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Fractional Kolmogorov Operator and
Desingularizing Weights

by

Damir Kinzebulatov and Yuliy A. Semënov

Abstract

We establish sharp upper and lower bounds on the heat kernel of the fractional Laplace
operator perturbed by Hardy-type drift by transferring it to an appropriate weighted
space with singular weight.
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§1. Introduction

The fractional Kolmogorov operator (−∆)
α
2 + f · ∇, 1 < α < 2 with a (locally

unbounded) vector field f : Rd → Rd plays an important role in probability theory,

where it arises as the generator of a symmetric α-stable process with a drift (in

contrast to diffusion processes, an α-stable process has long-range interactions). It

has been the subject of intensive study over the past two decades. There is now a

well-developed theory of this operator, with f belonging to the corresponding Kato

class. This class contains, in particular, the vector fields f, with |f| ∈ Lp, p > d
α−1 ,

and is responsible for the existence of the standard (local-in-time) two-sided bound

on the heat kernel e−tΛ(x, y), Λ = (−∆)
α
2 + f · ∇, in terms of e−t(−∆)

α
2 (x, y); see

[BJ].

The authors in [KSS] studied in Rd, d ≥ 3 the fractional Kolmogorov operator

Λ = (−∆)
α
2 + b · ∇, b(x) = κ|x|−αx, 0 < κ < κ0,

where κ0 is the borderline constant for existence of e−tΛ(x, y) ≥ 0. The model

vector field b lies outside the scope of the Kato class, and exhibits critical behaviour

both at x = 0 and at infinity, making the standard upper bound on e−tΛ(x, y)

in terms of e−t(−∆)
α
2 (x, y) invalid. Instead, the two-sided bounds e−tΛ(x, y) ≈

e−t(−∆)
α
2 (x, y)φt(y) (y ̸= 0) hold for an appropriate weight φt ≥ 1

2 unbounded at

y = 0 [KSS, Thm. 3].

The present paper continues [KSS]. Throughout this paper, d ≥ 3 and 1 <

α < 2. We study the heat kernel e−tΛ(x, y) of the fractional Kolmogorov operator

with the drift of opposite sign (“repulsion case”),

(1.1)
Λ = (−∆)

α
2 − b · ∇,

b(x) = κ|x|−αx, 0 < κ <∞.

Although the standard (global) upper bound in terms of e−t(−∆)
α
2 (x, y) holds true

for e−tΛ(x, y) (Theorem 3.2 below), the singularity of b at x = 0 makes it off the

mark. Namely, in Theorems 3.3 and 3.4 below we establish sharp upper and lower

bounds

(ULBw) e−tΛ(x, y) ≈ e−t(−∆)
α
2 (x, y)ψt(y), x, y ∈ Rd, t > 0,

where the continuous weight 0 ≤ ψt(y) ≤ 2 vanishes at y = 0 as |y|β , β > 0

(Theorem 3.1). (Here, the notation a(z) ≈ b(z) means that c−1b(z) ≤ a(z) ≤ cb(z)

for some constant c > 1 and all admissible z.) The order of vanishing β (< α)

depends explicitly on κ > 0 and tends to α as κ ↑ ∞.



Fractional Kolmogorov Operator 341

The key step in proving the upper and lower bound (ULBw) is the weighted

Nash initial estimate

(NIEw) 0 ≤ e−tΛ(x, y) ≤ Ct−
d
αψt(y), x, y ∈ Rd, t > 0.

The proof of (NIEw) uses the method of desingularizing weights [MS0, MS1, MS2]

based on ideas set forth by Nash [N]: it depends on the “desingularizing” (L1, L1)

bound on the weighted semigroup ψte
−tΛψ−1

t .

Operator (1.1) in the local case α = 2 has been studied in [MeSS, MeNS] by

considering it in the space L2(Rd, |x|γdx) for appropriate γ, where the operator

becomes symmetric. This approach, however, does not work for α < 2.

Recently, the authors in [CKSV, JW] considered the fractional Schrödinger

operator

H+ = (−∆)
α
2 + V, V (x) = κ|x|−α, 0 < α < 2, κ > 0,

and established, using different methods, sharp two-sided bounds

e−tH+(x, y) ≈ e−t(−∆)
α
2 (x, y)ψt(x)ψt(y)

for appropriate weights ψt(x) vanishing at x = 0. We apply some ideas from [JW]

(the “method of self-improving estimates”, in the proof of Theorem 3.3).

In contrast to the cited papers, this work deals with a purely non-local and

non-symmetric situation. This leads to new difficulties, and requires new ideas.

Even the proof of the standard upper bound e−tΛ(x, y) ≤ Ce−t(−∆)
α
2 (x, y) (Theo-

rem 3.2), as well as the construction of semigroups e−tΛ, e−tΛ
∗
(Sections 8 and 9),

become non-trivial. The same applies to the Sobolev regularity of e−tΛf , f ∈ C∞
c

established in Section 8.2. We consider these results, along with Theorems 3.3

and 3.4, to be the main results of this article.

Below we apply the scheme of the proof of the upper and lower bounds in

[KSS], although with comprehensive modifications in the method, both at the

level of the abstract desingularization theorem (Theorem 2.1) and in the proofs of

(NIEw), (ULBw) and of the standard upper bound.

We note that the heat kernel of the operator (−∆)
α
2 + f ·∇ with div f = 0 was

studied in [MM2, MM1]. Concerning the case div f = 0 and α = 2, see [Z, Z2].

For properties of the Feller process determined by (1.1), see [KM].

Let us mention that the vector field b(x) = κ|x|−αx exhibits critical behaviour

even if we remove the singularity of b at the origin. Namely, if we consider Λ with

b bounded in B(0, 1) but having slower decay at infinity, b(x) = κ|x|−α+εx, ε > 0

for |x| ≥ 1, then the global-in-time upper bound e−tΛ(x, y) ≤ Ce−t(−∆)
α
2 (x, y) of

Theorem 3.2 would no longer be valid.
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§1.1. Notation

� We denote by B(X,Y ) the space of bounded linear operators between Banach

spaces X → Y , endowed with the operator norm ∥ · ∥X→Y . Set B(X) :=

B(X,X).

� We write T = s-X- limn Tn for T , Tn ∈ B(X) if Tf = limn Tnf in X for every

f ∈ X. We also write Tn
s→ T if X = L2.

� Denote ∥ · ∥p→q := ∥ · ∥Lp→Lq .

� Lp+ := {f ∈ Lp | f ≥ 0 a.e.}.
� S denotes the L. Schwartz space of test functions.

� Cu := {f ∈ C(Rd) | f are uniformly continuous and bounded} (with the sup-

norm).

� We write c ̸= c(ε) to emphasize that c is independent of ε.

� sprt f denotes the support of function f .

� ]a, b[ denotes an open interval.

� Given operators A, B, we write B ⊃ A if B is an extension of A.

