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Affine Super Schur Duality
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by
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Abstract

Schur duality is an equivalence, for d ≤ n, between the category of finite-dimensional
representations over C of the symmetric group Sd on d letters, and the category of
finite-dimensional representations over C of GL(n,C) whose irreducible subquotients are
subquotients of E⊗d, E = Cn. The latter are called polynomial representations homoge-
neous of degree d. It is based on decomposing E⊗d as a C[Sd] × GL(n,C)-bimodule. It
was used by Schur to conclude the semisimplicity of the category of finite-dimensional
complex GL(n,C)-modules from the corresponding result for Sd that had been obtained
by Young. Here we extend this duality to the affine super case by constructing a functor
F : M 7→ M ⊗C[Sd] E

⊗d, E now being the super vector space Cm|n, from the category
of finite-dimensional C[Sd ⋉ Zd]-modules, or representations of the affine Weyl, or sym-
metric, group Sa

d = Sd ⋉ Zd, to the category of finite-dimensional representations of
the universal enveloping algebra of the affine Lie superalgebra U(ŝl(m|n)) that are E⊗d-
compatible, namely the subquotients of whose restriction to U(sl(m|n)) are constituents
of E⊗d. Both categories are not semisimple. When d < m+n the functor defines an equiv-
alence of categories. As an application we conclude that the irreducible finite-dimensional
E⊗d-compatible representations of the affine superalgebra ŝl(m|n) are tensor products of
evaluation representations at distinct points of C×.
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§1. Introduction

In the beginning the Schur duality [Sch01, Sch27], promoted by Weyl in his book

[W53] (see [FH91] and [E11] for modern expositions), was the study of the com-

muting actions of the symmetric group Sd and the complex general linear group

GL(n,C) on E⊗d, where E is the n-dimensional Euclidean complex space Cn. It
was extended by Drinfel’d [D85] and Jimbo [J86] to the context of the finite-

dimensional Iwahori–Hecke algebra Hd(q
2) and the quantum algebra Uq(sl(n)), on

using universal R-matrices, which solve the Yang–Baxter equation.

There were two extensions of this duality in the Hecke-quantum case: to the

infinite-dimensional affine quantum settings by Chari and Pressley [CP96] and

to the super situation by Moon [Mo03] and by Mitsuhashi [Mi06], who quantum

deformed the super Schur duality of (Sergeev [S85], of which they apparently were

not aware, nor of the work of each other; see also [CW12]; and of) Berele and

Regev [BR87].

We continued this chain of works in [F20] by completing the cube, dealing

with the general affine super quantum case, relating the commuting actions of the

affine Iwahori–Hecke algebra Ha
d (q

2), and of the affine quantum Lie superalgebra

Uq(ŝl(m|n,Π, p)) (Π is a root system, p: parity), using the presentation of the

former by Bernstein [F11], and the latter by Yamane [Y99], in terms of generators

and relations, acting on the dth tensor power of the superspace E = Cm|n. Thus

we constructed a functor and showed it is an equivalence of categories of Ha
d (q

2)-

and Uq(ŝl(m|n,Π, p))-modules of finite rank when d < m+ n.

However, the non-, or pre-quantum, case is interesting in its own right. We

study the affine extension of the original Schur duality in [F21], which relates the

representation theories of the group algebra C[Sad ], where Sad = Sd ⋉ Zd is the

affine symmetric group, and of the affine Lie algebra U(ŝl(n)), a duality of which

[CP96] is a quantum deformation.
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The case of affine super Schur duality, which relates the representation theo-

ries of the group algebra C[Sad ] and of the affine Lie superalgebra U(ŝl(m|n,Π, p)),
is studied here. In particular, we consider all root systems – a new phenomenon

that occurs only in the super case, as the Weyl group does not act transitively on

the set of the root data.

The work [F20] is a quantum deformation of the present work, except that

we dealt there only with the standard case. We show that the functor that we

construct is an equivalence of categories only under the assumption d < m+ n. Is

this a casualty of the method of proof? In the finite-dimensional super situation

considered in [S85], the functor is an equivalence in the generality d < (m+1)(n+

1). In the classical initial case of Schur, the equivalence is for d ≤ n, thus m = 0,

d < n + 1. It is extended to the affine case on the range d < n in [F21], where it

is also shown that the functor F does not extend as an equivalence when d = n.

As an application of the equivalence of categories we obtain a description of the

irreducible finite-dimensional representations of the affine superalgebra ŝl(m|n) in
terms of evaluation representations, namely that the irreducible E⊗d-compatible

finite-dimensional representations of the affine superalgebra ŝl(m|n) are tensor

products of evaluation representations at distinct points of C×. This is an extension

to the affine super case of a result of [F21] in the affine case.

The contents of this article are as follows. We first recall what superalgebras

with their even and odd parts, endomorphisms, superdimension, supertrace, super-

transpose, and their basic properties are. Then we consider the structure of root

systems, where there are even and odd roots in the super case, positive system and

fundamental system, and associated decompositions, Weyl group, and Chevalley

generators. Next we describe the Dynkin diagrams, where there are white, gray,

and black vertices in the super case. We are mainly interested in gl(m|n) and

sl(m|n), and describe all positive systems for this superalgebra. In contrast to the

semisimple Lie algebra, nonsuper, case, there are positive systems for the root sys-

tem that are not conjugate to each other under the action of the Weyl group. It is

possible to pass from one fundamental system to another by means of a sequence

of real and odd reflections. Then there is the theory of highest weight, and induced

modules for the universal enveloping algebra U(gl(m|n)).
To state Sergeev’s extension of the Schur duality to the context of the superal-

gebra gl(m|n), we recall what partitions λ ⊢ d, and (m|n)-hook-partitions and the

associated partitions λs, and associated simple g-modules of highest weight λs are.

We introduce the action ϕd of gl(m|n) on E⊗d as well as that, ψd, of Sd. The two

actions commute. The duality here, in the finite-dimensional super case, asserts

a decomposition of E⊗d, where E = Cm|n, as a U(gl(m|n)) ⊗ C[Sd]-module, as a

direct sum over λ in the set Pd(m|n) of (m|n)-hook partitions of d, of L(λs)⊗Sλ;
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here L(λs) is the simple gl(m|n)-module of highest weight λs, and Sλ is the Specht

module of Sd associated with the partition λ. It can be rephrased as follows:

If M is a right (Sd, ψd)-module, define S(M) = M ⊗ψd(C[Sd]) E⊗d on

objects, with the natural left (U(g), ϕd)-module structure obtained from

that on E⊗d, and S(f) = f ⊗ idE⊗d on morphisms. If d < (n+ 1)(m+ 1)

then every partition of d is an (m|n)-hook partition, and the functorM 7→
S(M) is an equivalence from the category of finite-dimensional C[Sd]-
modules to the category of finite-dimensional E⊗d-compatible U(gl(m|n))-
modules, namely those that are polynomial of degree d.

In particular, S takes Sλ to Sλ ⊗C[Sd] E⊗d = V λ since for any G-modules V , W

we have V ′ ⊗G W = HomG(V,W ), and Sλ is self-dual in characteristic 0 (only!;

see [Ja78, Thms. 4.12, 6.7, 8.15; pp. 16, 25, 33]), thus Sλ ⊗C[Sd] S
λ ≃ C.

By a finite-dimensional E⊗d-compatible U(g)-module, we mean here a g-mod-

ule, g = gl(m|n) or sl(m|n), all of whose subquotients are subquotients of the

semisimple module E⊗d. Below, we say that a U(ĝ)-module is E⊗d-compatible if its

restriction to U(g) is. By a g- or Lg-module we mean a module for their universal

enveloping algebras U(g) and U(Lg).
To extend this to the affine ŝl(m|n), we then introduce an affine Lie superal-

gebra as a loop algebra augmented with the central elements c and the derivation

element d. We then describe admissible and affine admissible Lie superalgebras, to

describe Yamane’s presentation of the affine Lie algebra ŝl(m|n,Π, p) associated

with a datum (E , (. , .),Π, p), in terms of generators and relations. There are inter-

esting affine Serre relations in the super case. We need to describe the fundamental

representation of ŝl(m|n) on the superspace E = Cm|n, to state the main result,

Theorem 10.1, which takes the following form. Put Sad = Z⋊Sd (superscript a for

“affine”).

Theorem 1.1. Fix integers d ≥ 0, m > n ≥ 1, m + n > 3. There exists a func-

tor F from the category RepC[Sad ] of finite-dimensional right C[Sad ]-modules, to

the category Rep(ŝl(m|n); d) of finite-dimensional E⊗d-compatible left Uσ(ŝl(m|n,
Π, p))-modules, defined as follows. Let M be a right Sad -module. Define F(M) to

be S(M) = M ⊗ψd(C[Sd]) E⊗d as a Uσ(sl(m|n))-module, thus Uσ(sl(m|n)) acts on

S(M) via ϕd. Let the remaining generators of ŝl(m|n,Π, p) act by

(ρd(e0))(mmm⊗ v) =
∑

1≤j≤d

mmmyj ⊗ ρ⊗d(Y
(d)
j,e )v, Y

(d)
j,e = (σp(α0))⊗(j−1) ⊗ e0 ⊗ I⊗(d−j),

(ρd(f0))(mmm⊗ v) =
∑

1≤j≤d

mmmy−1
j ⊗ ρ⊗d(Y

(d)
j,f )v, Y

(d)
j,f = (σp(α0))⊗(j−1) ⊗ f0 ⊗ I⊗(d−j),
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for all mmm ∈ M and v ∈ E⊗d. If d < m + n then the functor F : M 7→ F(M) is

an equivalence from the category RepC[Sad ] of finite-dimensional Sad -modules onto

the category Rep(ŝl(m|n); d) of finite-dimensional E⊗d-compatible Uσ(ŝl(m|n))-
modules.

We show that our functor is an equivalence only for d < m+ n. Perhaps this

assertion holds for d < (n+ 1)(m+ 1), as this is the condition in Theorem 6.2(4),

as in [S85]. But our method of proof, which adapts [CP96], shows the surjectivity

only for d < m+ n. In the nonsuper case n = 0, it is shown in [F21] that F is an

equivalence when d < m, but it is not an equivalence when d = m in the affine

case, although S is in the finite-dimensional case.

When d = 0 the category on the Sd-side is that of finite-dimensional complex

vector spaces, and the theorem asserts that there are no nontrivial extensions of

Lg-modules lifted from the trivial g-module C.
When d = 1, an irreducible representation of C[Sd ⋉Zd] = C[Z] = C[t, t−1] is

a C-linear homomorphism χ : C[t±1] → C determined by the value χ(t) ∈ C× of χ

at t, or at 1 ∈ Z. A finite-dimensional E-compatible irreducible representation of

Lg = L⊗ sl(n,C) (i.e., whose restriction to sl(m|n) is the standard representation

ρ on E = Cm|n) is then of the form χ ⊗ ρ, where χ : L → C is a C-linear algebra
homomorphism determined by the value χ(t) ∈ C× (see Corollary 17.3). On irre-

ducibles the correspondence defined by F is then χ 7→ χ ⊗ ρ. Both categories, of

finite-dimensional L-modules and of finite-dimensional E-compatible Lg-modules,

are not semisimple.

For the proof we check that the operators that appear in the theorem are

well defined. Then we check that the relations stated by Yamane, especially the

super Serre relations, are satisfied by our operators. Particularly technical is the

verification that the functor F is an equivalence of categories.

To show that the functor F – which we have seen is a well-defined functor

between the categories specified in the theorem – is an equivalence, one has to

show the following:

(a) Every finite-dimensional E⊗d-compatible U(ŝl(m|n,Π, p))-moduleW is isomor-

phic to F(M) =M ⊗C[Sd] E⊗d for some C[Sad ]-module M .

(b) F is bijective on sets of morphisms.

To prove (a), by the super Schur duality theorem we assume that W = S(M)

for some C[Sd]-module M . We then construct the action of the y±1
j on M from

the given action of ρd(e0), ρd(f0), ρd(h) on W .

As an application, we define induction M1×̃M2 of affine Weyl group mod-

ules from C[Sad1 ] ⊗ C[Sad2 ] to C[Sad1+d2 ], discuss commutation F(M1×̃M2) ≃
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F(M1) ⊗ F(M2) with the functor F , evaluation representations, implications to

universal C[Sad ]-modules, and then we deduce from Mackey theory that the irre-

ducible finite-dimensional E⊗d-compatible representations of the affine superalge-

bra ŝl(m|n) are tensor products of evaluation representations at distinct points of

C×.

It is natural to attempt to state the equivalence of categories in group-theoretic

terms, rather than in Lie algebra language. Although not touched upon in the

present notes, where we work only with affine superalgebras ŝl(m|n), it is tempting

to take the hint that the group algebra C[Sd ⋉ Zd] is C[Sd] ⋉ C[Zd] and C[Zd] is
the ring Γ(Gdm,O) of global sections of the torus Gdm = SpecC[Zd], and note that

a finite-dimensional C[Sd ⋉ Zd]-module M can be viewed as the module of global

sections Γ(M,O) of an Sd-equivariant quasi-coherent sheaf of modules M = π∗M

over Gdm = SpecC[Zd], pulled back from a point: π : Gdm → {∗}.
The role of the affine superalgebra ŝl(m|n) has to be replaced by the affine

super group SL(m|n,L), viewed as a functor A 7→ SL(m|n,A[t, t−1]) on the cate-

gory of superalgebras A over C. Suitably interpreted, the functor F may take the

(modified to be a limit of subsheaves with finite support) form

M = Γ(M,O) 7→
{
Γ((M⊗Gd

m
(E⊗d
A ⊗Gdm)),O)C[Sd]

}
A
.

Another approach would be to show that a finite-dimensional representa-

tion of the super loop algebra ŝl(m|n,C) integrates to a compatible family of

representations of the super loop group SL(m|n,A[t, t−1]) for all superalgebras

A over C. This would permit restating Theorem 1.1 as asserting that the func-

tor F is, for d < m + n, an equivalence of categories between the category of

finite-dimensional C[Sad ]-modules, and the category of compatible families of finite-

dimensional representations of SL(m|n,A[t, t−1]), all of whose subquotients as rep-

resentations of SL(m|n,A) (⊂ SL(m|n,A[t, t−1]) via A ↪→ A[t, t−1]) occur in E⊗d
A ,

where EA = Am|n, for A a superalgebra over C. As E⊗d
A is semisimple as an

SL(m|n,A)-module, “occur in” could be replaced by “are subrepresentations of”,

or “are subquotients of”.

§2. Superalgebras

We work over the field C of complex numbers. In the super world, the group Z/2 of

two elements, which we denote by 0 and 1, plays a pivotal role. We denote it by F2,

as Z/2 is too long and Z2 denotes the ring of 2-adic integers. A (vector) superspace

is a vector space over C with F2-gradation: V = V0⊕V1, where V0 is called the even

part, and V1 the odd part. Its dimension as a superspace, or its superdimension,

is dims V = dimV0|dimV1. As a vector space it is dimV = dimV0 + dimV1.
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For example, Cm|n denotes the superspace with even part Cm and odd part

Cn; m, n ∈ Z≥0 = set of nonnegative integers; dims Cm|n = m|n. We often denote

Cm|n by E.
A vector v ∈ V is homogeneous if it lies in V0 or in V1. It is then called even

or odd, and its parity is p(v) = i if v ∈ Vi.

A subspace of a superspace V = V0 ⊕ V1 is a superspace W = W0 ⊕ W1

contained in V compatibly, thus W0 ⊂ V0 and W1 ⊂ V1. Writing p(v) for v ∈ V

implies v is homogeneous. Formulae involving such elements are extended below

by linearity to all of V .

If V , W are superspaces, then the space Hom(V,W ) of linear transformations

from V to W is a superspace: T : V → W is even if T (Vi) ⊂ Wi (i ∈ F2) and odd

if T (Vi) ⊂Wi+1. Write End(V ) for Hom(V, V ).

The parity reversing functor Π on the category of superspaces takes V =

V0 ⊕ V1 to Π(V ) = Π(V )0 ⊕ Π(V )1, where Π(V )i = Vi+1, i ∈ F2. Then Π2 = I,

the identity in End(V ).

A superalgebra is a superspace A = A0 ⊕ A1 together with a bilinear multi-

plication satisfying AiAj ⊂ Ai+j (i, j ∈ F2). A module over a superalgebra A is

graded: M =M0⊕M1, with AiMj ⊂Mi+j . Also, subalgebras and ideals of super-

algebras are to be understood in the F2-graded sense. A superalgebra is simple if

it has no nontrivial ideals.

A homomorphism between A-modules M and N is a linear map f : M → N

with f(am) = af(m) for all a ∈ A, m ∈ M . Such f has parity p(f) if f(Mi) ⊂
Mi+p(f), i ∈ F2. Note that a homomorphism f : M → N of parity p(f) defines

by f+(x) = (−1)p(f)p(x)f(x) a linear map f+ : M → N of parity p(f) satisfying

f+(am) = (−1)p(a)p(f)af(m) for homogeneous a ∈ A, m ∈ M , and such an f+

defines f by the same formula.

A Lie superalgebra is a superalgebra g = g0 ⊕ g1 with a bilinear operation

[. , .] : g× g → g, called a bracket, with gi× gj → gi+j , thus p([x, y]) = p(x) + p(y),

satisfying, for all homogeneous x, y, z ∈ g,

skew supersymmetry : [x, y] = −(−1)p(x)p(y)[y, x],

super Jacobi identity : [x, [y, z]] = [[x, y], z] + (−1)p(x)p(y)[y, [x, z]].

