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The Geometry of Hyperbolic Curvoids

by

Yuichiro Hoshi

Abstract

The main purposes of the present paper are to introduce the notion of a hyperbolic cur-
void and to study the geometry of hyperbolic curvoids. A hyperbolic curvoid is defined to
be a certain profinite group and may be considered to be “group-theoretic abstraction” of
the notion of a hyperbolic curve from the viewpoint of anabelian geometry. One typical
example of a hyperbolic curvoid is a profinite group isomorphic to the étale fundamental
group of a hyperbolic curve either over a number field or over a mixed-characteristic
nonarchimedean local field. The first part of the paper centers around the establishment
of a construction algorithm for the “geometric subgroup” of hyperbolic curvoids and a
construction algorithm for the “collection of cuspidal inertia subgroups” of hyperbolic
curvoids. Moreover, we also consider respective analogues for hyperbolic curvoids of the
theory of partial compactifications of hyperbolic curves and the theory of quotient orbi-
curves of hyperbolic curves by actions of finite groups.
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Introduction

Let K be either an NF (i.e., a number field – cf. the discussion entitled “Numbers”

in Section 0) or an MLF (i.e., a mixed-characteristic nonarchimedean local field –

cf. the discussion entitled “Numbers” in Section 0). Moreover, letK be an algebraic

closure of K and X a hyperbolic curve over K (cf. the discussion entitled “Curves”

in Section 0). Write π1(X), π1(X×KK) for the respective étale fundamental groups

of X, X ×K K (relative to some choices of basepoints). Thus, we have an exact

sequence of profinite groups

1 −→ π1(X ×K K) −→ π1(X) −→ Gal(K/K) −→ 1.
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Now let us recall that it follows from [14, Thm. 2.6(v), (vi)] that, roughly speaking,

one may reconstruct “group-theoretically”, from the profinite group π1(X), the

geometric subgroup of π1(X), i.e., the normal closed subgroup π1(X ×k K) ⊆
π1(X) of π1(X), hence also the above exact sequence of profinite groups. Moreover,

it follows immediately from [14, Lem. 4.5(v)] that, roughly speaking, one may

reconstruct “group-theoretically”, from the profinite group π1(X), the collection

of inertia subgroups of π1(X ×k K) associated to the cusps of the hyperbolic

curve X.

The main purposes of the present paper are to introduce the notion of a

hyperbolic curvoid and to study the geometry of hyperbolic curvoids. A hyperbolic

curvoid (cf. Definition 2.1) is defined to be a certain profinite group and may be

considered to be “group-theoretic abstraction” of the notion of a hyperbolic curve

from the viewpoint of anabelian geometry. One typical example of a hyperbolic

curvoid is a profinite group isomorphic to the étale fundamental group (relative

to some choice of basepoint) of a hyperbolic curve either over an NF or over an

MLF (cf. Corollary 6.7(ii)). In the remainder of the present introduction, let □ be

an element of the set {MLF,NF} and

Π

a hyperbolic □-curvoid (cf. Definition 2.1).

The first part of the paper (cf. Section 2) centers around the establishment of

� a “group-theoretic” construction algorithm for the “geometric subgroup” of

hyperbolic curvoids (cf. Definition 2.4(i)) and

� a “group-theoretic” construction algorithm for the “collection of cuspidal in-

ertia subgroups” of hyperbolic curvoids (cf. Definition 2.8(i)).

Put another way, in the first part of the paper, we give a “group-theoretic” con-

struction of a normal closed subgroup ∆(Π) ⊆ Π of Π (cf. Definition 2.4(i)) such

that

� the quotient G(Π)
def
= Π/∆(Π) (cf. Definition 2.4(ii)) of Π by ∆(Π) ⊆ Π is

isomorphic to the absolute Galois group (relative to some choice of algebraic

closure) of an MLF (respectively, NF) whenever □ = MLF (respectively, □ =

NF) (cf. Proposition 2.5(ii)) and, moreover,

� if one applies this construction of “∆(−)” to the hyperbolic □-curvoid π1(X)

(i.e., obtained by forming the étale fundamental group of the above hyperbolic

curve X), then the resulting normal closed subgroup, i.e., ∆(π1(X)), coincides

with the geometric subgroup π1(X ×k K) of π1(X) (cf. Remark 3.4.1; Corol-

lary 6.7(i)).
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In particular, one may associate to the hyperbolic □-curvoid Π an exact sequence

of profinite groups

1 −→ ∆(Π) −→ Π −→ G(Π) −→ 1.

Moreover, in the first part of the present paper, we also give a “group-theoretic”

construction of a collection of closed subgroups of ∆(Π) (cf. Definition 2.8(i))

such that if one applies this construction to the hyperbolic □-curvoid π1(X) (i.e.,

obtained by forming the étale fundamental group of the above hyperbolic curveX),

then the resulting collection of closed subgroups of ∆(π1(X)) = π1(X ×k K)

coincides with the collection of inertia subgroups of π1(X ×k K) associated to the

cusps of the hyperbolic curve X (cf. Remark 3.7.1; Corollary 6.7(iii)).

In Section 4 of the present paper, we introduce and discuss partial compact-

ifications of hyperbolic curvoids (cf. Definition 4.5). One main result, related to

partial compactifications, of the theory of hyperbolic curvoids is as follows (cf.

Theorem 4.10).

Theorem A. Let □ be an element of the set {MLF,NF}, Π a hyperbolic □-

curvoid (cf. Definition 2.1), and S a subset of the set of ∆(Π)-conjugacy classes

of cuspidal inertia subgroups of Π (cf. Definition 2.8(i)). Write

Π•S

for the quotient of Π by the normal closed subgroup of Π normally topologically

generated by the cuspidal inertia subgroups of Π that belong to elements of S (cf.

Definition 4.5) and

∆(Π)•S

for the image of ∆(Π) in Π•S (cf. Definition 4.5). (So we have a commutative

diagram of profinite groups

1 // ∆(Π) //

����

Π //

����

G(Π) // 1

1 // ∆(Π)•S // Π•S // G(Π) // 1

– where the horizontal sequences are exact, and the vertical arrows are surjective.)

Then the following three conditions are equivalent:

(1) The profinite group Π•S is a hyperbolic □-curvoid.

(2) The profinite group Π•S is a hyperbolic □-curvoid such that the equality

∆(Π•S) = ∆(Π)•S holds.

(3) The profinite group ∆(Π)•S is not abelian.
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In Section 5 of the present paper, we prove that a suitable outer continuous

action of a finite group on a hyperbolic curvoid gives rise to a hyperbolic orbicur-

void (cf. Definition 3.1) that may be thought of as an analogue (i.e., in the theory

of hyperbolic curvoids) of the notion of a quotient orbicurve. More precisely, for

instance, we prove the following result (cf. Theorem 5.4(i)).

Theorem B. Let □ be an element of the set {MLF,NF} and Π a hyperbolic □-

curvoid (cf. Definition 2.1). Write Aut(Π) for the group of continuous automor-

phisms of Π (cf. the discussion entitled “Profinite groups” in Section 0); Out(Π),

Out(G(Π)) (cf. Definition 2.4(ii)) for the groups of outer continuous automor-

phisms of Π, G(Π), respectively (cf. the discussion entitled “Profinite groups” in

Section 0). Let J ⊆ Out(Π) be a finite subgroup of Out(Π). Write

Π[J ]
def
= Aut(Π)×Out(Π) J

for the fiber product of the natural surjective homomorphism Aut(Π) →→ Out(Π)

and the natural inclusion J ↪→ Out(Π) (cf. Definition 5.3(ii)). Suppose that J

is contained in the kernel of the natural homomorphism Out(Π) → Out(G(Π))

whenever □ = MLF. Then the profinite group Π[J ] (cf. Remark 5.3.1(i)) (fits into

an exact sequence of profinite groups

1 −→ Π −→ Π[J ] −→ J −→ 1

– cf. Definition 5.3(ii) – and) is a hyperbolic □-orbicurvoid (cf. Definition 3.1).

§0. Notation and conventions

Sets. If S is a finite set, then we shall write ♯S for the cardinality of S.

Numbers. We shall write

Primes

for the set of prime numbers. We shall refer to a field isomorphic to a finite ex-

tension of the field of rational numbers as a number field, or an NF, for short. We

shall refer to a field isomorphic to a finite extension of the p-adic completion, for

some prime number p, of the field of rational numbers as a mixed-characteristic

nonarchimedean local field, or an MLF, for short.

Profinite groups. Let G be a profinite group and N ⊆ G a normal closed sub-

group of G. Write Q
def
= G/N . Then we shall write

AutQ(G)
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for the group of continuous automorphisms of G over Q and

Aut(G)

for the “AutQ(G)” in the case where we take the “N” to be G, i.e., the group

of continuous automorphisms of G. Now observe that the image of the homomor-

phism N → AutQ(G) by conjugation is normal. We shall write

AutQ(G)

for the quotient of AutQ(G) by this image of N and

Out(G)

for the “AutQ(G)” in the case where we take the “N” to be G, i.e., the group of

outer continuous automorphisms of G.

Let G be a profinite group and H ⊆ G a closed subgroup of G. Then we shall

write

ZG(H)
def
=

{
g ∈ G | gh = hg for every h ∈ H

}
for the centralizer of H in G,

CG(H)
def
=

{
g ∈ G | H ∩ gHg−1 is of finite index both in H and in gHg−1

}
for the commensurator of H in G, and

Gab

for the topological abelianization of G, i.e., the quotient of G by the normal closed

subgroup normally topologically generated by the commutators. We shall say that

the closed subgroup H ⊆ G of G is commensurably terminal if the inclusion

CG(H) ⊆ H, or, alternatively, the equality CG(H) = H, holds. We shall say

that the closed subgroup H ⊆ G of G is characteristic if the equality α(H) = H

holds for an arbitrary continuous automorphism α ∈ Aut(G) of G.

Curves. Let S be a scheme and (g, r) a pair of nonnegative integers. Then we

shall say that a scheme X over S is a smooth curve of type (g, r) over S if there

exist

� a scheme X+ over S smooth, proper, geometrically connected, and of relative

dimension 1 over S and

� a (possibly empty) closed subscheme D ⊆ X+ of X+ finite and étale over S

such that

� each geometric fiber of X+ over S is of genus g,
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� the finite étale covering D of S is of degree r and, moreover,

� the scheme X is isomorphic to X+ \D over S.

We shall define a hyperbolic curve of type (g, r) over S to be a smooth curve of

type (g, r) over S such that 2 − 2g − r < 0. Moreover, we shall define a smooth

curve (respectively, hyperbolic curve) over S to be a smooth curve (respectively,

hyperbolic curve) of type (g′, r′) over S for some pair (g′, r′) of nonnegative

integers.

Let k be a field and X a generically scheme-like algebraic stack over k. Then

we shall say that the stack X over k is a hyperbolic orbicurve over k if there exist

a hyperbolic curve Y over a finite extension of k and a finite étale Galois covering

Y → X over k.

§1. Some profinite group theory

In Section 1 we discuss certain aspects of abstract profinite groups, as they relate

to the theory of hyperbolic curvoids.

Definition 1.1. Let G be a profinite group.

(i) We shall say that G is slim (cf. the discussion entitled “Topological groups”

in [14, Sect. 0]) if the equality ZG(H) = {1} holds for every open subgroup

H of G.

(ii) We shall say that G is elastic (cf. [14, Def. 1.1(ii)]) if every closed subgroup

of G that is

� nontrivial,

� normal in an open subgroup of G,

� topologically finitely generated as an abstract profinite group

is of finite index in G.

(iii) We shall say that G is very elastic (cf. [14, Def. 1.1(ii)]) if G is elastic and

not topologically finitely generated.

Lemma 1.2. Let G be a profinite group. Suppose that there exists a normal closed

subgroup N ⊆ G of G such that both N and G/N are slim. Then G is slim.

Proof. This assertion follows immediately from the various definitions involved.
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Definition 1.3. Let G be a profinite group.

(i) We shall say that G is of MLF type (cf. [4, Def. 1.1, Prop. 1.2(i), (ii)])

(respectively, of NF type (cf. [4, Def. 3.2])) if G is isomorphic, as an abstract

profinite group, to the absolute Galois group (relative to some choice of

algebraic closure) of an MLF (respectively, NF).

(ii) Suppose that G is either of MLF type or of NF type. Then we shall write

Λ(G)

for the cyclotome associated to G (cf. [4, Thm. 1.4(9), Prop. 3.7(4)]).

Remark 1.3.1.

(i) It is well known that a profinite group of MLF type is infinite. Let us re-

call that a profinite group of MLF type is also topologically finitely gener-

ated (cf. [16, Thm. 7.4.1]), slim (cf. [14, Thm. 1.7(ii)]), and elastic (cf. [14,

Thm. 1.7(ii)]).

(ii) It is well known that a profinite group of NF type is infinite. Let us recall

that a profinite group of NF type is also slim (cf. [14, Thm. 1.7(iii)]) and

very elastic (cf. [14, Thm. 1.7(iii)]).

Proposition 1.4. Let G be a profinite group of NF type. Then the group Aut(G)

has a natural structure of profinite group of NF type, with respect to which the

homomorphism G→ Aut(G) by conjugation is an open injective continuous homo-

morphism. Let us regard Aut(G) as a profinite group of NF type by this structure.

Proof. This assertion follows immediately from [17, Thm.], together with the slim-

ness portion of Remark 1.3.1(ii) (cf. also [4, Prop. 5.2(4)]).

Definition 1.5. Let G be a profinite group and N ⊆ G a normal closed subgroup

of G.

(i) We shall say that N is of co-MLF type if G/N is of MLF type.

(ii) We shall say that N is pseudo-MLF-geometric if the following two conditions

are satisfied:

(1) The normal closed subgroup N is of co-MLF type and topologically

finitely generated.

(2) For each open subgroup H ⊆ G of G, the maximal H-stable torsion-free

quotient of the abelian profinite group (H ∩N)ab on which the resulting

action of H is trivial has a natural structure of a (necessarily finitely

generated – cf. (1)) free Ẑ-module.
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Lemma 1.6. Let G be a profinite group. Then the following assertions hold:

(i) Let H ⊆ G be an open subgroup of G and N ⊆ G a normal closed sub-

group of G. Suppose that N is of co-MLF type (respectively, pseudo-MLF-

geometric). Then the normal closed subgroup H∩N of H is of co-MLF type

(respectively, pseudo-MLF-geometric).

(ii) Suppose that G has a pseudo-MLF-geometric normal closed subgroup. Then

G is topologically finitely generated.

(iii) Suppose that G has a pseudo-MLF-geometric normal closed subgroup. For

each open subgroup H ⊆ G of G, write

ζ(H)
def
= sup

{
dimQl

(Hab ⊗Ẑ Ql)− dimQl′ (H
ab ⊗Ẑ Ql′) | l, l′ ∈ Primes

}
( <∞ )

(cf. (i), (ii));

∆(G) ⊆ G

for the normal closed subgroup of G obtained by forming the intersection

of the normal open subgroups H ⊆ G of G such that the equality ζ(H) =

ζ(G) · [G : H] holds. (Note that the equality “ζ(H) = ζ(G) · [G : H]” holds if

one takes the “H” to be G.) Then, for a normal closed subgroup of G, the

following two conditions are equivalent:

(1) The normal closed subgroup coincides with ∆(G).