§2. Desingularization in abstract setting

We first prove a general desingularization theorem in the abstract setting. We will

apply it in the next section to the fractional Kolmogorov operator.

Let X be a locally compact topological space, and µ a σ-finite Borel measure

on X. Set Lp = Lp(X,µ), p ∈ [1,∞], a (complex) Banach space. We use the

notation

⟨u, v⟩ = ⟨uv̄⟩ :=
∫
X

uv̄ dµ, ∥ · ∥p→q = ∥ · ∥Lp→Lq .

Let −Λ be the generator of a contraction C0 semigroup e−tΛ, t > 0, in L2.

Assume that, for some constants M ≥ 1, cS > 0, j > 1, c > 0,

∥e−tΛf∥1 ≤M∥f∥1, t ≥ 0, f ∈ L1 ∩ L2.(B11)

Sobolev embedding property: Re⟨Λu, u⟩ ≥ cS∥u∥22j , u ∈ D(Λ).(B12)

∥e−tΛ∥2→∞ ≤ ct−
j′
2 , t > 0, j′ =

j

j − 1
.(B13)

Assume also that there exists a family of real-valued weights ψ = {ψs}s>0 on

X such that, for all s > 0,

(B21) 0 ≤ ψs, ψ
−1
s ∈ L1

loc(X −N,µ), where N is a closed null set,
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and there exist constants θ ∈ ]0, 1[, θ ̸= θ(s), ci ̸= ci(s) (i = 2, 3) and a measurable

set Ωs ⊂ X such that

ψs(x)
−θ ≤ c2 for all x ∈ X − Ωs,(B22)

∥ψ−θ
s ∥Lq′ (Ωs) ≤ c3s

j′/q′ , where q′ =
2

1− θ
.(B23)

Theorem 2.1. In addition to (B11)–(B23), assume that there exists a constant

c1 ̸= c1(s) such that, for any s > 0 and all s2 ≤ t ≤ s,

(B3) ∥ψse−tΛψ−1
s f∥1 ≤ c1∥f∥1, f ∈ L1.

Then there is a constant C such that, for all t > 0 and µ a.e. x, y ∈ X,

|e−tΛ(x, y)| ≤ Ct−j
′
ψt(y).

Remark 2.2. In application of Theorem 2.1 to concrete operators, the main dif-

ficulty is in the verification of assumption (B3).

Proof of Theorem 2.1. Set ψ ≡ ψs and put L2
ψ := L2(X,ψ2 dµ). In what follows,

∥ · ∥2,ψ and ⟨·, ·⟩ψ denote the norm and the inner product in L2
ψ, respectively, and

∥ · ∥2,ψ→2,ψ denotes the operator norm in B(L2
ψ).

Define a unitary map Ψ: L2
ψ → L2 by Ψf = ψf . Set Λψ = Ψ−1ΛΨ of domain

D(Λψ) = Ψ−1D(Λ). Then

e−tΛψ = Ψ−1e−tΛΨ, ∥e−tΛψ∥2,ψ→2,ψ = ∥e−tΛ∥2→2, t ≥ 0.

Here and below the subscript ψ indicates that the corresponding quantities are

related to the measure ψ2 dµ.

Set ut = e−tΛψf , f ∈ L2
ψ∩L1

ψ. Applying (B12), and then the Hölder inequality,

we have

−1

2

d

dt
⟨ut, ut⟩ψ = Re⟨Λψut, ut⟩ψ (see Remark 2.3 for the proof, if needed)

= Re⟨Λψut, ψut⟩
≥ cS∥ψut∥22j

≥ cS
⟨ut, ut⟩rψ

∥ψut∥2(r−1)
q

,

where q = 2
1+θ (< 2) and r = (1+θ)j−1

jθ .

Noticing that (B11) + (B12) implies the bound ∥e−tΛ∥1→2 ≤ ĉt−
j′
2 (for details,

if needed, see Remark 2.4 below), we have by the interpolation inequality

∥e−tΛ∥1→q ≤ c4t
− j′
q′ , q′ =

q

q − 1
, c4 =M

2
q−1ĉ

2
q′ .
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Also, by (B11) and the contractivity of e−tΛ in L2,

∥e−tΛ∥q→q ≤ ∥e−tΛ∥1−a1→1∥e−tΛ∥a2→2 ≤M
2
q−1

(for a = 2− 2
q ). Therefore,

∥ψut∥q = ∥e−tΛψf∥q = ∥e−tΛ|ψ|−θ|ψ|
2
q f∥q

(we are applying (B22), (B23))

≤ c2∥e−tΛ∥q→q∥f∥q,ψ + ∥e−tΛ∥1→q∥ |ψ|−θ∥Lq′ (Ωs)∥f∥q,ψ

≤
(
c2M

2
q−1 + c3c4(s/t)

j′
q′
)
∥f∥q,ψ.

Thus, setting w = ⟨ut, ut⟩ψ, we obtain

d

dt
w1−r ≥ 2(r − 1)cS

(
c2M

2
q−1 + c3c4(s/t)

j′
q′
)−2(r−1)∥f∥−2(r−1)

q,ψ .

Integrating this differential inequality yields

∥ut∥2,ψs ≤ C1t
−j′( 1

q−
1
2 )∥f∥q,ψs , s/2 ≤ t ≤ s.

The last inequality and (B3) rewritten in the form ∥ut∥1,ψ ≤ c1∥f∥1,ψ yield,

according to the Coulhon–Raynaud extrapolation theorem (Theorem B.1),

∥ut∥2,ψs ≤ C2t
− j′

2 ∥f∥1,ψs , s/2 ≤ t ≤ s,

or

(2.1) ∥e−tΛh∥2 ≤ C2t
− j′

2 ∥h∥1,√ψs , h ∈ L2 ∩ L1√
ψs
, s/2 ≤ t ≤ s,

where L1√
ψs

:= L1(X,ψs dµ).

Since ∥e−2tΛh∥∞ ≤ ∥e−tΛ∥2→∞∥e−tΛh∥2, we have, employing (B13),

∥e−2tΛh∥∞ ≤ cC2t
−j′∥h∥1,√ψs ,

and so the assertion of Theorem 2.1 follows.

Remark 2.3. Above we evaluated

d

dt
⟨ut, ut⟩ψ = lim

τ→0

⟨ut+τ , ut+τ ⟩ψ − ⟨ut, ut⟩ψ
τ

,

where

⟨ut+τ , ut+τ ⟩ψ − ⟨ut, ut⟩ψ
τ

= Re
〈ut+τ − ut

τ
, ut+τ

〉
ψ
+Re

〈ut+τ − ut
τ

, ut

〉
ψ

→ −2Re⟨Λψut, ut⟩ψ (τ → 0)

(using the strong continuity of e−tΛψ ).
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Remark 2.4. A standard argument yields (B11) + (B12) ⇒ ∥e−tΛ∥1→2 ≤ ĉt−
j′
2 ,

t > 0. Indeed, setting ut := e−tΛf , f ∈ L2 ∩L1, we have, applying (B12), Hölder’s

inequality and (B11),

−1

2

d

dt
∥ut∥22 = Re⟨Λut, ut⟩

≥ cS∥ut∥22j

≥ cS∥ut∥
2+ 2

j′

2 ∥ut∥
− 2
j′

1

≥ cSM
− 2
j′ ∥ut∥

2+ 2
j′

2 ∥f∥
− 2
j′

1 .