A skew-supersymmetric (satisfying (x, y) = (−1)p(x)p(y)(y, x)) bilinear form

(. , .) : g×g → C on a Lie superalgebra g is called invariant if ([x, y], z) = (x, [y, z])

for all x, y, z ∈ g.

The even part g0 of a Lie superalgebra g = g0 ⊕ g1 is a Lie algebra. In

particular, if g1 = 0 then g = g0 is a Lie algebra. A purely odd Lie superalgebra g

(= g1, thus g0 = 0) is abelian: [g, g] = 0, or [x, y] = 0 for all x, y.
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A homomorphism of Lie superalgebras g, g′ is an even linear map f : g → g′

respecting the bracket, namely f([x, y]) = [f(x), f(y)] for all x, y ∈ g.

An associative superalgebra A = A0 ⊕ A1 is a Lie superalgebra with the

bracket [x, y] = xy− (−1)p(x)p(y)yx (for homogeneous x, y ∈ A, and [. , .] extended

by linearity): it is skew supersymmetric and satisfies the super Jacobi identity.

For example, if g is a Lie superalgebra, End(g) is an associative superalgebra,

hence a Lie superalgebra with the bracket as above. The adjoint representation

is the map ad: g → End(g) defined by (ad(x))(y) = [x, y] (x, y ∈ g). It is a

homomorphism of Lie superalgebras, by the super Jacobi identity. The action of

g on itself is called the adjoint action, making g into a g-module.

An endomorphism D of A of parity j (∈ F2), thus D ∈ End(A)j , where

A = A0 ⊕A1 is a superalgebra, is called a derivation (of parity j) if it satisfies for

all homogeneous x, y ∈ A,

D(xy) = D(x)y + (−1)jp(x)xD(y).

The space Der(A) = Der(A)0 ⊕ Der(A)1 is a subalgebra of the Lie superalgebra

(End(A), [. , .]).

When g is a Lie superalgebra, ad(g) ∈ Der(g) for all g ∈ g, by the super

Jacobi identity. These are called inner derivations; they form an ideal in Der(g).

The restriction ad|g0 : g0 → End(g1) of the adjoint map is a homomorphism

of Lie algebras, namely g1 is a g0-module under the adjoint action. Thus to a Lie

superalgebra g = g0 ⊕ g1 we associate a quadruple consisting of

(1) a Lie algebra g0;

(2) a g0-module g1 defined by the adjoint action;

(3) a g0-homomorphism S2(g1) → g0 defined by the Lie bracket;

(4) the identity obtained from the super Jacobi identity restricted to x, y, z ∈ g1.

Conversely, such a quadruple defines a Lie superalgebra structure on g0 ⊕ g1.

Let V = V0 ⊕ V1 be a superspace. The associative superalgebra End(V ) is

a Lie superalgebra with the supercommutator defined above, called the general

linear Lie superalgebra, denoted gl(V ). When V is E = Cm|n, so with the standard

basis, write gl(m|n) for gl(V ).

Choose ordered bases for V0 and V1, thus a homogeneous basis for V . Param-

etrize it by the set I(m|n) = {1, . . . ,m; 1, . . . , n} totally ordered by 1 < · · · <
m < 0 < 1 < · · · < n. The size (m + n) × (m + n) elementary matrices Ei,j =

(δ(i,j),(k,ℓ)) ∈ gl(m|n) (i, j ∈ I(m|n)) makes a basis of End(V ), and gl(V ) can

be realized as their span, thus (m + n) × (m + n) complex matrices of the form

g =
(
a b
c d

)
, where a is an m×m matrix and d is n×n. The even subalgebra gl(V )0
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consists of the g with b = 0 = c, and the odd gl(V )1 of the g with a = 0, d = 0.

Thus gl(V )0 ≃ gl(m) ⊕ gl(n), and gl(V )1 is self-dual as a gl(V )0-module, and is

isomorphic to (Cm⊗Cn∗)⊕ (Cm∗⊗Cn), where Cn∗ signifies the dual space of Cn.
Note that gl(V ) → gl(ΠV ), T 7→ ΠTΠ−1 is an isomorphism of Lie superalge-

bras, thus gl(m|n) ≃ gl(n|m).

Define the supertrace str(g) of g =
(
a b
c d

)
∈ gl(m|n) to be tr(a)− tr(d), where

tr is the trace of a square matrix such as a or d. Then str([g, g′]) = 0 for all g, g′ ∈
gl(m|n). The special linear Lie superalgebra is sl(m|n) = {g ∈ gl(m|n); str(g) =

0}. This subalgebra of gl(m|n) satisfies [gl(m|n), gl(m|n)] = sl(m|n); we have

sl(m|n) ≃ sl(m|n), and when m ̸= n and m + n ≥ 2, sl(m|n) is simple. Denote

the identity matrix in gl(E) = gl(m|n) by Im|n. When m = n, sl(n|n) contains a

nontrivial center CIn|n, and sl(n|n)/CIn|n is simple for n ≥ 2.

A basis for g = gl(1|1) consists of

e =

(
0 1

0 0

)
, f =

(
0 0

1 0

)
, E1,1 =

(
1 0

0 0

)
, E1,1 =

(
0 0

0 1

)
.

The element h = E1,1 +E1,1 = I1|1 is central, [e, f ] = h, and {e, f, h} is a basis of

sl(1|1).
Let I0 be a set parametrizing an ordered basis of V0, and I1 of V1. Then

I = I0 ∪ I1 (disjoint union) parametrizes a homogeneous basis of the superspace

V = V0 ⊕ V1. Put p(i) = j for i ∈ Ij . For example, if I = I(m|n), then p(i) = 0 for

i < 0 and p(i) = 1 for i > 0. Choosing a total order on I we may identify gl(V ) with

the space of |I| × |I| matrices. The supertranspose of a matrix A =
∑
i,j∈I ai,jEi,j

(ai,j ∈ C) is defined to be stA =
∑
i,j∈I(−1)p(j)(p(i)+p(j))ai,jEj,i. For example, if

I = I(m|n) then
st
(
a b

c d

)
=

(
ta tc

−tb td

)
;

here ta is the transpose of a matrix a.

The Chevalley automorphism τ : gl(V ) → gl(V ) is defined by τ(A) = − stA.

It restricts to an automorphism of sl(V ), and its order is 4 when m, n ≥ 1.

Let V = V0 ⊕ V1 be a superspace. A bilinear form B : V × V → V is called

even if B(Vi, Vj) = 0 when i + j = 1, and odd if B(Vi, Vj) = 0 when i + j = 0.

An even bilinear form B is called supersymmetric if B|V0 × V0 is symmetric and

B|V1×V1 is skew symmetric. An even bilinear formB is called skew supersymmetric

if B|V0 × V0 is skew symmetric and B|V1 × V1 is symmetric.

A classification of finite-dimensional complex simple Lie superalgebras was

worked out in [K77]. We are interested here only in the case of sl(m|n), m > n ≥ 1
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(excluding m|n = 2|1) and sl(m|m)/CIm|m (m ≥ 3). The remaining cases (m = n

or (m,n) = (2, 1)) are left to another work.

A Cartan subalgebra h of g = gl(m|n) or sl(m|n) is a Cartan algebra of the

even g0. Every inner automorphism of g0 extends to one of the Lie superalgebra

g, and Cartan subalgebras of g0 are conjugate under inner automorphisms. Hence

the Cartan subalgebras of g are conjugate under inner automorphisms.

§3. Root systems

Let h be a Cartan subalgebra of a Lie superalgebra g. For α ∈ h∗ = HomC(h,C)
define

gα =
{
g ∈ g; [h, g] = α(h)g ∀h ∈ h

}
.

Such an α is called a root if α ̸= 0 and gα ̸= 0. The root system Φ is the set of

roots. A root α is called even if gα ∩ g0 ̸= 0 and odd if gα ∩ g1 ̸= 0. The sets of

even and odd roots are denoted Φ0 and Φ1.

Define the Weyl group W of g = g0 ⊕ g1 to be the Weyl group of the Lie

algebra g0. We continue to work only with g = gl(m|n) and sl(m|n) (m > n ≥ 1

but not (2|1)), sl(n|n)/CIn|n if m = n ≥ 3, although the following results hold for

other (“basic”) Lie superalgebras.

(1) There is a root space decomposition g = h⊕
⊕

α∈Φ gα of g wrt h, and g0 = h.

(2) dim gα = 1 for all α ∈ Φ. So fix eα ∈ gα, eα ̸= 0.

(3) [gα, gβ ] ⊂ gα+β for α, β ∈ Φ ∪ {0} (by the super Jacobi identity).

(4) Φ, Φ0, Φ1 are invariant under the action of the Weyl group W on h∗.

(5) There exists a nondegenerate even invariant supersymmetric bilinear form

(. , .) on g.

(6) (gα, gβ) = 0 unless α = −β ∈ Φ.

(7) The restriction of the bilinear form (. , .) to h × h is nondegenerate and W -

invariant.

(8) [eα, e−α] = (eα, e−α)hα, where hα is the coroot in h determined by (hα, h) =

α(h) ∀h ∈ h.

(9) Φ0 = −Φ0, Φ1 = −Φ1, Φ = −Φ.

(10) Fix α ∈ Φ. There exists an integer k ̸= ±1 such that kα ∈ Φ iff α is an odd

root with (α, α) ̸= 0. In this case k = ±2.

We shall see these explicitly, and that for each α ∈ Φ there is an i ∈ F2 with

gα ⊂ gi. Then Φ is the disjoint union of Φ0 and Φ1, and Φi = {α ∈ Φ; gα ⊂ gi},
i ∈ F2.

Note that h ⊂ g0 and it is abelian.
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A root α ∈ Φ is called isotropic if (α, α) = 0. It is necessarily an odd root.

Denote the set of isotropic odd roots by

Φ1 =
{
α ∈ Φ1; (α, α) = 0

}
=
{
α ∈ Φ1; 2α /∈ Φ

}
.

The last equality follows from (10). For α ∈ Φ1 we have e2α = 1
2 [eα, eα] = 0 (by

(3)) in the universal enveloping algebra U(g), defined in Section 5 below, where it

is used. Put Φ0 = {α ∈ Φ0;
1
2α /∈ Φ}.

A nondegenerate supersymmetric bilinear form on g = gl(m|n) is given by

(. , .) : gl(m|n)× gl(m|n) → C, (x, y) = str(xy),

where xy indicates matrix multiplication. This form is invariant. On restriction

to the Cartan subalgebra h of diagonal matrices, one obtains a nondegenerate

symmetric bilinear form on h satisfying, for i, j ∈ I(m|n),

(Ei,i, Ej,j) =


1 if 1 ≤ i = j ≤ m,

−1 if 1 ≤ i = j ≤ n,

0 if i ̸= j.

Let {δi, εj ; 1 ≤ i ≤ m , 1 ≤ j ≤ n} be the basis of h∗ dual to the basis

{Ei,i, Ej,j ; 1 ≤ i ≤ m, 1 ≤ j ≤ n} of h. Using the bilinear form (. , .) we can

identify δi with (Ei,i, .) and εj with −(Ej,j , .). We also write εi for δi, 1 ≤ i ≤ m.

The form (. , .) on h defines a nondegenerate bilinear form on h∗, denoted also

by (. , .). For i, j ∈ I(m|n) we have (εi, εj) = δi,j(−1)p(εi), where δi,j is 1 if i = j

and 0 if i ̸= j.

The root system Φ = Φ0 ∪ Φ1 is given by

Φ0 =
{
εi− εj ; i ̸= j ∈ I(m|n), i, j > 0 or i, j < 0

}
,

Φ1 =
{
±(εi− εj); i, j ∈ I(m|n), i < 0 < j

}
.

Note that Ei,j is a root vector for the root εi− εj for i ̸= j in I(m|n). The Weyl

group of gl(m|n) is that of g0 = gl(m)⊕ gl(n), isomorphic to the product Sm×Sn
of the symmetric groups on m and n letters.

Let Φ be a root system for the Lie superalgebra g = sl(m|n) or gl(m|n), with
a fixed Cartan subalgebra h. Let E be the real vector space spanned by Φ. Then

E ⊗R C = h∗ for g = sl(m|n). For g = gl(m|n) the space E ⊗R C is a subspace of

h∗ of codimension one.

The total ordering ≥ on E is taken to be compatible with its real vector space

structure: thus v ≥ w and v′ ≥ w′ imply v + v′ ≥ w + w′, −w ≥ −v, and cv ≥ cw

for c ∈ R>0.
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A positive system Φ+ is a subset of the root system Φ consisting of the roots

α ∈ Φ with α > 0 for a fixed total ordering of E. Given such a Φ+, define the

fundamental system Π ⊂ Φ+ to be the set of α ∈ Φ+ that cannot be written as a

sum of two roots in Φ+. The roots in Φ+ are called positive roots. The roots in Π

are called simple roots. Put Φ− = {α ∈ Φ; α < 0}, Φ+
i = Φ+ ∩Φi, Φ

−
i = Φ− ∩Φi

(i ∈ F2). By (9), Φ− = −Φ+, Φ−
i = −Φ+

i (i ∈ F2). Then Φ+ = Φ+
0
∪ Φ+

1
. Put

Φ+
1
= Φ1 ∩ Φ+.

Lemma 3.1. The map “positive system for (g, h) 7→ fundamental system for

(g, h)”, is a bijection between the sets of these systems. The Weyl group of g acts

naturally on these sets.

Proof. Indeed, a positive root that is not simple can be written as a sum of two

positive roots. By induction then every positive root is a Z≥0-linear combination of

simple roots. Hence the positive system is uniquely determined by its fundamental

system. By (9), Φ = −Φ, and Φ is W -invariant. Then the Weyl group W acts

naturally on the set of positive systems, hence on the set of fundamental systems

by the bijection above.

A finite-dimensional Lie superalgebra g = g0 ⊕ g1 is called solvable if g(k) = 0

for some k ≥ 1, where g(0) = g and g(j+1) = [g(j), g(j)] for all j ≥ 0.

Define

n+ =
⊕
α∈Φ+

gα, n− =
⊕
α∈Φ−

gα.

These are ad(h)-stable nilpotent subalgebras of g. There is a triangular decompo-

sition g = n− ⊕ h⊕ n+. The solvable subalgebra b = h⊕ n+ is called the standard

Borel subalgebra of g (corresponding to Φ+). We have b = b0⊕b1, where bi = b∩gi,
i ∈ F2.

The Borel subalgebra b is not a maximal solvable subalgebra of g. Indeed, the

rank one subalgebra of g corresponding to an isotropic simple root is isomorphic

to sl(1|1) = {( a bc a )}, which is solvable. Hence, enlarging b by adding the root space

corresponding to a negative isotropic simple root, we obtain a subalgebra that is

still solvable.

To a positive system Φ+ = Φ+
0
∪ Φ+

1
associate the vectors in h∗:

ρ = ρ0 − ρ1, ρ0 =
1

2

∑
α∈Φ+

0

α, ρ1 =
1

2

∑
β∈Φ+

1

β,

and 1m|n = (δ1 + · · ·+ δm)− (ε1 + · · ·+ εn). Then for g = gl(m|n) we have

ρ =
∑

1≤i≤m

(m− i+ 1)δi −
∑

1≤j≤n

(m− i+ 1)δi −
∑

1≤j≤n

j εj −
1

2
(m+ n+ 1)1m|n.
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In the case of g = gl(m|n), the standard Borel subalgebra is the subalgebra

of upper triangular matrices in g. It contains the algebra h of diagonal matrices.

The standard positive system Φ+ of Φ is {εi− εj ; i, j ∈ I(m|n), i < j}. We also

write εi for δi (1 ≤ i ≤ m). The standard fundamental system for gl(m|n) is{
δi − δi+1, εj − εj+1, δm − ε1; 1 ≤ i < m, 1 ≤ j < n

}
.

The standard simple root vectors are ei = Ei,i+1 (i ∈ I(m − 1|n − 1)) and em =

Em,1. The standard simple coroots are hj = Ej,j − Ej+1,j+1 (j ∈ I(m− 1|n− 1))

and hm = Em,m + E1,1. Put fi = Ei+1,i for i ∈ I(m − 1|n − 1) and fm = E1,m

(where i+1 means ι+ 1 for i = ι with 1 ≤ ι < m). Then {ei, hi, fi; i ∈ I(m|n−1)}
is a set of Chevalley generators for sl(m|n).

We have

(δi − δi+1, δi − δi+1) = 2, 1 ≤ i < m,

(δm − ε1, δm − ε1) = 0,

(εj − εj+1, εj − εj+1) = −2, 1 ≤ j < n.

Hence δm − ε1 is an isotropic simple root.

§4. Dynkin diagrams

There is a Dynkin diagram associated with a fundamental system Π = {α1, . . . ,

αk}. It consists of vertices labeled by αi, or simply i, 1 ≤ i ≤ k, and edges. The

vertices are marked

⃝, called white, if (αi, αi) ̸= 0 and p(αi) = 0,y, called gray , if (αi, αi) = 0 and p(αi) = 1,y, called black , if (αi, αi) ̸= 0 and p(αi) = 1.

We are interested only in Dynkin diagrams whose vertices are white and gray.

