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Abstract

The deduction starts with the (non-relativistic) one-photon Hilbert space H, equipped
with the one-photon Hamiltonian and basic symmetry generators, as the only input in-
formation. We recall in the functorially associated boson Fock space the multi-photon
dynamics and symmetry transformations, as well as the field operator (as the scaled
self-adjoint part of the creation operator) and the q(uasi)-classical states. There is no
reference to a presupposed classical Maxwell theory. By abstraction, we go over to the
algebraic formulation of the multi-photon theory in terms of a C*-Weyl algebra. Its test
function space E ⊂ H is constructed as a nuclear Fréchet space, in which – via infrared
damping – the dynamics and symmetries are nuclear continuous and their generators
bounded. Each w*-closed, singular subspace of the continuous dual E′ determines non-
Fock coherent states and their mixtures lead to a representation von Neumann algebra
with non-trivial center. The symmetry generators restricted to the center can be trans-
formed into the Maxwell form by means of a symplectic transformation and involve the
well-known conservation quantities of electrodynamics. This identifies the central part of
the represented photon field operator as composed of the two classical canonical electro-
dynamic field components. We have obtained, therefore, in free space a kind of fusion
of the multi-photon theory and the Maxwell theory of transverse electrodynamic fields,
where the latter arise as derived quantities. By means of a Bogoliubov transformation
one also gets a fusion of the quantized with the classical Maxwell theory, deduced from
the photon concept. A sketch of non-relativistic gauging is added in the appendix to gain
longitudinal, cohomological, and scalar potentials.
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§1. Introduction

In response to his first paper on light quanta [Einst05P], Einstein met vivid oppo-

sition to his new heuristic corpuscle ansatz for electrodynamic radiation traveling

free in space. In [Einst09a] he expanded and detailed the intuitive picture as fol-

lows:

Still the picture which seems to me the most natural of all is that the

occurrence of the electromagnetic field of light is connected with singular

points like the electromagnetic fields in electron theory. One cannot en-

tirely exclude the possibility that in such a theory the total energy of the

electromagnetic field can be viewed as being localized in these singular-

ities, just as in the old action at a distance theory. I suppose, say, that

each singular point is surrounded by a field of force, which essentially has

the character of a plane wave, whose amplitude decreases with increasing

distance from the singular point. If many such singular points exist at dis-

tances which are small compared to the extension of the field of force of

one singular point, the fields of force will overlap and together constitute

an undulatory field of force, which differs little from an undulatory field

in the sense of the present electromagnetic theory. We need not, of course,

especially emphasize that any value should not be attributed to such a

picture so long as it does not lead to an exact theory (English translation

reproduced from [MehR82]).

In the same year, Einstein again mentioned, in a letter to Sommerfeld, the

point-like localization of the energy of the light quanta and assumed that a future

theory would be a fusion of particle and wave aspects [Pais82, p. 403].

Since this took place long before the invention of the quantum mechanical

formalism, one may be inclined not to take Einstein’s formulations on singular

energy points surrounded by plane waves quite seriously. In fact, the somewhat

laconic comment of Pais was that “this fusion now goes under the name of comple-

mentarity” [Pais82, p. 404], without giving further comments on Einstein’s vision.

Quantum mechanics has, in fact, eliminated the notion of a point-like physical

object. But that is totally different from the concept of a classical field, which is

still permanently employed in science and engineering and constitutes an objective

entity like macroscopic material bodies. Thus Einstein’s speculative fusion program

is not achieved by the particle–wave duality which removes both the classical

particle concept and the classical field concept.

Let us also remark that in the above-reproduced formulations, Einstein re-

quires “many” singular energy points to approach, together with the overlapping
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force fields, classical radiation fields, and he obviously expected decisively new

theoretical developments to settle the light-quantum problem.

The idea that “many” light quanta may approximate a classical electromag-

netic field is pursued in quantum optics in terms of the coherent states in Fock

space (e.g. [ScullyZub, Vogel, Duncan]). Fock space is commonly constructed, how-

ever, in step with the quantization of the classical field. But in order to theoretically

formulate a fusion system we intend to set up a quantum particle system which,

under certain conditions, also displays electromagnetic fields. The electromagnetic

fields are in that manner derived quantities, like the collective structures of macro-

scopic many-particle systems. The fields do not exist without photons, but single

photons exist in experiments without classical electromagnetic fields. We must

therefore introduce the photon system without any reference to the classical fields.

We begin in Section 2 with the introduction of the one-photon Hilbert space

H through specifying the generators of the basic symmetry groups and dynamics,

taking into account the transversality of the wave functions. This setup is well

founded through experimental non-relativistic quantum optics.

The photonic Fock space is then gained via the functorial mapping H 7→
F+(H) giving quite generally the bosonic Fock spaces as a function of the one-

particle Hilbert spaces.

We recall in Section 2 some Fock space formalism of the non-relativistically

formulated photon theory in a basis-independent manner. The photonic “field op-

erator” Φℏ
F (f) is directly given (without field quantization) as the scaled sum of

the smeared creation and annihilation operators, where the commutation relations

of the latter lead to the CCR (canonical commutation relations) for the field opera-

tor (and vice versa). This enables the introduction of the Weyl algebra WF (H, ℏσ)
in Fock space, where the symplectic form is σ = Im(·|·). The operator algebra

WF (H, ℏσ) is viewed as the faithful Fock representation of the abstracted simple

C*-Weyl algebra W(H, ℏσ).
The Glauber vectors G(f) are indexed by square-integrable one-photon wave

functions f ∈ H. They describe the presence of “many” photons by owning in-

finitely many n-particle components. They induce via the scalar product method

the coherent states on WF (H, ℏσ) and also give the abstract coherent states ωf

on W(H, ℏσ). In Fock space, the arising displacement field is shown, however, not

to represent a true classical field since it has a spontaneous transition probability

to vanish.

Already the search for coherent states indexed by non-square-integrable func-

tions transcends Fock space formalism. In order to obtain these states as well-

defined states on an abstract Weyl algebra, we have to diminish the test function

space from H to a convenient subspace E ⊂ H, extending therewith the dual
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space E′. The basic idea of the present paper is to find an E such that W(E, ℏσ)
owns representations WΠ(E, ℏσ), the weak closures of which (the representation

von Neumann algebras MΠ) give rise to field operators ΦΠ(f) which have a clas-

sical (central) component displaying features of the electrodynamic field.

For this purpose, we propose in Section 3 a transversal subspace E ≡ S3⊤0 of

the Schwartz space S(R3,C3) of rapidly decreasing C∞-functions which combines

infrared regularization with nuclearity in the induced topology τ (and deviates

from the E∆ used in [HonRie15] for Weyl quantization in free space). The advan-

tage is the applicability of the Bochner–Minlos integration on the dual test function

space E′. A further advantage is the τ -boundedness of the generators for the free

dynamics, space translations and rotations, restricted to this test function space.

The C*-Weyl algebra W(E, ℏσ) is introduced in Section 3.1. By means of

Einstein’s one-photon dynamics, the algebraic Heisenberg dynamics is realized by

a quasi-free automorphism group αR, which is “global” in the sense that ∥αt −
id∥ = 2 for t ̸= 0, a necessary condition for moving central observables in certain

representations.

The generalized coherent states are specified in Section 3.3 by their charac-

teristic functions in a representation-independent manner. In order to gain the

q-classical states, one forms mixtures of the coherent states over the index space

E′. For true radiation states, one needs a subspace of E′ consisting solely of norm-

unbounded (i.e. singular) functionals.

We demonstrate in Section 3.2 that the w*-closed, singular subspaces of E′

are in bijective correspondence with the norm-dense, non-trivial subspaces Ep ⊂ E

arising as the pre-polars of the former. It turns out that E′ cannot be decomposed

into a topological direct sum of H and a w*-closed, singular subspace. The special

Segal subspace Ep = EB [Segal62], used in [Rie2020] to index in terms of its polar

E0
B the regular ground states for boson fields with quadratic interaction, is for the

present photon system equal to all of E. This implies E0
B = 0, so that the photons

own only the bare vacuum as ground state.

The anti-liminary photonic C*-Weyl algebra W(E, ℏσ) allows for many non-

equivalent representations, which physically have to be selected according to global

subsidiary conditions, like temperature or mean particle density. (The represented

dynamics depending on those subsidiary conditions is called effective in many

body physics.) For photons we observe that every class of physical experiment

on electrodynamic radiation is restricted to a finite frequency range, thus to a

singular subspace E′
ess ⊂ E′ which we assume w*-closed. The set of all q-classical

states on W(E, ℏσ) with Bochner–Minlos measures µ supported on E′
ess is shown

to constitute a simplex and a stable face, features which point already to a state
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space of an autonomous classical subtheory. Its states, different from the vacuum,

that are all disjoint to all Fock normal states

The GNS-representations over these singular q-classical states with measure

µ, evaluated in Section 4, lead to representation von Neumann algebras with non-

trivial center, if µ is not a point measure. Since the reference states are regular, even

τ -continuous, the representation-dependent quantized field operators exist. They

consist of the Fock field additively dressed by µ-mixed, singular, classical fields.

The spatial central decomposition of these GNS-representations may be executed,

in spite of W(E, ℏσ) being non-separable. The corresponding sectors are indexed

by the sharp singular fields which always are time dependent since EB = E.

A peculiar aspect is that the Fock part of the field operator is split into two

components according to the direct decomposition E = Ep +̇Ee with Ee ⊂ Ep
n
a

(non-unique) complement to Ep = 0E
′
ess. We discuss why Ep indexes the “particle

photons” and Ee the so-called “transient photons”, and how similar the structures

of the represented three-component photon field and the three physical entities in

Einstein’s picture are.

In Section 5 the dynamics and symmetries are extended to the representation-

dependent von Neumann algebra Mµ = L(F+(H)) ⊗ Zµ in W*-tensor product

form. Since the symmetries (including the dynamics) act in the same manner on

both subalgebras, we have in fact a fusion of a quantized particle theory and a

classical field theory.

Nevertheless, we show in Section 6 that the classical generators may be

brought into the form of the electrodynamic generators in canonical Maxwell the-

ory if we apply a symplectic transformation which distributes, in terms of a new

physical constant ϵ0, the photon energy differently over the two real field compo-

nents of the complex classical field.

In Section 7 we apply the mentioned symplectic transformation as a Bogoli-

ubov transformation on the algebraic multi-photon theory and arrive in fact at

the quantized transverse Maxwell theory, which in this manner is also based on

the photon concept and arises in a concise mathematical formulation.

We discuss only briefly the general aspects of the obtained fusion between

quantum and classical theory, which is most elegantly formulated in the convex

state space approach.

In the appendix we collect some notions for algebraic states and transition

probabilities, and supplement the calculations for the angular field momentum

and for seminorm estimates. The final Appendix D contains some remarks and

conclusions on non-relativistic gauge theory and supplements the longitudinal,

cohomological, and scalar potentials, all of these still lacking a photonic foundation

in the sense of a fusion theory.
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A good deal of our mathematical results are also applicable to more general

boson theories of actual interest (e.g. [McCabe, Duncan] and references therein).

We attempt to formulate the mathematical arguments and interpretational

remarks in a manner which facilitates a broader readership, not so acquainted with

operator algebraic field theory, to get at the main points of the reasoning in this

combination of mathematical and theoretical physics.

§2. Photons in Fock space

§2.1. The photon observables

Inversely to the historical developments, we start from the point of view that

experiments in a fixed inertial system have discovered a mass-0 quantum particle

with spin 1, called a photon, and the collective structures of these bosonic particles

have not been clarified yet. As the input for the theoretical analysis, we take solely

the one-photon data, expressed in quantum mechanical terms, and proceed then

to the traditional multi-photon theory in Fock space (without any reference to

classical electrodynamics). The transition to the algebraic treatment of the multi-

photon theory is guided and motivated by physical needs.

The complex one-particle Hilbert space of that photon must carry an irre-

ducible representation of the rotation group SO(3) connected with spin 1, realizable

by three-component wave functions f ∈ L2(R3,C3, d3x). For the energy operator

one finds the formula B = ℏc
√
−∆. This is a self-adjoint strictly positive oper-

ator which acts on wave packets as B
∫
R3 exp{ik · x}f̂(k) d3k =

∫
R3 ℏc|k| exp{ik ·

x}f̂(k) d3k and displays an absolutely continuous spectrum (being the operator

formulation of Einstein’s historical photon energy for plane waves). The photonic

momentum in direction n ∈ R3 (measurable by Compton scattering) evaluates as

n·p = pn = −iℏn·∇. By means of group theory, the angular momentum about the

axis n has then the form Ln = −iℏn · (I− (x×∇)), where the x-independent part

n · I := n1ℓ1 +n2ℓ2 +n3ℓ3 refers to a basis (ℓν) of the Lie algebra for SO(3) repre-

sented by 3×3-matrices (see Appendix B). Polarizability (used e.g. in two-photon

EPR experiments) shows transversality and implies ∇ · f = 0.

The mentioned observables identify the elementary particle “photon” and its

one-particle Hilbert space H = P⊤L2(R3,C3, d3x), where P⊤ denotes the or-

thogonal projection onto the (closed) kernel of the div operator. (For a group-

theoretical classification of one-particle spaces – a cornerstone for quantum field

theory – cf. e.g. [Araki] and references therein.) The self-adjoint operators B, pn,

Ln commute with P⊤ and are considered self-adjoint operators on H (see also

Section 3.1).
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Established treatment leads then to the many-boson theory in the symme-

trized Fock space F+(H) :=
⊕∞

m=0 P+(
⊗

m H), with P+ the symmetrization op-

erator and with the vector Ω0 := 1 ⊕ 0 ⊕ 0 ⊕ 0 ⊕ · · · ∈ P+(
⊗

0 H) ≡ C ⊂ F+(H)

representing the bare or Fock vacuum.

One-particle observables K (for the moment dimensionless) are extended to

the m-particle space by introducing Km := K ⊗ 1 ⊗ · · · ⊗ 1 + · · · + 1 ⊗ · · · ⊗K,

for m ∈ N, an essentially self-adjoint operator on P+(
⊗

m H) (e.g. [ReedSim1,

Thm. VIII.33]). Defining K0 := 0, one forms
⊕∞

m=0Km|P+
, which is essentially

self-adjoint on F+(H), with self-adjoint closure dΓ(K). Especially for K = 1,

we obtain the unbounded Fock particle number operator NF := dΓ(1) which

makes explicit the particle character of the mass-0 particle. Conventionally, one

expresses the dΓ(K) in terms of the creation and annihilation operators, which for

all f, g ∈ H satisfy the ℏ-independent commutation relations

(2.1) [aF (f), a
∗
F (g)] ⊂ (f |g)1F+ , [aF (f), aF (g)] ⊂ 0 ⊃ [a∗F (f), a

∗
F (g)],

and act on the vacuum as

(2.2) aF (f)Ω0 = 0 ≡ 0⊕ 0⊕ 0⊕ · · · , a∗F (f)Ω0 = f ≡ 0⊕ f ⊕ 0⊕ 0⊕ · · · .

Proposition 2.1. (a) Let {en}N be an orthonormal basis in the domain of the

self-adjoint K on H. Then the so-called “second quantization” of K is given

by

(2.3) dΓ(K) =
∑
n∈N

a∗F (Ken)aF (en) =
∑

n,m∈N
a∗F (em)(em|Ken)aF (en),

where the infinite sum is the strong resolvent limit of the closed finite-sum

operators.

(b) One gets exp{is dΓ(K)}a(∗)F (f) exp{−is dΓ(K)} = a
(∗)
F (exp{isK}f), which

reduces the many-particle transformations generated by dΓ(K) to the unitary

single-particle transformations exp{iRK} on H.

(c) The mapping K = K∗ 7→ dΓ(K) is R-linear, and dΓ(K) is positive, if K is

so.

(d) If the self-adjoint K1 and K2 commute on H, then dΓ(K1) and dΓ(K2) com-

mute on F+(H) (expressed by commuting spectral projections).

(e) If on H we have Kn → K in the strong resolvent sense for self-adjoint oper-

ators, then dΓ(Kn) → dΓ(K) in the strong resolvent sense on F+(H).

For a given U ∈ L(H), the m-fold tensor product
⊗

m U is a bounded oper-

ator on P+(
⊗

m H). Provided U ∈ L1(H) (meaning ∥U∥ ≤ 1), we may introduce

Γ(U) :=
⊕∞

m=0

⊗
m U |P+

, with
⊗

0 U |P+
:= 1 ∈ C. Thus Γ(U) is in L1(F+(H)).
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For U, V ∈ L1(H), it holds that Γ(U∗) = Γ(U)∗, Γ(UV ) = Γ(U)Γ(V ), U 7→ Γ(U)

is strong–strong continuous and Γ(exp{iRK}) = exp{iRdΓ(K)} for all self-adjoint

K on H.

The particle number operator NF generates the first-kind gauge transforma-

tions Γ(exp{is}1) = exp{isNF }, s ∈ R/[2π] on F+(H) and leaves the vacuum

vector invariant, as do all Γ(U).

§2.2. Fock fields and q-classical states

The self-adjoint operator, given as the sum of two unbounded closed operators,

(2.4) Φℏ
F (f) :=

√
ℏ√
2
(aF (f) + a∗F (f)) ∀ f ∈ H,

is called a field operator. It constitutes an operator-valued functional f 7→ Φℏ
F (f)

and satisfies the ℏ-dependent CCR

(2.5) [Φℏ
F (f),Φ

ℏ
F (g)] ⊂ iℏσ(f, g)1F+ ∀ f, g ∈ H,

on a dense domain in F+(H), if one sets σ(f, g) := Im(f |g). The unitary oper-

ators W ℏ
F (f) := exp{iΦℏ

F (f)} ∈ L(F+(H)) represent the abstract algebraic Weyl

relations

(2.6) W (f)W (g) = exp{− i
2ℏσ(f, g)}W (f +g), W (f)∗ =W (−f), ∀ f, g ∈ H.