Thus, w := ∥ut∥22 satisfies

d

dt
w

− 1
j′ ≥ C∥f∥

− 2
j′

1 , C =
2cSM

− 2
j′

j′
,

so integrating this inequality we obtain ∥e−tΛ∥1→2 ≤ C− j′
2 t−

j′
2 .

It is now seen that (B1) ≡ (B11)+(B12)+(B13) implies the bound e−tΛ(x, y) ≤
c̃t−j

′
.

§3. Heat kernel e−tΛ(x, y) for Λ = (−∆)
α
2 − κ|x|−αx · ∇,

1 < α < 2, κ > 0

We now state in detail our main result concerning the fractional Kolmogorov

operator (−∆)
α
2 − κ|x|−αx · ∇, 1 < α < 2, κ > 0.

(1). Let us outline the construction of an appropriate operator realization Λr of

(−∆)
α
2 − κ|x|−αx · ∇ in Lr, 1 ≤ r <∞. Set

bε(x) := κ|x|−αε x, |x|ε :=
√
|x|2 + ε, ε > 0,

define the approximating operators in Lr

Λε ≡ Λεr := (−∆)
α
2 − bε · ∇, D(Λεr) = Wα,r := (1 + (−∆)

α
2 )−1Lr, 1 ≤ r <∞,

and in Cu (the space of uniformly continuous bounded functions with standard

sup-norm),

Λε ≡ ΛεCu := (−∆)
α
2 − bε · ∇, D(ΛεCu) = D((−∆)

α
2

Cu
).

The operator −Λε is the generator of a holomorphic semigroup in Lr and in Cu.

Moreover, the corresponding semigroups are positivity preserving:

e−tΛ
ε

Lr+ ⊂ Lr+ and e−tΛ
ε

C+
u ⊂ C+

u
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where Lr+ := {f ∈ Lr | f ≥ 0}, C+
u := {f ∈ Cu | f ≥ 0}. Also,

∥e−tΛ
ε

f∥∞ ≤ ∥f∥∞, f ∈ Lr ∩ L∞, or f ∈ Cu.

For details, if needed, see Section 8 below.

In Proposition 8.5 below we show that, for every r ∈ [1,∞[, the limit

s-Lr- lim
ε↓0

e−tΛ
ε
r (loc. uniformly in t ≥ 0)

exists and determines a positivity-preserving, contraction C0 semigroup in Lr,

say e−tΛr ; the (minus) generator Λr is an appropriate operator realization of the

fractional Kolmogorov operator (−∆)
α
2 −κ|x|−αx ·∇ in Lr; there exists a constant

c such that

∥e−tΛr∥r→q ≤ ct−
d
α ( 1

r−
1
q ), t > 0,

for all 1 ≤ r < q ≤ ∞; by construction, the semigroups e−tΛr are consistent:

e−tΛr ↾ Lr ∩ Lp = e−tΛp ↾ Lr ∩ Lp.

Using Proposition 8.5 we obtain

⟨Λru, h⟩ = ⟨u, (−∆)
α
2 h⟩+ ⟨u, b · ∇h⟩+ ⟨u, (div b)h⟩, u ∈ D(Λr), h ∈ C∞

c

(cf. [KSS, Prop. 9]).

(2). We now introduce the desingularizing weights for e−tΛ. Define β by

β
d+ β − 2

d+ β − α

γ(d+ β − 2)

γ(d+ β − α)
= κ,

where

γ(α) :=
2απ

d
2Γ(α2 )

Γ(d2 − α
2 )

.

Direct calculations show that β ∈ ]0, α[ exists (see Figure 1), and that |x|β is a Lya-

punov function of the formal adjoint operator Λ∗ = (−∆)
α
2 +∇·b, i.e. Λ∗|x|β = 0.

Set

ψ(x) ≡ ψs(x) := η(s−
1
α |x|),

where η is given by

η(t) =


tβ , 0 < t < 1,

βt(2− t
2 ) + 1− 3

2β, 1 ≤ t ≤ 2,

1 + β
2 , t ≥ 2.

In the proofs, we will be also using function

ψ̃(x) ≡ ψ̃s(x) := s−
β
α |x|β .
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Figure 1. The function κ 7→ β for d = 3 and α = 3
2 .

Applying Theorem 2.1 to the operator Λr and the weights ψs, we obtain the

following theorem:

Theorem 3.1. We have that e−tΛr is an integral operator for each t > 0 with

integral kernel e−tΛ(x, y) ≥ 0. There exists a constant cN,w such that, up to a

change of e−tΛ(x, y) on a measure zero set, the weighted Nash initial estimate

(NIEw) e−tΛ(x, y) ≤ cN,wt
− d
αψt(y)

is valid for all x, y ∈ Rd and t > 0.

The next step is to deduce the following global-in-time “standard” upper

bound on e−tΛ(x, y).

Theorem 3.2. (i)There is a constant C1 such that, up to a change of e−tΛ(x, y)

on a measure zero set, for all t > 0, x, y ∈ Rd,

e−tΛ(x, y) ≤ C1e
−t(−∆)

α
2 (x, y).

(ii) Moreover, for a given δ ∈ ]0, 1[, there is a constant D = Dδ > 0 such that

e−tΛ(x, y) ≤ (1 + δ)e−t(−∆)
α
2 (x, y), |x| > Dt

1
α , y ∈ Rd.

Theorems 3.1 and 3.2 are the key tools which allow us to establish the upper

bound on e−tΛ(x, y):
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Theorem 3.3. There is a constant C such that, up to a change of e−tΛ(x, y) on

a measure zero set, for all t > 0, x, y ∈ Rd,

(UBw) e−tΛ(x, y) ≤ Ce−t(−∆)
α
2 (x, y)ψt(y).

Using Theorem 3.3, we prove the lower bound on e−tΛ(x, y):

Theorem 3.4. There is a constant C̃ > 0 such that, up to a change of e−tΛ(x, y)

on a measure zero set, for all t > 0, x, y ∈ Rd,

(LBw) e−tΛ(x, y) ≥ C̃e−t(−∆)
α
2 (x, y)ψt(y).

§4. Proof of Theorem 3.1: The weighted Nash initial estimate

The proof follows by applying Theorem 2.1 to e−tΛr .

Conditions (B11) and (B13) (with j′ = d
α ) are satisfied by Proposition 8.5.

Let us prove (B12). By Proposition 8.1 (Λε ≡ Λε2),

Re⟨Λε(1 + Λε)−1g, (1 + Λε)−1g⟩ ≥ cS∥(1 + Λε)−1g∥22j , g ∈ L2,

where j = d
d−α , cS ̸= cS(ε), i.e.

