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Extended Affine Root Supersystems of Types
C(I, J) and BC(1, 1)
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Malihe Yousofzadeh

Abstract

In this paper, we complete the characterization of tame irreducible extended affine root
supersystems. We give a complete description of tame irreducible extended affine root su-
persystems of type X = C(1, 1), C(1, 2), C(2, 2) and BC(1, 1) and determine isomorphic
classes.
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§1. Introduction

The notion of locally finite root supersystems was introduced in [8]; this is a gener-

alization of the two notions of locally finite root systems [3], as well as generalized

root systems [4]. More precisely, a symmetric spanning set R of a nontrivial vector

space V equipped with a nondegenerate symmetric bilinear form (·, ·) is called a

locally finite root supersystem if

� 0 ∈ R,

� for α ∈ R with (α, α) ̸= 0 and β ∈ R, 2(β, α)/(α, α) ∈ Z and β− 2(β,α)
(α,α) α ∈ R,

� the root string property is satisfied for R and

� for α, β ∈ R with (α, α) = 0 and (α, β) ̸= 0, {β − α, β + α} ∩R ̸= ∅.

The root system of a basic classical simple Lie superalgebra is an example

of a locally finite root supersystem. Irreducible locally finite root supersystems

are classified and known as types Ȧ(I, J), B(I, J), C(I, J), D(I, J) and BC(I, J),

together with the root systems of basic classical simple Lie superalgebras; see [8].
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Locally finite root supersystems have a close connection with the super version

of affine Lie algebras called affine Lie superalgebras, which was introduced and

classified by Van de Leur in 1986 [6]. An affine Lie superalgebra L is equipped with

a nondegenerate invariant supersymmetric bilinear form and has a weight space

decomposition with respect to a finite-dimensional abelian subalgebra H ⊆ L0 on

which the form is nondegenerate. This allows the transfer of the form on L to a

nondegenerate bilinear form (·, ·) on the dual space H∗ of H and the ability to

divide nonzero roots of the root system R of L (with respect to H) into three

parts:

� R×
re (nonzero real roots), consisting of those roots α with (α, α) ̸= 0,

� R×
im (nonzero imaginary roots), consisting of all nonzero roots α with (α,R) =

{0} and

� R×
ns (nonzero nonsingular roots) consisting of nonzero roots which do not be-

long to R×
re ∪R×

im.

The set of imaginary roots generates a free abelian group Zδ of rank 1 and the

root system R up to Zδ is just a locally finite root supersystem. This motivated

us in 2016 to introduce a combinatorial object, called an extended affine root

supersystem; see [7]. An extended affine root supersystem R is a specific subset of

a vector space and is divided into three parts: Rre (real roots), Rns (nonsingular

roots) and R0 (isotropic roots). Up to the group generated by isotropic roots, the

extended affine root supersystem R is just a locally finite root supersystem, say

Ṙ; see Definition 2.1 for the precise definition. We say R is of type X if Ṙ is of

type X and call it tame if R0 ⊆ (R× −R×), where R× := (Rre ∪Rns) \ {0}.
In 2017, another combinatorial object, called an affine generalized reflection

root system, was introduced in [2] and the irreducible ones were characterized.

Each irreducible affine generalized reflection system is of the form S× = Sre∪Sns \
{0} for a complex infinite tame irreducible extended affine root supersystem S

satisfying

� ZS× ⊗Z C is naturally isomorphic to spanC S
×,

� if α, β ∈ S×
ns and α+ β ∈ S, then α− β ̸∈ S.

There are examples of tame irreducible extended affine root supersystems which

do not satisfy the above two conditions; see e.g., Example 3.2 and [2, §1.2.6].

The main goal is finding descriptions of all tame irreducible extended affine root

supersystems.

For each irreducible extended affine root supersystem S of type X, there are

a locally finite root supersystem Ṡ of type X and nonempty subsets Sα̇ (α̇ ∈ Ṡ)
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of the radical of the form (·, ·) on the underlying vector space such that

(1.1) S =
⋃
α̇∈Ṡ

(α̇+ Sα̇).

To get a description of S, we need to know the interactions between the Sα̇. In [7],

we obtained these interactions for types X ̸= B(0, I), C(2, 2), C(1, 2), A(ℓ, ℓ) and

BC(1, 1) which help us to find a description of tame irreducible extended affine

root supersystems of the corresponding types. But for type A(ℓ, ℓ), the interactions

are not sufficiently explicit to be investigated directly. One of the difficulties that

occurs in finding these interactions for type A(ℓ, ℓ) is that in contrast with other

types, if α̇ is a nonsingular root of Ṡ, then Sα̇ in (1.1), can be not equal to S−α̇.

Moreover, for type A(1, 1), this phenomenon can even happen for real roots α̇ ∈ Ṡ.

Depending on ℓ = 1 or ℓ ̸= 1, we need different techniques to study type

A(ℓ, ℓ). More precisely, if R is a tame irreducible extended affine root supersystem

of type A(ℓ, ℓ) (ℓ ̸= 1) in an F-vector space V , we extend V by a 1-dimensional

vector space Fδ and use R to define a new extended affine root supersystem T in

the new vector space V ⊕ Fδ. Then we describe T instead of R, but T is defined

in a way that up to Fδ, it is just R and so we get a description of R by making

the quotient on Fδ; see [5] for the details. This technique does not work for ℓ = 1;

see [5, Prop. 2.4(i)].

In this paper, we focus on type A(1, 1) = C(1, 1). We first give two kinds of

examples of extended affine root supersystems (Examples 3.1, 3.2) and then prove

that each tame irreducible extended affine root supersystem of type C(1, 1) has the

expression stated in these examples. Moreover, we complete the study of extended

affine root supersystems by giving descriptions of remainder types C(1, 2), C(2, 2)

and BC(1, 1). We also determine the isomorphism classes.

§2. Extended affine root supersystems

Throughout this paper, F is a field of characteristic zero and all vector spaces are

defined on F.

Definition 2.1 ([7]). Suppose that V is a nontrivial vector space, S is a subset

of V and (·, ·) : V × V −→ F is a symmetric bilinear form with radical V 0. Set

S0 := S ∩ V 0, S× := S \ S0,

S×
re :=

{
α ∈ S | (α, α) ̸= 0

}
, Sre := S×

re ∪ {0},

S×
ns :=

{
α ∈ S \ S0 | (α, α) = 0

}
, Sns := S×

ns ∪ {0}.
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We say (V, (·, ·), S) is an extended affine root supersystem if the following hold:

(S1) 0 ∈ S and S spans V ,

(S2) S = −S,
(S3) for α ∈ S×

re and β ∈ S, 2(α, β)/(α, α) ∈ Z,
(S4) (root string property) for α ∈ S×

re and β ∈ S, there are nonnegative integers

p, q such that {k ∈ Z | β+kα ∈ S} = {−p, . . . , q} and 2(β, α)/(α, α) = p− q,
(S5) for α ∈ Sns and β ∈ S with (α, β) ̸= 0, {β − α, β + α} ∩ S ̸= ∅.

If there is no ambiguity, we say S is an extended affine root supersystem in V .

Elements of S0 are called isotropic roots, elements of Sre are called real roots and

elements of Sns are called nonsingular roots. The extended affine root supersys-

tem S is called tame if S0 ⊆ S× − S×. An extended affine root supersystem S

is called irreducible if Sre ̸= {0} and S× cannot be written as a disjoint union

of two nonempty orthogonal subsets. The extended affine root supersystem S is

called a locally finite root supersystem if the form (·, ·) is nondegenerate. A locally

finite root supersystem S is called a finite root supersystem if S is finite and it

is called a locally finite root system if Sns = {0}. We say an extended affine root

supersystem (V, (·, ·), R) is isomorphic to another extended affine root supersystem

(V ′, (·, ·)′, R′) and write R ≃ R′ if there are a linear isomorphism φ : V −→ V ′ and

a nonzero scalar r such that φ(R) = R′ and r(x, y) = (φ(x), φ(y))′.

Remark 2.2. Suppose that (V, (·, ·), S) satisfies (S1)–(S3) and (S5); then using

[7, Prop. 1.11] and the same argument as in [7, Prop. 2.1], we get that S satisfies

(S4) if and only if it satisfies the following:

� (V , (·, ·)− , S̄) is a locally finite root supersystem, in which V is the quotient of

V over the radical V 0 of the form (·, ·) and (·, ·)− is the induced form on V ,

� for α ∈ S×
re, the reflection

rα : V −→ V,

v 7→ v − 2(v, α)

(α, α)
α (v ∈ V )

preserves S.

In what follows, we give the classification of irreducible locally finite root

supersystems of [8]. Suppose U̇ is a vector space with a basis {η1, η2, η3}. For
λ ∈ F \ {0,−1}, define the symmetric nondegenerate bilinear form (·, ·) on U̇ by

the linear extension

(2.1)
(η1, η1) := λ, (η2, η2) = −1− λ, (η3, η3) := 1,

(ηi, ηj) = 0 (1 ≤ i ̸= j ≤ 3).
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Define

(2.2) D(2, 1;λ) =
{
0, ±2ηi, ±η1 ± η2 ± η3 | 1 ≤ i ≤ 3

}
.

Next suppose I and J are two index sets with I ∪ J ̸= ∅ and U̇ (by abuse of

notation) is a vector space with a basis {ϵi, δj | i ∈ I, j ∈ J}. Define a symmetric

bilinear form (·, ·) : U̇ × U̇ −→ F with

(ϵi, ϵr) := δi,r, (δj , δs) := −δj,s and (ϵi, δj) = 0 (i, r ∈ I, j, s ∈ J).

Set1

(2.3)

Ȧ(I, I) := ±
{
ϵi − ϵr, δi − δr, ϵi − δr − 1

ℓ

∑
k∈I(ϵk − δk) | i, r ∈ I

}
(ℓ := |I| ∈ Z≥2),

Ȧ(I, J) := ±
{
ϵi − ϵr, δj − δs, ϵi − δj | i, r ∈ I, j, s ∈ J

}
(|I| ≠ |J | if I, J are finite sets),

B(I, J) := ±
{
ϵi, δj , ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J, i ̸= r

}
,

C(I, J) := ±
{
ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J

}
,

D(I, J) := ±
{
ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J, i ̸= r

}
,

BC(I, J) := ±
{
ϵi, δj , ϵi ± ϵr, δj ± δs, ϵi ± δj | i, r ∈ I, j, s ∈ J

}
,

F (4) := ±
{
0, ϵ, δi ± δj , δi,

1
2 (ϵ± δ1 ± δ2 ± δ3) | 1 ≤ i ̸= j ≤ 3

}
(I = {1}, J = {1, 2, 3}, ϵ :=

√
3ϵ1),

G(3) := ±
{
0, ν, 2ν, ϵi−ϵj , 2ϵi−ϵj−ϵt, ν±(ϵi−ϵj) | {i, j, t} = {1, 2, 3}

}
(I = {1, 2, 3}, J = {1}, ν :=

√
2δ1),

in which if I or J is empty, the corresponding indices disappear. We mention that

the F-linear spans of all these sets are U̇ except for Ȧ(I, J), so to denote this

type, we use Ȧ instead of A. If X is one of the sets introduced in (2.2) and (2.3),

then X is an irreducible locally finite root supersystem, in its linear span, called

the irreducible locally finite root supersystem of type X. Up to isomorphism, each

irreducible locally finite root supersystem is either an irreducible finite root system

or one of the locally finite root supersystems introduced in (2.2) or (2.3); see [3],

[4] and [8].

