularly important class of modules is that of Hilbert modules, i.e.,

modules H which are, when seen as Banach spaces, Hilbert spaces. It is not hard

to check that in this case the pointwise norm satisfies the pointwise parallelogram

identity

|v + w|2 + |v − w|2 = 2(|v|2 + |w|2) m-a.e. ∀ v, w ∈H ,
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and thus that by polarization it induces a pointwise scalar product 〈·, ·〉 : H 2 →
L1(X) which is L∞(X)-bilinear and satisfies

|〈v, w〉| ≤ |v| |w|, 〈v, v〉 = |v|2,

m-a.e. for every v, w ∈H .

It is at times convenient to deal with objects with less integrability; in this

direction, the following concept is useful.

Definition 2.6 (L0-normed module). An L0-normed module is a structure (M, τ,

·, | · |) where

(i) · is a bilinear map, called multiplication with L0-functions, from L0(X)×M

to M for which (2.9a), (2.9b) hold for any f ∈ L0(X), v ∈M;

(ii) | · | : M→ L0(X), called the pointwise norm, satisfies (2.10a) and (2.10b) for

any f ∈ L0(X), v ∈M;

(iii) for some Borel partition (Ei) of X into sets of finite m-measure, M is complete

w.r.t. the distance

(2.11) d0(v, w) :=
∑
i

1

2im(Ei)

∫
Ei

min{1, |v − w|}dm

and τ is the topology induced by the distance.

An isomorphism of L0-normed modules is a linear homeomorphism preserving the

pointwise norm and the multiplication with L0-functions.

It is readily checked that the choice of the partition (Ei) in (iii) does not affect

the completeness of M nor the topology τ .

Theorem/Definition 2.7 (L0-completion of a module). Let M be an L2-normed

module. Then there exists a unique couple (M0, ι), where M0 is an L0-normed

module and ι : M → M0 is linear, preserving the pointwise norm and with dense

image.

Uniqueness is intended up to unique isomorphism, i.e., if (M̃0, ι̃) has the same

properties, then there exists a unique isomorphism Φ : M0 → M̃0 such that ι̃ = Φ◦ι.

Proof. Uniqueness is trivial. For existence define M0 to be the metric completion

of M w.r.t. the distance defined in (2.11) and ι as the natural embedding; then

observe that the L2-normed module structure of M can be extended by continuity

and induce an L0-normed module structure on M0.
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2.2.2. Cotangent module and differential. The cotangent module L2(T ∗X)

and the differential d : S2(X) → L2(T ∗X) are defined, up to unique isomorphism,

by the following theorem. The elements of the cotangent module will be called

1-forms.

Theorem/Definition 2.8. There exists a unique couple (L2(T ∗X),d) with

L2(T ∗X) being an L2-normed module and d : S2(X) → L2(T ∗X) a linear map

such that

(i) for any f ∈ S2(X) it holds that |df | = |Df | m-a.e.;

(ii) L2(T ∗X) is generated by {df : f ∈ S2(X)}.

Uniqueness is intended up to unique isomorphism, i.e., if (M,d′) is another such

couple, then there is a unique isomorphism Φ : L2(T ∗X)→ M such that Φ(df) =

d′f for every f ∈ S2(X).

Note: we shall call a form ω ∈ L2(T ∗X) simple if it can be written as
∑
i
χAi

dfi
for a finite Borel partition (Ai) of X and (fi) ⊂ S2(X).

Proof.

Uniqueness. Consider a simple form ω ∈ L2(T ∗X) and notice that the require-

ments that Φ is L∞-linear and that Φ(df) = d′f force the definition

(2.12) Φ(ω) :=
∑
i

χAid
′fi for ω =

∑
i

χAidfi.

The identity

|Φ(ω)| =
∑
i

χAi
|d′fi|

(i) for M
=

∑
i

χAi
|Dfi|

(i) for L2(T∗X)
=

∑
i

χAi
|dfi| = |ω|

shows in particular that the definition of Φ(ω) is well posed, i.e., Φ(ω) depends

only on ω and not on the way we represent it as a finite sum. It also shows that

Φ preserves the pointwise norm of simple forms and thus, since Φ is clearly linear,

grants that Φ is continuous. Being simple forms dense in L2(T ∗X) (by property (ii)

for L2(T ∗X)), Φ can be uniquely extended by continuity to a map from L2(T ∗X)

to M and this map is clearly linear, continuous and preserves the pointwise norm.

Also, from the very definition (2.12) we see that Φ(fω) = fΦ(ω) for simple f and

ω, so that by approximation we see that the same holds for general f ∈ L∞(X),

ω ∈ L2(T ∗X). Property (2.10c) grants that Φ also preserves the norm, so that to

conclude, it is sufficient to show that its image is the whole M. This follows from

the density of simple forms in M (property (ii) for M).
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Existence. We define the “pre-cotangent module” Pcm to be the set of finite

sequences (Ai, fi) with (Ai) being a Borel partition of X and (fi) ⊂ S2(X). Then

we define an equivalence relation on Pcm by declaring (Ai, fi) ∼ (Bj , gj) iff for

every i, j we have

|D(fi − gj)| = 0 m-a.e. on Ai ∩Bj .

Denoting by [Ai, fi] the equivalence class of (Ai, fi), we endow Pcm/ ∼ with a

vector space structure by putting

[Ai, fi] + [Bj , gj ] := [Ai ∩Bj , fi + gj ],

λ[Ai, fi] := [Ai, λfi].

Notice that thanks to the locality property (2.7) of the minimal weak upper gra-

dient, these definitions are well posed. For the same reason, the quantity

‖[Ai, fi]‖ :=

√∑
i

∫
Ai

|Dfi|2 dm

is well defined, and from (2.5) we see that it is a norm. Let (L2(T ∗X), ‖ · ‖) be the

completion of (Pcm/ ∼, ‖ · ‖) and d : S2(X) → L2(T ∗X) be the map sending f to

[X, f ]. By construction, L2(T ∗X) is a Banach space and d is linear. We want to

endow L2(T ∗X) with the structure of an L2(X)-normed module and to this aim

we define | · | : Pcm/ ∼→ L2(X) by

|[Ai, fi]| :=
∑
i

χAi |Dfi|

and a bilinear map {simple functions} × Pcm/ ∼ → Pcm/ ∼ by(∑
j

αjχEj

)
· [Ai, fi] := [Ai ∩ Ej , αjfi],

where (Ej) is a finite partition of X. It is readily verified that these definitions

are well posed and that properties (2.9) and (2.10) hold for simple functions and

elements of Pcm/ ∼. It is also clear that
∣∣ |ω1| − |ω2|

∣∣ ≤ |ω1 − ω2| m-a.e. for every

ω1, ω2 ∈ Pcm/ ∼ and therefore we have∥∥ |ω1| − |ω2|
∥∥
L2 ≤ ‖ω1 − ω2‖,

showing that the pointwise norm can, and will, be extended by continuity to the

whole of L2(T ∗X). Similarly, for h : X → R simple and ω ∈ Pcm/ ∼, from the

identity |hω| = |h| |ω| we obtain

‖hω‖2 =

∫
|hω|2 dm ≤ ‖h‖2L∞

∫
|ω|2 dm = ‖h‖2L∞‖ω‖2,
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showing that multiplication by simple functions on Pcm/ ∼ can, and will, be

extended by continuity to a multiplication by L∞(X)-functions on L2(T ∗X).

The fact that properties (2.9) and (2.10) hold for these extensions follows

trivially by approximation. Hence L2(T ∗X) is an L2(X)-normed module.

To conclude, notice that property (i) is a direct consequence of the definition

of d and of the pointwise norm. The fact that L2(T ∗X) is generated by {df : f ∈
S2(X)} also follows by the construction once we observe that the typical element

[Ai, fi] of Pcm/ ∼ is equal to
∑
i
χAi

dfi by the very definitions given.

Remark 2.9. By a simple cut-off and truncation argument we see that {df : f ∈
W 1,2(X)} also generates L2(T ∗X). Hence, slightly more generally, we also have

that if D is a dense subset of W 1,2(X), then {df : f ∈ D} generates L2(T ∗X).

This also shows that if W 1,2(X) is separable, then so is L2(T ∗X). �

Remark 2.10. It is not hard to check that if X is a smooth Finsler manifold,

then W 1,2(X) as we have defined it coincides with the Sobolev space defined via

charts and that |Df | coincides a.e. with the norm of the distributional differential.

From this fact and Theorem 2.8 it follows that the cotangent module can be

identified with the space of L2-sections of the cotangent bundle via the map which

sends df to the distributional differential of f . �

Remark 2.11. A variant of Theorem 2.8 holds, with the same proof, if one re-

places “L2-normed module” with “L0-normed module”; notice that the change in

topology produces a difference in the meaning of (ii).

It is readily verified that the resulting couple (L0(T ∗X),d), say, can be iden-

tified with the L0-completion of (L2(T ∗X),d) in the sense that there is a unique

linear map ι : L2(T ∗X)→ L0(T ∗X) preserving the pointwise norm and sending df

to df ; moreover such a map has a dense image. �

Proposition 2.12 (Closure of the differential). Let (fn) ⊂ S2(X) be a sequence

m-a.e. converging to some function f ∈ L0(X). Assume that (dfn) converges to

some ω ∈ L2(T ∗X) in the weak topology of L2(T ∗X) seen as a Banach space.

Then f ∈ S2(X) and df = ω.

Proof. By applying Mazur’s lemma we can assume that the convergence of (dfn)

to ω is strong in L2(T ∗X). In particular, (|dfn|) converges to |ω| in L2(X) and by

(2.6) this grants that f ∈ S2(X). For any m ∈ N we have fn−fm → f −fm m-a.e.,

thus again using (2.6) we have

‖df − dfn‖L2(T∗X) = ‖ |D(f − fn)| ‖L2(X) ≤ lim
m
‖ |D(fm − fn)| ‖L2(X)

= lim
m
‖dfm − dfn‖L2(T∗X),
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and the conclusion follows letting n→∞ using the fact that, since (dfn) is strongly

converging in L2(T ∗X), it is a Cauchy sequence.

Proposition 2.13 (Calculus rules). The following holds.

– (Locality) For every f, g ∈ S2(X) we have

(2.13) df = dg m-a.e. on {f = g}.

– (Chain rule) For every f ∈ S2(X) and ϕ ∈ LIP∩C1(R) we have ϕ ◦ f ∈ S2(X)

and

(2.14) d(ϕ ◦ f) = ϕ′ ◦ f df.

– (Leibniz rule) For every f, g ∈ L∞ ∩ S2(X) we have fg ∈ S2(X) and

(2.15) d(fg) = f dg + g df.

Proof.

Locality. By the linearity of the differential the claim is equivalent to

df = 0 m-a.e. on {f = 0}

which follows directly from |df | = |Df | m-a.e. and the locality property (2.7)

of |Df |.

Chain rule. The fact that Lip(ϕ)|Df | ∈ L2(X) is a weak upper gradient for ϕ◦f
is obvious, hence in particular ϕ ◦ f ∈ S2(X).

To prove (2.14), start by noticing that taking into account the linearity of the

differential and the fact that the differential of a constant function is 0 (because

trivially their minimal weak upper gradient is 0), the chain rule (2.14) is trivial if

ϕ is affine. Hence, by the locality property (2.13) the chain rule (2.14) holds if ϕ

is piecewise affine. Notice that this also forces df to be 0 m-a.e. on f−1(z) for any

z ∈ R, and thus also m-a.e. on f−1(N) for N ⊂ R countable.

Now let ϕ ∈ LIP∩C1(R) and find a sequence (ϕn) of equi-Lipschitz and piece-

wise affine functions such that (ϕn), (ϕ′n) uniformly converge to ϕ, ϕ′ respectively.

From these, what was said previously and the closure of the differential, we can

pass to the limit in

d(ϕn ◦ f) = ϕ′n ◦ f df

and conclude.
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Leibniz rule. From the characterization (2.4) it easily follows that |g| |Df | +
|f | |Dg| ∈ L2(X) is a weak upper gradient for fg, so that fg ∈ S2(X). Now assume

that f, g ≥ 1 m-a.e. Then also fg ≥ 1 m-a.e. and we can apply the chain rule with

ϕ = log, which is Lipschitz on the image of f , g and fg, to get

d(fg)

fg
= d(log(fg)) = d(log f + log g) = d log f + d log g =

df

f
+

dg

g
,

which is the thesis. The general case now follows easily replacing f , g by f + C,

g + C for C ∈ R large enough.

§2.3. Duality and the tangent module

2.3.1. The module dual.

Definition 2.14 (Dual of a module). Let M be an L2(X)-normed module. Its

dual M∗ is the space of linear continuous maps L : M→ L1(X) such that

L(fv) = f L(v) ∀ f ∈ L∞(X), v ∈M.

We equip M∗ with the operator norm, i.e., ‖L‖∗ := supv:‖v‖≤1 ‖L(v)‖L1 . The

multiplication of f ∈ L∞(X) and L ∈M∗ is defined as

(fL)(v) := L(fv) ∀ v ∈M.

Finally, the pointwise norm |L|∗ of L ∈M∗ is defined as

|L|∗ := ess-sup
v:|v|≤1 m-a.e.

|L(v)|.

The only non-trivial thing to check in order to show that the structure just

defined is an L2-normed module is property (2.10c) (which also grants that |L|∗
belongs to L2(X)). From the definition it is not hard to check that

|L(v)| ≤ |L|∗|v| m-a.e. ∀ v ∈M, L ∈M∗,

and thus by integration we get ‖L(v)‖L1 ≤ ‖v‖ ‖ |L|∗‖L2 showing that ‖L‖∗ ≤
‖ |L|∗ ‖L2 .

For the opposite inequality notice that from the basic properties of the essen-

tial supremum there is a sequence (vn) ⊂ M such that |vn| ≤ 1 m-a.e. for every

n ∈ N satisfying |L|∗ = supn |L(vn)|. Put ṽ0 := v0 and for n > 0 define recur-

sively An := {|L(vn)| > |L(ṽn−1)|} and ṽn := χAn
vn + χAc

n
ṽn−1. Then |ṽn| ≤ 1

m-a.e. and the sequence (|L(ṽn)|) is increasing and converges m-a.e. to |L|∗. Pick

f ∈ L2 ∩ L∞(X) arbitrary, notice that ‖fṽn‖ = ‖ |fṽn| ‖L2 ≤ ‖f‖L2 and thus∫
|f | |L(ṽn)|dm =

∫
|L(fṽn)|dm ≤ ‖fṽn‖ ‖L‖∗ = ‖f‖L2‖L‖∗ ∀n ∈ N.



Differential calculus on RCD spaces 869

By the monotone convergence theorem the integral on the left goes to
∫
|f | |L|∗ dm

as n→∞, hence passing to the limit we obtain∫
|f | |L|∗ dm ≤ ‖f‖L2‖L‖∗

and this being true for every f ∈ L2 ∩L∞(X) we conclude that ‖ |L|∗ ‖L2 ≤ ‖L‖∗,
as desired.

We shall frequently use the fact that for L : M→ L1(X) linear and continuous

we have

(2.16) L ∈M∗ ⇔ L(χEv) = χEL(v) for every E ⊂ X Borel and v ∈M,

which can be proved by first checking that L(fv) = fL(v) holds for simple f and

then arguing by approximation.

Denote by M′ the dual of M seen as a Banach space, so that M′ is the Banach

space of linear continuous maps from M to R equipped with its canonical norm

‖ · ‖′ . Integration provides a natural map Int : M∗ → M′ sending L ∈ M∗ to the

operator Int(L) ∈M′ defined as

Int(L)(v) :=

∫
L(v) dm ∀ v ∈M.

Proposition 2.15. The map Int is a bijective isometry, i.e., ‖L‖∗ = ‖Int(L)‖′
for every L ∈M∗.