Re⟨g − (1 + Λε)−1g, (1 + Λε)−1g⟩ ≥ cS∥(1 + Λε)−1g∥22j .

Using the convergence (1 + Λε)−1 s−→ (1 + Λ)−1 in L2 as ε ↓ 0 (Proposition 8.5)

in the LHS of the last inequality, and a weak compactness argument in L2j in its

RHS, we obtain Re⟨Λ(1 + Λ)−1g, (1 + Λ)−1g⟩ ≥ cS∥(1 + Λ)−1g∥22j for all g ∈ L2,

and so (B12) is proved.

Condition (B21) is evident from the definition of the weights ψs. It is easily

seen that (B22), (B23) hold with Ωs = B(0, s
1
α ) and θ = (2−α)d

(2−α)d+8β . It remains to

prove the desingularizing (L1, L1) bound (B3), which presents the main difficulty.

The rest of this section is devoted to the verification of (B3).

To verify (B3), we modify the proof of the analogous (L1, L1) bound in [KSS]

(see also Remark 4.8 below). We will appeal to the Lumer–Phillips theorem applied

to specially constructed C0 semigroups in L1, corresponding to operators with

smooth coefficients and smooth weights, which approximate ψse
−tΛψ−1

s .

Recall that bε(x) := κ|x|−αε x, |x|ε :=
√
|x|2 + ε, ε > 0,

Λε := (−∆)
α
2 − bε · ∇, D(Λε) = Wα,1 := (1 + (−∆)

α
2 )−1L1,

(Λε)∗ = (−∆)
α
2 +∇ · bε, D((Λε)∗) = Wα,1.
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By the Hille perturbation theorem, for each ε > 0, both e−tΛ
ε

and e−t(Λ
ε)∗ can be

viewed as C0 semigroups in L1 and Cu (see Sections 8 and 9).

Define approximating weights

ϕn,ε := n−1 + e−
(Λε)∗
n ψ, ψ = ψs.

Remark 4.1. This choice of regularization of ψ is dictated by the method: e−
(Λε)∗
n

will be needed below to control the auxiliary potential Uε. See also Remark 4.7

below.

In L1 define operators

Q = ϕn,εΛ
εϕ−1
n,ε, D(Q) = ϕn,εD(Λε),

where ϕn,εD(Λε) := {ϕn,εu | u ∈ D(Λε)},

F tε,n = ϕn,εe
−tΛεϕ−1

n,ε.

Since ϕn,ε, ϕ
−1
n,ε ∈ L∞, these operators are well defined. In particular, F tε,n are

bounded C0 semigroups in L1, say F tε,n = e−tG.

Set

M := ϕn,ε(1 + (−∆)
α
2 )−1[L1 ∩ Cu]

= ϕn,ε(λε + Λε)−1[L1 ∩ Cu], 0 < λε ∈ ρ(−Λε).

Clearly, M is a dense subspace of L1, M ⊂ D(Q) and M ⊂ D(G). Moreover,

Q ↾M ⊂ G. Indeed, for f = ϕn,εu ∈M ,

Gf = s-L1- lim
t↓0

t−1(1− e−tG)f = ϕn,εs-L
1- lim

t↓0
t−1(1− e−tΛ

ε

)u = ϕn,εΛ
εu = Qf.

Thus Q ↾M is closable and Q̃ := (Q ↾M)clos ⊂ G.

Proposition 4.2. The range R(λε + Q̃) is dense in L1.

Proof. If ⟨(λε + Q̃)h, v⟩ = 0 for all h ∈ D(Q̃) and some v ∈ L∞, ∥v∥∞ = 1, then

taking h ∈ M we would have ⟨(λε +Q)ϕn,ε(λε + Λε)−1g, v⟩ = 0, g ∈ L1 ∩ Cu, or
⟨ϕn,εg, v⟩ = 0. Choosing g = e

∆
k (χmv), where χm ∈ C∞

c with χm(x) = 1 when

x ∈ B(0,m), we would have limk↑∞⟨ϕn,εg, v⟩ = ⟨ϕn,εχm, |v|2⟩ = 0, and so v = 0.

Thus, R(λε + Q̃) is dense in L1.

Proposition 4.3. There are constants ĉ > 0 and εn > 0 such that, for every n

and all 0 < ε ≤ εn,

λ+ Q̃ is accretive whenever λ ≥ ĉs−1 + n−1,

where s > 0 is from the definition of the weight ϕn,ε.



350 D. Kinzebulatov and Yu. A. Semënov

Proof. Recall that both e−tΛ
ε

and e−t(Λ
ε)∗ are holomorphic in L1 and Cu due to

Hille’s perturbation theorem. We have

ψ = ψ(1) + ψ(u), 0 ≤ ψ(1) ∈ D((−∆)
α
2
1 ), 0 ≤ ψ(u) ∈ D((−∆)

α
2

Cu
).

For instance,

ψ(u) := 1 +
β

2
, ψ(1) := ψ − 1− β

2
(so sprtψ(1) ⊂ B(0, 2s

1
α )).

In B(0, s
1
α ), the weight ψ coincides with ψ̃(x) ≡ ψ̃s(x) := s−

β
α |x|β , so ψ(1) ∈

D((−∆)1). Thus, ψ(1) ∈ D((−∆)
α
2
1 ) (see e.g. [Ka, Chap. V, Sect. 3.11]). Therefore,

(Λε)∗ψ (= (Λε)∗L1ψ(1) + (Λε)∗Cuψ(u))

is well defined and belongs to L1 + Cu = {w + v | w ∈ L1, v ∈ Cu}.
We verify that Re⟨(λ + Q̃)f, f|f | ⟩ ≥ 0 for all f ∈ D(Q̃). For f = ϕn,εu ∈ M ,

we have〈
Qf,

f

|f |

〉
=

〈
ϕn,εΛ

εu,
f

|f |

〉
= lim

t↓0
t−1

〈
ϕn,ε(1− e−tΛ

ε

)u,
f

|f |

〉
,

Re
〈
Qf,

f

|f |

〉
≥ lim

t↓0
t−1⟨(1− e−tΛ

ε

)|u|, ϕn,ε⟩

= lim
t↓0

t−1⟨(1− e−tΛ
ε

)|u|, n−1⟩+ lim
t↓0

t−1⟨(1− e−tΛ
ε

)e−
Λε

n |u|, ψ⟩

= lim
t↓0

t−1⟨|u|, (1− e−t(Λ
ε)∗)n−1⟩+ lim

t↓0
t−1⟨e−Λε

n |u|, (1− e−t(Λ
ε)∗)ψ⟩

= ⟨|u|, (Λε)∗n−1⟩+ ⟨e−Λε

n |u|, (Λε)∗ψ⟩,

where the first term is positive since

(Λε)∗n−1 = n−1 div bε = n−1(d|x|−αε − α|x|−α−2
ε |x|2) ≥ n−1(d− α)|x|−αε ≥ 0.