For algebraic Weyl theory it is useful to restrict the wave function arguments to

a (complex) norm-dense subspace E of the one-particle Hilbert space H which we

describe for photons in Section 3; E must be invariant under the basic symmetry

transformations exp{iRK}, K ∈ {B, pn, Ln}.

Definition 2.2. We restrict the algebraic Weyl relations of equation (2.6) to

the “test functions” f ∈ E. We introduce the abstract *-algebra ∆(E, ℏσ) :=

LH{W (f) | f ∈ E}. From the Fock representation we have a C*-norm, i.e. a

Banach-algebra norm with ∥A∗A∥ = ∥A∥2 for all A ∈ ∆(E, ℏσ) (where in some

sense this norm is unique). The completion in norm leads to the C*-Weyl algebra

(2.7) W(E, ℏσ) := ∆(E, ℏσ)
∥·∥
.

One knows that W(E, ℏσ) is simple and that the (faithful) Fock-represented

Weyl algebra WF (E, ℏσ) = ΠF (W(E, ℏσ)) is irreducible and does not contain a

non-trivial compact operator. This indicates that W(E, ℏσ) is anti-liminary (see,

e.g., [Peders79]) and owns infinitely many non-equivalent irreducible representa-

tions.
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Notational Remark 2.3. The introduction of the Planck constant ℏ in equa-

tion (2.4) is necessary if the field operator Φℏ
F (f) arises from canonical quantiza-

tion. It is, however, common in dealing with Fock space operators, where equa-

tion (2.1) is considered to be the basic commutation relation, to set ℏ = 1. We join

this usage if not stated otherwise, and denote W ℏ=1
F (f) ≡WF (f). Thus WF (f) is

the Fock representative ΠF (W (f)) of the abstract W (f) ∈ W(E, σ) for f ∈ E.

The (vector norm) closure of WF (H, σ)Ω0 contains all a∗F (f1) . . . a
∗
F (fn)Ω0

and equals F+(H), so WF (H, σ) owns Ω0 as a cyclic vector. The same can be said

for WF (E, σ), because f 7→WF (f) is strong–strong continuous.

Since we know exp{iRdΓ(K)}ΦF (f) exp{−iRdΓ(K)} = ΦF (exp{iRK}f), it
is appropriate to define the abstract symmetry transformations in terms of the

so-called “quasi-free” automorphisms

(2.8) γKs (W (f)) :=W (exp{isK}f) ∀ s ∈ R, ∀ f ∈ E.

This defines γKs by linear extension on ∆(E, ℏσ), and by norm-continuous exten-

sion on W(E, σ). Via the Baker–Hausdorff formula we obtain

(2.9) WF (f) = exp{− 1
4∥f∥

2} exp{ i√
2
a∗F (f)} exp{ i√

2
aF (f)},

which is valid in application to analytic vectors for aF (f) (on which the power

series in aF (f) exists), and obtain

(2.10) (Ω0|WF (f)Ω0)F+
= exp{− 1

4∥f∥
2} =: ⟨ω0;W (f)⟩ ∀ f ∈ E.

This is the characteristic function of the vacuum viewed as a state ω0 on the

abstract Weyl algebraW(E, σ). Quite generally, a state ω on W(E, σ) is defined by

its expectation values ⟨ω;A⟩, A ∈ WF (E, σ) (a point of view already expressed in

the seminal book of von Neumann [vNeum]). According to their statistical–physical

meaning, these expectation value functionals have to act linearly on W(E, σ) and

must satisfy ⟨ω;1⟩ = 1, as well as ⟨ω;A∗A⟩ ≥ 0. Then they are automatically

continuous with respect to the algebraic norm.

The great advantage of bosonic theory in terms of the Weyl algebra is that for

determining a state ω it suffices to already know Cω(f) := ⟨ω;W (f)⟩ for all f ∈ E,

i.e. the characteristic function (because it gives all expectations on W(E, σ) by

linear and norm-continuous extension). Applying the Weyl relations one obtains

the twisted positive-definiteness condition

(2.11)

n∑
i,j=1

zizj exp{ i
2ℏσ(fi, fj)}Cω(fj − fi) ≥ 0, n ∈ N, fi ∈ E, zj ∈ C.
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Formula (2.10) shows that ω0 is a C∞-state, for which the characteristic func-

tion is infinitely differentiable. The C2-property already implies ∆F (E, σ)Ω0 ⊂
domΦF (f) for all f ∈ E. On account of this, we obtain on a dense domain in the

Fock representation, comprising ∆F (E, σ)Ω0, for the symmetry generators in the

Heisenberg picture,

d

ids
WF (exp{isK}f)|s=0 = [dΓ(K),WF (exp{isK}f)]|s=0

= ΦF (iKf)WF (f) ∀ f ∈ domK.(2.12)

The displaced vacua or coherent states are defined in terms of the Glauber

vectors

WF (
√
2
i f)Ω0 = exp{− 1

2∥f∥
2}

∞⊕
m=0

1√
m!

(⊗
m

f

)
(2.13)

= DF (f)Ω0 =: G(f), DF (f) :=WF (
√
2
i f),(2.14)

where DF (f) is called the displacement operator. For f = 0 one gets G(0) = Ω0.

Proposition 2.4. The following results are derivable from the series expansion

equation (2.13) (see the textbooks on quantum optics for the one-mode case and

[HonRie15, Sect. 18.5] for the general case):

(a) aF (f)G(g) = (f |g)G(g) for all f, g ∈ H.

(b) (G(g)|dΓ(K)G(g))F+ = (g|Kg) for all K = K∗, for all g ∈ domK.

(c) (G(f)|G(g))F+ = exp{(f |g)− 1
2∥f∥

2 − 1
2∥g∥

2} ≠ 0 for all f, g ∈ H.

(d) The mapping H ∋ f 7→ G(f) ∈ F+(H) is norm–norm continuous (but is not

linear).

(e) The vectors G(f), f ∈ H are total in F+(H).

(f) We have

(2.15) WF (f)G(g) = exp{i2−1/2 Re(f |g)}G(g + i2−1/2f) ∀ f, g ∈ H.

(g) The linear hull of G(g) equals ∆F (E, σ)Ω0 and is a core for ΦF (g) for all

g ∈ H.

For f, g ∈ H, one obtains from equations (2.6) and (2.14), and differentiation,

(2.16)
DF (f)WF (g)DF (f)

∗ =WF (g) exp{i
√
2Re(f |g)},

DF (f)ΦF (g)DF (f)
∗ = ΦF (g) +

√
2Re(f |g)1F+

.

The additive “displacement”
√
2Re(g|f) in equation (2.16) has the shape of a

real-valued – and apparently “classical” – smeared field, arising by a kind of de-

quantization from the quantized field operator. Quantized boson theory seems to
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provide per se classical field expressions which are norm bounded as required by

the strong–strong continuity of f 7→ WF (f). It seems that the Glauber vectors,

respectively the associated coherent states, have a special affinity to classical fields.

We obtain the characteristic functions of the coherent states as

⟨ωg;W (f)⟩ := (G(g)|WF (f)G(g))F+ = exp{− 1
4∥f∥

2} exp{i
√
2Re(g|f)}

= C0(f) exp{i
√
2Re(g|f)} =: Cg(f) ∀ g, f ∈ E(2.17)

(use Baker–Hausdorff and Proposition 2.4(a)).

Also from Proposition 2.4(a), we deduce the strong cluster relation

(G(g)|a∗F (f1) · · · a∗F (fm)aF (fm+1) · · · aF (fm+n)G(g))F+

= (g|f1) · · · (g|fm)(g|fm+1) · · · (g|fm+n)(2.18)

for all 1 ≤ m,n < ∞. This covers all-order optical coherence given by values

m = n ∈ N. The (smeared) coherence function equals here the complex field ex-

pectation (G(g)|a∗F (f)G(g))F+
= (g|f). In classical coherence theory, that factor-

ization signifies the presence of a sharp, non-fluctuating complex field, belonging to

the real field
√
2Re(g|f) = (G(g)|ΦF (f)G(g))F+

(whereas for the quantized field

ΦF (f) the vacuum fluctuations have to be taken into account). Note that here

the clustering does not mean disorder for the state, rather it expresses a robust-

ness against perturbations and thus an extreme form of ODLRO (= off-diagonal

long-range order [Sewell02]), so to speak.

Definition 2.5. We call a state ωϱ on WF (E, σ), representable by a density op-

erator ϱ ∈ T +
1 (F+), a Fock normal state and write SFn for the convex set of all

Fock normal states.

If we consider mixtures of the coherent states ωg, we arrive at the so-called

“classical states”. Since this naming has led to severe misunderstandings, both

in the applied and fundamental physical literature (e.g. [McCabe, Duncan] and

references therein), we found it necessary to distinguish these states from the states

occurring in a classical field theory and call the first ones “q-classical” (where the

“q” may be read as “quasi”, cf. [CohTann], or as “quantum”, cf. [HonRie15]).

Definition 2.6. A state ω ∈ SFn is “q-classical” if its ϱ has the shape (see

[DaviesOp])

(2.19) ϱ ≡ ϱµ =

∫
H
|G(h))(G(h)| dµ(h)
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for some µ ∈Mp(H), a probability measure on the Borel sets B(H) induced by the

strong vector topology on H. The integral is performed in the trace-norm topology

on T +
1 (F+) and produces in fact a density operator on Fock space.

The set of all Fock-normal q-classical states, comprising the coherent states,

is denoted by SFcl ⊂ SFn.

Observation 2.7. The characteristic function of an ωϱ ∈ SFcl has the form

(2.20) Cϱ(f) ≡ Cµ(f) =

∫
H
exp{− 1

4∥f∥
2} exp{i

√
2Re(h|f)} dµ(h)

for all f ∈ H and some µ ∈Mp(H).

This follows since the integrand is continuous and bounded as a function of

h ∈ H. Thus we can evaluate tr[ϱWF (f)] by exchanging the order of tracing and

integration and we arrive via (2.17) at equation (2.20).

From Proposition 2.4(c) it follows, however, that there is a non-vanishing

probability amplitude (G(g)|G(0))F+
= exp{− 1

2∥g∥
2} for going over to the vacuum

and, therewith, for the spontaneous vanishing of the displacement field
√
2Re(g|f).

This is to be considered a severe obstruction to the interpretation of the dis-

placement field as a proper classical radiation field, notwithstanding the facts that

a coherent state involves infinitely many photons and exhibits a strong internal

ordering. A classical field surely should constitute a stable, objective physical en-

tity.

This counterargument dissolves if we are able to include in our photon theory

“singular coherent states ωg” in which g has reached an infinite norm, that is,

in which f 7→ (g|f) has been replaced by an unbounded complex-linear form

f 7→ L(f). That limiting procedure is even required by the physical meaning

of a radiation field per se, which typically is not square integrable. According

to Proposition 2.4(b) it makes the (G(g)|dΓ(K)G(g))F+
singular, especially the

photon number for K = 1. Such an extension transcends principally Fock space

formalism and leads straightforwardly to algebraic quantum field theory. We have

to look for further representations of an adapted abstract Weyl algebra.

§3. The C*-algebraic many-photon theory

§3.1. The test function space and C*-Weyl algebra

One knows that the Fock representation is not sufficient for all applications and

that one has, to obtain the physically desirable representations, to reduce the

test function space for the smeared Weyl operators from a Hilbert space H to

an appropriate locally convex (LC-) space E, norm dense in H. According to the
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Wightman axioms [StrWigh], one could be tempted to suggest for the photon

theory in non-relativistic formulation the Schwartz space of rapidly decreasing

C∞-functions S(R3,C3). The problem is that already the free photon dynamics

vR = exp{iRB} does not leave this test function space invariant and requires an

infrared regularization. This severe complication cannot be avoided if one wants a

photon algebra fitting the dynamics.

In [BogShir] the ultraviolet regularization is achieved by using only those test

functions for smearing the time-ordered, or retarded, n-point functions of the S-

matrix expansion, which vanish to a certain order at (x, t) = 0, that is at the

coinciding space-time arguments.

For the infrared regularization we have to require a vanishing of the Fourier-

transformed test functions f̂ ∈ Ŝ(R3,C3) at k = 0, and this to infinite order.

In detail, we want to equip the three-component Schwartz space S(R3,C3) ≡ S3

with the locally convex direct sum topology τ3 (e.g. [Schaef66]) of the three one-

component spaces S(R3,C) ≡ S1ν , 1 ≤ ν ≤ 3. We denote in accordance with

[Schaef66] S3 =
⊕

ν S
1
ν and write πν : S

3 → S1ν for the projections. (The inductive

topology τ3 is the finest topology, so that the injection maps π−1
ν : S1ν → S3 are

continuous.) By [Schaef66, I, 2.1], the πν are continuous too.

The usual LC-topology τ1 of S1 is defined by the following system of semi-

norms (e.g. [ReedSim1]). We use the notation R3 ∋ x = (x1, x2, x3) ≡ (xν),

x2 =
∑3

ν=1 x
2
ν , and |x| =

√
x2. We define in A := N3

0 ∋ α the componentwise

sum, write |α| =
∑3

ν=1 αν , and set α ≥ α′ if αν ≥ α′
ν for 1 ≤ ν ≤ 3. Denot-

ing xα =
∏3

ν=1 x
αν
ν and Dα = ∂|α|/∂xα1

1 . . . ∂xα3
3 , this gives xαxα

′
= xα+α′

and

Dα ◦Dα′
= Dα+α′

.

For all α, β ∈ A a seminorm on S1 is defined by

(3.1) ∥φ∥α,β := sup
x∈R3

|xαDβφ(x)|, φ ∈ S1.

In this manner, (S1, τ1) is a (separable, complete) Fréchet space. A function

φ : R3 → C is in S1 if and only if ∥φ∥α,β < ∞ for all α, β ∈ A or, equivalently, if

and only if it is C∞ and decreases with all its derivatives faster than any negative

power for |x| → ∞. By transforming S1 into its so-called N -representation it is

shown to be a nuclear space [Hida80, ReedSim1]. According to [Schaef66, III, 7.4],

S3 is a nuclear Fréchet space too.

Defining the Fourier transform φ̂(k) := 1
(2π)3/2

∫
R3 exp{−ix · k}φ(x) d3x for

the components, we obtain the k-space representation Ŝ1 of S1 which consists of

the same set of rapidly decreasing C∞-functions and is equipped with the same

topology as S1 (see [ReedSim2]).
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Since π : S3
onto−−−→

⊕
ν S

1
ν is by construction a homeomorphism, we may denote

S3 ∋ f(x) = (φ1(x), . . . , φ3(x)) ≡ (φν(x)) with φν := πνf . The net (fi)I ⊂ S3

converges in τ3 to f ∈ S3, written fi → f , if and only if φν,i → φν for 1 ≤ ν ≤ 3.

The componentwise Fourier transform f̂ is given by f̂(k) = (φ̂ν(k)) and defines Ŝ3.

Definition 3.1. We set Ŝ10 := {φ̂ ∈ Ŝ1 | (Dβφ̂)(0) = 0 ∀β ∈ A} and continue

to denote by τ1 its topology induced from Ŝ1. We write Ŝ30 for the locally convex

direct sum of the Ŝ10 with the inductive topology τ3.

Finally, we define our transversal photonic test function space in the Fourier

representation as Ê := Ŝ3⊤0 = {P⊤f̂ | f̂ ∈ Ŝ30}, with (P⊤f̂) := − k
|k| × ( k

|k| × f̂)

(where we use mute variables in multiplication operators).

Observation 3.2. We observe that φ ∈ Ŝ10 implies |φ| ∈ Ŝ10. If φ̂ is in Ŝ10 then

|k|pφ̂ exists (as limk→0) for all p ∈ Z. This is because |k|pφ̂(k) ≤ (k2)p|φ̂(k)| for
p < 0 and 0 < |k| < 1, which tends to 0 for k → 0, because of the l’Hospital rule.

By equation (C.1) we know then that for f̂ ∈ Ŝ30, also |k|pf̂ ∈ Ŝ30 for p ∈ Z, and
that, therefore, the H-norms ∥ |k|pf̂∥ =: ∥f∥p exist.

This shows that the present (Ê, τ) = (Ŝ3⊤0 , τ) is a (not topological) subspace

of the Fourier-transformed E∆ + iE∆ in [HonRie15, I, equation (10.2.1)], where

the latter is topologized by the seminorms ∥f∥p, p ∈ 2Z, and arose from smearing

fields in rather general cavities, but is not nuclear.

Theorem 3.3. (a) The test function space Ê = P⊤Ŝ30 is a well-defined subspace

of Ŝ30 ⊂ Ŝ3 and constitutes with the topology τ , induced from (Ŝ30, τ
3), a

nuclear Fréchet space (not locally compact, being infinite-dimensional).

Via inverse Fourier transformation we obtain the same topological asser-

tions in the position space representation for E = P⊤S30 ⊂ S30 ⊂ S3 (where

here P⊤ = (−∆)−1 curl2 and the subscript “0” is defined by the behavior of

the Fourier-transformed functions).

(b) The topology τ is strictly stronger than the norm topology on E, and E is

a norm-dense strict subspace of H := P⊤L2(R3,C3, d3x) so that the scalar

product (·|·) of H is jointly τ -continuous.

(c) After embedding (without notation), E and H are w*-dense in the dual space

E′ of τ -continuous, C-linear functionals on E, and E ⊂ H ⊂ E′ constitutes

a Gelfand triple.

Proof. (a) Clearly, Ŝ30 is a C-linear subspace of Ŝ3 and is then nuclear (see

[Schaef66, III, 7.4]). It is also τ3-closed, since in Ŝ1 the τ1 convergence φ̂i → φ̂

implies for all β ∈ A that supk|Dβφ̂i(k)−Dβφ̂(k)| → 0, which gives Dβφ̂(0) = 0

for that smooth function, if the φ̂i are in Ŝ10.
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By Observation 3.2 we have kν

|k|φν′ ∈ Ŝ10 for φ̂ν′ ∈ Ŝ10, a necessary and sufficient

condition for P⊤f̂ ∈ Ŝ30 if f̂ ∈ Ŝ30.