There is an edge between the ith and jth vertices iff (αi, αj) ̸= 0. There is an

edge

i i
i j

if (αi, αi) = (αj , αj) = −2(αi, αj) ̸= 0,y i
i j

if (αi, αi) = 0, (αj , αj) = −2(αi, αj) ̸= 0,y y
i j

if (αi, αi) = 0 = (αj , αj), (αi, αj) ̸= 0.
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The associated standard Dynkin diagram is the graph whose vertices are labeled

by the roots in the standard fundamental system; see Figure 1, where a white

circle denotes an even simple root α (such that 1
2α is not a root), and a gray circle

denotes an odd isotropic simple root.

i
δ1 − δ2

i
δ2 − δ3

... i
δm−1 − δm

y
δm − ε1

i
ε1 − ε2

... i
εn−2 − εn−1

i
εn−1 − εn

Figure 1. Standard Dynkin diagram for sl(m|n).

To describe all positive systems for gl(m|n), recall again that εi = δi (1 ≤
i ≤ m), and suspend the parity of the roots. In this case the root system of

gl(m|n) is the same as the root system for gl(m + n), so their positive systems

and fundamental systems are described in the same way. So there are (m + n)!

such systems. From the standard theory for gl(m+ n), a fundamental system for

it consists of (m+n−1) roots: Π = (εi1 − εi2 , εi2 − εi3 , . . . , εim+n1
− εim+n

), where

{i1, i2, . . . , im+n} is I(m|n). Put× for a white or gray vertex. Restoring the parity

of the simple roots, we get the Dynkin diagram shown in Figure 2.

×
εi1 − εi2

×
εi2 − εi3

... ×
εij−1

− εij

×
εij − εij+1

... ×
εim+n−1

− εim+n

Figure 2. A Dynkin diagram for sl(m|n).

As an example of all gray vertices, consider the case where m = n, and the

simple roots are {δ1 − ε1, ε1 −δ2, δ2 − ε2, . . . , δm−1 − εm−1, εm−1 −δm, δm − εm},
all odd. The Dynkin diagram is shown in Figure 3.

y
ε1 −δ2

y
ε1 −δ2

... y
δj − εj

y
εj −δj+1

... y
εm−1 −δm

Figure 3. An all gray Dynkin diagram for sl(m|n).

Associate an ε δ-sequence to the fundamental system Π = {εi1 − εi2 , . . . ,

εim+n−1 − εim+n} by replacing εi by δi (1 ≤ i ≤ m), then erasing the index. We

obtain a sequence with m δ’s and n ε’s. The Weyl group shuffles the δ’s and the

ε’s, but does not mix them. In particular, the W -conjugacy classes of fundamental

systems in Φ are in bijection with the associated ε δ-sequences. So there are (m+n
m )

W -conjugacy classes of fundamental systems for gl(m|n). In particular, there are
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positive systems for Φ that are not conjugate to each other under the action of

the Weyl group, in contrast to the semisimple Lie algebra, nonsuper, case.

For example, there are three W -conjugacy classes of fundamental systems for

gl(2|1), corresponding to δ δ ε, δ ε δ, ε δ δ (where δ δ ε corresponds to (δ1−δ2, δ2−ε1)
and (δ2 − δ1, δ1 − ε1), δ ε δ to (δ1 − ε1, ε1 −δ2) and (δ2 − ε1, ε1 −δ1), and ε δ δ to

(ε1 −δ1, δ1 − δ2) and (ε1 −δ2, δ2 − δ1)).

The standard Borel algebra of gl(m|n) defines the sequence δm εn = δ . . . δ

ε . . . ε (δ m times, then ε n times), and the opposite to it defines εn δm.

So in contrast to the case of nonsuper, semisimple Lie algebras, the funda-

mental systems of a root system Φ are not all W -conjugate. This is due to the

existence of odd roots in the super case. Recall that a root α ∈ Φ is called isotropic

if (α, α) = 0; such a root must be odd. For our superalgebra g we have the following

lemma.

Lemma 4.1. Let Π be a fundamental system of a positive system Φ+. Let α be

an odd simple root. Then Φ+
α = {−α} ∪ (Φ+ − {α}) is a positive system whose

fundamental system Πα is given by{
β ∈ Π; (β, α) = 0, β ̸= α

}
∪
{
β + α; β ∈ Π, (β, α) ̸= 0

}
∪
{
−α
}
.

The process of obtaining Πα, Φ
+
α , b

α = h⊕
⊕

β∈Φ+
α
gβ from Π, Φ+, b will be

called an odd reflection wrt α, denoted rα. Thus

rα(Π) = Πα, rα(Φ
+) = Φ+

α , rα(b) = bα, r−αrα = 1.

Real reflections rα are defined for each even root α (which has to be non-

isotropic) as a linear map on h∗ by

rα(x) = x− 2
(x, α)

(α, α)
α, x ∈ h∗,

where (. , .) is the even nondegenerate supersymmetric bilinear form on g, h, h∗ of

(5) and (7). For an even simple root α we have 1
2α ̸∈ Φ, thus α ∈ Φ0. Then with

Φ+
α and Πα as defined in the lemma, and bα, we get rα(Π) = Πα, rα(Φ

+) = Φ+
α ,

rα(b) = bα.

Proposition 4.2. For two fundamental systems Π and Π′ of our superalgebra g,

there exists a sequence of real and odd reflections r1, . . . , rk such that rk . . . r2r1(Π)

= Π′.

A proof and examples can be found in [CW12].
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§5. Theory of highest weight

To explain the theory of the highest weight, we first record in Proposition 5.1 below

the PBW (Poincaré–Birkhoff–Witt) theorem for a Lie superalgebra g = g0 ⊕ g1.

A universal enveloping algebra of g is an associative superalgebra U(g) with a

unit, with a homomorphism ι : g → U(g) of superalgebras, satisfying the following

universal property. For every associative superalgebra A and a Lie superalgebra

homomorphism φ : g → A, there exists a unique homomorphism of associative

superalgebras ψ : U(g) → A such that φ = ψ ◦ ι. This implies that representations

of g and of U(g) coincide. By a standard proof, U(g) exists and is unique up to an

isomorphism by the universal property. In fact, one has the following proposition.

Proposition 5.1. Let {x1, . . . , xp} be a basis for g0 and {y1, . . . , yq} a basis for

g1 as vector spaces. Then{
xr11 . . . xrpp y

s1
1 . . . ysqq ; r1, . . . , rp ∈ Z≥0, s1, . . . , sq ∈ F2

}
makes a basis for U(g).

Let p be a Lie sub(super)algebra of a finite-dimensional Lie superalgebra g.

Let V be a p-module. The g, or U(g), induced module is Indgp V = U(g)⊗U(p) V . If

V is finite-dimensional then so is Indgg0
V , by the PBW theorem.

Let p = p0⊕p1 be a finite-dimensional solvable Lie superalgebra with [p1, p1] ⊂
[p0, p0]. Given λ ∈ p∗

0
with λ([p0, p0]) = 0, define a one-dimensional p-module

Cλ = Cvλ by

xvλ = λ(x)vλ (x ∈ p0), yvλ = 0 (y ∈ p1).

Note that {λ ∈ p∗
0
; λ([p0, p0]) = 0} ≃ (p0/[p0, p0])

∗.

Under our assumption on p (= p0 ⊕ p1, finite-dimensional solvable Lie su-

peralgebra with [p1, p1] ⊂ [p0, p0]), every finite-dimensional irreducible p-module

is one-dimensional. Any finite-dimensional irreducible p-module is of the form Cλ
for some λ in (p0/[p0, p0])

∗ (see [CW12, Lem. 1.37] for a proof and Example 1.38

there for why the condition [p1, p1] ⊂ [p0, p0] is required).

With g, h, Φ as usual, let b = h ⊕ n+ be a Borel subalgebra of g = n− ⊕ b,

and Φ+ the associated positive system. The condition is satisfied for the solvable

Lie superalgebra b as b1 = n+
1
and

[b1, b1] = [n+
1
, n+

1
] ⊂ n+

0
= [h, n+

0
] ⊂ [b0, b0].

If V is a finite-dimensional irreducible g-module, then by the above it contains

a one-dimensional b-module necessarily of the form Cλ = Cvλ for some λ ∈ h∗ ≃
(b/[b, b])∗; thus

hvλ = λ(h)vλ (h ∈ h), xvλ = 0 (x ∈ n+).
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Since V is irreducible, by the PBW theorem we get that V = U(n−)vλ, hence a

weight space decomposition

V =
⊕
µ∈h∗

Vµ, Vµ =
{
v ∈ V ; hv = µ(h)v ∀h ∈ h

}
,

where Vµ is {0} unless λ − µ is a Z≥0-linear combination of positive roots. The

weight λ is called the b-highest weight (or extremal weight) of V , the space Cvλ
the b-highest weight space, and vλ a b-highest weight vector for V . When b is

clear from the context, a reference to it is omitted. In conclusion, every finite-

dimensional irreducible g-module is a b-highest weight module.

Denote this irreducible highest weight module of weight λ by L(λ), or L(g, λ),

or L(g, b, λ).

Recall the notation Πα, bα associated to an isotropic odd simple root α.

Denote by ⟨. , .⟩ : h × h → C the standard bilinear pairing. Let hα be the coroot

corresponding to α, and let eα, fα be the root vectors of the roots α and −α so

that [eα, fα] = hα.

We also have [CW12, Lem. 1.40]:

Lemma 5.2. Let V be a simple g-module, not necessarily finite-dimensional. Let

v be a b-highest weight vector of V of b-highest weight λ. Let α be an isotropic odd

simple root. Then,

(1) if ⟨λ, hα⟩ = 0, then V is a g-module of bα-highest weight λ, and v is a bα-

highest weight vector;

(2) if ⟨λ, hα⟩ ̸= 0, then V is a g-module of bα-highest weight λ− α, and fαv is a

bα-highest weight vector.

§6. Hook partitions

Once again let g be the superalgebra gl(m|n), and h the Cartan subalgebra of

diagonal matrices, spanned by the basis elements {Ei,i; i ∈ I(m|n)}. Let n+ be

the subalgebra of strictly upper triangular matrices of g, and n− the strictly lower

ones. Then the fundamental system Π of the simple roots of the positive system

Φ+ has the Dynkin diagram whose only nonwhite vertex is gray at the mth place.

We have the triangular decomposition g = n− ⊕ h⊕ n+. The even subalgebra has

a compatible triangular decomposition g0 = n−
0
⊕ h ⊕ n+

0
, where n±

0
= g0 ∩ n±.

The Borel subalgebras are b = h⊕ n+ and b0 = h⊕ n+
0
.

The Lie superalgebra g admits a Z-gradation g = g−1⊕g0⊕g1, where g0 = g0,

g1 consists of the strictly upper triangular matrices in g1, and g−1 the strictly lower

triangular ones; thus g1 = g1 ∩ n+ is generated by the Ei,j with i, j ∈ I(m|n),
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i > 0 > j (and g−1 = g1 ∩ n− by i < 0 < j). Then g1 and g−1 are abelian Lie

superalgebras.

Let L0(λ) be the simple g0-module of highest weight λ ∈ h∗ relative to the

Borel subalgebra b0. It can be extended trivially to g0⊕g1 = g0⊕g1, and induced

to a g-module K(λ) = Indgg0⊕g1
L0(λ). As a vector space K(λ) is Λ(g−1)⊗ L0(λ)

by the PBW theorem. From the embedding L0(λ) ↪→ L(λ) of g0-modules, where

L(λ) is the highest weight irreducible g-module of highest weight λ, and Frobenius

reciprocity, we obtain a surjective g-module homomorphism K(λ) ↠ L(λ), which

is unique up to a scalar multiple. The following are equivalent:

(1) L(λ) is finite-dimensional;

(2) L0(λ) is finite-dimensional;

(3) K(λ) is finite-dimensional.

Indeed, (1) implies (2) since L0(λ) is an irreducible direct summand of L(λ) re-

garded as a g0-module, (2) implies (3) since K(λ) = Λ(g−1) ⊗ L0(λ), and (3)

implies (1) since K(λ) ↠ L(λ) is surjective.

Every finite-dimensional simple g-module is a highest weight module L(λ) for

some λ ∈ h∗, and L(λ) ̸≃ L(µ) if λ ̸= µ.

It follows from the equivalence of (1), (2), (3) above then that the classification

of finite-dimensional simple g-modules is the same as that of the finite-dimensional

simple g0 = gl(m) ⊕ gl(n)-modules. A finite-dimensional simple gl(m)-module is

uniquely the twist L1(λ) ⊗ χ by a central character χ, that factorizes via the

determinant, of a polynomial gl(m)-module L1(λ), namely one parametrized by a

partition λ = (λ1, λ2, . . . , λm), where λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0 are nonnegative

integers (but λ, χ are not uniquely determined by L1(λ)⊗ χ). Thus L1(λ)⊗ χ is

parametrized by (λ1 + λ0, λ2 + λ0, . . . , λm + λ0) for some λ0 ∈ R. Then we have

the following proposition.

Proposition 6.1. All pairwise nonisomorphic finite-dimensional simple gl(m|n)-
modules are L(λ) for λ =

∑
1≤i≤m λiδi+

∑
1≤j≤n νj εj ∈ h∗, with λi−λi+1 ∈ Z≥0

and νj − νj+1 ∈ Z≥0 for all i, j.

A sequence µ = (µ1, µ2, . . . , µm) of integers µi ∈ Z≥0 with µ1 ≥ µ2 ≥ · · · ≥
µm ≥ 0 is called a partition of µ1 + · · · + µm = r, with ℓ(µ) = m0 parts if m0

(≤ m) is the largest integer with µm0
> 0. These parametrize all the polynomial

gl(m)-modules.

A partition µ = (µ1, µ2, . . .) is called an (m|n)-hook partition if µm+1 ≤ n,

equivalently if µ′
n+1 ≤ m, where µ′ is the partition conjugate to µ (thus we write

the Young diagram, which has µ1 boxes in the first row, µr boxes in the rth row,

all aligned to the left at the fourth quadrant in the plane, so there are m rows
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if ℓ(µ) = m, and µ′ is the transpose Young diagram, thus we write the first row

as the first column, second row as the second column, etc., and write µ′
i for the

number of boxes in the ith column of µ, thus the ith row of µ′).

Thus an (m|n)-hook partition is a partition not including (m+ 1, n+ 1).

Given an (m|n)-hook partition µ, consider the subpartition µ+ = (µm+1,

µm+2, . . .) and its conjugate ν = (µ+)′ = (ν1, . . . , νn); this conjugate has at most

n parts. Define the weight µs (s for “super”) by

µs = µ1δ1 + · · ·+ µmδm + ν1 ε1 + · · ·+ νn−1 εn−1 +νn εn

= (µ1, . . . , µm; ν1, . . . , νn).

Write P (m|n) for the set of (m|n)-hook partitions, and Pd(m|n) for the set of

(m|n)-hook partitions µ of d; thus
∑

1≤i≤ℓ(µ) µi = d and µm+1 ≤ n. Then

P (m|n) =
⋃
d≥0 Pd(m|n), Pd(m) = Pd(m|0) is the set of partitions of d with

at most m parts, and Pd =
⋃
m≥1 Pd(m) is the set of partitions of d.

Denote by L(λs), for λ ∈ P (m|n), the simple g-module of highest weight λs

with respect to the standard Borel subalgebra. For a partition λ of d, denote by

Sλ the Specht module of Sd. For example, S(d) is the trivial representation of Sd,

and (S(1d)) is the sign representation sgnd of Sd. Representation theory of the

symmetric group [Ja78, FH91] establishes that {Sλ; λ ∈ Pd} is a complete list of

simple inequivalent Sd-modules.

Put g = gl(m|n). Let V be the natural left g-module E = Cm|n. Then E⊗d is

a left g-module by

(ϕd(g))(v1 ⊗ · · · ⊗ vd)

= (gv1)⊗ v2 ⊗ · · · ⊗ vd + (−1)p(g)p(v1)v1 ⊗ (gv2)⊗ · · · ⊗ vd

+ · · ·+ (−1)p(g)(p(v1)+···+p(vd−1))v1 ⊗ v2 ⊗ · · · ⊗ vd−1 ⊗ (gvd)

on homogeneous g ∈ g and vi ∈ E for all i (1 ≤ i ≤ d), extended by linearity.

The following is the extension of the Schur theorem to the context of the

superalgebra gl(m|n), due to Sergeev [S85], and later to [BR87], and in book form

[CW12].

Theorem 6.2.

(1) The formula

(ψd((i, i+ 1)))(v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vd)

= (−1)p(vi)p(vi+1)v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vd
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(1 ≤ i < d), where (i, j) denotes a transposition in Sd and vi, vi+1 are homo-

geneous in E, extends to a left action of the symmetric group Sd on E⊗d. The

actions of (gl(m|n), ϕd) and (Sd, ψd) on E⊗d commute with each other.

(2) The images ϕd(U(g)) and ψd(C[Sd]) of ϕd and ψd satisfy the double centralizer

property ϕd(U(g)) = EndC[Sd](E⊗d), ψd(C[Sd]) = EndU(g)(E⊗d).

(3) As a U(gl(m|n))⊗ C[Sd]-module, one has

(Cm|n)⊗d ≃
⊕

λ∈Pd(m|n)

L(λs)⊗ Sλ.

(4) If M is a right (Sd, ψd)-module, define S(M) = M ⊗ψd(C[Sd]) E⊗d, with the

natural left (U(g), ϕd)-module structure obtained from that on E⊗d. If d <

(n + 1)(m + 1), then every partition of d is an (m|n)-hook partition, and

the functor M 7→ S(M) is an equivalence from the category of finite-dimen-

sional C[Sd]-modules to the category of finite-dimensional E⊗d-compatible

U(gl(m|n))-modules, namely those that are polynomial of degree d.

By a finite-dimensional E⊗d-compatible U(gl(m|n))-module we mean here a

module all of whose subquotients are subquotients of the semisimple module E⊗d.