Thus,

(4.1) Re
〈
Qf,

f

|f |

〉
≥ ⟨e−Λε

n |u|, (Λε)∗ψ⟩,

so it remains to bound J := ⟨e−Λε

n |u|, (Λε)∗ψ⟩ from below. For that, we estimate

from below

(Λε)∗ψ = (−∆)
α
2 ψ + div(bεψ).

Claim 4.4. We have

(−∆)
α
2 ψ ≥ −β(d+ β − 2)

γ(d+ β − 2)

γ(d+ β − α)
|x|−αψ̃.
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Proof. All identities are in the sense of distributions:

(−∆)
α
2 ψ = −I2−α∆ψ

= −I2−α∆ψ̃ − I2−α∆(ψ − ψ̃),

where Iν = (−∆)−
ν
2 is the Riesz potential, and we evaluate the first term

−I2−α∆ψ̃ = −s−
β
α β(d+ β − 2)I2−α|x|β−2

= −s−
β
α β(d+ β − 2)

γ(d+ β − 2)

γ(d+ β − α)
|x|β−α,

while the second term is positive and can be omitted:

−I2−α∆(ψ − ψ̃) ≥ 0

(see Remark 4.6 below for detailed calculation). The proof of Claim 4.4 is com-

pleted.

Claim 4.5. We have

div(bεψ) ≥ div(bψ̃)− Uεψ̃ − ĉs−1ψ

for a constant ĉ ̸= ĉ(ε, n), where Uε(x) := κ(d+ β − α)(|x|−α − |x|−αε ) > 0.

Proof. We represent

div(bεψ) = div(bψ̃) + div(bεψ)− div(bψ̃)

and estimate the difference div(bεψ)− div(bψ̃):

div(bεψ)− div(bψ̃) = div
[
b(ψ − ψ̃)

]
+ div

[
(bε − b)ψ

]
= h1 + div

[
(bε − b)ψ

]
,

where h1 ∈ C∞ (continuous functions vanishing at infinity), h1 = 0 in B(0, s
1
α ).

In turn,

div
[
(bε − b)ψ

]
= (bε − b) · ∇ψ + (div bε − div b)ψ

= κ(|x|−αε − |x|−α)x · ∇ψ̃ + h2 + κ
[
d|x|−αε − α|x|−α−2

ε |x|2 − (d− α)|x|−α
]
ψ

(where h2 := κ(|x|−αε − |x|−α)x · ∇(ψ − ψ̃) ∈ C∞, h2 = 0 in B(0, s
1
α ))

= κ(|x|−αε − |x|−α)βψ̃ + h2 + κ
[
d|x|−αε − α|x|−α−2

ε |x|2 − (d− α)|x|−α
]
ψ

≥ κ(|x|−αε − |x|−α)βψ̃ + h2 + κ(d− α)(|x|−αε − |x|−α)ψ.

Thus,

div(bεψ) ≥ div(bψ̃) + κ(d+ β − α)(|x|−αε − |x|−α)ψ̃ + h1 + h2 + h3,

where h3 := κ(d− α)(|x|−αε − |x|−α)(ψ − ψ̃) ∈ C∞, h3 = 0 in B(0, s
1
α ).
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A straightforward calculation shows that hi ≥ −ciψs−1 with ci ̸= ci(ε, n),

i = 1, 2, 3 (we have used that hi = 0 in B(0, s
1
α )). The assertion of Claim 4.5

follows.

Now we combine Claims 4.4 and 4.5: in view of the choice of β,

−β(d+ β − 2)
γ(d+ β − 2)

γ(d+ β − α)
|x|−αψ̃ + div(bψ̃) = 0

(that is, formally, Λ∗ψ̃ = 0), and so

(Λε)∗ψ ≥ −Uεψ̃ − ĉs−1ψ.

It follows that

J ≡ ⟨e−Λε

n |u|, (Λε)∗ψ⟩ ≥ −ĉs−1⟨e−Λε

n |u|, ψ⟩ − ⟨e−Λε

n |u|, Uεψ̃⟩

= −ĉs−1⟨|u|, e−
(Λε)∗
n ψ⟩ − ⟨e−Λε

n |u|, Uεψ̃⟩

≥ −ĉs−1⟨|u|, n−1 + e−
(Λε)∗
n ψ⟩ − ⟨e−Λε

n |u|, Uεψ̃⟩

(recall that |u| = ϕ−1
n,ε|f | and ϕn,ε = n−1 + e−

(Λε)∗
n ψ)

= −ĉs−1∥f∥1 − ⟨|u|, e−
(Λε)∗
n (Uεψ̃)⟩.

Now, for every n ≥ 1, we have

∥e−
(Λε)∗
n (Uεψ̃)∥∞ ≤ ∥e−

(Λε)∗
n (1Bc(0,R)Uεψ̃)∥∞ + ∥e−

(Λε)∗
n (1B(0,R)Uεψ̃)∥∞

(we are using that e−t(Λ
ε)∗ is a L∞ contraction

and ultracontraction; see Proposition 9.1)

≤ ∥1Bc(0,R)Uεψ̃∥∞ + cNn
d
α ∥1B(0,R)Uεψ̃∥1

(we fix R = Rn such that ∥1Bc(0,R)Uεψ̃∥∞ ≤ 2−1n−2

and choose εn > 0 such that, for all ε ≤ εn,

∥1B(0,R)Uεψ̃∥1 ≤ 2−1n−2(cNn
d
α )−1)

≤ n−2.

Therefore, since ϕn,ε ≥ n−1, we have for every n and all ε ≤ εn,

∥ϕ−1
n,εe

− (Λε)∗
n (Uεψ̃)∥∞ ≤ n−1

and so ⟨|u|, e−
(Λε)∗
n (Uεψ̃)⟩ ≤ n−1∥f∥1. Thus,

J ≥ −(ĉs−1 + n−1)∥f∥1.
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Returning to (4.1), one can easily see that the latter yields the assertion of Propo-

sition 4.3.

Remark 4.6. Let us show that −∆(ψ− ψ̃) ≥ 0. Without loss of generality, s = 1.

The inequality is evidently true on {0 < |x| ≤ 1}∪{|x| ≥ 2}. Now, let 1 < |x| < 2.

Then

∆(ψ̃ − ψ) = β(d+ β − 2)|x|β−2 − η′′(|x|)− η′(|x|)(d− 1)|x|−1

= β(d+ β − 2)|x|β−2 + β − β(2− |x|)(d− 1)|x|−1

= β|x|−2
(
(d+ β − 2)|x|β + |x|2 − (d− 1)(2− |x|)|x|

)
≥ β|x|−2

(
(d+ β − 2) + 1− (d− 1)

)
≥ 0.