(b) Since Ŝ30 contains the functions of compact support C∞
c (R3\0), it is norm

dense in L2(R3,C3, d3x) and thus E is norm dense in H := P⊤L2(R3,C3, d3x).

(c) The topology τ is clearly stronger than norm, and, therefore, E
τ
is strictly

contained in H, and the scalar product (·|·) of H is jointly τ -continuous. It holds

that {g ∈ E | (g|f) = 0 ∀ f ∈ E} equals 0 since E is norm dense in H, and this in

turn implies the w*-denseness of E in E′ by means of [Conway85, Cor. IV, 3.1.4].

This gives our Gelfand triple.

The proof of the following theorem is given in Appendix C, where we use

that K : E → E is by definition τ -continuous if for any α, β ∈ A there are c > 0,

αn, βn ∈ A, so that ∥Kf∥α,β ≤ c
∑N

n=1∥f∥αn,βn for an N ∈ N and all f ∈ E

(e.g. [Schaef66, Chap. III]).

Theorem 3.4. (a) The groups exp{iRK}, with K ∈ {B, pn, Ln}, act τ -continu-
ously on E, and depend pointwise τ -continuously on s ∈ R.

(b) The named generators K are τ -continuous too, as is also P⊤. The K are

unbounded self-adjoint on H and own E as a common core.

Notational Remark 3.5. We do not perform consequent bookkeeping for the

physical dimensions and mostly replace ℏ by 1. But for K ∈ {B, pn, Ln}, equipped
with the correct physical dimensions, the quotients Ks/ℏ are dimensionless if s

obtains the dimensions sec, cm, 1, respectively.

That means that, in any case, ℏ drops out from the symmetry generators

K/ℏ, which we denote by the same symbols in both the x- and k-representations.

Proposition 3.6. Let γKs , s ∈ R denote the quasi-free automorphism on W(E, σ)

that is induced by exp{isK}, where K is self-adjoint on H, which leads to

exp{isK} : E → E.

For each such non-trivial γKs , s ∈ R, it holds that ∥γKs − id∥ = 2, where id is

the identity automorphism on W(E, σ) and the norm refers to the Banach space

of bounded linear transformations L(W(E, σ)).

Therefore, γKs is not “universally weakly inner” but acts “globally” on the

photonic field algebra so that it may move central observables in von Neumann

algebras of GNS-representations.

Proof. Relation sup{∥(γKs − id)(A)∥ | ∥A∥ ≤ 1} can be calculated directly by

inserting for A all finite sums
∑

k ckW (fk) with the ck ∈ C satisfying
∑

k|ck| ≤ 1,

a norm-dense subset of the unit ball by construction of the Weyl algebra. The
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supremum 2 is reached for all A = W (f) with exp{isK}f ̸= f , since ∥W (g) −
W (f)∥ = 2 for g ̸= f .

From [KadR83, Exe. 10.5.74] (see also [KadR67]) we infer that for each auto-

morphism α it holds that ∥α− id∥ ≤ 2, and that for ∥α− id∥ < 2, α is universally

weakly inner as described in Appendix A.1.

Let us mention in passing that the photon field dynamics αR = γBR exhibits the

strong ergodic condition of asymptotic abelianness (via the absolute continuous

spectrum of B), and the γKR , with kerK = 0, the weaker condition of R-centrality
(cf. [Rie2020, App. A]).

Remark 3.7. Without giving details, let us remark that the choice of the τ -

closed subspace Ŝ30 ⊂ Ŝ3 for an infrared regularization leads to a direct topological

decomposition Ŝ3 = Ŝ30+̇Ŝ3c with dual decomposition (Ŝ3)′ = (Ŝ30)
′+̇(Ŝ30)

0, involving

the polar (Ŝ30)
0 which consists of all tempered distributions supported on k = 0.

According to [BogShir, HeppReg], renormalization would mean in the present

context the extension of L ∈ (Ŝ30)
′ to an Lren ∈ (Ŝ3)′, which would require the

adaption of infinitely many renormalization constants (all the more for the n-point

functions of the quantized field, given as distributions over the tensorized copies

of Ŝ30). But the radiation fields under consideration are in P⊤(Ŝ30)
′ and cannot be

extended to P⊤(Ŝ30)
0 since the latter is not defined. Therefore, there is no infrared

renormalization problem for the present transversal fields.

§3.2. Singular classical field spaces

We are going to analyze GNS-representations over general q-classical states on

W(E, ℏσ) and again set ℏ = 1, if not stated otherwise. These states are defined

through the integral decompositions of their characteristic functions indicating

mixtures of coherent states, now over the extended integration space E′ ⊃ H.

According to the Bochner–Minlos theorem (e.g. [Hida80]), each τ -continuous, nor-

malized, positive-definite function P : E → C, P (0) = 1, on the nuclear Fréchet

space E, that is, P ∈ Pτ (E), has a Fourier decomposition

(3.2) P (f) =

∫
E′

exp{i
√
2ReL(f)} dµ(L), f ∈ E,

in terms of a unique probability measure µ ∈ Mp(E
′). The pertinent σ-algebra

Σ(E′, E) is defined as the smallest σ-algebra which contains all cylinder sets

U(f1, . . . , fn; Λ) := {L ∈ E′ | (L(f1), . . . , L(fn)) ∈ Λ}, where n ∈ N, Λ is a

Borel set in Cn, and fi ∈ E. The cylinder sets are w*-Borel sets in E′ and

Σ(E′, E) ⊂ B(E′).

Conversely, each integral of the form equation (3.2) produces a P ∈ Pτ (E).
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If Y is a subspace of E′ then we apply the above construction to obtain the

σ-algebra Σ(Y,E), via the cylinder sets UY (f1, . . . , fn; Λ) := {L ∈ Y | (L(f1), . . . ,
L(fn)) ∈ Λ}. If Y = H, then Σ(H, E) equals the Borel sets of H in the strong

topology on H (which follows from [DaviesOp, Thm. 11.2]).

Definition 3.8. Denote by E′
s the set of all “singular fields” given by the norm-

unbounded functionals in E′ (being no subspace of E′). For a linear subspace

Y ⊂ E′ we write Y ⊂ E′
s if Y ̸= 0 and if for all 0 ̸= L ∈ Y it holds that L ∈ E′

s.

The norm-bounded functionals from H ⊂ E′ are called “bounded fields”.

In order to work with the singular fields, detached from the bounded ones,

the first idea could be to employ E′/H ∋ [L] = L+H, defined as the quotient of

LC-spaces. But, since H is not closed in the w*-topology, the quotient topology of

E′/H is not Hausdorff, and would even prevent point measures (cf. [Schaef66, I,

2.3]). Instead, we generalize a method in [Rie2020] which enables the construction

of quite general singular w*-closed, linear spaces now, and is basic for our present

approach.

Theorem 3.9. (a) It holds that “Y ⊂ E′
s and Y is w*-closed” if and only if its

pre-polar 0Y := {f ∈ E | L(f) = 0 ∀L ∈ Y } is a norm-dense strict subspace

X of E.

Stated otherwise, the τ -continuous polars X0 of all norm-dense strict

subspaces X of E exhaust all w*-closed subspaces Y ⊂ E′
s.

(b) If we have a family {Xi | i ∈ I} of norm-dense strict subspaces Xi ⊂ E then

it holds for
⋂

i∈I Xi =: Xp that for the Hilbert space orthogonal complements

we have X⊥
p =

∨
i∈I X̂

⊥
i = 0, and the true subspace Xp is norm dense in E.

The polar X0
p =: Yp equals LH

⋃
i∈I X

0
i

w∗
⊂ E′

s.

(c) Given a closed subspace Y ⊂ E′
s with 0Y = Xp ⊂ E, we fix a (non-unique)

direct complement Xe such that E = Xp +̇Xe. This provides a unique decom-

position f = fp + fe for all f ∈ E. Denoting the continuous dual of Xe by

X ′
e, we find the linear homeomorphism in the respective w*-topologies

(3.3) X ′
e
∼= X0

p for all choices of a complement Xe of Xp.

(d) A linear subspace Y ⊂ E′ is contained in E′
s if and only if the quotient map

q : Y → E′/H is a linear isomorphism.

In particular, if a linear subspace E′
c is a direct complement of H in E′,

i.e. E′ = H +̇ E′
c, then E

′
c is linear isomorphic to E′/H. Thus E′

c ⊂ E′
s, but

E′
c is not w*-closed.
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Proof. (a) Assume Y ⊂ E′
s and Y is w*-closed. If 0Y were not norm dense in

E, and thus not norm dense in H, then there would exist a 0 ̸= g ∈ H which is

orthogonal to 0Y and, therefore, contained in (0Y )0 = Y , so that the latter would

not be contained in E′
s. If

0Y were E, then Y would be 0.

If X is a norm-dense strict subspace of E then it holds for each norm contin-

uous L ∈ X0 ⊂ E′ that L vanishes on a norm-dense set and equals 0. Thus X0 is

contained in E′
s. Since X ̸= E it follows that Y ̸= 0.

(b) X ⊂ E is norm dense in E if and only if it is norm dense in H, and that

is equivalent to X⊥ = 0.

The continuous polar for the norm-dense linear subspace
⋂

i∈I Xi ⊂ E is

certainly a w*-closed, linear space in E′
s which contains all X0

i and is the smallest

of these linear spaces.

(c) If Le ∈ Xe
′ then there exists for it a unique extension L ∈ E′ which

vanishes on Xp and vice versa. The w*-convergence of (Li)I ⊂ X0
p implies the

same for their restrictions (Lei)I on Xe and vice versa.

(d) Quite generally, q : Y → E′/H is a linear map. If different L1, L2 are in

Y ⊂ E′
s and q(L1) = q(L2) then L1 − L2 ∈ H would not be in E′

s, which would

contradict the subspace property of Y. Thus q is injective.

If Y is a linear subspace of E′ and q : Y → E′/H is injective, then each

difference q−1[L1] − q−1[L2], for different L1, L2 in Y , must be in E′
s and thus

Y ⊂ E′
s.

Clearly E′
c is a subspace of E′

s, but is not w*-closed by Observation 3.10(b)

below.

Observation 3.10. We supplement some topological features connected with sin-

gular fields.

(a) Fix a direct algebraic decomposition E′ = H +̇E′
c, E

′
c ⊂ E′

s, and consider the

projection PH : E′ → H picking in each direct decomposition L = g+Lc ∈ E′

the unique component g ∈ H ⊂ E′. Then PH is not continuous in the w*-

topology.

This is because there are sequences {Ln} = {gn +Lc} ⊂ E′ with {gn} ⊂
H converging to 0 ̸= Ls ∈ E′

c, since H is w*-dense in E′. Then limPH(Ln) =

lim gn = Ls ̸= 0 but PH(limLn) = PH(Ls + Lc) = 0.

(b) Because of (a), Pc : 1−̇PH is w*-discontinuous also, and PcE
′ = E′

c is not w*-

closed. This implies that there exists a sequence {Ln} ⊂ E′
c which converges

to a g ∈ H in the w*-topology, since otherwise a discontinuity of Pc could not

arise. But then all sequences {Ln+f} ⊂ E′
s, f ∈ H, converge to any prescribed

g + f =: h ∈ H. We conclude that E′
s is w*-dense in E′. This means that H

and E′
s are intimately interwoven, disjoint sets in the w*-topology.
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(c) From (a) it follows that E′ = H +̇ E′
c is not a topological direct sum

(in the sense of [Schaef66, p. 21]) and the algebraic linear isomorphism

q : E′
c → E′/H is not continuous (according to [Schaef66, p. 22]). Also, com-

pare [Conway85, Prop. 5.22] and the subsequent discussion.

(d) Similarly one may show that E = Xp +̇ Xe, is not a topological direct sum

in the norm topology and the projections Pp : E → Xp and Pe : E → Xe are

discontinuous. (Apply, e.g., Pp to (gn) of Lemma 3.11.) Our examples show

that possibly dimXe < ∞ (a possibility emphasized by [Schaef66, II, Ex. 8

and IV, Ex. 12]).

For later use we need the following fact.

Lemma 3.11. If L is in a w*-closed, singular subspace Y with pre-polar 0Y = Xp

then according to Theorem 3.9 we have E = Xp +̇Xe. Given any fe ∈ Xe we can

choose a sequence {gn} ⊂ Xp such that gn → −fe, since Xp is norm dense in E.

Then L(gn + fe) → L(fe) in the stationary sense, but ∥gn + fe∥ → 0.

To construct examples for w*-closed, linear subspaces Y ⊂ E′
s we generalize

a strategy of [Rie2020].

Definition 3.12. Let a self-adjoint K on H with kerK = 0 be given and write

ws := exp{isK} for all s ∈ R. Denote by EK ⊂ E the union of all finite linear

combinations
∑

n cn(wsfn − fn), cn ∈ C, s ∈ R, fn ∈ E.

Due to the self-adjointness of K, we have H = ranK
n ⊕ kerK. If g ∈ kerK

it holds that (g|wsf − f) = (w−sg − g|f) = 0 for all f ∈ E and all s ∈ R and it

follows that EK
n
is (kerK)⊥. Thus EK

n
= H. If EK is a true subset of E then E0

K

is a non-trivial, w*-closed subspace of E′
s, which is time invariant if [K,B] = 0.

If we have a family {Ki | i ∈ I} of such self-adjoint operators, then Ep :=⋂
iEKi

is still n-dense in E according to Theorem 3.9(c)(b), and time invariant.

Then E0
p provides a time-invariant, linear, w*-closed space of singular fields.

To introduce our main examples we choose as singular fields transversal plane

waves R3 ∋ x 7→ ek(x) = ak exp{ik · x}/(2π)3/2, with R3 ∋ k ̸= 0. The term ek is

the inverse Fourier transform of êk = akδk ∈ Ê′
s. Here 0 ̸= ak ∈ C3, with k ·ak = 0,

determines the intensity and kind of polarization. If Arg(a2)−Arg(a1) equals 0 or

π, the wave is linearly polarized in the 1-2-plane provided k points along the 3-axis.

We admit arbitrary such 0 ̸= ak ∈ C3, i.e. elliptically polarized plane waves, but

not partially polarized waves which would mean mixed states. Set κ := k/|k| and
a0κ := ak/|ak| so that the polarizer projection is Pκ = a0κ ⊗ a0κ and Pκakδk = akδk
(where in optics one works with the real part of the ek(x), taken as the E-field;

e.g. [KleinF]).
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To illustrate the essential features it is sufficient to assume the entire photon

system is polarized by the fixed Pκ, that is, we vary in the considered ek(x) only the

frequencies ωk = c|k| and intensities |a|, but have, of course many other L ∈ E′

with PκL = L. Correspondingly, it is sufficient to restrict the test functions to

the form f̂(l) = (a0κ,νφ̂(l)) where φ̂ ∈ Ŝ10. Then we obtain in particular êk(f̂) =

|ak|φ̂(k) ∈ C, illustrating that the now restricted f̂ also test the intensity.

The dual dynamics is given by (v′tek)(x) = ak exp{−i(ωkt− k · x)}, which in

the k-representation is written as v′têk = exp{−iωkt}êk ∈ Cêk =: Ŷk ⊂ Ê′
s. So the

one-dimensional, singular, w*-closed subspace Ŷk is time invariant.

The pre-polar is 0Ŷk = X̂k,p = {a0kφ̂ ∈ Ê | φ(l) = 0 for l = k} and is a

true, norm-dense subspace of the now restricted Ê, by Theorem 3.9. A direct

complement X̂k,e of X̂k,p with respect to Ê is, e.g., Cf̂k,λ, with λ > 0, where

f̂k,λ(l) := akφ̂k,λ(l) = ak exp{−λ(k − l)2/|l|} for all l ∈ R3. The associated direct

decomposition f̂ = f̂p +̇ f̂e is for any f̂ ∈ Ê given by f̂(l) = (f̂(l)− f̂(k)φ̂k,λ(l)) +̇

f̂(k)φ̂k,λ(l). If we let λ increase then f̂k,λ and all other elements in X̂k,e concentrate

more and more around l = k, whereas the elements in Xk,e are more and more

spatially extended. Notice that the f̂k,λ/∥f̂k,λ∥ approximate thereby êk.

If K ⊂ R3\0 is an arbitrary subset, then for
⋂

k∈K X̂k,p =: X̂p we still have

X̂⊥
p =

∨
k∈K X̂

⊥
k,p = 0, and the true subspace X̂p is norm dense in Ê. We arrive at

the time-invariant, w*-closed, singular subspace Ŷ := X̂0
p = LH

⋃
k∈K Ŷk

w∗

.

§3.3. Generalized q-classical photon states

In the following we take the point of view that we consider a class of photon

systems for which we know a w*-closed space Y ⊂ E′
s which should comprise all

singular classical fields which may possibly arise. For example, the experimental

possibilities certainly restrict the range of frequencies for the (always singular)

radiation fields.

The space Y being fixed, we term it Y ≡ E′
ess and denote its pre-polar 0E′

ess

by Ep. We have thus E = Ep +̇ Ee in the sense of Proposition 3.9(c).

Since according to equation (2.2) each f constitutes in the Fock representation

a one-particle wave function, the splitting of E induces two different types of

photons. As indicated in the main example and further discussed below, in Ep there

are the genuine particle bosons, and in Ee are bosons of somewhat diffuse character,

since Ee is not unique. We term them transient or extended photons since a typical

physical feature is their wider spatial extension. The relation E′
ess = E′

e, especially,

demonstrates the close relation between classical fields and transient photons.

We consider only q-classical states Scl with a τ -continuous characteristic func-

tion, which makes them into a subset of the folium Fτ ⊂ S of “τ -continuous
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states” (cf. [HonRie15, I, Thm. 18.2-3], where also the τ -strong continuity of

E ∋ f 7→Wφ(f) is demonstrated for all φ ∈ Fτ ).

Definition 3.13. We denote the state space S(W(E, σ)) simply by S and the

classical state space S(W(E, 0)) by S0, and choose an E′
ess.