It is the same as to be “polynomial of degree d”. In the ordinary, nonsuper case,

this notion is discussed in detail in [F21]. We postpone the discussion of this in

the super case to a subsequent work.

When m > n we have gl(m|n) = sl(m|n)⊕ z, where z = CIm|n is the center of

gl(m|n), and Im|n is the identity matrix in gl(m|n). The data of a gl(m|n)-module

Π with a given central character χ is equivalent to that of an sl(m|n)-module π

and the character χ of the center z. Indeed, given Π, π is the restriction of Π to

sl(m|n), in particular it is irreducible if Π is; given π we put Π(s, z) = χ(z)π(s)

(s ∈ sl(m|n), z ∈ z). As z ∈ CIm|n acts on E⊗d as multiplication by z, we may

replace gl(m|n) by sl(m|n) in (3) and (4) of the theorem. From this perspective,

“E⊗d-compatible” is a better term than “polynomial of degree d”, which makes

no sense for sl(m|n) once the term “polynomial” is fully explained (see [F21]).

We refer to a U(g) ⊗ C[Sd]-module also as a g × Sd-module, g = gl(m|n) or

sl(m|n).
When d < (n+ 1)(m+ 1), every partition λ ⊢ d lies in Pd(m|n), namely it is

an (m|n)-hook partition of d, since (m+1)(n+1) > d =
∑
i λi ≥

∑
1≤i≤m+1 λi ≥

(m+ 1)λm+1 implies λm+1 ≤ n. So in this case, every simple Sd-module appears

in the duality decomposition (3), as stated in (4).

When n = 0 the theorem reduces to the usual (nonsuper) Schur duality.

If d = 2, then (Cm)⊗2 = S2(Cm) ⊕ Λ2(Cm). The modules on the right are

irreducible of highest weights 2δ1 and δ1 + δ2; see [FH91].
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§7. Affine superalgebras

Our aim is to develop an affine analogue of super Schur duality. Recall that a Lie

superalgebra is an F2-graded vector space g = g0 ⊕ g1, together with a bilinear

operation [. , .] : g× g → g, such that for homogeneous x, y, z in g it satisfies skew

supersymmetry,

[x, y] = −(−1)p(x)p(y)[y, x] ∈ gp(x)+p(y),

and the super Jacobi identity,

[x, [y, z]] = [[x, y], z] + (−1)p(x)p(y)[y, [x, z]].

Here p : g0 ∪ g1 → F2 is the parity function, which takes a homogeneous ele-

ment x ∈ gi to i. A bilinear form (. , .) : g × g → C is invariant if it satisfies

(x, y) = −(−1)p(x)p(y)(y, x) (skew supersymmetry) and ([x, y], z) = (x, [y, z]). It

is nondegenerate if its restriction to a Cartan subalgebra h ⊂ g0 ⊂ g is (thus for

h ∈ h, (h, h) = 0 iff h = 0). We also define the adjoint action ad: g → End(g) by

(ad(x))(y) = [x, y] (x, y ∈ g). A c ∈ g is called central if ad(c) = 0, thus [c, x] = 0

for all x ∈ g.

Let L = C[t, t−1] be the algebra of polynomials in t and t−1 over C. Consider
a finite-dimensional (over C) Lie superalgebra g = g0⊕g1. The loop superalgebra of

g is L(g) = Lg = L⊗g = L(g)0⊕L(g)1, L(g)i = L⊗gi, with the Lie superalgebra

structure defined by [P ⊗x,Q⊗y] = PQ⊗ [x, y], P , Q ∈ L, x, y ∈ g. In particular,

the parity is 0 on L. Note that L(g) can be viewed as the Lie superalgebra of

polynomial maps from the unit circle to g, whence the name loop superalgebra of

g.

A skew-supersymmetric invariant nondegenerate bilinear form (. , .) : g× g →
C exists, and it is unique up to a scalar multiple when g is simple, as we now

assume. Using it, define (. , .)t : L(g)× L(g) → L by

(P ⊗ x,Q⊗ y)t = PQ(x, y) ∈ L, P,Q ∈ L, x, y ∈ g.

Define linear maps d
dt : L(g) → L(g) and Res: L → C by

d

dt
(tn ⊗ x) = ntn−1 ⊗ x, Res(tn) = δn+1,0 n ∈ Z, x ∈ g.

Res is the unique functional on L satisfying Res t−1 = 1 and Res dPdt = 0 for all

P ∈ L. A more natural presentation of the residue would be to view f ∈ Lg as

a morphism f : C× → g, where C× is the multiplicative group C− {0} of C. The
differential df of f is a 1-form with values in g. Then (df, g)t is a 1-form on C×,

whose residue at 0 is denoted by Res0((df, g)t) (= Res((dfdt , g)t)). In particular,

Res0(dP ) = 0 for all P ∈ L.
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Define a bilinear map ν : L(g)× L(g) → C by ν(f, g) = Res0((df, g)t).

Lemma 7.1. The map ν is a 2-supercocycle on L(g). Namely, for all f , g, h ∈
L(g), we have skew supersymmetry ν(f, g) = −(−1)p(g)p(f)ν(g, f), and

ν([f, g], h) + ι1ν([g, h], f) + ι2ν([h, f ], g) = 0,

where ι1 = (−1)p(x)(p(y)+p(z)), and ι2 = (−1)p(z)(p(x)+p(y)).

Proof. For P , Q ∈ L and x, y ∈ g we have

ν(P ⊗ x,Q⊗ y) + (−1)p(y)p(x)ν(Q⊗ y, P ⊗ x) = (x, y)Res0(dPQ+ PdQ)

= (x, y)Res0(d(PQ))

= 0.

For P , Q, R ∈ L and x, y, z ∈ g we have

ν([P ⊗ x,Q⊗ y], R⊗ z) + ι1ν([Q⊗ y,R⊗ z], P ⊗ x)

+ ι2ν([R⊗ z, P ⊗ x], Q⊗ y)

= ([x, y], z)Res0(d(PQ)R) + ι1([y, z], x)Res0(d(QR)P )

+ ι2([z, x], y)Res0((RP )Q)

= ([x, y], z)Res0(d(PQ)R+ d(QR)P + d(RP )Q)

= ([x, y], z)Res0(d(PQR))

= 0.

The passage from the second to the third row follows from

ι1([y, z], x) = (x, [y, z]) = ([x, y], z) and ([z, x], y) = (z, [x, y]) = ι2([x, y], z),

as p([x, y]) = p(x) + p(y).

The pre-affine Lie superalgebra is g̃ = L(g)⊕ Cc, where c is a formal central

element of parity 0, and the Lie superalgebra structure is defined by

[f, g] = [f, g]L(g) + ν(f, g)c,

and [f, g]L(g) is the bracket in L(g).
The skew supersymmetry for g̃ is a consequence of the skew supersymmetry

of [. , .]L(g), namely of [. , .] on g, and the skew supersymmetry of ν (first equality

of the lemma). The super Jacobi identity for g̃ is a consequence of this identity for

L(g) (which follows from that for g), and the last equality of the lemma.
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To be able to have linearly independent simple roots, one adds the derivation

element d, of parity 0, and defines the affine Lie superalgebra to be

ĝ = g̃⊕ Cd = ĝ0 ⊕ ĝ1, ĝ0 = L ⊗ g0 ⊕ Cc⊕ Cd, ĝ1 = L ⊗ g1,

where d acts by

[d, P ⊗ x] = t
dP

dt
⊗ x, [d, c] = 0.

Thus we obtain a Lie superalgebra with (a1, a2, b1, b2 ∈ C; m,n ∈ Z),

[tm ⊗ x+ a1c+ b1d, t
n ⊗ y + a2c+ b2d]

= tm+n ⊗ [x, y] +mδm,−n(x, y)c+ b1nt
n ⊗ y − b2mt

m ⊗ x.

§8. Generators and relations

An equivalent definition as an abstract symmetrizable Kac–Moody Lie superalge-

bra, analogous to [K90, Sect. 1.3], is as follows. We follow Kac [K77] and Yamane

[Y99].

Let E be a finite-dimensional C-vector space. Let (. , .) denote a nondegenerate

symmetric bilinear form on E . Let Π = {α0, α1, . . . , αn} be a linearly independent

subset of E . Put (Z≥0 = {0, 1, 2, . . .} and)

P = Zα0 ⊕ · · · ⊕ Zαn, P+ = Z≥0α0 ⊕ · · · ⊕ Z≥0αn, P− = −P+.

An element αi ∈ Π is called a simple root and P the root lattice. A function

p : Π → F2 extends uniquely to a group homomorphism p : P → F2, called parity.

Put h = E∗ for the dual space of E . Identify ν ∈ E with hν ∈ h by µ(hν) = (µ, ν)

for all µ ∈ E . A datum is a quadruple (E , (. , .),Π, p) as above. We abbreviate it to

(E ,Π, p). We associate to a datum a Lie superalgebra G̃ = G̃(E ,Π, p) generated by

generators h ∈ h, ei, fi (0 ≤ i ≤ k), and relations [h, h′] = 0 (h, h′ ∈ h),

[h, ei] = αi(h)ei, [h, fi] = −αi(h)fi, [ei, fj ] = δi,jhαi
,

and parities

p(ei) = p(αi) = p(fi), p(h) = 0 (h ∈ h).

The superalgebra G̃ has a triangular decomposition G̃ = ñ+ ⊕ h ⊕ ñ−, where ñ+
(resp. ñ−) is the free superalgebra generated by the ei (resp. fi).

An ideal r′ of the Lie superalgebra G̃ is called admissible if r′ ∩ h = {0}, and
then we say the quotient G′ = G̃/r′ is admissible. For a fixed datum (E ,Π, p), the
associated admissible Lie superalgebras make a partially ordered set I = I(E ,Π, p).
We say G′ = G̃/r′ > G′′ = G̃/r′′ if r′ ⊂ r′′. Then G̃ is the unique top element of

I. Note that G′ > G′′ iff there is a surjection ψ = ψ(G′,G′′) : G′ ↠ G′′ with
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(h, ei, fi) 7→ (h, ei, fi). Denote by G = G(E ,Π, p) the unique bottom element of

I(E ,Π, p), the object of study of this work. It is the affine Lie superalgebra.

For G′ = G′(E ,Π, p) and α ∈ E , denote G′
α = {x ∈ G′; [h, x] = α(h)x ∀h ∈ h}

and Φ′ = Φ(G′) = {α ∈ E − {0}; G′
α ̸= {0}}. The linear space G′

0 is equal to h for

all G′. It is named the Cartan algebra of G′, and h ⊂ h0 is even. By the defining

relations, Φ′ ⊂ P+∪P−−{0}. Put Φ = Φ(E ,Π, p) for Φ(G), where G is the minimal

element of I. Note that G′ > G′′ implies Φ(G′′) ⊂ Φ(G′).

For B ⊂ I, put GB = G̃/
⋂

G′∈B kerψ(G̃,G′). It is an admissible Lie super-

algebra GB ∈ I. Then GB > G′′ for all G′′ ∈ B, and Φ(GB) =
⋃

G′′∈B Φ(G′′). For

α ∈ E , if dimG′′
α does not depend on G′′ ∈ B then dimGB,α = dimG′′

α for all

G′′ ∈ B.

For α, β ∈ P+, write β < α if α − β ∈ P+ − {0}. Fix a datum (E ,Π, p). Fix
G′ ∈ I(E ,Π, p). As argued in the proof of [K77, Prop. 9.11], as in [Y99, p. 327] we

have the following proposition.

Proposition 8.1.

(1) Let ρ ∈ E be such that (ρ, αi) =
1
2 (αi, αi) for all αi ∈ Π. If α ∈ P+ satisfies

(α, α) ̸= 2(ρ, α), and dimG′
β = dimGβ for all β ∈ P+ with β < α, then

dimG′
α = dimGα.

(2) Fix αi ∈ Π. Then,

(i) dimG′
kαi

equals 1 if k = 1, or if k = 2 and (αi, αi) ̸= 0 and p(αi) = 1; it

equals 0 if k = 2 and p(αi) = 0, or k ≥ 3;

(ii) when p(αi) = 1 and (αi, αi) = 0 we have dimG′
2αi

= 0 iff [ei, ei] = 0;

(iii) statements (i) and (ii) also hold with αi replaced by −αi;
(iv) dimG′

β is 0 for β ∈ P − P+ ∪ P−.

(3) Fix ai ∈ C× for all i, 1 ≤ i ≤ N = 1+n = |Π|. There exists a unique automor-

phism ϕ(a1, . . . , aN ) of G′ with (h, ei, fi) 7→ (h, aiei, a
−1
i fi). An automorphism

ϕ of G′ satisfies ϕ|h = 1h iff ϕ = ϕ(a1, . . . , aN ) for some ai ∈ C× for all i,

1 ≤ i ≤ N . These ai are uniquely determined by ϕ.

If ϕ : G′ → G′′ and φ : G′ → G′′ are homomorphisms, where G′ = G′(E ,Π, p)
and G′′ = G′′(E ′,Π′, p′), we write ϕ ≡ φ if φ = ϕ ◦ (a1, . . . , aN ) for some ai ∈ C×

(1 ≤ i ≤ N). Then ≡ is an equivalence relation. If ϕ, φ are isomorphisms and

ϕ(h) = h = φ(h), then ϕ ≡ φ iff φ = ϕ(b1, . . . , bN )◦ϕ for some bi ∈ C×, 1 ≤ i ≤ N .

The Dynkin diagram associated with a datum (E ,Π, p) is described in general

in [Y99, Sect. 1.3], but we need it only for type (AA)(1), where only white and

gray vertices occur, no black ones, and no twisting. Thus we shall be interested

only in a datum with Dynkin diagram as shown in Figure 4.
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×
εi1 − εi2

×
εi2 − εi3

... ×
εij−1

− εij

×
εij − εij+1

... ×
εim+n−1

− εim+n

×
δ − ε1 + εm+n

������������

XXXXXXXXXXXX

Figure 4. A type (AA) Dynkin diagram, for ŝl(m|n).

Fix a datum (E ,Π = {α0, . . . , αn}, p) whose Dynkin diagram is (AA); the

ith vertex is labeled by the ith root αi. Let Eex (ex for extended) be an (n + 2)-

dimensional C-vector space, with a nondegenerate symmetric bilinear form (. , .),

and a basis {ε1, . . . , εn+1, δ}, such that

(εi, εj) = δi,j(−1)p(εi), (εi, δ) = (δ, δ) = 0.

It is common to add to the basis another vector Λ0 with (δ,Λ0) = 1, (Λ0,Λ0) =

0, (εi,Λ0) = 0, but we do not need it. Write (AA)g for (AA) (g for good) if∑
1≤i≤n+1(−1)p(εi) ̸= 0, and (AA)b (b for bad) if this sum is 0. Put E = Eex if

(AA)b, and E = {x ∈ Eex; (x, θ) = 0} if (AA)g, where θ =
∑

1≤i≤n+1(−1)p(εi) εi.

Note that (. , .) restricts to a nondegenerate symmetric bilinear form on E . Assume

there is a simple odd root. The vectors ε1, . . . , εn+1, δ (and Λ0) are called the

fundamental elements of (E ,Π, p). In [Y99], n+ 1 is denoted by N (in our case of

(AA)g, thus m ̸= n), and it is equal to our m+ n.

The Kac–Moody Lie superalgebra G(E ,Π, p) is called an affine Lie super-

algebra of type (AA); we denote it also by ŝl(m|n,Π, p).
Note that ŝl(m|n) = A(m − 1, n − 1) (m ̸= n) is (AA)g, ŝl(m|m)/C · I2m =

A(m− 1|m− 1). Note that A(m− 1|m− 1) and ŝl(m|m) are not Kac–Moody Lie

superalgebras, since their simple roots are linearly dependent, and gl(m|m) is a

Kac–Moody Lie superalgebra. Define A(m − 1|m − 1)h as follows. Let ŝl(m|m)h

be the subalgebra ŝl(m|m)⊕ CE1,1 of ĝl(m|m) (E1,1 is the 2m× 2m matrix with

all entries ai,j equal to 0 except a1,1 = 1). Then A(m− 1|m− 1)h is defined to be

the quotient ŝl(m|m)h/(
⊕

k ̸=0 CI2m⊗ tk). This is a Kac–Moody Lie superalgebra,

while A(m− 1|m− 1) is not, since its simple roots are linearly dependent.

By [Y99, Prop. 3.1.1], dimGα = 1 for all α ∈ Φ(E ,Π, p)− Zδ, G = G(E ,Π, p).
Let G′ =G′(E ,Π, p) be an admissible Lie superalgebra with respect to (E ,Π, p),

namely G′ > G = G(E ,Π, p). As in [Y99, Def. 3.1.2], say G′ is affine admissible

if

Φ(G′(E ,Π, p)) = Φ(E ,Π, p), dimG′
α = 1 ∀α ∈ Φ(E ,Π, p)− Zδ.
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Let AI = AI(E ,Π, p) be the set of affine-admissible Lie superalgebras with respect

to (E ,Π, p). Let GAI = GAI(E ,Π, p) be the admissible Lie superalgebra
⋃

G′∈AI G′.

It is the unique maximal affine-admissible Lie superalgebra in AI(E ,Π, p): it is

in AI and GAI ≥ G′ for all G′ ∈ AI. It satisfies dimGAI,α = dimGα for all α ∈
(P+ ∪ P− − Zδ) ∪ {0}.