In the sequel, if either I or J is a finite set, we may replace it by its cardinality

in each type, e.g., we may denote B(I, J) by B(|I|, |J |) if I and J are finite sets.

We should point out that our notation has a minor difference compared with the

notation in the literature; more precisely, D(1, n) for n ∈ Z≥1 and Ȧ(m,n) for

1We denote the cardinal number of a set A by |A|.
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m,n ∈ Z≥1 in our sense are denoted by C(n+1) and A(m− 1, n− 1) respectively

in the literature.

The real part of an irreducible locally finite root supersystem (V, (·, ·), S) is a
locally finite root system; in fact, we have

Sre =

n⋃
i=1

Si,

where n ∈ {1, 2, 3}, each Si is an irreducible locally finite root system and (Si, Sj)

= {0} for i ̸= j. Moreover, we have

Si = {0} ∪ Si
sh ∪ Si

lg ∪ Si
ex,

where

Si
sh :=

{
α ∈ Si \ {0} | (α, α) ≤ (β, β) ∀β ∈ Si \ {0}

}
,

Si
ex := 2Si

sh ∩ Si,

Si
lg = Si \ ({0} ∪ Si

ex ∪ Si
sh),

which are called the sets of short, extra-long and long roots of Si, respectively. We

set

(2.4) (Sre)∗ :=

n⋃
i=1

Si
∗ (∗ = sh, lg, ex).

Next assume :̄ V −→ V := V/V 0 is the canonical projection map. Then the

form induces a form on V and R̄ is an irreducible locally finite root supersystem

in V ; see [7, Prop. 1.11]. We say R is of type X if R̄ is of type X.

Pick a subset Π = {υi | i ∈ I} ⊆ R such that Π = {ῡi | i ∈ I} is a basis for V

and set

V̇ := spanF Π.

Then we have

V = V̇ ⊕ V 0

and that

Ṙ := {α̇ ∈ V̇ | α̇+ σ ∈ R for some σ ∈ V 0}

is an irreducible locally finite root supersystem in V̇ isomorphic to R̄. We mention

that

(2.5) Π ⊆ R ∩ Ṙ.

Setting

Sα̇ :=
{
σ ∈ V 0 | α̇+ σ ∈ R

}
(α̇ ∈ Ṙ),
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we have

(2.6) R =
⋃
α̇∈Ṙ

(α̇+ Sα̇).

To get a description of R, one needs to know the interaction between the Sα̇.

Although, these interactions depend on the type of R and the choice of Π, we have

the following four general facts:

Fact 1. For α̇ ∈ Ṙ×
re and β̇ ∈ Ṙ, we have

Sβ̇ − 2(α̇, β̇)

(α̇, α̇)
Sα̇ ⊆ Srα̇(β̇)

= S
β̇− 2(β̇,α̇)

(α̇,α̇)
α̇
.

This follows from the fact that

rα(β) = β − 2(α, β)

(α, α)
α ∈ R (α ∈ R×

re, β ∈ R).

Fact 2. If α̇ ∈ Ṙ×
re and 0 ∈ Sα̇, we have Sβ̇ = Srα̇(β̇) for each β̇ ∈ Ṙ. This follows

from Fact 1.

Fact 3. Suppose α̇, β̇ ∈ Ṙ× with α̇ + β̇ ̸∈ Ṙ and (α̇, β̇) ̸= 0; then α̇ − β̇ ∈ Ṙ

and Sα̇ − Sβ̇ ⊆ Sα̇−β̇ . For σ ∈ Sα̇, τ ∈ Sβ̇ and α := α̇ + σ, β := β̇ + τ ∈ R,

since (α̇, β̇) ̸= 0 and α̇+ β̇ ̸∈ Ṙ, we have using (S5) and (S4) that α− β ∈ R and

α̇− β̇ ∈ Ṙ. So σ − τ ∈ Sα̇−β̇ . This means that Sα̇ − Sβ̇ ⊆ Sα̇−β̇ .

Fact 4. For α̇ ∈ Ṙ, S−α̇ = −Sα̇. This follows easily from (S2).

Using these facts together with some technical points, some descriptions of

all tame irreducible extended affine root supersystems except for types Ȧ(1, 1) ≃
C(1, 1), B(0, I), C(2, J) ≃ C(J, 2) and BC(1, 1), are given in [7]. In this work, we

deal with these remainder types. Regarding type C(I, J) with (|I|, |J |) ̸= (1, 1),

we give, in general, a description of type C(I, J) for two nonempty sets I and J

with |I| ≥ 1 and |J | ≥ 2.

Locally finite root supersystems B(I, 0), B(0, I) = BC(0, I) ≃ BC(I, 0),

C(I, 0) ≃ C(0, I) = D(0, I) and D(I, 0) are locally finite root systems known

as types BI , BCI , CI and DI respectively. Moreover, BCI ≃ B(0, I) appears as

the root system of some Lie superalgebra with nonzero odd part; namely, B(0, n)

is the root system of basic classical simple Lie superalgebra B(0, n).

The following theorem is proved as in [1, (2.18), Prop. 2.23 & Thm. 3.1]:
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Theorem 1. Suppose that (U̇ , (·, ·), Ṙ) is an irreducible locally finite root super-

system of type B(0, I) = BCI for a nonempty set I and U is a vector space. Let

L (if |I| ≥ 2), S and E be nonempty subsets of U satisfying

(†)

0 ∈ S, S − 2S ⊆ S, E − 2E ⊆ E and 0 ∈ L, L− 2L ⊆ L (if |I| ≥ 2),

L+ L ⊆ L (if |I| ≥ 3) and spanF S = U,

S + L ⊆ S, L+ 2S ⊆ L (if |I| ≥ 2),

S + E ⊆ S, E + 4S ⊆ E (if |I| = 1),

L+ E ⊆ L, E + 2L ⊆ E (if |I| ≥ 2).

Extend (·, ·) to a form on U̇ ⊕ U such that U is the radical of this new form and

set

(2.7) R = Ṙ(S,L,E) := (S − S) ∪ (Ṙsh + S) ∪ (Ṙlg + L) ∪ (Ṙex + E),

where if |I| = 1, the part Ṙlg + L disappears. Then (U̇ ⊕ U, (·, ·), R) is a tame

irreducible extended affine root supersystem of type B(0, I) in U̇ ⊕U . Conversely,

each tame irreducible extended affine root supersystem of type BCI = B(0, I) has

an expression as in (2.7). Moreover, if V is a vector space with subspaces S′, L′, E′

satisfying the same conditions as in (†), Ṙ(S,L,E) is isomorphic to Ṙ(S′, L′, E′)

if and only if there are τ ′ ∈ L′ (if |I| ≥ 2), σ′ ∈ S′ and a linear isomorphism

ψ : U −→ V with

ψ(L) = L′ + τ ′ (if |I| ≥ 2), ψ(S) = S′ + σ′ and ψ(E) = E′ + 2σ′.

§3. Type C(1, 1)

Suppose that (U̇ , (·, ·), Ṙ) is a finite root supersystem of type C(1, 1) and U is a

vector space. We know from (2.3) that Ṙre is the direct sum of two irreducible

finite root systems of type A1, say Ṙre = Ṙ1 ⊕ Ṙ2 with

Ṙ1 = {0,±2ϵ}, Ṙ2 = {0,±2δ}, Ṙns = {±ϵ± δ}

and

(ϵ, δ) = 0 and (ϵ, ϵ) = 1 = −(δ, δ).

Set

Ṙ+
1 := {2ϵ}.

Extend the form on U̇ to a symmetric bilinear form on U̇ ⊕ U such that U is the

radical of this new form.

Example 3.1. Suppose that K is a subgroup of U and E, F and T are nonempty

subsets of K such that
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� K = E ∪ F and spanFK = U ,

� 0 ∈ F , F − 2F ⊆ F and E − 2E ⊆ −E,

� (E − E) ∪ (F − F ) ⊆ T = −T ⊆ K.

Then we claim that

U = spanF T

and that

R = Ṙ(T,E, F,K) := T ∪ ±(Ṙ+
1 + E) ∪ (Ṙ×

2 + F ) ∪ (Ṙ×
ns +K)

= T ∪ ±(2ϵ+ E) ∪ (±2δ + F ) ∪ (±ϵ± δ +K)

is a tame irreducible extended affine root supersystem of type C(1, 1) in U̇ ⊕ U .

We first note that R0 = T ⊆ K = K−K = (ϵ+δ+K)−(ϵ+δ+K) ⊆ R×−R×.

So, using Remark 2.2, we get that R is a tame irreducible extended affine root

supersystem if we verify property (S5) of an extended affine root supersystem for

R. To this end, suppose that α ∈ R×
ns = ±ϵ ± δ +K and β ∈ R with (α, β) ̸= 0.

Since K is a group and K = E ∪ F , if β ∈ Rre, it is trivial that either α+ β ∈ R

or α−β ∈ R. So we assume α, β ∈ Rns. Since (α, β) ̸= 0, we have α = tϵ+ t′δ+ τ1
and β = rϵ+ r′δ + τ2 for some τ1, τ2 ∈ K and t, t′, r, r′ = ±1 with tt′ = −rr′.

Since α+ β = α− (−β) and R = −R, replacing α with −α and β with −β if

necessary, we may assume α = ϵ + rδ + τ1 and β = ϵ − rδ + τ2 for some r = ±1

and τ1, τ2 ∈ K. Note that

if τ1, τ1 − τ2 ∈ E =⇒ τ1 + τ2 = (τ2 − τ1) + 2τ1 ∈ −E + 2E ⊆ E,

which in turn gives that

τ1 + τ2 ̸∈ E
K=E∪F−−−−−→ τ1 ∈ F or τ1 − τ2 ∈ F.

So we have the following cases:

� τ1 + τ2 ∈ E. Then α+ β = 2ϵ+ (τ1 + τ2) ∈ R and we are done.