(a) Any state ω ∈ S is termed “q-classical”, written ω ∈ Scl, if its characteristic

function has the form

(3.4) Cω(f) ≡ Cµ(f) =

∫
E′

exp{− 1
4∥f∥

2} exp{i
√
2ReL(f)} dµ(L)

for all f ∈ E and some Bochner–Minlos measure µ ∈ Mp(E
′) and is then

written ω ≡ ωµ. (Recall that the support suppµ is the usual smallest closed

set, the complement of which has zero measure, since E′ is metrizable in the

w*-topology.)

(b) A state ω ≡ ωµ ∈ Scl is called “Fock q-classical”, denoted ω ∈ SFcl, if

suppµ ⊂ H.

(c) If µ equals a point measure δL with L ∈ E′ then ωδL ≡ ωL is called a “coherent

state”. If L ∈ E′
s, then ωL is also called a “singular coherent state”, otherwise

a “Fock coherent state”. In the latter case we write ωL = ωg, if L(f) = (g|f),
g ∈ H (cf. equation (2.17)).

(d) An ω ≡ ωµ ∈ Scl is called “essential (q-classical)”, denoted ω ∈ Sess, if

suppµ ⊂ E′
ess.

If a plane wave with ek = L ∈ E′
s (which is not a one-photon wave function)

is included in E′
ess then it gives rise in the present setup to a well-defined multi-

photon state ωL ∈ Sess.

Theorem 3.14. (a) Scl is a simplex contained in Fτ .

The extremal boundary ∂eScl is given by {ωL | L ∈ E′}, with the char-

acteristic functions

(3.5) CδL(f) ≡ CL(f) = exp{− 1
4∥f∥

2} exp{i
√
2ReL(f)}, L ∈ E′.

It holds that ∂eScl ⊂ ∂eS.
Moreover, ∂eScl is the disjoint union of the two subsets ∂eSFcl and ∂eSscl,

each of which is dense in ∂eScl in the w*-topology on S.
(b) The present SFcl coincides with that of Definition 2.6.

This means that the Bochner–Minlos measure µ ∈ Mp(E
′) reduced to

H ⊂ E′ is a Borel measure in the strong topology on H and that the boundary



224 A. Rieckers

integrals converge not only in the w*-topology, but even in the norm topol-

ogy on S, where the latter is equivalent to the trace-norm topology for the

corresponding density operators on F+(H).

Thus SFcl is a simplex of Fock-normal states, and ∂eSFcl is given by

{ωL | L ∈ H}, the only pure states in SFcl.

The space SFcl is a face of Scl, but not a face of S.
(c) Sess is a simplex, and ∂eSess is given by {ωL | L ∈ E′

ess}.
The space Sess is even a face of S which is stable in the sense that any

orthogonal decomposition measure µ′ of ωµ ∈ Sess is supported on Sess.

In other words,all possible decompositions of the quantum state ωµ ∈
Sess are induced by the decompositions of the corresponding mixed, classical,

singular field states on the center.

Proof. (a) In equation (3.4) the vacuum part may be extracted from the integral

and is τ -continuous since τ is stronger than norm. The remaining integral is a

τ -continuous positive-definite function by Bochner–Minlos. The product of both

is twisted positive definite and defines a state in Fτ .

By construction, Scl is affinely isomorphic to the simplex Mp(E
′). Then ∂eScl

is in bijection with the point measures δL, L ∈ E′ which exist, since the measurable

space (E′,Σ(E′, E)) is Hausdorff in the w*-topology. That all ωL are pure follows,

e.g., from their irreducible GNS-representations, which are seen in Theorem 4.1.

If Ln converges to L in the w*-topology on E′ then CLn → CL in the pointwise

∆-topology, and ωLn
→ ωL in the w*-topology on S. Besides the w*-denseness of

H in E′, we have from Observation 3.10 (b) that also E′
s is w*-dense in E′, where

E′ indexes all ωL.

(b) Since ourH is separable, its strong Borel σ-algebra coincides with Σ(H, E)

according to [DaviesOp, Thm. 11.2].

Since for a present ω ∈ SFcl the characteristic function Cω is the same as in

equation (2.20), it is Fock normal and has – as a density operator ϱω – the integral

decomposition in the trace norm, given in [DaviesOp, p. 120]. This can be applied

to all A ∈ L(F+(H)) and gives the decomposition in the state norm, since the

trace class operators T (H) provide the pre-dual of L(F+(H)).

The simplex property of SFcl and its boundary follow again from the affine

isomorphy to a measure space, here to Mp(H). That the ωg, g ∈ H are the only

pure states in SFcl is the content of [DaviesOp, Chap. 8, Lem. 2.1].

If SFcl ∋ ω ≡ ωµ = λω1 +(1−λ)ω2 with 0 < λ < 1 and ωi ∈ Scl, then neither

µ1 nor µ2 can have a partially singular support. Otherwise, there would contribute

a non-negligible Y ⊂ suppµ ⊂ E′
s which could not be compensated via the convex

state composition.
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Since for different g1, g2 ∈ H the q-classical 1
2 (|G(g1))(G(g1)|+|G(g2))(G(g2)|)

has extremal decompositions into non-coherent one-dimensional projections, it fol-

lows that SFcl is no face of S.
(c) By construction Sess is affinely isomorphic to the simplex Mp(E

′
ess) and

∂eScl is in bijection with the point measures δL, L ∈ E′
ess. Observe that E′

e = E′
ess.

According to Theorem 4.2 below, Mµ is spatially decomposable into irre-

ducible, mutually disjoint representations. This entails that M′
µ = Zµ is maximal

abelian and by the Tomita theorem (e.g. [Takes79]) each orthogonal decomposition

measure µ′ of ωµ is associated with a sub–von Neumann algebra Nµ′ ⊂ Zµ. Thus

µ′ is a coarsening of the central decomposition and supported on Sess. So Sess is a

stable face of S.

§4. Effective photon fields over q-classical states

§4.1. Represented photon algebras

Theorem 4.1. (a) For any q-classical ωµ, µ ∈Mp(E
′), the GNS-triple is

(Wµ(f),Hµ,Ωµ) = (WF (f)⊗W 0
µ(f), Pµ[F+(H)⊗ L2(E′, µ)],Ω0 ⊗ 1µ),

Pµ[F+(H)⊗ L2(E′, µ)] := LH{Wµ(f)Ωµ | f ∈ E},

W 0
µ(f) := multiplication by L 7→W 0(f)[L] := ei

√
2ReL(f) on L2(E′, µ).

(b) If µ = δL, L ∈ E′, then (Wµ(f),Hµ,Ωµ) ≡ (WL(f),HL,ΩL) is (unitary

equivalent to) (ei
√
2ReL(f)WF (f), F+(H),Ω0) and is irreducible (but disjoint

to the Fock representation for L ∈ E′
s).

(c) For a ωµ ∈ S ′
ess, with µ ∈Mp(E

′
ess), the GNS-triple specializes to

(4.1) (Wµ(f),Hµ,Ωµ) = (WF (f)⊗W 0
µ(f), F+(H)⊗ L2(E′

ess, µ),Ω0 ⊗ 1µ).

(d) Let µ ∈ Mp(E
′
ess) and Mµ := Wµ(E, ℏσ)′′. Then Mµ, its commutant M′

µ,

and its center Zµ := Mµ ∩M′
µ are given by

Mµ = L(F+(H))⊗L∞(E′
ess, µ),(4.2)

M′
µ = 1F⊗L∞(E′

ess, µ) = Zµ,(4.3)

where “⊗” between von Neumann algebras includes the weak closure.

Proof. (a) That (Ωµ|Wµ(f)Ωµ) = Cµ(f) is immediate, and cyclicity holds by

construction.

(b) Formed by arbitrary finite sets {cn} ⊂ C, {
∑

n cnΠL(W(fn))Ω0} equals

the sets {c′nΠF (W(fn))Ω0}, with cn = c′ne
i
√
2ReL(−f), c′n ∈ C, which are dense in
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F+(H). The map f 7→WL(f) is not norm-weak continuous if L is singular and in

that case Sn(ΠL) ∩ Sn(ΠF ) = ∅ by Theorem 4.2 below.

(c) Denote (gn + fe) from Lemma 3.11 by (fn). Then for each L ∈ E′
ess we

have WF (fn)⊗ exp{i
√
2ReL(fn)} → 1F ⊗ exp{i

√
2ReL(fe)} =: Z(f) if n→ ∞,

since E ∋ g 7→WF (g) is norm-strong continuous so that Z(f) ∈ Mµ.

Multiplying Z(f) by WF (f) ⊗ exp{i
√
2ReL(−f)} leads to WF (f) ⊗ 1µ for

arbitrary f ∈ E. Hence Mµ contains all elementsWF (f
′)⊗exp{i

√
2ReL(f)} with

f ′, f ∈ E. According to the Stone–Weierstrass theorem [KadR83], the characters

on E′
ess, given by Z(f), f ∈ E, generate algebraically a norm-dense subalgebra

of C(E′
ess) and generate, by application to Ωµ, linear extension, and vector-norm

closure all of Ω0 ⊗ L2(E′
ess, µ), whereas the WF (f) ⊗ 1µ generate, by application

to Ωµ, linear extension, and vector-norm closure all of F+(H)⊗1. This shows that

Hµ = F+(H)⊗ L2(E′
ess, µ).

Since the commutant is the tensor product of the commutants of the separate

factors [Takes79], we arrive at equation (4.3).

In contradiction with the correspondence limit ℏ → 0, which deforms the

entire quantum algebra into a classical one, the foregoing investigation reveals

the phase space functions L∞(E′
ess, µ) as the central part of an effective quantum

field algebra for fixed ℏ > 0. Its pure states are the restrictions of the quantum

states {ωL | L ∈ E′
ess} to the center. Each ωL has in general a spontaneous

transition probability to pass into some of its “weak quantum perturbations” from

the folium FL = Sn(ΠL), but should not spontaneously go over to a different

ωL′ . It is interesting that we can confirm this by directly calculating the algebraic

transition probabilities between states on W(E, σ).

Theorem 4.2. Employ the setup of Theorem 4.1 and the notions in Appendix A.

(a) Consider two different singular coherent states ωL and ωL′ on W(E, ℏσ) ≡ A.

Then for all state tuples (ω, φ) ∈ Sn(ΠL)×Sn(ΠL′), we obtain TA(ω, φ)

= 0. This implies that all states in Sn(ΠL) are macroscopically different (=

disjoint) from the states in Sn(ΠL′).

Particularly for L′ = 0 this demonstrates that no vacuum fluctuation

– that is a state in Sn(ΠF ) – can achieve the spontaneous arise of a true

classical field associated with Sn(ΠL).

(b) We conclude that the state decomposition of an essential q-classical state

ω ≡ ωµ,

(4.4) ω =

∫
E′

ess

ωL dµ(L) =

∫
S
φdµω(φ),
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implied by equation (3.4), is not only extremal on S but also a parametrization

of the central measure µω on S.
(c) It follows by the separability of E′

ess that each ωµ ∈ Sess is spatially decom-

posable in the sense that

(4.5) (Πµ,Hµ,Ωµ,Mµ)
U
=

∫ ⊕

E′
ess

(ΠL,HL,ΩL,ML) dµ(L),

such that Zµ is unitary equivalent to the diagonal algebra
∫ ⊕
E′

ess
CL1L dµ(L).

Proof. (a) Let us begin with the pure essentially singular classical states ωL, L ∈
E′

ess. Then there exists a sequence (gn) ⊂ E with gn
w∗−−→ L ∈ E′

ess, entailing

∥gn∥ → ∞. This also gives Cgn(f) → CL(f) for all f ∈ E, and, by the affine ∆-

to-weak* homeomorphy between characteristic functions and states, ωgn
w∗−−→ ωL

in S. We can now try to apply Proposition A.1. First we have TA(ωgn , ωf ) =

|(G(gn)|G(f))F+ |2, because the vectors G(gn), G(f) represent ωgn , ωf both in the

Fock representation, in the commutant of which there are only scalar unitaries.

Then, according to Proposition 2.4(c), we obtain

(G(gn)|G(f))F+ = exp{(gn|f)− 1
2∥gn∥

2 − 1
2∥f∥

2} → 0 ∀ f ∈ E,(4.6)

implying that TA(ωgn , ωf ) → TA(ωL, ωf ) = 0 ∀ f ∈ E, ∀L ∈ E′
ess.(4.7)

In fact, since TA(ω, ω
′) is jointly, weak* lower semicontinuous the limit of falling

values is assumed [ReedSim1, I, Suppl. IV.5].

If also fm
w∗−−→ L′ ∈ E′

ess, with L
′ ̸= L, then L′−L ∈ E′

ess and is approximated

by gn − fm with ∥gn − fm∥ → ∞. Then |exp{(gn|fm) − 1
2∥gn∥

2 − 1
2∥fm∥2}| is

dominated by exp{−1
2 ∥gn − fm∥2} → 0 and TA(ωgn , ωfm) → T (ωL, ωL′) = 0 for

all L,L′ ∈ E′
ess. We observe that

(G(gn)|WF (h)G(fm))F+ = (G(gn)| exp{i2−1/2 Re(h|fm)}G(fm + i2−1/2h))F+

(apply equation (2.15)), which tends to 0 by the preceding argument. Then also

T (ωL, ω
C
L′) = 0 if ωC

L′ symbolizes a finite convex combination of states, approached

by normalized vectors WF (hi)G(fm)/∥WF (hi)G(fm)∥F+ , taking into account the

separate convexity of TA(ω, φ). Since ∆(E, σ) is norm dense in W(E, σ) we ap-

proximate any φ ∈ Sn(ΠL′ ,HL′) by the described Weyl perturbations in the state

norm, in which φ 7→ TA(ω, φ) is continuous. Apply the same procedure to the other

argument ω in TA(ω, φ). That this implies the disjointness of ω and φ follows from

Proposition A.2.

(b) If we consider two disjoint subsets E′
1 and E′

2 of E′
ess, with non-vanishing

µ-measure each, then
∫ ⊕
E′

1
ωL dµ(L)/µ(E

′
1) and

∫ ⊕
E′

2
ωL dµ(L)/µ(E

′
2) give two dis-

joint states by the reasoning of (a). It characterizes the central decomposition
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(e.g. [BratRob1]), written as the second integral in equation (4.4) by means of the

w*–w*-continuous map L 7→ ωL to transpose the measure.

(c) If {fn | n ∈ N} is τ -dense in E then {Wφ(fn) | n ∈ N} is weakly dense

in Wφ(E, σ) = Mφ, because of the continuity of f 7→ Wφ(f), φ ∈ Fτ . Thus

{Wφ(fn)Ωφ | n ∈ N} is dense in Hφ for all φ ∈ Fτ . This gives a family of

integrable Hilbert spaces and von Neumann algebras. Since µω is supported on Fτ

and is an orthogonal measure, the argument that
∫ ⊕
S Ωφ dµω(φ) is a cyclic vector

for the integral representation runs as for the case of separable C*-algebras (see

[Takes79], and for Weyl algebras [HonRie15, III, Prop. 48.2-15]). This makes ωµ

spatially decomposable in the sense of [HonRie15, III], meaning the validity of

equation (4.5).

By Theorem 4.2(b) we have another argument to deduce the GNS-representa-

tion over an ωµ ∈ Sess. The decisive limit is here E ∋ gn → L ∈ E′
ess, an apparently

more constructive manner to reach the singular classical fields, whereas in Theorem

4.1 the singular classical fields are presumed, and the alternative limit, there, serves

to separate them off from the quantum degrees of freedom.

We have arrived at a “sector decomposition” of the effective field algebra

which we understand merely as a decomposition into irreducible mutually disjoint

representations of the abstract field algebra which is not always to consider as

forming “superselection rules” (cf. [Earman]).

§4.2. The dressed photon fields

By differentiating R ∋ s 7→Wµ(sf) of equation (4.1) we obtain the field operators

Φµ(f) =
1√
2
(a∗µ(f) + aµ(f)) over ωµ ∈ Sscl on a dense domain in Hµ in the form

(4.8)
Φµ(f) = ΦF (f)⊗ 1µ + 1F+ ⊗ Φ0

µ(f), with Φ0
µ(f) :=

√
2ReL(f),

a∗µ(f) = a∗F (f)⊗ 1µ + 1F+
⊗ L(f), aµ(f) = aF (f)⊗ 1µ + 1F+

⊗ L(f),

where L ∈ E′
ess is the mute variable for the multiplication operators on L2(E′

ess, µ).

Dropping the unit operators we write

(4.9) Φµ(f) = Φµ(Ppf) + Φµ(Pef) = ΦF (fp) + ΦF (fe) + Φ0
µ(fe).

Let us recall that quite generally a restrictive linear subsidiary condition on the test

functions, under which the corresponding smeared field is measured, implements a

quality on the quantized field. If, e.g., the f are all supported on a volume V ⊂ R3,

then we speak of a “field localized in V ”. In an analogous sense we call ΦF (fp),

fp ∈ Ep the “particle photon field” and ΦF (fe), fe ∈ Ep the “transient photon

field”.
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By the “strong resolvent continuity” of E ∋ f 7→ ΦF (f), induced by the strong

continuity of the map f 7→WF (f), we obtain – using {fn} from Lemma 3.11 –

(4.10) lim
n

Φµ(fn) = Φ0
µ(fe), {fn} = {gn + fe}, gn → −fe.

We may interpret that convergence of the represented photon field to the alone

standing classical field part Φ0
µ(fe) as the existence of coarsened measurement pro-

cedures which neglect the bosonic particle aspects and lead to merely observing the

classical field. Mathematically, the limiting behavior of the particle test functions

gn = Ppgn may clear away, not only the particle part, but also the transient test

functions, and this is enabled by the denseness of Ep in E and by the discontinuity

of Pp. Physically, these measurement methods are so coarse that they do not even

detect the extended transient photons.