Proof. The trivial bound

|Int(L)(v)| =
∣∣∣ ∫ L(v) dm

∣∣∣ ≤ ‖L(v)‖L1 ≤ ‖v‖‖L‖∗

shows that ‖Int(L)‖′ ≤ ‖L‖∗. To prove the converse, fix L ∈ M∗, ε > 0 and find

v ∈ M such that ‖L(v)‖L1 ≥ ‖v‖(‖L‖∗ − ε). Put ṽ := χ{L(v)≥0}v − χ{L(v)<0}v,

notice that |ṽ| = |v| and L(ṽ) = |L(v)| m-a.e. and conclude by

‖Int(L)‖′‖ṽ‖ ≥ |Int(L)(ṽ)| =
∣∣∣ ∫ L(ṽ) dm

∣∣∣
= ‖L(v)‖L1

≥ ‖v‖(‖L‖∗ − ε) = ‖ṽ‖(‖L‖∗ − ε)

and the arbitrariness of ε > 0. Thus it remains to prove that Int is surjective.

Pick ` ∈ M′, fix v ∈ M and consider the map sending a Borel set E to

µv(E) := `(χEv) ∈ R. It is additive and given a disjoint sequence (Ei) of Borel

sets we have

|µv(∪nEn)− µv(∪Nn=1En)| = |µv(∪n>NEn)| = |`(χ∪n>NEnv)| ≤ ‖`‖′‖χ∪n>NEnv‖
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and since ‖χ∪n>NEn
v‖2 =

∫
∪n>NEn

|v|2 dm → 0 by the dominated convergence

theorem, we see that µv is a Borel measure. By construction, it is also absolutely

continuous w.r.t. m and thus it has a Radon–Nikodym derivative, which we shall

denote by L(v) ∈ L1(X).

The construction trivially ensures that v 7→ L(v) is linear and since for every

E,F ⊂ X Borel the identities µχEv(F ) = `(χFχEv) = `(χE∩F v) = µv(E ∩ F )

grant that
∫
F
L(χEv) =

∫
E∩F L(v), we see that

(2.17) L(χEv) = χEL(v) ∀ v ∈M, E ⊂ X Borel.

Now given v ∈ M we put ṽ := χ{L(v)≥0}v − χ{L(v)<0}v so that |ṽ| = |v| and, by

(2.17) and the linearity of L, we have |L(v)| = L(ṽ) m-a.e. Then

‖L(v)‖L1 =

∫
L(ṽ) dm = µṽ,`(X) = `(ṽ) ≤ ‖`‖′‖ṽ‖ = ‖`‖′‖v‖,

i.e., v 7→ L(v) is continuous. The conclusion follows from (2.17) and (2.16).

The Hahn–Banach theorem grants that for every v ∈ M there exists ` ∈ M′

with ‖`‖′ = ‖v‖ and |`(v)| = ‖v‖2. Putting L := Int−1(`), from the fact that the

inequalities

‖v‖2 = `(v) =

∫
L(v) dm ≤

∫
|L|∗|v|dm ≤ ‖ |v|‖L2‖ |L|∗‖L2

= ‖v‖‖L‖∗ = ‖v‖‖`‖′ = ‖v‖2

are in fact equalities we deduce that m-a.e.,

(2.18) |L|∗ = |v|, L(v) = |v|2.

It follows that the natural embedding I : M → M∗∗ sending v to the map L 7→
L(v), which is trivially L∞-linear, preserves the pointwise norm. Indeed, since for

any v, L we have |I(v)(L)| = |L(v)| ≤ |v| |L|∗ we have |I(v)|∗∗ ≤ |v|, while the

opposite inequality comes considering L such that (2.18) holds.

Modules M for which I is surjective will be called reflexive.

Proposition 2.16 (Riesz theorem for Hilbert modules and reflexivity). Let H

be a Hilbert module and consider the map sending v ∈ H to Lv ∈ H ∗ given by

Lv(w) := 〈v, w〉.
Then this map is an isomorphism of modules. In particular, Hilbert modules

are reflexive.

Proof. The only non-trivial claim about the map v 7→ Lv is surjectivity. To check

it, let L ∈ H ∗, consider Int(L) ∈ H ′ and apply the standard Riesz theorem to
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find v ∈H such that∫
L(w) dm = Int(L)(w) = 〈v, w〉H =

∫
〈v, w〉 dm ∀w ∈H ,

where 〈·, ·〉H is the scalar product in the Hilbert space H and the last identity

follows from (2.10c) by polarization. Writing χEw in place of w in the above for

E ⊂ X Borel arbitrary we see that L(w) = 〈v, w〉 m-a.e., i.e., L = Lv. The claim

about reflexivity is now obvious.

Proposition 2.17. Let M be an L2(X)-normed module, V ⊂M a vector subspace

which generates M and L : V → L1(X) a linear map. Assume that for some

g ∈ L2(X) we have

(2.19) |L(v)| ≤ g |v| m-a.e. ∀ v ∈ V.

Then there is a unique L̃ ∈ M∗ such that L̃(v) = L(v) for every v ∈ V and for

such a L̃ we have |L̃|∗ ≤ g.

Proof. Any extension L̃ of L which is L∞(X)-linear must be such that

(2.20) L̃(v) =
∑
i

χEiL(vi) for v =
∑
i

χEivi,

where (Ei) is a finite partition of X and (vi) ⊂ V . For L̃ defined in this way, the

bound (2.19) gives

|L̃(v)| =
∑
i

χEi |L(vi)| ≤
∑
i

χEig|vi| = g
∣∣∣∑

i

χEivi

∣∣∣ = g|v|

and in particular ‖L̃(v)‖L1(X) ≤ ‖g‖L2(X)‖v‖. This shows that definition (2.20)

is well posed—in the sense that L̃(v) depends only on v and not on the way

to represent it as
∑
i
χEi

vi—and that it is continuous. Since by assumption the

set of v’s of the form
∑
i
χEi

vi is dense in M, we can uniquely extend L̃ to a

continuous operator L̃ : M → L1(X). The fact that such an L̃ is linear is obvious

and definition (2.20) easily gives that L̃(fv) = fL̃(v) holds for simple functions f .

Then L∞-linearity follows by approximation.

We conclude with the following proposition, which in some sense says that the

operations of taking the dual and of taking the L0-completion (recall Theorem 2.7)

commute.

Proposition 2.18. Let M be an L2-normed module. Then the duality pairing

M×M∗ → L1(X) uniquely extends to a continuous duality pairing M0× (M∗)0 →
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L0(X). Moreover, if L : M0 → L0(X) is such that for some g ∈ L0(X),

(2.21) |L(v)| ≤ g |v| m-a.e. ∀ v ∈M0,

then L ∈ (M∗)0 (in the sense of the previously defined pairing).

Proof. The claim about the unique continuous extension is a trivial consequence

of the definitions. For the second part of the claim just notice that we can always

find a sequence (En) of Borel sets such that χEn
g ∈ L2(X) for every n ∈ N

and (χEng) → g in L0(X). Then from (2.21) and Proposition 2.17 above with

V = M we see that the map v 7→ Ln(v) := χEn
L(v) belongs to M∗. Since clearly

|Ln − Lm|∗ ≤ |χEn
− χEm

|g, the sequence (Ln) is Cauchy in (M∗)0 and its limit

is easily seen to be equal to L.

2.3.2. The tangent module.

Definition 2.19 (Tangent module). The tangent module L2(TX) is defined as

the dual of the cotangent module L2(T ∗X). Its elements are called vector fields.

To keep consistency with the notation used in the smooth setting, we shall

denote the pointwise norm in L2(TX) as | · |, rather than | · |∗, and the duality

pairing between ω ∈ L2(T ∗X) and X ∈ L2(TX) as ω(X).

Definition 2.20 (L2-derivations). An L2-derivation is a linear map L : S2(X)→
L1(X) for which there is g ∈ L2(X) such that

(2.22) |L(f)| ≤ g|Df | ∀ f ∈ S2(X).

Notice that the concept of derivation has a priori nothing to do with the

notion of an L2-normed module. It is therefore interesting to see that such a notion

emerges naturally from the concept of derivation, because as the following theorem

shows, derivations and vector fields are two different points of view for the same

kind of object. The same result, in conjunction with the Leibniz rule (2.15), also

shows that, although not explicitly encoded in the definition, derivations satisfy

the Leibniz rule L(fg) = fL(g) + gL(f) for any f, g ∈ L∞ ∩ S2(X).

Theorem 2.21 (Derivations and vector fields). For any vector field X ∈ L2(TX)

the map X ◦ d : S2(X)→ L1(X) is a derivation.

Conversely, given a derivation L there exists a unique vector field X ∈ L2(TX)

such that the following diagram commutes.
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S2(X) L2(T ∗X)

L1(X)

d

X
L

Proof. The first claim follows from the linearity of X ◦d, the fact that |X| ∈ L2(X)

and the inequality |df(X)| ≤ |X| |df | = |X| |Df | valid m-a.e. for any f ∈ S2(X).

For the second, let L be a derivation, put V := {df : f ∈ S2(X)} and define

L̃ : V → L1(X) by L̃(df) := L(f). Inequality (2.22) grants that this is a good

definition, i.e., L̃(df) depends only on df and not on f , and that

|L̃(df)| ≤ g|df |.

The conclusion then follows from Proposition 2.17 recalling that V generates

L2(T ∗X).

Taking the adjoint of the differential leads to the notion of divergence:

Definition 2.22 (Divergence). We say that X ∈ L2(TX) has divergence in L2,

and write X ∈ D(div), provided there is h ∈ L2(X) such that

(2.23)

∫
fhdm = −

∫
df(X) dm ∀ f ∈W 1,2(X).

In this case we shall call h the divergence of X and denote it by div(X).

Notice that by the density ofW 1,2(X) in L2(X) there is at most one h satisfying

(2.23), hence the divergence is unique.

It is also easily verified that for X ∈ D(div) and g ∈ LIPb(X) we have gX ∈
D(div) with

(2.24) div(gX) = dg(X) + g div(X);

indeed, start by observing that replacing f with min{max{f,−n}, n} in (2.23) and

then sending n→∞, we can reduce to checking (2.23) for f ∈ L∞ ∩W 1,2(X). For

such an f we can apply the Leibniz rule (2.15) to get∫
f(dg(X) + g div(X)) dm =

∫
f dg(X)− d(fg)(X) dm = −

∫
g df(X) dm,

which is the claim.

Notice that we are not claiming that in general D(div) contains a non-zero

vector field; in this direction, see (2.43).
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§2.4. Link with the metric

2.4.1. Pullback of a module. The concept of the pullback of a module mimics

the one of the pullback of a bundle.

Definition 2.23 (Maps of bounded compression). Let (X,mX) and (Y,mY) be

measured spaces. We say that ϕ : Y → X has bounded compression provided

ϕ∗mY ≤ CmX for some C > 0. The least such constant C is called the compression

constant and denoted by Comp(ϕ).

Theorem/Definition 2.24 (Pullback module and pullback map). Let M be an

L2(X)-normed module and ϕ : Y → X a map of bounded compression.

Then there exists a unique couple (ϕ∗M, ϕ∗) with ϕ∗M being an L2(Y)-normed

module and ϕ∗ : M→ ϕ∗M linear and continuous such that

(i) for every v ∈M it holds that |ϕ∗v| = |v| ◦ ϕ mY-a.e.;

(ii) ϕ∗M is generated by {ϕ∗v : v ∈M}.

Uniqueness is intended up to unique isomorphism, i.e., if (ϕ̃∗M, ϕ̃∗) is another

such couple, then there is a unique isomorphism Φ : ϕ∗M → ϕ̃∗M such that

Φ(ϕ∗v) = ϕ̃∗v for any v ∈M.

Note: we call an element of ϕ∗M simple if it can be written as
∑
i
χAiϕ

∗vi
for some finite Borel partition (Ai) of Y and elements vi ∈M.

Sketch of the proof.

Uniqueness. As in the proof of Theorem 2.8, any such Φ must send the simple

element
∑
i
χAiϕ

∗vi to
∑
i
χAi ϕ̃

∗vi and properties (i), (ii) grant that this is a good

definition and that Φ can uniquely be extended by continuity to a map which is

the desired isomorphism.

Existence. Consider the set “pre-pullback module” Ppb defined as

Ppb :=
{

(Ai, vi)i=1,...,n : n ∈ N, (Ai) is a Borel partition

of Y and vi ∈M ∀ i = 1, . . . , n
}
,

define an equivalence relation on it by declaring (Ai, vi) ∼ (Bj , wj) provided

|vi − wj | ◦ ϕ = 0 mY-a.e. on Ai ∩Bj , ∀ i, j

and the map ϕ∗ : M→ Ppb/ ∼ which sends v to the equivalence class of (Y, v). The

construction now proceeds as for the cotangent module given in Theorem 2.8: one

defines on Ppb/ ∼ a vector space structure, a multiplication by simple functions

on Y, a pointwise norm and a norm, then passes to the completion to conclude.

We omit the details.
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Example 2.25. If M = L2(X), then ϕ∗M is (= can be identified with) L2(Y),

the pullback map being given by ϕ∗f = f ◦ ϕ. �

Example 2.26. If (Y,mY ) is the product of (X,mX) and another measured space

(Z,mZ) and ϕ : Y → X is the natural projection, then the pullback of M via ϕ is

(= can be identified with) L2(Z,M) with the pullback map being the one assigning

to a given v ∈M the function identically equal to v.

Indeed, notice that L2(Z,M) admits a canonical multiplication with functions

in L∞(Y) = L∞(X × Z): the product of z 7→ v(z) ∈ M and f(x, z) ∈ L∞(X × Z)

is z 7→ f(·, z)v(z) ∈ M. Also, on L2(Z,M) there is a natural pointwise norm: the

one assigning to z 7→ v(z) ∈M the map (x, z) 7→ |v(z)|(x).

The claim is now easily verified. �

Proposition 2.27 (Universal property of the pullback). Let M be an L2(X)-

normed module, ϕ : Y → X a map of bounded compression, N an L2(Y)-normed

module and T : M→ N linear and such that for some C > 0,

|T (v)| ≤ C|v| ◦ ϕ mY-a.e.

Then there exists a unique L∞(Y)-linear and continuous map T̂ : ϕ∗M→ N such

that

T̂ (ϕ∗v) = T (v) ∀ v ∈M.

Sketch of the proof. Consider the space V := {ϕ∗v : v ∈ M}, which generates

ϕ∗M, and the map L : V → N given by L(ϕ∗v) := T (v), and then argue as for

Proposition 2.17.

Remark 2.28 (Functoriality of the pullback). A direct consequence of this last

proposition is that if ϕ : Y → X and ψ : Z→ Y are both of bounded compression

and M is an L2(X)-normed module, then ψ∗ϕ∗M can be canonically identified to

(ψ ◦ ϕ)∗M via the only isomorphism which sends ψ∗ϕ∗v to (ψ ◦ ϕ)∗v for every

v ∈M. �

Remark 2.29 (The case of invertible ϕ). If ϕ is invertible with inverse of

bounded deformation, then the previous remark grants that ϕ∗ is bijective. More-

over, the right composition with ϕ provides an isomorphism of L∞(X) and L∞(Y)

and under this isomorphism the modules M and ϕ∗M can be identified, the iso-

morphism being ϕ∗. �

Now also consider the dual M∗ of the module M and its pullback ϕ∗M∗. There

is a natural duality relation between ϕ∗M and ϕ∗M∗.
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Proposition 2.30. There exists a unique L∞(Y)-bilinear and continuous map

from ϕ∗M× ϕ∗M∗ to L1(Y) such that

(2.25) ϕ∗ω(ϕ∗v) = ω(v) ◦ ϕ ∀ v ∈M, ω ∈M∗

and for such a map,

(2.26) |W (V )| ≤ |W |∗|V | ∀V ∈ ϕ∗M, W ∈ ϕ∗M∗.

Proof. Considering simple elements W ∈ ϕ∗M∗ and V ∈ ϕ∗M we see that the

requirement (2.25) and L∞(Y )-bilinearity force the definition

(2.27)

W (V ) :=
∑
i,j

χAi∩Bj
ωi(vj) ◦ ϕ for W =

∑
i

χAi
ϕ∗ωi, V :=

∑
j

χBj
ϕ∗vj .