(2) The normal closed subgroup is pseudo-MLF-geometric.

(iv) The set of pseudo-MLF-geometric normal closed subgroups of G is of car-

dinality ≤ 1.

Proof. Assertion (i) follows immediately from [4, Rem. 1.2.1], together with the

various definitions involved. Assertion (ii) follows from Remark 1.3.1(i) and con-

dition (1) of Definition 1.5(ii). Next we verify assertion (iii). Let N ⊆ G be a

pseudo-MLF-geometric normal closed subgroup of G and H ⊆ G an open sub-

group of G. Write QH
def
= H/(H ∩N) ⊆ QG

def
= G/N . Thus, since (it follows from

condition (1) of Definition 1.5(ii) and assertion (i) that) QH is of MLF type, it

follows immediately from [6, Lems. 1.2(i), 1.7, Prop. 3.6] that,

(a) for each prime number l, the equality

dimQl
(Qab

H ⊗Ẑ Ql) =

{
1 if l ̸= p(QH),

d(QH) + 1 if l = p(QH)

(cf. [6, Def. 3.5(i), (ii)]) holds.
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Next, let us observe that it follows immediately from [16, Thm. 7.2.6] that,

for each prime number l, the Leray spectral sequence of the group extension 1→
H ∩N → H → QH → 1 yields an exact sequence

0 −→ H1(QH ,Ql/Zl) −→ H1(H,Ql/Zl) −→ H1(H ∩N,Ql/Zl)
QH −→ 0,

where we write H1(H ∩ N,Ql/Zl)
QH for the submodule of H1(H ∩ N,Ql/Zl)

of QH-invariants. In particular, for each prime number l, the natural continuous

homomorphisms H ∩ N ↪→ H →→ QH determine an exact sequence of Ql-vector

spaces

0 −→ ((H ∩N)ab)QH
⊗Ẑ Ql −→ Hab ⊗Ẑ Ql −→ Qab

H ⊗Ẑ Ql −→ 0,

where we write ((H ∩N)ab)QH
for the maximal QH -stable quotient of (H ∩N)ab

on which the resulting action of QH is trivial – which thus implies that

(b) the equality

dimQl
(Hab ⊗Ẑ Ql) = dimQl

(
((H ∩N)ab)QH

⊗Ẑ Ql

)
+ dimQl

(Qab
H ⊗Ẑ Ql)

holds.

Next, let us observe that it follows from condition (2) of Definition 1.5(ii) that

the dimension “dimQl
(((H ∩ N)ab)QH

⊗Ẑ Ql)” does not depend on the choice of

the prime number “l”. Thus, it follows from (a), (b) that

ζ(H) = d(QH).

In particular, since d(QH) = d(QG) · [QG : QH ] (cf. [6, Prop. 3.6]), it holds that the

equality ζ(H) = ζ(G)·[G : H] holds if and only ifH contains N . Thus, we conclude

that N = ∆(G), as desired. This completes the proof of assertion (iii). Assertion

(iv) follows from assertion (iii). This completes the proof of Lemma 1.6.

Definition 1.7. Let G be a profinite group and N ⊆ G a normal closed subgroup

of G.

(i) We shall say that N is of co-NF type if G/N is of NF type.

(ii) We shall say that N is pseudo-NF-geometric if N is of co-NF type and

topologically finitely generated.

Lemma 1.8. Let G be a profinite group. Then the following assertions hold:

(i) Let H ⊆ G be an open subgroup of G and N ⊆ G a normal closed subgroup

of G. Suppose that N is of co-NF type (respectively, pseudo-NF-geometric).

Then the normal closed subgroup H∩N of H is of co-NF type (respectively,

pseudo-NF-geometric).
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(ii) Suppose that G has a pseudo-NF-geometric normal closed subgroup. Then

a pseudo-NF-geometric normal closed subgroup of G is the uniquely deter-

mined minimal normal closed subgroup of co-NF type of G.

(iii) The set of pseudo-NF-geometric normal closed subgroups of G is of cardi-

nality ≤ 1.

Proof. Assertion (i) follows immediately from [4, Rem. 3.2.1(i)], together with the

various definitions involved. Next, we verify assertion (ii). Let N1 ⊆ G be a pseudo-

NF-geometric normal closed subgroup of G and N2 ⊆ G a normal closed subgroup

of co-NF type of G. Then since N1 is topologically finitely generated and normal

in Π, and Π/N2 is very elastic (cf. Remark 1.3.1(ii)), it follows immediately that

the image of N1 in Π/N2 is trivial, i.e., that N1 ⊆ N2, as desired. This completes

the proof of assertion (ii). Assertion (iii) follows from assertion (ii). This completes

the proof of Lemma 1.8.

Remark 1.8.1. Lemma 1.8(ii) may lead us to a consideration of the validity of

the following assertion:

(∗) Let G be a profinite group. Suppose that G has a pseudo-MLF-geometric

normal closed subgroup. Then a pseudo-MLF-geometric normal closed sub-

group of G is the uniquely determined minimal normal closed subgroup of

co-MLF type of G.

On the other hand, this assertion (∗) does not hold in general. A counterexample

may be obtained as follows: Let Q be a profinite group ofMLF type and F a finitely

generated discrete free group of rank ≥ 3. Write F̂ for the profinite completion of

F and G
def
= F̂ ×Q. (So it is immediate from Remark 1.3.1(i) that G is naturally

identified with the profinite completion of F ×Q.) Then since the absolute Galois

group (relative to some choice of algebraic closure) of the 2-adic completion Q2

of the field of rational numbers is topologically generated by 3 elements (cf. [16,

Thm. 7.4.1]), there exists a surjective continuous homomorphism from G to the

absolute Galois group of Q2 that factors through the first projection G →→ F̂ . In

particular, since the absolute Galois group of Q2 is nontrivial (cf. Remark 1.3.1(i)),

to verify that the present situation yields a counterexample of assertion (∗), it
suffices to verify that the normal closed subgroup F̂ × {1} ⊆ F̂ × Q = G of G is

pseudo-MLF-geometric.

To this end, let us observe that it is immediate that the normal closed sub-

group F̂ × {1} ⊆ G satisfies condition (1) of Definition 1.5(ii). To verify the

assertion that the normal closed subgroup F̂ × {1} ⊆ G satisfies condition (2) of

Definition 1.5(ii), let us observe that it is immediate that an arbitrary open sub-

group of G may be naturally identified with the profinite completion of a subgroup
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of F ×Q of finite index. Thus, the desired assertion follows immediately from the

(well-known) flatness of Ẑ over Z.

Definition 1.9. Let G be a profinite group and N ⊆ G a normal closed subgroup

of G. Then we shall say that a normal closed subgroup J ⊆ G of G is a co-elastic

hull of N if J contains N as an open subgroup and, moreover, the quotient G/J

is infinite and elastic.

Lemma 1.10. Let G be a profinite group and N ⊆ G a normal closed subgroup

of G. Then the set of co-elastic hulls of N in G is of cardinality ≤ 1.

Proof. Let J1, J2 ⊆ G be co-elastic hulls of N . Now let us observe that one verifies

immediately that to verify J1 = J2, we may assume without loss of generality, by

replacing G by G/N , that N = {1}, which thus implies that both J1 and J2
are finite. Thus, since G/J1 is infinite and elastic, the image of J2 in G/J1 is

trivial, i.e., J2 ⊆ J1. Moreover, it follows from a similar argument that J1 ⊆ J2.

In particular, the equality J1 = J2 holds, as desired. This completes the proof of

Lemma 1.10.

§2. Hyperbolic curvoids

In Section 2 we introduce and discuss the notion of a hyperbolic curvoid (cf. Defi-

nition 2.1 below).

Definition 2.1. Let Π be a profinite group. Then we shall say that Π is a hyper-

bolic MLF-curvoid (respectively, hyperbolic NF-curvoid) if there exist

(a) a normal closed subgroup N ⊆ Π of Π,

(b) a semi-graph G of anabelioids of pro-Primes PSC type (cf. [13, Def. 1.1(i)]) –

whose PSC-fundamental group (cf. [13, Def. 1.1(ii)]) we denote by ΠG – and

(c) an outer continuous isomorphism N
∼−→ ΠG

that satisfy the following four conditions:

(1) The normal closed subgroup N ⊆ Π of Π is of co-MLF type (respectively, of

co-NF type).

(2) There exists a normal open subgroup H ⊆ Π of Π such that H contains N and,

moreover, N is pseudo-MLF-geometric (respectively, pseudo-NF-geometric) as

a normal closed subgroup of H.

(3) The composite

Π/N −→ Out(N)
∼−→ Out(ΠG)
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– where the first arrow is the outer continuous action by conjugation, and

the second arrow is the isomorphism obtained by conjugation by the outer

continuous isomorphism N
∼−→ ΠG of (c) – factors through the closed subgroup

Aut(G) ⊆ Out(ΠG) of Out(ΠG) discussed at the beginning of [13, Sect. 2].

(4) For each prime number l, there exists an open subgroup Ul ⊆ Π/N of Π/N

such that

� the restriction to Ul ⊆ Π/N of the continuous character Π/N → Z×
l ob-

tained by forming the composite of the resulting homomorphism Π/N →
Aut(G) [cf. (3)] and the pro-l cyclotomic character Aut(G)→ Z×

l (cf. [13,

Lem. 2.1])

coincides with

� the restriction to Ul ⊆ Π/N of the continuous character Π/N → Z×
l

determined by the maximal pro-l quotient of the cyclotome Λ(Π/N) as-

sociated to Π/N (cf. (1); Definition 1.3(ii)).

Remark 2.1.1. We shall give some examples of hyperbolic curvoids that arise

from scheme theory in Theorem 6.5(i) below and Theorem 6.6(i) below.

In the remainder of Section 2, let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-curvoid.

Proposition 2.2. Every open subgroup of a hyperbolic MLF-curvoid (respec-

tively, hyperbolic NF-curvoid) is a hyperbolic MLF-curvoid (respectively, hyper-

bolic NF-curvoid).

Proof. Suppose that we are in the situation of Definition 2.1, and that □ = MLF

(respectively, □ = NF). Let U ⊆ Π be an open subgroup of Π. Then, to verify

the open subgroup U is a hyperbolic MLF-curvoid (respectively, hyperbolic NF-

curvoid), let us observe that it follows from Lemma 1.6(i) (respectively, Lem-

ma 1.8(i)) that the normal closed subgroup U ∩ N ⊆ U of U satisfies conditions

(1), (2) of Definition 2.1. Fix a continuous isomorphism N
∼−→ ΠG that lifts the

outer continuous isomorphism of (c) of Definition 2.1. Write

� H → G for the connected finite étale covering of G that corresponds to the

open subgroup of ΠG obtained by forming the image of U ∩ N ⊆ N by the

fixed continuous isomorphism N
∼−→ ΠG and

� ΠH (⊆ ΠG) for the PSC-fundamental group of H.
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Then it follows immediately from [4, Thm. 1.4(iv)] (respectively, [4, Thm. 3.8(i)])

and the final portion of [13, Lem. 2.1], together with the various definitions in-

volved, that the collection of data consisting of

� the normal closed subgroup U ∩N ⊆ U of U ,

� the semi-graph H of anabelioids of pro-Primes PSC type, and

� the outer continuous isomorphism U ∩ N
∼−→ ΠH determined by the fixed

continuous isomorphism N
∼−→ ΠG

satisfies conditions (3), (4) of Definition 2.1. This completes the proof of Proposi-

tion 2.2.

Lemma 2.3. Suppose that Π is a hyperbolic MLF-curvoid (respectively, hyper-

bolic NF-curvoid). Then the following assertions hold:

(i) For a normal closed subgroup N0 ⊆ Π of Π, the following two conditions are

equivalent:

(1) The normal closed subgroup N0 satisfies conditions (1), (2) of Defini-

tion 2.1 (i.e., imposed on “N”).

(2) There exist a normal open subgroup J ⊆ Π of Π and a normal closed

subgroup ∆ ⊆ Π of Π such that

� the inclusions ∆ ⊆ N0 ⊆ J hold,

� ∆ is pseudo-MLF-geometric (respectively, pseudo-NF-geometric) as

a normal closed subgroup of J and, moreover,

� N0 is a co-elastic hull of ∆ in Π.

(ii) The set of normal closed subgroups of Π that satisfy conditions (1), (2) of

Definition 2.1 is of cardinality 1.

Proof. First, we verify the implication (1)⇒ (2) of assertion (i). Suppose that con-

dition (1) is satisfied. Then one verifies easily from Remark 1.3.1(i) (respectively,

Remark 1.3.1(ii)) and condition (1) of Definition 2.1 that N0 is a co-elastic hull

of N0. Thus, since N0 satisfies condition (2) of Definition 2.1, we conclude that

the normal closed subgroup N0 ⊆ Π of Π satisfies condition (2), as desired. This

completes the proof of the implication (1) ⇒ (2) of assertion (i).

Next, we verify the implication (2) ⇒ (1) of assertion (i) and assertion (ii).

Let J ⊆ Π be a normal open subgroup of Π and ∆ ⊆ Π a normal closed subgroup

of Π such that
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� J contains ∆,

� ∆ is pseudo-MLF-geometric (respectively, pseudo-NF-geometric) as a normal

closed subgroup of J , and, moreover,

� there exists a co-elastic hull C ⊆ Π of ∆ in Π.

Suppose that we are in the situation of Definition 2.1. Then let us observe that

one verifies immediately (cf. the implication (1) ⇒ (2) of assertion (i) already

verified) that, to verify the implication (2)⇒ (1) of assertion (i) and assertion (ii),

it suffices to verify that C = N .

Next, to verify C = N let us observe that it is immediate that

(a) C is a co-elastic hull of H ∩∆ in Π.

Next, let us observe that it follows from Lemma 1.6(i) (respectively, Lem-

ma 1.8(i)), together with condition (2) of Definition 2.1, that both H ∩∆ and J ∩
N are pseudo-MLF-geometric (respectively, pseudo-NF-geometric) normal closed

subgroups of J ∩ H. Thus, it follows from Lemma 1.6(iv) (respectively, Lem-

ma 1.8(iii)) that H ∩ ∆ = J ∩ N . In particular, it follows from condition (1) of

Definition 2.1, together with Remark 1.3.1(i) (respectively, Remark 1.3.1(ii)), that

(b) N is a co-elastic hull of H ∩∆ in Π.

Thus, it follows from (a), (b), together with Lemma 1.10, that C = N , as

desired. This completes the proofs of the implication (2)⇒ (1) of assertion (i) and

assertion (ii).

Definition 2.4.

(i) We shall write

∆(Π) ⊆ Π

for the uniquely determined (cf. Lemma 2.3(ii)) normal closed subgroup

of Π that satisfies conditions (1), (2) of Definition 2.1 (i.e., the uniquely

determined normal closed subgroup of Π that satisfies condition (2) of Lem-

ma 2.3(i) imposed on “N0” – cf. Lemma 2.3(i), (ii)) and refer to ∆(Π) as

the geometric subgroup of Π.

(ii) We shall write

G(Π)
def
= Π/∆(Π)

and refer to G(Π) as the arithmetic quotient of Π.

Thus, we have an exact sequence of profinite groups

1 −→ ∆(Π) −→ Π −→ G(Π) −→ 1.
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Proposition 2.5. The following assertions hold:

(i) The geometric subgroup ∆(Π) of Π is topologically finitely generated, slim,

and elastic.