If one measures, e.g., the laser light in a glass-fiber cable, one is usually in-

terested only in the quality of the information-carrying classical field part which,

for itself, already displays fluctuations, the classical noise (cf. also our formula

(7.4)). More precise, technically relevant measurements also exhibit the quantum

noise. In the extreme limit, one must shrink the cable to a high-quality cavity

(e.g. [ScullyZub, Trifonov]) in order to measure n exemplars of localized particle

photons. In the case that these constitute all of the photonic system, Ee = 0 and

there are neither transient photons nor classical fields.

Altogether, the decomposition equation (4.9) of the effective photon field op-

erator, deduced from microscopic algebraic quantum theory, already displays a

similarity to Einstein’s vision, if we relate ΦF (fp) with the “singular points” and

Φ0(fe) with the “undulatory fields of force”. The spatial extension of fp – and thus

of all particles describable by ΦF (fp) – is almost point-like displayed in the nearly

instantaneous act of atomic absorption, and the photonic energy is correspond-

ingly concentrated. (An indivisible energy point will be treated in a forthcoming

investigation.)

The name “undulatory fields of force” is only intelligible if one understands

“fields of force”. The latter are to mediate between the singular point particles and

the “undulatory fields of force”, as do our transient photons ΦF (fe) between the

quantum particles and classical waves. Einstein’s notions appeal to the influence

of the photons on charged matter, whereas we presently deal with free photons

only. We supplement, however, some remarks in Appendix D on how the gauge

principle discloses the capacity to interact with charged fermions as an intrinsic

feature of photons. This amplifies the kinship of the transient photons to the “fields

of force”. Moreover, the increasingly overlapping “fields of force” approaching an

electrodynamic wave are not completely foreign to the high-intensity limit of the

transient photon amplitudes.
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The big difference between a transient one-photon wave function fe and a

classical “field of force” lies, of course, in the principal statistical character of

the former. It seems, however, not clear whether Einstein assigned the spatially

decreasing “fields of force” the same classical stability as the “undulatory fields

of force”. The first-named rather appear to be a diffuse concept, similarly to the

transient photon wave functions which depend on the choice of the complementary

subspace Ee ⊂ E. Let us only emphasize that just the necessity of such interpola-

tive quantities between particles and classical fields demonstrates that classical

field properties are not one-photon properties, neither in Einstein’s formulation

nor in the quantized theory, where one-photon wave functions are basically differ-

ent from electromagnetic fields.

The intuitive picture must further be substantiated by elaborating the be-

havior of the effective field operators under time and symmetry transformations.

§5. Dynamics and symmetries

§5.1. Time-invariant classical fields and photon states

We venture to draw further physical conclusions from the topological properties

of (E, τ) and its τ -continuous dual E′ of classical fields. Because of their physical

significance we present the following results as a theorem.

Theorem 5.1. Consider a general quasi-free bosonic field system, described in

terms of a C*-Weyl algebra W(E, σ) with (E, τ) an infinite-dimensional locally

convex test function space. The automorphic Heisenberg dynamics is induced from

the τ -continuous unitary test function dynamics vR = exp{iRB} with B > 0.

We introduce the subspace EB ⊂ E according to Definition 3.12 and know

that EB
n
= H.

(a) Denoting by E′
inv ⊂ E′ the set of all time-invariant classical fields we have

E0
B = E′

inv ⊂ E′
s, where the polar formation is performed under τ -continuity.

That is, all time-invariant dual fields are given by the polar of EB and

are singular (if not vanishing).

(b) It holds for the present photonic case that EB = E and thus E0
B = E′

inv = 0.

There is no time-invariant coherent photon state besides ω0.

(c) The only (pure or mixed) regular photonic ground state is the bare vacuum ω0.

Proof. (a) L(vtf − f) = 0 for all t ∈ R, for all f ∈ E ⇔ L ∈ E′
inv. Thus E

′
inv

equals E0
B and is singular since EB is dense in E, according to Theorem 3.9(a).
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(b) If f ∈ E then for t ̸= 0 we have f = (vt − 1)g with g = (vt − 1)−1f ∈ E

since k 7→ exp{it|k| − 1}−1f(k) is C∞ at k = 0 too, with vanishing derivatives

there, via the l’Hospital rule, giving g ∈ E. Thus f ∈ EB ⊂ E = EB .

(c) According to [Rie2020, Thm. 4.2], all regular bosonic ground states are

q-classical if B > 0, with integral decomposition over E0
B . Now apply (b).

General quasi-free dynamical symmetry transformations combine automor-

phisms and anti-automorphisms and are induced from symplectic transformations

w ∈ symp(E, σ) (where symp(E, σ) consists of all real-linear bijections on E which

leave σ invariant).

Definition 5.2. Consider the photonic Heisenberg dynamics (W(E, ℏσ), αR) in-

duced from the dynamical generator B > 0 on E.

(a) The general “dynamical symmetry group” Gα is defined as the abstraction of

the transformation group {w ∈ symp(E, σ) | [vR, w] = 0, w is τ -continuous}.
The abstract group elements are identified with those acting on E and we

write w ∈ Gα.

(b) The dual actions are (w′L)(f) := L(wf) for all L ∈ E′ and all f ∈ E, and

the associated quasi-free automorphisms are written γw, w ∈ Gα.

(c) The corresponding state transformations, given by duality as affine bijections,

are denoted νw : S → S, νwω := ω ◦ γw for all w ∈ Gα

(d) If K is self-adjoint on H we write exp{iRK} ⊂ Gα
c if exp{iRK} ⊂ Gα and

K is τ -bounded.

Notice that w 7→ w′ and w 7→ γw represent Gα anti-homomorphically, intro-

duced so for notational simplicity. We apply these definitions, however, only to

commutative subgroups of Gα.

Proposition 5.3. (a) Gα is a group.

(b) Each w ∈ Gα, extends uniquely to a unitary on H.

Proof. (a) For wi ∈ Gα, one shows the τ -continuity of the operator w1w2 by

iteration, and from [ReedSim1, Thm. 5.6] follows the τ -continuity of w−1
i (where

the second assertion uses (E, τ) being a Fréchet space).

(b) In [Weinl69] there is proven the following assertion: Suppose that the uni-

tary group UR on a complex Hilbert space H has a strictly positive generator and

that S is a bounded real-linear transformation on H which commutes with UR.

Then S is complex linear. A partial generalization, covering our case, is demon-

strated in the proof of [HonRie15, I, Thm. 9.1-2]: If S is an only densely defined,

possibly unbounded, real-linear symplectic transformation, its commuting with the
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strictly positive generated UR makes it also complex linear. But a complex-linear

symplectic transformation on E is uniquely extensible to a unitary on H.

The following features are readily verified.

Observation 5.4. (a) Since w(vtf − f) = vtwf − wf , each w ∈ Gα leaves EB

invariant. Thus, by duality, we have also E0
B ◦Gα = Gα′E0

B = E0
B .

(b) E′
ess is invariant under w

′, w ∈ Gα, if and only if Ep is w-invariant, and then Ee

is so, and [w,Pp] = [w,Pe] = 0. For, if f ∈ Ep then also L(wsf) = w′
sL(f) = 0

for all L ∈ E′
ess and thus wsf ∈ Ep. Since Pe = 1−̇Pp, also Ee is w-invariant.

The implication ⇐ goes similarly.

(c) Clearly Cνwω(f) = ⟨ω; γwW (f)⟩ = Cω(wf) for all w ∈ Gα and all ω ∈ S.
(d) If ω ∈ Scl owns Cω(f) =

∫
E′ C0(f) exp{i

√
2ReL(f)} dµω(L) then Cνwω(f) =∫

E′ C0(f) exp{i
√
2ReL(f)} dµw

ω (L), with dµ
w
ω (L) := dµω(L ◦ w−1).

(e) Since µνwω = µw
ω we have νwScl = Scl, as well as νw∂eScl = ∂eScl for all

w ∈ Gα. Thus ω ∈ Scl is νw-invariant if and only if µw
ω = µω.

(f) Since L 7→ w′L respects (un-)boundedness, we conclude that each νw, w ∈ Gα

leaves SFcl and ∂eSFcl, and also Sscl and ∂eSscl, invariant.

§5.2. Effective symmetries and their Heisenberg generators

Effective features of symmetry transformations are revealed in a representation,

for which we choose (Wµ(f),Hµ,Ωµ) over a q-classical state ωµ, µ ∈Mp(E
′). Since

a non-trivial representation of the simple Weyl algebra is faithful, the represented

symmetry transformations in the observable picture are gained by setting

(5.1) γµs (Πµ(A)) := Πµ(γs(A)) ∀A ∈ W(E, σ), s ∈ R.

If µ = µwR the GNS unitary implementation is introduced as

(5.2) Uµ
s Πµ(A)Ωµ := Πµ(γs(A))Ωµ, A ∈ W(E, ℏσ), s ∈ R.

By sandwiching the observables with the Uµ
s , the γ

µ
s are extended to Mµ, but

keep their symbol. This mathematical standard procedure is physically of utmost

significance in cases where Mµ owns a non-trivial center. As we will demonstrate

for the photons, the generators of Uµ
s may acquire thereby a uniquely determined

classical part.

Notational Remark 5.5. If the *-algebra ∆(E, σ) of Definition 2.2 is restricted

to the subspace X ⊂ E, we write ∆(X,σ), and if represented in Hµ, we write

∆µ(X,σ).
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Proposition 5.6. Consider µ ∈Mp(E
′) invariant under wR = exp{iRK} ⊂ Gα

c .

(a) Then R ∋ s 7→ Uµ
s is strongly continuous and its generator Kµ annihilates Ωµ.

(b) If ωµ is a C2-state (with twice continuously differentiable characteristic func-

tion s 7→ Cµ(sf)) then we get, by differentiation,

(5.3) KµWµ(f)Ωµ = Φµ(iKf)Wµ(f)Ωµ ∀ f ∈ E,

and ∆µ(E, σ)Ωµ is a core for Kµ.

Proof. (a) It suffices to show that C0(wsf)
∫
E′ exp{i

√
2ReL(wsf)} dµ(L) is con-

tinuous in s ∈ R (see [Rie2020, Lem. 2.4]), which results from the dominated

convergence theorem.

(b) The right-hand side of equation (5.3) exists according to [HonRie15, I,

Prop. 18.3-7] (concerning the domain of the field operator) and by K acting τ -

continuously on E. The domain ∆µ(E, σ)Ωµ is dense in Hµ since E ∋ f 7→Wµ(f)

is τ -strong continuous, and it is Uµ
R -invariant, since E is wR-invariant.

Observation 5.7. We remark that E′ ∋ L 7→W 0(f)[L] = exp{i
√
2ReL(f)} is a

more natural function of F =
√
2ReL taken from the real-linear topological dual

E ′ := Re(E′). This leads to the following R-linear w*-homeomorphism from E′

onto E ′, the two dual spaces over (E, τ),

(5.4)

E′ ∋ L 7→
√
2ReL =: FL ∈ E ′,

E ′ ∋ F 7→ 1√
2
(F (·)− i(F ◦ i)(·)) =: LF ∈ E′.

The function realizations of the classical field observables are then

Φ0(f)[F ] = F (f), W 0(f)[F ] = exp{iF (f)}, ∀ f ∈ E, ∀F ∈ E ′,(5.5)

a0∗(f)[F ] := LF (f) =
1√
2
(Φ0(f)− iΦ0(if))[F ], a0(f)[F ] := a0∗(f)[F ].(5.6)

We are going to develop a Poisson formalism on the whole of E ′ and may

afterwards restrict the generators to functions on E ′
ess (or on E′

ess, if desired).

Because of the duality procedure it is even sufficient to evaluate the symmetry

generators on the embedded Re(E) ⊂ E ′. It is important to keep the original

complex test function space E, since in the present approach the classical fields

are part of the total effective photon field, all of them smeared by the same test

functions.

Notational Remark 5.8. If µ ∈Mp(E
′) then we get the R-transferred measure

µR ∈Mp(E ′). We keep, however, the old symbols of the functions and measures on
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E′ and identify the corresponding quantities on E ′ by means of their independent

variables, or by context. In this manner it is not necessary to change the symbols

for the dual dynamical symmetry transformations while going from E′ to E ′.

Proposition 5.9. Consider a µ ∈ Mp(E ′
ess), invariant under wR = exp{iRK}

⊂ Gα.

(a) We obtain for the unitary GNS-implementation Uµ
R on (Πµ,Hµ,Ωµ),

(5.7) Uµ
s Wµ(f)Ωµ :=WF (wsf)Ω0 ⊗W 0

µ(wsf)1µ, f ∈ E, s ∈ R.

(b) It holds that ωµ is a C2-state if and only if
∫
E′
ess
F (f)2 dµ[F ] < ∞ for all

f ∈ E.

(c) If even exp{iRK} ⊂ Gα
c and ωµ is C2 then we obtain on a dense domain in

Hµ, comprising ∆µ(E, σ)Ωµ,

d

ids
Wµ(exp{isK}f)|s=0 = [Kµ,Wµ(f)]|− = Φµ(iKf)Wµ(f)

= ΦF (iKf)WF (f)⊗W 0
µ(f)

+WF (f)⊗ Φ0
µ(iKf)W

0
µ(f) ∀ f ∈ E.(5.8)

Proof. (a) It follows from equation (4.1).

(b) The ωµ is C2 if and only if Ωµ is in domΦµ(f) for all f ∈ E, where the

latter means for the classical part the existence of the indicated second moment

for µ.

(c) ∆µ(E, σ)Ωµ ⊂ domΦµ(f) for all f ∈ E.

To evaluate Φ0
µ(iKf)W

0
µ(f) we need a Poisson formalism.

§5.3. Poisson bracket formalism for classical generators

We introduce some notions for the Hamilton flows on the phase space E ′. The

second dual E ′′ =: E , consisting of the σ(E ′, E)-continuous, R-linear functionals on
E ′, may be realized via E and then identified with E. The tangent and cotangent

bundles for the flat manifold E ′ are TFE ′ = E ′ and T ∗
FE ′ = E ′′ = E for each F ∈ E ′.

Definition 5.10. Consider E ′ as the phase space for classical fields.

(a) For each f ∈ E we define an R-linear, τ–w*-continuous, and w*-dense em-

bedding σ♯ : E → E ′ by σ♯(f)(g) := σ(f, g) = Im(f |g) for all g ∈ E, as well as

ρ♯(f)(g) := Re(f |g) = −σ♯(if)(g).
(b) The total differential dFA of a C-valued function A : E ′ → C at F ∈ E ′ is

given by dFA[G] :=
dA[F+sG]

ds

∣∣
s=0

for all G ∈ TFE ′, where the linear form
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dFA : E ′ → C, G 7→ dFA[G] is supposed w*-continuous, and thus dFA ∈
T ∗
FE ′ = E for all F ∈ E ′.

If dFA satisfies this condition for all F ∈ E ′, then A is called differen-

tiable.

(c) We define the Poisson bracket F 7→ {A,B}[F ] for two differentiable, C-valued
functions A = A1+iA2, B = B1+iB2 on E ′ in terms of a constant, C-bilinear
bivector field ΣF = Σ for all F ∈ E ′, called a Poisson tensor, as follows:

{A,B}[F ] := Σ(dFA, dFB)

= −σ(dFA1, dFB1)− iσ(dFA1, dFB2)

− iσ(dFA2, dFB1) + σ(dFA2, dFB2).(5.9)

For example, the total differentials of Φ0(f) and W 0(f) are

(5.10)
dFΦ

0(f) = f ∈ T ∗
FE ′ = E ∀ f ∈ E, ∀F ∈ E ′,

dFW
0(f) = if exp{iF (f)} = (dFΦ

0(f))iW 0(f)[F ] ∈ E.

Therefrom we obtain for all f, g ∈ E (with 1 the unit function on E ′),

{Φ0(f),Φ0(g)} = −σ(f, g)1,(5.11)

{a0(f), a0∗(g)} = i(f |g)1, {a0(f),Φ0(g)} =
i√
2
(f |g)1,(5.12)

{Φ0(f),W 0(g)} = {Φ0(f), iΦ0(g)}W 0(g),(5.13)

{W 0(f),W 0(g)} = σ(f, g)W 0(f + g).(5.14)

The last relation demonstrates that our present Poisson bracket, acting on complex

functions on E ′, or on complex functions on any real-linear subspace Y ⊂ E ′,

makes LH{W 0(f) | f ∈ E} into a Poisson algebra ∆0(E, Y ): a complex *-algebra

of functions on Y , in which the anti-symmetric product {·, ·} satisfies the Leibniz

rule and Jacobi identity and is *-real (i.e. {A,B}∗ = {A∗, B∗}). The algebraic

structure does in fact not depend on Y . If we restrict the W 0(f) to test functions

on a C-linear subspace X ⊂ E we write ∆0(X,Y ).

A “Hamilton function” H0 : E ′ → R for a differentiable flow w′
R on E ′ is

characterized by

(5.15)
d

ds
A ◦ w′

s = {H0, A} ◦ w′
s ∀ s ∈ R,

valid for certain differentiable phase space functions A. We have, sometimes how-

ever, to restrict H0 to a subspace Y ⊂ E ′ and the A to a Poisson algebra ∆0(X,Y ).
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Let us introduce for a given flow wR = exp{iRK} ⊂ Gα
c (where K is τ -

continuous) and a given ONB (orthonormal basis) b ≡ {en} ⊂ E of H the C-linear
subspace in H, Eb := LH{en | n ∈ N}, which is norm dense in H.

Theorem 5.11. Consider a flow wR = exp{iRK} ⊂ Gα
c with its dual action

w′
R = exp{iRK ′} on E ′. Fix an ONB b = {en} ⊂ E of H and form Eb ⊂ E.

(a) The phase space function

F 7→ dΓ0(K)[F ] :=

( ∞∑
n=1

a0∗(Ken)a
0(en)

)
[F ]

=

∞∑
n=1

LF (Ken)LF (en)(5.16)

is defined on a domain which includes σ♯(E) ∋ F . On the latter we have

dΓ0(K)[σ♯(f)] =
1

2
Im(f |iKf)

=
1

2
Re(f |Kf) =: H0

K [σ♯(f)] ∀ f ∈ E(5.17)

(setting H0
K := dΓ0(K)|σ♯(E)).