The bound∣∣∣∑
i,j

χAi∩Bj
ωi(vj) ◦ ϕ

∣∣∣ ≤∑
i,j

χAi∩Bj
|ωi|∗ ◦ ϕ|vj | ◦ ϕ

=
∑
i

χAi
|ωi|∗ ◦ ϕ

∑
j

χBj
|vj | ◦ ϕ = |W |∗ |V |

shows that the above definition is well posed, in the sense that the definition

of W (V ) depends only on V , W and not on the way they are written as finite

sums. The same bound also shows that (2.26) holds for simple elements and that

‖W (V )‖L1(Y ) ≤ ‖W‖ϕ∗M∗‖V ‖ϕ∗M .

Since the definition (2.27) also trivially grants that (fW )(gV ) = fgW (V ) for

f , g simple, all the conclusions follow by the density of simple elements in the

respective modules.

The last proposition can be read as saying that there is a natural embedding

I of ϕ∗M∗ into (ϕ∗M)∗ which sends W ∈ ϕ∗M∗ into the map

ϕ∗M 3 V 7→ W (V ) ∈ L1(Y).

Routine computation shows that I is L∞-linear, continuous and preserves the

pointwise norm. It is natural to wonder whether it is surjective, i.e., whether ϕ∗M∗

can be identified with the dual of ϕ∗M or not. Example 2.26 and Proposition 2.15

show that in general the answer is negative, because in such a case our question

can be reformulated as, is the dual of L2(Z,M) given by L2(Z,M∗)? It is known

(see, e.g., [21]) that the answer to this latter question is yes if and only if M∗ has

the Radon–Nikodym property and that this is ensured if M∗ is separable.

In our case we have the following result.
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Theorem 2.31 (Identification of ϕ∗M∗ and (ϕ∗M)∗). Let (X,dX,mX), (Y,dY,mY)

be two complete and separable metric spaces equipped with non-negative Borel mea-

sures finite on bounded sets and ϕ : Y → X of bounded compression. Let M be an

L2(X)-normed module such that its dual M∗ is separable.

Then I : ϕ∗M∗ → (ϕ∗M)∗ is surjective.

The proof of this result is rather technical: notice in particular the assumption

that the measurable structures come from complete and separable metric spaces.

We shall omit the proof, referring to [27] for the details. Here we prove instead the

following much simpler statement.

Proposition 2.32. Let (X,mX) and (Y,mY) be two measured spaces, ϕ : Y → X

of bounded compression and H a Hilbert module on X.

Then I : ϕ∗H ∗ → (ϕ∗H )∗ is surjective.

Proof. The pointwise norm of H satisfies the pointwise parallelogram identity,

hence the same holds for the pointwise norm of ϕ∗H (check first the case of simple

elements, then argue by approximation). Thus ϕ∗H is a Hilbert module. Now let

R : H → H ∗ and R̂ : ϕ∗H → (ϕ∗H ) be the respective Riesz isomorphisms

(recall Proposition 2.16), consider ϕ∗ ◦ R : H → ϕ∗(H ∗) and the induced map

ϕ̂∗ ◦R : ϕ∗H → ϕ∗(H ∗) as given by Proposition 2.27.

It is then readily verified that ϕ̂∗ ◦R ◦ R̂−1 : (ϕ∗H )∗ → ϕ∗H ∗ is the inverse

of I : ϕ∗H ∗ → (ϕ∗H )∗, thus giving the result.

2.4.2. Speed of a test plan. With the aid of the concept of the pullback of

a module we can now assign to any test plan its “derivative” π′t for a.e. t. The

maps of bounded compression that we shall consider are the evaluation maps et
from C([0, 1],X) endowed with a test plan π as reference measure to (X, d,m). In

this case, we shall denote the pullback of the tangent bundle L2(TX) via et by

L2(TX, et,π).

Theorem/Definition 2.33. Let (X, d,m) be a metric measure space such that

L2(TX) is separable and π a test plan.

Then for a.e. t ∈ [0, 1] there exists a unique vector field π′t ∈ L2(TX, et,π)

such that for every f ∈W 1,2(X) the identity

(2.28) lim
h→0

f(γt+h)− f(γt)

h
= (e∗tdf)(π′t)(γ)

holds, the limit being intended in the strong topology of L1(π). For these π′t’s we

also have

(2.29) |π′t|(γ) = |γ̇t|, π × L1
|[0,1]

-a.e. (γ, t).
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Sketch of the proof. Start by observing that since L2(TX) is separable and iso-

metric to the Banach dual of L2(T ∗X) (Proposition 2.15), L2(T ∗X) is also sep-

arable. Then observe that since f 7→ (f, df) is an isometry of W 1,2(X) into

L2(X) × L2(T ∗X) with the norm ‖(f, ω)‖2 := ‖f‖2L2(X) + ‖ω‖2L2(T∗X), the space

W 1,2(X) is separable as well.

Now pick f ∈W 1,2(X), define [0, 1] 3 t 7→ Ft, Gt ∈ L1(π) as

Ft(γ) := f(γt), Gt(γ) := |Df |(γt)|γ̇t|,

and notice that (2.3) can be written as

(2.30) |Fs − Ft| ≤
∫ s

t

Gr dr π-a.e.

Integrating this bound w.r.t. π we see in particular that the map t 7→ Ft ∈ L1(π) is

absolutely continuous. Although this is not sufficient to deduce that such a curve is

differentiable at a.e. t (because the Banach space L1(π) does not have the Radon–

Nikodym property), the pointwise bound (2.30) grants uniform integrability of

the incremental ratios Ft+h−Ft

h and in turn this grants that for some hn ↓ 0 the

sequence
F·+hn−F·

hn
converges in the weak topology of L1(L1|[0,1]

× π) to a limit

function Der·(f) which by (2.30) and the definition of Gt satisfies

(2.31) |Dert(f)|(γ) ≤ |Df |(γt)|γ̇t| = |e∗tdf |(γ)|γ̇t|, L1
|[0,1]

× π-a.e. (t, γ).

Passing to the limit in the trivial identity

1

hn

∫ s+hn

s

Fr dr − 1

hn

∫ t+hn

t

Ft =

∫ s

t

Fr+hn
− Fr

hn
dr,

one can check that

Fs − Ft =

∫ s

t

Derr(f) dr ∀ t, s ∈ [0, 1], t < s,

and this in turn implies that Ft+h−Ft

h converges to Dert(f) strongly in L1(π) as

h → 0 for a.e. t ∈ [0, 1]. With a little bit of work based on the fact that W 1,2(X)

is separable, we can then see that the exceptional set of t’s is independent of f , so

that for a.e. t we have

∀ f ∈W 1,2(X),
f ◦ et+h − f ◦ et

h
converges in L1(π)

to some Dert(f) for which (2.31) holds.

Fix t for which this holds and let Lt : {e∗tdf : f ∈ W 1,2(X)} → L1(π) be defined

as Lt(e
∗
tdf) := Dert(f). The bound (2.31) grants that this is a good definition,
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then using Proposition 2.17 and Theorem 2.31 (recall that we assumed L2(TX) to

be separable) we deduce that there exists a unique π′t ∈ L2(TX, et,π) such that

e∗tdf(π′t) = Dert(f) ∀ f ∈W 1,2(X)

and that the inequality ≤ in (2.29) holds. To prove ≥ notice that for f ∈ W 1,2 ∩
LIP(X) and γ absolutely continuous, the map t 7→ f(γt) is absolutely continuous.

Therefore the derivative d
dtf(γt) is well defined for π × L1|[0,1]

-a.e. (γ, t) and it is

easy to check that it π×L1|[0,1]
-a.e. coincides with Dert(f)(γ). Thus π×L1|[0,1]

-a.e.

(γ, t) we have

d

dt
f(γt) = e∗tdf(π′t)(γ) ≤ |e∗tdf |(γ)|π′t|(γ) = |df |(γt)|π′t|(γ) ≤ Lip(f) |π′t|(γ),

where Lip(f) denotes the Lipschitz constant of f . Hence to conclude it is sufficient

to show that there exists a countable family D of 1-Lipschitz functions in W 1,2(X)

such that for any absolutely continuous curve γ we have

(2.32) sup
f∈D

d

dt
f(γt) ≥ |γ̇t| a.e. t.

Let (xn) ⊂ X be countable and dense and define fn,m(x) := max{0,m− d(x, xn)}.
It is clear that fn,m ∈W 1,2∩LIP(X) and that d(x, y) = supn,m fn,m(x)−fn,m(y);

thus for γ absolutely continuous we have

d(γs, γt) = sup
n,m

fn,m(γs)− fn,m(γt)

= sup
n,m

∫ s

t

d

dr
fn,m(γr) dr ≤

∫ s

t

sup
n,m

d

dr
fn,m(γr) dr

and claim (2.32) follows.

In applications one can often find explicit expressions for the vector fields π′t
in terms of the data of the problem, so that this last theorem can be used to

effectively calculate the derivative of f ◦ et; see, for instance, Remark 2.46.

§2.5. Maps of bounded deformation

Here we introduce maps between metric measure spaces which are “first-order

smooth” and see that they naturally induce a pullback of 1-forms and, by duality,

that they have a differential.

Definition 2.34 (Maps of bounded deformation). Let (X,dX,mX) and (Y,dY,mY)

be metric measure spaces. A map ϕ : Y → X is said to be of bounded deformation

provided it is Lipschitz and of bounded compression (Definition 2.23).
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A map of bounded deformation induces by left composition a map ϕ̂ :

C([0, 1],Y) → C([0, 1],X). It is clear that if γ is absolutely continuous then so

is ϕ̂(γ) and, denoting by mst(ϕ̂(γ)) its metric speed at time t, that

(2.33) mst(ϕ̂(γ)) ≤ Lip(ϕ)|γ̇t| a.e. t.

Also, for µ ∈P(Y) such that µ ≤ CmY we have ϕ∗µ ≤ CComp(ϕ)mX. It follows

that if π is a test plan on Y, then ϕ̂∗π is a test plan on X.

By duality, we now check that for f ∈ S2(X) we have f ◦ ϕ ∈ S2(Y) with

(2.34) |d(f ◦ ϕ)| ≤ Lip(ϕ)|df | ◦ ϕ mY-a.e.

Indeed, let π be a test plan on Y and notice that∫
|f(ϕ(γ1))− f(ϕ(γ0))|dπ(γ) =

∫
|f(γ̃1)− f(γ̃0)|dϕ̂∗π(γ̃)

because ϕ̂∗π is a test plan on X ≤
∫∫ 1

0

|df |(γ̃t)mst(γ̃) dϕ̂∗π(γ̃)

=

∫∫ 1

0

|df |(ϕ(γt))mst(ϕ̂(γ)) dπ(γ)

by (2.33) ≤ Lip(ϕ)

∫∫ 1

0

|df |(ϕ(γt))|γ̇t|dπ(γ),

which, by the arbitrariness of π and the very definition of S2(Y) and the minimal

weak upper gradient, gives the claim.

The next theorem is a direct consequence of this simple observation.

Theorem/Definition 2.35 (Pullback of 1-forms). Let ϕ : Y → X be of bounded

deformation. Then there exists a unique linear and continuous map ϕ∗ :L2(T ∗X)→
L2(T ∗Y), called a pullback of 1-forms, such that

ϕ∗(df) = d(f ◦ ϕ) ∀ f ∈ S2(X),(2.35)

ϕ∗(gω) = g ◦ ϕϕ∗ω ∀ g ∈ L∞(X), ω ∈ L2(T ∗X),(2.36)

and for such a map,

(2.37) |ϕ∗ω| ≤ Lip(ϕ)|ω| ◦ ϕ mY-a.e., ∀ω ∈ L2(T ∗X).

Proof. For a simple form W =
∑
i
χAi

dfi ∈ L2(T ∗X) the requirements (2.35),

(2.36) force the definition ϕ∗W :=
∑
i
χAi ◦ ϕd(fi ◦ ϕ). The inequality∣∣∑

i

χAi ◦ ϕd(fi ◦ ϕ)
∣∣ =

∑
i

χAi ◦ ϕ|d(fi ◦ ϕ)|

(2.34)

≤ Lip(ϕ)
∑
i

(χAi
|dfi|) ◦ ϕ = Lip(ϕ)|W | ◦ ϕ
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shows that the definition of ϕ∗W is well posed—i.e., it depends only on W and

not on the way we write it as
∑
i
χAi

dfi—and that (2.37) holds for simple forms.

In particular we have

‖ϕ∗W‖L2(T∗Y) ≤ Lip(ϕ)

√∫
|W |2 ◦ ϕdmY

≤ Lip(ϕ)
√

Comp(ϕ)‖W‖L2(T∗X) ∀W simple,

showing that the map ϕ∗ so defined is continuous from the space of simple 1-forms

on X to L2(T ∗Y). Hence it can be uniquely extended to a linear continuous map

from L2(T ∗X) to L2(T ∗Y), which clearly satisfies (2.37). Thus by construction we

have (2.35) and (2.36) for simple functions; the validity (2.36) for any g ∈ L∞(X)

then follows by approximation.

Notice that the composition of maps of bounded deformations is of bounded

deformation and by a direct verification of the characterizing properties (2.35),

(2.36) we see that

(ϕ ◦ ψ)∗ = ψ∗ ◦ ϕ∗.

We remark that given a map of bounded deformation ϕ : Y → X we have two

(very) different ways of considering the pullback of 1-forms: the one defined in

the previous theorem, which takes values in L2(T ∗Y), and the one in the sense of

pullback modules, which takes values in the pullback ϕ∗L2(T ∗X) of L2(T ∗X) via

ϕ. To avoid confusion, we shall denote the latter map by [ϕ∗] keeping the notation

ϕ∗ for the former.

With this said, by duality we can now define the differential of a map of

bounded deformation.

Theorem/Definition 2.36 (Differential of a map of bounded deformation). Let

ϕ : Y → X be of bounded deformation and assume that L2(TX) is separable.

Then there exists a unique L∞(Y)-linear and continuous map dϕ : L2(TY) →
ϕ∗L2(TX), called the differential of ϕ, such that

(2.38) [ϕ∗ω]
(
dϕ(v)

)
= ϕ∗ω(v) ∀ω ∈ L2(T ∗X), v ∈ L2(TY)

and it satisfies

(2.39) |dϕ(v)| ≤ Lip(ϕ)|v| mY-a.e., ∀ v ∈ L2(TY).

Proof. Let v ∈ L2(TY) and consider the map Lv : {ϕ∗ω : ω ∈ L2(TX)} → L1(Y)

sending ϕ∗ω to ϕ∗ω(v). The bound (2.37) and the identity |ω| ◦ ϕ = |[ϕ∗]ω| give

|Lv(ω)| ≤ Lip(ϕ)|[ϕ∗]ω| |v| mY-a.e., ∀ω ∈ L2(T ∗X).
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The vector space {ϕ∗ω : ω ∈ L2(T ∗X)} generates ϕ∗L2(T ∗X) and the dual of

this module is—by Theorem 2.31 and the separability assumption on L2(TX)—

the module ϕ∗L2(TX); thus by Proposition 2.17 we deduce that there is a unique

element in ϕ∗L2(TX), which we shall call dϕ(v), for which (2.38) holds and such

a dϕ(v) also satisfies (2.39).

It is clear that the assignment v 7→ dϕ(v) is L∞(Y)-linear and since the

bound (2.39) also ensures that such an assignment is continuous, the proof is

completed.

Remark 2.37. If ϕ is invertible with an inverse of bounded compression, then Re-

mark 2.29 says that the pullback module ϕ∗L2(TX) can be identified with L2(TX)

via the pullback map. Once this identification is done, the differential dϕ can be

seen as a map from L2(TY) to L2(TX) and (2.38) reads

ω(dϕ(v)) = ϕ∗ω(v) ◦ ϕ−1.

�

We shall now relate the differential just built to the notion of “speed of a test

plan” as given by Theorem 2.33 to see that in our setting we have an analogy of

the standard chain rule

(ϕ ◦ γ)′t = dϕ(γ′t),

valid in the smooth world.

As before, let ϕ : Y → X be of bounded deformation, denote by ϕ̂ the induced

map from C([0, 1],Y) to C([0, 1],X) and let π be a test plan on Y. For t ∈ [0, 1]

let us also denote by eXt , eY
t the evaluation maps on C([0, 1],X) and C([0, 1],Y)

respectively.