(ii) If the profinite group Π is a hyperbolic MLF-curvoid (respectively, hyper-

bolic NF-curvoid), then the arithmetic quotient G(Π) of Π is of MLF type

(respectively, of NF type).

(iii) Let H ⊆ Π be an open subgroup of Π. (So H is a hyperbolic □-curvoid –

cf. Proposition 2.2). Then the geometric subgroup of H, i.e., ∆(H) ⊆ H,

is given by H ∩∆(Π). In particular, the natural inclusion H ↪→ Π fits into

a commutative diagram of profinite groups

1 // ∆(H) //
� _

��

H //� _

��

G(H) //
� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

– where the horizontal sequences are exact, and the vertical arrows are open

injective.

Proof. First, we verify assertion (i). Let us first observe that one verifies immedi-

ately from the existence of the outer continuous isomorphism of (c) of Definition 2.1

and [13, Rem. 1.1.3] that ∆(Π) is isomorphic, as an abstract profinite group, to the

étale fundamental group of some hyperbolic curve over an algebraically closed field

of characteristic zero. Thus, assertion (i) follows from [14, Props. 2.2, 2.3(i)]. This

completes the proof of assertion (i). Assertion (ii) follows from condition (1) of Def-

inition 2.1. Assertion (iii) follows immediately from the proof of Proposition 2.2.

This completes the proof of Proposition 2.5.

Definition 2.6. Let l be a prime number, G a profinite group, M a Ql-vector

space of finite dimension equipped with a continuous action of G, and χ : G→ Z×
l

a continuous character.

(i) We shall say that M is quasi-trivial if the action of G on M factors through

a finite quotient of G.

(ii) We shall write

τ(M)

for the sum of the Ql-dimensions of the quasi-trivial subquotients “Mi/Mi+1”

by a composition series {0} = Mn ⊆ · · · ⊆ M1 ⊆ M0 = M of the Ql-

vector space M equipped with a continuous action of G. Note that one verifies
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easily that this sum does not depend on the choice of the composition series

“{0} = Mn ⊆ · · · ⊆M1 ⊆M0 = M” of M .

(iii) We shall write

dχ(M)
def
= τ(M(χ−1))− τ(HomQl

(M,Ql))

– whereM(χ−1) denotes the result of “twisting”M by the character χ−1 :G→
Z×
l .

Lemma 2.7. Suppose that the profinite group ∆(Π) is free. Let l be a prime

number. For each open subgroup U ⊆ G(Π) of G(Π), write χl-cyc
U : U → Z×

l for

the continuous character obtained by forming the restriction to U ⊆ G(Π) of the

continuous character G(Π) → Z×
l determined by the maximal pro-l quotient of

the cyclotome Λ(G(Π)) associated to G(Π) (cf. Proposition 2.5(ii)). Moreover, for

each open subgroup H ⊆ ∆(Π) of ∆(Π), write H(l) for the maximal pro-l quotient

of H. Then the following assertions hold:

(i) Let H ⊆ ∆(Π) be a characteristic open subgroup of ∆(Π). Write

C̃l(H)

for the set of maximal closed subgroups I ⊆ H(l) of H(l) that satisfy the

following two conditions:

� The profinite group I is isomorphic, as an abstract profinite group, to

Zl. Write I l ⊆ I for the uniquely determined open subgroup of I of

index l.

� Let J ⊆ H(l) be a characteristic open subgroup of H(l); Ĩ · J , Ĩ l · J ⊆
Π open subgroups of Π such that the geometric subgroups ∆(Ĩ · J),
∆(Ĩ l · J) (cf. Proposition 2.2) are given by the inverse images of I · J ,
I l ·J ⊆ H(l) by the natural surjective continuous homomorphism H →→
H(l), respectively (cf. Proposition 2.5(iii)). Then the inequality

dχl-cyc

G(Ĩl·J)

((I l · J)ab ⊗Zl
Ql) + 1 < l ·

(
dχl-cyc

G(Ĩ·J)

((I · J)ab ⊗Zl
Ql) + 1

)
holds (cf. Proposition 2.5(i), (iii)).

Then an arbitrary ∆(Π)-conjugate of an element of C̃l(H) is an element of

C̃l(H).

(ii) In the situation of (i), the quotient

Cl(H)

of C̃l(H) by the action of H, i.e., by conjugation (cf. (i)), is finite.
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(iii) Let H1 ⊆ H2 ⊆ ∆(Π) be characteristic open subgroups of ∆(Π). Then the

assignment “I 7→ CH2
(Im(I))”, where we write Im(I) ⊆ H

(l)
2 for the image

of I ⊆ H
(l)
1 in H

(l)
2 , determines a ∆(Π)-equivariant (cf. (i)) map

C̃l(H1) −→ C̃l(H2),

which thus determines a ∆(Π)-equivariant map

Cl(H1) −→ Cl(H2)

(cf. (ii)).

(iv) Write

Il
for the set of subgroups of ∆(Π) obtained by forming the stabilizers of ele-

ments of the profinite set (cf. (ii))

lim←−
H

Cl(H)

– where the projective limit is taken over the characteristic open subgroups

H ⊆ ∆(Π) of ∆(Π) (cf. (iii)) – i.e., with respect to the action of ∆(Π) on the

profinite set (cf. (iii)). Then, for a closed subgroup of ∆(Π), the following

two conditions are equivalent:

(1) The closed subgroup is an element of Il.
(2) In the situation of Definition 2.1, the image of the closed subgroup of

∆(Π) by some (or, alternatively, an arbitrary) continuous isomorphism

∆(Π) = N
∼−→ ΠG that lifts the outer continuous isomorphism of (c) is

a cuspidal subgroup of ΠG (cf. [13, Def. 1.1 (ii)]).

In particular, the set Il does not depend on the choice of the prime number l.

Proof. These assertions follow immediately – in light of conditions (3), (4) of

Definition 2.1 and [4, Thms. 1.4(iv), 3.8(i)] – from a similar argument to the

argument applied in the proof of [14, Lem. 4.5(iv)] (cf. also [15, Rem. 1.2.2(ii)]).

Definition 2.8.

(i) If the profinite group ∆(Π) is not free, then we shall define the set of cuspidal

inertia subgroups of Π to be the empty set. If the profinite group ∆(Π) is

free, then we shall say that a closed subgroup of ∆(Π) is a cuspidal inertia

subgroup of Π if the closed subgroup satisfies condition (1) of Lemma 2.7(iv),

for some (or, alternatively – cf. the final portion of Lemma 2.7(iv) – an

arbitrary) prime number l.
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(ii) We shall say that a closed subgroup of Π is a cuspidal decomposition subgroup

of Π if the closed subgroup is obtained by forming the commensurator in Π

of a cuspidal inertia subgroup of Π.

(iii) We shall write

Cusp(Π)

for the set of ∆(Π)-conjugacy classes (cf. condition (1) of Lemma 2.7(iv)) of

cuspidal inertia subgroups of Π.

Remark 2.8.1. It follows from the existence of the outer continuous isomorphism

of (c) of Definition 2.1 and [13, Rem. 1.1.3] that the geometric subgroup of a

hyperbolic □-curvoid is isomorphic, as an abstract profinite group, to the étale

fundamental group of some hyperbolic curve over an algebraically closed field of

characteristic zero (or, alternatively, to the profinite completion of the topological

fundamental group of some hyperbolic Riemann surface of finite type). Moreover,

it follows immediately from Lemma 2.7(iv) that one may take such a continuous

isomorphism so as to induce a bijective map between the set of cuspidal inertia

subgroups and the set of inertia subgroups associated to cusps of the hyperbolic

curve.

Proposition 2.9. The following assertions hold:

(i) Every cuspidal inertia (respectively, decomposition) subgroup of Π is com-

mensurably terminal in ∆(Π) (respectively, Π). In particular, the intersec-

tion of the geometric subgroup and a cuspidal decomposition subgroup is a

cuspidal inertia subgroup.

(ii) The set Cusp(Π) is finite. In particular, the image in G(Π) of every cuspidal

decomposition subgroup of Π is open.

(iii) Let H ⊆ Π be an open subgroup of Π. (So H is a hyperbolic □-curvoid –

cf. Proposition 2.2.) Then the assignments “I 7→ H ∩ I”, “J 7→ C∆(Π)(J)”

determine a bijective map between the set of cuspidal inertia subgroups of

Π and the set of cuspidal inertia subgroups of H. In particular, the second

assignment determines a surjective map

Cusp(H) −→→ Cusp(Π).

Proof. First, we verify assertion (i). The commensurable terminality of a cuspidal

inertia subgroup in ∆(Π), hence also the final portion of assertion (i), follows

from Lemma 2.7(iv) and [13, Prop. 1.2(ii)]. The commensurable terminality of a

cuspidal decomposition subgroup in Π follows immediately from the final portion

of assertion (i) already verified, together with Lemma 2.7(iv) and [13, Prop. 1.2(i)].

This completes the proof of assertion (i).
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Next, we verify assertion (ii). The first portion of assertion (ii) follows, in light

of Remark 2.8.1, from the well-known structure of the étale fundamental groups

of hyperbolic curves over algebraically closed fields of characteristic zero. Thus,

since (one verifies easily that) the action of Π on Cusp(Π), i.e., by conjugation, is

continuous, the final portion of assertion (ii) follows. This completes the proof of

assertion (ii). Assertion (iii) follows, in light of Remark 2.8.1, from the well-known

structure of the étale fundamental groups of hyperbolic curves over algebraically

closed fields of characteristic zero. This completes the proof of Proposition 2.9.

Definition 2.10.

(i) Let H ⊆ Π be an open subgroup of Π. (So H is a hyperbolic □-curvoid – cf.

Proposition 2.2.) Then we shall define a (necessarily connected) semi-graph

(cf. the discussion at the beginning of [12, Sect. 1])

G(H)

as follows: The set of vertices of G(H) is defined to be the set (necessarily

of cardinality 1) consisting of the profinite group H. The set of closed edges

of G(H) is defined to be the empty set. The set of open edges of G(H) is

defined to be the set Cusp(H). Every open edge of G(H) abuts to the unique

vertex H.

(ii) Let H1 ⊆ H2 ⊆ Π be open subgroups of Π. (So H1 and H2 are hyperbolic

□-curvoids – cf. Proposition 2.2.) Then the map Cusp(H1) →→ Cusp(H2)

obtained by applying the final portion of Proposition 2.9(iii) naturally de-

termines a morphism of semi-graphs (cf. the discussion at the beginning of

[12, Sect. 1])

G(H1) −→ G(H2).

We shall write

G̃(Π)
def
= (G(H))H⊆Π

for the projective system of semi-graphs consisting of the various G(H)’s –

where H ranges over the open subgroups of Π.

(iii) One verifies easily that the profinite group Π acts on the projective sys-

tem G̃(Π) by conjugation. Moreover, one also verifies immediately from Re-

mark 2.8.1, together with the various definitions involved, that the projective

system G̃(Π) of semi-graphs and the (restriction to ∆(Π) ⊆ Π of the) re-

sulting action of Π on G̃(Π) naturally determine

(1) a semi-graph of anabelioids of pro-Primes PSC type that has no node

G(Π)
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and

(2) an outer continuous isomorphism

∆(Π)
∼−→ ΠG(Π)

– where we write ΠG(Π) for the PSC-fundamental group of G(Π) –

such that

(a) the collection of data consisting of

� the normal closed subgroup ∆(Π) ⊆ Π of Π,

� the semi-graph G(Π) of anabelioids of pro-Primes PSC type of (1),

and

� the outer continuous isomorphism ∆(Π)
∼−→ ΠG(Π) of (2)

satisfies the four conditions (1), (2), (3), (4) of Definition 2.1 (i.e., im-

posed on the collection of data consisting of (a), (b), (c) of Defini-

tion 2.1),

(b) the restriction to ∆(Π) ⊆ Π of the action of Π on G̃(Π) determines an

identification between

� the set of cuspidal inertia subgroups of Π and

� the set of stabilizers (i.e., with respect to the action of ∆(Π) on

G̃(Π)) of compatible systems of open edges in G̃(Π), and, moreover,

(c) the outer continuous isomorphism of (2) determines a ΠG(Π)-orbit of

bijective maps between

� the set of cuspidal inertia subgroups of Π and

� the set of cuspidal subgroups of ΠG(Π),

hence also a bijective map Cusp(Π)
∼−→ Cusp(G(Π)) (cf. [7, Def. 1.1(i)]),

by means of which let us identify Cusp(Π) with Cusp(G(Π)):

Cusp(Π) = Cusp(G(Π)).

(iv) We shall write

Λ(Π)
def
= ΛG(Π)

(cf. [8, Def. 3.8(i)]) and refer to Λ(Π) as the geometric cyclotome associated

to Π.

(v) Let I ⊆ ∆(Π) be a cuspidal inertia subgroup of Π. Then it follows from [8,

Cor. 3.9(v)] (cf. also (c) of (iii)) that we have an isomorphism “synb” of I
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with Λ(Π) functorial with respect to isomorphisms of the pair “(Π, I)”. We

shall write

synI : I
∼−→ Λ(Π)

for this isomorphism.

Remark 2.10.1.

(i) It follows from [8, Def. 3.8(i)] that the geometric cyclotome associated to a

hyperbolic □-curvoid is isomorphic, as an abstract Ẑ-module, to Ẑ.
(ii) Let l be a prime number. Then it follows – in light of condition (a) of

Definition 2.10(iii) – from condition (4) of Definition 2.1 and [8, Rem. 3.8.1]

that there exists an open subgroup Ul ⊆ G(Π) of G(Π) such that

� the restriction to Ul ⊆ G(Π) of the continuous character G(Π) → Z×
l

determined by the maximal pro-l quotient of the geometric cyclotome

Λ(Π) associated to Π (cf. (i))

coincides with

� the restriction to Ul ⊆ G(Π) of the continuous character G(Π) → Z×
l

determined by the maximal pro-l quotient of the cyclotome Λ(G(Π))

associated to G(Π).

Lemma 2.11. Let H ⊆ Π be an open subgroup of Π. (So H is a hyperbolic

□-curvoid – cf. Proposition 2.2.) Then the homomorphism

Λ(Π) −→ Λ(H)

induced by the natural inclusion H ↪→ Π (cf. Proposition 2.5(iii) and Proposi-

tion 2.9(iii)) is an injective homomorphism whose image is given by

[∆(Π) : ∆(H)] · Λ(H) ⊆ Λ(H).

Proof. This assertion follows – in light of Remark 2.10.1(i) – from [8, Thm. 3.7(v)],

together with the various definitions involved.

Definition 2.12. Suppose that Π is a hyperbolic NF-curvoid. Let D be an ele-

ment of Ṽ(G(Π)) (cf. Proposition 2.5(ii); [4, Prop. 3.5(1)]).

(i) We shall write

Π|D
def
= Π×G(Π) D

for the fiber product of the natural surjective homomorphism Π →→ G(Π)

and the natural inclusion D ↪→ G(Π) and refer to Π|D as the localization of
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Π at D. Thus, we have a commutative diagram of profinite groups

1 // ∆(Π) // Π|D //
� _

��

D //� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

– where the horizontal sequences are exact, and the vertical arrows are in-

jective.