(b) Denote dΓ0
N (K) := (

∑N
n=1 a

0∗(Ken)a
0(en)) for N ∈ N. Then we get for all

h ∈ Eb,

lim
N→∞

{dΓ0
N (K),Φ0(h)}[F ] = Φ0(iKh)[F ] = F (iKh) ∀F ∈ E ′,(5.18)

lim
N→∞

{dΓ0
N (K),W 0(h)}[F ] = (iΦ0(iKh)W 0(h))[F ] ∀F ∈ E ′.(5.19)

(c) For all A ∈ ∆0(Eb, E ′) it holds that

(5.20)
d

ds
A[w′

sF ]
∣∣
s=0

= lim
N→∞

{dΓ0
N (K), A}[F ] ∀F ∈ E ′.

For all A ∈ ∆0(E, σ♯(E)) we obtain

(5.21)
d

ds
A[w′

sF ]
∣∣
s=0

= {H0
K , A}[F ] ∀F ∈ σ♯(E).

Proof. (a) Insert F = σ♯(f) into the last expression of equation (5.16) and find

via Observation 5.7 that
√
2LF (en) = Im(f |en)− iRe(f |en) = −i(f |en). Then we

obtain the series
∑∞

n (f |Ken)(en|f)/2.
(b) To show equation (5.18) use the last equation of (5.12) and find

N∑
n

[−i√
2
(h|Ken)a0(en) +

i√
2
a0∗(Ken)(en|h)

]
[F ]
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for the left-hand side. One can draw the sums into the field arguments and perform

N → ∞, which in fact involves only finitely many terms, and ends up with[−i√
2
a0(Kh) +

i√
2
a0∗(Kh)

]
[F ] = Φ0(iKh)[F ].

To show equation (5.19) use equation (5.13) and employ the preceding calcu-

lation.

(c) Make linear combinations of equation (5.19) to get equation (5.20).

To obtain equation (5.21) pull the N -limit into the Poisson bracket of equa-

tion (5.20) and employ equation (5.17).

We can now supplement Proposition 5.9 by the following assertion.

Theorem 5.12. Choose a µ ∈Mp(E ′
ess), invariant under wR = exp{iRK} ⊂ Gα

c ,

and such that ωµ ∈ Sess is a C2-state. Fix an ONB b = {en} ⊂ E of H and form

Eb ⊂ E.

We then obtain for the self-adjoint generator of the unitary GNS-implemen-

tation Uµ
R = exp{iRKµ} on Hµ = F+(H)⊗ L2(E ′

ess, µ) that Kµ is uniquely deter-

mined on the dense set ∆µ(Eb, E ′
ess)Ωµ ⊂ Hµ by the following relations, valid for

any f ∈ Eb:

Kµ(WF (f)⊗W 0
µ(f))Ωµ = [dΓ(K),WF (f)]Ω0 ⊗W 0

µ(f)1µ

+WF (f)Ω0 ⊗
(

lim
N→∞

{dΓ0
N (K),W 0(f)}

)
µ
1µ,(5.22)

where dΓ(K) =
∑∞

n=1 a
∗
F (Ken)aF (en) and dΓ0

N (K) =
∑N

n=1 a
∗0(Ken)a

0(en).

Here Aµ is the multiplication operator on L2(E ′
ess, µ) by the function A : E ′

ess → C.
In a certain formal sense, we may say that the (R-linear, positive) mapping

(5.23) K = K∗ 7→
∞∑

n=1

a∗F (Ken)aF (en) +

∞∑
n=1

a∗0(Ken)a
0(en)

is a “classically extended second quantization”, generating the symmetry transfor-

mations and dynamics of collectively dressed photon fields.

Proof. The first part of equation (5.22) is Fock space formalism. The classical

part follows from the fact that equation (5.19), together with equation (5.8), gives

the s-derivative of W 0(exp{isK}f) at s = 0, acting as multiplication operator on

L2(E ′
ess, µ).

Since Eb is norm dense in H, the Fock part ∆F (Eb, E ′
ess)Ω0 is dense in F+(H).

In the classical part, ∆0(Eb, E ′
ess) is a *-algebra linearly generated by the characters

χf [F ] = exp{iF (f)}, f ∈ Eb on E ′ ∋ F , which separates the points of E ′. This
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is so, because ρ♯(Eb) is w*-dense in E ′; see the proof of Theorem 3.3(c). Thus we

can apply the Stone–Weierstrass theorem as in the proof of Theorem 4.1(c) and

obtain the denseness of ∆0
µ(Eb, E ′

ess)1µ in L2(E ′
ess, µ).

Irrespectively of some technical restrictions, the effective photon dynamics

and the symmetry transformations, together with their generators, appear in a

uniform manner for the quantized particle and classical wave part. Due to the

Poisson bracket structure for the classical generators, the Kµ are not affiliated

with the representation von Neumann algebra Mµ, which means mathematically

that Uµ
s /∈ Mµ, for s ̸= 0. In axiomatic quantum field theory, such Kµ are some-

times discredited as not being proper observables, but their physical importance

is confirmed in the following subsection.

§6. Maxwellian shape of the central generators

and classical Maxwell fields

We recall now that there is a natural decomposition of a field theory into canonical

components. We decompose E ∋ f = fR + ifI ∈ ER + iEI , where ER = EI =

S⊤0 (R3,R3) and obtain from the Fock space relations equation (2.5) and from

equation (5.11),

(6.1) [Φµ(fR),Φµ(fI)] ⊂ iℏ(fR|gI)1µ, {Φ0
µ(fR),Φ

0
µ(fI)} = −(fR|gI)1µ.

These CCR relations fit to fR indexing the “position field” and fI the “momentum

field”, but this identification can be symplectically transformed.

In the real dual space E ′ ∋ F , underlying the classical central theory as

phase space, the decomposition F (f) = FR(fR) + FI(fI) is given by the unique

restrictions of F to ER and of F ◦ i to EI . We write then F (f) = (FR, FI)(f) =

FR(fR) + FI(fI), and denote ρ♯(f) = (fR, fI) and σ♯(f) = (−fI , fR), both being

elements (FR, FI) in E ′.

In E it holds by transversality −∆ = curl2, and the involvement of the curl

seems to be at the heart of the spin-one phenomenon. By the C-linearity of B,

its dual B′ acts in the same manner on FR and FI (and so do the related trans-

formations on Φ0
µ(fR) and Φ0

µ(fI)). But two real fields, with equal phase spaces

and the same energy and other fundamental symmetry generators, are a hardly

conceivable phenomenon. The transition to real field theory should, therefore, be

accompanied by a different scaling of the two components. So F = (FR, FI) ∈ E ′

should be replaced by

(6.2) F̆ = T ′−1F := (s′FR, s
−1′FI) ∈ T ′−1E ′ ≡ Ĕ ′,
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where s′ denotes a “scaling” operator, and where we discriminate conceptually

T ′−1E ′ from the mathematically equal E ′. The pre-dual operators are then T−1f =

(sfR + is−1fI) and lead to a symplectic transformation T−1 : E → E, where we

denote T−1E ≡ Ĕ if we want to indicate the different physical meaning of the

transformed test functions. The operator s : ER → ER should involve the curl and

should, together with its inverse, distribute the energy differently onto the two

field components. We make the most simple ansatz s = (ηB)1/2, with B = c
√
−∆

and η > 0 a numerical factor, and observe that (ηB)±1/2 is self-adjoint and τ -

continuous. This gives

T−1(f) = T−1(fR + ifI) = (ηB)1/2fR + i(ηB)−1/2fI =: f̆R + if̆I = f̆ ,(6.3)

T f̆ = T (f̆R + if̆I) = (ηB)−1/2f̆R + i(ηB)1/2f̆I = f.(6.4)

In Maxwell theory the conserved quantities energy, momentum, and angular

momentum (“Hamilton functions” in mathematical mechanics [AbraMars]) are

expressed as integrals over assumedly square-integrable electrodynamic fields. We

face the dilemma that we gained here autonomous classical fields only, if they

just are not square integrable. But it is general experience that a microscopically

derived macrodynamics requires a new scaling of position, and perhaps time. For

example, the electrodynamic field of a ring laser is macroscopically square inte-

grable, but singular if viewed from microscopic photon theory. We employ therefore

fields from σ♯(E), tacitly assuming the macroscopic length scale.

First we want to calculate the energetic Hamilton function in the scaled theory.

Since the scale transformation T−1 : E → Ĕ is symplectic and τ -differentiable,

the Poisson formalism is transferred isomorphically to the real dual Ĕ ′ of the

still complex Ĕ. Then H0
B [σ♯(f)] transforms to H̆0

B̆
[σ♯(f̆)] with B̆ = T−1iBT the

anti-self-adjoint generator of the dynamics on Ĕ. Referring to the first version of

equation (5.17) we obtain H̆0
B̆
[σ♯(f̆)] =

1
2 Im(f̆ |T−1iBT f̆). We calculate

B̆f̆ = T−1iBT (f̆R + if̆I) = T−1iB((ηB)−1/2f̆R + i(ηB)1/2f̆I)

= −ηB2f̆I +
i

η
f̆R.(6.5)

With (F̆R, F̆I) = (−f̆I , f̆R) we get

H̆0
B̆
[σ♯(f̆)] =

1

2
(f̆I |ηB2f̆I) +

1

2

(
f̆R

∣∣∣1
η
f̆R

)
=

1

2
(F̆R|ηB2F̆R) +

1

2

(
F̆I

∣∣∣1
η
F̆I

)
.

We now denote Ĕ ′ ∋ (F̆R, F̆I) ≡ (A,Y).



240 A. Rieckers

By the self-adjointness of curl we arrive at the usual classical Hamiltonian for

the transverse canonical and force fields of sourceless electrodynamics,

H̆0
B̆
[(A,Y)] =

1

2η
(Y|Y) +

ηc2

2
(curlA| curlA) (∀ (A,Y) ∈ σ♯(E) ⊂ E ′)

=
ϵ0
2

∫
R3

(E(x)2 + c2B(x)2) d3x, ϵ0 := η, B := curlA, E := −Y/ϵ0.(6.6)

Since ℏ dropped out from the generators, the two physical constants ℏ and c of

the photon theory are in the classical subtheory replaced by ϵ0 and c, where ϵ0
is the value of the scaling parameter η determined classically by methods of field

measurements.

For calculating the momentum “Hamilton function” we remark that p̆n =

T−1ipnT = n·∇ is a real operator and the subsequent calculation can be performed

without accent,

H̆0
p̆n
[σ♯(f̆)] =

1

2
Re(f̆ |(−i)(n · ∇)f̆) =

1

2
Im(f |(n · ∇)f)

=
1

2

{
(fR|(n · ∇)fI)− (fI |(n · ∇)fR)

}
= −(Y|(n · ∇)A),

using that ∂/∂xj is anti-self-adjoint. The relations

n · [Y × (∇×A)] = Y · [(n · ∇)A]− n · [(Y · ∇)A],∫
R3

n · [(Y · ∇)A] d3x = −
∫
R3

[n ·A][∇ ·Y︸ ︷︷ ︸
=0

] d3x = 0

(observing the transversality of Y) imply that

H̆0
p̆n
[(A,Y)] = −

∫
R3

Y · [(n · ∇)A] d3x = −
∫
R3

n · [Y × (∇×A)] d3x(6.7)

= ϵ0µ0

∫
R3

n ·
[
E(x)× 1

µ0
B(x)

]
d3x =

1

c2

∫
R3

n · S(x) d3x,(6.8)

where S(x) := E(x)× 1
µ0
B(x), with µ0 = (ϵ0c

2)−1, denotes the Poynting vector of

the transverse fields.

For calculating the “Hamilton function” for Ln = −in · (I − (x × p)) (with

again a real iLn), we need a more complicated vector analysis (similar to that given

in [HonRie15, I] in a different context, and to certain pieces in [CohTann, Sect. I,

C.5]). According to Appendix B we obtain in fact

H̆0
L̆n
[(A,Y)] =

1

2
Im(f |iLnf) = ϵ0

∫
R3

n · {x× [E(x)×B(x)]} d3x

=
1

c2

∫
R3

n · {x× S(x)} d3x.(6.9)
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Altogether we have gained through a general formula the field “Hamilton func-

tions” from the photonic symmetry generators.

If we want to evaluate the Poisson bracket transformations for, e.g., the dy-

namics, we have to use the canonical variables. In the original Poisson formalism

this is given in equation (5.18). For F ∈ E ′ in σ♯(E) we have that limN→∞ dΓ0
N (B)

converges to H0
B and find that

{H0
B ,Φ

0(f)}[F ] = {H0
B [F ], F (f)} = F (iBf)

=
d

dt
F (exp{itB}f)t=0 ∀ f ∈ E.(6.10)

The second Poisson bracket is written in the usual way, identifying the observ-

able Φ0(f)[F ] with the smeared phase space element. Application of the scaling

transformation produces

(6.11) {H̆0
B̆
[F̆ ], F̆ (f̆)} = F̆ (T−1iBf) = F̆ (B̆f̆) =

d

dt
F̆ (exp{tB̆}f̆)t=0 ∀ f̆ ∈ Ĕ.

Using equation (6.5) for B̆f̆ we find in matrix notation

(6.12) B̆

(
f̆R
f̆I

)
=

(
0 −ηB2

1
η1 0

)(
f̆R
f̆I

)
=

(
0 ηc2∆
1
η1 0

)(
f̆R
f̆I

)
.

The generator on the dual variables (A,Y) ∈ Ĕ ′ is gained by the transposed matrix

(6.13)

(
Ȧ

Ẏ

)
=

(
Ȧ

−ϵ0Ė

)
=

(
0 1

ϵ0
1

− 1
µ0

curl2 0

)(
A

Y

)
=

(
−E

− 1
µ0

curlB

)
.

But the first line Ȧ = −E is equivalent to Ḃ = − curlE since curl is bijective

on the transverse fields. Together with ∇ ·B = 0 we read off the three sourceless

transverse Maxwell equations. To add on the left-hand side in the second line

a transverse current density −j⊤ would require in the present quantum–particle

foundation of the classical theory a minimal coupling ansatz to charged fermions

(see Appendix D).

The decisive point is that the calculations have been performed in the test

function space and then were transposed to the dual space. But this can be exe-

cuted with the smeared quantized fields too.

§7. Quantum Maxwell fields as transformed photon fields

and discussion

First we sketch the transition to the quantum Maxwell fields algebraically.
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Definition 7.1. As before, we call W(E, σ) the “photon Weyl algebra” and as-

sume for convenience ℏ = 1.

(a) We distinguish conceptually the “quantized Maxwell Weyl algebra” W(Ĕ, σ)

from W(E, σ) and denote W(Ĕ, σ) ∋WM (f̆) :=W (T f̆) =: (αMW )(f̆).

Clearly, αM : W(E, σ) → W(Ĕ, σ) is a *-isomorphism “onto” (in fact,

a differently written Bogoliubov automorphism on the photon algebra

W(E, σ)).

(b) The photon dynamics αt on W(E, σ) induces the “quantized Maxwell dy-

namics” WM
t (f̆) := (αtW )(T f̆) =W (exp{itB}T f̆) =WM (exp{tB̆}f̆).

(c) To ω ∈ S(W (E, σ)) ≡ S we associate a νMω ∈ S̆ by setting ⟨νMω;WM (f̆)⟩ :=
⟨ω; (α−1

M WM )(T f̆)⟩, with S̆ := S(W (Ĕ, σ)).

(d) If (Π,HΠ) is a representation of W(E, σ), induced by the {WΠ(f) | f ∈ E},
then the Weyl operators {WM

Π̆
(f̆) :=WΠ(T f̆) | f̆ ∈ Ĕ} generate a represented

Maxwell Weyl algebra WΠ̆(Ĕ, σ), which acts also on HΠ and for which we

write (Π̆,HΠ) = (Π ◦ α−1
M ,HΠ), and inversely (Π̆ ◦ αM ,HΠ) = (Π,HΠ).

Especially for the photonic Fock representation (ΠF , F+(H)) we obtain

the quantum Maxwell representation (Π̆F , F+(H)) inheriting the Weyl oper-

ators WM
F (f̆) =WF (T f̆).

(e) For a given regular photonic representation WΠ(E, σ), where automatically

also R ∋ s 7→ WM
Π̆

(sf̆) is weak operator-continuous for all f̆ ∈ Ĕ, we define

the self-adjoint quantized Maxwell field ΦM
Π̆
(f̆) as the Stone generator (which

has no abstract counterpart !).

We introduce the splitting ΦM
Π̆
(f̆) = ΦΠ̆,A(f̆R) + ΦΠ̆,Y(f̆I) and ob-

tain thereby the canonical field operator components. We set further on

ΦΠ̆,B(f̆R) := curl ΦΠ̆,A(f̆R) = ΦΠ̆,A(curl f̆R) and ΦΠ̆,E(f̆I) := −ΦΠ̆,Y(f̆I)/ϵ0.

Theorem 7.2. In terms of the foregoing definitions we derive the following rela-

tions.

(a) νM is an affine isometry which maps the orthomodular lattice F (S) of norm-

closed state faces isomorphically onto F (S̆) (see Appendix A.1). In particular,

the folium Fτ ⊂ S (of τ -continuous states on W(E, σ)) is mapped onto the

folium F̆τ ⊂ S̆ (of τ -continuous states on W(Ĕ, σ)).

(b) The Fock representation ΠF and the Maxwell Fock representation Π̆F , which

both act irreducibly on F+(H), cannot be unitarily transformed into each

other, meaning disjointness.

(c) The Maxwellian field operators in a GNS-representation Π̆ of a time-invariant

C2-state ω̆ satisfy the Maxwell equations for transverse fields on a dense time-
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invariant domain in the following way if we write the Maxwell field in tuple

notation:

(7.1) Φ̇M
˘̆
Π
(f̆) =

(
Φ̇Π̆,A(f̆R)

Φ̇Π̆,Y(f̆I)

)
=

(
0 1

ϵ0
1

−c2 curl2 0

)(
ΦΠ̆,A(f̆R)

ΦΠ̆,Y(f̆I)

)
.