Notice that [(eY
t )∗]dϕ : L2(TY)→ (eY

t )∗ϕ∗L2(TX) satisfies

|[(eY
t )∗]dϕ(v)| ≤ Lip(ϕ)|v| ◦ eY

t

and thus by the universal property of the pullback given in Proposition 2.27 we see

that there is a unique L∞(π)-linear and continuous map, which we shall denote

by d̂ϕ, from L2(TY, eY
t ,π) to (eY

t )∗ϕ∗L2(TX) such that

d̂ϕ([(eY
t )∗](v)) = [(eY

t )∗]dϕ(v) ∀ v ∈ L2(TY).

We observe that for such a map,(
[(eY

t )∗](ϕ∗ω)
)
(V ) =

(
[(eY

t )∗][ϕ∗](ω)
)(

d̂ϕ(V )
)
∀ω ∈ L2(T ∗X),

V ∈ L2(TY, eY
t ,π);

(2.40)
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indeed, for V of the form (eY
t )∗v for v ∈ L2(TY) this is a direct consequence of

the defining property and the conclusion for general V ’s follows from the fact that

both sides of (2.40) are L∞(π)-linear and continuous in V .

With this said, we have the following result, proved in [20].

Proposition 2.38 (Chain rule for speeds). Assume that L2(TX) is separable.

Then for a.e. t we have

(2.41) d̂ϕ(π′t) = [ϕ̂∗](ϕ̂∗π)′t .

Proof. Both sides of (2.41) define elements of (eY
t )∗ϕ∗L2(TX) ∼ ϕ̂∗(eXt )∗L2(TX),

where the “∼” comes from the functoriality of the pullback (Remark 2.28) and

ϕ ◦ eY
t = eXt ◦ ϕ̂. Since (eY

t )∗ϕ∗L2(TX) is the dual of (eY
t )∗ϕ∗L2(T ∗X) (by the

separability assumption and Theorem 2.31), to prove (2.41) it is sufficient to test

both sides against forms of the kind [(eY
t )∗][ϕ∗](df) for f ∈ S2(X), as they generate

(eY
t )∗ϕ∗L2(T ∗X) (recall Proposition 2.17).

Thus let f ∈ S2(X) and notice that for a.e. t we have

[(eY
t )∗][ϕ∗](df)

(
d̂ϕ(π′t)

)
= [(eY

t )∗](ϕ∗df)(π′t) by (2.40)

= [(eY
t )∗](d(f ◦ ϕ))(π′t) by (2.35)

= L1(π)−lim
h→0

f ◦ ϕ ◦ eY
t+h − f ◦ ϕ ◦ eY

t

h
by definition of π′t

=
(
L1(ϕ̂∗π)−lim

h→0

f ◦ eXt+h − f ◦ eXt
h

)
◦ ϕ̂ because ϕ ◦ eY

t = eXt ◦ ϕ̂

= [(eXt )∗](df)(ϕ̂∗π)′t ◦ ϕ̂ by definition of (ϕ̂∗π)′t

=
(
[ϕ̂∗][(eXt )∗](df)

)(
[ϕ̂∗](ϕ̂∗π)′t

)
by (2.25)

=
(
[(eY

t )∗][ϕ∗](df)
)(

[ϕ̂∗](ϕ̂∗π)′t
)

because ϕ ◦ eY
t = eXt ◦ ϕ̂,

having also used Remark 2.28 in the last step. This is sufficient to conclude.

Remark 2.39. If ϕ is invertible with an inverse of bounded compression we know

from Remark 2.37 that dϕ can be seen as a map from L2(TY) to L2(TX); thus

in this case the lift of its composition with (eXt )∗ to L2(TY, eY
t ,π) provides a map

d̂ϕ from L2(TY, eY
t ,π) to L2(TX, eXt , ϕ̂∗π) and in this case (2.41) reads

d̂ϕ(π′t) = (ϕ̂∗π)′t .

�
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§2.6. Infinitesimally Hilbertian spaces and Laplacian

Definition 2.40 (Infinitesimally Hilbertian spaces). The metric measure space

(X, d,m) is said to be infinitesimally Hilbertian provided L2(T ∗X) (and thus also

L2(TX)) is a Hilbert module.

Remark 2.41. Since f 7→ (f, df) is an isometry of W 1,2(X) into L2(X)×L2(T ∗X)

endowed with the norm ‖(f, ω)‖2 := ‖f‖2L2 + ‖ω‖2L2(T∗X), we see that if X is

infinitesimally Hilbertian, then W 1,2(X) is a Hilbert space.

It is possible, although not entirely trivial, to show that also the converse

implication holds, i.e., ifW 1,2(X) is Hilbert, then so is L2(T ∗X). In fact, the original

definition of infinitesimally Hilbertian spaces given in [26] adopted such a “W 1,2”

approach, but for the purpose of this note we preferred to start with the seemingly

more powerful definition above. �

By Proposition 2.16 we know that L2(T ∗X) and L2(TX) are isomorphic as

L∞-modules. For f ∈ S2(X), the image of df under such an isomorphism is called

the gradient of f and denoted by ∇f . Directly from (2.14) and (2.15) it follows

that

∇(ϕ ◦ f) = ϕ′ ◦ f∇f, ∀ f ∈ S2(X), ϕ ∈ LIP ∩ C1(R),

∇(fg) = f∇g + g∇f ∀ f, g ∈ L∞ ∩ S2(X).

Remark 2.42. Remark 2.41 and (2.8) grant that W 1,2(X) is separable. Hence by

Remark 2.9 we see that L2(T ∗X), and thus also L2(TX), is separable. Thus all the

results of the previous sections are applicable. �

Notice also that both L2(T ∗X) and L2(TX) are endowed with a pointwise

scalar product.

Definition 2.43 (Laplacian). The space D(∆) is the space of all functions f ∈
W 1,2(X) such that there is h ∈ L2(X) for which∫

hg dm = −
∫
〈∇f,∇g〉 dm ∀ g ∈W 1,2(X).

In this case the function h is called the Laplacian of f and denoted by ∆f .

In other words, ∆ is the infinitesimal generator associated to (as well as the

opposite of the subdifferential of) the Dirichlet form

(2.42) E(f) :=


1

2

∫
|df |2 dm if f ∈W 1,2(X),

+∞ otherwise,
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in particular is a closed operator and from the density of {E < ∞} = W 1,2(X) in

L2(X) it follows that D(∆) is dense in W 1,2(X). It is also clear from the definitions

that

f ∈ D(∆) ⇔ ∇f ∈ D(div) and in this case ∆f = div(∇f),

and thus recalling (2.24) we see that

(2.43) on infinitesimally Hilbertian spaces the space D(div) is dense in L2(TX).

The following calculus rules are also easily established:

∆(ϕ ◦ f) = ϕ′ ◦ f∆f + ϕ′′ ◦ f |∇f |2 ∀ f ∈ LIPb(X) ∩D(∆), ϕ ∈ C2(R),(2.44)

∆(fg) = f∆g + g∆f + 2 〈∇f,∇g〉 ∀ f, g ∈ LIPb(X) ∩D(∆).(2.45)

For instance, for the second, notice that for h ∈ W 1,2(X) and f , g as stated, we

have fh, gh ∈W 1,2(X) and thus the claim follows from∫
〈∇h,∇(fg)〉 dm =

∫
〈∇(fh),∇g〉+ 〈∇(gh),∇f〉 − 2h 〈∇f,∇g〉 dm.

Remark 2.44. In [42] a different construction of “L2 1-forms” was introduced in

relation to Dirichlet forms E admitting a Carré du champ Γ. Adapting the original

presentation slightly, the construction starts by defining a symmetric bilinear map

from [L∞(X)⊗D(E)]2 to L1(X) by putting

〈f ⊗ g, f ′ ⊗ g′〉 := ff ′ Γ(g, g′) ∀ f, f ′ ∈ L∞(X), g, g′ ∈ D(E)

and extending it by bilinearity. Then one defines the seminorm ‖·‖ on L∞(X)⊗D(E)

by putting

‖ω‖2 :=

∫
〈ω, ω〉dm ∀ω ∈ L∞(X)⊗D(E),

then passes to the quotient and finally to the completion. Calling the resulting

Banach space M it is easy to check that it comes with the structure of an L2-

normed module, the pointwise norm being given by |ω| :=
√
〈ω, ω〉 and the product

with L∞-functions as (the linear continuous extension of) h · (f ⊗ g) := (hf)⊗ g.

In particular, the space of forms of the kind 1⊗ g, for g ∈ D(E), generates M

and it holds that |1⊗ g| =
√

Γ(g, g).

In the case of infinitesimally Hilbertian spaces, the form E defined in (2.42)

is a Dirichlet form whose Carré du champ is given (thanks to (2.45)) by Γ(f, g) =

〈∇f,∇g〉 and in particular Γ(g, g) = |dg|2. This and Theorem 2.8 (and Remark 2.9)

show that the cotangent module L2(T ∗X) and the space M coincide, meaning that

the map sending dg to 1 ⊗ g, for g ∈ W 1,2(X) = D(E), uniquely extends to an

isomorphism of modules. �
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We conclude with a proposition (which concentrates results from [8], [9], [26]

and [25]) which is crucial in the application of this theory to the study of the ge-

ometry of RCD spaces: it provides an explicit differentiation formula along (appro-

priate) W2-geodesics. Both the statement and the proof rely on notions of optimal

transport; see, for instance, [47], [4], [41] for an introduction to the topic. Notice

that the result can be read as a purely metric version of the Brenier–McCann

theorem about optimal maps and W2-geodesics.

Theorem 2.45 (Derivation along geodesics). Let (X, d,m) be an infinitesimally

Hilbertian space and t 7→ µt = ρtm ⊂ P2(X) a W2-geodesic made of measures

with uniformly bounded supports and densities. Assume also that for some, and

thus any, p ∈ [1,∞), the map t 7→ ρt ∈ Lp(m) is continuous.

Then for every f ∈W 1,2(X) the map t 7→
∫
f dµt is C1([0, 1]) and the formula

(2.46)
d

dt

∫
f dµt = −

∫
〈∇f,∇ϕt〉 dµt ∀ t ∈ [0, 1],

where ϕt is, for every t ∈ [0, 1], Lipschitz and such that for some s 6= t the function

(s− t)ϕ is a Kantorovich potential from µt to µs.

Note: on RCD(K,∞) spaces every W2-geodesic such that µ0, µ1 have both

bounded densities and support satisfy the assumptions (see [40]).

Sketch of the proof.

Step 1. Let ϕ be a Lipschitz Kantorovich potential from µ0 to µ1 and let π be

a lifting of (µt), i.e., so that (et)∗π = µt for every t ∈ [0, 1], π is concentrated on

geodesics and (e0, e1)∗π is an optimal plan. We claim that

(2.47) lim
t→0

∫
ϕ(γ0)− ϕ(γt)

t
dπ(γ) ≥ 1

2

∫
|dϕ|2 dµ0 +

1

2
W 2

2 (µ0, µ1).

To see this, start by noticing that γ1 ∈ ∂cϕ(γ0) for π-a.e. γ and thus for π-a.e. γ

we have

ϕ(z)− ϕ(γ0) ≤ d2(z, γ1)

2
− d2(γ0, γ1)

2
≤ d(z, γ0)

d(z, γ1) + d(γ0, γ1)

2
.

Taking the positive part, dividing by d(z, γ0) and letting z → γ0 we obtain

(2.48) |dϕ|(γ0) ≤ lim
z→γ0

(ϕ(z)− ϕ(γ0))+

d(z, γ0)
≤ d(γ0, γ1) π-a.e. γ,

where the first inequality is an easy consequence of the definition of a minimal

weak upper gradient and the fact that ϕ is Lipschitz. On the other hand, still from
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γ1 ∈ ∂cϕ(γ0) for π-a.e. γ we have

ϕ(γ0)−ϕ(γt) ≥
d2(γ0, γ1)

2
− d2(γt, γ1)

2
= d2(γ0, γ1)(t−t2/2) ∀ t ∈ (0, 1) π-a.e. γ.

Thus

lim
t→0

∫
ϕ(γ0)− ϕ(γt)

t
dπ(γ) ≥

∫
lim
t→0

ϕ(γ0)− ϕ(γt)

t
dπ(γ) ≥

∫
d2(γ0, γ1) dπ(γ)

and since
∫
d2(γ0, γ1) dπ(γ) = W 2

2 (µ0, µ1), this inequality and (2.48) give (2.47).

Step 2. Let π be as before, notice that it is a test plan and let f ∈ W 1,2(X).

Then ∫
f(γt)− f(γ0)

t
dπ(γ) ≤ 1

t

∫∫ t

0

|df |(γs)|γ̇s|dsdπ(γ)

≤ 1

2t

∫∫ t

0

|df |2ρs dsdm +
1

2
W 2

2 (µ0, µ1).

Passing to the limit, noticing that (ρt) ⊂ L∞ is weakly∗-continuous, we conclude

that

lim
t→0

∫
f(γt)− f(γ0)

t
dπ(γ) ≤ 1

2

∫
|df |2 dµ0 +

1

2
W 2

2 (µ0, µ1).

Write this inequality with εf −ϕ in place of f and subtract (2.47) to deduce that

lim
t→0

ε

∫
f(γt)− f(γ0)

t
dπ(γ) ≤ 1

2

∫
|d(εf − ϕ)|2 − |dϕ|2 dµ0.

Dividing by ε > 0 (resp. ε < 0) and letting ε ↓ 0 (resp. ε ↑ 0) and noticing that
|d(εf−ϕ)|2−|dϕ|2

ε = −2 〈∇f,∇ϕ〉+ ε|df |2 we conclude that

(2.49)
d

dt

∫
f dµt|t=0

= −
∫
〈∇f,∇ϕ〉 dµ0.

Step 3. By rescaling, we see from (2.49) that formula (2.46) holds for any t, so

that to conclude, it remains to prove that the right-hand side is continuous in t.

Notice also that we have free choice of the (rescaled) Kantorovich potentials in

(2.46) and thus we may assume that they are equi-Lipschitz. Then since uniform

limits of Kantorovich potentials are Kantorovich potentials, it is easy to see that

to conclude it is sufficient to prove that for tn → t and (ϕtn) uniformly Lipschitz

and uniformly converging to some ϕt we have

lim
n→∞

∫
〈∇f,∇ϕtn〉 ρtn dm =

∫
〈∇f,∇ϕt〉 ρt dm.

Since the ρt’s have uniformly bounded support, up to multiplying the ϕ’s by

an appropriate cut-off we can assume that the ϕ’s are bounded in W 1,2(X) and
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thus that the convergence of (ϕtn) to ϕ is weak in W 1,2(X). Thus (∇ϕn) weakly

converges to ∇ϕt in L2(TX) and, by the assumptions on ρt, (ρtn∇f) strongly

converges to ρt∇f in L2(TX). The thesis follows.

Remark 2.46. In connection with Theorem 2.33, the proof of this last proposition

can be used to show that if X is essentially non-branching (a property that in

particular holds on RCD(K,∞) spaces—see [40]) for π as in the proof, the vector

fields π′t are defined for every t (and not just for a.e. t) and are given by

π′t = e∗t (∇ϕt).

This follows by noticing that for A ⊂ C([0, 1],X) Borel with π(A) > 0, the plan

πA := (π(A))−1π|A is still a test plan and the curve t 7→ (et)∗πA still satisfies the

assumptions (the essential non-branching is needed to ensure that time continuity

of the densities is preserved) with the same functions ϕ. �

§3. Second-order theory for RCD spaces

§3.1. Definition of RCD spaces

From now on, we shall always assume that our space satisfies the Riemannian

curvature dimension condition RCD(K,∞), the definition being ([10]) as follows.

Definition 3.1 (RCD(K,∞) spaces). Let K ∈R. Then (X, d,m) is an RCD(K,∞)

space provided that

(i) it is infinitesimally Hilbertian;

(ii) for some C > 0 and x ∈ X it holds that m(Br(x)) ≤ eCr2 for every r > 0;

(iii) every f ∈ W 1,2(X) with |df | ∈ L∞(X) admits a Lipschitz representative f̃

with Lip(f̃) ≤ ‖ |df |‖L∞ ;

(iv) for every f ∈ D(∆) with ∆f ∈W 1,2(X) and g ∈ L∞(X) ∩D(∆) with g ≥ 0,

∆g ∈ L∞(X), the Bochner inequality holds:

(3.1)
1

2

∫
|df |2∆g dm ≥

∫
g
(
〈∇f,∇∆f〉+K|df |2

)
dm.