(ii) We shall say that D ∈ Ṽ(G(Π)) is curvoidal if the localization Π|D at D is a

hyperbolic MLF-curvoid whose geometric subgroup is given by ∆(Π) ⊆ Π|D
(cf. the diagram of (i)).

Proposition 2.13. Suppose that Π is a hyperbolic NF-curvoid. Let D be a cur-

voidal element of Ṽ(G(Π)). Then the natural inclusion Π|D ↪→ Π determines an

isomorphism of semi-graphs of anabelioids (cf. [12, Def. 2.1])

G(Π|D)
∼−→ G(Π).

In particular, the natural inclusion Π|D ↪→ Π determines

� a D-equivariant isomorphism

Λ(Π|D)
∼−→ Λ(Π)

and

� a bijective map between the set of cuspidal inertia subgroups of Π|D and the

set of cuspidal inertia subgroups of Π, which thus gives

� a bijective map

Cusp(Π|D)
∼−→ Cusp(Π).

Proof. Let us observe that it follows immediately from condition (a) of Defini-

tion 2.10(iii) and [4, Thm. 3.8(ii)] that conditions (3), (4) of Definition 2.1 in the

case where one takes the collection “(Π, N,N
∼−→ ΠG)” of data of Definition 2.1 to

be the collection of data consisting of

� the hyperbolic MLF-curvoid Π|D,

� the geometric subgroup ∆(Π|D) (= ∆(Π)) of Π|D, and

� the outer continuous isomorphism ∆(Π|D)
∼−→ ΠG(Π) obtained by forming the

composite of the outer continuous isomorphism ∆(Π|D)
∼−→ ∆(Π) determined

by the natural identification ∆(Π|D) = ∆(Π) and the outer continuous iso-

morphism ∆(Π)
∼−→ ΠG(Π) of (2) of Definition 2.10(iii)

are satisfied. Thus, Proposition 2.13 follows immediately from Lemma 2.7(iv) and

[13, Prop. 1.5(ii)]. This completes the proof of Proposition 2.13.
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§3. Hyperbolic orbicurvoids

In Section 3 we introduce and discuss the notion of a hyperbolic orbicurvoid (cf.

Definition 3.1 below).

Definition 3.1. Let Π be a profinite group. Then we shall say that Π is a hy-

perbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) if there exist

a normal closed subgroup N ⊆ Π of Π and a normal open subgroup H ⊆ Π of Π

that satisfy the following two conditions:

(1) The normal closed subgroup N is slim and of co-MLF type (respectively, of

co-NF type).

(2) The normal open subgroup H is a hyperbolic MLF-curvoid (respectively, hy-

perbolic NF-curvoid) whose geometric subgroup is given by H ∩N .

Remark 3.1.1. We shall give some examples of hyperbolic orbicurvoids that arise

from scheme theory in Corollary 6.7(i) below.

In the remainder of Section 3, let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-orbicurvoid.

Proposition 3.2. The following assertions hold:

(i) A hyperbolic MLF-curvoid (respectively, hyperbolic NF-curvoid) is a hyper-

bolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid).

(ii) Suppose that Π is a hyperbolic MLF-orbicurvoid (respectively, hyperbolic

NF-orbicurvoid). Then every open subgroup of Π is a hyperbolic MLF-

orbicurvoid (respectively, hyperbolic NF-orbicurvoid).

(iii) The profinite group Π is slim.

(iv) The following three conditions are equivalent:

(1) The profinite group Π is a hyperbolic MLF-orbicurvoid, i.e., □ = MLF.

(2) The profinite group Π is not a hyperbolic NF-orbicurvoid, i.e., □ ̸= NF.

(3) The profinite group Π is topologically finitely generated.

Proof. Assertion (i) follows from Proposition 2.5(i), (ii). Assertion (ii) follows

from Lemma 1.6(i) (respectively, Lemma 1.8(i)), Proposition 2.2, and Proposi-

tion 2.5(iii). Assertion (iii) follows, in light of condition (1) of Definition 3.1, from

Lemma 1.2 and Remark 1.3.1(i) (respectively, Remark 1.3.1(ii)).

Finally, we verify assertion (iv). The implication (2) ⇒ (1) is immediate.

The implication (1) ⇒ (3) follows, in light of condition (2) of Definition 2.1 and
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condition (2) of Definition 3.1, from Lemma 1.6(ii). The implication (3) ⇒ (2)

follows, in light of condition (1) of Definition 3.1, from Remark 1.3.1(ii). This

completes the proof of assertion (iv), hence also of Proposition 3.2.

Lemma 3.3. Suppose that Π is a hyperbolic MLF-orbicurvoid (respectively, hy-

perbolic NF-orbicurvoid). Then the following assertions hold:

(i) For a normal closed subgroup N ⊆ Π of Π, the following two conditions are

equivalent:

(1) The normal closed subgroup N is slim and of co-MLF type (respectively,

of co-NF type), and, moreover, there exists a normal open subgroup

H ⊆ Π of Π such that H is a hyperbolic MLF-curvoid (respectively,

hyperbolic NF-curvoid) whose geometric subgroup is given by H ∩N .

(2) There exists a normal open subgroup J ⊆ Π of Π such that J is a hy-

perbolic MLF-curvoid (respectively, hyperbolic NF-curvoid), and, more-

over, N is a co-elastic hull of ∆(J) in Π. (Note that one verifies easily

that the closed subgroup ∆(J) ⊆ Π of Π is normal.)

(ii) The set of normal closed subgroups of Π that satisfy (1) of (i) is of cardi-

nality 1.

Proof. First, we verify the implication (1) ⇒ (2) of assertion (i). Suppose that

condition (1) is satisfied. Then it follows from Remark 1.3.1(i) (respectively, Re-

mark 1.3.1(ii)) that N is a co-elastic hull of H∩N in Π, as desired. This completes

the proof of the implication (1) ⇒ (2) of assertion (i).

Next, we verify the implication (2) ⇒ (1) of assertion (i) and assertion (ii).

Let J ⊆ Π be a normal open subgroup of Π such that J is a hyperbolic MLF-

curvoid (respectively, hyperbolic NF-curvoid), and, moreover, the geometric sub-

group ∆(J) of J has a co-elastic hull C ⊆ Π in Π. Moreover, let N ⊆ Π be a

normal closed subgroup of Π that satisfies condition (1) of assertion (i) (cf. con-

ditions (1), (2) of Definition 3.1), which thus implies that there exists a normal

open subgroup H ⊆ Π of Π such that H is a hyperbolic MLF-curvoid (respectively,

hyperbolic NF-curvoid) whose geometric subgroup is given by H ∩N . Then let us

observe that one verifies immediately (cf. the implication (1) ⇒ (2) of assertion

(i) already verified) that, to verify the implication (2) ⇒ (1) of assertion (i) and

assertion (ii), it suffices to verify that C = N .

Next, to verify C = N , let us observe that it is immediate that

(a) the normal closed subgroup C is a co-elastic hull of H ∩∆(J) in Π.
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Next, let us observe that from Proposition 2.2 and Proposition 2.5(iii) it

follows that H ∩ ∆(J) = ∆(J ∩ H) = J ∩ H ∩ N . In particular, it follows from

Remark 1.3.1(i) (respectively, Remark 1.3.1(ii)) that

(b) the normal closed subgroup N is a co-elastic hull of H ∩∆(J) in Π.

Thus, it follows from (a), (b), together with Lemma 1.10, that C = N , as

desired. This completes the proofs of the implication (2)⇒ (1) of assertion (i) and

assertion (ii).

Definition 3.4.

(i) We shall write

∆(Π) ⊆ Π

for the uniquely determined (cf. Lemma 3.3(ii)) normal closed subgroup of

Π that satisfies condition (1) of Lemma 3.3(i) (i.e., the uniquely determined

normal closed subgroup of Π that satisfies condition (2) of Lemma 3.3(i) –

cf. Lemma 3.3(i), (ii)) and refer to ∆(Π) as the geometric subgroup of Π.

(ii) We shall write

G(Π)
def
= Π/∆(Π)

and refer to G(Π) as the arithmetic quotient of Π. Thus, we have an exact

sequence of profinite groups

1 −→ ∆(Π) −→ Π −→ G(Π) −→ 1.

(iii) Let Π1 and Π2 be hyperbolic MLF-orbicurvoids (respectively, hyperbolic

NF-orbicurvoids). Then we shall say that an open continuous homomor-

phism Π1 → Π2 is an arithmetic equivalence if the open continuous ho-

momorphism maps ∆(Π1) to ∆(Π2), and, moreover, the (necessarily open

continuous) induced homomorphism G(Π1) → G(Π2) is a continuous iso-

morphism.

Remark 3.4.1. One verifies easily from Proposition 2.5(i), (ii) that if Π is a hy-

perbolic □-curvoid, hence also a hyperbolic □-orbicurvoid (cf. Proposition 3.2(i)),

then the notions of the geometric subgroup, arithmetic quotient of Π in the sense

of Definition 2.4(i), (ii) coincide with the notions of the geometric subgroup, arith-

metic quotient of Π in the sense of Definition 3.4(i), (ii), respectively.

Proposition 3.5. The following assertions hold:

(i) The geometric subgroup ∆(Π) of Π is topologically finitely generated, slim,

and elastic.
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(ii) If the profinite group Π is a hyperbolic MLF-orbicurvoid (respectively, hy-

perbolic NF-orbicurvoid), then the arithmetic quotient G(Π) of Π is of MLF

type (respectively, of NF type).

(iii) Let H ⊆ Π be an open subgroup of Π. (So H is a hyperbolic □-orbicurvoid –

cf. Proposition 3.2(ii).) Then the geometric subgroup of H, i.e., ∆(H) ⊆ H,

is given by H ∩∆(Π). In particular, the natural inclusion H ↪→ Π fits into

a commutative diagram of profinite groups

1 // ∆(H) //
� _

��

H //� _

��

G(H) //
� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

– where the horizontal sequences are exact, and the vertical arrows are open

injective.

Proof. First, we verify assertion (i). It follows from Proposition 2.5(i) that ∆(Π)

is topologically finitely generated. Moreover, it follows from condition (1) of Lem-

ma 3.3(i) that ∆(Π) is slim. Thus, it follows from Proposition 2.5(i) and [14,

Prop. 1.3(i)] that ∆(Π) is elastic. This completes the proof of assertion (i). Asser-

tion (ii) follows from condition (1) of Lemma 3.3(i). Assertion (iii) follows imme-

diately – in light of Lemma 1.6(i) and Lemma 1.8(i) – from Proposition 2.5(iii).

This completes the proof of Proposition 3.5.

Lemma 3.6. Let I ⊆ ∆(Π) be a closed subgroup of ∆(Π). Then the following two

conditions are equivalent:

(1) For every open subgroup H ⊆ Π of Π that is a hyperbolic □-curvoid, the

intersection ∆(H)∩ I is a cuspidal inertia subgroup of H, and, moreover, the

equality I = C∆(Π)(∆(H) ∩ I) holds.

(2) There exist an open subgroup H ⊆ Π of Π that is a hyperbolic □-curvoid and a

cuspidal inertia subgroup J ⊆ ∆(H) of H such that the equality I = C∆(Π)(J)

holds.

Proof. The implication (1) ⇒ (2) is immediate (cf. also condition (2) of Defini-

tion 3.1). The implication (2) ⇒ (1) follows immediately – in light of Proposi-

tion 2.2 and Proposition 2.5(iii) – from Proposition 2.9(iii).

Definition 3.7.

(i) We shall say that a closed subgroup of ∆(Π) is a cuspidal inertia subgroup

of Π if the closed subgroup satisfies condition (1) of Lemma 3.6.
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(ii) We shall say that a closed subgroup of Π is a cuspidal decomposition subgroup

of Π if the closed subgroup is obtained by forming the commensurator in Π

of a cuspidal inertia subgroup of Π.

(iii) We shall write

Cusp(Π)

for the set of ∆(Π)-conjugacy classes (cf. condition (1) of Lemma 2.7(iv)) of

cuspidal inertia subgroups of Π.

Remark 3.7.1. One verifies easily from Proposition 2.9(iii) and Remark 3.4.1

that if Π is a hyperbolic □-curvoid, hence also a hyperbolic □-orbicurvoid (cf.

Proposition 3.2(i)), then the notions of a cuspidal inertia subgroup and a cuspidal

decomposition subgroup of Π in the sense of Definition 2.8(i), (ii) coincide with

the notions of a cuspidal inertia subgroup and a cuspidal decomposition subgroup

of Π in the sense of Definition 3.7(i), (ii), respectively. In particular, it follows

from Remark 3.4.1 that the set Cusp(Π) in the sense of Definition 2.8(iii) may be

naturally identified with the set Cusp(Π) in the sense of Definition 3.7(iii).

Proposition 3.8. The following assertions hold:

(i) Every cuspidal inertia (respectively, decomposition) subgroup of Π is com-

mensurably terminal in ∆(Π) (respectively, Π). In particular, the intersec-

tion of the geometric subgroup and a cuspidal decomposition subgroup is a

cuspidal inertia subgroup.

(ii) The set Cusp(Π) is finite. In particular, the image in G(Π) of every cuspidal

decomposition subgroup of Π is open.

(iii) Let H ⊆ Π be an open subgroup of Π. (So H is a hyperbolic □-orbicurvoid –

cf. Proposition 3.2(ii).) Then the assignments “I 7→ H∩I”, “J 7→ C∆(Π)(J)”

determine a bijective map between the set of cuspidal inertia subgroups of

Π and the set of cuspidal inertia subgroups of H. In particular, the second

assignment determines a surjective map

Cusp(H) −→→ Cusp(Π).

Proof. First, we verify assertion (i). The commensurable terminality of a cuspidal

inertia subgroup in ∆(Π), hence also the final portion of assertion (i), follows from

the definition of the notion of a cuspidal inertia subgroup. The commensurable

terminality of a cuspidal decomposition subgroup in Π follows immediately from

the final portion of assertion (i) already verified, together with Lemma 2.7(iv)

and [13, Prop. 1.2(i)]. This completes the proof of assertion (i). Assertion (ii) is a

formal consequence of Proposition 2.9(ii). Assertion (iii) follows immediately from

assertion (i). This completes the proof of Proposition 3.8.
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Definition 3.9. We shall write

Λ(Π)
def
= [∆(Π) : ∆(H)] · Λ(H)

(cf. Definition 2.10(iv)) for some open subgroup H ⊆ Π of Π such that H is a

hyperbolic □-curvoid (cf. condition (2) of Definition 3.1) and refer to Λ(Π) as the

geometric cyclotome associated to Π. Note that it follows from Lemma 2.11 that

Λ(Π) does not depend on the choice of the open subgroup “H”.

Remark 3.9.1. One verifies easily from the various definitions involved that if

Π is a hyperbolic □-curvoid, hence also a hyperbolic □-orbicurvoid (cf. Proposi-

tion 3.2(i)), then the geometric cyclotome associated to Π in the sense of Defini-

tion 2.10(iv) may be naturally identified with the geometric cyclotome associated

to Π in the sense of Definition 3.9.

Remark 3.9.2. It follows from Remark 2.10.1(i) that the geometric cyclotome

associated to a hyperbolic □-orbicurvoid is isomorphic, as an abstract Ẑ-module,

to Ẑ.

Definition 3.10. Suppose that Π is a hyperbolic NF-orbicurvoid. Let D be an

element of Ṽ(G(Π)) (cf. Proposition 3.5(ii); [4, Prop. 3.5(1)]).