The fact that Q̃ is closed, together with Propositions 4.2 and 4.3, implies that

the range R(λε + Q̃) = L1 (Appendix C). Then, by the Lumer–Phillips theorem,

λ + Q̃ is the (minus) generator of a contraction semigroup, and Q̃ = G due to

Q̃ ⊂ G. Thus, it follows that, for all n and all ε ≤ εn,

(⋆) ∥e−tG∥1→1 ≡ ∥ϕn,εe−tΛ
ε

ϕ−1
n,ε∥1→1 ≤ eωt, ω = ĉs−1 + n−1.

To obtain (B3), it remains to pass to the limit in (⋆): first in ε ↓ 0 and then

in n→ ∞. It suffices to prove (B3) on positive functions. By (⋆),

∥ϕn,εe−tΛ
ε

ϕ−1
n,εf∥1 ≤ eωt∥f∥1, 0 ≤ f ∈ L1,

or taking f = ϕn,εh, 0 ≤ h ∈ L1,

∥ϕn,εe−tΛ
ε

h∥1 ≤ eωt∥ϕn,εh∥1.

Using Proposition 8.5 we have

∥ϕn,εe−tΛ
ε

h∥1 = ⟨n−1e−tΛ
ε

h⟩+ ⟨ψ, e−(t+ 1
n )Λεh⟩

→ ⟨n−1e−tΛh⟩+ ⟨ψ, e−(t+ 1
n )Λh⟩ as ε ↓ 0

and

∥ϕn,εh∥1 = n−1⟨h⟩+ ⟨ψ, e−Λε

n h⟩ → n−1⟨h⟩+ ⟨ψ, e−Λ
n h⟩ as ε ↓ 0.

Thus,

⟨n−1e−tΛh⟩+ ⟨ψ, e−(t+ 1
n )Λh⟩ ≤ eωt(n−1⟨h⟩+ ⟨ψ, e−Λ

n h⟩).

Taking n→ ∞, we obtain ⟨ψe−tΛh⟩ ≤ eĉs
−1t⟨ψh⟩. Condition (B3) now follows.

The proof of Theorem 3.1 is completed.
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Remark 4.7 (On the choice of the regularization ϕn,ε of the weight ψ). In [KSS]

we construct the regularization of the weight in the same way as above, although

there the factor e−
1
n (Λε)∗ serves a different purpose (in [KSS] the drift term b · ∇

has the opposite sign, and so the corresponding weight is unbounded). (As a by-

product, this allows us to consider (−∆)
α
2 perturbed by two drift terms, as in the

present paper and as in [KSS], possibly having singularities at different points.)

Remark 4.8. In the proof of the analogous (L1, L1) bound in [KSS, proof of

Thm. 2], where we consider the vector field b of the opposite sign, we first pass

to the limit in n → ∞, and then in ε ↓ 0. In the proof of Theorem 3.1 above this

order is naturally reversed.

As a consequence of the (L1, L1) bound (B3), we obtain, up to change of

e−tΛ(x, y) on a measure zero set, the following corollary:

Corollary 4.9. We have

⟨e−tΛ(·, x)ψt(·)⟩ ≤ c1ψt(x)

for all x ∈ Rd, x ̸= 0, t > 0.

Proof. By (B3),

⟨ψte−tΛh⟩ ≤ c1⟨ψth⟩, 0 ≤ h ∈ C∞
c ,

i.e.

⟨⟨h(z)e−tΛ(·, z)ψt(·)⟩⟩z ≤ c1⟨ψth⟩.
The required result now follows upon selecting h → δx, x ̸= 0 and applying the

Lebesgue differentiation theorem in the LHS.

As a consequence of Corollary 4.9 and (NIEw), we obtain the following corol-

lary:

Corollary 4.10. We have

⟨e−tΛ(·, x)⟩ = ⟨e−tΛ
∗
(x, ·)⟩ ≤ C2ψt(x)

for all x ∈ Rd, x ̸= 0, t > 0.

Proof. We have

⟨e−tΛ
∗
(x, ·)⟩ ≤

〈
1
B(0,t

1
α )
(·)e−tΛ

∗
(x, ·)

〉
+

〈
1
Bc(0,t

1
α )
(·)e−tΛ

∗
(x, ·)ψt(·)

〉
=: I1 + I2.

By (NIEw), I1 ≤ c′ψt(x), and by Corollary 4.9, I2 ≤ c′′ψt(x), for appropriate

constants c′, c′′ <∞. Set C2 := c′ + c′′.
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§5. Proof of Theorem 3.2: The standard upper bounds

Proof of assertion (i). For brevity, put A := (−∆)
α
2 . Recall that

k−1
0 t(|x− y|−d−α ∧ t−

d+α
α ) ≤ e−tA(x, y) ≤ k0t(|x− y|−d−α ∧ t−

d+α
α )

for all x, y ∈ Rd, x ̸= y, t > 0, for a constant k0 = k0(d, α) > 1.

In view of Proposition 8.5, it suffices to prove the a priori bound

e−tΛ
ε

(x, y) ≤ C1e
−tA(x, y), x, y ∈ Rd, t > 0, C1 ̸= C1(ε).

By duality, it suffices to prove

e−t(Λ
ε)∗(x, y) ≤ C1e

−tA(x, y), x, y ∈ Rd, t > 0, C1 ̸= C1(ε).

Step 1 . For every D > 1 and all t > 0, |x| ≤ Dt
1
α , |y| ≤ Dt

1
α the bound

e−t(Λ
ε)∗(x, y) ≤ k0cN (2D)d+αe−tA(x, y)

is valid.

In fact, we will prove the following lemma:

Lemma 5.1. Let t > 0 and D > 1. Then

(i) e−t(Λ
ε)∗(x, y) ≤ k0cN (2D)d+αe−tA(x, y), |x| ≤ Dt

1
α , |y| ≤ Dt

1
α .

(ii) e−tΛ
∗
(x, y) ≤ k0cN,w(1 +D)d+αe−tA(x, y)ψt(x), |x| ≤ t

1
α , |y| ≤ Dt

1
α .

Proof. (i) Note that (|x| ≤ Dt
1
α , |y| ≤ Dt

1
α ) ⇒ t−

d
α ≤ (2D)d+αt|x− y|−d−α. The

latter means that t−
d
α ≤ k0(2D)d+αe−tA(x, y). In Proposition 9.2, the Nash initial

estimate

(NIE) e−t(Λ
ε)∗(x, y) ≤ cN t

− d
α , x, y ∈ Rd, t > 0

is proved. Therefore,

e−t(Λ
ε)∗(x, y) ≤ cN t

− d
α ≤ k0cN (2D)d+αe−tA(x, y).

(ii) Clearly, (|x| ≤ t
1
α , |y| ≤ Dt

1
α ) ⇒ t−

d
α ≤ (1 +D)d+αt|x − y|−d−α, and so

the inequality t−
d
α ≤ k0(1 +D)d+αe−tA(x, y) is valid. By (NIEw) (Theorem 3.1),

e−tΛ
∗
(x, y) ≤ cN,wt

− d
αψt(x) for all t > 0, x, y ∈ Rd. Therefore,

e−tΛ
∗
(x, y) ≤ k0cN,w(1 +D)d+αe−tA(x, y)ψt(x).