[Y99, Prop. 3.1.3] shows that if (δ, ρ) ̸= 0 then GAI = G, and gives examples

where the conclusion fails if (δ, ρ) = 0. In fact, this condition holds for (AA)g, thus

affine sl(m|n), m ̸= n, which we denote by ŝl(m|n), and fails for (AA)b, where

GAI is described in [Y99, Thm. 3.5.1]. The main result of [Y99, Thm. 4.1.1] of use

for us describes ŝl(m|n,Π, p) = GAI(E ,Π, p) in terms of generators and relations.

Recall that Π = {α0, . . . , αn}, n+ 1 = N = m+ n,

E = Span
{
εi− εj , (i ̸= j ∈ I(m|n)), δ

}
⊂ Eex = Span

{
εj (j ∈ I(m|n)), δ

}
.

We use [Y99, Thm. 4.1.1] only for m > n ≥ 1, m + n > 3. The cases m = n and

(m,n) = (2, 1) are left to another work.

Theorem 8.2. Let (E ,Π, p) be of affine (AA) type. The affine Lie superalgebra

ŝl(m|n,Π, p) = GAI(E ,Π, p) can alternatively be defined by generators h ∈ h, ei, fi
for all i, 0 ≤ i ≤ n, parities p(h) = 0, p(ei) = p(αi) = p(fi) for all i, 0 ≤ i ≤ n,

and “affine Serre” relations

(S1) [h, h′] = 0 for h, h′ ∈ h;

(S2) [h, ei] = αi(h)ei, [h, fi] = −αi(h)fi;
(S3) [ei, fj ] = δi,jhαi

;

(S4)(1) [ei, ej ] = 0 if i ̸= j and (αi, αj) = 0;

(S4)(2) [ei, ei] = 0 if (αi, αi) = 0 and then p(αi) = 1;

(S4)(3) [ei, [ei, [. . . [ei, ej ] . . .]]] = 0, ei appears 1 − 2(αi,αj)
(αi,αi)

times if (αi, αi) ̸= 0,

then p(αi) = 0, and the ith vertex is white;

(S4)(4) [[[ei, ej ], ek], ej ] = 0 if (αi, αj) = −(αj , αk) ̸= 0 = (αj , αj), so the jth

vertex is gray ;

(S5)(a) 1 ≤ a ≤ 4. The same relations as (S4)(a) with fr in place of er.

Note that for ŝl(m|n), (S4)(3) becomes [ei, [ei, ej ]] = 0 if (αi, αi) = −2(αi, αj)

= ±2, = (αj , αj) if it is nonzero. Then vertex i is white, and the adjacent vertex

j is gray if (αj , αj) is zero, and white if not.

§9. Fundamental representation

Our aim is to relate the finite-dimensional representations of the affine Lie algebra

ŝl(m|n) with those of the affine symmetric group Sad = Zd ⋊ Sd, the semidirect
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product of the symmetric group Sd and the lattice Zd, where Sd acts on Zd by

permutations. Denote by yi = (0, . . . , 0, 1, 0, . . . , 0) (1 in the ith place, 1 ≤ i ≤ d)

the standard d generators of Zd as a free abelian group.

Before stating the relation, recall that the Dynkin diagram of our ŝl(m|n) =
ŝl(m|n; Π, p) is described by Figure 4, where the vertices are labeled by the roots

αj = εij − εij+1 in a fundamental system (ij ∈ I(m|n), 1 ≤ j < m + n, ij ̸= ij′

if j ̸= j′), and α0 = δ − (εi1 − εim+n
), where (δ, εj) = 0 = (δ, δ) (j ∈ I(m|n)).

The root vector corresponding to the root αj = εij − εij+1
is ej = Eij ,ij+1

. The

corresponding coroot is hαj = Eij ,ij − (−1)p(αj)Eij+1,ij+1 , where p(αj) = 0 if

1 ≤ ij , ij+1 ≤ m or 1 ≤ ij , ij+1 ≤ n, and then the vertex labeled j, associated

with αj , is white, and p(αj) = 1 otherwise, and then the associated vertex is gray.

In particular, (αj , αj+1) = ±1, and p(αj) = 1 precisely when p(εij )+p(εij+1
) = 1,

thus p(αj) = p(εij )+ p(εij+1). The εi satisfy (εi, εj) = δi,j(−1)p(εi), and we added

a vector δ with (εi, δ) = (δ, δ) = 0 for all i. The root vector e0 corresponding to α0

is the transpose tEi1,im+n = Eim+n,i1 of Ei1,im+n , and the corresponding coroot is

hα0
= Eim+n,im+n

− (−1)p(α0)Ei1,i1 .

The superspace V = E, where E = Cm|n, has a natural structure of an ŝl(m|n)-
module, called the fundamental representation, denoted ρ. Recall that E = E0⊕E1

is a superspace, thus it is F2-graded, E0 =
⊕

iCui (1 ≤ i ≤ m), E1 =
⊕

j Cuj
(1 ≤ j ≤ n), with basis (u1, . . . , un), and there is a parity function p : E0∪E1 → F2,

with p being 0 on E0 and 1 on E1. Define a C-linear operator ρ(σ) on E by ρ(σ)ui =

(−1)p(ui)ui (i ∈ I(m|n)), thus ρ(σ) = diag(Im,−In), in the basis (ui; i ∈ I(m|n)).
Put u0 = 0 = un+1 (where 0 < 1 < · · · < m < 0 < 1 < · · · < n < n + 1). In the

basis (u1, . . . , un), α0 = δ − (εi1 − εim+n
) has root vector e0 and

ρ(e0) = ρ(eα0) = Eim+n,i1 , ρ(f0) = ρ(fα0) = Ei1,im+n ,

ρ(h0) = ρ(hα0
) = Eim+n,im+n

− (−1)p(α0)Ei1,i1 ,

αj = εij − εij+1 has root vector ej , 1 ≤ j < m+ n, and

ρ(ej) = ρ(eαj
) = Eij ,ij+1

, ρ(fj) = ρ(fαj
) = Eij+1,ij ,

ρ(hj) = ρ(hαj ) = Eij ,ij − (−1)p(αj)Eij+1,ij+1 ,

so

ρ(ej)ui = δi,ij+1
uij , ρ(fj)ui = δi,ijuij+1

,

and

ρ(hj)ui =


uij if i = ij ,

−uj+1 if i = ij+1,

0 otherwise.

In particular, [ρ(ei), ρ(fj)] = δi,jρ(hαi
). Note that εi ∈ E = h∗ and ui ∈ E.
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§10. Affine super Schur duality

The universal enveloping algebra U(g) of the superalgebra g has the structure of

a Hopf superalgebra, whose comultiplication ∆, counit ε, antipode S are

∆(ei) = ei ⊗ 1 + 1⊗ ei, ∆(fi) = fi ⊗ 1 + 1⊗ fi,

ε(ei) = 0 = ε(fi), S(ei) = −ei, S(fi) = −fi.

One can introduce a Hopf algebra structure by replacing U(g) by Uσ(g) =

U(g) ⋊ ⟨σ⟩, where σ is the involution on g given by σ(ei) = (−1)p(αi)ei, σ(fi) =

(−1)p(αi)fi. Then Uσ(g) is a Hopf algebra with comultiplication ∆σ, counit εσ,

antipode Sσ given by

∆σ(σ) = σ ⊗ σ, ∆σ(ei) = ei ⊗ 1 + σp(αi) ⊗ ei, ∆σ(fi) = fi ⊗ 1 + σp(αi) ⊗ fi,

εσ(σ) = 1, εσ(ei) = 0 = εσ(fi),

Sσ(σ) = σ, Sσ(ei) = −σp(αi)ei, Sσ(fi) = −σp(αi)fi.

The representation (ρ,E) extends to a representation ρd of Uσ = Uσ(g) on

E⊗d via the map

∆(k) = (∆σ ⊗ I⊗(k−1))∆(k−1) : Uσ → U⊗(k+1)
σ ,

where ∆(1) = ∆σ : Uσ → U⊗2
σ . Thus we put

ρd(x) = ρ⊗d ◦∆(d−1)(x), x ∈ Uσ = Uσ(gl(m|n)),

Explicitly, ρd(σ) = ρ(σ)⊗d,

ρd(ei) =
∑

1≤k≤d

ρ(σp(αi))⊗(k−1) ⊗ ρ(ei)⊗ I⊗(d−k),

ρd(fi) =
∑

1≤k≤d

ρ(σp(αi))⊗(k−1) ⊗ ρ(fi)⊗ I⊗(d−k).

We can now state our main result, an affine extension of the super Schur dual-

ity of Sergeev [S85, CW12]. Recall that Sad = Zd⋊Sd. Put ŝl(m|n) = ŝl(m|n,Π, p).

Theorem 10.1. Fix integers d ≥ 0, m > n ≥ 1, (m,n) ̸= (2, 1). There exists a

functor F from the category RepC[Sad ] of finite-dimensional right C[Sad ]-modules,

to the category Rep(ŝl(m|n); d) of finite-dimensional left Uσ(ŝl(m|n,Π, p))-modules

whose restriction to sl(m|n) is E⊗d-compatible, defined as follows. Let M be a right

Sad -module. Define F(M) to be S(M) =M⊗ψd(C[Sd])E⊗d as a Uσ(sl(m|n))-module.
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Let the remaining generators of ŝl(m|n,Π, p) act by

(ρd(e0))(mmm⊗ v) =
∑

1≤j≤d

mmmyj ⊗ ρ⊗d(Y
(d)
j,e )v, Y

(d)
j,e = (σp(α0))⊗(j−1) ⊗ e0 ⊗ I⊗(d−j),

(ρd(f0))(mmm⊗ v) =
∑

1≤j≤d

mmmy−1
j ⊗ ρ⊗d(Y

(d)
j,f )v, Y

(d)
j,f = (σp(α0))⊗(j−1) ⊗ f0 ⊗ I⊗(d−j),

for all mmm ∈ M and v ∈ E⊗d. If d < m + n then the functor F : M 7→ F(M)

is an equivalence from the category RepC[Sad ] of finite-dimensional Sad -modules,

onto the category Rep(ŝl(m|n); d) of finite-dimensional Uσ(ŝl(m|n))-modules whose

restriction to sl(m|n) is E⊗d-compatible.

The vector mmm ∈M is unrelated to the integer m = dimE0.

We show that our functor is an equivalence only for d < m+ n. Perhaps this

assertion holds for other d < (n + 1)(m + 1), as this is the condition in Theorem

6.2(4), as in [S85]. But our method of proof, which adapts [CP96], shows the

surjectivity only for d < m+ n. In the ordinary case of n = 0, it is shown in [F21]

that F is an equivalence when d < m, but it is not an equivalence when d = m in

the affine case, although S is in the finite-dimensional case. Determination of the

upper bound of d for which the theorem holds is left for another work.

In the trivial case d = 0, C[Sad ] = C and E⊗d = C; the category on the Sd-side

is that of finite-dimensional complex vector spaces, and the theorem asserts that

there are no nontrivial extensions of Lg-modules lifted from the trivial g-module C.
When d = 1 an irreducible representation of C[Sd⋉Zd] = C[Z] = C[t, t−1] is a

C-linear homomorphism χ : C[t±1] → C determined by the value χ(t) ∈ C× of χ at

t, or at 1 ∈ Z. An E-compatible irreducible representation of Lg = L⊗sl(n,C) (i.e.,
whose restriction to sl(m|n) is the standard representation ρ on E = Cm|n) is then

of the form χ⊗ρ, where χ : L → C is a C-linear algebra homomorphism determined

by the value χ(t) ∈ C×, by Corollary 17.3. On irreducibles the correspondence

defined by F is then χ 7→ χ⊗ ρ. Both categories, of finite-dimensional L-modules,

and of finite-dimensional E-compatible Lg-modules, are not semisimple.

§11. Operators are well defined

The first task on the way to the proof of the theorem is to check that the operators

ρd(e0) and ρd(f0) are well defined. Then we need to check they satisfy the relations

that define g. Only the new relations, those involving the new generators e0 and

f0, need to be checked. Then we need to verify that the functor is an equivalence

of categories.

Proposition 11.1. The operators are well defined.
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Proof. First we verify that for all s ∈ Sd,

(ρd(f0))(mmms⊗ v) = (ρd(f0))(mmm⊗ sv)

for all mmm ∈ M and v ∈ E⊗d; namely, as operators on S(M) = M ⊗C[Sd] E⊗d we

have ∑
1≤j≤d

syj ⊗ ρ⊗d(Y
(d)
j,f ) =

∑
1≤j≤d

yj ⊗ ρ⊗d(Y
(d)
j,f )s,

where we recall that Y
(d)
j,f = (σp(α0)⊗(j−1)⊗f0⊗I⊗(d−j). It suffices to show this for

a set of generators of the symmetric group Sd, so we take s to be a transposition

si = (i, i + 1), 1 ≤ i < d. The terms with j ̸= i, i + 1 on both sides are equal to

one another, as si commutes with yj and with ρ⊗d(Y
(d)
j,f ). It remains to show

siyi ⊗ Y
(d)
i,f + siyi+1 ⊗ Y

(d)
i+1,f = yi ⊗ Y

(d)
i,f si + yi+1 ⊗ Y

(d)
i+1,fsi.

Only the ith and (i+1)th factors in Y are affected by si, so to simplify the notation

we assume that s = (12) and d = 2, and we are to show that

(ρd(f0))(mmms⊗ v) = A+B,

A =mmmsy1 ⊗ (ρ(f0)⊗ I)v, B =mmmsy2 ⊗ (ρ(σp(α0))⊗ ρ(f0))v

equals

(ρd(f0))(mmm⊗ s · v) = C +D,

C =mmmy1 ⊗ (ρ(f0)⊗ I)s · v, D =mmmy2 ⊗ (ρ(σp(α0))⊗ ρ(f0))s · v.

Here s ·v stands for ψd(s)v, v is v1⊗v2 where vi are homogeneous (in Eι), ρ(σ)vi =
(−1)p(vi)vi, (ψ2(s))(v1 ⊗ v2) = (−1)p(v1)p(v2)v2 ⊗ v1. Then A ismmmy2 times (i.e., ⊗)

ψ(s)(ρ(f0)v1 ⊗ v2) = (−1)p(ρ(f0)v1)p(v2)v2 ⊗ ρ(f0)v1

= (−1)(p(α0)+p(α1))p(v2)v2 ⊗ ρ(f0)v1,

and D is mmmy2 times

(ρ(σp(α0))⊗ ρ(f0))(−1)p(v1)p(v2)v2 ⊗ v1 = (−1)p(v1)p(v2)(−1)p(α0)p(v2)v2 ⊗ ρ(f0)v1,

thus A = D, and B is mmmy1 times

ψ(s)(−1)p(α0)p(v1)v1 ⊗ ρ(f0)v2 = (−1)p(α0)p(v1)(−1)p(ρ(f0)v2)p(v1)ρ(f0)v2 ⊗ v1

and C is mmmy1 times

(ρ(f0)⊗ (−1)p(v1)p(v2)I)v2 ⊗ v1 = (−1)p(v1)p(v2)ρ(f0)v2 ⊗ v1,

so C = D as p(ρ(f0)v2) = p(α0) + p(v2).

The same computation holds with e0 replacing f0 (and y replaced by y−1).
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Remark 11.2. Our proof is patterned on that of [CP96]. Our Section 11 corre-

sponds to the first paragraph in the proof of [CP96, Thm. 4.2]; our verification of

the relations (which are more complex in the present case) in Sections 11.1, 12, 13

reminds one of [CP96, midpage 305 to midpage 306]; and our Section 14 of [CP96,

Sects. 4.3–4.6]. In particular, [CP96, lemma in Sect. 4.3] is given there without a

proof; our version of it is proven as Proposition 14.1 below.

§11.1. The relation (S4)(2)

The relation (S4)(2) needs to be checked only for the vertex in the affine Dynkin

diagram of ŝl(m|n), that is not in the diagram of sl(m|n), namely that indexed by

α0. This relation asserts that if p(α0) = 1, then [e0, e0] = e20 − (−1)p(α0)p(α0)e20 =

2e20 is 0. Thus we need to check that ρd(e
2
0) = 0 if p(α0) = 1. We then compute

ρd(e0)
2(mmm⊗ v) =

∑
1≤i,j≤d

mmmy−1
j y−1

i ⊗ (ρ(σ)⊗(i−1) ⊗ ρ(e0)⊗ I⊗(d−i))

× (ρ(σ)⊗(j−1) ⊗ ρ(e0)⊗ I⊗(d−j))v.

First we consider the summands associated with i < j: thus mmmy−1
j y−1

i ⊗

I⊗(i−1) ⊗ ρ(e0)ρ(σ)⊗ ρ(σ)⊗(j−i−1) ⊗ ρ(e0)⊗ I⊗(d−j)

plus

I⊗(i−1) ⊗ ρ(σ)ρ(e0)⊗ ρ(σ)⊗(j−i−1) ⊗ ρ(e0)⊗ I⊗(d−j)

is 0 since ρ(σ)ρ(e0) = −ρ(e0)ρ(σ). Then for the summands labeled by i = j we

have ρ(e0)
2 = 0 since ρ(e0) ∈ End1 E, dimE = m + n, dims E = m|n, so ρ(e0)

is nilpotent of order 2. The relation (S5)(2) is verified in the same way, with f0
replacing e0.

§12. The relations (S4)(3)

Next we check the relation(s) (S4)(3). It states, for our ĝ,

[ei, [ei, ej ]] =

{
0 if (αi, αi) = −2(αi, αj) = ±2,

(αj , αj) if (αj , αj) ̸= 0.