(i) We shall write

Π|D
def
= Π×G(Π) D

for the fiber product of the natural surjective continuous homomorphism

Π →→ G(Π) and the natural inclusion D ↪→ G(Π) and refer to Π|D as the

localization of Π at D. Thus, we have a commutative diagram of profinite

groups

1 // ∆(Π) // Π|D //
� _

��

D //� _

��

1

1 // ∆(Π) // Π // G(Π) // 1

– where the horizontal sequences are exact, and the vertical arrows are in-

jective.

(ii) We shall say that D ∈ Ṽ(G(Π)) is orbicurvoidal if the localization Π|D at

D is a hyperbolic MLF-orbicurvoid whose geometric subgroup is given by

∆(Π) ⊆ Π|D (cf. the diagram of (i)).

Proposition 3.11. Suppose that Π is a hyperbolic NF-orbicurvoid. Let D be an

orbicurvoidal element of Ṽ(G(Π)). Then the natural inclusion Π|D ↪→ Π deter-

mines
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� a D-equivariant isomorphism

Λ(Π|D)
∼−→ Λ(Π)

and

� a bijective map between the set of cuspidal inertia subgroups of Π|D and the

set of cuspidal inertia subgroups of Π, which thus gives

� a bijective map

Cusp(Π|D)
∼−→ Cusp(Π).

Proof. This assertion follows immediately, in light of Proposition 2.2, from Propo-

sition 2.13 and Proposition 3.8(iii).

Definition 3.12. We shall say that the hyperbolic □-orbicurvoid Π is relatively

core-like if, for an arbitrary open subgroup H ⊆ Π of Π and an arbitrary open

injective continuous homomorphism ϕ : H ↪→ Π over G(Π) (i.e., such that

� the composite of the open injective continuous homomorphism ϕ : H ↪→ Π and

the natural surjective continuous homomorphism Π→→ G(Π)

coincides with

� the composite of the natural inclusion H ↪→ Π and the natural surjective

continuous homomorphism Π→→ G(Π)),

the following condition is satisfied:

� The restriction ϕ|∆(H) : ∆(H) ↪→ ∆(Π) (cf. Proposition 3.2(ii)) of ϕ to ∆(H) ⊆
H (cf. Proposition 3.5(iii))

coincides with

� some ∆(Π)-conjugate of the restriction ∆(H) ↪→ ∆(Π) of the natural inclusion

H ↪→ Π to ∆(H) ⊆ H (cf. Proposition 3.5(iii)).

Proposition 3.13. Suppose that one of the following two conditions is satisfied:

(1) There exists an open subgroup H ⊆ Π of Π such that the hyperbolic □-

orbicurvoid H (cf. Proposition 3.2(ii)) is relatively core-like, and, moreover,

the natural inclusion H ↪→ Π restricts to a continuous isomorphism ∆(H)
∼−→

∆(Π).

(2) The profinite group Π is a hyperbolic NF-orbicurvoid and, moreover, there

exists an orbicurvoidal element D of Ṽ(G(Π)) such that the hyperbolic MLF-

orbicurvoid Π|D is relatively core-like.

Then the hyperbolic □-orbicurvoid Π is relatively core-like.
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Proof. This assertion follows immediately from Proposition 3.5(iii), together with

the various definitions involved.

Definition 3.14. Suppose that Π is a hyperbolic NF-orbicurvoid. Then, by apply-

ing the functorial “group-theoretic” algorithm established in [4] (cf. [4, Thm. A])

to the profinite group G(Π) of NF type (cf. Proposition 3.5(ii)), we obtain an

algebraically closed field

F (Π)
def
= F̃ (G(Π))

(cf. [4, Thm. A]) equipped with a continuous action of G(Π) such that

� the subfield

F (Π)
def
= F (Π)G(Π)

of F (Π) consisting of G(Π)-invariants is an NF, and, moreover,

� the continuous action of G(Π) on F (Π) determines a continuous isomorphism

G(Π)
∼−→ Gal(F (Π)/F (Π)).

§4. Partial compactifications

In Section 4 we introduce and discuss partial compactifications of hyperbolic cur-

voids (cf. Definition 4.5 below, Theorem 4.10 below, and Theorem 4.11 below). In

Section 4, let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-curvoid.

Definition 4.1.

(i) We shall write

∆(Π)ab/cusp

for the quotient of the abelian profinite group ∆(Π)ab by the (necessarily

normal) closed subgroup topologically generated by the images of the cusp-

idal inertia subgroups of Π.

(ii) It follows from Remark 2.8.1, together with the well-known structure of the

étale fundamental groups of hyperbolic curves over algebraically closed fields

of characteristic zero, that the abelian profinite group ∆(Π)ab/cusp of (i) has

a natural structure of free Ẑ-module of even rank. We shall write

g(Π)
def
= rankẐ(∆(Π)ab/cusp)/2.

Thus, g(Π) is a nonnegative integer.
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(iii) Let us recall from Proposition 2.9(ii) that the set Cusp(Π) is finite. We shall

write

r(Π)
def
= ♯Cusp(Π).

Thus, r(Π) is a nonnegative integer.

Proposition 4.2. The following assertions hold:

(i) The inequality 2− 2g(Π)− r(Π) < 0 holds.

(ii) Suppose that Π is a hyperbolic NF-curvoid. Let D be a curvoidal element

of Ṽ(G(Π)). Then the equality (g(Π), r(Π)) = (g(Π|D), r(Π|D)) holds.

Proof. Assertion (i) follows from Remark 2.8.1, together with the well-known

structure of the étale fundamental groups of hyperbolic curves over algebraically

closed fields of characteristic zero. Assertion (ii) follows from Proposition 2.13.

Lemma 4.3. Let J1 ⊆ J2 ⊆ ∆(Π)ab be closed subgroups of ∆(Π)ab. Suppose that

the following four conditions are satisfied:

(1) The closed subgroups J1 ⊆ J2 are contained in the kernel of the natural sur-

jective continuous homomorphism ∆(Π)ab →→ ∆(Π)ab/cusp.

(2) The quotient J2/J1 is torsion-free.

(3) The continuous action of Π by conjugation on ∆(Π)ab preserves the closed

subgroups J1 ⊆ J2 ⊆ ∆(Π)ab.

(4) The resulting (cf. (3)) continuous action of Π on J2/J1 is trivial.

Then the equality J1 = J2 holds.

Proof. This assertion follows immediately – in light of the existence of the isomor-

phism “synI” of Definition 2.10(v) and Remark 2.10.1(ii) – from [4, Thm. 1.4(iv),

Prop. 3.7(iii)].

Definition 4.4.

(i) We shall write

Cusp(Π)

for the set of Π-conjugacy classes of cuspidal inertia subgroups of Π. Thus,

we have a natural surjective map

Cusp(Π) −→→ Cusp(Π).

(ii) We shall say that a subset S of Cusp(Π) is Π-stable if S is preserved by the

action of Π on Cusp(Π) by conjugation, or, alternatively, the inverse image

by the natural surjective map of (i) of the image by the natural surjective

map of (i) of S coincides with S.
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Remark 4.4.1. One verifies easily from Proposition 2.9(i) that there exists a

natural bijective map between the set Cusp(Π) and the set of Π-conjugacy classes

of cuspidal decomposition subgroups of Π.

Definition 4.5. Let S be a subset of Cusp(Π). Then we shall write

Π•S

for the quotient of Π by the normal closed subgroup normally topologically gener-

ated by the cuspidal inertia subgroups of Π that belong to elements of S and refer

to Π•S as the partial compactification of Π with respect to S. Moreover, we shall

write

∆(Π)•S

for the image of ∆(Π) in Π•S . Thus, we have a commutative diagram of profinite

groups

1 // ∆(Π) //

����

Π //

����

G(Π) // 1

1 // ∆(Π)•S // Π•S // G(Π) // 1

– where the horizontal sequences are exact, and the vertical arrows are surjective.

Remark 4.5.1. In the situation of Definition 4.5, one verifies easily that if we

write T ⊆ Cusp(Π) for the (uniquely determined) minimal Π-stable subset that

contains S, then Π•S = Π•T .

Proposition 4.6. Suppose that Π is a hyperbolic NF-curvoid. Let S be a Π-stable

subset of Cusp(Π) and D a curvoidal element of Ṽ(G(Π)). Write SD ⊆ Cusp(Π|D)

for the subset of Cusp(Π|D) obtained by forming the inverse image of S ⊆ Cusp(Π)

by the bijective map Cusp(Π|D)
∼−→ Cusp(Π) of Proposition 2.13. Then the natural

inclusion Π|D ↪→ Π determines a continuous isomorphism over D,

(Π|D)•SD
∼−→ Π•S ×G(Π) D,

that restricts to a continuous isomorphism

∆(Π|D)•SD −→ ∆(Π)•S .

Let us identify (Π|D)•SD , ∆(Π|D)•SD with Π•S ×G(Π) D, ∆(Π)•S by means of

these continuous isomorphisms determined by the natural inclusion Π|D ↪→ Π,

respectively:

(Π|D)•SD = Π•S ×G(Π) D, ∆(Π|D)•SD = ∆(Π)•S .
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Proof. This assertion follows immediately from the various definitions involved.

Lemma 4.7. Let S be a subset of Cusp(Π) and H ⊆ Π•S an open subgroup of

Π•S. Write H̃ ⊆ Π for the inverse image of H ⊆ Π•S by the natural surjective

continuous homomorphism Π→→ Π•S. (Thus, H̃ is an open subgroup of Π, hence –

cf. Proposition 2.2 – also a hyperbolic □-curvoid.) Write, moreover, T ⊆ Cusp(H̃)

for the subset of Cusp(H̃) obtained by forming the inverse image, by the surjective

map Cusp(H̃) →→ Cusp(Π) of Proposition 2.9(iii), of the minimal Π-stable subset

of Cusp(Π) that contains S. Then the natural surjective continuous homomor-

phism H̃ →→ H determines a continuous isomorphism H̃•T ∼−→ H. Let us identify

H̃•T with H by means of this continuous isomorphism determined by the natural

surjective continuous homomorphism H̃ →→ H:

H̃•T = H.

Proof. This assertion follows immediately, in light of Remark 2.8.1, from the well-

known structure of the étale fundamental groups of smooth curves over alge-

braically closed fields of characteristic zero.

Lemma 4.8. Let d be a positive integer and x an element of Cusp(Π). Then the

following three conditions are equivalent:

(1) The fiber of the natural surjective map Cusp(Π)→→ Cusp(Π) at x is of cardi-

nality d.

(2) The image in G(Π) of every cuspidal decomposition subgroup of Π that belongs

to the Π-conjugacy class of cuspidal decomposition subgroups corresponding to

x ∈ Cusp(Π) (cf. Remark 4.4.1) is of index d.

(3) The image in G(Π) of some cuspidal decomposition subgroup of Π that belongs

to the Π-conjugacy class of cuspidal decomposition subgroups corresponding to

x ∈ Cusp(Π) is of index d.

Proof. This assertion follows immediately from the various definitions involved.

Definition 4.9. Let d be a positive integer.

(i) We shall say that an element of Cusp(Π) is of degree d if the positive integer d

and the element of Cusp(Π) satisfy condition (1) of Lemma 4.8 (i.e., imposed

on “(d, x)”).

(ii) We shall say that a subset of Cusp(Π) is of degree d if the sum of the degrees

of the elements of the subset is equal to d.
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(iii) We shall say that a subset of Cusp(Π) is of degree d if the subset of Cusp(Π)

determined by the subset is of degree d.

Theorem 4.10. Let

Π

be a hyperbolic MLF-curvoid (respectively, hyperbolic NF-curvoid), d a positive

integer, and S a subset of Cusp(Π) of degree d. Then the following five conditions

are equivalent:

(1) The profinite group Π•S is a hyperbolic MLF-curvoid (respectively, hyperbolic

NF-curvoid).

(2) The profinite group Π•S is a hyperbolic MLF-curvoid (respectively, hyperbolic

NF-curvoid) whose geometric subgroup is given by ∆(Π)•S ⊆ Π•S.

(3) The profinite group ∆(Π)•S is not abelian.

(4) The profinite group ∆(Π)•S is slim.

(5) The inequality 2− 2g(Π)− r(Π) < −d holds.

Proof. First, to verify the equivalences

(3) ⇐⇒ (4) ⇐⇒ (5),

let us observe that one verifies easily from Remark 2.8.1, together with the well-

known structure of the étale fundamental groups of smooth curves over alge-

braically closed fields of characteristic zero, that the profinite group ∆(Π)•S is

isomorphic, as an abstract profinite group, to the étale fundamental group of a

smooth curve of type (g(Π), r(Π)− d) over an algebraically closed field of charac-

teristic zero (cf. also Remark 4.5.1). Thus, the equivalences (3)⇔ (4)⇔ (5) follow

from the well-known structure of the étale fundamental groups of smooth curves

over algebraically closed fields of characteristic zero (cf. also [14, Prop. 2.3(i)]).

The implication

(2) =⇒ (1)

is immediate. Next, we verify the implication

(1) =⇒ (2).

Suppose that condition (1) is satisfied. Then it follows from Proposition 2.5(ii)

and the diagram of Definition 4.5 that ∆(Π)•S ⊆ Π•S satisfies condition (1) of

Definition 2.1. Next, to verify the assertion that ∆(Π)•S ⊆ Π•S satisfies condition

(2) of Definition 2.1, let us observe that one verifies immediately (cf. also Propo-

sition 2.2 and Proposition 2.5(iii)) that we may assume without loss of generality,

by replacing Π by “H” as in condition (2) of Definition 2.1 (i.e., with respect to
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∆(Π) ⊆ Π) and S by a suitable subset of Cusp(Π) that contains S, that ∆(Π) ⊆ Π

is pseudo-MLF-geometric (respectively, pseudo-NF-geometric). Then if Π is a hy-

perbolic NF-curvoid, then (since ∆(Π) ⊆ Π is pseudo-NF-geometric) one verifies

easily that ∆(Π)•S ⊆ Π•S is pseudo-NF-geometric, hence also satisfies condition

(2) of Definition 2.1, as desired. In particular, to verify the desired assertion, it suf-

fices to verify that if Π is a hyperbolic MLF-curvoid, then ∆(Π)•S ⊆ Π•S is pseudo-

MLF-geometric. On the other hand, since (we have assumed that) ∆(Π) ⊆ Π is

pseudo-MLF-geometric, one verifies easily that ∆(Π)•S ⊆ Π•S satisfies condition

(1) of Definition 1.5(ii). Thus, to verify the desired assertion, it suffices to verify

that ∆(Π)•S ⊆ Π•S satisfies condition (2) of Definition 1.5(ii). In particular, it

follows immediately from Lemma 4.7, together with Lemma 1.6(i) and Proposi-

tion 2.5(iii), that to verify the desired assertion it suffices to verify the following

assertion:

(a) The maximal G(Π)-stable torsion-free quotient of the abelian profinite group

(∆(Π)•S)ab on which the resulting action of G(Π) is trivial has a natural

structure of free Ẑ-module.

To verify (a), let us observe that it is immediate that the kernel of the sur-

jective continuous homomorphism ∆(Π)ab →→ (∆(Π)•S)ab induced by the natural

surjective continuous homomorphism ∆(Π) →→ ∆(Π)•S is contained in the ker-

nel of the natural surjective continuous homomorphism ∆(Π)ab →→ ∆(Π)ab/cusp.