In what follows, we will need the following estimates: Set

Et(x, y) = t(|x− y|−d−α−1 ∧ t−
d+α+1
α )

and

Etf(x) := ⟨Et(x, ·)f(·)⟩, t > 0.
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Lemma 5.2. There exist constants ki (i = 1, 2, 3) such that for all 0 < t <∞, x,

y ∈ Rd,

(i) |∇xe
−tA(x, y)| ≤ k1E

t(x, y);

(ii)

∫ t

0

⟨e−(t−τ)A(x, ·)Eτ (·, y)⟩ dτ ≤ k2t
α−1
α e−tA(x, y);

(iii)

∫ t

0

⟨Et−τ (x, ·)Eτ (·, y)⟩ dτ ≤ k3t
α−1
α Et(x, y).

Proof. For the proofs of (i), (ii), see e.g. [BJ]. Essentially the same argument yields

(iii); see e.g. [KSS, Sect. 5] for details.

Step 2 . Fix δ ∈ ]0, 2−1[. Set Cg := κk1(2k2 + k3), R := (Cgδ
−1)

1
α−1 and m =

1 + 2k0k1.

If D ≥ Rm, then the bound

(5.1) e−t(Λ
ε)∗(x, y) ≤ (1 + δ)e−tA(x, y), x ∈ Rd, |y| > Dt

1
α , t > 0

is valid.

We use the Duhamel formula

e−t(Λ
ε)∗ = e−tA +

∫ t

0

e−τ(Λ
ε)∗(Btε,R +Bt,cε,R)e

−(t−τ)A dτ

=: e−tA +Kt
R +Kt,c

R , R := (Cgδ
−1)

1
α−1 ,(5.2)

where

Btε,R := 1
B(0,Rt

1
α )
Bε, Bt,cε,R := 1

Bc(0,Rt
1
α )
Bε, Bε := −bε · ∇ −Wε,

and

Wε(x) := κ(d|x|−αε − α|x|−α−2
ε |x|2) (= div bε), |bε(x)| = κ|x|−αε |x|.

Set

M t
R(x, y) := (d− α)κ

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)1

B(0,Rt
1
α )
(·)| · |−αε e−(t−τ)A(·, y)⟩ dτ.

Claim 5.3. For every D ≥ Rm and all |y| > Dt
1
α , x ∈ Rd, we have

Kt
R(x, y) ≤ −1

2
M t
R(x, y).
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Proof. Using Lemma 5.2(i), we obtain

Kt
R(x, y) ≡

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)Btε,R(·)e−(t−τ)A(·, y)⟩ dτ

≤ k1

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)1

B(0,Rt
1
α )
(·)|bε(·)|Et−τ (·, y)⟩ dτ

−
∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)1

B(0,Rt
1
α )
(·)Wε(·)e−(t−τ)A(·, y)⟩ dτ =: I1 + I2.

Using Et−τ (z, y) ≤ k0e
−(t−τ)A(z, y)|z − y|−1, we obtain

I1 ≤ k0k1

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)1

B(0,Rt
1
α )
(·)|bε(·)|e−(t−τ)A(·, y)| · −y|−1⟩ dτ

(we are using 1
B(0,Rt

1
α )
(·)|bε(·)| | · −y|−1 ≤ 1

B(0,Rt
1
α )
(·)R(D −R)−1κ| · |−αε )

≤ k0k1R(D −R)−1κ

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)1

B(0,Rt
1
α )
(·)| · |−αε e−(t−τ)A(·, y)⟩ dτ

= k0k1R(D −R)−1(d− α)−1M t
R(x, y).

We now compare the RHS of the last estimate with I2. SinceWε(·) ≥ κ(d−α)|·|−αε ,

we have

Kt
R(x, y) ≤

(
k0k1R(D −R)−1(d− α)−1 − 1

)
M t
R(x, y).

Since k0k1R(D−R)−1 ≤ k0k1
m−1 ≤ 1

2 and d−α > 1 by our assumptions, we end the

proof of Claim 5.3.

Claim 5.4. For every D ≥ Rm and all |y| > Dt
1
α , x ∈ Rd, we have

Kt,c
R (x, y) ≤ δ(M t

R(x, y) + e−tA(x, y)).

Proof. Recall that

Kt,c
R (x, y) ≡

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)Bt,cε,R(·)e

−(t−τ)A(·, y)⟩ dτ,

where Bt,cε,R = 1
Bc(0,Rt

1
α )
(−bε · ∇ −Wε). Thus, discarding in Kt,c

R the term con-

taining −Wε and using Lemma 5.2(i), we obtain

(∗) Kt,c
R (x, y) ≤ k1κR

1−αt−
α−1
α

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)Et−τ (·, y)⟩ dτ.

We will have to estimate the integral in the RHS of (∗).



358 D. Kinzebulatov and Yu. A. Semënov

Put

(e−τ(Λ
ε)∗Et−τ )(x, y) = ⟨e−τ(Λ

ε)∗(x, ·)Et−τ (·, y)⟩,

(e−τ(Λ
ε)∗BεE

t−τ )(x, y) = ⟨e−τ(Λ
ε)∗(x, ·)Bε(·)Et−τ (·, y)⟩,

and analogously for Bε replaced by similar operators.

By the Duhamel formula,∫ t

0

(e−τ(Λ
ε)∗Et−τ )(x, y) dτ

=

∫ t

0

(e−τAEt−τ )(x, y) dτ

+

∫ t

0

∫ τ

0

(
e−τ

′(Λε)∗(Btε,R +Bt,cε,R)e
−(τ−τ ′)A dτ ′Et−τ

)
(x, y) dτ

≡
∫ t

0

(e−τAEt−τ )(x, y) dτ + JR(x, y) + JcR(x, y),

where, by Lemma 5.2(ii),∫ t

0

(⟨e−τA(x, ·)Et−τ (·, y)⟩)(x, y) dτ ≤ k2t
α−1
α e−tA(x, y).

Let us estimate JR(x, y) and J
c
R(x, y).

In JR(x, y), discarding the term containing −Wε and applying Lemma 5.2(i),

we obtain

JR(x, y) ≤ k1

∫ t

0

∫ τ

0

(
e−τ

′(Λε)∗1
B(0,Rt

1
α )
|bε|Eτ−τ

′
dτ ′Et−τ

)
(x, y) dτ

(we are changing the order of integration and applying Lemma 5.2(iii))

≤ k1k3

∫ t

0

(
e−τ

′(Λε)∗1
B(0,Rt

1
α )
|bε|(t− τ ′)

α−1
α Et−τ

′)
(x, y) dτ ′

≤ k1k3t
α−1
α

∫ t

0

(
e−τ

′(Λε)∗1
B(0,Rt

1
α )
|bε|Et−τ

′)
(x, y) dτ ′.