In some sense the “truly defining” properties are (i) and (iv), while (ii), (iii) are

more of a technical nature: (ii) is necessary to ensure a priori that the heat flow—

see below—preserves the mass, while (iii) grants that Sobolev functions determine

the metric of the space (notice that there are doubling spaces supporting a Poincaré

inequality for which (iii) fails).

The heat flow (ht) on X is the gradient flow of (= the flow associated to)

the Dirichlet form E, i.e., for f ∈ L2(X) the map t 7→ htf ∈ L2(X) is the only



Differential calculus on RCD spaces 889

continuous curve on [0,∞) which is absolutely continuous on (0,∞) and such that

h0f = f and
d

dt
htf = ∆htf a.e. t > 0.

It is possible to check (we omit the details) that the heat flow satisfies the weak

maximum principle

f ≤ C m-a.e. ⇒ htf ≤ C m-a.e., ∀ t ≥ 0

and thus it can be extended to L1 +L∞(X). Then from (3.1) one gets the following

important Bakry-Émery estimate: for every f ∈W 1,2(X) and t ≥ 0,

(3.2) |dhtf |2 ≤ e−2Ktht(|df |2) m-a.e.

Formally, this comes from noticing that the derivative of [0, t] 3 s 7→ F (s) :=

ht−s(|dhsf |2) is given by

ht−s
(
−∆(|dhsf |2) + 2 〈∇hsf,∇∆hsf〉

)
and this is ≤ −2KF (s) by the Bochner inequality (3.1). Then one concludes with

Gronwall’s lemma.

We shall also make use of the L∞-Lip regularization: for f ∈ L∞(X) and t > 0

we have htf ∈ LIP(X) with

(3.3)

√
2

∫ t

0

e2Ks ds Lip(htf) ≤ ‖f‖L∞ .

This, again formally, follows by integrating in s ∈ [0, t] the bound

d

ds
hs(|ht−sf |2) = hs

(
∆|ht−sf |2 − 2ht−sf∆ht−sf

)
(2.45)

= 2hs(|dht−sf |2)

(3.2)

≥ 2e2Ks|dhtf |2,

and then using the weak maximum principle and property (iii) in the definition of

RCD spaces.

§3.2. Measure-valued Laplacian and test functions

A key tool that we shall use to develop second-order calculus on RCD spaces is the

notion of a “test function” introduced in [43]:

Test(X) :=
{
f bounded, Lipschitz, in D(∆) with ∆f ∈W 1,2(X)

}
.

From (3.3) and general regularization properties of the heat flow we have

f ∈ L2 ∩ L∞(X), f ≥ 0 ⇒ htf ∈ Test(X), htf ≥ 0, ∀ t > 0,
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and thus in particular that Test(X) is dense in W 1,2(X). To analyze the properties

of test functions it is useful to introduce the following notion, coming from [26].

Definition 3.2 (Measure-valued Laplacian). Let f ∈W 1,2(X). We say that f has

a measure-valued Laplacian, and write f ∈ D(∆), provided there exists a Borel

measure µ on X finite on bounded sets such that∫
g dµ = −

∫
〈∇f,∇g〉 dm for every g ∈ LIP(X) with bounded support.

In this case the measure µ, which is clearly unique, will be denoted by ∆f .

It is readily verified that this concept is fully compatible with the one given

in Definition 2.43, in the sense that

f ∈ D(∆) ⇔ f ∈ D(∆) with ∆f � m and
d∆f

dm
∈ L2(X),

and in this case ∆f = ∆f m,

and one can check that

(3.4) f ∈ D(∆), |df | ∈ L1(X) ⇒ ∆f(X) = 0

(this is trivial if m(X) <∞, for the general case one approximates the constant 1

with functions with uniformly bounded Laplacian).

We then have the following crucial property, proved in [43], which is the first

crucial step towards second-order calculus in RCD spaces: among others, it provides

Sobolev regularity for |df |2 for any f ∈ Test(X) (in contrast, without any lower

Ricci bound it seems impossible to exhibit non-constant functions f for which |df |
has any kind of regularity).

Theorem 3.3. Let f ∈ Test(X). Then |df |2 ∈ D(∆) ⊂W 1,2(X) and

(3.5)
1

2
∆|df |2 ≥

(
〈∇f,∇∆f〉+K|df |2

)
m.

Sketch of the proof. From the fact that |df |2, 〈∇f,∇∆f〉 + K|df |2 ∈ L2(X) one

can check that (3.1) holds for any g ∈ D(∆) non-negative. Picking g := ht(|df |2)

we obtain∫
|dht/2(|df |2)|2 dm = −

∫
|df |2∆ht(|df |2) dm

(3.1)

≤ −
∫

ht(|df |2)
(
〈∇f,∇∆f〉+K|df |2

)
m

≤ ‖ |df |2‖L∞
∫ ∣∣ 〈∇f,∇∆f〉+K|df |2

∣∣m,
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so that letting t ↓ 0 we conclude that |df |2 ∈ W 1,2(X). Now, at least if X is

compact, |df |2 ∈ D(∆) and (3.5) both follow noticing that from (3.1) we have

that the linear operator

C(X) ∩D(∆) 3 g 7→ L(g) :=

∫
∆g
|df |2

2
− g
(
〈∇f,∇∆f〉+K|df |2

)
dm

is such that L(g) ≥ 0 for g ≥ 0. Hence it must coincide with the integral of g w.r.t.

a non-negative measure.

A direct, and important, property that follows from the above is that

Test(X) is an algebra.

Indeed, in checking that fg ∈ Test(X) for f, g ∈ Test(X) the only non-trivial thing

to prove is that ∆(fg) ∈ W 1,2(X). Since it is clear that f∆g, g∆f ∈ W 1,2(X), by

the Leibniz rule for the Laplacian (2.45), to conclude it is sufficient to show that

〈∇f,∇g〉 ∈W 1,2(X). This follows by polarization from Theorem 3.3.

§3.3. The space W 2,2(X)

3.3.1. Tensor product of Hilbert modules. Let H1, H2 be two Hilbert mod-

ules on X and denote by H1⊗Alg H2 their tensor product as L∞-modules, so that

H1 ⊗Alg H2 can be seen as the space of formal finite sums of objects of the kind

v1 ⊗ v2 with (v1, v2) 7→ v1 ⊗ v2 being L∞-bilinear.

We define the L∞-bilinear and symmetric map “:” from [H1 ⊗Alg H2]2 to

L0(X) by putting

(v1 ⊗ v2) : (v′1 ⊗ v′2) := 〈v1, v
′
1〉1 〈v2, v

′
2〉2 ,

where 〈·, ·〉i is the pointwise scalar product on Hi, i = 1, 2, and extending it by

L∞-bilinearity. It is readily verified that this definition is well posed and that the

resulting map is positively definite in the sense that for any A ∈H1 ⊗Alg H2 and

E ⊂ X Borel,

A : A ≥ 0 m-a.e.

A : A = 0 m-a.e. on E if and only if A = 0 m-a.e. on E.

Then define the Hilbert–Schmidt pointwise norm as

|A|HS :=
√
A : A ∈ L0(X)

and the tensor product norm as

‖A‖H1⊗H2
:=

√∫
|A|2HS dm ∈ [0,+∞].
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We are now ready to give the following definition.

Definition 3.4 (Tensor product of Hilbert modules). The space H1 ⊗H2 is de-

fined as the completion of{
A ∈H1 ⊗Alg H2 : ‖A‖H1⊗H2 <∞

}
w.r.t. the tensor product norm ‖ · ‖H1⊗H2

.

The multiplication by L∞-functions in H1 ⊗Alg H2 is easily seen to induce

by continuity a multiplication by L∞-functions on H1 ⊗H2 which together with

the pointwise norm | · |HS show that H1 ⊗H2 comes with the structure of L2-

normed module. Moreover, since |·|HS satisfies the pointwise parallelogram identity,

H1 ⊗H2 is in fact a Hilbert module.

If H1 = H2, the tensor product will be denoted H ⊗2. In this case the map

v1 ⊗ v2 7→ v2 ⊗ v1 on H1 ⊗Alg H2 induces an automorphism A 7→ At, called a

transposition, on H ⊗2 and for a generic A ∈H ⊗2 we put

ASym :=
A+At

2
, AAsym :=

A−At

2

for the symmetric and antisymmetric parts of A, respectively. It is then clear that

(3.6) |A|2HS = |ASym|2HS + |AAsym|2HS m-a.e., ∀A ∈H ⊗2.

We shall write L2((T ∗)⊗2X) (resp. L2(T⊗2X)) for the tensor product of L2(T ∗X)

(resp. L2(TX)) with itself. These modules are the dual of each other and we shall

typically write A(X,Y ) in place of A(X ⊗ Y ) for A ∈ L2((T ∗)⊗2X) and X ⊗ Y ∈
L2(T⊗2X).

Notice that L2(T ∗X) being separable (Remark 2.42), then so is L2((T ∗)⊗2X),

and the same for L2(T⊗2X).

3.3.2. Definition of W 2,2(X). Recall that on a smooth Riemannian manifold,

the Hessian of the smooth function f is characterized by the validity of the identity

2Hess(f)(∇g1,∇g2) = 〈∇(〈∇f,∇g1〉),∇g2〉+ 〈∇(〈∇f,∇g2〉),∇g1〉
− 〈∇f,∇(〈∇g1,∇g2〉)〉

for any smooth functions g1, g2. This motivates the following definition.

Definition 3.5 (The space W 2,2(X) and the Hessian). The space W 2,2(X) is the

set of all the functions f ∈ W 1,2(X) for which there exists A ∈ L2((T ∗)⊗2X) such
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that

2

∫
hA(∇g1,∇g2) dm = −

∫
〈∇f,∇g1〉div(h∇g2) + 〈∇f,∇g2〉div(h∇g1)

+ h 〈∇f,∇〈∇g1,∇g2〉〉 dm

(3.7)

for every g1, g2 ∈ Test(X) and h ∈ LIPb(X). Such an A will be called the Hessian

of f and denoted by Hessf . The space W 2,2(X) is equipped with the norm

‖f‖2W 2,2(X) := ‖f‖2L2(X) + ‖df‖2L2(T∗X) + ‖Hessf‖2L2((T∗)⊗2X).

From the density of Test(X) in W 1,2(X) it easily follows that the Hessian, if

it exists, is unique and thus in particular the W 2,2-norm is well defined. Notice

that in giving the above definition we used Theorem 3.3, in a crucial way, to grant

that 〈∇g1,∇g2〉 ∈ W 1,2(X) so that the last addend in the integral in (3.7) is well

defined.

The following result is easily verified.

Theorem 3.6. We have

(i) W 2,2(X) is a separable Hilbert space;

(ii) the Hessian is a closed operator, i.e., the set {(f,Hess(f)) : f ∈W 2,2(X)} is

a closed subset of W 1,2(X)× L2((T ∗)⊗2X);

(iii) for every f ∈ W 2,2(X) the Hessian Hess(f) is symmetric, i.e., Hess(f)t =

Hess(f).

Proof. For given g1, g2, h ∈ Test(X) the left- (resp. right-) hand side of (3.7) is

continuous w.r.t. A ∈ L2((T ∗)⊗2X) (resp. f ∈ W 1,2(X)). Point (ii) and the com-

pleteness of W 2,2 follow. The fact that the W 2,2-norm satisfies the parallelogram

rule is obvious. For the separability, notice that L2(X)× L2(T ∗X)× L2((T ∗)⊗2X)

endowed with its natural Hilbert structure is separable and that the map

W 2,2(X) 3 f 7→ (f, df,Hessf) ∈ L2(X)× L2(T ∗X)× L2((T ∗)⊗2X)

is an isometry. Point (iii) comes from the symmetry in g1, g2 of (3.7).

Remark 3.7. As the example of a weighted Riemannian manifold shows, in gen-

eral the Laplacian is not the trace of the Hessian. �

3.3.3. Existence of W 2,2-functions. It is not at all obvious that W 2,2(X) con-

tains any non-constant function. This (and much more) is ensured by the following

crucial lemma which is about the self-improving of the Bochner inequality. Read

in the smooth setting, the claim says that for the vector field X :=
∑
i gi∇fi and
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the 2-tensor A :=
∑
j ∇hj ⊗∇hj ,

(3.8) |∇X : A|2 ≤
(

∆
|X|2

2
+ 〈X,∆HX〉 −K|X|2 − |(∇X)Asym|2HS

)
|A|2HS ;

see also Lemma 3.33. Given that for the moment we don’t have the covariant

derivative and the Hodge Laplacian, we have to state (3.8) by “unwrapping” these

operators.

From now on, we shall denote by Meas(X) the space of finite Borel measures

on X equipped with the total variation norm. Then for f, g, h ∈ Test(X) it will be

useful to introduce Γ2(f, g) ∈ Meas(X) and H[f ](g, h) ∈ L1(X) as

Γ2(f, g) :=
1

2

(
∆(〈∇f,∇g〉)−

(
〈∇f,∇∆g〉+ 〈∇g,∇∆f〉

)
m
)
,

H[f ](g, h) :=
1

2

(
〈∇(〈∇f,∇g〉),∇h〉+ 〈∇(〈∇f,∇h〉),∇g〉 − 〈∇f,∇(〈∇g,∇h〉)〉

)
.

We shall also write

Γ2(f, g) = γ2(f, g)m + Γs2(f, g), with Γs2(f, g) ⊥ m.

We then have the following lemma.

Lemma 3.8 (Key inequality). Let n,m ∈ N and fi, gi, hj ∈ Test(X), i = 1, . . . , n,

j = 1, . . . ,m. Define the measure µ = µ
(
(fi), (gi)

)
∈ Meas(X) as

µ
(
(fi), (gi)

)
:=
∑
i,i′

gigi′
(
Γ2(fi, fi′)−K 〈∇fi,∇fi′〉m

)
+
(

2giH[fi](fi′ , gi′) +
〈∇fi,∇fi′〉 〈∇gi,∇gi′〉+〈∇fi,∇gi′〉 〈∇gi,∇fi′〉

2

)
m,

and write it as µ = ρm + µs with µs ⊥ m.

Then

(3.9) µs ≥ 0

and

(3.10)

∣∣∣∣∑
i,j

〈∇fi,∇hj〉 〈∇gi,∇hj〉+ giH[fi](hj , hj)

∣∣∣∣2 ≤ ρ∑
j,j′

| 〈∇hj ,∇hj′〉 |2.

Sketch of the proof. We shall prove the thesis in the simplified case n = m = 1

and g1 ≡ 1 (this is the original argument in [16] as adapted to RCD(K,∞) spaces
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in [43]): in this case the measure µ is given by µ = Γ2(f, f)−K 〈∇f,∇f〉m. Then

(3.9) follows from (3.5) and (3.10) reads

(3.11)
∣∣H[f ](h, h)

∣∣2 ≤ (γ2(f, f)−K〈∇f,∇f〉
)
|∇h|4.

For λ, c ∈ R define Φλ,c = Φλ,c(f, h) := λf + h2 − 2ch ∈ Test(X). It is only a

matter of computation to check that

γ2(Φλ,c,Φλ,c)−K|∇Φλ,c|2 = λ2
(
γ2(f, f)−K|∇f |2

)
+ 4λH[f ](h, h)

+ 4|∇h|4 + (h− c)Fλ,c

for some Fλ,c ∈ L1(X,m) so that c 7→ Fλ,c ∈ L1(X,m) is continuous. It follows that

m-a.e. the inequality γ2(Φλ,c,Φλ,c) − K|∇Φλ,c|2 ≥ 0 (which comes from (3.5))

holds for any c ∈ R. Hence for m-a.e. x we can take c = h(x) and conclude that

λ2
(
γ2(f, f)−K|∇f |2

)
+ 4λH[f ](h, h) + 4|∇h|4 ≥ 0 m-a.e.

and (3.11) follows by the arbitrariness of λ ∈ R.