Thus, it follows from Lemma 4.3 that the natural surjective continuous homo-

morphism from ∆(Π)ab onto the maximal G(Π)-stable torsion-free quotient of the

abelian profinite group ∆(Π)ab on which the resulting action of G(Π) is trivial

factors through the surjective continuous homomorphism ∆(Π)ab →→ (∆(Π)•S)ab.

Thus, since (we have assumed that) ∆(Π) ⊆ Π is pseudo-MLF-geometric, we con-

clude that (a) holds, as desired. This completes the proof of (a), hence also of the

implication (1) ⇒ (2).

The implication

(2) =⇒ (4)

follows from Proposition 2.5(i). Finally, we verify the implication

(5) =⇒ (1).

Suppose that condition (5) is satisfied. Let us first observe that one verifies im-

mediately from a similar argument to the argument applied in the proof of the

implication (1) ⇒ (2) that ∆(Π)•S ⊆ Π•S satisfies conditions (1), (2) of Defini-

tion 2.1. Write T ⊆ Cusp(G(Π)) for the subset of Cusp(G(Π)) that corresponds (cf.

the final portion of Definition 2.10(iii)) to the minimal Π-stable subset of Cusp(Π)
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that contains S. Then one verifies immediately (cf. also Remark 4.5.1) that condi-

tion (5) implies that this subset T ⊆ Cusp(G(Π)) is omittable (cf. [8, Def. 2.4(i)]).

Moreover, one also verifies easily (cf. condition (c) of Definition 2.10(iii)) that the

outer continuous isomorphism ∆(Π)
∼−→ ΠG(Π) of (2) of Definition 2.10(iii) fits into

a commutative diagram of profinite groups,

∆(Π)
∼ //

����

ΠG(Π)

����

∆(Π)•S
∼ // ΠG(Π)•T

– where we write ΠG(Π)•T for the PSC-fundamental group of G(Π)•T (cf. [8,

Def. 2.4(ii)]); the left-hand vertical arrow is the outer surjective continuous

homomorphism determined by the natural surjective continuous homomorphism

∆(Π)→→ ∆(Π)•S ; the right-hand vertical arrow is the outer surjective continuous

homomorphism of the final portion of [8, Def. 2.4(ii)]; the lower horizontal arrow

is an outer continuous isomorphism. In particular, it follows immediately from

condition (a) of Definition 2.10(iii) and [8, Cor. 3.9(ii)] that the collection of data

consisting of

� the normal closed subgroup ∆(Π)•S ⊆ Π•S ,

� the semi-graph G(Π)•T of anabelioids of pro-Primes PSC type, and

� the lower horizontal arrow ∆(Π)•S
∼−→ ΠG(Π)•T of the above commutative

diagram

satisfies conditions (3), (4) of Definition 2.1. This completes the proof of the im-

plication (5) ⇒ (1), hence also of Theorem 4.10.

Theorem 4.11. In the situation of Theorem 4.10, suppose that the five conditions

(1), (2), (3), (4), (5) of Theorem 4.10 are satisfied. Then the following assertions

hold:

(i) The natural surjective continuous homomorphism Π→→ Π•S is an arithmetic

equivalence and determines a continuous isomorphism ∆(Π)•S
∼−→ ∆(Π•S).

Let us identify ∆(Π)•S, G(Π) with ∆(Π•S), G(Π•S) by means of the contin-

uous isomorphisms determined by the natural surjective continuous homo-

morphism Π→→ Π•S, respectively:

∆(Π)•S = ∆(Π•S), G(Π) = G(Π•S).

(ii) For a closed subgroup of ∆(Π)•S = ∆(Π•S) (cf. (i)), the following two con-

ditions are equivalent:
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� The closed subgroup is a cuspidal inertia subgroup of Π•S.

� The closed subgroup is nontrivial and obtained by forming the image of

a cuspidal inertia subgroup of Π.

(iii) The equality

(g(Π•S), r(Π•S)) = (g(Π), r(Π)− d)

holds.

Proof. First, we verify assertion (i). It follows from condition (2) of Theorem 4.10

that the natural surjective continuous homomorphism Π →→ Π•S determines a

continuous isomorphism ∆(Π)•S
∼−→ ∆(Π•S). Thus, it follows from the diagram of

Definition 4.5 that the natural surjective continuous homomorphism Π→→ Π•S is

an arithmetic equivalence. This completes the proof of assertion (i).

Next, we verify assertion (ii). Let us first observe that it follows immediately

from condition (c) of Definition 2.10(iii), together with the proof of the implication

(5) ⇒ (1) of Theorem 4.10, that, to verify assertion (ii), it suffices to verify that,

in the situation of the proof of the implication (5) ⇒ (1) of Theorem 4.10, for a

closed subgroup of ΠG•T , the following two conditions are equivalent:

� The closed subgroup is a cuspidal subgroup of ΠG(Π)•T .

� The closed subgroup is nontrivial and obtained by forming the image, by some

lifting of the outer surjective continuous homomorphism ΠG(Π) →→ ΠG(Π)•T of

the final portion of [8, Def. 2.4(ii)], of a cuspidal subgroup of ΠG(Π).

On the other hand, this equivalence follows from the definition of the semi-

graph G(Π)•T of anabelioids and the definition of the outer surjective continuous

homomorphism ΠG(Π) →→ ΠG(Π)•T of the final portion of [8, Def. 2.4(ii)]. This com-

pletes the proof of assertion (ii). Assertion (iii) follows immediately from assertions

(i), (ii), together with the various definitions involved (cf. also Remark 4.5.1). This

completes the proof of Theorem 4.11.

§5. Quotient orbicurvoids by outer actions of finite groups

In Section 5 we prove that a suitable outer continuous action of a finite group on a

hyperbolic orbicurvoid gives rise to a hyperbolic orbicurvoid that may be thought

of as an analogue (i.e., in the theory of hyperbolic curvoids) of the notion of a

quotient orbicurve (cf. Theorem 5.4 below and Corollary 5.5 below). In Section 5,

let □ be an element of the set {MLF,NF} and

Π

a hyperbolic □-orbicurvoid.
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Lemma 5.1. The natural homomorphism Aut(Π) → Aut(G(Π)) and the exact

sequence of Definition 3.4(ii) fit into a commutative diagram of groups

1

��

1

��

1

��

1 // ∆(Π) //

��

Π //

��

G(Π) //

��

1

1 // AutG(Π)(Π) //

��

Aut(Π) //

��

Aut(G(Π))

��

1 // AutG(Π)(Π) //

��

Out(Π) //

��

Out(G(Π))

��

1 1 1

– where the upper vertical arrows are the continuous actions by conjugation, and

the sequences are exact. By means of the left-hand lower horizontal arrow of this

diagram, let us regard AutG(Π)(Π) as a subgroup of Out(Π):

AutG(Π)(Π) ⊆ Out(Π).

Proof. This assertion follows immediately from the slimness of ∆(Π) (cf. Proposi-

tion 3.5(i)), the slimness of Π (cf. Proposition 3.2(iii)), and the slimness of G(Π)

(cf. Remark 1.3.1(i), (ii); Proposition 3.5(ii)).

Remark 5.1.1.

(i) Suppose that Π is a hyperbolic MLF-orbicurvoid, which thus (cf. Propo-

sition 3.2(iv)) implies that Π is topologically finitely generated. Thus, the

topology of Π admits a basis of characteristic open subgroups, which thus

induces a profinite topology on Aut(Π), hence also a profinite topology on

Out(Π). Let us regard Aut(Π), Out(Π) as profinite groups by means of these

profinite topologies, respectively. Thus, it follows from Proposition 3.2(iii)

that we have an exact sequence of profinite groups

1 −→ Π −→ Aut(Π) −→ Out(Π) −→ 1.

(ii) Suppose that Π is a hyperbolic NF-orbicurvoid, and that AutG(Π)(Π) is finite.

Then it follows from Proposition 1.4 and Proposition 3.5(ii) that Out(G(Π)),

hence (cf. Lemma 5.1) also Out(Π), is finite. Thus, it follows from Lem-

ma 5.1 that the homomorphism Π→ Aut(Π) by conjugation is an injective
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homomorphism whose image is of finite index, which thus implies that the

profinite topology of Π determines a profinite topology on Aut(Π), hence also

a profinite topology on Out(Π). Let us regard Aut(Π), Out(Π) as profinite

groups by means of these profinite topologies, respectively. Thus, it follows

from Proposition 3.2(iii) that we have an exact sequence of profinite groups

1 −→ Π −→ Aut(Π) −→ Out(Π) −→ 1.

Proposition 5.2. The following assertions hold:

(i) The natural homomorphism

AutG(Π)(Π) −→ Aut(∆(Π)),

hence also the natural homomorphism

AutG(Π)(Π) −→ Out(∆(Π)),

is injective.

(ii) Suppose that Π is a hyperbolic NF-orbicurvoid. Let D be a (not necessarily

orbicurvoidal) element of Ṽ(G(Π)). Then the natural homomorphism

AutG(Π)(Π) −→ AutD(Π|D)

is injective.

(iii) Suppose that Π is relatively core-like. Then the group AutG(Π)(Π) is trivial.

Proof. Assertion (i) follows from the slimness of ∆(Π) (cf. Proposition 3.5(i)) and

[1, Lem. 4.10]. Next, we verify assertion (ii). Let us observe that it is immediate

that the homomorphism of the second display of assertion (i) factors through the

homomorphism under consideration. Thus, assertion (ii) follows from assertion (i).

This completes the proof of assertion (ii). Assertion (iii) follows immediately from

assertion (i), together with the various definitions involved. This completes the

proof of Proposition 5.2.

Definition 5.3. Let J ⊆ Out(Π) be a finite subgroup of Out(Π).

(i) We shall write

∆(J)
def
= J ∩AutG(Π)(Π), G(J)

def
= J/∆(J) ⊆ Out(G(Π))

(cf. Lemma 5.1).

(ii) We shall write

Π[J ]
def
= Aut(Π)×Out(Π) J
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for the fiber product of the natural surjective homomorphism Aut(Π) →→
Out(Π) and the natural inclusion J ↪→ Out(Π),

∆(Π)
out
⋊ ∆(J)

def
= AutG(Π)(Π)×AutG(Π)(Π) ∆(J)

for the fiber product of the natural surjective homomorphism AutG(Π)(Π)→→
AutG(Π)(Π) and the natural inclusion ∆(J) ↪→ AutG(Π)(Π), and

G(Π)
out
⋊ G(J)

def
= Aut(G(Π))×Out(G(Π)) G(J)

for the fiber product of the natural surjective homomorphism Aut(G(Π))→→
Out(G(Π)) and the natural inclusion G(J) ↪→ Out(G(Π)). Thus, it follows

from Remark 1.3.1(i), (ii); Proposition 3.2(iii); Proposition 3.5(i), (ii) that

we have exact sequences of groups

1 −→ Π −→ Π[J ] −→ J −→ 1,

1 −→ ∆(Π) −→ ∆(Π)
out
⋊ ∆(J) −→ ∆(J) −→ 1,

1 −→ G(Π) −→ G(Π)
out
⋊ G(J) −→ G(J) −→ 1.

Remark 5.3.1. Let J ⊆ Out(Π) be a finite subgroup of Out(Π).

(i) Since J is a finite group, it is immediate that Π (respectively, ∆(Π); G(Π))

is of finite index in Π[J ] (respectively, ∆(Π)
out
⋊ ∆(J); G(Π)

out
⋊ G(J))

(cf. the exact sequences of the final display of Definition 5.3(ii)). Thus,

the natural inclusion Π ↪→ Π[J ] (respectively, ∆(Π) ↪→ ∆(Π)
out
⋊ ∆(J);

G(Π) ↪→ G(Π)
out
⋊ G(J)) and the profinite topology of Π (respectively, ∆(Π);

G(Π)) determine a profinite topology on Π[J ] (respectively, ∆(Π)
out
⋊ ∆(J);

G(Π)
out
⋊ G(J)), with respect to which the first (respectively, second; third)

exact sequence of the final display of Definition 5.3(ii) is an exact sequence

of profinite groups. Let us regard Π[J ] (respectively, ∆(Π)
out
⋊ ∆(J); G(Π)

out
⋊

G(J)) as a profinite group by means of this profinite topology.

(ii) Let us recall that it follows immediately from the various definitions involved

that we have a commutative diagram of groups

1 // Π // Π[J ] //
� _

��

J //� _

��

1

1 // Π // Aut(Π) // Out(Π) // 1,
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– where the horizontal sequences are exact, and the right-hand square is

cartesian – which thus determines a commutative diagram of groups

1 // G(Π) // Π[J ]/∆(Π) //
� _

��

J //� _

��

1

1 // G(Π) // Aut(Π)/ Inn(∆(Π)) // Out(Π) // 1

– where we write Inn(∆(Π)) for the group of inner automorphisms of Π

determined by elements of ∆(Π) ⊆ Π, the horizontal sequences are exact,

and the right-hand square is cartesian. Thus, the natural inclusion ∆(J) ↪→
(AutG(Π)(Π) ⊆) Aut(Π)/ Inn(∆(Π)) determines a splitting of the right-hand

upper horizontal arrow Π[J ]/∆(Π)→→ J on the subgroup ∆(J) ⊆ J . Now let

us observe that one verifies immediately from the various definitions involved

(cf. also (i)) that the natural inclusion AutG(Π)(Π) ↪→ Aut(Π) restricts to a

continuous isomorphism of

� the subgroup ∆(Π)
out
⋊ ∆(J) ⊆ AutG(Π)(Π) of AutG(Π)(Π) with

� the inverse image of the image of this splitting ∆(J) ↪→ Π[J ]/∆(Π) by

the natural surjective continuous homomorphism Π[J ]→→ Π[J ]/∆(Π).

Let us identify ∆(Π)
out
⋊ ∆(J) with the inverse image of the image of this

splitting ∆(J) ↪→ Π[J ]/∆(Π) by the natural surjective continuous homo-

morphism Π[J ] →→ Π[J ]/∆(Π) by means of the resulting continuous iso-

morphism. In particular, we have an injective continuous homomorphism

(cf. (i))

∆(Π)
out
⋊ ∆(J) ↪−→ Π[J ].

(iii) Next, let us also observe that one verifies immediately from the various defi-

nitions involved that the diagram of Lemma 5.1 and the injective continuous

homomorphism ∆(Π)
out
⋊ ∆(J) ↪→ Π[J ] of the final display of (ii) determine

a commutative diagram of groups

1 // ∆(Π) //
� _

��

Π //� _

��

G(Π) //
� _

��

1

1 // ∆(Π)
out
⋊ ∆(J) //
� _

��

Π[J ] //
� _

��

G(Π)
out
⋊ G(J) //
� _

��

1

1 // AutG(Π)(Π) // Aut(Π) // Aut(G(Π))
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– where the horizontal sequences are exact, the lower vertical arrows are

injective, and the upper vertical arrows are open injective (cf. (i)); in par-

ticular, the two left-hand squares are cartesian.

(iv) Suppose that AutG(Π)(Π) is finite if Π is a hyperbolic NF-orbicurvoid. Then

one verifies immediately from the various definitions involved that each of

the middle vertical arrows Π ↪→ Π[J ] ↪→ Aut(Π) of the diagram of (iii) is

continuous (cf. (i); Remark 5.1.1(i), (ii)).