� τ1 + τ2 ̸∈ E and τ1 − τ2 ∈ F . Then α− β = 2rδ+ (τ1 − τ2) ∈ R as we desired.

� τ1+ τ2 ̸∈ E and τ1 ∈ F . As τ1+ τ2 ∈ K+K ⊆ K = E∪F , we get τ1+ τ2 ∈ F .

So we have

τ1 − τ2 = −(τ1 + τ2) + 2τ1 ∈ F − 2F ⊆ F,

and we get α− β ∈ R as in the previous case.

Finally, we show that U = spanF T . To this end, we fix σ ∈ E. We have

U = spanFK = spanF(E ∪ F ) ⊆ spanF((E − σ) ∪ F ∪ {σ}) ⊆ U.
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This means that

U = spanF((E − σ) ∪ F ∪ {σ}) ⊆ spanF(T ∪ {σ}) ⊆ U ;

i.e.,

U = spanF(T ∪ {σ}).
Since σ ∈ E ⊆ K and K is a group, we have −σ ∈ K = E ∪ F . If −σ ∈ E, we

have −2σ = −σ − σ ∈ E − σ ⊆ T . Also, if −σ ∈ F , we have −σ ∈ T as F ⊆ T .

Therefore, in both cases, we have σ ∈ spanF T and so U = spanF T .

Theorem 2. Suppose that U and V are vector spaces and suppose that subspaces

T , K, E, F of U and subspaces T ′, K ′, E′, F ′ of V satisfy the same conditions as

those stated in Example 3.1. Then Ṙ(T,E, F,K) is isomorphic to Ṙ(T ′, E′, F ′,K ′)

if and only if there exist τ1, τ2 ∈ K ′ with 1
2 (τ1+τ2) ∈ K ′ and a linear isomorphism

ψ : U −→ V such that one of the following occurs:

(i) ψ(T ) = T ′, ψ(E) = E′ − τ1, ψ(F ) = F ′ − τ2 and ψ(K) = K ′;

(ii) ψ(T ) = T ′, ψ(E) = −E′ − τ1, ψ(F ) = F ′ − τ2 and ψ(K) = K ′;

(iii) ψ(T ) = T ′, ψ(E) = F ′ − τ1, ψ(F ) = E′ − τ2 and ψ(K) = K ′.

Proof. We mention that as 0 ∈ F ,

(3.1) in cases (i), (ii), we get τ2 ∈ F ′ and in case (iii), we have τ2 ∈ E′.

(i) Suppose that the conditions of (i) occur and define

φ : U̇ ⊕ U −→ U̇ ⊕ V,

2ϵ+ σ 7→ 2ϵ+ τ1 + ψ(σ),

2δ + σ 7→ 2δ + τ2 + ψ(σ) (σ ∈ U).

Then for t1, t2 ∈ {±1}, we have

φ(t1ϵ+ t2δ +K) = t1ϵ+ t2δ +
t1
2
τ1 +

t2
2
τ2 +K ′

= t1ϵ+ t2δ + t1
τ1 + τ2

2
+
t2 − t1

2
τ2 +K ′

K′: group
= t1ϵ+ t2δ +K ′.

We also have

φ(±(2ϵ+ E)) = ±(2ϵ+ τ1 + E′ − τ1) = ±(2ϵ+ E′),

φ(2δ + F ) = 2δ + τ2 + F ′ − τ2 = 2δ + F ′,

φ(−2δ + F ) = −2δ − τ2 + F ′ − τ2
(3.1)
= −2δ + F ′ − 2τ2︸ ︷︷ ︸

∈F ′−2F ′

= −2δ + F ′.
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Moreover, denoting the bilinear forms defined on U̇ ⊕ U and U̇ ⊕ V respectively

by (·, ·) and (·, ·)′, we have

(φ(u), φ(v))′ = (u, v) (u, v ∈ U̇ ⊕ U).

These, together with the fact that φ(R0) = φ(T ) = ψ(T ) = T ′ = (R′)0 imply that

φ defines an isomorphism from Ṙ(T,E, F,K) to Ṙ(T ′, E′, F ′,K ′).

(ii) Suppose that the conditions of (ii) occur and define

φ : U̇ ⊕ U −→ U̇ ⊕ V,

2ϵ+ σ 7→ −2ϵ+ τ1 + ψ(σ),

2δ + σ 7→ 2δ + τ2 + ψ(σ) (σ ∈ U).

Then

φ(±(2ϵ+ E)) = ±(−2ϵ+ τ1 − E′ − τ1) = ∓(2ϵ+ E′),

φ(2δ + F ) = 2δ + τ2 + F ′ − τ2 = 2δ + F ′,

φ(−2δ + F ) = −2δ − τ2 + F ′ − τ2
(3.1)
= −2δ + F ′ − 2τ2︸ ︷︷ ︸

∈F ′−2F ′

= −2δ + F ′,

and for t1, t2 ∈ {±1}, we have

φ(t1ϵ+ t2δ +K) = −t1ϵ+ t2δ +
−t1
2
τ1 +

t2
2
τ2 +K ′

= −t1ϵ+ t2δ − t1
τ1 + τ2

2
+
t2 + t1

2
τ2 +K ′

K′: group
= − t1ϵ+ t2δ +K ′.

We also have

φ(R0) = (R′)0 and (φ(u), φ(v))′ = (u, v) (u, v ∈ U̇ ⊕ U).

So φ defines an isomorphism from Ṙ(T,E, F,K) to Ṙ(T ′, E′, F ′,K ′).

(iii) Suppose that the conditions of (iii) occur and define

φ : U̇ ⊕ U −→ U̇ ⊕ V,

2ϵ+ σ 7→ 2δ + τ1 + ψ(σ),

2δ + σ 7→ 2ϵ+ τ2 + ψ(σ) (σ ∈ U).

Then as in the previous cases, for t1, t2 ∈ {±1}, we have

φ(t1ϵ+ t2δ +K) = t1δ + t2ϵ+
t1
2
τ1 +

t2
2
τ2 +K ′ = t1δ + t2ϵ+K ′,
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and

φ(±(2ϵ+ E)) = ±(2δ + τ1 + F ′ − τ1) = ±(2δ + F ′) = ±2δ + F ′,

φ(2δ + F ) = 2ϵ+ τ2 + E′ − τ2 = 2ϵ+ E′,

φ(−2δ + F ) = −2ϵ− τ2 + E′ − τ2
(3.1)
= −2ϵ+ E′ − 2τ2︸ ︷︷ ︸

∈E′−2E′

= −2ϵ− E′.

Moreover, we have

φ(R0) = (R′)0 and (φ(u), φ(v))′ = −(u, v) (u, v ∈ U̇ ⊕ U),

i.e., φ is an isomorphism from Ṙ(T,E, F,K) to Ṙ(T ′, E′, F ′,K ′).

Conversely, assume R := Ṙ(T,E, F,K) and R′ := Ṙ(T ′, E′, F ′,K ′) are iso-

morphic. Denote the bilinear forms on the underlying vector spaces U̇⊕U and U̇⊕V
respectively by (·, ·) and (·, ·)′. So there is a linear isomorphism φ : U̇⊕U −→ U̇⊕V
and a nonzero scalar r such that

φ(R) = R′ and (φ(u), φ(v))′ = r(u, v)

for u, v ∈ U̇ ⊕ U . Since φ(R0) = (R′)0, we have

(3.2) φ(T ) = T ′.

Moreover, there are linear transformations

ζ : U̇ −→ U̇ , η : U̇ −→ V, ψ : U −→ V

such that

φ(α̇+ σ) = ζ(α̇) + η(α̇) + ψ(σ) (α̇ ∈ U̇ , σ ∈ U),

ζ is an isomorphism from Ṙ to Ṙ and ψ is a linear isomorphism. Since

−1 = (2δ, 2δ) = r(ζ(2δ), ζ(2δ))′,

we get either r = 1 or r = −1. In the former case, we have

ζ({±ϵ}) = {±ϵ} and ζ({±δ}) = {±δ},

and in the latter case, we have

ζ({±ϵ}) = {±δ} and ζ({±δ}) = {±ϵ}.

If r = 1, we have

ζ(2ϵ) + η(2ϵ) + ψ(E) = φ(2ϵ+ E) ∈ ±(2ϵ+ E′),

ζ(2δ) + η(2δ) + ψ(F ) = φ(2δ + F ) ∈ {±2δ}+ F ′,
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and also

ζ(ϵ+ δ) + η(ϵ+ δ) + ψ(K) = φ(ϵ+ δ +K) ∈ ±ϵ± δ +K ′.

So setting

τ1 := η(2ϵ) and τ2 := η(2δ),

one of the following occurs:

� ψ(E) = E′−τ1, ψ(F ) = F ′−τ2 and ψ(K) = K ′− 1
2 (τ1+τ2): Since 0 ∈ F ∩K,

these imply that τ2 ∈ F ′ ⊆ K ′ and 1
2 (τ1 + τ2) ∈ K ′; in particular, as K ′ is

a group, we have ψ(K) = K ′ and τ1 = (τ1 + τ2) − τ2 ∈ K ′. So by (3.2), the

conditions stated in (i) are fulfilled.

� ψ(E) = −E′ − τ1, ψ(F ) = F ′ − τ2 and ψ(K) = K ′ − 1
2 (τ1 + τ2): As in the

previous case, τ1, τ2,
1
2 (τ1+ τ2) ∈ K ′ and ψ(K) = K ′. So the conditions stated

in (ii) are satisfied; see also (3.2).

If r = −1, we have

ζ(2ϵ) + η(2ϵ) + ψ(E) = φ(2ϵ+ E) ∈ ±2δ + F ′,

ζ(2δ) + η(2δ) + ψ(F ) = φ(2δ + F ) ∈ ±(2ϵ+ E′)

and

ζ(ϵ+ δ) + η(ϵ+ δ) + ψ(K) = φ(ϵ+ δ +K) ∈ ±ϵ± δ +K ′.

So setting

τ1 := η(2ϵ) and τ2 := η(2δ),

one of the following occurs:

� ψ(E) = F ′ − τ1, ψ(F ) = E′ − τ2 and ψ(K) = K ′ − 1
2 (τ1 + τ2): These together

with the fact that 0 ∈ F ∩K imply that τ2 ∈ E′ ⊆ K ′ and 1
2 (τ1 + τ2) ∈ K ′.

Since K ′ is a group, we have ψ(K) = K ′ and τ1 = (τ1 + τ2) − τ2 ∈ K; i.e.,

recalling (3.2), we get the conditions stated in (iii).