Here the vertices i and j are adjacent, the i-vertex is white, and so is the jth,

unless (αj , αj) = 0 when the j-vertex is gray. It suffices to check that ρd preserves

this relation only for the new vertex in the Dynkin diagram of ĝ, which does not

appear in the diagram for g. This vertex is (labeled by the root) α0, so we require

that ei or ej is e0, and then the other is e1 or en, as (αi, αj) ̸= 0.
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If j = 0 then i = 1 or n, and the relation is

[e1, [e1, e0]] =

{
0 if (e1, e1) = −2(e1, e0) = ±2,

(e0, e0) if ̸= 0,

[en, [en, e0]] =

{
0 if (αn, αn) = −2(αn, α0) = ±2,

(e0, e0) if ̸= 0.

If i = 0 then j = 1 or n, and the relation is

[e0, [e0, e1]] =

{
0 if (e0, e0) = −2(e0, e1) = ±2,

(e1, e1) if ̸= 0,

[e0, [e0, en]] =

{
0 if (α0, α0) = −2(α0, αn) = ±2,

(en, en) if ̸= 0.

The first of these triality relations, since p(α1) = 0, becomes

0 = [e1, [e1, e0]] = [e1, e1e0 − e0e1] = e2
1
e0 − 2e1e0e1 + e0e

2
1
.

We then need to show the vanishing of

ρd([e1, [e1, e0]])(mmm⊗ v) =
∑

1≤j≤d

mmmy−1
j ⊗ [ρd(e1), [ρd(e1), ρ

⊗d(Y
(d)
j,e )]]v.

It suffices to show the vanishing of ρ⊗d of

[∆(d−1)(e1), [∆
(d−1)(e1), Y

(d)
j,e ]].

When d = 1 this leads to ρ([e1, [e1, e0]]) = [ρ(e1), [ρ(e1), ρ(e0)]]. From the

relations on α1, α0 we may assume α1 = εi− εj , α0 = εk − εi (1 ≤ i, j, k ≤ m or

1 ≤ i, j, k ≤ n) if (α1, α1) = (α0, α0) = −2(α1, α0), hence ρ(e1) = Ei,j satisfies

ρ(e1)
2 = 0, and ρ(e0) = Ek,i, k ̸= j, so ρ(e1)ρ(e0) = Ei,jEk,i is 0. When p(α0) = 1

we have 1 ≤ i, j ≤ m and 1 ≤ k ≤ n or 1 ≤ k ≤ m and 1 ≤ i, j ≤ n, and the same

conclusion is obtained.

When d = 2, we are led to ρ⊗d of

[∆(e1), [∆(e1), e0 ⊗ 1 + σp(α0) ⊗ e0]] = A+B,

A = [e1 ⊗ 1 + 1⊗ e1, [e1 ⊗ 1 + 1⊗ e1, σ
p(α0) ⊗ e0]],

B = [e1 ⊗ 1 + 1⊗ e1, [e1 ⊗ 1 + 1⊗ e1, e0 ⊗ 1]].

Using ρ(e1) = Ei,j , p(e1) = 0, ρ(e0) = Ek,i, ρ(e1)ρ(e0) = Ei,jEk,i = 0,

ρ(e1)
2 = 0, and putting ρ(σ) = J , we see that the inner [. , .] in ρ⊗2(A) is

Ei,jJ
p(α0) ⊗ Ek,i − Jp(α0)Ei,j ⊗ Ek,i − Jp(α0) ⊗ Ek,iEi,j .



Affine Super Schur Duality 185

If p(α0) = 0 then the first two terms cancel each other, so ρ⊗2(A) becomes

−Ei,j ⊗ Ek,j + Ei,j ⊗ Ek,j = 0.

If p(α0) = 1 we get the same conclusion since Ei,jJ = JEi,j , as 1 ≤ i, j ≤ m or

1 ≤ i, j ≤ n.

The inner bracket in ρ⊗2(B) is ρ(e0)⊗ρ(e1)−ρ(e0)ρ(e1)⊗1−ρ(e0)⊗ρ(e1) =
−ρ(e0)ρ(e1)⊗ 1, hence ρ⊗2(B) is −ρ(e0)ρ(e1)⊗ ρ(e1) + ρ(e0)ρ(e1)⊗ ρ(e1) = 0.

For d ≥ 3, to verify that 0 = ρd([e1, [e1, e0]]) = [ρd(e1), [ρd(e1), ρd(e0)]], where

we recall that

ρd(e1) =
∑

1≤s≤d

ρ(σp(αi))⊗(s−1) ⊗ ρ(ei)⊗ I⊗(d−s) (1 ≤ i < n)

and

(ρd(e0))(mmm⊗v) =
∑

1≤j≤d

mmmy−1
j ⊗ρ⊗d(Y (d)

j,e )v, Y
(d)
j,e = (σp(α0))⊗(j−1)⊗e0⊗I⊗(d−j),

it suffices to show that after applying ρ⊗d, which we omit to simplify the notation,

the sum
∑

1≤s,t≤d a(s, t, j) is mapped to 0 for each j, where (here p(α1) = 0)

a(s, t, j) = [I⊗(s−1) ⊗ e1 ⊗ I⊗(d−s),

[I⊗(t−1) ⊗ e1 ⊗ I⊗(d−t), (σp(α0))⊗(j−1) ⊗ e0 ⊗ I⊗(d−j)]].

Fix j. The term s = t = j is zero since this case reduces to that of d = 1, as

the components at all other positions commute. So (ρ⊗3 of) a(j, j, j) is 0.

Fix j′ ̸= j. If s, t range over the set {j, j′}, the corresponding part of the sum

reduces to the case of d = 2, for the same reason. In particular, the sum of the

terms a(j′, j, j), a(j, j′, j), a(j, j, j′) is zero.

Now fix j′ and j′′ such that |{j, j′, j′′}| = 3. It remains to show that a(j′, j′′, j)

+ a(j′′, j′, j) is 0 for all triples {j, j′, j′′}. As the components at all other positions

commute, it suffices to consider the case where d = 3. There are three cases: j = 1,

2, 3. Consider j = 1. We have ((s, t) = (2, 3), (3, 2)) ρ⊗3 of

[I ⊗ e1 ⊗ I, [I ⊗ I ⊗ e1, e0 ⊗ I ⊗ I]] + [I ⊗ I ⊗ e1, [I ⊗ e1 ⊗ I, e0 ⊗ I ⊗ I]] = 0.

When j = 2 we have ρ⊗3 of

[e1 ⊗ I ⊗ I, [I ⊗ I ⊗ e1, σ
p(e0) ⊗ e0 ⊗ I]] = 0 (s = 1, t = 3)

plus the term for (s, t) = (3, 1), ρ⊗3 of

[I ⊗ I ⊗ e1, [e1 ⊗ I ⊗ I, σp(e0) ⊗ e0 ⊗ I]].
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Here the inner bracket has the form (ρ(e1)J − Jρ(e1))⊗ ρ(e0)⊗ I since p(e1) = 0,

which vanishes since J = diag(Im,−In) and ρ(e1) = diag(A,B) with A of size m,

B of size n.

Finally, when j = 3, we get ρ⊗3 of (s = 1, t = 2; use p(e1) = 0)

[e1 ⊗ I ⊗ I, [I ⊗ e1 ⊗ I, σp(e0) ⊗ σp(e0) ⊗ e0]] = 0,

since the inner bracket is Jp(e0) ⊗ (ρ(e1)J
p(e0) − Jp(e0)ρ(e1)) ⊗ e0 = 0, and (for

s = 2, t = 1) we get ρ⊗3 of

[I ⊗ e1 ⊗ I, [e1 ⊗ I ⊗ I, σp(e0) ⊗ σp(e0) ⊗ e0]] = 0,

since the first component in the inner bracket is ρ(e1)J
p(e0) − Jp(e0)ρ(e1) = 0.

The verification of the relation ρd([en, [en, e0]]) = 0 is obtained by simply

replacing e1 by en in the computation above.

The remaining pair of triality relations ρd([e0, [e0, ei]]) = 0 for i = 1 or n

is verified similarly. We note that only the standard case, where p(e0) = 1, is

discussed in [F20], but as we show here, the same computations apply to all data

(E ,Π, p).
This completes the verification that the relations (S4)(3) are preserved un-

der ρd.

The relations (S5)(3), in which ei are replaced by fi, are verified by analogous

computations.

§13. The relations (S4)(4)

The relations are [[[ei, ej ], ek], ej ] = 0 if p(αj) = 1, thus (αj , αj) = 0, and

(αi, αj) = −(αj , αk) ̸= 0. The new, affine, cases, are those that involve α0. Only

these relations need to be verified. So these relations are

(∗) [[[e1, e0], en], e0] = 0, p(e0) = 1, (α1, α0) = −(α0, αn) ̸= 0

corresponding to the three consecutive vertices (i = 1, j = 0, k = n), where the

vertex j = 0 is gray; and the relation obtained on interchanging e1 and en,

(∗∗) [[[e0, e1], e2], e1] = 0, p(e1) = 1, (α0, α1) = −(α1, α2) ̸= 0

corresponding to the three consecutive vertices (i = 0, j = 1, k = 2), where the

vertex j = 1 is gray; and the relation obtained on interchanging e2 and e0, and

replacing (0, 1, 2) with (0,n,n− 1) and (n− 1,n, 0): this is the case where j = n

(is gray), {i, k} = {0,n− 1}.
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Consider the case where p(α0) = p(α1) = p(αn) = 1 of (∗), the most extreme

case unique to the super situation. Then α0 = δi − εj and ρ(e0) = Ei,j . We may

take

(1) α1 = εk −δi, then αn = εj −δℓ, or α1 = δi − εk, then αn = δℓ − εj ; or

(2) α1 = εj −δk, then αn = εℓ−δi, or α1 = δk − εj , then αn = δi − εℓ.

Our task is then to show that

[[[ρd(e1), ρd(e0)], ρd(en)], ρd(e0)] = 0.

Since

(ρd(e))(mmm⊗ v) =
∑

1≤j≤d

mmmy−1
j ⊗ ρ⊗d(Y

(d)
j,e ), Y

(d)
j,e = σ⊗(j−1) ⊗ e⊗ I⊗(d−j)

for each of our e = e1, e0, en (as σp(e) = σ, since p(e) = 1), we need to consider

the sum of terms of the form (we write J for ρ(σ), Ei for ρ(ei) (i = 0, 1, n),

1 ≤ ji ≤ d)

a(j1, j2, j3, j4) = [[[J⊗(j1−1) ⊗ E1 ⊗ I⊗(d−j1), J⊗(j2−1) ⊗ E0 ⊗ I⊗(d−j2)],

J⊗(j3−1) ⊗ En ⊗ I⊗(d−j3)], J⊗(j4−1) ⊗ E0 ⊗ I⊗(d−j4)]

applied to mmm⊗ v.

To keep track of the computations, the procedure will be to fix (j2, j4), and

consider the sum of the terms a for all possibilities for j1, j3. In all cases the sum is

zero. There are too many cases to record all computations here, but the technique

is as in the previous section, of a triple bracket. We describe a few cases. Consider

then the case of (1) above. If all ji are equal to the same j, then we may assume

that d = 1, as the other components in the tensor product commute. In this

case we are reduced to the computation of [[[E1, E0], En], E0], where E1 = Ek,i,

En = Ej,ℓ, E0 = Ei,j . This bracket becomes [Ek,iEi,jEj,ℓ, Ei,j ] = 0, since j, k, ℓ

are all different.

Next we consider the case of j2 = j4 = j, and {j1, j3} ⊂ {j, j′}. Then we may

work with d = 2, so j = 1 or 2. When j = 1, j1 = 1, j3 = 2, the term is

[[[E1 ⊗ I, E0 ⊗ I], J ⊗ En], E0 ⊗ 1].

The first, innermost bracket, is E1E0 with p = 0, as E0E1 = 0. The second bracket

is E1E0J − JE1E0 = 0, since p(e0e1) = 0 so E1E0 commutes with J .

When j = 1, j1 = 2 (any j3 ∈ {1, 2}), the inner bracket is

[J ⊗ E1, E0 ⊗ 1] = (JE0 + E0J)⊗ E0,

and this is zero since p(e0) = 1 (thus JE0 = −E0J).
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When j = 2 and j1 = 1, the inner bracket

[E1 ⊗ 1, J ⊗ E0] = (E1J + JE1)⊗ E0

is zero as p(e1) = 1. When j = 2 = j1, j3 = 2, the term is

[[[J ⊗ E1, J ⊗ E0], En ⊗ I], J ⊗ E0].

The innermost bracket is I ⊗ E1E0, as E0E1 = 0. Since p(e1e0) = 0, the second

bracket is 0, as I ⊗ E1E0 commutes with En ⊗ I.

If j2 = j4 = j and j1, j3 ̸= j, then we may work with d = 3. Thus if j = 1,

(j1, j3) is (2, 3) or (3, 2). If j = 2, (j1, j3) is (1, 3) or (3, 1). If j = 3, (j1, j3) is (1, 2)

or (2, 1).

If j2 ̸= j4 = j and j1, j3 ∈ {j2, j4}, we may assume d = 2, and then (j2, j4) =

(1, 2) and (j1, j3) = (1, 2) and (2, 1), or (j2, j4) = (2, 1) and (j1, j3) = (1, 2) and

(2, 1). If j1, j3 ∈ {j2, j4, j′} but not both in {j2, j4}, then we may assume d = 3.

In this case, one of j1, j3 is in {j2, j4}, the other is not, or j1 = j3 = j′, a case we

consider next.

If j2 ̸= j4 = j and j1, j3 /∈ {j2, j4}, we work with d = 3 if j1 = j3, and with

d = 4 if not. In particular, it suffices always to work with d ≤ 4, and in each

case the computation is reduced to an elementary matrix multiplication, that can

easily be verified.

These considerations verify (S4)(4). The verification of the (S5) cases, where

the generators e are replaced by the generators f , is analogous.

§14. The functor F is an equivalence

The super Schur duality (Theorem 6.2) asserts the existence of an equivalence

of categories when d < (m + 1)(n + 1). The proof described below, which is an

adaptation of that of [CP96] in the affine quantum nonsuper case, of [F20] in the

affine quantum super case, and of [F21] in the affine case, seems to hold only

under the restriction d < m + n. So we assume this in the present section, and

ask whether the result, that our functor F is an equivalence, extends to bigger

d < (m+1)(n+1). In [F21] it is shown that the affine extension of Schur’s duality

holds for d < n but not for d = n when g = sln(C), although Schur’s duality holds

for d ≤ n. Recall that E = Cm|n.

To show that the functor F – which we have seen is a well-defined functor

between the categories specified in the theorem – is an equivalence, one has to

show the following:

(a) Every finite-dimensional E⊗d-compatible Uσ(ŝl(m|n,Π, p))-module W , i.e.,

each of its irreducible constituents when restricted to Uσ(sl(m|n,Π, p)) is a
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constituent of E⊗d, is isomorphic to F(M) = M ⊗C[Sd] E⊗d for some C[Sad ]-
module M . We write ⊗C[Sd] for ⊗ψd(C[Sd]).

(b) F is bijective on sets of morphisms.

To prove (a), by the super Schur duality Theorem 6.2 we assume that W =

S(M) for some C[Sd]-module M . We shall construct the action of the y±1
j on M

from the given action of ρd(e0), ρd(f0), ρd(h) on W .

Put Π0 = Π − {α0} = {α1 = εj1 − εj2 , . . . , αn = εjm+n−1
− εjm+n

; ji ∈
I(m|n)} ⊂ E = h∗.

Recall that {ui; i ∈ I(m|n)} denotes the standard basis of E, with p(ui) = 0

if 1 ≤ i ≤ m, p(ui) = 1 if 1 ≤ i ≤ n. We also write vi for ui, 1 ≤ i ≤ m, and

vi+m for ui, 1 ≤ i ≤ n. Further, n + 1 = N = m + n. Write Uσ(sl(m|n)) for

Uσ(sl(m|n,Π0, p)).

Proposition 14.1.

(a) Let M be a finite-dimensional C[Sd]-module. Fix v ∈ E⊗d such that E⊗d =

ρd(Uσ(sl(m|n))) · v. Then the map M → S(M), mmm 7→mmm⊗ v is injective.

(b) Suppose v = ui1 ⊗ · · · ⊗ uid ∈ E⊗d, where i1, . . . , id ∈ I(m|n) are distinct.

Then E⊗d = ρd(Uσ(sl(m|n))) · v. In particular, v satisfies the condition stated

in (a).

Proof. Choose an isomorphism E⊗d =
⊕

λ L(λ
s) ⊗ Sλ, where λ ∈ Pd(m|n). As

we assume d < m + n < (m + 1)(n + 1), every partition λ of d is an (m|n)-
hook partition of d, so the sum ranges over Pd(m + n). The length ℓ(λs) of λs is

< m + n. Here Sλ is the λ-Specht representation of Sd and L(λs) is the sl(m|n)-
module parametrized by λs. The vector v =

∑
λ xλ spans E⊗d under the action

of ρd(Uσ(g)), in particular ρd(Uσ(g)) · xλ = Sλ ⊗ L(λs) = HomC(L(λ
s)∨, Sλ). As

dimL(λs) ≥ dimSλ, we may assume xλ : L(λ
s)∨ → Sλ is onto, for each λ.

To see why the dimension of the GL-representation (L(λs) or V λ) is no less

than the dimension of the corresponding representation (Sλ) of the symmetric

group, when d ≤ n, I follow a message from Vera Serganova. First take the case

d = n, and the usual, nonsuper case. Consider the diagonal subgroup of GL.