Theorem 5.4. Let

Π

be a hyperbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) and

J ⊆ Out(Π) a finite subgroup of Out(Π). Suppose that the subgroup G(J) ⊆
Out(G(Π)) of Out(G(Π)) is quasi-geometric (cf. [5, Def. 6.5(ii)]) (which is the

case if, for instance, the subgroup J is contained in the subgroup AutG(Π)(Π) ⊆
Out(Π) – cf. Lemma 5.1) whenever Π is a hyperbolic MLF-orbicurvoid (cf. also

Proposition 3.5(ii)). Then the following assertions hold:

(i) The profinite group Π[J ] (cf. Remark 5.3.1(i)) is a hyperbolic MLF-orbi-

curvoid (respectively, hyperbolic NF-orbicurvoid) whose geometric subgroup

is given by ∆(Π)
out
⋊ ∆(J) ⊆ Π[J ] (cf. Remark 5.3.1(ii)):

∆(Π[J ]) = ∆(Π)
out
⋊ ∆(J).

(ii) It holds that the natural inclusion Π ↪→ Π[J ] is an arithmetic equivalence

(cf. (i)) if and only if J is contained in AutG(Π)(Π).

(iii) Suppose that Π is a hyperbolic NF-orbicurvoid, and that J is contained

in AutG(Π)(Π). Let D be an orbicurvoidal element of Ṽ(G(Π)). Write JD ⊆
AutD(Π|D) for the image of J ⊆ AutG(Π)(Π) by the injective homomorphism

AutG(Π)(Π) ↪→ AutD(Π|D) of Proposition 5.2(ii). Then the natural inclusion

Π|D ↪→ Π determines a continuous isomorphism Π|D[JD]
∼−→ Π[J ]|D over D

(cf. (i), (ii)). Let us identify Π|D[JD] with Π[J ]|D by means of this continuous

isomorphism induced by the natural inclusion Π|D ↪→ Π:

Π|D[JD] = Π[J ]|D.

(iv) Suppose that Π is relatively core-like. Then the natural inclusion Π ↪→ Π[J ]

restricts to a continuous isomorphism ∆(Π)
∼−→ ∆(Π[J ]), and, moreover, the

hyperbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) Π[J ]

(cf. (i)) is relatively core-like.

Proof. First, we verify assertion (i). Let H ⊆ Π be a normal open subgroup of Π as

in Definition 3.1. Now it follows from Proposition 2.2 and Proposition 2.5(iii) that
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we may assume without loss of generality, by replacing H by the intersection of the

Π[J ]-conjugates of H, that H is normal in Π[J ]. Then since the left-hand upper

square of the diagram of Remark 5.3.1(iii) is cartesian, we conclude that the pair

consisting of the normal closed subgroup ∆(Π)
out
⋊ ∆(J) ⊆ Π[J ] of Π[J ] and the

normal open subgroup H ⊆ Π[J ] of Π[J ] satisfies condition (2) of Definition 3.1.

Thus, to verify assertion (i), it suffices to verify that the normal closed subgroup

∆(Π)
out
⋊ ∆(J) ⊆ Π[J ] of Π[J ] satisfies condition (1) of Definition 3.1, i.e., that

∆(Π)
out
⋊ ∆(J) is slim and of co-MLF type (respectively, of co-NF type).

The slimness of ∆(Π)
out
⋊ ∆(J) follows immediately from the slimness of

∆(Π) (cf. Proposition 3.5(i)) and Proposition 5.2(i), together with the definition

of ∆(Π)
out
⋊ ∆(J).

Next, we verify the assertion that ∆(Π)
out
⋊ ∆(J) is of co-MLF type if Π is

a hyperbolic MLF-orbicurvoid. Suppose that Π is a hyperbolic MLF-orbicurvoid.

Then let us recall that we have assumed that the subgroup G(J) ⊆ Out(G(Π)) of

Out(G(Π)) is quasi-geometric. Thus, the profinite group G(Π)
out
⋊ G(J) is of MLF

type, which thus implies that ∆(Π)
out
⋊ ∆(J) is of co-MLF type, as desired. This

completes the proof of the assertion that ∆(Π)
out
⋊ ∆(J) is of co-MLF type if Π is

a hyperbolic MLF-orbicurvoid.

Next, we verify the assertion that ∆(Π)
out
⋊∆(J) is of co-NF type if Π is a hyper-

bolic NF-orbicurvoid. Suppose that Π is a hyperbolic NF-orbicurvoid. Then since

G(Π) is of NF type (cf. Proposition 3.5(ii)), it follows immediately from Propo-

sition 1.4 that Aut(G(Π)) is of NF type, and the composite G(Π) ↪→ G(Π)
out
⋊

G(J) ↪→ Aut(G(Π)) of the right-hand vertical arrows of the diagram of Re-

mark 5.3.1(iii) – hence also the right-hand lower vertical arrow G(Π)
out
⋊ G(J) ↪→

Aut(G(Π)) of the diagram of Remark 5.3.1(iii) – is an open injective continuous

homomorphism. Thus, we conclude from [4, Rem. 3.2.1(i)] that G(Π)
out
⋊ G(J) is of

NF type, which thus implies that ∆(Π)
out
⋊ ∆(J) is of co-NF type, as desired. This

completes the proof of the assertion that ∆(Π)
out
⋊ ∆(J) is of co-NF type if Π is a

hyperbolic NF-orbicurvoid, hence also of assertion (i).

Assertions (ii), (iii) follow immediately from assertion (i) and the diagram of

Remark 5.3.1(iii). Finally, we verify assertion (iv). It follows immediately – in light

of Proposition 3.5(iii) – from assertion (i) and Proposition 5.2(iii) that the natural

inclusion Π ↪→ Π[J ] restricts to a continuous isomorphism ∆(Π)
∼−→ ∆(Π[J ]).

Thus, it follows from Proposition 3.13 that Π[J ] is relatively core-like, as desired.

This completes the proof of assertion (iv), hence also of Theorem 5.4.

Corollary 5.5. Let Π be a relatively core-like hyperbolic NF-orbicurvoid. Then

the profinite group Aut(Π) (cf. Remark 5.1.1(ii); Proposition 5.2(iii)) is a
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relatively core-like hyperbolic NF-orbicurvoid. Moreover, the natural inclusion

Π ↪→ Aut(Π) by conjugation (cf. Proposition 3.2(iii)) fits into a commutative

diagram of profinite groups

1 // ∆(Π) //

≀
��

Π //� _

��

G(Π) //
� _

��

1

1 // ∆(Aut(Π)) // Aut(Π) // G(Aut(Π)) // 1

– where the horizontal sequences are exact, the vertical arrows are open injective,

and the left-hand vertical arrow is a continuous isomorphism.

Proof. Let us first observe that it follows from Proposition 1.4 and Proposi-

tion 3.5(ii) that Out(G(Π)), hence (cf. Lemma 5.1 and Proposition 5.2(iii)) also

Out(Π), is finite. Thus, Corollary 5.5 follows – in light of Remark 5.3.1(iv) – from

Theorem 5.4(i), (iv), i.e., in the case where we take the “J” to be Out(Π). This

completes the proof of Corollary 5.5.

§6. Examples from scheme theory

In Section 6 we give some examples of hyperbolic curvoids that arise from scheme

theory (cf. Theorem 6.5 below, Theorem 6.6 below, and Corollary 6.7 below).

Definition 6.1. Let k be an MLF, k an algebraic closure of k, and X a hyperbolic

curve over k.

(i) We shall write

π1(X), π1(X ×k k)

for the respective étale fundamental groups of X, X ×k k (relative to some

choices of basepoints). Thus, we have an exact sequence of profinite groups

1 −→ π1(X ×k k) −→ π1(X) −→ Gal(k/k) −→ 1.

(ii) We shall write

GX

for the dual semi-graph of the special fiber of the stable model (i.e., over the

ring of integers of k) of the hyperbolic curve X ×k k,

πtop
1 (GX)

for the topological fundamental group of GX (relative to some choice of base-

point), and

πtop
1 (GX)∧
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for the profinite completion of πtop
1 (GX). Thus, we have a natural outer

surjective continuous homomorphism

π1(X ×k k) −→→ πtop
1 (GX)∧.

Lemma 6.2. Suppose that we are in the situation of Definition 6.1. Then the

natural surjective continuous homomorphism from π1(X×k k)
ab onto the maximal

Gal(k/k)-stable torsion-free quotient of the abelian profinite group π1(X ×k k)ab

on which the resulting action of Gal(k/k) is trivial factors through the surjective

continuous homomorphism π1(X ×k k)ab →→ (πtop
1 (GX)∧)ab induced by the outer

surjective continuous homomorphism of the final display of Definition 6.1(ii).

Proof. This assertion follows immediately from [14, Lem. 2.7(ii)] and the proof of

[14, Thm. 2.11(iii)].

Definition 6.3. Let k be an MLF and k an algebraic closure of k. Write K def
=

k((t)). Let K be an algebraic closure of K that contains k and X a hyperbolic curve

over K. Write O ⊆ K for the integral closure in K of the subring k[[t]] ⊆ k((t)) = K
of K. (So the residue field of O may be naturally identified with k.)

(i) We shall write

π1(X), π1(X ×K K)

for the respective étale fundamental groups of X, X ×K K (relative to some

choices of basepoints) and

IK ⊆ Gal(K/K)

for the kernel of the natural surjective continuous homomorphism Gal(K/K)

→→ Gal(k/k), i.e., induced by the natural inclusion k ↪→ K. (So it is well

known that the profinite group IK is abelian, and there exists a natural

isomorphism IK
∼−→ Ẑ(1) of Gal(k/k)-modules – where the “(1)” denotes a

“Tate twist”.) Thus, we have exact sequences of profinite groups

1 −→ π1(X ×K K) −→ π1(X) −→ Gal(K/K) −→ 1,

1 −→ IK −→ Gal(K/K) −→ Gal(k/k) −→ 1.

(ii) We shall write

GX
for the semi-graph of anabelioids of pro-Primes PSC type determined by the

special fiber of the stable model (i.e., over O) of the hyperbolic curve X×KK
(cf. [13, Def. 1.1(i)]),

ΠGX
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for the PSC-fundamental group of GX ,

GX

for the underlying semi-graph of GX ,

πtop
1 (GX)

for the topological fundamental group of GX (relative to some choice of base-

point), and

πtop
1 (GX)∧

for the profinite completion of πtop
1 (GX). Thus, we have a natural π1(X)-

conjugacy class of continuous isomorphisms

ΠGX

∼−→ π1(X ×K K),

by means of which let us identify ΠGX
with π1(X×KK), and a natural outer

surjective continuous homomorphism

ΠGX
−→→ πtop

1 (GX)∧.

Lemma 6.4. In the situation of Definition 6.3, let

G ⊆ Gal(K/K)

be a closed subgroup of Gal(K/K) such that the composite G ↪→ Gal(K/K) →→
Gal(k/k) is a continuous isomorphism. Write

ΠG
def
= π1(X)×Gal(K/K) G

for the fiber product of π1(X) →→ Gal(K/K) and G ↪→ Gal(K/K). Thus, we have

an exact sequence of profinite groups

1 −→ ΠGX
−→ ΠG −→ G −→ 1.

Then the following assertions hold:

(i) Let v be a vertex of GX and Πv ⊆ ΠGX
a verticial subgroup of ΠGX

associated

to v (cf. [13, Def. 1.1(ii)]). Write Gv ⊆ G for the (necessarily open) subgroup

of G obtained by forming the image of the composite CΠG
(Πv) ↪→ ΠG →→ G.

Then there exist a finite extension kv ⊆ k of k, a hyperbolic curve Xv over

kv, and a commutative diagram of profinite groups

1 // Πv
//

≀
��

CΠG
(Πv) //

≀
��

Gv
//

≀
��

1

1 // π1(Xv ×kv
k) // π1(Xv) // Gal(k/kv) // 1
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– where we apply the notational conventions introduced in Definition 6.1 in

the case where we take the “(k, k,X)” of Definition 6.1 to be (kv, k,Xv),

the horizontal sequences are exact, and the vertical arrows are continuous

isomorphisms.

(ii) Let v be a vertex of GX and Πv ⊆ ΠGX
a verticial subgroup of ΠGX

associated

to v. Consider the composite

Πab
v

∼−→ π1(Xv ×kv k)ab −→→ (πtop
1 (GXv )

∧)ab

of the continuous isomorphism Πab
v

∼−→ π1(Xv ×kv
k)ab induced by the left-

hand vertical continuous isomorphism of the diagram of (i) and the sur-

jective continuous homomorphism π1(Xv ×kv
k)ab →→ (πtop

1 (GXv
)∧)ab in-

duced by the outer surjective continuous homomorphism of the final display

of Definition 6.1(ii), in the case where we take the “(k, k,X)” of Defini-

tion 6.1 to be (kv, k,Xv). Then this composite factors through the quotient

Πab
v →→ Π

ab/edge
v defined in [7, Def. 1.3 (iii)].

(iii) For each vertex v of GX , take a verticial subgroup Πv ⊆ ΠGX
of ΠGX

as-

sociated to v. Then the various natural inclusions Πv ↪→ ΠGX
– where v

ranges over the vertices of GX – and the natural outer surjective continuous

homomorphism ΠGX
→→ πtop

1 (GX)∧ of the final display of Definition 6.3(ii),

determine an exact sequence of abelian profinite groups

0 −→
⊕
v

Πab/edge
v −→ Π

ab/edge
GX

−→ (πtop
1 (GX)∧)ab −→ 0

– where we write “(−)ab/edge” for the quotient of “(−)” defined in [7, Def.

1.3 (i), (iii)].

(iv) Write

Π
ab/edge
GX

−→→M

for the quotient of the abelian profinite group Π
ab/edge
GX

by the (necessarily

normal closed) subgroup generated by the kernels of the resulting (cf. (ii))

surjective continuous homomorphisms Π
ab/edge
v →→ (πtop

1 (GXv
)∧)ab (cf. (iii))

– where v ranges over the vertices of GX . (Thus, we have a commutative

diagram of abelian profinite groups

0 //
⊕

v Π
ab/edge
v

//

����

Π
ab/edge
GX

//

����

(πtop
1 (GX)∧)ab // 0

0 //
⊕

v(π
top
1 (GXv

)∧)ab // M // (πtop
1 (GX)∧)ab // 0
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– where the horizontal sequences are exact, and the vertical arrows are sur-

jective.) Then there exist a finitely generated free Z-module M0 equipped

with a continuous action of Gal(K/K) and a Gal(K/K)-equivariant contin-

uous isomorphism M0 ⊗Z Ẑ ∼−→M .

(v) Write

Πab
GX
−→→ Q

for the maximal G-stable torsion-free quotient of the abelian profinite group

Πab
GX

on which the resulting action of G is trivial. Then this surjective con-

tinuous homomorphism Πab
GX
→→ Q factors through the surjective continuous

homomorphism Πab
GX
→→M of (iv).

(vi) The quotient Q of Πab
GX

of (v) has a natural structure of free Ẑ-module.

Proof. Assertion (i) follows immediately from the various definitions involved, to-

gether with the commensurable terminality of Πv in ΠGX
(cf. [13, Prop. 1.2(ii)]).

Assertion (ii) is immediate. Assertion (iii) follows from [7, Lem. 1.4].