� ψ(E) = F ′ − τ1, ψ(F ) = −E′ − τ2 and ψ(K) = K ′ − 1
2 (τ1 + τ2): Since 0 ∈ F

and K is a group, we get −τ2 ∈ E′ ⊆ K ′, 1
2 (τ1 + τ2) ∈ K ′ and ψ(K) = K ′. So

for τ ′2 := −τ2 ∈ E′, we have ψ(F ) = ψ(−F ) = E′ + τ2 = E′ − τ ′2. Moreover,

since K ′ is a group, we have 1
2 (τ1 + τ ′2) =

1
2 (τ1 − τ2) =

1
2 (τ1 + τ2)− τ2 ∈ K ′.

In fact, we have τ1, τ
′
2,

1
2 (τ1 + τ ′2) ∈ K ′,

ψ(E) = F ′ − τ1, ψ(F ) = E′ − τ ′2, ψ(K) = K ′ and ψ(T ) = T ′.

In other words, again, we get the conditions stated in (iii). This completes the

proof.
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Example 3.2. For a quadruple (U,G, T, τ) in which G is a subgroup of the vector

space U , T ⊆ U and τ ∈ U with U = spanF(T ∪ {τ}) and G ⊆ T = −T ⊆
G ∪ (G± 2τ), set

R = Ṙ(T,G, τ) := T ∪ (Ṙ×
re +G) ∪ (Ṙ×

ns +G± τ) ⊆ U.

It is easily seen that Ṙ(T,G, τ) is a tame irreducible extended affine root super-

system of type C(1, 1) in U̇ ⊕ U . Furthermore, we claim that if U ̸= spanF T ,

then T = G. In fact, if T ̸= G, then since G ⊆ T ⊆ G ∪ (G ± 2τ), there are

r = ±1 and g ∈ G such that g + 2rτ ∈ T , so 2τ ∈ T − rg ⊆ spanF T . Therefore,

U = spanF(T ∪ {τ}) = spanF T . We moreover note that if τ ∈ G, then T = G and

R = Ṙ + G. In particular, if α, β ∈ Rns with (α, β) ̸= 0, then α + β, α − β ∈ R.

This phenomenon does not happen for affine reflection root systems [2, §1.2.6].

Theorem 3. Suppose that quadruples (U,G, T, τ) and (V,G′, T ′, τ ′) satisfy the

same conditions as stated in Example 3.2. Then Ṙ(T,G, τ) ≃ Ṙ(T ′, G′, τ ′) if and

only if there exist σ1, σ2 ∈ V and a linear isomorphism ψ : U −→ V such that

� 2σ1, 2σ2 ∈ G′,

� ψ(T ) = T ′, ψ(G) = G′ and ψ(τ) ∈ G′ ± τ ′ + σ1 + σ2.

Proof. Denote the bilinear forms defined on U̇ ⊕U and U̇ ⊕V respectively by (·, ·)
and (·, ·)′ and suppose σ1, σ2 and ψ are as in the statements. Define

φ : U̇ ⊕ U −→ U̇ ⊕ V,

ϵ 7→ ϵ+ σ1, δ 7→ δ + σ2, σ 7→ ψ(σ) (σ ∈ U).

Then for t1, t2 = ±1, we have

φ(2t1ϵ+G) = 2t1ϵ+G′ + 2t1σ1 = 2t1ϵ+G′,

φ(2t2δ +G) = 2t2δ +G′ + 2t2σ2 = 2t2δ +G′

and as G′ is a group with 2σ1, 2σ2 ∈ G′, we get

φ(t1ϵ+ t2δ±τ+G) ∈ t1ϵ+ t2δ+ t1σ1+ t2σ2±τ ′+σ1+σ2+G′ = t1ϵ+ t2δ±τ ′+G′.

Also, we have

(φ(u), φ(u′))′ = (u, u′) (u, u′ ∈ U̇ ⊕ U).

These together with the fact that φ(T ) = ψ(T ) = T ′ imply that φ defines an

isomorphism from Ṙ(T,G, τ) to Ṙ(T ′, G′, τ ′).

Conversely, assume R := Ṙ(T,G, τ) and R′ := Ṙ(T ′, G′, τ ′) are isomorphic.

So there are a nonzero scalar r and a linear isomorphism φ : U̇ ⊕ U −→ U̇ ⊕ V
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such that

φ(R) = R′ and (φ(u), φ(u′))′ = r(u, u′) (u, u′ ∈ U̇ ⊕ U).

This gives that there are linear transformations

ζ : U̇ −→ U̇ , η : U̇ −→ V and ψ : U −→ V

such that

φ(α̇+ σ) = ζ(α̇) + η(α̇) + ψ(σ) (α̇ ∈ U̇ , σ ∈ U).

In particular, ζ defines an isomorphism of Ṙ and

ψ(T ) = ψ(R0) = φ(R0) = (R′)0 = T ′.

Set

σ1 := −η(ϵ) and σ2 := −η(δ);

then we have

ζ(2ϵ)− 2σ1 = φ(2ϵ) ∈ R′ and ζ(2δ)− 2σ2 = φ(2δ) ∈ R′.

So

2σ1, 2σ2 ∈ G′.

Moreover, we have

ζ(2ϵ) + η(2ϵ) + ψ(G) = φ(2ϵ+G) ⊆ Ṙ×
re +G′.

Since ζ(2ϵ) ∈ {±2ϵ,±2δ}, it follows that

ψ(G) = G′.

Finally, we have

ζ(ϵ) + ζ(δ)− σ1 − σ2 + ψ(τ) = φ(ϵ+ δ + τ) ∈ ±ϵ± δ ± τ ′ +G′,

which gives

ψ(τ) ∈ G′ ± τ ′ + σ1 + σ2.

This fulfills the conditions stated in the statement.

Theorem 4. Each tame irreducible extended affine root supersystem (V, (·, ·), R)
of type C(1, 1) has an expression as R in Examples 3.1, 3.2. Moreover, if spanFR

0

̸= V 0, then for α, β ∈ Rns with (α, β) ̸= 0, one and only one of α + β and α − β

is an element of R.
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Proof. Suppose (V, (·, ·), R) is a tame irreducible extended affine root supersystem

of type C(1, 1). As in (2.5) and (2.6), for Ṙ = {0,±2ζ,±2η,±ζ ± η}, which is

an irreducible finite root supersystem of type C(1, 1) with (ζ, η) = 0, (ζ, ζ) =

−(η, η) = 1 and Π = {ζ − η, 2η}, there is a class {Sα̇}α̇∈Ṙ of nonempty subsets of

V 0 such that

R =
⋃
α̇∈Ṙ

(α̇+ Sα̇) with 0 ∈ Sα̇ (α̇ ∈ Π).

Since 0 ∈ Sζ−η ∩ S2η, Fact 2 implies that

S2η = S−2η, Sζ−η = Sζ+η, S−ζ−η = S−ζ+η.

Also as R = −R, we have

S2ζ = −S−2ζ and Sζ±η = −S−ζ±η.

Set

E1 := S2ζ , F := S±2η and K := Sζ±η.

So

(3.3) R× = ±(2ζ + E1) ∪ (±2η + F ) ∪ ±(ζ ± η +K)

with

(3.4) 0 ∈ F = −F and 0 ∈ K.

We continue the proof in the following steps.

Step 1. We have the following:

(a) E1 − 2E1 ⊆ −E1, F − 2F ⊆ F , E1 −K ⊆ K and K − F ⊆ K.

(b) K = E1 ∪ F . Moreover,

K is a subgroup of V 0 ⇐⇒ K = −K ⇐⇒ E1 \ (E1 ∩ −E1) ⊆ F ;

in particular, if E1 = −E1, K is a subgroup of V 0.

Reason: (a) Fact 1 implies that E1 − 2E1 ⊆ −E1 and F − 2F ⊆ F = −F . Next

assume x ∈ K, y ∈ E1 and z ∈ F . Since (2ζ+y, ζ+η+x), (−2η−z, ζ+η+x) ̸= 0

while 2ζ + (ζ + η),−2η − (ζ + η) ̸∈ Ṙ, from (S5), we have

ζ − η + y − x = (2ζ + y)− (ζ + η + x) ∈ R,

ζ − η − z + x = (−2η − z) + (ζ + η + x) ∈ R,

which in turn implies that

E1 −K ⊆ K and K − F ⊆ K.
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(b) Since 0 ∈ K and F = −F , (a) implies that E1 ∪ F ⊆ K. Now suppose

x ∈ K; then ζ + η + x, ζ − η ∈ R. So (S5) implies that either 2ζ + x ∈ R or

2η + x ∈ R. Therefore, either x ∈ E1 or x ∈ F ; in other words, K = E1 ∪ F .
Next suppose K is a subgroup of V 0; then K = −K. Conversely, suppose

K = −K, so

K = −K E1−K⊆K−−−−−−→ K − E1 ⊆ K
K−F⊆K & K=E1∪F−−−−−−−−−−−−−−→ K −K ⊆ K,

i.e., K is a subgroup of V 0.

To complete the proof of this step, we need to show that K = −K if and only

if E1 \ −E1 ⊆ F . First assume K = −K. Since −E1 ⊆ −K = K = E1 ∪ F and

F = −F , if x ∈ E1 \−E1, then −x ∈ K \E1, so −x ∈ F ; i.e., E1 \(E1∩−E1) ⊆ F .

Conversely, suppose E1 \ (E1 ∩ −E1) ⊆ F ; then as F = −F , we have

−K = −E1 ∪ −F ⊆ (E1 ∩ −E1) ∪ −F ⊆ E1 ∪ −F = E1 ∪ F = K

as we desired.

Step 2. Let σ ∈ E1 ⊆ K and set E := E1 − σ ⊆ E1 −K
Step 1(a)

⊆ K. Then

(a) 0 ∈ F ∩ E, 2E − E ⊆ E, 2F − F ⊆ F .

(b) Set ϵ := ζ + σ
2 and L := K − σ

2 ; then

R× = (±2ϵ+ E) ∪ (±2η + F ) ∪ (±ϵ± η + L).

(c) −L = L = (E + σ
2 ) ∪ (F − σ

2 ).

(d) E ∪ F ⊆ (E − E) ∪ (F − F ) ⊆ R0 ⊆ K −K and V 0 = spanF(R
0 ∪ {σ}).

(e) Suppose σ ̸∈ spanFR
0. Then for α, β ∈ Rns with (α, β) ̸= 0, one and only one

of α + β and α − β is a root; in particular, we get the last assertion of the

theorem.

Reason: (a) Since 2η ∈ R and σ ∈ E1, we have 0 ∈ E ∩ F . Using Step 1(a), we

have

E1 − 2E1 ⊆ −E1 and F − 2F ⊆ F,

so

E − 2E = E1 − σ − 2(E1 − σ) = E1 − 2E1 + σ ⊆ −E1 + σ = −E.