The general case follows by a similar optimization argument using Φ(fi, gi, hj)

in place of Φ(f, h) for Φ given by

Φ(x1, . . . , xn, y1, . . . , yn, z1, . . . , zm) :=
∑
i

(λxiyi + aixi − biyi) +
∑
j

z2
j − 2cjzj ;

we omit the details.

The first important consequence of this lemma is the following result, which

shows in particular that W 2,2(X) is dense in W 1,2(X).

Theorem 3.9. Let f ∈ Test(X). Then f ∈W 2,2(X) and

(3.12) |Hessf |2HS ≤ γ2(f, f)−K|∇f |2 m-a.e.,

and moreover for every g1, g2 ∈ Test(X),

(3.13) H[f ](g1, g2) = Hessf(∇g1,∇g2) m-a.e.

Proof. We apply Lemma (3.8) with n = 1 for given functions f, hj ∈ Test(X),

j = 1, . . . ,m and g ≡ 1 (this is admissible at least if m(X) <∞; in the general case

an approximation argument is required). In this case, also recalling the definition

of a pointwise norm on L2(T⊗2X), inequality (3.10) reads

(3.14)

∣∣∣∣∑
j

H[f ](hj , hj)

∣∣∣∣ ≤√γ2(f, f)−K|∇f |2
∣∣∣∑
j

∇hj ⊗∇hj
∣∣∣
HS

m-a.e.
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Now notice that for arbitrary hj , h
′
j ∈ Test(X), gj ∈ LIPb(X) we have

gjH[f ](hj , h
′
j) =

1

2
gj

(
H[f ](hj + h′j , hj + h′j)−H[f ](hj , hj)−H[f ](h′j , h

′
j)
)
,

gj
∇hj ⊗∇h′j +∇h′j ⊗∇hj

2

= gj
∇(hj + h′j)⊗∇(hj + h′j)−∇hj ⊗∇hj −∇h′j ⊗∇h′j

2
,

hence taking into account the trivial inequality |ASym|HS ≤ |A|HS m-a.e. (recall

(3.6)) for A :=
∑
j gj∇hj ⊗∇h′j , from (3.14) we obtain∣∣∣∑

j

gjH[f ](hj , h
′
j)
∣∣∣

≤
√
γ2(f, f)−K|∇f |2

∣∣∣∣∑
j

gj
∇hj ⊗∇h′j +∇h′j ⊗∇hj

2

∣∣∣∣
HS

≤
√
γ2(f, f)−K|∇f |2

∣∣∣∑
j

gj∇hj ⊗∇h′j
∣∣∣
HS
.

(3.15)

Now let V ⊂ L2(T⊗2X) be the space of linear combinations of tensors of the form

g∇h⊗∇h′ for h, h′ ∈ Test(X), g ∈ LIPb(X) and define A : V → L0(X) as

A
(∑

j

gj∇hj ⊗∇h′j
)

:=
∑
j

gjH[f ](hj , h
′
j).

From (3.15) we see that this is a good definition, i.e., that A(T ) depends only on

T . Moreover, recalling that by (3.9) we have Γs2(f, f) ≥ 0, we obtain∫
γ2(f, f)−K|∇f |2 dm ≤ Γ2(f, f)(X)−K

∫
|∇f |2 dm

(3.4)
=

∫
(∆f)2 −K|∇f |2 dm;

(3.16)

hence from (3.15) we deduce that

‖A(T )‖L1(X) ≤

√∫
(∆f)2 −K|∇f |2 dm ‖T‖L2(T⊗2X) ∀T ∈ V.

It is readily verified that V is dense in L2(T⊗2X), therefore A can be uniquely

extended to a continuous linear operator from L2(T⊗2X) to L1(X) which is readily

checked to be L∞-linear. In other words, A ∈ L2((T ∗)⊗2X).

Now let h1, h2 ∈ Test(X), g ∈ LIPb(X) be arbitrary and notice that we have∫
A(g∇h1 ⊗∇h2) dm = 2

∫
gH[f ](h1, h2) dm
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and, by the definition of H[f ] and after an integration by parts, that

2

∫
gH[f ](h1, h2) dm =

∫
−〈∇f,∇h1〉div(g∇h2)− 〈∇f,∇h2〉div(g∇h1)

− g
〈
∇f,∇〈∇h1,∇h2〉

〉
dm.

These show that f ∈ W 2,2(X) with Hessf = A and that (3.13) holds. For (3.12)

notice that (3.15) can be restated as

|Hessf(T )| ≤
√
γ2(f, f)−K|∇f |2 |T |HS ∀T ∈ V,

and once again use the density of V in L2(T⊗2X) to conclude.

In particular, we have the following important corollary.

Corollary 3.10. We have D(∆) ⊂W 2,2(X) and

(3.17)

∫
|Hessf |2HS dm ≤

∫
(∆f)2 −K|∇f |2 dm ∀ f ∈ D(∆).

Sketch of the proof. For f ∈ Test(X) the claim follows by integrating (3.12) and

recalling (3.16). The general case is then achieved by approximation, recalling that

the Hessian is a closed operator.

Such a corollary ensures that the following definition is meaningful.

Definition 3.11. We define H2,2(X) as the W 2,2-closure of D(∆) ⊂W 2,2(X).

It is not hard to check that H2,2(X) also coincides with the W 2,2(X) closure

of Test(X); on the other hand, it is important to underline that it is not at all clear

whether H2,2(X) coincides with W 2,2(X) or not.

3.3.4. Calculus rules.

Proposition 3.12 (Product rule for functions). Let f1, f2 ∈ LIPb ∩ W 2,2(X).

Then f1f2 ∈W 2,2(X) and the formula

(3.18) Hess(f1f2) = f2Hessf1 + f1Hessf2 + df1 ⊗ df2 + df2 ⊗ df1 m-a.e.

holds.

Proof. It is obvious that f1f2 ∈W 1,2(X) and that the right-hand side of (3.18) de-

fines an object in L2((T ∗)⊗2X). Now let g1, g2 ∈ Test(X), h ∈ LIPb(X) be arbitrary
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and notice that

− 〈∇(f1f2),∇g1〉 div(h∇g2)

= −f1 〈∇f2,∇g1〉 div(h∇g2)− f2 〈∇f1,∇g1〉 div(h∇g2)

= −〈∇f2,∇g1〉 div(f1h∇g2) + h 〈∇f2,∇g1〉 〈∇f1,∇g2〉
− 〈∇f1,∇g1〉 div(f2h∇g2) + h 〈∇f1,∇g1〉 〈∇f2,∇g2〉 .

Exchanging the roles of g1, g2, noticing that

−h
〈
∇(f1f2),∇〈∇g1,∇g2〉

〉
= −hf1

〈
∇f2,∇〈∇g1,∇g2〉

〉
− hf2

〈
∇f1,∇〈∇g1,∇g2〉

〉
,

adding everything up, integrating and observing that f1h, f2h ∈ LIPb(X), we con-

clude.

Proposition 3.13 (Chain rule). Let f ∈ LIP ∩ W 2,2(X) and ϕ : R → R be a

C2-function with uniformly bounded first and second derivatives (and ϕ(0) = 0 if

m(X) = +∞).

Then ϕ ◦ f ∈W 2,2(X) and the formula

(3.19) Hess(ϕ ◦ f) = ϕ′′ ◦ f df ⊗ df + ϕ′ ◦ f Hessf m-a.e.

holds.

Proof. It is obvious that ϕ◦f ∈W 1,2(X) and that the right-hand side of (3.19) de-

fines an object in L2((T ∗)⊗2X). Now let g1, g2 ∈ Test(X), h ∈ LIPb(X) be arbitrary

and notice that

−〈∇(ϕ ◦ f),∇g1〉 div(h∇g2) = −ϕ′ ◦ f 〈∇f,∇g1〉 div(h∇g2)

= −〈∇f,∇g1〉 div(ϕ′ ◦ fh∇g2)

+ hϕ′′ ◦ f 〈∇f,∇g1〉 〈∇f,∇g2〉 .

Similarly,

−〈∇(ϕ ◦ f),∇g2〉 div(h∇g1) = −〈∇f,∇g2〉 div(ϕ′ ◦ fh∇g1)

+ hϕ′′ ◦ f 〈∇f,∇g2〉 〈∇f,∇g1〉

and

−h
〈
∇(ϕ ◦ f),∇〈∇g1,∇g2〉

〉
= −hϕ′ ◦ f

〈
∇f,∇〈∇g1,∇g2〉

〉
.

To conclude, add up these three identities, integrate and notice that hϕ′ ◦ f ∈
LIPb(X).
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Proposition 3.14 (Product rule for gradients). Let f1, f2 ∈ LIP∩H2,2(X). Then

〈∇f1,∇f2〉 ∈W 1,2(X) and

(3.20) d 〈∇f1,∇f2〉 = Hessf1(∇f2, ·) + Hessf2(∇f1, ·) m-a.e.

Sketch of the proof. For f1, f2 ∈ Test(X) the fact that 〈∇f1,∇f2〉 ∈ W 1,2(X)

follows from Theorem 3.3 by polarization. Also, by the very definition of H[f ], we

know that for any g ∈ Test(X),

〈〈∇f1,∇f2〉 ,∇g〉 = H[f1](f2, g) +H[f2](f1, g);

hence in this case the conclusion comes from (3.13) and the arbitrariness of g.

The general case follows by approximation by observing that with an argument

based on truncation and regularization with the heat flow, we can approximate

any f ∈ LIP ∩ H2,2(X) in the H2,2(X)-topology with test functions which are

uniformly Lipschitz.

§3.4. Covariant derivative

3.4.1. Sobolev vector fields. The definition of Sobolev vector fields is based

on the identity

〈∇∇g2X,∇g1〉 = 〈∇(〈X,∇g1〉),∇g2〉 −Hess(g1)(X,∇g1),

valid in the smooth world for smooth functions g1, g2 and a smooth vector field X.

Definition 3.15 (The Sobolev space W 1,2
C (TX)). The Sobolev spaceW 1,2

C (TX) ⊂
L2(TX) is the space of all X ∈ L2(TX) for which there exists T ∈ L2(T⊗2X) such

that for every g1, g2 ∈ Test(X) and h ∈ LIPb(X),∫
hT : (∇g1 ⊗∇g2) dm =

∫
−〈X,∇g2〉 div(h∇g1)− hHess(g2)(X,∇g1) dm.

In this case we shall call the tensor T the covariant derivative of X and denote it

by ∇X. We endow W 1,2
C (TX) with the norm ‖ · ‖W 1,2

C (TX) defined by

‖X‖2
W 1,2

C (TX)
:= ‖X‖2L2(TX) + ‖∇X‖2L2(T⊗2X).

It will be useful to introduce the space of “test vector fields” as

TestV(X) :=

{ n∑
i=1

gi∇fi : n ∈ N, fi, gi ∈ Test(X)

}
⊂ L2(TX).

It is easy to show that TestV(X) is dense in L2(TX).
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Theorem 3.16 (Basic properties of W 1,2
C (TX)). We have

(i) W 1,2
C (TX) is a separable Hilbert space;

(ii) the covariant derivative is a closed operator, i.e., the set {(X,∇X) : X ∈
W 1,2
C (TX)} is a closed subset of L2(TX)× L2(T⊗2X);

(iii) given f ∈ W 2,2(X) we have ∇f ∈ W 1,2
C (TX) with ∇(∇f) = (Hessf)], where

·] : L2((T ∗)⊗2X)→ L2(T⊗2X) is the Riesz (musical) isomorphism;

(iv) we have TestV(X) ⊂W 1,2
C (TX) with

∇X =
∑
i

∇gi ⊗∇fi + gi(Hessfi)
] for X =

∑
i

gi∇fi

and, in particular, W 1,2
C (TX) is dense in L2(TX).

Sketch of the proof. Parts (i), (ii) are proved along the same lines as Theorem 3.6.

Part (iii) follows from Proposition 3.14 and direct verification; then (iv) follows

from (iii) and the definitions.

3.4.2. Calculus rules. We know that TestV(X) is contained in W 1,2
C (TX), but

not if it is dense. Thus the following definition is meaningful.

Definition 3.17. We define H1,2
C (TX) ⊂ W 1,2

C (TX) as the W 1,2
C (TX)-closure of

TestV(X).

We shall also denote by L0(TX) the L0-completion of L2(TX) (Theorem 2.7)

and by L∞(TX) its subspace made of X’s such that |X| ∈ L∞(X).

Proposition 3.18 (Leibniz rule). Let X ∈ L∞∩W 1,2
C (TX) and f ∈ L∞∩W 1,2(X).

Then fX ∈W 1,2
C (TX) and

(3.21) ∇(fX) = ∇f ⊗X + f∇X m-a.e.

Proof. Assume for the moment that f ∈ Test(X) and let g1, g2 ∈ Test(X), h ∈
LIPb(X) be arbitrary. Then fh ∈ LIPb(X) and from the definition of ∇X we see

that∫
fh∇X : (∇g1 ⊗∇g2) dm =

∫
−〈X,∇g2〉 div(fh∇g1)− fhHessg2(X,∇g1) dm.

Using the identity div(fh∇g1) = h 〈∇f,∇g1〉 + f div(h∇g1) (recall (2.24)), this

gives ∫
h 〈∇f,∇g1〉 〈X,∇g2〉+ fh∇X : (∇g1 ⊗∇g2) dm

=

∫
−〈fX,∇g2〉 div(h∇g1)− hHessg2(fX,∇g1) dm,
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which is the thesis. The general case comes by approximation.

It will be useful to introduce the following notation: for X ∈ W 1,2
C (TX) and

Z ∈ L∞(TX), the vector field ∇ZX ∈ L2(TX) is defined by

〈∇ZX,Y 〉 := ∇X : (Z ⊗ Y ) m-a.e., ∀Y ∈ L2(TX).

Since L2(TX) 3 Y 7→ ∇X : (Z ⊗ Y ) ∈ L1(X) is continuous and L∞-linear, we see

from Proposition 2.16 that this is a good definition.

Proposition 3.19 (Compatibility with the metric). Let X,Y ∈ L∞ ∩H1,2
C (TX).

Then 〈X,Y 〉 ∈W 1,2(X) and

d〈X,Y 〉(Z) = 〈∇ZX,Y 〉+ 〈∇ZY,X〉 m-a.e.,

for every Z ∈ L2(TX).

Sketch of the proof. For X,Y ∈ TestV(X) the claim follows directly from (3.20)

and (3.21). The general case then follows by approximation (to be done carefully,

because for (Xn), (Yn) converging to X, Y in H1,2
C (TX), the differential of 〈Xn, Yn〉

converges only in L1(T ∗X), so that Proposition 2.12 cannot be applied as it is).

In the following proposition and below we shall write X(f) in place of df(X).

Proposition 3.20 (Torsion-free identity). Let f ∈ LIP ∩ H2,2(X) and X,Y ∈
L∞ ∩H1,2

C (TX). Then X(f), Y (f) ∈W 1,2(X) and

(3.22) X(Y (f))− Y (X(f)) = df(∇XY −∇YX) m-a.e.

Proof. By the very definition of H1,2
C (TX) we have ∇f ∈ L∞ ∩ H1,2

C (TX), thus

from Proposition 3.19 we know that Y (f) ∈W 1,2(X) and

X(Y (f)) = ∇Y : (X ⊗∇f) + Hessf(X,Y ) = df(∇XY ) + Hessf(X,Y ).

Subtracting the analogous expression for Y (X(f)) and using the symmetry of the

Hessian we conclude.

Since Test(X) ⊂ LIP ∩ H2,2(X), we have that {df : f ∈ LIP ∩ H2,2(X)}
generates L2(T ∗X), hence ∇XY −∇YX is the only vector field for which identity

(3.22) holds. It is therefore meaningful to define the Lie bracket of vector fields as

[X,Y ] := ∇XY −∇YX ∈ L1(TX) ∀X,Y ∈ H1,2
C (TX).
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3.4.3. Flow of vector fields. In the smooth setting, the Cauchy–Lipschitz the-

orem provides existence and uniqueness for the solution of

(3.23) γ′t = vt(γt), γ0 given,

for a suitable family of Lipschitz vector fields vt on Rd. The Ambrosio–DiPerna–

Lions theory ([22], [1]) provides an extension of this classical result to the case of

Sobolev/BV vector fields with a one-sided bound on the divergence. As it turned

out ([14]) such a theory admits an extension to RCD spaces, which we very briefly

recall here. We remark that [14] has been developed independently from [27], and

that the definitions and results in [14] cover cases more general than those we recall

below: here we just want to phrase the main result of [14] in the language we are

proposing and in a set of assumptions which is usually relevant in applications.