The remaining two Maxwell equations

(7.2) ∇ · ΦΠ̆,B = 0, ∇ · ΦΠ̆;E = 0,

hold in some sense since we have no electric or magnetic material sources,

which would microscopically be situated in another field space (see Appen-

dix D).

(d) If Sess is associated with E′
ess ⊂ E′

s according to Definition 3.13(d) then

νMSess is associated with (T−1)′E ′
ess, where E ′

ess = {
√
2ReL | L ∈ E′

ess}.
Thus a photonic fusion representation (Πµ,Hµ) of W(E, σ) gives rise to

a fusion representation of the quantized Maxwell field algebra W(Ĕ, σ), and

vice versa.

Proof. (a) According to [Kadison65], νM is an affine isometry and, therefore, maps

the lattice of state faces ortho-isomorphically onto itself.

Observe that for the characteristic function of νMω it holds that CνMω(f̆) =

Cω(T f̆) and that T is τ -continuous.

(b) Since [Shale62] one knows that a Bogoliubov transformation αT is unitary

implementable on Fock space, if and only if the anti-linear part 1/2(T + iT i) is

Hilbert–Schmidt, which is not the case for the present αM .

(c) The linear hull LH{ΦM
Π̆
(f̆)Ωω̆ | f̆ ∈ Ĕ} is dense in the representation

space and time invariant since exp{tB̆} leaves Ĕ invariant. On this domain, t 7→
ΦM

Π̆
(exp{tB̆}ğ) is defined and differentiable for all ğ ∈ Ĕ since also B̆ leaves Ĕ

invariant due to the infrared regularization.

Explicitly, we find for the time derivative (at t = 0) Φ̇M
Π̆
(f) = ΦM

Π̆
(B̆f̆) =

ΦM
Π̆
(−ηB2f̆I+(1/η)f̆R) (see equation (6.5)). This, rewritten in the canonical com-

ponents (like in equation (6.12)) and transposed, leads to equation (7.1).

(d) This is only a matter of notation.

For gaining the contact to the usual introduction of the quantized Maxwell

fields in non-relativistic QED we generalize equation (2.4) to any regular repre-

sentation Π̆ expressing ΦM
Π̆

by the creation and annihilation operators of Π,

ΦM
Π̆
(exp{tB̆}f̆) = ΦΠ(exp{itB}T f̆)

=
√

ℏ/2[aΠ(exp{itB}T f̆) + a∗Π(exp{itB}T f̆)]
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=
√
ℏ/2

∞∑
n=1

[exp{−itωn}aΠ(en)(T f̆ |en)

+ exp{itωn}a∗Π(en)(en|T f̆)],(7.3)

where we formally have assumed an orthonormal eigensystem {en} ⊂ E of B with

eigenvalues ωn. This usually is only written down for Π = ΠF , in which case

we have the creation and annihilation operators of Section 2. The quantized A

potential is obtained by restricting the f̆ in (7.3) to f̆R ∈ ER and the quantized

E by restricting f̆ in (7.3) to f̆I ∈ EI , and by first using equation (6.4) and then

ΦY,t = −ϵ0ΦE,t. One finds

ΦΠ̆,A,t(f̆) =

∞∑
n=1

√
ℏ√

2ϵ0ωn
[ exp{−itωn}aΠ(en)(f̆R|en)

+ exp{itωn}a∗Π(en)(en|f̆R)],

ΦΠ̆,E,t(f̆) =

∞∑
n=1

√
ℏϵ0ωn√

2
[ exp{−itωn}aΠ(en)(f̆R|en)

+ exp{itωn}a∗Π(en)(en|f̆R)].

In this form the Maxwellian field operators arise usually through “quantizing”

the corresponding classical fields in their Fourier decompositions by replacing

the numerical coefficients through the Fock annihilation and creation operators

(cf. e.g. [Vogel, Sect. 2.2.2]). This is a well-approved, but in first line a structural-

theoretical concept. It works trouble-free for the transverse fields only. The rela-

tivistic extension, including the longitudinal and scalar fields, leads in the Gupta–

Bleuler theory to “ghosts” ([Schweb62, Chap. 9b]).

In contrast to the quantization program which presupposes the classical field

theory, the present treatment deduces the quantized and classical transverse Max-

well fields from the experimentally well-confirmed photon concept. This strategy

also has certain mathematical advantages, since, e.g., the Maxwellian dynamics

is (also classically) easier to handle in the complexified form resulting from the

photon ansatz. In particular, the algebraic photon theory also gives us, for the

quantized Maxwell fields, interesting structural, as well as interpretational, insights

into various Hilbert space representations.

It is not the place here to give more details. Let us only mention that our

“fusion representations” (Πµ,Hµ), µ ∈ Mp(E
′
ess) lead in the Maxwellian form to

a fusion of quantized and classical fields, where the quantized part is again subdi-

vided into a strictly quantum and a transient component. The main characteristic

of the quantum components is the incompatibility of the magnetic and electric

fields, where only one of the two fields may be actualized. By comparison with
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the particle formulation one may assume that the strictly quantum part is sharply

localized in absorption processes, and its magnetic and electric field components

are experimentally not discernible. The observation of the non-classical features

of light, with, e.g., a squeezed quadrature component (e.g. [Vogel]), should be

attributed to the transient part. If we transform equation (4.10) into the form of

Maxwell fields it shows a continuous increase of the compatibility of their magnetic

and electric components in approaching a classical wave by exhibiting a decreasing

commutator. If, in the Planck law, one varies the temperature T from 0 to ∞, for

constant frequency ω = c|k|, one comes from the particle-like Wien asymptotics

to the wave-like Rayleigh–Jeans asymptotics. The same region is bridged by the

transient wave functions f̂k,λ/∥f̂k,λ∥ ∈ Ee ⊂ Ep, 0 ≤ λ ≤ ∞ (see the example

preceding Section 3.3), tending from 0 – and leaving only photon particles there

– to the plane wave êk. The interior of this region is also the domain of Einstein’s

“fields of force”. Large T was for Einstein equivalent to large radiation density

(see [Haar69, p. 30]) and thus equivalent to especially many overlapping “fields

of force”. If one uses n exemplars of f̂k,λ/∥f̂k,λ∥ for a macroscopic filling of the

k-mode (cf. [HonRie15, I, p. 752]), then the increase rate of N ∋ n 7→ λ(n) can be

related to the photon density. The “transient photon” concept leads, therefore, to

a more detailed microscopic reconsideration of the Planck law.

In many investigations of quantum optics, one and the same phenomenon, as,

e.g., the light-electric effect or laser radiation emission, is described partly quantum

mechanically and partly classically (see “semiclassical approximation” as, e.g., in

[ScullyZub]). It is therefore useful to have a consistent theoretical frame which

covers both areas simultaneously.

The general aspects of a fusion of photons and fields are most smoothly ex-

pressed in the state space S of the photonic field algebra W(E, ℏσ). That notion
is immediately given by the abstract C*-algebra and does not require representa-

tion theory. A dynamical symmetry group νKR in the algebraic Schrödinger picture

(see Definition 5.2) leaves the stable simplicial face Seff of the pertinent singular

q-classical states invariant. Since it is the dual of a “global” automorphism group

it can shift extremal ω ∈ ∂eSeff into disjoint extremal states. In fact, Maxwell

solutions appear now as trajectories in ∂eSeff .

But also, more practical results are profitably treated in the algebraic state

picture. In the original parametrization ∂eSeff = {ωL | L ∈ E′
eff} we may denote

by φµ =
∫ ⊕
E′

eff
φL dµ(L), with φL normal states on ML, the central decomposition

of any normal state on Mµ, with µ ∈Mp(E
′
eff) (see [Takes79] for the direct decom-

position of normal states). By virtue of our singular, possibly infinite-dimensional

field spaces E′
eff , we obtain a direct, but substantial, generalization of the one-

dimensional integration domain in [HonRie15, III, formula (48.4.48)] for the square
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root of the C*-algebraic transition probability (see Appendix A):

(7.4) T
1
2

W(E,ℏσ)(φµ, φ
′
µ′) =

∫
E′

eff

T
1
2

W(E,ℏσ)(φL, φ
′
L)
[dµ
dµ̄

dµ′

dµ̄

] 1
2

(L) dµ̄(L),

where µ̄ signifies any (positive) measure to which µ and µ′ are absolutely contin-

uous.

Since the transition probabilities describe the uncontrollable state fluctua-

tions, formula (7.4) gives us a neat specification of how the total noise in an

information-carrying electromagnetic field is decomposed into the classical field

noise and the photonic quantum noise. So we find that in [·] 12 the classical noise

is expressed by the classic-statistical overlap of the electrodynamic field distri-

butions, mostly known in mathematical statistics (cf. [Hida80, Sect. I.3]). In each

sector L, TW(E,ℏσ)(φL, φ
′
L) gives the quantum mechanical transition probability of

the (not necessarily pure) photon states φL, φ
′
L ∈ Sn(ML). This is the part which

would be affected by our discrimination between particle and transient photons

and could refine quantum noise theory.

We have shown here that the division of the total photonic state space S into

sectorial folia, separated by vanishing transition probabilities between photonic

states with macroscopic differences of intensities (and not by the influence of a

hypothetical noisy environment, e.g. [Schlossh]) has led us to a foliation of S
which represents (the influence of) classical observables. Stable simplicial folia,

like the present Sess ⊂ S, indicate the emergence of autonomous subtheories. If

they display extremal boundaries which consist of pairwise disjoint pure states,

then any continuous trajectory in this boundary describes a classical flow. Such

pure boundary states constitute a sharpening of the concept of “ontic quantum

states” discussed in [Primas]. Since also the decomposition measures and transition

probabilities are formulated in the state picture, we may conclude that the convex

state space approach ([HonRie15, III, Chap. 47]) offers a most elegant form, not

only for the photonic fusion theory, but also quite generally for a unification of the

quantum mechanical and classical world view.

Appendix A. Basics for the state space

Appendix A.1. Disjoint states, projections, global automorphisms

We sketch some basic concepts for the states ω ∈ S(A) ≡ S on a unital C*-algebra

A, that are linear, positive, and normalized functionals on A, and introduce our

notation.

If A is the C*-Weyl algebra W(E, ℏσ), E ̸= 0, as introduced in Definition 2.2,

then there is an affine bijection S ∋ ω 7→ Cω ∈ C(E, ℏσ) which is w*-∆ continuous,
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where the convex set of characteristic functions C(E, ℏσ) contains the normalized

twisted-positive definite functions (cf. equation (2.11)) on E, and ∆ denotes the

topology of pointwise convergence (see [HonRie05]).

For each ω ∈ S there exists a triple (Πω,Hω,Ωω) consisting of a representation

(Πω,Hω), with a normalized cyclic vector Ωω ∈ Hω, reproducing the expectations

⟨ω;A⟩ = (Ωω|Πω(A)Ωω) for all A ∈ A. This GNS-triple is unique up to unitary

equivalence. We obtain by weak closure, or double commutant, the von Neumann

algebra Mω := Πω(A)′′ with center Zω. A state ω is normal to a representation

(Π,H) if it is representable by a density operator, a normalized, positive trace

class operator ϱ ∈ T +
1 (H). We denote by Sn(Π) ⊂ S the convex set of all normal

states on (Π,H).

A face F of S is a convex set of states, the components of their (finite)

convex decompositions stay in F . The face is stable if the same holds also for

decompositions via arbitrary orthogonal probability measures. The set of all norm-

closed faces is a complete orthomodular lattice F (S). If a face F , together with its

orthocomplement F⊥, provides a unique convex decomposition ω = λω1+(1−λ)ω2

with ω1 ∈ F and ω2 ∈ F⊥ for all ω ∈ S, then F , respectively F⊥, is called a split

face. We term a norm-closed split face a folium F . The set of all folia F(S) is a

complete Boolean sublattice of F (S). Each Sn(Π) is a folium, and vice versa. The

smallest face (split face) containing ω is denoted Fω (Fω), and Fω equals Sn(Πω).

The weak closure of the universal representation (Πu,Hu) :=
⊕

ω∈S(Πω,Hω)

is the universal von Neumann algebra Mu := Πu(A)′′ which has a rich center Zu

for an anti-liminary C*-algebra like the Weyl algebra A = W(E, ℏσ), E ̸= 0. Each

ω ∈ S is representable by Ωω ∈ Hu and is thus normal on (Πu,Hu).

We denote the complete orthomodular lattice of projections in Mu by Pu and

the central projections by Pc
u. If we define ζ : Pu

onto−−−→ F (S) by ζ(P ) := {ω ∈ S |
⟨ω;A⟩ = ⟨ω;PAP ⟩ ∀A ∈ A} =: FP we obtain an ortho-lattice isomorphism with

the restriction ζ : Pc
u

onto−−−→ F(S), where ζ(P1 ∧ P2) = ζ(P1) ∩ ζ(P2), ζ(1) = S,
ζ(0) = ∅, and F⊥ = ζ(P⊥).

We call ζ−1(Fω) =: Sω the support of ω, and ζ−1(Fω) =: Zω the central

support of ω. A state ω is by definition pure, if it is extremal, written ω ∈ ∂eS,
and that is equivalent to Sω being atomic. A state ω with Zω being an atom in

Pc
u is a factor state. Two states ω and φ are called orthogonal if Fω ∧Fφ = ∅, and

disjoint if Fω ∧ Fφ = ∅. The algebra Mω has trivial center if and only if ω is a

factor state.

Two pure states ω and φ have unitary equivalent GNS-representations if and

only if Sω = uSφu
−1 for some unitary u ∈ A, and then are unitary equivalent. An

automorphism α ∈ *-autA is inner if it is implemented by a unitary u ∈ A. Then

α∗ω is unitary equivalent to ω for all ω ∈ ∂eS and α∗ω ∈ Fω. The next “stronger”
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automorphisms α are those which are represented in any faithful representation

(Π,H) as αΠ = ΠαΠ−1 = uΠ(·)u−1 by a u ∈ Π(A)′′. Only if that is not possible

can αΠ move elements of the center, especially of Zu, and dually map a folium

into a different one. In Proposition 3.6 we named these “global automorphisms”

and gave a necessary condition. They may be unitarily represented in faithful

representations by u /∈ Π(A)′′.

Appendix A.2. Orthogonal decompositions

The diagonalization of a density operator by a “complete set of commuting ob-

servables” is on S ∋ ω generalized by a convex decomposition ω =
∫
S φdµ(φ) by

means of an orthogonal probability measure µ ∈ O(S) on the w*-Borel sets B(S).
Each µ ∈ O(S) is bi-univocally associated with an abelian von Neumann algebra

Nµ ⊂ Πω(A)′. If Nµ ⊂ Zω then µ is called a subcentral decomposition of ω and if

Nµ = Zω then µ = µω is called the central decomposition of ω. If A is norm sep-

arable then (S,B(S)) is a standard Borel space and the support suppµ is defined

as usual. In addition, µ ∈ O(S) is called extremal if it is supported by pure states,

which then are pairwise orthogonal. A subcentral decomposition contains, roughly

speaking, only pairwise disjoint states, which are factor states in the case of the

central decomposition. If A is not norm separable, like W(E, ℏσ), the foregoing

assertions hold only in the sense of quasi-supportedness.

According to the Effros theorem, a GNS–von Neumann algebra Mω is spa-

tially decomposable if
∫ ⊕
S Ωφ dµω(φ) is cyclic for the direct integral representation∫ ⊕

S (Πφ,Hφ) dµω(φ) (with µω the central measure), which makes the latter uni-

tary equivalent to the GNS-representation. For non-separable A, µω is only quasi-

supported on the factor states and we need for a spatial decomposition Theorem

4.1(d). So it is remarkable that our photonic central decompositions are supported

on pure (pairwise disjoint) states, which are moved into each other by the symme-

try operations.

Appendix A.3. Algebraic transition probabilities

Algebraic transition probabilities for states on a C*-algebra A (as e.g. elaborated

on in detail in [HonRie15, III]) start from a general definition of [Cantoni75] which

is based on probability distributions for observable values, instead of state vectors.

For any self-adjointA ∈ A ≡ Πu(A) ⊂ Mu, there exists the spectral representation

A =
∫
R t dPA(t) with the projection-valued measure PA(B) ∈ Pu for all real Borel

sets B ∈ B(R). For a state ω ∈ S(A) we define the numerical measure ωA(B) :=

⟨ω;PA(B)⟩.
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The transition probability between such states ω and φ is then defined as

(A.1) TA(ω, φ) ≡ TMu
(ω, φ) := inf

A∈Mu sa

{(∫
R

√
dωA

dσ

√
dφA

dσ
dσ

)2}
,

where σ is any finite positive measure, with respect to which ωA and φA are

absolutely continuous. The original meaning of a transition probability is thus the

infimum of the overlaps of the spectral distributions of the states, taken over all

self-adjoint observables.

One knows that (ω, φ) 7→ TA(ω, φ) is separately convex, jointly continuous in

the norm topology, and jointly lower semicontinuous in the w*-topology.

Proposition A.1. Let ω, φ be states on the C*-algebra A. It holds the following

result from [Alberti83],

(A.2) TA(ω, φ) = sup
U∈U(Π(A)′)

{
|(Ω|UΦ)Π|2

}
,

with U(Π(A)′) the unitary elements in the commutant Π(A)′ of a representation

Π, in which both states are given by vectors.

If ω, φ are pure then Π(A)′ = C1Π and we have the traditional expression

TA(ω, φ) = |(Ω|Φ)Π|2, because the scalar unitaries are eaten by the modulus oper-

ation.

Quite generally, we find the following result holds:

Proposition A.2. Consider two states ω, φ on the C*-algebra A.

(a) Then TA(ω, φ) = 0 if and only if ω and φ are orthogonal.