Since 0 ∈ E ∩ F , these imply that E = −E and F = −F and consequently

2E − E ⊆ E = −E and 2F − F ⊆ F = −F.

(b) We first show that K − σ = −K. In fact, we have, using Step 1(a), that

K − σ ⊆ K − E1 ⊆ −K.
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Also using (3.3), if τ ∈ −K, we have −ζ + η + τ ∈ R and as σ ∈ E1, we have

2ζ + σ ∈ R. But (−ζ + η + τ, 2ζ + σ) ̸= 0 and (−ζ + η + τ)− (2ζ + σ) ̸∈ R, so we

get from (S5) that ζ + η + σ + τ ∈ R, which in turn implies that σ + τ ∈ K. In

other words, τ ∈ K − σ; that is

−K ⊆ K − σ.

Therefore, we have

L = K − σ

2
= K − σ +

σ

2
= −K +

σ

2
= −

(
K − σ

2

)
= −L.

Use (3.3) and recall that ϵ = ζ + σ
2 to get

R× =± (2ζ + E1) ∪ (±2η + F ) ∪ ±(ζ ± η +K)

=±
(
2
(
ζ +

σ

2

)
− σ + E1

)
∪ (±2η + F ) ∪ ±

(
ζ ± η +

σ

2
− σ

2
+K

)
=± (2ϵ+ E) ∪ (±2η + F ) ∪ ±(ϵ± η + L).

But we have already seen that E = −E and L = −L, so we have

R× = (±2ϵ+ E) ∪ (±2η + F ) ∪ (±ϵ± η + L).

(c) We know from Step 1(b) that K = E1 ∪ F . Therefore, we have

L = K − σ

2
=

(
E1 −

σ

2

)
∪
(
F − σ

2

)
=

(
E + σ − σ

2

)
∪
(
F − σ

2

)
=

(
E +

σ

2

)
∪
(
F − σ

2

)
.

(d) Assume x, y ∈ E, since by part (b), 2ϵ + x, 2ϵ + y ∈ R, the root string

property implies that x−y ∈ R0. Similarly, F −F ⊆ R0. So as 0 ∈ E∩F , we have

(3.5) E ∪ F ⊆ (E − E) ∪ (F − F ) ⊆ R0.

Also as R is tame, we have R0 ⊆ R× −R×. So we get

R0 ⊆ (E − E) ∪ (F − F ) ∪ (K −K) ⊆ K −K.

For the last assertion of (d), suppose that v ∈ V 0 ⊆ V = spanFR. Since

spanFR ⊆ spanF(R
× ∪ (R× −R×)), (3.3) implies that

v ∈ spanF(E1 ∪ F ∪K)
Step 1(b)

= spanF(E1 ∪ F )
E=E1−σ

= spanF(E ∪ F ∪ {σ}).

Therefore, we have

V 0 ⊆ spanF(E ∪ F ∪ {σ}) ⊆ V 0.
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So

V 0 = spanF(E ∪ F ∪ {σ})
(3.5)

⊆ spanF(R
0 ∪ {σ}) ⊆ V 0

as we desired.

(e) Let σ ̸∈ spanFR
0 and α, β ∈ Rns with (α, β) ̸= 0. Then by (S5), either

α+β ∈ R or α−β ∈ R. To the contrary, assume both α+β and α−β are elements of

R. Using parts (b) and (c), without loss of generality, we assume α = ϵ+η+τ+r σ2
and β = ϵ− η + τ ′ + sσ2 , where τ, τ

′ ∈ E ∪ F and r, s ∈ {±1}. Therefore,

α+ β = 2ϵ+ (τ + τ ′) + (r + s)
σ

2
, α− β = 2η + (τ − τ ′) + (r − s)

σ

2
∈ R.

So by (3.5), (τ + τ ′)+ (r+ s)σ2 ∈ E ⊆ R0 and (τ − τ ′)+ (r− s)σ2 ∈ F ⊆ R0. Since

τ + τ ′, τ − τ ′ ∈ spanFR
0, it follows that σ ∈ spanFR

0, a contradiction.

Step 3. If E1 \ (E1 ∩ −E1) ⊆ F , then R has an expression as in Example 3.1.

Reason: If E1\(E1∩−E1) ⊆ F , then by Step 1(b), K is a group. Moreover, picking

σ ∈ E1 ⊆ K, by Step 2(d),

(E1 − E1) ∪ (F − F ) = ((E1 − σ)− (E1 − σ)) ∪ (F − F ) ⊆ R0 = −R0 ⊆ K

and so again using Step 2(d), together with the fact that σ ∈ E1 ⊆ K, we get

V 0 = spanF(R
0 ∪ {σ}) ⊆ spanFK ⊆ V 0.

Also by (3.3), we have

R× = ±(2ζ + E1) ∪ (±2η + F ) ∪ (±ζ ± η +K).

These together with Step 1 and (3.4) give that R has an expression as in Exam-

ple 3.1.

Step 4. If E1 \ (E1 ∩ −E1) ̸⊆ F , then R has an expression as in Example 3.2.

Reason: Fix σ ∈ E1 \ (−E1 ∪ F ) and set E := E1 − σ. For

ϵ := ζ +
σ

2
and δ := η,

Step 2 implies that

(3.6) E = −E ⊆ K ∩ −K and R× = (±2ϵ+ E) ∪ (±2δ + F ) ∪ (±ϵ± δ + L),

where L := K − σ
2 = −L. We complete our argument in this step through the

following stages:
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Stage 1. 2E ⊆ F and 2F ⊆ E: Suppose that x ∈ E = −E ⊆ −K ∩K. Then

α := ϵ+ δ + x+
σ

2
∈ ϵ+ δ −K +

σ

2
= ϵ+ δ + L ⊆ R,

β := ϵ− δ − x+
σ

2
∈ ϵ− δ −K +

σ

2
= ϵ− δ + L ⊆ R.

Since (α, β) ̸= 0, by (S5), we have either α+β = 2ϵ+σ ∈ R or α−β = 2δ+2x ∈ R.

If 2ϵ+ σ ∈ R, we get σ ∈ E = E1 − σ which in turn implies that 2σ ∈ E1. So

0 = 2σ − 2σ ∈ 2E1 − E1 ⊆ E1.

Therefore, −E1 = 0− E1 ⊆ 2E1 − E1 ⊆ E1, which implies that σ ∈ E1 = −E1, a

contradiction. So α− β = 2δ + 2x ∈ R, that is, 2x ∈ F by (3.6) as we expected.

Next assume y ∈ F = −F ⊆ K ∩ −K. Then as above α := ϵ + δ + y − σ
2 ,

β := −ϵ+δ−y− σ
2 ∈ R with (α, β) ̸= 0, which in turn implies that either α+β ∈ R

or α − β ∈ R. If α + β = 2δ − σ ∈ R, we get σ ∈ F , which is a contradiction. So

α− β = 2ϵ+ 2y ∈ R, which in turn implies that 2y ∈ E; see (3.6). So 2F ⊆ E.

Stage 2. E is a subgroup of V 0: To the contrary, assume there are x, y ∈
E = −E ⊆ K ∩ −K such that x− y ̸∈ E. Since

α := ϵ+ δ + x+
σ

2︸ ︷︷ ︸
∈−K+σ

2 =L

, β := −ϵ+ δ + y +
σ

2︸ ︷︷ ︸
∈−K+σ

2 =L

(3.6)
∈ R

and (α, β) ̸= 0, (S5) implies that either α− β ∈ R or α+ β ∈ R. Since x− y ̸∈ E,

we have α − β = 2ϵ + (x − y) ̸∈ R, so α + β = 2δ + (x + y) + σ ∈ R. Therefore,

(x+ y) + σ ∈ F and so by Stage 1, 2x+ 2y + 2σ ∈ E. This implies that

2σ = (2x+ 2y + 2σ)− 2x− 2y ∈ E − 2E − 2E
Step 2(a)

⊆ E.

But this implies that −2σ ∈ −E = E = E1 − σ, that is, −σ ∈ E1, a contradiction

as σ ∈ E1 \ (−E1 ∪ F ).

Stage 3. F is a subgroup of V 0: To the contrary, assume there are x, y ∈ F

with x − y ̸∈ F . Using the same argument as in Stage 2, for α := ϵ + δ + x − σ
2 ,

β := ϵ− δ + y − σ
2 ∈ R as x− y ̸∈ F , we have α+ β = 2ϵ+ (x+ y)− σ ∈ R. This

implies that (x+ y)− σ ∈ E and so by Stage 1, 2x+ 2y − 2σ ∈ F . Thus, we have

−2σ = (2x+ 2y − 2σ)− 2x− 2y ∈ F − 2F − 2F ⊆ F = −F.

Therefore, Step 1 gives

−σ = σ − 2σ ∈ E1 − F ⊆ K − F ⊆ K = E1 ∪ F.

So either −σ ∈ F or −σ ∈ E1, i.e., either σ ∈ F or −σ ∈ E1, which both result in

a contradiction as σ ∈ E1 \ (−E1 ∪ F ).
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Stage 4. E = F : We first show that F ⊆ E. To the contrary, assume there

is y ∈ F \ E and fix x ∈ E ⊆ K ∩ −K. Then since F ⊆ K and L = −L = K − σ
2

(see Steps 1, 2), we have

α := ϵ+ δ + y − σ

2︸ ︷︷ ︸
∈K−σ

2 =L

, β := ϵ− δ + x+
σ

2︸ ︷︷ ︸
∈−K+σ

2 =L

∈ R.

But (α, β) ̸= 0, so by (S5), either α+β ∈ R or α−β ∈ R. If 2ϵ+(x+y) = α+β ∈ R,

we have x+y ∈ E, which together with Stage 2 implies that y ∈ E, a contradiction.

Also, if 2δ + (y − x) − σ = α − β ∈ R, we have y − x − σ ∈ F = −F . Therefore,
as F is a group and y ∈ F , we have x+ σ ∈ F and so we get, using Stage 1, that

2x+2σ ∈ E, which implies that 2σ ∈ E as E is a group. But we have already seen

in Stage 2 that 2σ ∈ E implies that σ ∈ −E1, a contradiction.

We next show that E ⊆ F . To the contrary, assume there is y ∈ E \ F and

fix x ∈ F . Then as above, since

α := ϵ+ δ + y +
σ

2︸ ︷︷ ︸
∈−K+σ

2 =L

, β := −ϵ+ δ + x− σ

2︸ ︷︷ ︸
∈K−σ

2 =L

∈ R

and (α, β) ̸= 0, we have either α+β ∈ R or α−β ∈ R. If 2δ+(y+x) = α+β ∈ R,

we have y + x ∈ F . Since F is a group, this implies that y ∈ F , a contradiction.