Take the subspace M of E⊗d on which diag(x1, . . . , xn) acts by the character

x1 · · ·xn. This subspace is the regular representation of Sd (when d = n). Then

we get dim(M ∩ V λ) = dimSλ. (Indeed, M ∩ V λ = cλM , where cλ is the Young

projector, basically by definition. But dim cλX is the multiplicity of Sλ in X for a

representation X of Sd. In our case X =M is regular, hence the multiplicity of any

irreducible representation is equal to its dimension.) This gives the inequality, since

dimV λ ≥ dim(M∩V λ) = dimSλ. This proof works perfectly well in the super case.

Now when n > d, the dimension of V λ only grows. This is also clear in the super
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case, where V λ is replaced by L(λs). It is important to note that in the super case

we mean the usual dimension, dimL(λs)0 + dimL(λs)1. For the superdimension

the inequality is wrong. For example, all irreducible representations of gl(1|1) have
superdimension ≤ 2. But for the (1|1)-hook partition λ = (2, 1, 1, . . . , 1) of size d,

the corresponding symmetric group module Sλ has dimension d−1, > 2 for d ≥ 4.

In the nonsuper case the dimension inequality follows also from the dimension

formula of [FH91, Ex. 6.4*, p. 78].

Now since C[Sd] is semisimple, by the Maschke theorem the finite-dimensional

C[Sd]-module M is completely reducible. Thus M =
⊕

µ⊢dMµ, where Mµ are the

µ-isotypical components ofM . HenceMµ≃Sµ⊗Aµ, where Aµ= HomC[Sd](S
µ,M)

is a vector space. Since Sµ ≃ (Sµ)′ is self dual, Mµ ≃ HomC(S
µ, Aµ).

We next use the fact that Sλ is self-dual, and Schur’s lemma: V ′ ⊗G W ≃
HomG(V,W ) is C if the irreducible G-modules V , W are isomorphic, 0 if not;

G = Sd. Consider the map

M × E⊗d →M ⊗C[Sd] E
⊗d =

(⊕
µ

HomC(S
µ, Aµ)

)
⊗C[Sd]

(⊕
λ

Sλ ⊗ L(λs)

)
=
⊕
λ

Aλ ⊗ L(λs)

=
⊕
λ

HomC(L(λ
s)∨, Aλ),

((fλ : S
λ → Aλ), (xλ ∈ Sλ ⊗ L(λs))) 7→ (fλ(xλ) ∈ Aλ ⊗ L(λs)

= HomC(L(λ
s)∨, Aλ)),

where fλ(xλ) is fλ ◦ xλ : L(λs)∨ → Sλ → Aλ.

The injectivity of the map M 7→ M ⊗C[Sd] E⊗d, mmm 7→ mmm ⊗ v, means that

fλ ◦ xλ = 0 implies fλ = 0 for all λ. This holds when xλ : L(λ
s)∨ → Sλ is

surjective, as assumed; (a) follows.

It does not suffice to assume that xλ ̸= 0 for all λ as assumed in [CP96,

Lem. 4.3(a)]: if for example xλ = a ⊗ b, a ∈ Sλ, b ∈ L(λs), dimSλ ≥ 2 and

Aλ ̸= 0, there are nonzero fλ : S
λ → Aλ that send a to 0. For this reason we write

a proof of the proposition.

Claim (b) is elementary. We need to show that under the action of the uni-

versal enveloping algebra ρd(Uσ(sl(m|n))), each basis vector εj1 ⊗ · · · ⊗ εjd of E⊗d

can be obtained from εi1 ⊗ · · · ⊗ εid with distinct i1, . . . , id ∈ {1, . . . ,m + n}.
To simplify the notation it suffices to show this for d = 2. Then m + n > 2

by our standing assumption d < m + n. Thus it suffices to show that ρd(Uσ(g))

takes ε1 ⊗ ε2 to εk ⊗ εℓ for any k, ℓ between 1 and m + n. Recall that ρd(g)

acts as ∆d(g)v =
∑

1≤j≤d(−1)p(g)(p(v1)+···+p(vj−1))(I⊗(j−1) ⊗ g ⊗ I⊗(d−j))v on
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v = v1 ⊗ · · · ⊗ vd. Write g = (a, b, c) for the (m + n) × (m + n)-matrix with

first column a, second column b, kth column c, k > 2; the other columns are

not written, to save on notation; it suffices to take m + n = 3 and k = 3. Then

∆d(εk, 0, ∗) takes ε1 ⊗ ε2 to εk ⊗ ε2, where ∗ means any column; ∆d(∗, εℓ, 0) takes
εk ⊗ ε2 to εk ⊗ εℓ (k ̸= 2); ∆d(0, ∗, ε2) takes εk ⊗ ε1 to ε2 ⊗ ε1; ∆d(εℓ, 0, ∗) takes

ε2 ⊗ ε1 to ε2 ⊗ εℓ; ∆d(0, εk, ∗) takes ε1 ⊗ ε2 to ε1 ⊗ εk, of course up to a sign.

Proposition 14.2. For j, 1 ≤ j ≤ d, put a(j) = v2⊗· · ·⊗vj, b(j) = vj+1⊗· · ·⊗vd,

v(j) = a(j)⊗ vm+n ⊗ b(j), w(j) = a(j)⊗ v1 ⊗ b(j).

In particular,

v(1) = vm+n ⊗ v2 ⊗ · · · ⊗ vd, v(d) = v2 ⊗ · · · ⊗ vd ⊗ vm+n,

w(1) = v1 ⊗ v2 ⊗ · · · ⊗ vd, w(d) = v2 ⊗ · · · ⊗ vd ⊗ v1.

Then there exists αj,f ∈ EndCM with

(ρd(f0))(mmm⊗ v(j)) = αj,f (mmm)⊗ ρ⊗d(Y
(d)
j,f )v

(j)

and αj,e ∈ EndCM with

(ρd(e0))(mmm⊗ w(j)) = αj,e(mmm)⊗ ρ⊗d(Y
(d)
j,e )w

(j)

for all j, 1 ≤ j ≤ d. We have ρ⊗d(Y
(d)
j,f )v

(j) = ±w(j) and ρ⊗d(Y
(d)
j,e )w

(j) = ±v(j).

Proof. For τ in the symmetric group Sd on d letters, put

w(j)
τ = (vτ(2) ⊗ · · · ⊗ vτ(j))⊗ vτ(1) ⊗ (vτ(j+1) ⊗ · · · ⊗ vτ(d)).

The set {w(j)
τ ; τ ∈ Sd} spans the subspace of E⊗d of weight λd = εj1 + εj2 + · · ·+

εjd . Now ρd(f0) adds εj1 − εjm+n to the weight, hence it takes εjm+n to εj1 . Thus

for every mmm ∈M we have

(ρd(f0))(mmm⊗ v(j)) =
∑
τ∈Sd

mmmτ ⊗ w(j)
τ

for some mmmτ ∈ M . But w
(j)
τ is a nonzero scalar multiple of h · w(j) for some h ∈

C[Sd], h = h(τ). Hence (ρd(f0))(mmm⊗v(j)) equalsmmm′⊗w(j) for somemmm′ ∈M . Then

there exists αj,f ∈ EndCM withmmm′ = αj,f (mmm) for allmmm ∈M by Proposition 14.1.

The existence of αj,e ∈ EndCM is proven analogously.
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Proposition 14.3. For all m ∈M and v ∈ E⊗d we have

(ρd(e0))(mmm⊗ v) =
∑

1≤j≤d

αj,e(mmm)⊗ ρ⊗d(Y
(d)
j,e )v,

(ρd(f0))(mmm⊗ v) =
∑

1≤j≤d

αj,f (mmm)⊗ ρ⊗d(Y
(d)
j,f )v.

Proof. Suppose v = ui1 ⊗ · · · ⊗ uid . Then (ρd(f0))(mmm ⊗ v) will be 0 if no ij is

jm+n, as then − εjm+n
+ εj1 + εi1 + · · ·+εid cannot be a weight of E⊗d. So we may

assume some component of v is ujm+n .

Let r ≥ 0, s ≥ 1, r + s ≤ d, 1 ≤ j1 < j2 < · · · < jr ≤ d, 1 ≤ j′1 < j′2 <

· · · < j′s ≤ d, and assume {j1, . . . , jr} ∩ {j′1, . . . , j′s} = ∅. Write j = (j1, . . . , jr),

j′ = (j′1, . . . , j
′
s). Let E(j,j′) be the subspace of E⊗d spanned by the vectors that

have v1 in positions j1, . . . , jr; vm+n in positions j′1, . . . , j
′
s; and vectors from

{v2, . . . , vm+n−1} in the remaining positions. We prove the proposition when v

is in E(j,j′) for all j, j′ in two steps:

(i) for s = 1, by induction on r,

(ii) for all r, by induction on s.

By Proposition 14.1, applied to the subalgebra of Uσ generated by the ei, fi, h
±1
αi

for

i ∈ {2, . . . ,m+n−2}, to prove our proposition for all v ∈ E(j,j′) it suffices to prove

it for one 0 ̸= v ∈ E(j,j′) whose components have no vector from {v2, . . . , vm+n−1}
twice. Such vectors exist since 1 ≤ d + 1 − r − s ≤ d ≤ m + n − 1. Here we used

the condition d < m+ n.

Proof of step (i). Here s = 1. The case of r = 0 follows from Proposition 14.2:

take

v = a(j′1)⊗ vm+n ⊗ b(j′1), w = a(j′1)⊗ v1 ⊗ b(j′1)

(recall that a(j) = v2⊗· · ·⊗vj , b(j) = vj+1⊗· · ·⊗vd). As Y
(d)
j,f = (σp(α0))⊗(j−1)⊗

f0 ⊗ I⊗(d−j) and ρ(f0) = E1,m+n, we have ρ⊗d(Y
(d)
j′1,f

)v = w times a sign, and

ρ⊗d(Y
(d)
j,f )v = 0 for all j ̸= j′1, hence we have (ρd(f0))(mmm⊗ v) =

∑
1≤j≤d αj,f (mmm)⊗

ρ⊗d(Y
(d)
j,f )v, where αj,f (mmm) is the sign times mmm.

Assume step (i) holds for r−1. Put j̃ = (j2, . . . , jr). Define v′ ∈ E(j̃,j′) to be a

pure tensor with v2 in the j1 position, and distinct vectors from {v3, . . . , vm+n−1}
in the remaining positions. Then v = ρd(e1)v

′. Indeed, recall that ρd(e1) =∑
k(J

p(α1))⊗(k−1) ⊗ ρ(e1) ⊗ 1⊗(d−k), that ρ(e1)vj = δ2,jv1, and that v′ has v2
only at position j1 (and v1 only at positions j2, . . . , jr), so only k = j1 survives in

the sum over k that defines ρd(e1), and (ρd(e1))v
′ = v.

Define v′′ by replacing vm+n in position j′ = j′1 in v′ by v1, and v′′′ by

replacing v2 in position j1 in v′′ by v1. Now r(v′) = r − 1, so we can apply the
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induction on r (in the third equality below, and (S3) in the second):

(ρd(f0))(mmm⊗ v) = ρd(f0)ρd(e1)(mmm⊗ v′)

= ρd(e1)ρd(f0)(mmm⊗ v′)

= ρd(e1)
∑

1≤ℓ≤d

αℓ,f (mmm)⊗ ρ⊗d(Y
(d)
ℓ,f )v

′.

Recall again that Y
(d)
ℓ,f is (σp(α0))⊗(ℓ−1) ⊗ f0 ⊗ I⊗(d−ℓ), and ρ(f0) = E1,m+n, and

vm+n occurs only at position j′1 in v′. Then only ℓ = j′1 survives in the sum, which

becomes a multiple of v′′, by a sign ι. Since v2 occurs in v′′ only in position j1,

in the sum defining ρd(e1) only the summand indexed by k = j1 survives when

acting on v′′, and it is (Jp(α1))⊗(jr−1)⊗ρ(e1)⊗1⊗(d−jr). So ρd(e1) maps v′′ to v′′′.

We obtain αj′1,f (mmm) times ιv′′′ = ρ⊗d(Y
(d)
j′1,f

)v. For other j we have 0 = ρ⊗d(Y
(d)
j,f )v.

So we end up with
∑
j αj,f (mmm)⊗ ρ⊗d(Y

(d)
j,f )v, completing step (i).

Proof of step (ii). Assume the proposition holds for all v ∈ E(j,j′) with fewer

than s components vm+n. As in step (i), it suffices to prove the claim for one

element v ̸= 0 in E(j,j′) that has distinct entries from {v2, . . . , vm+n−1} in the

remaining positions. Fix such a v. Let v′ be the tensor obtained from v on replacing

vm+n in positions j′s−1 and j′s by vm+n−1. We claim that

ρd(fm+n−1)
2v′ = 2v.

To see this, recall that ρ(fm+n−1) = Em+n,m+n−1, and p(αm+n−1) = 0, and

ρd(fm+n−1) =
∑

1≤k≤d

(Jp(αm+n−1))⊗(k−1) ⊗ ρ(fm+n−1)⊗ I⊗(d−k).

So in ρd(fm+n−1)
2v′ the sum over k in each ρd(fm+n−1) reduces to k = j′s−1, j

′
s,

and all factors in positions ̸= j′s−1, j
′
s in each summand, commute. At these two

positions the components of v′ are vm+n−1 ⊗ vm+n−1 and those of ρd(fm+n−1)
2

are

(ρ(fm+n−1)⊗ I + Jp(αm+n−1) ⊗ ρ(fm+n−1))

× (ρ(fm+n−1)⊗ I + Jp(αm+n−1) ⊗ ρ(fm+n−1))

= ρ(fm+n−1)J
p(αm+n−1) ⊗ ρ(fm+n−1) + Jp(αm+n−1)ρ(fm+n−1)⊗ ρ(fm+n−1)

as ρ(fm+n−1)
2 = 0. So ρd(fm+n−1)

2v′ equals

I⊗(j′s−1−1) ⊗ ρ(fm+n−1)⊗ I⊗(j′s−1−j′s−1) ⊗ (ρ(fm+n−1) + ρ(fm+n−1))⊗ I⊗(d−j′s)v′.

Now ρ(fm+n−1)vm+n−1 = vm+n, so in conclusion v = 1
2ρd(fm+n−1)

2v′, as claimed.
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To continue we use the equality (S5)(3),

ρd(f0)ρd(fm+n−1)
2 = 2ρd(fm+n−1)ρd(f0)ρd(fm+n−1)− ρd(fm+n−1)

2ρd(f0),

in the second equality below:

(ρd(f0))(mmm⊗ v) = 1
2ρd(f0)ρd(fm+n−1)

2(mmm⊗ v′) = A+B,

A = ρd(fm+n−1)ρd(f0)ρd(fm+n−1)(mmm⊗ v′),

B = − 1
2ρd(fm+n−1)

2ρd(f0)(mmm⊗ v′).

To find B, we write by induction

(ρd(f0))(mmm⊗ v′) =
∑

1≤k≤s−2

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v′,

Y
(d)
j,f = (σp(α0))⊗(j−1) ⊗ f0 ⊗ I⊗(d−j),

as vm+n occurs only at the s − 2 < s positions j′1, . . . , j
′
s−2 in v′. Recall that

ρ(f0) = E1,m+n. Note that ρd(fm+n−1) changes the factors (vm+n−1 to vm+n) of v
′

only at the positions j′s−1, j
′
s. Applying ρd(fm+n−1) to (ρd(f0))(mmm⊗v′) would send

the part vm+n−1⊗vm+n−1 at the positions j
′
s−1 and j

′
s to vm+n⊗vm+n−1 (from the

summand of ρd(fm+n−1) with (j′s−1, j
′
s) parts ρ(fm+n−1)⊗I), plus vm+n−1⊗vm+n

(from the summand of ρd(fm+n−1) with (j′s−1, j
′
s) parts I⊗ρ(fm+n−1)). Applying

ρd(fm+n−1) again we obtain

vm+n ⊗ vm+n + vm+n ⊗ vm+n = 2vm+n ⊗ vm+n.

Now ρ⊗d(Y
(d)
j′k,f

) acts on the two factors vm+n⊗vm+n of v at the positions (j′s−1, j
′
s)

trivially, and also on v′. So in summary,

B = −
∑

1≤k≤s−2

αj′k(mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v.

To compute A, let v′′ (resp. v′′′) be obtained from v′ on replacing the vector

vm+n−1 at the j′s−1 (resp. j′s) position by vm+n. Observe that

(ρd(fm+n−1))(mmm⊗ v′) =mmm⊗ v′′ +mmm⊗ v′′′.

(Applying ρd(fm+n−1) again we recover the result from the start of the proof:

(ρd(fm+n−1)
2)(mmm⊗ v′) = 2(mmm⊗ v).) As s(v′′) = s− 1 = s(v′′′) < s, by induction

we get

ρd(f0)ρd(fm+n−1)(mmm⊗ v′) =
∑
k ̸=s

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v′′

+
∑
k ̸=s−1

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v′′′.
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Now we apply ρd(fm+n−1). As v′′ has vm+n−1 only at the j′s position, we get

ρd(fm+n−1)
∑
k ̸=s

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v′′ =
∑
k≤s−1

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v.

Denote this by A1. As v′′′ has vm+n−1 only at the j′s−1 position,

ρd(fm+n−1)
∑
k ̸=s−1

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v′′′ = A2 +A3,

A2 = αj′s,f (mmm)⊗ ρ⊗d(Y
(d)
j′s,f

)v, A3 =
∑
k≤s−2

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v.