(b) There hold the following equivalent conditions for the disjointness of the two

states:

(A.3) Fω∩Fφ = ∅ ⇔ ZωZφ = 0 ⇔ TA(ω
′, φ′) = 0 ∀ (ω′, φ′) ∈ Fω×Fφ.

More generally, all pairs (ω′, φ′) ∈ F1 × F2 are orthogonal if and only if the

folia F1 and F2 are intersection-free.

In [HonRie15, III, Sect. 48.4] the following indispensable result is proved:

Theorem A.3. Let M =
∫ ⊕
X

M(x) dµ0(x) be a direct integral of von Neumann

algebras in terms of a σ-finite measure µ0 on a standard Borel space (X,B(X))

(cf. [Takes79, Chap. IV]). Then for ω =
∫ ⊕
X
ω(x) dµ(x), φ =

∫ ⊕
X
φ(x) dµ′(x) ∈

Sn(M), the measures µ and µ′ are absolutely continuous to µ0 and

(A.4) T
1
2

M(ω, φ) =

∫
X

T
1
2

M(x)(ω(x), φ(x))
[ dµ
dµ0

dµ′

dµ0

] 1
2

(x) dµ0(x).
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Since the diagonal algebra is a subalgebra of the center of M, dµ0(x) is a subcentral

measure in a certain parametrization.

Appendix B. Photonic derivation of angular field momentum

For calculating the “Hamilton function” for the photonic angular momentum Ln
about the axis n ∈ R3 we recall that Ln = −iℏn · (I− (x×∇)) (taking henceforth

ℏ = 1 discussing the generator). Explicitly, it holds that n ·I := n1ℓ1+n2ℓ2+n3ℓ3.

The 3× 3-matrices ℓj may be chosen as

(B.1) ℓ1 =

0 0 0

0 0−1

0 1 0

 , ℓ2 =

0 0−1

0 0 0

1 0 0

 , ℓ3 =

0−1 0

1 0 0

0 0 0


and constitute a basis for the real Lie algebra SO(3) (with matrix commutator as

Lie product).

They satisfy the commutation relations [ℓi, ℓj ] = εijk ℓk, i, j, k ∈ {1, 2, 3}.
It holds, with A = (A1, A2, A3), that (ℓiA)j =

∑
k εijkAk and [(n · I)A]j =∑

i,k niεijkAk.

The finite rotations R ∈ SO(3) are in some sense composed of rotations around

the coordinate axis, where the real orthogonal matrix exp{s n · I} ≡ Rn(s), s ∈ R
rotates about n. Acting as R−1f(Rx) on one-photon wave functions f ∈ E (and

equally as R−1f̂(Rk) in the k-representation) these transformations constitute a

unitary representation of SO(3). Because (Rk) · f̂(Rk) = 0 = k · R−1f(Rk), they

in fact conserve transversality. We discuss in the following Appendix C topological

properties of the generator Ln = −in·(I−(k×∇k)), k ∈ R3 in the k-representation.

Working in position space, we remark that iLnf = {n · [I− (x×∇)]}f is real

valued if f ∈ E is so and use Ln = TLT−1, where T−1 : E → Ĕ is the scaling

transformation. We get

H̆0
L̆n
[σ♯(f̆)] =

1

2
Re(f̆ |Lnf̆) = −1

2
Im(f |iLnf) = −(fR|iLnfI)

= (Y|iLnA) = (Y|(n · I)A)− (Y|[n · (x×∇)]A).

The second term, referring to the “orbital angular momentum”, already has some

similarity to the electrodynamic formulas. We have to evaluate further the first

term pertaining to the “spin part” (both parts being physically not clearly defined

since photons lack a rest system). It holds that

Y · [(n · I)A] =
∑
i,j,k

niYjεijkAk = n · (Y ×A) =
∑
ijkl

niεijkδjlYlAk.
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We use the transversality of Y as well as xj
∂

∂xl
f = ∂

∂xl
xjf − δjlf to manipulate

the following integrals, where the first is an artificially supplemented vanishing

expression:

(Y|(n · I)A) = −
∫
R3

[n · (x×A)][∇ ·Y︸ ︷︷ ︸
=0

] d3x+

∫
R3

n · (Y ×A) d3x

= −
∑
i,j,k,l

niεijk

{( ∂

∂xl
Yl

∣∣∣xjAk

)
+ δjl(Yl|Ak)

}
= −

∑
i,j,k,l

niεijk

(
Y
∣∣∣xj ∂

∂xl
A
)

= −
∫
R3

n · {x× [(Y · ∇)A]} d3x.

We combine this with the “orbital angular-momentum part” to finally reach

H̆0
L̆n
[(A,Y)] = −

∫
R3

n · {x× [(Y · ∇)A]} d3x−
∫
R3

Y · {[n · (x×∇)]A} d3x

= −
∫
R3

n · {x× [Y × (∇×A)]} d3x

= ϵ0

∫
R3

n · {x× [E(x)×B(x)]} d3x

=
1

c2

∫
R3

n · {x× S(x)} d3x.(B.2)

So we have gained a formal, but not a physical, explanation for how the two

angular-momentum parts of the photon submerge into the uniform expression

for the field angular momentum. There seems to exist no published comment

by Einstein on the angular momentum of the photon (see [Pais82, p. 426]). This

stands in sharp contrast to Einstein’s well-known extensive studies on the photon

momentum statistics, which he immediately connected with the pressure of light.

Appendix C. Proof of Theorem 3.4

(a) Taking f̂ = (φ̂ν) ∈ Ê we see for the mentioned K that (exp{isK}f̂)(k) =:

f̂s(k) equals respectively the expressions exp{isc|k|}f̂(k), exp{isn · k}f̂(k), and
R−1

n (s)f̂(Rn(s)k), with Rn(s) the rotation matrices about the n-axis. Thus f̂s is

in Ê and is differentiable by s for each fixed k. Then for each k it holds that

(exp{isK}−1)f̂(k) = sĝ(s, k) ∈ Ê, with s in a compact neighborhood 0 ∈ J ⊂ R.
For each k, lims→0 ĝ(s, k) =

d
ds f̂s(k)|s=0 = (Kf̂)(k) which is in Ê by inspection.

Thus we have for each component that supk|kαDβπν ĝ(s, k)| ≤ Γ > 0 for s ∈ J
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and all α, β ∈ A. So ∥(exp{isK}− 1)φ̂ν∥α,β tends with s to 0 for each component

πν f̂ = φ̂ν ∈ Ŝ10 and we find that s 7→ exp{isK}f̂ is τ -continuous.

To prove the τ -continuity of exp{isK} : E → E for fixed s ∈ R, we must

investigate the Dβ exp{isK}φ̂ν , β ∈ A. For K ∈ {B, pn}, terms of the form of

equation (C.1) result, multiplied by exp{isK(|k|, k)}, where the exponential is

linear in |k| or k and does not influence the estimation.

For K = Ln we have to estimate Dβ [R−1f̂(Rk)]ν , where the rotation R ≡
Rn(s) mixes the components, and we introduce the invertible function k 7→ l(k) :=

Rk. Inspection of the case β = (1, 0, 0), that is,
∑3

κ=1

∑3
λ=1R

−1
νκ

∂lλ(k)
∂k1

∂
∂lλ

φ̂κ(l(k))

gives by iteration the finite sum Dβ [R−1f̂(Rk)]ν =
∑3

κ=1

∑
nNnκνD

βnκν φ̂κ(l(k))

with Nnκν ∈ R. Observing that kα =
∑

mMml
αm , Mm ∈ R, we find that

kαDβ [R−1f̂(Rk)]ν =
∑3

κ=1

∑
m

∑
nMmNnκν l(k)

αmDβnαν φ̂κ(l(k)). Now supk of

this expression in absolute is also reached by supl so

∥[R−1f̂ ◦R]ν∥αβ ≤
3∑

κ=1

∑
m

∑
n

|MmNnκν | ∥φ̂κ∥αmβnκν ,

expressing τ -continuity.

(b) First we have for φ̂ ∈ Ŝ10 to evaluate Dβ(φ̂(k)/|k|m), with m ∈ N odd.

By iterated application of the Leibniz rule, we obtain for all β ∈ A qualitative

expressions in the form of finite sums, involving some rn ∈ R, αn, βn ∈ A, mn ∈ N,

(C.1) Dβ(φ̂(k)/|k|m) =
∑
n

rn k
αn |k|−mnDβn φ̂(k).

(Differentiation by kν gives the next higher similar expression, where the mn re-

main odd.)

Discussing B first, we remark that Dβ |k|φ̂ gives for β > 0 an expression like

equation (C.1). Amplifying the fraction by |k|makesmn+1 even. In the numerator

we replace |k| by the larger (1 + k2). Altogether we find finite families (cp ∈ R),
(γp ∈ A), p ∈ N so that we have only positive-integer k-powers, leading to

∥|k|φ̂∥α,β = sup
k
|kαDβ |k|φ̂(k)|

≤
∑
n

|rn| sup
k
|kα+αn(1 + k2)(k2)−

mn+1
2 Dβn φ̂(k)|

≤
∑
p

|cp| ∥φ̂∥γp,βp
.(C.2)

Thus B is τ -continuous, and the continuity of P⊤ follows similarly. For pn =

−n · k, continuity is even easier. Concerning Ln we have to study the components

Dβ [(n·I−k×∇)f̂(k)]ν . Since the derivatives are on the right, no new complication

arises.
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Appendix D. Remarks on gauged non-relativistic QED

To quantize Maxwell theory in topologically non-trivial cavities Λ ⊂ R3, one is

automatically led to concepts of gauge theory (e.g. [Frampton] and references

therein). From the present approach it seems natural to first “gauge” the elec-

tromagnetic field and to couple it to a “gauged” spinor field in a second step.

If the first Betti number b1 (giving the number of cut surfaces to make Λ

simply connected) or the second Betti number b2 (giving the number of connected

parts of the surface ∂Λ) is greater than zero, the open Λ allows a coordination only

on local charts Uα ⊂ Λ, α ∈ J with J some index set. The vector potential A over

Λ can, therefore, be given only by a family of local functions Uα ∋ x 7→ Aα(x),

α ∈ J . In overlapping chart regions Uα ∩ Uβ ∋ x, the differences Aα(x) −Aβ(x)

are determined via upgrading Λ to a principal G = U(1)-bundle P(π,Λ, G) with

projection π : P → Λ, typical fiber G, and global bundle group G. The Uα should

then be arranged to provide local factorizations τα : π
−1(Uα) → Uα ×U(1) and to

fit to the geometric structure (e.g. by covering just one of the mutually disjoint cut

surfaces). The coordinated bundle [Steenrod51] is characterized by the transition

coefficients zα,β(x) = exp{iλα,β(x)} ∈ U(1) for x ∈ Uα ∩ Uβ which have to satisfy

the chain rule.

The family of local potentials Aα(x), α ∈ J is made into a geometric object

by interpreting them as the local coordinates of a horizontal (U(1)-invariant) con-

nection one-form ω ∈ Ω1(Λ, g) with values in the Lie algebra g = iR. This implies

Aβ(x)−Aα(x) = dλβ,α(x) and looks like a gauge transformation if one takes into

account that in coordinates the cotangent vector dλβ,α(x) is ∇λβ,α(x). In this

manner the geometric object ω corresponds to the physical object “gauge class of

a vector potential”. The bundle is topologically trivial if zβ,α(x) = zβ(x)z
−1
α (x)

giving Aβ(x)− dλβ(x) = Aα(x)− dλα(x) = Aα(x) + iz−1
α (x) dzα(x).

If Aα(x) is initially transverse, the Aα(x) +∇λβ,α(x) acquire a longitudinal

part. For a flat but topologically non-trivial bundle with b1 > 0, b2 = 0 there exist

phase gradients ∇λ with vanishing divergence in the interior of the cut Λ. They

lead to so-called cohomological vector potentials which supplement the Helmholtz–

Hodge decomposition of A into transverse and longitudinal parts [HonRie15].

The group G acts on b ∈ P(π,Λ, G) ≡ P by right multiplication bg−1. The

action of G on a section s : Λ → P is performed by the local gauge group G =

Map(Λ, G) ∋ χ.

For a fermion of mass m and charge q one has likewise only local realiza-

tions of its spinor wave function Uα ∋ x 7→ ψα(x) ∈ Cn. In the presence of a

vector potential, its kinetic energy ℏ2∇2

−2m goes locally over to ℏ2

−2m (∇− iq
ℏ Aα)

2 by

means of the minimal coupling principle. This expression stays invariant under
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the combined gauge transformation Aα(x) → Aα(x) + ∇λα(x) and ψα(x) →
exp{iqλα(x)/ℏ}ψα(x). Since the gauge behavior of the vector potential is geometri-

cally associated with P ≡ P(π,Λ, G) one has to arrange the same with the spinors.

Since the spinors take values in Cn ≡ W we have a smooth action l : G×W →
W by the local phase multiplication. A point of great mathematical concern is the

fact that the phase value is irrelevant for the physical meaning of ψ. Then the

associated bundle is not simply defined by P ×W but by (P ×W)/G ≡ P ×G W,

where G ∋ g acts as Tg(b, ψ) = (bg−1, lgψ). Working with fermion sections one

averages over G.
This setup so far has important applications, not only for single fermions in

an external vector potential, but also in quantum electronics where the c-number

current is often built on averaged spinor wave functions or on the macroscopic

wave functions of the superconducting Cooper pair condensate. Particularly for

the latter ordered electron collectives, the horizontal lift of a path in Λ to a section

in P(π,Λ, U(1)) is important. It is induced through a given connection ω which

defines a horizontal tangent bundle. This associates a unique phase at each point

along the lifted path. Such phase observables lead to interesting physical conse-

quences like flux quantization, Aharanov–Bohm effects, etc., but often are treated

heuristically (and are named “non-integrable phases” in [Tonomura]).

The decisive mathematical problem is the quantization of the hitherto real-

valued A and the second quantization of the fermions. The extensive literature

on this topic refers predominantly to the relativistic covariant theory. To the

fewer non-relativistic mathematical elaborations belongs the advanced paper

[Hannabuss], which appeals to C*-algebraic notions in connection with gauge the-

ory. (In its extensive references one also finds titles on relativistic algebraic QED.)

We try to give a very rough impression of its first part.

As is usual in particle physics, one starts there with the material fermion

algebra and afterwards associates the boson algebra, but the principal gauge bun-

dle P(π,Λ, G) ≡ P is present from the beginning. One specializes Λ to R3 (giving

factorized transition coefficients), whereas G is mostly an arbitrary connected com-

pact Lie group (to include non-abelian gauge theories).

Since the connections ω ∈ Ω1(Λ, g) of P are real valued, one treats the

fermions by a Clifford algebra, but translates the results into the usual fermion

algebra of smeared fields Ψ(ξ) which satisfy the CAR (canonical anti-commutation

relations) at equal time [Ψ∗(ξ),Ψ(η)]+ = (ξ|η) =
∫
Λ
(ξ̄(x)|η(x))Cn d3x. We denote

here the spinor algebra in the complex or Clifford form simply by F . The gauge

group G acts on the Fock-represented F via automorphisms.

This G-action is through the gauge principle connected with the transforma-

tion of the connections ω ∈ Ω1(Λ, g) ≡ Ω and influences the fermion dynamics. The
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fermions are therefore represented, not by sections over Λ, but rather by sections

ω 7→ Ξ(ω) ∈ W which satisfy Ξ(ω + iχ−1 dχ) = αχ[Ξ](ω) for all χ ∈ G. This is

the condition to define an induced fermion algebra Find. Any function F on Ω/G
lifts to a function F̃ on Ω which acts by pointwise multiplication on the spinor

sections in Find. The quantized A is defined by giving the multiplication action

F̃ (qA/ℏ) on the sections in Find. For these sections one can similarly use linear

combinations of products of spinors with the ϕa(ω) = exp{ia(ω)}, where a is taken

from a dual group of the not locally compact additive connection group Ω.

There is also the action τu[Ξ](ω) = Ξ(ω + u) which allows one to form the

crossed product algebra A = Find ×τ Ω. The elements of A can be viewed as

generated by products of algebraic elements with point measures δu concentrated

at u ∈ Ω. They are denoted by ϕa,u, with u ∈ Ω and a in the dual of Ω, and satisfy

via an introduced ⋆-product the relations ϕa,u ⋆ ϕb,v = ei[b(u)−a(v)]ϕb,v ⋆ ϕa,u,

similarly to the Weyl relations for canonical boson fields. The G-fixed algebra is

denoted by B.
The E-fields are introduced via the τ operations. This comes for G = U(1)

by comparison with the usual commutation relations

(D.1) [E(u),A(a)] = −i ℏ
ϵ0

∫
Λ

u(x) · a⊤(x) d3x

(cf. the first part in equation (6.1) and insert there – after symplectic scaling –

Φµ(fR) = Aµ(fR) and Φµ(fI) = −ϵ0Eµ(fI)), where the A-fields are transversal,

but not necessarily the E-fields. This leads to

(D.2) exp{iE(u)}
( q
ℏ
A(a)

)
exp{−iE(u)} =

ℏ
ϵ0
A(a) +

q

ϵ0

∫
Λ

u(x) · a⊤(x) d3x,

so that τqu/ϵ0 is implemented by exp{ iϵ0
q E(u)}.

The most spectacular consequence is the validity of the Poisson–Gauss law in

operator form (with (∇ ·E)(f) in a different algebra and differently smeared than

E(u))

(D.3) (∇ ·E)(f) = ϱ(f)/ϵ0, ϱ(f) =

∫
Λ

f(x)Ψ(x)∗ ·Ψ(x) d3x.

As an operation on the spinor fields, E does not commute with them. In unsmeared

form one gets from equation (D.3) the commutation relation

(D.4) E(x)Ψ(y) = Ψ(y)
[
E(x) +∇ q

4πϵ0|x− y|

]
.

This is interpreted as “creating a fermion, also creates its Coulomb field”. So, in

the end, we have arrived at the scalar potential, duly attached to the fermions.
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