Also, if 2ϵ + (y − x) + σ = α − β ∈ R, we get y − x + σ ∈ E. Therefore, we have

−x + σ ∈ E and so by Stage 1, we have −2x + 2σ ∈ F . But F is a group, so we

get −2σ ∈ F . This gives a contradiction as we saw in Stage 3.

Stage 5. R has the expression of Example 3.2: By (3.6), Stage 4 and Step 2(c),

we have

R = R0 ∪ (Ṙ×
re + E) ∪

(
Ṙ×

ns + E ± σ

2

)
.

Since 2ϵ + E ⊆ R (in particular, 2ϵ ∈ R), the root string property implies that

E ⊆ R0; also as R is tame and E is a group, we get

E ⊆ R0 = −R0 = R0∩(R×−R×) ⊆ (E−E)∪
((
E±σ

2

)
−
(
E±σ

2

))
⊆ E∪(E±σ).

Furthermore, we know from Step 2(d) that spanF(R
0 ∪ {σ}) = V 0. So R has the

expression as in Example 3.2. This completes the proof.

§4. Type C(I, J) (|I| ≥ 1, |J | ≥ 2)

From [7, Thm. 2.2], we know a description of tame irreducible extended affine

root supersystems of type C(J, I) ≃ C(I, J) when |J | > 2 and here we want

to find a description for tame irreducible extended affine root supersystems of
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types C(1, 2) ≃ C(2, 1) and C(2, 2). As arguments giving descriptions of types

C(2, 2) and C(1, 2) ≃ C(2, 1) are similar and also work for the general type C(I, J)

(|I| ≥ 1, |J | ≥ 2), we give a description of the general case and, moreover, we

determine the isomorphic classes.

Convention 4.1. Throughout this section, we suppose I and J are index sets

with |I| ≥ 1 and |J | ≥ 2. We always assume 1 ∈ I and 1, 2 ∈ J . Moreover, if

|I| ≥ 2, we assume 2 is also an element of I.

Suppose that (U̇ , (·, ·), Ṙ) is a locally finite root supersystem of type C(I, J).

Without loss of generality, we assume Ṙ has the expression as in (2.3), that is,

Ṙ =
{
±ϵi ± ϵj ,±δp ± δq,±ϵi ± δp | i, j ∈ I, p, q ∈ J

}
with (ϵi, δp) = 0, (ϵi, ϵj) = δi,j , (δp, δq) = −δp,q (i, j ∈ I, p, q ∈ J) and Ṙre = Ṙ1 ∪
Ṙ2, where

Ṙ1 :=
{
±ϵi ± ϵj | i, j ∈ I

}
and Ṙ2 :=

{
±δp ± δq | p, q ∈ J

}
.

Next assume U is a vector space. Let L1, L2 and F be subsets of U satisfying

(‡)
0 ∈ L1, Li − 2Li ⊆ Li, Li + F ⊆ F (i = 1, 2),

L1 + 2F ⊆ L1 (if |I| ≥ 2), L2 + 2F ⊆ L2 and F = L1 ∪ L2.

Extend (·, ·) to a form on U̇ ⊕U such that U is the radical of this new form. Recall

(2.4) and set

R = Ṙ(F,L1, L2)

:= F ∪ (((Ṙre)sh ∪ Ṙns) + F ) ∪ (Ṙ1
lg + L1) ∪ (Ṙ2

lg + L2) if |I| > 1
(4.1)

and

R = Ṙ(F,L1, L2)

:= F ∪ ((Ṙ2
sh ∪ Ṙns) + F ) ∪ (Ṙ1

sh + L1) ∪ (Ṙ2
lg + L2) if |I| = 1.

(4.2)

Then using Remark 2.2, it is readily seen that R is a tame irreducible extended

affine root supersystem of type C(I, J).

Theorem 5. Suppose that (V, (·, ·), R) is a tame irreducible extended affine root

supersystem of type C(I, J). Then R has an expression as Ṙ(F,L1, L2); see (4.1)

and (4.2).

Proof. Assume (V, (·, ·), R) is a tame irreducible extended affine root supersystem

of type C(I, J). Keeping the same notation as in the text and recalling (2.5) and
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(2.6), we may assume

Π =
{
2ϵ1, ϵi − ϵ1, δp − ϵ1 | 1 ̸= i ∈ I, p ∈ J

}
and

R =
⋃
α̇∈Ṙ

(α̇+ Sα̇)

for some nonempty subsets Sα̇ of V 0.

Step 1. Recall that Ṙ1 = {±ϵi ± ϵj | i, j ∈ I}. For α̇, β̇ ∈ (Ṙ1)× with (α̇, α̇) =

(β̇, β̇), we have 0 ∈ Sα̇ = Sβ̇ : We know that Ṙ1 is an irreducible locally finite root

system of type CI and B := {2ϵ1, ϵi−ϵ1 | 1 ̸= i ∈ I} is a reflectable base of R in the

sense that (Ṙ1)× = WBB in which WB is the group generated by the reflections

rα (α ∈ B). Since B ⊆ Π ⊆ R ∩ Ṙ and (Ṙ1)× =WBB, Fact 2 implies that 0 ∈ Sα̇

for all α̇ ∈ (Ṙ1)×. Since (Ṙ1)× = WBB, for α̇, β̇ ∈ (Ṙ1)× with (α̇, α̇) = (β̇, β̇),

there is w ∈WB with w(α̇) = β̇, so again using Fact 2, we get Sα̇ = Sβ̇ .

Step 2. For p ̸= q ∈ J , we have 0 ∈ S±δp±δq : Using Fact 2, we get

(4.3) Sϵ1−δp = Sr2ϵ1 (ϵ1−δp) = S−ϵ1−δp .

Set α̇ := −ϵ1 − δp and β̇ := ϵ1 − δq. Using Facts 3, 4, we have S−ϵ1−δp + Sϵ1−δq ⊆
S−δp−δq . But ϵ1 − δp, ϵ1 − δq ∈ Π ⊆ R ∩ Ṙ which in turn, together with (4.3),

implies that

(4.4) 0 ∈ Sϵ1−δp ∩ Sϵ1−δq = S−ϵ1−δp ∩ Sϵ1−δq .

Then we get

0 ∈ S−ϵ1−δp + Sϵ1−δq ⊆ S−δp−δq .

This, together with Fact 1 and the fact that r−δp−δq (ϵ1 − δp) = ϵ1 + δq, implies

that Sϵ1+δq = Sϵ1−δp . So 0 ∈ Sϵ1+δq by (4.4). Changing the roles of p and q, we

get 0 ∈ Sϵ1+δp ; in fact, we have using (4.4) that

(4.5) 0 ∈ Sϵ1±δp ∩ Sϵ1±δq .

Since for t1, t2 ∈ {1,−1}, (ϵ1 + t1δp) + (ϵ1 + t2δq) ̸∈ Ṙ, we get using Fact 3 that

Sϵ1+t1δp − Sϵ1+t2δq ⊆ St1δp−t2δq ; in particular, (4.5) implies that 0 ∈ S±δp±δq .

Step 3. For i ∈ I and p ∈ J , we have

0 ∈ F := Sδ1−ϵ1 = S±ϵi±δp :

We first note that δ1 − ϵ1 ∈ Π ⊆ Ṙ ∩R, so

0 ∈ Sδ1−ϵ1 = F.
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Next suppose p ̸= 1; since rδp±δ1(ϵi + δp) = ϵi ∓ δ1, we get Sϵi+δp = Sϵi∓δ1 by

Fact 2 and Step 2; i.e.,

Sϵi+δp = Sϵi+δ1 = Sϵi−δ1 .

So Fact 2 implies that

S−ϵi+δ1 = Sr2ϵi (ϵi+δ1) = Sϵi+δ1 = Sϵi−δ1 = Sr2ϵi (ϵi−δ1) = S−ϵi−δ1

and

S−ϵi+δp = Sr2ϵi (ϵi+δp) = Sϵi+δp = Sϵi−δ1 =Srδp−δ1
(ϵi−δ1) = Sϵi−δp

=Sr2ϵi (ϵi−δp) = S−ϵi−δp .

This completes the proof.

Step 4. Recall F from Step 3. We have F − F ⊆ F and for i ̸= j ∈ I and

p ̸= q ∈ J ,

F = S±ϵi±ϵj = S±δp±δq :

Suppose t, t1, t2 ∈ {±1} and set α̇ := tϵi+ t1ϵj and β̇ := tϵi+ t2δp. Since (α̇, β̇) ̸= 0

and α̇+ β̇ ̸∈ Ṙ, Fact 3 implies that

Stϵi+t1ϵj − F = Stϵi+t1ϵj − Stϵi+t2δp ⊆ St1ϵj−t2δp = F.

Since 0 ∈ F by Step 3, this means that

S±ϵi±ϵj ⊆ F.

One also knows that (ϵi + δp) + (ϵi + δp) ̸∈ R, so again using Fact 3, we have

F − F = Sϵi+δp − Sϵi+δp ⊆ Sϵi−ϵj ⊆ F ;

but 0 ∈ F , so these, all together with Step 1, imply that F − F ⊆ F = Sϵi−ϵj =

S±ϵi±ϵj . The same argument implies that F = S±δp±δq .

Step 5. For i ∈ I and p ∈ J , we have

L1 := S2ϵ1 = S±2ϵi and L2 := S2δ1 = S±2δp :

It follows from Fact 2, Steps 1, 4 and the fact that for p ̸= 1,

rδ1∓δp(2δ1) = ±2δp and rδ2+δ1(2δ2) = −2δ1.

Step 6. We have 0 ∈ L1 and Li − 2Li ⊆ Li for i = 1, 2; in particular, Li = −Li:

From Step 1, we see 0 ∈ L1. For the last assertion, suppose α̇ = β̇ := 2ϵ1. Then

Fact 1 implies that L1 − 2L1 ⊆ L1. Similarly, we get L2 − 2L2 ⊆ L2.
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Step 7. We have L2 + 2F ⊆ L2 and if |I| ≥ 2, L1 + 2F ⊆ L1: Set β̇ = 2δ1 and

α̇ := δ1 + δ2 and use Fact 1 to get

S2δ1 − 2Sδ1+δ2 = Sβ̇ − 2Sα̇ ⊆ S−2δ2 .

By Step 4 and Fact 4, we have Sα̇ = F = −F and by Step 5, we have L2 = S2δ1 =

S−2δ2 , so we get L2 + 2F ⊆ L2. If |I| ≥ 2, setting β̇ := 2ϵ1 and α̇ := ϵ1 + ϵ2 and

using the same argument as above, we get L1 + 2F ⊆ L1 as we desired.