Next, we verify assertion (iv). Let us first observe that, by associating

� to a vertex v of GX , the connected temperoid (cf. [12, Def. 3.1(ii)]) determined

by the category of topological coverings with countably many connected com-

ponents of the topological space associated to the (necessarily finite connected)

semi-graph GXv and

� to an edge of GX , the connected temperoid Btemp({1}) (cf. the discussion at

the beginning of [12, Sect. 3]),

we obtain a connected semi-graph GX of temperoids (cf. [9, Def. 2.1(i)]) whose

underlying semi-graph is given by GX . Then one verifies immediately from the

various definitions involved that the category Btp(GX) defined in [9, Def. 2.1(vi)]

is a (necessarily Galois-countable – cf. [15, Rem. 2.5.3(i)]) connected temperoid,

and, moreover, the abelian profinite group M may be naturally identified with

the profinite completion of the abelianization of the tempered fundamental group

(cf. [12, Rem. 3.2.1]) of this connected temperoid Btp(GX) (cf. also the proof

of [7, Lem. 1.4]). In particular, we conclude that the abelianization M0 of the

tempered fundamental group of the connected temperoid Btp(GX), equipped with

the natural action of Gal(K/K) (i.e., induced by the natural action of Gal(K/K)

on the connected semi-graph GX of temperoids), satisfies the desired condition.

This completes the proof of assertion (iv).

Next, we verify assertion (v). Let us first observe that since (one verifies easily

that), for each open subgroup H ⊆ G of G, there is no nontrivial H-stable torsion-

free quotient of the abelian profinite group Ẑ(1) – where the “(1)” denotes a “Tate
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twist” – on which the resulting action of H is trivial, the natural surjective contin-

uous homomorphism Πab
GX
→→ Q factors through the natural surjective continuous

homomorphism Πab
GX
→→ Π

ab/edge
GX

. Thus, it follows from assertion (i) and Lem-

ma 6.2 that the natural surjective continuous homomorphism Πab
GX
→→ Q factors

through the natural surjective continuous homomorphism Πab
GX
→→ (Π

ab/edge
GX

→→)

M , as desired. This completes the proof of assertion (v). Assertion (vi) follows

from assertions (iv), (v), together with the (well-known) flatness of Ẑ over Z. This
completes the proof of Lemma 6.4.

Theorem 6.5. In the situation of Lemma 6.4, the following assertions hold:

(i) The profinite group ΠG is a hyperbolic MLF-curvoid whose geometric sub-

group is given by ΠGX
⊆ ΠG. Moreover, the normal closed subgroup ΠGX

⊆
ΠG of ΠG is pseudo-MLF-geometric.

(ii) For a closed subgroup of ΠGX
, the following three conditions are equivalent:

(1) The closed subgroup is an inertia subgroup of π1(X ×K K) = ΠGX
asso-

ciated to a cusp of the hyperbolic curve X over K.

(2) The closed subgroup is a cuspidal subgroup of ΠGX
associated to a cusp

of GX .

(3) The closed subgroup is a cuspidal inertia subgroup in ∆(ΠG) = ΠGX
of

the hyperbolic MLF-curvoid ΠG (cf. (i)).

(iii) Write Π(GX)⇝Node(GX )
for the PSC-fundamental group of the semi-graph

(GX)⇝Node(GX) of anabelioids of pro-Primes PSC type defined in [8, Def. 2.8]

(cf. also [7, Def. 1.1(i)]) and ΠG(ΠG) for the PSC-fundamental group of the

semi-graph G(ΠG) of anabelioids of pro-Primes PSC type of (1) of Defini-

tion 2.10(iii) (i.e., in the case where we take the “Π” of Definition 2.10 to

be ΠG – cf. (i)). Then the composite of the natural outer continuous isomor-

phism

Π(GX)⇝Node(GX )

∼−→ ΠGX

of [8, Prop. 2.9(i)] and the outer continuous isomorphism

ΠGX
= ∆(ΠG)

∼−→ ΠG(ΠG)

(cf. (i)) of (2) of Definition 2.10(iii) (i.e., in the case where we take the

“Π” of Definition 2.10 to be ΠG – cf. (i)) is graphic (cf. [13, Def. 1.4(i)]),

i.e., arises from an isomorphism of semi-graphs of anabelioids

(GX)⇝Node(GX)
∼−→ G(ΠG).
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(iv) Suppose that the hyperbolic curve X over K is of type (g, r). Then the equal-

ity (g(ΠG), r(ΠG)) = (g, r) (cf. (i)) holds.

Proof. First, we verify assertion (i). Let us first observe that it follows from the ex-

act sequence preceding assertion (i) of Lemma 6.4 that the normal closed subgroup

ΠGX
⊆ ΠG of ΠG is of co-MLF type. Next, let us observe that it follows from [13,

Rem. 1.1.3] that the profinite group ΠGX
is topologically finitely generated. More-

over, it follows immediately from Lemma 6.4(vi) that the normal closed subgroup

ΠGX
⊆ ΠG of ΠG satisfies condition (2) of Definition 1.5(ii). In particular, one

concludes that

(a) the normal closed subgroup ΠGX
⊆ ΠG of ΠG is pseudo-MLF-geometric, hence

also satisfies conditions (1), (2) of Definition 2.1.

Next, let us observe that one verifies immediately that the composite

Gal(K/K)
∼−→ π1(X)/π1(X ×K K) −→ Out(π1(X ×K K))

∼−→ Out(ΠGX
)

– where the first arrow is the continuous isomorphism that arises from the exact

sequence of the first line of the final display of Definition 6.3(i); the second arrow

is the outer continuous action by conjugation; the third arrow is the isomorphism

obtained by conjugation by a continuous isomorphism ΠGX

∼−→ π1(X ×K K) that

lifts the π1(X)-conjugacy class of continuous isomorphisms of the sixth display

of Definition 6.3(ii) – factors through the closed subgroup Aut(GX) ⊆ Out(ΠGX
)

(cf. condition (3) of Definition 2.1); moreover, one also verifies immediately from

[8, Cor. 3.9(ii), (iii)] that, for each prime number l, the continuous character

Gal(K/K) → Z×
l obtained by forming the composite of the resulting homomor-

phism Gal(K/K) → Aut(GX) and the pro-l cyclotomic character Aut(GX) → Z×
l

of [13, Lem. 2.1] coincides with the l-adic cyclotomic character of Gal(K/K). Thus,

one concludes from [4, Thm. 1.4(iv)] (cf. also (a)) that assertion (i) holds. This

completes the proof of assertion (i).

Assertion (ii) follows immediately from the argument of the second paragraph

of the proof of assertion (i), together with Lemma 2.7(iv). Assertion (iii) follows

immediately, in light of [13, Prop. 1.5(ii)], from assertion (ii), condition (c) of

Definition 2.10(iii), and condition (1) of [8, Prop. 2.9(i)].

Finally, we verify assertion (iv). The equality r(ΠG) = r follows from asser-

tion (ii) and [13, Prop. 1.2(i)]. Thus, the equality g(ΠG) = g follows from the

well-known structure of the étale fundamental groups of hyperbolic curves over al-

gebraically closed fields of characteristic zero. This completes the proof of assertion

(iv), hence also of Theorem 6.5.
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Theorem 6.6. Let F be an NF, F an algebraic closure of F , V a normal variety

over F (cf. [3, Def. 1.4]), and X a hyperbolic curve over V . Write π1(X), π1(V ),

π1(V ×F F ) for the respective étale fundamental groups of X, V , V ×F F (relative

to some choices of basepoints). Thus, we have an exact sequence of profinite groups

1 −→ π1(V ×F F ) −→ π1(V ) −→ Gal(F/F ) −→ 1.

Moreover, the structure morphism X → V induces an outer surjective continuous

homomorphism

π1(X) −→→ π1(V )

(cf. [3, Prop. 2.4(i)]), whose kernel we denote by

∆X/V .

Let s : Gal(F/F )→ π1(V ) be a pro-Primes Galois section of V (cf. [2, Def. 5.2]).

Write

Πs
def
= π1(X)×π1(V ) Gal(F/F )

for the fiber product of π1(X) →→ π1(V ) and s : Gal(F/F ) → π1(V ). Thus, we

have an exact sequence of profinite groups

1 −→ ∆X/V −→ Πs −→ Gal(F/F ) −→ 1.

Then the following assertions hold:

(i) The profinite group Πs is a hyperbolic NF-curvoid whose geometric sub-

group is given by ∆X/V ⊆Πs. Moreover, the normal closed subgroup ∆X/V ⊆
Πs of Πs is pseudo-NF-geometric.

(ii) For a closed subgroup of ∆X/V , it holds that the closed subgroup is an inertia

subgroup associated to a cusp of a geometric fiber of the hyperbolic curve X

over V (cf. the final portion of [3, Prop. 2.4(i)]) if and only if the closed

subgroup is a cuspidal inertia subgroup of the hyperbolic NF-curvoid Πs (cf.

(i)).

(iii) Suppose that the hyperbolic curve X over V is of type (g, r). Then the equal-

ity (g(Πs), r(Πs)) = (g, r) (cf. (i)) holds.

(iv) Let D be an element of Ṽ(G(Πs)) (cf. (i); Proposition 2.5(ii); [4, Prop.

3.5(1)]). Suppose that V is a smooth curve over F , and that the pro-Primes

Galois section s of V is geometric at the nonarchimedean prime of F (cf.

[2, Def. 5.11]) determined by D ∈ Ṽ(G(Πs)) (cf. (i); [4, Prop. 3.5(i)]). Then

the element D ∈ Ṽ(G(Πs)) is curvoidal (cf. (i)).

Proof. First, we verify assertion (i). Let us first observe that it follows from the

exact sequence preceding assertion (i) that the normal closed subgroup ∆X/V ⊆ Πs
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of Πs is of co-NF type. Next, let us observe that it follows from [3, Prop. 2.4(iii)]

that the profinite group ∆X/V is topologically finitely generated. In particular, one

concludes that

(a) the normal closed subgroup ∆X/V ⊆ Πs of Πs is pseudo-NF-geometric, hence

also satisfies conditions (1), (2) of Definition 2.1.

Next, write GX for the semi-graph of anabelioids of pro-Primes PSC type

determined by a fixed geometric fiber of the hyperbolic curve X over V (cf. [13,

Def. 1.1(i)]) and ΠGX
for the PSC-fundamental group of GX . Thus, it follows from

[3, Prop. 2.4(i)] that there exists a natural π1(X)-conjugacy class of continuous

isomorphisms

ΠGX

∼−→ ∆X/V .

Next, let us observe that one verifies immediately that the composite

π1(V )
∼−→ π1(X)/∆X/V −→ Out(∆X/V )

∼−→ Out(ΠGX
)

– where the first arrow is the continuous isomorphism that arises from the defi-

nition of ∆X/V , the second arrow is the outer continuous action by conjugation,

and the third arrow is the isomorphism obtained by conjugation by a continuous

isomorphism ΠGX

∼−→ ∆X/V that lifts the above π1(X)-conjugacy class of contin-

uous isomorphisms – factors through the closed subgroup Aut(GX) ⊆ Out(ΠGX
)

(cf. condition (3) of Definition 2.1); moreover, one also verifies immediately from

[8, Cor. 3.9(ii), (iii)] that, for each prime number l, the continuous character

π1(V ) → Z×
l obtained by forming the composite of the resulting homomorphism

π1(V ) → Aut(GX) and the pro-l cyclotomic character Aut(GX) → Z×
l of [13,

Lem. 2.1] factors through the quotient π1(V ) →→ Gal(F/F ), and, moreover, the

resulting character Gal(F/F ) → Z×
l coincides with the l-adic cyclotomic charac-

ter of Gal(F/F ). Thus, one concludes from [4, Prop. 3.7(iii)] (cf. also (a)) that

assertion (i) holds. This completes the proof of assertion (i).

Assertion (ii) follows immediately from the argument of the second paragraph

of the proof of assertion (i), together with Lemma 2.7(iv). Next, we verify assertion

(iii). The equality r(Πs) = r follows from assertion (ii) and [13, Prop. 1.2(i)]. Thus,

the equality g(Πs) = g follows from [3, Prop. 2.4(i)], together with the well-known

structure of the étale fundamental groups of hyperbolic curves over algebraically

closed fields of characteristic zero. This completes the proof of assertion (iii). As-

sertion (iv) follows from assertion (i) and Theorem 6.5(i). This completes the proof

of Theorem 6.6.

Corollary 6.7. Let K be an MLF (respectively, NF), K an algebraic closure of

K, and X a hyperbolic orbicurve over K. Write π1(X), π1(X ×K K) for the
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respective étale fundamental groups of X, X ×K K (relative to some choices of

basepoints). Thus, we have an exact sequence of profinite groups

1 −→ π1(X ×K K) −→ π1(X) −→ Gal(K/K) −→ 1.

Then the following assertions hold:

(i) The profinite group π1(X) is a hyperbolic MLF-orbicurvoid (respectively,

hyperbolic NF-orbicurvoid) whose geometric subgroup is given by π1(X×K

K) ⊆ π1(X).

(ii) Suppose that the hyperbolic orbicurve X over K is a hyperbolic curve over

K. Then the hyperbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbi-

curvoid) π1(X) (cf. (i)) is a hyperbolic MLF-curvoid (respectively, hyper-

bolic NF-curvoid). If, moreover, the hyperbolic curve X is of type (g, r), then

the equality (g(π1(X)), r(π1(X))) = (g, r) holds.

(iii) For a closed subgroup of π1(X ×K K), it holds that the closed subgroup is

an inertia subgroup associated to a cusp of the hyperbolic orbicurve X over

K if and only if the closed subgroup is a cuspidal inertia subgroup of the

hyperbolic MLF-orbicurvoid (respectively, hyperbolic NF-orbicurvoid) π1(X)

(cf. (i)).

(iv) It holds that the hyperbolic orbicurve X over K is a K-core (cf. [11, Rem.

2.1.1]) if and only if the hyperbolic MLF-orbicurvoid (respectively, hyperbolic

NF-orbicurvoid) π1(X) (cf. (i)) is relatively core-like.

Proof. First, we verify assertion (i). Let us first observe that it follows from the

exact sequence in the display in the statement of Corollary 6.7 that the normal

closed subgroup π1(X ×K K) ⊆ π1(X) of π1(X) is of co-MLF type (respectively,

of co-NF type). Next, let us observe that it follows from [14, Prop. 2.3(i)] that

the profinite group π1(X ×K K) is slim. In particular, one concludes that the

normal closed subgroup π1(X ×K K) ⊆ π1(X) of π1(X) satisfies condition (1) of

Definition 3.1. Thus, one verifies immediately from Theorem 6.5(i) (respectively,

Theorem 6.6(i)) that assertion (i) holds. This completes the proof of assertion (i).

The first portion of assertion (ii) follows from Theorem 6.5(i) (respectively,

Theorem 6.6(i)). The final portion of assertion (ii) follows from Theorem 6.5(iv)

(respectively, Theorem 6.6(iii)). Assertion (iii) follows from Theorem 6.5(ii) (re-

spectively, Theorem 6.6(ii)), together with Proposition 3.8(iii). Assertion (iv) fol-

lows immediately from [10, Thm. A] and [3, Prop. 3.2(i)], together with the various

definitions involved. This completes the proof of Corollary 6.7.
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