The concept of a solution of (3.23) is replaced by the following definition.

Definition 3.21 (Regular Lagrangian flow). Let (Xt) ∈ L2([0, 1], L2(TX)). We

say that F : [0, 1]× X→ X is a regular Lagrangian flow for (Xt) provided that

(i) for some C > 0,

(3.24) (Ft)∗m ≤ Cm ∀ t ∈ [0, 1];

(ii) for m-a.e. x ∈ X the curve [0, 1] 3 t 7→ Ft(x) ∈ X is continuous and such that

F0(x) = x;

(iii) for every f ∈ W 1,2(X) we have, for m-a.e. x ∈ X, the function t 7→ f(Ft(x))

belongs to W 1,1(0, 1) and

(3.25)
d

dt
f(Ft(x)) = df(Xt)(Ft(x)) m× L1

|[0,1]
-a.e.(x, t),

where the derivative on the left-hand-side is the distributional one.

Notice that it is due to property (i) that property (iii) makes sense. Indeed,

for given Xt ∈ L2(TX) and f ∈ W 1,2(X) the function df(Xt) ∈ L1(X) is defined

only m-a.e., so that (part of) the role of (3.24) is to grant that df(Xt) ◦Ft is well

defined m-a.e.

Notice that by arguing as in the proof of equality (2.29) we see that for m-a.e.

x ∈ X the curve t 7→ Ft(x) is absolutely continuous with

|Ḟt(x)| = |Xt|(Ft(x)) m× L1
|[0,1]

-a.e.(x, t).

Taking into account the integrability condition on (Xt) we then see that for every

µ ∈P(X) with µ ≤ Cm for some C > 0, the plan π := (F·)∗µ is a test plan, where
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F· : X → C([0, 1],X) is the m-a.e.-defined map sending x to t 7→ Ft(x). It is then

clear from the defining properties (2.28) and (3.25) that the velocity vector fields

π′t ∈ L2(TX, et,π) of π are given by

π′t = e∗tXt a.e. t.

The main result of [14] can then be stated as follows.

Theorem 3.22. Let (Xt) ∈ L2([0, 1],W 1,2
C (TX)) be such that |X·| ∈ L∞(X×[0, 1])

and Xt ∈ D(div) for a.e. t ∈ [0, 1], with∫ 1

0

‖ |∇Xt|‖L2(X) + ‖ div(Xt)‖L2(X) + ‖
(

div(Xt)
)−‖L∞(X) dt <∞.

Then a regular Lagrangian flow Ft for (Xt) exists and is unique, in the sense that

if F̃ is another flow, then for m-a.e. x ∈ X it holds that Ft(x) = F̃t(x) for every

t ∈ [0, 1]. Moreover,

(Ft)∗m ≤ exp
(∫ t

0

‖
(

div(Xt)
)−‖L∞(X) dt

)
m ∀ t ∈ [0, 1].

It is outside the scope of this note to present the proof of this result, which

is non-trivial even in a Euclidean setting; rather, we refer to [3] and [15] for an

overview of the theory in Rn and RCD spaces respectively.

§3.5. Exterior derivative

3.5.1. Exterior power of a Hilbert module. Let H be a Hilbert module and

put H ⊗k := H ⊗ · · · ⊗H︸ ︷︷ ︸
k times

. The kth exterior power H ∧k

of H is defined as the

quotient of H ⊗k w.r.t. the space of L∞-linear combinations of elements of the

form v1 ⊗ · · · ⊗ vk with vi = vj for some i 6= j.

We denote by v1∧· · ·∧vk the image of v1⊗· · ·⊗vk under the quotient map and

endow H ∧k

with the (rescaling of the) quotient pointwise scalar product given by

〈v1 ∧ · · · ∧ vk, w1 ∧ · · · ∧ wk〉 := det
(
〈vi, wj〉

)
m-a.e.

Routine computation shows that H ∧k

is a Hilbert module. For H = L2(T ∗X),

we write L2(ΛkT ∗X) for the kth exterior power if k > 1, keeping the notation

L2(T ∗X) and L2(X) for the cases k = 1, 0 respectively. We shall refer to elements

of L2(ΛkT ∗X) as k-forms.

It is readily checked that the duality relation between L2(T ∗X) and L2(TX)

induces a duality relation between the respective kth exterior powers; we shall

typically write ω(X1, . . . , Xk) in place of ω(X1 ∧ · · · ∧Xk).
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3.5.2. Sobolev differential forms and basic calculus rules. In the smooth

setting the exterior differential of the k-form ω is characterized by

dω(X0, . . . , Xk) =
∑
i

(−1)id
(
ω(X0, . . . , X̂i, . . . , Xk)

)
(Xi)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk),

for any smooth vector fields X1, . . . , Xk.

Noticing that forXi ∈ TestV(X) we have |X1∧· · ·∧Xn| ∈ L2(X) and |[Xi, Xj ]∧
X1 ∧ · · · ∧Xn| ∈ L2(X) as well, we are therefore led to the following definition.

Definition 3.23 (The space W 1,2
d (ΛkT ∗X)).The spaceW 1,2

d (ΛkT ∗X)⊂L2(ΛkT ∗X)

is the space of k-forms ω such that there exists a (k + 1)-form η ∈ L2(Λk+1T ∗X)

for which the identity∫
η(X0, . . . , Xk) dm =

∫ ∑
i

(−1)i+1ω(X0, . . . , X̂i, . . . , Xk) div(Xi) dm

+

∫ ∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk) dm(3.26)

holds for any X0, . . . , Xk ∈ TestV(X). In this case η will be called the exterior

differential of ω and denoted by dω.

We endow W 1,2
d (ΛkT ∗X) with the norm ‖ · ‖W 1,2

d (ΛkT∗X) given by

‖ω‖2
W 1,2

d (ΛkT∗X)
:= ‖ω‖2L2(ΛkT∗X) + ‖dω‖2L2(Λk+1T∗X).

It is readily verified that for ω ∈W 1,2
d (ΛkT ∗X) the η for which (3.26) holds is

unique and linearly depends on ω, so that W 1,2
d (ΛkT ∗X) is a normed vector space.

We then have the following theorem.

Theorem 3.24 (Basic properties of W 1,2
d (ΛkT ∗X)). For every k ∈ N the follow-

ing holds:

(i) W 1,2
d (ΛkT ∗X) is a separable Hilbert space;

(ii) the exterior differential is a closed operator, i.e., {(ω,dω) :ω ∈W 1,2
d (ΛkT ∗X)}

is a closed subspace of L2(ΛkT ∗X)× L2(Λk+1T ∗X);

(iii) W 1,2
d (Λ0T ∗X) = W 1,2(X) and the two notions of differentials underlying these

spaces coincide.

Proof. Properties (i) and (ii) are proved along the same lines used for analogous

claims in Theorem 3.6. For (iii) we notice that the inclusion ⊃ and the fact that for

f ∈ W 1,2(X) its differential as defined in Theorem 2.8 satisfies (3.26) are obvious
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by the very definition of divergence. For the converse inclusion notice that in the

case k = 0, (3.26) reads

−
∫
f div(X) dm =

∫
η(X) dm ∀X ∈ TestV(X),

let (fn) ⊂ L2 ∩ L∞(X) be L2-converging to f and notice that for t > 0 we have

∇htfn ∈ TestV(X), so that the above holds for X = ∇htfn. Passing to the limit

in n and noticing that ∇htfn → ∇htf and ∆htfn → ∆htf in L2(TX) and L2(X)

respectively we deduce∫
|∇ht/2f |2 dm = −

∫
f∆htf(X) dm =

∫
η(∇htf) dm ≤ ‖η‖L2‖∇htf‖L2

≤ ‖η‖L2‖∇ht/2f‖L2 ,

having used the fact that t 7→
∫
|∇ht/2f |2 dm is non-increasing. The conclusion

follows on dividing by ‖∇ht/2f‖L2 and letting t ↓ 0.

It will be convenient to introduce the space of test k-forms as

TestFormk(X) :=
{

linear combinations of forms of the kind f0df1 ∧ · · · ∧ dfk

with fi ∈ Test(X) ∀ i = 0, . . . , k
}
.

It is not hard to check that TestFormk(X) is dense in L2(ΛkT ∗X).

Proposition 3.25 (Basic calculus rules for exterior differentiation). The follow-

ing holds:

(i) For fi ∈ L∞ ∩ W 1,2(X) with |dfi| ∈ L∞, i = 0, . . . , k, we have that both

f0df1 ∧ · · · ∧ dfk and df1 ∧ · · · ∧ dfk are in W 1,2
d (ΛkT ∗X) and

d(f0df1 ∧ · · · ∧ dfk) = df0 ∧ df1 ∧ · · · ∧ dfk,(3.27)

d(df1 ∧ · · · ∧ dfk) = 0.(3.28)

(ii) We have TestFormk(X) ⊂ W 1,2
d (ΛkT ∗X) and in particular W 1,2

d (ΛkT ∗X) is

dense in L2(ΛkT ∗X).

(iii) Let ω ∈W 1,2
d (ΛkT ∗X) and ω′∈TestFormk′(X). Then ω∧ω′ ∈W 1,2

d (Λk+k′T ∗X)

with

d(ω ∧ ω′) = dω ∧ ω′ + (−1)kω ∧ dω′.

Sketch of the proof. These all follow from the definitions, the identity df1 ∧ · · · ∧
dfk(X1, . . . , Xk) = det(dfi(Xj)) and routine computation based on the calculus

rules obtained so far.

This last proposition motivates the following definition.
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Definition 3.26. We define H1,2
d (ΛkT ∗X) ⊂ W 1,2

d (ΛkT ∗X) as the W 1,2
d -closure

of TestFormk(X).

Clearly, H1,2
d (ΛkT ∗X) is dense in L2(ΛkT ∗X). We now give another crucial

property of H1,2
d -forms.

Proposition 3.27 (d2 = 0 for forms in H1,2
d (ΛkT ∗X)). Let ω ∈ H1,2

d (ΛkT ∗X).

Then

dω ∈ H1,2
d (Λk+1T ∗X) and d(dω) = 0.

Proof. Identities (3.27) and (3.28) establish the claim for forms in TestFormk(X).

The general case then follows by approximation, taking into account the closure

of the exterior differential.

3.5.3. de Rham cohomology and Hodge theorem. Proposition 3.27 is the

starting point for building de Rham cohomology. The definition of closed and exact

k-forms is naturally given by

Ck(X) :=
{
ω ∈H1,2

d (ΛkT ∗X) : dω = 0
}
, Ek(X) :=

{
dω : ω ∈H1,2

d (Λk−1T ∗X)
}
.

Proposition 3.27 ensures that Ek(X) ⊂ Ck(X), and the closure of the differential

ensures that Ck(X) is a closed subspace of L2(ΛkT ∗X). Hence defining Ek(X) as

Ek(X) := L2(ΛkT ∗X)-closure of Ek(X),

we also have Ek(X) ⊂ Ck(X). We can then give the following definition.

Definition 3.28 (de Rham cohomology). For k ∈ N the Hilbert space Hk
dR(X) is

defined as the quotient

HkdR(X) :=
Ck(X)

Ek(X)
,

where Ck(X) and Ek(X) are endowed with the L2(ΛkT ∗X)-norm.

Cohomology as we just defined it is functorial in the following sense. Let

ϕ : X2 → X1 be of bounded deformation and recall that in Theorem 2.35 we gave

the definition of a pullback of 1-forms ϕ∗ : L2(T ∗X1) → L2(T ∗X2). It is then not

hard to see that for every k ∈ N there is a unique linear map ϕ∗ : L2(ΛkT ∗X1)→
L2(ΛkT ∗X2) such that

ϕ∗(ω1 ∧ · · · ∧ ωk) = (ϕ∗ω1) ∧ · · · ∧ (ϕ∗ωk),

ϕ∗(fω) = f ◦ ϕϕ∗ω,
|ϕ∗ω| ≤ Lip(ϕ)k|ω| ◦ ϕ,

(3.29)

for every ω1, . . . , ωk ∈ L2 ∩ L∞(T ∗X1), ω ∈ L2(ΛkT ∗X1) and f ∈ L∞(X2).
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Proposition 3.29 (Functoriality). Let (X1,d1,m1), (X2,d2,m2) be two RCD(K,∞)

spaces, K ∈ R, and ϕ : X2 → X1 of bounded deformation. Then for every k ∈ N
and ω ∈ H1,2

d (ΛkT ∗X1) we have ϕ∗ω ∈ H1,2
d (ΛkT ∗X2) and

(3.30) d(ϕ∗ω) = ϕ∗dω.

In particular, ϕ∗ passes to the quotient and induces a linear continuous map from

HkdR(X1) to HkdR(X2) with norm bounded by Lip(ϕ)k.

Proof. From the linearity and continuity of ϕ∗ and of d : H1,2
d (ΛkT ∗X2) →

L2(Λk+1T ∗X2), it is sufficient to prove (3.30) for ω of the form ω = f0df1∧· · ·∧dfk,

for fi ∈ Test(X1). In this case (3.29) gives

ϕ∗ω = f0 ◦ ϕd(f1 ◦ ϕ) ∧ · · · ∧ d(fk ◦ ϕ)

and since fi◦ϕ ∈ L∞∩W 1,2(X2) with |d(fi◦ϕ)| ∈ L∞(X2), from Proposition 3.25(i)

we deduce that

dϕ∗ω = d(f0 ◦ ϕ) ∧ d(f1 ◦ ϕ) ∧ · · · ∧ d(fk ◦ ϕ) = ϕ∗dω,

as desired.

The fact that ϕ∗ passes to the quotient is then a direct consequence of its

linearity and continuity, and the bound on the norm comes directly from the last

in (3.29).

We now want to show that an analogue of the Hodge theorem about repre-

sentation of cohomology classes via harmonic forms holds. We shall need a few

definitions.

We start with that of a codifferential, defined as the adjoint of the exterior

differential: for k ∈ N the space D(δ) ⊂ L2(ΛkT ∗X) is the space of those forms

ω for which there exists a form δω ∈ L2(Λk−1T ∗X), called the codifferential of ω,

such that ∫
〈δω, η〉 dm =

∫
〈ω,dη〉 dm ∀ η ∈ TestFormk−1(X).

In the case k = 0 we put D(δ0) := L2(X) and define the δ operator to be identically

0 on it.

It is not hard to check that δ is well defined and closed, while some compu-

tation shows that TestFormk(X) ⊂ D(δ): while such computation is quite tedious,

and we omit it, it is important to emphasize that it is based on the fact that a

well-defined Hessian is at our disposal. In this sense, the computation relies on the

lower Ricci bound.

We then can give the definitions of “Hodge” Sobolev spaces.
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Definition 3.30. For k ∈ N, we define W 1,2
H (ΛkT ∗X) := W 1,2

d (ΛkT ∗X) ∩ D(δ)

with the norm

‖ω‖2
W 1,2

H (ΛkT∗X)
:= ‖ω‖2L2(ΛkT∗X) + ‖dω‖2L2(Λk+1T∗X) + ‖δω‖2L2(Λk−1T∗X).

The space H1,2
H (ΛkT ∗X) is the W 1,2

H -closure of TestFormk(X).

In particular, H1,2
H (ΛkT ∗X) is a Hilbert space dense in L2(ΛkT ∗X).

Definition 3.31 (Hodge Laplacian and harmonic forms). Given k ∈ N, the do-

main D(∆H)⊂H1,2
H (ΛkT ∗X) of the Hodge Laplacian is the set of ω ∈ H1,2

H (ΛkT ∗X)

for which there exists α ∈ L2(ΛkT ∗X) such that∫
〈α, η〉 dm =

∫
〈dω,dη〉+ 〈δω, δη〉 dm ∀ η ∈ H1,2

H (ΛkT ∗X).

In this case, the form α (which is unique by the density of H1,2
H (ΛkT ∗X) in

L2(ΛkT ∗X)) will be called the Hodge Laplacian of ω and denoted by ∆Hω.