Step 8. Li +F ⊆ F (i = 1, 2) and F = L1 ∪L2: Contemplating Step 3 and using

Fact 1 by taking α̇ := 2δ1 and β̇ := ϵ1 − δ1, we have F + L1 ⊆ F . Similarly, we

have F + L2 ⊆ F ; in particular

Li ⊆ F (i = 1, 2)

as 0 ∈ F . For the last assertion, suppose σ ∈ F . We have α := ϵ1 + δ1 + σ,

β := ϵ1 − δ1 ∈ R; see Step 3. Since (α, β) ̸= 0, by (S5) we have either α+β ∈ R or

α− β ∈ R. This implies that either σ ∈ S2ϵ1 or σ ∈ S2δ1 . Therefore, F ⊆ L1 ∪ L2

and so we are done.

Summarizing our result, there are an abelian group F ⊆ V 0 and subspaces

L1, L2 ⊆ F with

0 ∈ L1, Li − 2Li ⊆ Li, Li + F ⊆ F (i = 1, 2),

F = L1 ∪ L2, L1 + 2F ⊆ L1 if |I| ≥ 2 and L2 + 2F ⊆ L2

such that

R = R0 ∪
(
((Ṙre)sh ∪ Ṙns) + F

)
∪ (Ṙ1

lg + L1) ∪ (Ṙ2
lg + L2)

if |I| > 1 and

R = R0 ∪ ((Ṙ2
sh ∪ Ṙns) + F ) ∪ (Ṙ1

sh + L1) ∪ (Ṙ2
lg + L2)

if |I| = 1, where

Ṙ1 =
{
±ϵi ± ϵj | i, j ∈ I

}
and Ṙ2 =

{
±δp ± δq | p, q ∈ J

}
.

Since R is tame, we have R0 ⊆ R× − R×, so we get R0 ⊆ F − F ⊆ F . On

the other hand, for α̇ := δ1 + δ2 and σ ∈ F , we have α̇+ σ, α̇ ∈ R and so the root

string property implies that σ ∈ R; i.e., F ⊆ R0. Therefore, we have R0 = F . So

R = Ṙ(F,L1, L2).

This completes the proof.
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Theorem 6. Assume U and V are vector spaces and F,L1, L2 ⊆ U , as well

as F ′, L′
1, L

′
2 ⊆ V , satisfy the same conditions as in (‡). Then Ṙ(F,L1, L2) and

Ṙ(F ′, L′
1, L

′
2) are isomorphic extended affine root supersystems in U̇⊕U and U̇⊕V

respectively if and only if there are τ1, τ2 ∈ F ′ with 1
2 (τ1 + τ2) ∈ F ′ and a linear

isomorphism ψ : U −→ V such that if |I| ≠ |J |, then

ψ(F ) = F ′ and ψ(Li) = L′
i − τi (i = 1, 2)

and if |I| = |J |, then

ψ(F ) = F ′ and ψ(Li) = L′
j − τj ({i, j} = {1, 2} or 1 ≤ i = j ≤ 2).

Proof. Suppose that Ṙ(F,L1, L2) and Ṙ(F ′, L′
1, L

′
2) are isomorphic. We denote

corresponding bilinear forms on the underlying vector spaces respectively by (·, ·)
and (·, ·)′. Then there are a nonzero scalar r and a linear isomorphism φ : U̇⊕U −→
U̇ ⊕ V such that

φ(R) = R′ and (u, v) = r(φ(u), φ(v))′ (u, v ∈ U̇ ⊕ U);

in particular, φ(U) = V (equivalently, φ−1(V ) = U), so there are linear maps

(4.6) ζ : U̇ −→ U̇ , η : U̇ −→ V and ψ : U −→ V

such that ζ and ψ are linear isomorphisms and

φ(u̇+ σ) = ζ(u̇) + η(u̇) + ψ(σ) (u̇ ∈ U̇ , σ ∈ U).

In fact, ζ defines an isomorphism from Ṙ to Ṙ. Since for p, q ∈ J with p ̸= q,

δp − δq ∈ R ∩ Ṙ, we have

−2 = (δp − δq, δp − δq) = r(ζ(δp − δq), ζ(δp − δq))
′,

we get either r = 1 or r = −1. In the former case,

ζ({±ϵi | i ∈ I}) = {±ϵi | i ∈ I} and ζ({±δp | p ∈ J}) = {±δp | p ∈ J},

and in the latter case,

ζ({±ϵi | i ∈ I}) = {±δp | p ∈ J} and ζ({±δp | p ∈ J}) = {±ϵi | i ∈ I};

in particular, in the latter case,

|I| = |J |.
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Case 1. r = 1: In this case,

(4.7)

φ({±δp ± δq | p ̸= q ∈ J}+ F ) = {±δp ± δq | p ̸= q ∈ J}+ F ′,

φ({±ϵi ± δp | i ∈ I, p ∈ J}+ F ) = {±ϵi ± δq | i ∈ I, p ∈ J}+ F ′,

φ({±2ϵi | i ∈ I}+ L1) = {±2ϵi | i ∈ I}+ L′
1,

φ({±2δp | p ∈ J}+ L2) = {±2δp | p ∈ J}+ L′
2.

For γ := η(δ1 − δ2), we have ζ(δ1 − δ2)+ γ = φ(δ1 − δ2), so we get using (4.7) that

γ ∈ F ′ and

ζ(δ1 − δ2) + F ′ = φ(δ1 − δ2 + F ) = ζ(δ1 − δ2) + γ + ψ(F ).

This implies that

(4.8) ψ(F ) = F ′ − γ = F ′

as F ′ is a group. Also, setting

τ1 := η(2ϵ1) and τ2 := η(2δ1),

we have

φ(2ϵ1+L1) = ζ(2ϵ1)+η(2ϵ1)+ψ(L1) and φ(2δ1+L2) = ζ(2δ1)+η(2δ1)+ψ(L2).

This together with (4.7) implies that

ψ(Li) = L′
i − τi (i = 1, 2).

We know that

L′
1 ∪ L′

2 = F ′ (4.8)
= ψ(F ) = ψ(L1 ∪ L2) = (L′

1 − τ1) ∪ (L′
2 − τ2).

But F ′ is a group, so this implies that

τ1, τ2 ∈ F ′.

Again using (4.7), we have

ζ(ϵ1 + δ1) + F ′ = φ(ϵ1 + δ1 + F ) = ζ(ϵ1 + δ1) + η(ϵ1 + δ1) + ψ(F )

(4.8)
= ζ(ϵ1 + δ1) +

1

2
(τ1 + τ2) + F ′,

so we get
1

2
(τ1 + τ2) ∈ F ′.
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Case 2. r = −1: In this case, |I| = |J | and

(4.9)

φ({±δp ± δq | p ̸= q ∈ J}+ F ) = {±ϵi ± ϵj | i, j ∈ I, i ̸= j}+ F ′,

φ({±ϵi ± δp | i ∈ I, p ∈ J}+ F ) = {±ϵi ± δp | i ∈ I, p ∈ J}+ F ′,

φ({±2ϵi | i ∈ I}+ L1) = {±2δp | p ∈ J}+ L′
2,

φ({±2δp | p ∈ J}+ L2) = {±2ϵi | i ∈ I}+ L′
1.

Recall (4.6) and set

τ2 := η(2ϵ1) and τ1 := η(2δ1);

then we have

φ(2ϵ1 + L1) = ζ(2ϵ1) + τ2 + ψ(L1) and φ(2δ1 + L1) = ζ(2δ1) + τ1 + ψ(L2).

This together with (4.9) implies that

ψ(Li) = L′
j − τj ({i, j} = {1, 2}).

Also as in the previous case, we have

ψ(F ) = F ′ and τ1, τ2 ∈ F ′ with
1

2
(τ1 + τ2) ∈ F ′.

Conversely, suppose that there is a linear isomorphism ψ : U −→ V , as well

as τ1, τ2 ∈ F ′ with 1
2 (τ1 + τ2) ∈ F ′, such that

ψ(F ) = F ′ and ψ(Li) = L′
i − τi (i = 1, 2).

Define

φ : U̇ ⊕ U −→ U̇ ⊕ V,

2ϵi + σ −→ 2ϵi + τ1 + ψ(σ) (i ∈ I, σ ∈ U),

2δp + σ −→ 2δp + τ2 + ψ(σ) (p ∈ J, σ ∈ U).

Then as for i = 1, 2, L′
i ⊆ F ′ and L′

i − 2L′
i ⊆ L′

i, for j ∈ I and p ∈ J we have

φ(2ϵj + L1) = 2ϵj + τ1 + L′
1 − τ1 = 2ϵj + L′

1,

φ(−2ϵj + L1) = −2ϵj − τ1 + L′
1 − τ1 = −2ϵj + L′

1 − 2τ1 = −2ϵj + L′
1,

φ(2δp + L2) = 2δp + τ2 + L′
2 − τ2 = 2δp + L′

2,

φ(−2δp + L2) = −2δp − τ2 + L′
2 − τ2 = −2δp + L′

2 − 2τ2 = −2δp + L′
2.
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Also, as F ′ is a group, for t1, t2 ∈ {±1}, for i ̸= j ∈ I and p ̸= q ∈ J we have

φ(t1ϵi + t2δp + F ) = t1ϵi +
t1
2
τ1 + t2δp +

t2
2
τ2 + ψ(F )

= t1ϵi + t2δp + F ′ +
t1
2
(τ1 + τ2) +

( t2
2
− t1

2︸ ︷︷ ︸
∈{0,±1}

)
τ2

= t1ϵi + t2δp + F ′;

similarly, we get φ(t1ϵi + t2ϵj + F ) ∪ φ(t1δp + t2δq + F ) ⊆ R. Moreover,

(u, v) = (φ(u), φ(v))′ (u, v ∈ U̇ ⊕ U).

This means that φ is an isomorphism from Ṙ(F,L1, L2) to Ṙ(F
′, L′

1, L
′
2).

Finally, assume |I| = |J | and that there are a linear isomorphism ψ : U −→ V

and τ1, τ2 ∈ F ′ with 1
2 (τ1 + τ2) ∈ F ′ such that

ψ(F ) = F ′ and ψ(Li) = L′
j − τj ({i, j} = {1, 2}).

Without loss of generality, we assume I = J and define

φ : U̇ ⊕ U −→ U̇ ⊕ V

2ϵi + σ −→ 2δi + τ2 + ψ(σ) (i ∈ I, σ ∈ U),

2δi + σ −→ 2ϵi + τ1 + ψ(σ) (i ∈ I, σ ∈ U).

So as in the previous case, we get that φ is an isomorphism from Ṙ(F,L1, L2) to

Ṙ(F ′, L′
1, L

′
2).

§5. Type BC(1, 1)

Suppose that (U̇ , (·, ·), Ṙ) is an irreducible finite root supersystem of type BC(1, 1).