Then A = A1 +A2 +A3, and B +A is

(ρd(f0))(mmm⊗ v) = −
∑

1≤k≤s−2

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v

+
∑
k≤s−2

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v

+ αj′s,f (mmm)⊗ ρ⊗d(Y
(d)
j′s,f

)v +
∑

1≤k≤s−1

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v

=
∑

1≤k≤s

αj′k,f (mmm)⊗ ρ⊗d(Y
(d)
j′k,f

)v.

Proposition 14.4. Setting mmmyj = αj,e(mmm), mmmy−1
j = αj,f (mmm) defines a right

C[Sad ]-module structure on M , extending its C[Sd]-module structure.

Proof. We have to check the following relations:

(i) yjy
−1
j = 1 = y−1

j yj ;

(ii) yjyk = ykyj ;

(iii) yj+1 = sjyjsj , where sj = (j, j + 1) ∈ Sd.

To prove (i) and (ii), we compute both sides of the equality

(ρd([e0, f0]))(mmm⊗ v) = ρd(hα0
)(mmm⊗ v).

For (i) we take v with vm+n in the jth position and vm+n−(d−1), . . . , vm+n−1 in

the remaining positions, in any order.

For (ii) take v to be a tensor with v1 in the jth place, vm+n in the kth position,

and distinct vectors from {v2, . . . , vm+n−1} in the other positions.

For (iii), take v = vi1⊗· · ·⊗vid ∈ E⊗d with ij = 2, ij+1 = 1, and the remaining

ik are distinct from {3, . . . ,m+n−1}. This is possible since d ≤ m+n−1. (Once

again we use the condition d < m + n.) So v has v2 at position j, v1 at position
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j + 1. The vector v′ is obtained from v on replacing v1 at position j + 1 by vm+n.

The vector v′′ is obtained from v′ on replacing v2 at position j by vm+n and vm+n

at position j+1 by v2. The vector v
′′′ is obtained from v on replacing v2 at position

j by v1 and v1 at position j + 1 by v2.

Now looking at the indices (i, j) = (2,m + n) only, we have s(vm+n ⊗ v2) =

v2 ⊗ vm+n and s(v2 ⊗ v1) = v1 ⊗ v2, so sv = v′′′ and sv′′ = v′. Then

mmm · sjyjsj ⊗ v =mmm · sjyj ⊗ v′′′ = (ρd(f0))(mmm · sj ⊗ v′′)

= (ρd(f0))(mmm⊗ sjv
′′)

= (ρd(f0))(mmm⊗ v′) =mmmyj+1 ⊗ v.

Since v has distinct components, Proposition 14.1 implies thatmmm·yj+1 =mmm·sjyjsj
for all mmm ∈M .

This completes the proof that W ≃ F(M) as a Uσ(ŝl(m|n,Π, p))-module.

To show that F is an equivalence we still need to show that it is bijective

on sets of morphisms. Injectivity of F follows from that of S. For surjectiv-

ity, let F : F(M) → F(M ′) be a homomorphism of Uσ(ŝl(m|n,Π, p))-modules.

By Proposition 14.1, F = S(f) for some homomorphism f : M → M ′ of C[Sd]-
modules. Since F commutes with the action of ρ(f0) we have (ρ(f0)F )(mmm⊗ v) =

(Fρ(f0))(mmm⊗ v), i.e.,∑
1≤j≤d

f(mmm) · yj ⊗ ρ⊗d(Y
(d)
j,f )v =

∑
1≤j≤d

f(mmmyj)⊗ ρ⊗d(Y
(d)
j,f )v

for allmmm ∈M and v ∈ E⊗d. Choosing v suitably we deduce that f(mmmyj) = f(mmm)yj
for all j (1 ≤ j ≤ d). This completes the proof of Theorem 10.1.

§15. Parabolic induction

Let Sdi be the symmetric group on di letters, i = 1, 2. There is a natural embedding

of Sd1 × Sd2 in Sd1+d2 , given by viewing Sd1+d2 as the group of permutations

of the letters t1, . . . , td1+d2 , Sd1 as the symmetric group of t1, . . . , td1 , and Sd2
of td1+1, . . . , td1+d2 . This naturally extends to an embedding of group algebras,

C[Sd1 ]⊗C[Sd2 ] ↪→ C[Sd1+d2 ], and also to an embedding of affine symmetric groups

ϕd1,d2 : S
a
d1

× Sad2 ↪→ Sad1+d2 , and their group algebras ϕd1,d2 : C[Sad1 ] ⊗ C[Sad2 ] ↪→
C[Sad1+d2 ]. Here S

a
d = Zd ⋊ Sd, Sd acts on Zd by permutations, Sd is generated

by si = (i, i + 1) (1 ≤ i < d), Zd by yj = (0, . . . , 0, 1, 0, . . . , 0) (1 at the jth

place); the embedding maps si ∈ Sd1 (or si ⊗ 1) to si, and yj ∈ Sad1 (or yj ⊗ 1 in

C[Sad1 ]⊗ C[Sad2 ]) to yj , and si ∈ Sd2 (= 1⊗ si ∈ 1⊗ C[Sad2 ]) to sd1+i, yj ∈ Sad2 to

yd1+j .
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Let Mi be a finite-dimensional right C[Sadi ]-module. Their outer tensor prod-

uct, M1 ⊗C M2, is a C[Sad1 ] ⊗C C[Sad2 ]-module. The induced C[Sad1+d2 ]-module

M1×̃M2 is defined by

M1×̃M2 = ind
C[Sa

d1+d2
]

C[Sa
d1

]⊗C[Sa
d2

](M1 ⊗M2) = (M1 ⊗M2)⊗C[Sa
d1

]⊗C[Sa
d2

] C[Sad1+d2 ].

This induction is associative up to a canonical isomorphism.

For finite-dimensional C[Sdi ]-modules Mi we define M1 ×M2 analogously for

the finite groups Sdi and their group algebras, with the superscript a removed.

If M is a C[Sad ]-module, by M |C[Sd] we mean M regarded as a C[Sd]-module

by restriction.

Proposition 15.1. Let Mi be a finite-dimensional C[Sadi ]-module, i = 1, 2. Then

there is a natural isomorphism M1×̃M2|C[Sd1+d2 ] ≃M1|C[Sd1 ]×M2|C[Sd2 ].

Proof. The natural map from the left to the right sides,

(m1 ⊗m2)⊗ h 7→ (m1 ⊗m2)⊗ h (mi ∈Mi, h ∈ C[Sd1+d2 ]),

is a well-defined surjective homomorphism of C[Sd1+d2 ]-modules. Note that

C[Sd] ↪→ C[Sad ] and C[Sd] ⊗C C[y±1
1 , . . . , y±1

d ] → C[Sad ] is an isomorphism of C-
vector spaces. Hence the rank of C[Sad1+d2 ] as a C[Sad1 ]⊗C[Sad2 ]-module is equal to

the rank of C[Sd1+d2 ] as a C[Sd1 ]⊗C[Sd2 ]-module. It follows that dimCM1×̃M2 =

dimCM1 ×M2.

Let a = (a1, . . . , ad) ∈ C×d, and define the evaluation map εa : C[Sd ⋉ Zd] →
C[Sd] by σi 7→ σi (1 ≤ i < d), yj 7→ aj (1 ≤ j ≤ d). Let Ia be the ideal generated

by yj−aj (1 ≤ j ≤ d) in the algebra C[Sd⋉Zd], andMa the quotient of C[Sd⋉Zd]
by Ia. Then Ma is a finite-dimensional C[Sd ⋉ Zd]-module. As a C[Sd]-module it

is isomorphic to the right regular representation. Thus Ma is the pullback of the

right regular representation C[Sd] via the evaluation map εa.

Some representations of C[Sad ] can be lifted from those of C[Sd].

Proposition 15.2. For each z ∈ C× there is a unique homomorphism evz : C[Sad ]
→ C[Sd] that is the identity on C[Sd] ↪→ C[Sd], and it maps y1 to z. Hence

evz(yj) = z for all j, 1 ≤ j ≤ d.

§16. Relating representations of C[Sa
d ] and Uσ(ŝl(m|n))

The functor F is a functor of C-linear categories. It commutes with induction.

Recall that we write Uσ(ŝl(m|n,Π, p)) for UAI(E ,Π, p) for simplicity.
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Proposition 16.1. Let Mi be a finite-dimensional C[Sadi ]-module (i = 1, 2). Then

there is a natural isomorphism F(M1×̃M2)≃F(M1)⊗F(M2) of Uσ(ŝl(m|n,Π, p))-
modules.

Proof. Let ϕ : B → A be a homomorphism of associative algebras with a unit

over a field, M a right B-module, W a left A-module, and W |B is W regarded

as a left B-module via ϕ. Then there is a natural isomorphism of vector spaces:

indAB(M) ⊗ W ≃ M ⊗B W |B. This form of Frobenius reciprocity is given by

(mmm⊗ a)⊗ w 7→mmm⊗ aw (mmm ∈M , a ∈ A, w ∈W ).

Take A = C[Sd1+d2 ], B = C[Sd1 ] ⊗ C[Sd2 ], ϕ = ϕ(d1, d2), M = M1 ⊗M2,

W = E⊗(d1+d2), where E = Cm|n = E0 ⊕E1 = Cm⊕Cn (of dimension m|n) being
the natural representation of Uσ(ŝl(m|n,Π, p)). Note that W ≃ E⊗d1 ⊗E⊗d2 as an

C[Sd1 ]⊗ C[Sd2 ]-module. We get a natural isomorphism of vector spaces

F(M1×̃M2) → (M1 ⊗M2)⊗C[Sd1
]⊗C[Sd2

] (E⊗d1 ⊗ E⊗d2).

The right-hand side is isomorphic to F(M1)⊗F(M2) as a vector space. It remains

to check that the resulting isomorphism F(M1×̃M2) → F(M1) ⊗ F(M2) of C-
vector spaces commutes with the action of Uσ(ŝl(m|n,Π, p)).

Consider the fundamental Uσ(sl(m|n,Π, p))-module E. For a ∈ C× we view

E as an L(ŝl(m|n,Π, p))-module E(a), on which t acts as multiplication by a. In

other words, E(a) is the Uσ(ŝl(m|n,Π, p))-module which is E as a Uσ(sl(m|n,Π, p))-
module, the central element c and the derivation d act as 0, and t acts as multi-

plication by a.

Using the equivalence F we now relate the universal C[Sad ]-module Ma (a ∈
C×d) and the Uσ(ŝl(m|n,Π, p))-modules E(ai), ai ∈ C×.

Proposition 16.2. Let a = (a1, . . . , ad) ∈ C×d, d ≥ 1, m, n ≥ 2. Then there

exists a natural isomorphism F(Ma) ≃ E(a1)⊗ · · · ⊗ E(ad).

Proof. As a C[Sd]-module, Ma is the right regular representation. Hence the map

E⊗d → S(Ma), v 7→ 1⊗ v is an isomorphism of Uσ(sl(m|n,Π, p))-modules,

(ρd(e0))(1⊗ v) =
∑

1≤j≤d

1 · yj ⊗ ρ⊗d(Y
(d)
j,e )v = 1⊗

( ∑
1≤j≤d

aj ⊗ ρ⊗d(Y
(d)
j,e )

)
v.

Also ρd(e0) =
∑

1≤j≤d ρ(σ
p(α0))⊗(j−1)⊗ρ(e0)⊗I⊗(d−j) acts on E(a1)⊗· · ·⊗E(ad)

as ∑
1≤j≤d

ρ(σp(α0))⊗(j−1) ⊗ ajρ(e0)⊗ I⊗(d−j) = ρ⊗d
( ∑

1≤j≤d

ajY
(d)
j,e

)
.

The map E⊗d → S(Ma) commutes with the action of ρ(f0), ρ(e0).
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§17. Applications: Irreducible representations of Uσ(ŝl(m|n))

The irreducible representations of Sd⋉Zd can be described by Mackey theory; see

e.g., [Sr77, Sect. 8.2], as follows.

Let G = H ⋉A be a group, where A is a normal commutative subgroup and

H a finite subgroup, acting on A. Let χ : A → C× be a character (multiplicative

function). Denote the stabilizer of χ in G by Aχ = {g ∈ G; χ(gag−1) = χ(a)

for all a ∈ A}. This stabilizer is a subgroup of G = H ⋉ A, and it contains A,

hence it is of the form Aχ = H ′ ⋉A for some subgroup H ′ of H. Then χ extends

to χ′ : H ′ ⋉ A → C× by χ′(ha) = χ(a). Let ρ be an irreducible representation

of H ′. Define ρ′ to be the composition of ρ followed by the natural projection

H ′ ⋉A↠ H ′. Mackey theory asserts the following.

Proposition 17.1. The induced representation Ind(χ′ ⊗ ρ′; H ′ ⋉ A,G) is irre-

ducible. It uniquely determines the datum (H ′, χ, ρ). Each irreducible representa-

tion of G has this form.

We use this with A = Zd, H = Sd. A character χ of Zd is a d-tuple a =

(pd11 , . . . , p
dk
k ) ∈ C×d, where pdii = (pi, . . . , pi) ∈ C×di . The stabilizer has the form

H ′ ⋉Zd with H ′ = Sd1 × · · · × Sdk . So an irreducible representation of C[Sd ⋉Zd]
is determined by (d1, . . . , dk), di ≥ 1, d1 + · · · + dk = d, distinct ai ∈ C×, and

irreducible representations ρi of Sdi , 1 ≤ i ≤ k.

Let us express this using evaluation maps. Define the group algebra homo-

morphism εd.a : C[Sad ] → C[Sd] that maps each σ ∈ Sd to itself, and yj to a for

all j, 1 ≤ j ≤ d. Then εd.a = εa with a = (a, . . . , a) ∈ C×d. If M is an irre-

ducible C[Sd]-module, pulling M back by εd.a gives an irreducible C[Sad ]-module

Ma =Md.a := ε∗d.aM . When a = (pd11 , . . . , p
dk
k ), pdii = (pi, . . . , pi) ∈ C×di , and Mi

are C[Sdi ]-modules, we write

(M1 × · · · ×Mk)a = ε∗a(M1 × · · · ×Mk)

= ε∗d1.p1 M1×̃ · · · ×̃ ε∗dk.pk Mk

=M1,d1.p1×̃ · · · ×̃Mk,dk.pk .

In summary we deduce the following from Mackey theory.

Proposition 17.2. Every finite-dimensional irreducible C[Sad ]-module is isomor-

phic to a product M1,d1.p1×̃ · · · ×̃Mk,dk.pk of Mdi.pi , d = d1 + · · ·+ dk, distinct pi.

The theorem permits translating this result to the context of Uσ(ŝl(m|n)), as
follows.
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As above, for each a ∈ C× there is a Lie algebra homomorphism

eva : Uσ(ŝl(m|n)) → Uσ(sl(m|n)),

defined by eva(P (t)⊗ x) = P (a)⊗ x. If W is an irreducible Uσ(sl(m|n))-module,

its pullback by eva is an irreducible Uσ(ŝl(m|n))-module Wa.

Applying the functor F , for a ∈ C× and a C[Sd]-module M we obtain

F(Md.a) = F(ε∗d.aM) = (ε∗d.aM)⊗C[Sd] E
⊗d

= ev∗a(M ⊗C[Sd] E
⊗d)

= ev∗a(S(M)) = S(M)a.

In general,

F(M1,d1.p1×̃ · · · ×̃Mk,dk.pk) = F((M1 × · · · ×Mk)a)

= ε∗a(M1 × · · · ×Mk)⊗C[Sd] E
⊗d

= ev∗p1(M1 ⊗C[Sd1
] E⊗d1)⊗ · · ·

⊗ ev∗pk(Mk ⊗C[Sdk
] E⊗dk)

= ev∗p1(S(M1))⊗ · · · ⊗ ev∗pk(S(Mk)).

From Theorem 10.1 we then conclude the following corollary.

Corollary 17.3. Every finite-dimensional irreducible E⊗d-compatible represen-

tation of the universal enveloping algebra of the affine superalgebra Uσ(ŝl(m|n))
is a tensor product of evaluation representations Wpi at distinct points pi. Here

Wpi = ev∗pi(S(Mi)), where Mi is an irreducible C[Sdi ]-module, d = d1 + · · ·+ dk.

Recall that by an E⊗d-compatible finite-dimensional irreducible representation

of the affine superalgebra we mean that the subquotients of its restriction to the

superalgebra are subrepresentations of E⊗d, E = Cm|n.

Corollary 17.4.

(a) Every finite-dimensional irreducible C[Sad ]-module is isomorphic to a quotient

of some Ma, a = (a1, . . . , ad) ∈ C×d.

(b) For all a ∈ C×d, Ma is isomorphic as a C[Sd]-module to the right regular

representation.

(c) Ma is reducible as a C[Sad ]-module iff aj = ak for some j ̸= k.

Corollary 17.5. Let 1 ≤ d < m+ n.

(a) Every finite-dimensional Uσ(ŝl(m|n,Π, p))-module that occurs as a subquotient

of E⊗d as a Uσ(sl(m|n,Π, p))-module is isomorphic to a quotient of E(b1) ⊗
· · · ⊗ E(bd) for some b1, . . . , bd ∈ C×.
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(b) Let b1, . . . , bd ∈ C×. Then E(b1)⊗· · ·⊗E(bd) is reducible as a Uσ(ŝl(m|n,Π, p))-
module iff bj = bk for some j, k with j ̸= k.

Proof. This follows from the preceding proposition, for the group algebra C[Sad ] of
the affine symmetric group and the fact that F is an equivalence of categories.
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