The space Harmk(X) ⊂ D(∆H) is the space of forms ω ∈ D(∆H) such that

∆Hω = 0.

In the case of functions, we have the usual unfortunate sign relation:

∆Hf = −∆f ∀ f ∈ D(∆) = D(∆H) ⊂ L2(Λ0T ∗X) = L2(X).

The Hodge Laplacian is a closed operator: this can be seen by noticing that it is the

subdifferential of the convex and lower semicontinuous “Hodge” energy functional

on L2(ΛkT ∗X) defined by

EH(ω) :=


1

2

∫
|dω|2 + |δω|2 dm if X ∈ H1,2

H (TX),

+∞ otherwise.

From such a closure it follows that Harmk(X) is a closed subspace of L2(ΛkT ∗X)

and thus a Hilbert space itself when endowed with the L2(ΛkT ∗X)-norm. We then

have the following theorem.

Theorem 3.32 (Hodge theorem on RCD spaces). The map

Harmk(X) 3 ω 7→ [ω] ∈ HkdR(X)

is an isomorphism of Hilbert spaces.

Proof. Start by noticing that

ω ∈ Harmk(X) ⇔ dω = 0 and δω = 0.
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Indeed, the “if” is obvious by definition, while the “only if” comes from the identity∫
〈ω,∆Hω〉 dm =

∫
|dω|2 + |δω|2 dm.

Recalling the definition of δ, we thus see that

ω ∈ Harmk(X) ⇔ ω ∈ Ck(X) and

∫
〈ω, η〉 dm = 0 ∀ η ∈ Ek(X).

The conclusion follows by recalling that for every Hilbert space H and subspace

V , the map

V ⊥ 3 w 7→ w + V ∈ H/V

is an isomorphism of Hilbert spaces.

§3.6. Ricci curvature

In the course of this section we shall abuse the notation slightly and identify

vector and covector fields, thus, for instance, we shall write X ∈ D(∆H) and

consider the vector field ∆HX ∈ L2(TX) when we should write X[ ∈ D(∆H) and

(∆HX
[)] ∈ L2(TX), where ·[ : L2(TX) → L2(T ∗X) and ·] : L2(T ∗X) → L2(TX)

are the Riesz (musical) isomorphisms.

We begin by reinterpreting the key Lemma 3.8: the differential operators

introduced so far allow us to restate the key inequalities (3.9), (3.10) in a much

more familiar way.

Lemma 3.33. Let X ∈ TestV(X). Then X ∈ D(∆H), |X|2 ∈ D(∆) and we have

the inequality

(3.31) ∆
|X|2

2
≥
(
|∇X|2HS − 〈X,∆HX〉+K|X|2

)
m

Sketch of the proof. Let X =
∑
i gi∇fi for fi, gi ∈ Test(X). It is only a matter of

computation to see that |X|2 ∈ D(∆) and X ∈ D(∆H) with

∆
|X|2

2
=
∑
i,j

1

2
gigj∆ 〈∇fi,∇fj〉

+
(
gj∆gi 〈∇fi,∇fj〉+ 〈∇gi,∇gj〉 〈∇fi,∇fj〉

)
m

+
(

2giHessfi(∇fj ,∇gj) + 2giHessfj(∇fi,∇gj)
)
m,

∆HX =
∑
i

−gid∆fi −∆gidfi − 2Hessfi(∇gi, ·),

(∇X)Asym =
∑
i

∇gi ⊗∇fi −∇fi ⊗∇gi
2

,
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and thus recalling the definition of the measure µ((fi), (gi)) given in Lemma 3.8

we see that

µ
(
(fi), (gi)

)
= ∆

|X|2

2
+
(
〈X, (∆HX)〉 −K|X|2 − |(∇X)Asym|2HS

)
m.

Therefore, writing ∆ |X|2
2 = ∆ac

|X|2
2 m+∆sing

|X|2
2 , with ∆sing

|X|2
2 ⊥ m, inequality

(3.9) in Lemma 3.8 yields

(3.32) ∆sing
|X|2

2
≥ 0,

while from (3.10) we see that for every m ∈ N and choice of h1, . . . , hm ∈ Test(X)

we have∣∣∣∣∣∇X :

m∑
i=1

∇hi ⊗∇hi

∣∣∣∣∣
≤
√

∆ac
|X|2

2
+ 〈X,∆HX〉 −K|X|2 − |(∇X)Asym|2HS

∣∣∣∣∣
m∑
i=1

∇hi ⊗∇hi

∣∣∣∣∣
HS

m-a.e., which in turn implies

2∇X :

m∑
i=1

∇hi ⊗∇hi −

∣∣∣∣∣
m∑
i=1

∇hi ⊗∇hi

∣∣∣∣∣
2

HS

≤ ∆ac
|X|2

2
+ 〈X,∆HX〉 −K|X|2 − |(∇X)Asym|2HS

m-a.e. Noticing that L∞-linear combinations of objects of the form ∇h ⊗∇h for

h ∈ Test(X) are L2-dense in the space of symmetric 2-tensors, taking the (essential)

supremum in this last inequality among m ∈ N and choices of h1, . . . , hm ∈ Test(X)

we obtain

|(∇X)Sym|2HS ≤ ∆ac
|X|2

2
+ 〈X,∆HX〉 −K|X|2 − |(∇X)Asym|2HS m-a.e.,

which, recalling (3.6) and (3.32), gives the conclusion.

Let us introduce the “covariant energy” and the “Hodge energy” functionals

on L2(TX) as

EC(X) :=


1

2

∫
|∇X|2 dm if X ∈ H1,2

C (TX),

+∞ otherwise,

EH(X) := EH(X[) =


1

2

∫
|dX|2 + |δX|2 dm if X ∈ H1,2

H (TX),

+∞ otherwise.
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Notice that the closures of the differential operators involved grant that these

are L2(TX)-lower semicontinuous. Then the last lemma has the following useful

corollary (which generalizes Corollary 3.10).

Corollary 3.34. We have H1,2
H (TX) ⊂ H1,2

C (TX) and

(3.33) EC(X) ≤ EH(X)− K

2
‖X‖2L2(TX) ∀X ∈ H1,2

H (TX).

Proof. For X ∈ TestV(X) the bound (3.33) comes by integrating (3.31) and re-

calling (3.4). The general case then follows by approximating X ∈ H1,2
H (TX) with

vector fields in TestV(X) and using the L2-lower semicontinuity of EC.

We are now ready to introduce the Ricci curvature operator.

Theorem/Definition 3.35 (Ricci curvature). There exists a unique continuous

map, called the Ricci curvature, Ric : [H1,2
H (TX)]2 → Meas(X) such that for every

X,Y ∈ TestV(X),

(3.34) Ric(X,Y ) = ∆
〈X,Y 〉

2
+
(1

2
〈X,∆HY 〉+

1

2
〈Y,∆HX〉 − ∇X : ∇Y

)
m.

Such a map is bilinear, symmetric and satisfies

Ric(X,X) ≥ K|X|2m,(3.35)

Ric(X,Y )(X) =

∫
〈dX,dY 〉+ δX δY −∇X : ∇Y dm,(3.36)

‖Ric(X,Y )‖TV ≤ 2
√
EH(X) +K−‖X‖2L2(TX)

√
EH(Y ) +K−‖Y ‖2L2(TX),(3.37)

for every X,Y ∈ H1,2
H (TX), where K− := max{0,−K} and ‖ · ‖TV is the total

variation norm.

Sketch of the proof. The fact that the right-hand side of (3.34) is well defined

for X,Y ∈ TestV(X) is a direct consequence of Lemma 3.33. That such a right-

hand side is bilinear, symmetric and satisfies (3.36) is obvious, while (3.35) is a

restatement of (3.31). Thanks to the density of TestV(X) in H1,2
H (TX), to conclude

it is therefore sufficient to prove (3.37) for X,Y ∈ TestV(X): we shall do so for the

case K = 0 only.

Let X,Y ∈ TestV(X), choose µ ∈ Meas(X), µ ≥ 0 such that Ric(X,X),

Ric(X,Y ) and Ric(Y, Y ) are all absolutely continuous w.r.t. µ and let f, g, h be

the respective Radon–Nikodym derivatives. Then (3.35) grants that f, h ≥ 0 µ-a.e.

and that for any λ ∈ R we have Ric(λX + Y, λX + Y ) ≥ 0. Hence

λ2f + 2λg + h ≥ 0 µ-a.e.,
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which easily implies |g| ≤
√
fh µ-a.e. and therefore

‖Ric(X,Y )‖TV =

∫
|g|dµ ≤

√∫
f dµ

∫
hdµ

=
√
‖Ric(X,X)‖TV‖Ric(Y, Y )‖TV.

The conclusion then follows by noticing that

‖Ric(X,X)‖TV
(3.35)

= Ric(X,X)(X)

(3.36)
= 2EH(X)− 2EC(X) ≤ 2EH(X) ∀X ∈ TestV(X).

The Ricci curvature operator as defined in the last theorem is a tensor in the

sense that

Ric(fX, Y ) = f Ric(X,Y ) ∀X,Y ∈ H1,2
H (TX), f ∈ Test(X),

as can be shown with some algebraic manipulation based on the calculus rules

developed so far (we omit the details). Moreover, directly from the definitions we

get

(X, d,m) is an RCD(K ′,∞) space with

Ric(X,X) ≥ K|X|2m ∀X ∈ H1,2
H (TX)

}
⇒ (X, d,m) is an RCD(K,∞) space.

Remark 3.36. Directly from the definition it is easy to see that the Ricci mea-

sure gives 0 mass to sets with 0 capacity. It follows that, for instance, on a two-

dimensional space with a conical singularity, the Ricci curvature as we defined it

does not see any “delta” at the vertex: this also implies that we cannot hope for

such a measure to have any kind of Gauss–Bonnet formula.

If the space is sufficiently regular (C1,1 manifold is enough), then one can

detect the singularity of the curvature at the vertex of such a cone by computing the

curvature along objects more regular than Sobolev vector fields, namely Lipschitz

half densities (see [37]). �

§3.7. Some properties in the finite-dimensional case

Here we briefly present, without proofs, some related results about the analysis

and geometry of finite-dimensional RCD spaces ([26], [10], [23], [12]).

Definition 3.37 (RCD∗(K,N) spaces). Let K ∈ R, N ∈ [1,∞). Then (X, d,m)

is an RCD∗(K,N) space provided it is an RCD∗(K,∞) space and the Bochner
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inequality holds in the form

1

2

∫
∆g|df |2 dm ≥

∫
g
( (∆f)2

N
+ 〈∇f,∇∆f〉+K|df |2

)
dm

for every f ∈ D(∆) with ∆f ∈ W 1,2(X) and g ∈ L∞(X) ∩ D(∆) with g ≥ 0,

∆g ∈ L∞(X).

On compact finite-dimensional RCD spaces, the following natural second-order

differentiation formula holds (see [32] and references therein), which links the Hes-

sian as we have defined it to the second derivative along geodesics; compare with

Theorem 2.45.

Theorem 3.38 (Second-order differentiation formula). Let (X, d,m) be a compact

RCD∗(K,N) space, N <∞ and (µt) ⊂P(X) a W2-geodesic such that µ0, µ1 ≤ Cm
for some C > 0.

Then for every f ∈ H2,2(X) the map t 7→
∫
f dµt is C2([0, 1]) and

d2

dt2

∫
f dµt =

∫
Hessf(∇ϕt,∇ϕt) dµt ∀ t ∈ [0, 1],

where ϕt is, for every t ∈ [0, 1], such that for some s 6= t the function (s − t)ϕ is

a Kantorovich potential from µt to µs.

The proof of this theorem relies upon an approximation of W2-geodesics with

so-called entropic interpolation (see [36] for an overview on the topic). The result

requires finite-dimensionality because it is based, among other things, on the Li–

Yau inequality. Compactness is not likely to be needed, but so far the general

result is unknown.

A better understanding of the structure of RCD spaces can be achieved by

introducing the concept of local dimension of a module: we say that M has di-

mension n ∈ N on the Borel set E ⊂ X provided there are v1, . . . , vn ∈ M such

that ∑
i

fivi = 0 ⇒ fi = 0 m-a.e. on E for every i = 1, . . . , n,

L∞-linear combinations of the vi’s are dense in {v ∈M : χEcv = 0}.

It is then not hard to see that for any given module there exists a (unique up

to negligible sets) Borel partition (Ei)i∈N∪{∞} of X such that M has dimension i

on Ei for every i ∈ N and does not have finite dimension on any F ⊂ E∞ with

positive measure.

When the module under consideration is the tangent one, we call the resulting

partition the dimensional decomposition of X. This also allows us to m-a.e. define
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the “analytic local dimension” function dimloc : X → N ∪ {∞} which sends Ei to

i for every i ∈ N∪{∞}. It is conjectured that such a function is actually constant

(after [19] and Theorem 3.39 below this is known to hold at least for Ricci-limit

spaces), but so far this is unknown.

Results in [39] grant that the pointed rescaled spaces (X, d/r,m(Br(x))−1m, x)

converge, for m-a.e. x ∈ X, to the Euclidean space (Rn(x), dEucl,L
n(x), 0) in the

pointed-measured-Gromov–Hausdorff sense for some n(x) ∈ N, n(x) ≤ N . In

particular, the number n(x) provides a “geometric” notion of dimension at x. It

turns out ([30]) that this notion is equivalent to the analytic one:

Theorem 3.39. With the above notation, we have dimloc(x) = n(x) for m-a.e.

x ∈ X. In particular, m-a.e. we have dimloc ≤ N .

In fact, something stronger holds: the tangent module L2(TX) is isomorphic to

the space of “L2-sections” of the bundle on X made of the collections of the pmGH-

limits of rescaled spaces. The proof of this fact uses charts built in [39], along with

the improvements given in [35] and [29], to produce the desired isomorphism.

In a different direction, the properties of the cohomology groups reflect on

the geometry of the space, as shown by the following result which generalizes a

classical result of Bochner to the setting of RCD spaces.

Theorem 3.40. Let (X, d,m) be an RCD(0,∞) space. Then dim(H1
dR(X)) ≤

minX dimloc.

Moreover, if (X, d,m) is RCD(0, N) and dim(H1
dR(X)) = N (so that in partic-

ular N ∈ N), then X is a flat N -dimensional torus.

The first part of the statement (proved in [27]) follows by noticing that, much

like in the smooth case, harmonic 1-forms must be parallel (because of (3.33)). The

second claim (proved in [31]) is harder, because the classical proof which passes via

universal cover can’t be adapted; instead, the desired isomorphism is built from

scratch by considering the regular Lagrangian flows of a basis of harmonic forms.

In the smooth setting of weighted Riemannian manifolds, it is well known

that the validity of a curvature dimension condition is linked to the fact that the

N -Ricci tensor is bounded from below by K and that N is equal to the geometric

dimension of the manifold if and only if the trace of the Hessian is equal to the

Laplacian.

Something similar holds on RCD∗(K,N) spaces, as proved in [33] by adapting

computation done in [46] to the non-smooth setting. Let us introduce the function
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RN : [H1,2
H (TX)]2 → L1(X) as

RN (X,Y ) :=


(
tr(∇X)− divX

)(
tr(∇Y )− div Y

)
N − dimloc

if dimloc < N,

0 otherwise,

and the N -Ricci tensor RicN : [H1,2
H (TX)]2 → Meas(X) as

RicN (X,Y ) := Ric(X,Y )−RN (X,Y )m.

It is easy to see that

|∇X|2HS +RN (X,X) ≥ (divX)2

N
, and RicN (fX, Y ) = f RicN (X,Y ),

for every X,Y ∈ H1,2
H (TX) and f ∈ Test(X).

The main results in [33] can then be summarized:

Theorem 3.41. Let (X, d,m) be an RCD∗(K ′,∞) space. Then it is an RCD∗(K,N)

space if and only if

(i) dimloc ≤ N m-a.e.;

(ii) for any X ∈ H1,2
H (TX) we have tr(∇X) = divX m-a.e. on {dimloc = N};

(iii) for any X ∈ H1,2
H (TX) we have

RicN (X,X) ≥ K|X|2m.
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