Without loss of generality, we assume (U̇ , (·, ·), Ṙ) is as in (2.3), i.e.,

Ṙ = {±ϵ,±δ,±2ϵ,±2δ,±ϵ± δ}

with

(ϵ, ϵ) = −(δ, δ) = 1 and (ϵ, δ) = 0.

Suppose that U is a vector space and S, F , E1 and E2 are subsets of U satisfying

(♯)

0 ∈ S, S − 2S ⊆ S, F + 2S ⊆ F,

Ei + S ⊆ S, Ei − 2Ei ⊆ Ei, Ei + 4S ⊆ Ei (i = 1, 2),

F is a subgroup of U and F = E1 ∪ E2.
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Note that we have

(5.1) S = −S and Ei = −Ei ⊆ S (i = 1, 2) (in particular F ⊆ S).

Set

Ṙ(S, F,E1, E2) := (S − S) ∪ ({±ϵ,±δ}+ S) ∪ ({±ϵ± δ}+ F )

∪ ({±2ϵ}+ E1) ∪ ({±2δ}+ E2),

and extend the form (·, ·) to U̇ ⊕ U such that U is the radical of this new form.

Then one can easily check that (U̇ ⊕ U, (·, ·), R) is a tame irreducible extended

affine root supersystem of type BC(1, 1) in U̇ ⊕ U .

Theorem 7. Each tame irreducible extended affine root supersystem of type

BC(1, 1) is of the form Ṙ(S, F,E1, E2).

Proof. Assume (V, (·, ·), R) is a tame irreducible extended affine root supersystem

of type BC(1, 1). As in (2.6), for Ṙ = {±ϵ,±δ,±2ϵ,±2δ,±ϵ±δ} and Π = {ϵ−δ, δ},
we have

R =
⋃
α̇∈Ṙ

(α̇+ Sα̇)

for some nonempty subsets Sα̇ of V 0. As Π ⊆ R, we have in particular that

(5.2) 0 ∈ Sϵ−δ ∩ Sδ.

Since (ϵ − δ) − δ ̸∈ Ṙ and (ϵ − δ) + ϵ ̸∈ Ṙ, for σ ∈ Sϵ−δ, τ ∈ Sδ and γ ∈ Sϵ

(equivalently, −γ ∈ −S−ϵ by Fact 4), we have

(ϵ− δ + σ)− (δ + τ) ̸∈ R and (ϵ− δ + σ) + (ϵ+ γ) ̸∈ R

and so by (S5),

ϵ+(σ+τ) = (ϵ−δ+σ)+(δ+τ) ∈ R and (−δ+σ−τ) = (ϵ−δ+σ)−(ϵ+γ) ∈ R.

This gives that

(5.3) Sϵ−δ + Sδ ⊆ Sϵ and Sϵ−δ + S−ϵ ⊆ S−δ;

in particular, we get using (5.2) that

0 ∈ Sδ ⊆ Sϵ and − Sϵ = S−ϵ ⊆ S−δ = −Sδ.

So we have

(5.4) 0 = Sδ = Sϵ.
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Therefore, Fact 2 implies that

F := Sϵ+δ = Srδ(ϵ−δ) = Sϵ−δ = Srϵ(ϵ−δ) = S−ϵ−δ = Srδ(−ϵ+δ) = S−ϵ+δ,

and

S−ϵ = Srϵ(ϵ) = Sϵ, S−δ = Srδ(δ) = Sδ,

S−2ϵ = Srϵ(2ϵ) = S2ϵ, S−2δ = Srδ(2δ) = S2δ.

So (5.2) and (5.4) imply that

(5.5) 0 ∈ F = S±ϵ±δ and 0 ∈ S := Sδ = S−δ = Sϵ = S−ϵ.

Set E1 := S2ϵ = S−2ϵ and E2 := S2δ = S−2δ. So (5.5) implies that

(5.6) R× = ({±ϵ,±δ}+ S) ∪ ({±ϵ± δ}+ F ) ∪ ({±2ϵ}+ E1) ∪ ({±2δ}+ E2).

Using Fact 1, we have

S − 2S ⊆ S, F + 2S ⊆ F, F + Ei ⊆ F (in particular, Ei ⊆ F ),(5.7)

S + Ei ⊆ S, Ei − 2Ei ⊆ Ei and Ei + 4S ⊆ Ei (i = 1, 2).

Moreover, for σ ∈ F , we have ϵ+ δ+ σ, ϵ− δ ∈ R, so by (S5), either 2ϵ+ σ ∈ R or

2δ + σ ∈ R. Thus, we get either σ ∈ E1 or σ ∈ E2, in other words, F = E1 ∪ E2.

In particular, as F + Ei ⊆ F and Ei = −Ei (i = 1, 2), we get that F is a group.

To complete the proof, we just need to show that R0 = S−S. Since R is tame,

we have R0 ⊆ R× − R×. By using (5.6), (5.7) and (5.1), we have R0 ⊆ S − S.

Also, since for σ, τ ∈ S, ϵ + σ, ϵ + τ ∈ R, the root string property implies that

σ − τ ∈ R0, that is, S − S ⊆ R0. So R0 = S − S. This completes the proof.

Proposition 8. Suppose that U and V are vector spaces and S, F , E1, E2 and S′,

F ′, E′
1, E

′
2 are subspaces of U and V respectively, satisfying the same conditions

as in (♯). Then Ṙ(S, F,E1, E2) is isomorphic to Ṙ(S′, F ′, E′
1, E

′
2) if and only if

there are σ ∈ S′, τ ∈ F ′ ∩ (S′ + S′) and a linear isomorphism ψ : U −→ V such

that one of the following occurs:

(i) ψ(S) = S′ + σ, ψ(F ) = F ′, ψ(E1) = E′
1 + 2σ, ψ(E2) = E′

2 + 2σ − 2τ ,

(ii) ψ(S) = S′ + σ, ψ(F ) = F ′, ψ(E1) = E′
2 + 2σ, ψ(E2) = E′

1 + 2σ − 2τ .

Proof. Denote the forms on U̇ ⊕ U and U̇ ⊕ V respectively by (·, ·) and (·, ·)′.
Suppose that the conditions of (i) are fulfilled and define

φ : U̇ ⊕ U −→ U̇ ⊕ V

ϵ 7→ ϵ− σ, δ 7→ δ − τ + σ, γ 7→ ψ(γ) (γ ∈ U).
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Then since S′ + F ′ = S′ − (E′
1 ∪ E′

2) ⊆ S′ and S′ − 2S′ ⊆ S′, we have

φ(±ϵ+ S) = ±(ϵ− σ) + S′ + σ = ±ϵ+ S′

and

φ(±δ + S) = ±(δ − τ + σ) + S′ + σ = ±δ + S′.

Also, as F ′ = E′
1 ∪ E′

2 ⊆ S′, F ′ + 2S′ ⊆ F ′ and E′
i + 4S′ ⊆ E′

i (i = 1, 2), for

t1, t2 ∈ {±1} we have

φ(t1ϵ+ t2δ + F ) = t1ϵ+ t2δ − t1σ + t2(−τ + σ) + F ′ = t1ϵ+ t2δ + F ′,

φ(±2ϵ+ E1) = ±(2ϵ− 2σ) + E′
1 + 2σ = ±2ϵ+ E′

1,

φ(±2δ + E2) = ±(2δ − 2τ + 2σ) + E′
2 + 2σ − 2τ = ±2δ + E′

2.

These together with the fact that (φ(u), φ(u′))′ = (u, u′) (u, u′ ∈ U̇ ⊕U) give that

φ is an isomorphism from Ṙ(S, F,E1, E2) to Ṙ(S
′, F ′, E′

1, E
′
2).

Next assume (ii) is fulfilled and define

φ : U̇ ⊕ U −→ U̇ ⊕ V,

ϵ 7→ δ − σ, δ 7→ ϵ− τ + σ, γ 7→ ψ(γ) (γ ∈ U).

A similar argument to above implies that φ is an isomorphism from Ṙ(S, F,E1, E2)

to Ṙ(S′, F ′, E′
1, E

′
2).

Conversely, suppose that Ṙ(S, F,E1, E2) is isomorphic to Ṙ(S′, F ′, E′
1, E

′
2).

So there are a nonzero scalar r and a linear isomorphism φ : U̇ ⊕ U −→ U̇ ⊕ V

such that

φ(R) = R′ and (φ(u), φ(u′))′ = r(u, u′) (u, u′ ∈ U̇ ⊕ U).

Therefore, there are linear transformations

ζ : U̇ −→ U̇ , η : U̇ −→ V and ψ : U −→ V

such that

φ(u̇+ γ) = ζ(u̇) + η(u̇) + ψ(γ) (u̇ ∈ U̇ , γ ∈ U).

Set

σ := −η(ϵ) ∈ S′ and τ := − η(ϵ)︸︷︷︸
∈S′

− η(δ)︸︷︷︸
∈S′

= −η(ϵ+ δ) ∈ F ′ ∩ (S′ + S′).

Then

ζ(ϵ) + η(ϵ) + ψ(S) = φ(ϵ+ S) ∈ {±ϵ,±δ}+ S′.

So

ψ(S) = S′ + σ.



Extended Affine Root Supersystems of Types C(I, J) and BC(1, 1) 121

We also have

ζ(ϵ+ δ) + η(ϵ+ δ) + ψ(F ) = φ(ϵ+ δ + F ) ∈ {±ϵ± δ}+ F ′.

Therefore, as F ′ is a group, we have

ψ(F ) = F ′ + τ = F ′.

Next we recall that for u, u′ ∈ U̇ ⊕ U , we have (φ(u), φ(u′))′ = r(u, u′). So it

follows that r = ±1. We first suppose r = 1; then

ζ(2ϵ) + η(2ϵ) + ψ(E1) = φ(2ϵ+ E1) ⊆ ±2ϵ+ E′
1.

So we get ψ(E1) = E′
1 + 2σ. We also have

ζ(2δ) + η(2δ) + ψ(E2) = φ(2δ + E2) ⊆ ±2δ + E′
2,

which gives ψ(E2) = E′
2 + 2τ − 2σ. These altogether imply that condition (i) is

satisfied. Next assume r = −1. Then

ζ(2ϵ) + η(2ϵ) + ψ(E1) = φ(2ϵ+ E1) ⊆ ±2δ + E′
2.

So we get ψ(E1) = E′
2 + 2σ. Moreover, we have

ζ(2δ) + η(2δ) + ψ(E2) = φ(2δ + E2) ⊆ ±2ϵ+ E′
1,

which in turn implies that ψ(E2) = E′
1 + 2τ − 2σ. This completes the proof.
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