Now, repeating the corresponding argument in the proof of Claim 5.3, we obtain

JR(x, y) ≤ C2t
α−1
α M t

R(x, y), C2 = k0k1k3R(D −R)−1(d− α)−1 ≤ k3
2
.

(C2 ≤ k0k1k3
m−1 (d− α)−1 ≤ k3

2 (d− α)−1 ≤ k3
2 .)

In turn, JcR =
∫ t
0
(JcR)

τEt−τ dτ , where

(JcR)
τ :=

∫ τ

0

e−τ
′(Λε)∗Bcε,Re

−(τ−τ ′)A dτ ′.
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Again, discarding the −Wε term in Bcε,R and applying Lemma 5.2(i), we obtain

|(JcR)τ (x, y)| ≤ κk1R
1−ατ−

α−1
α

∫ τ

0

(e−τ
′(Λε)∗Eτ−τ

′
)(x, y) dτ ′.

Due to Lemma 5.2(iii),

|JcR(x, y)| ≤ κk1k3R
1−αt−

α−1
α

∫ t

0

⟨e−τ
′(Λε)∗(x, ·)(t− τ ′)

α−1
α Et−τ

′
(·, y)⟩ dτ ′

≤ κk1k3R
1−α

∫ t

0

⟨e−τ
′(Λε)∗(x, ·)Et−τ

′
(·, y)⟩ dτ ′.

Thus, due to κk1k3R
1−α ≤ δ < 1

2 ,∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)Et−τ (·, y)⟩ dτ

≤ k2t
α−1
α e−tA(x, y) +

k3
2
t
α−1
α M t

R(x, y) +
1

2

∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)Et−τ (·, y)⟩ dτ.

Thus, we obtain∫ t

0

⟨e−τ(Λ
ε)∗(x, ·)Et−τ (·, y)⟩ dτ ≤ 2k2t

α−1
α e−tA(x, y) + k3t

α−1
α M t

R(x, y).

Substituting the latter in (∗), we obtain Claim 5.4.

Now, applying Claims 5.3 and 5.4 in (5.2), we have

e−t(Λ
ε)∗(x, y) ≤ e−tA(x, y)− 1

2
M t
R(x, y) + δ(M t

R(x, y) + e−tA(x, y))

≤ (1 + δ)e−tA(x, y),

thus ending the proof of Step 2.

Step 3 . Set R = 1 ∨ (2κk3)
1

α−1 and let D ≥ 2R. Then there is a constant C =

C(d, α, κ,R) such that the bound

e−t(Λ
ε)∗(x, y) ≤ Ce−tA(x, y), |x| > 2Dt

1
α , |y| ≤ Dt

1
α , t > 0

is valid.

(See the proof below for the explicit formula for C(d, α, κ,R).)

Using the Duhamel formula and applying Lemma 5.2(i), we have

e−t(Λ
ε)∗(x, y) ≤ e−tA(x, y) + k1

∫ t

0

(Eτ |bε|e−(t−τ)(Λε)∗)(x, y) dτ

≤ e−tA(x, y) + k1L
t
ε,R(x, y) + k1L

t,c
ε,R(x, y),(5.3)
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where

Ltε,R(x, y) :=

∫ t

0

(Eτ1
B(0,Rt

1
α )
|bε|e−(t−τ)(Λε)∗)(x, y) dτ,

Lt,cε,R(x, y) :=

∫ t

0

(Eτ1
Bc(0,Rt

1
α )
|bε|e−(t−τ)(Λε)∗)(x, y) dτ.

Let us estimate Ltε,R(x, y). Recalling that E
t(x, z) = t(|x−z|−d−α−1∧t− d+α+1

α )

and taking into account that |x| ≥ 2Dt
1
α , |z| ≤ Rt

1
α , we obtain

Eτ (x, z) ≤ t|x− z|−d−α−1 ≤ t|x− z|−d−α(3R)−1t−
1
α .

Therefore,

Ltε,R(x, y) ≤ (3R)−1t−
1
α

∫ t

0

⟨t|x− ·|−α−d1
B(0,Rt

1
α )
(·)|bε(·)|e−(t−τ)(Λε)∗(·, y)⟩ dτ

(we are using that |x| > 2Dt
1
α , | · | ≤ Rt

1
α )

≤ (3R)−1(4/3)d+αt−
1
α t|x|−α−d

∫ t

0

⟨1
B(0,Rt

1
α )
(·)|bε(·)|e−(t−τ)(Λε)∗(·, y)⟩ dτ

(we are using that |y| ≤ Dt
1
α , D ≥ 2R and setting c=3−1(16/9)d+α)

≤ cR−1t−
1
α t|x− y|−α−d

∫ t

0

⟨1
B(0,Rt

1
α )
(·)|bε(·)|e−(t−τ)(Λε)∗(·, y)⟩ dτ

(we are using t|x− y|−α−d = t(|x− y|−α−d ∧ t−
d+α
α )

since |x− y|−α−d ≤ (2R)−d−αt−
d+α
α < t−

d+α
α ,

and are re-denoting t− τ by τ)

≤ k0cR
−1t−

1
α e−tA(x, y)

∫ t

0

∥e−τΛ
ε

1
B(0,Rt

1
α )
|b|∥∞ dτ

(we are applying Proposition 8.1)

≤ k0cR
−1t−

1
α e−tA(x, y)cN

∫ t

0

τ−
d
αp dτ ∥1

B(0,Rt
1
α )
|b|∥p

(
p =

d

α− 1
2

)
.

Since
∫ t
0
τ−

d
αp dτ = 2αt

1
2α and ∥1

B(0,Rt
1
α )
|b| ∥p = κR

1
2 t

1
2α c̃, c̃ = c̃(d) < ∞, we

have

Ltε,R(x, y) ≤ C ′R− 1
2 e−tA(x, y), C ′ = 2καk0ccN c̃

or, for convenience,

(5.4) Ltε,R(x, y) ≤ C ′e−tA(x, y).

In turn, clearly,

Lt,cε,R(x, y) ≤ κR1−αt−
α−1
α

∫ t

0

Eτe−(t−τ)(Λε)∗ dτ.
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Let us estimate the integral in the RHS. Using the Duhamel formula, we obtain∫ t

0

(Eτe−(t−τ)(Λε)∗)(x, y) dτ

≤
∫ t

0

(Eτe−(t−τ)A)(x, y) dτ +

∫ t

0

(
Eτ

∫ t−τ

0

Et−τ−s|bε|e−s(Λ
ε)∗ ds

)
(x, y) dτ

(we are applying Lemma 5.2(ii) and changing the order of integration)

≤ k2t
α−1
α e−tA(x, y) +

∫ t

0

∫ t−s

0

(EτEt−s−τ |bε|e−s(Λ
ε)∗)(x, y) dτ ds

(we are applying Lemma 5.2(iii))

≤ k2t
α−1
α e−tA(x, y) + k3

∫ t

0

(t− s)
α−1
α (Et−s|bε|e−s(Λ

ε)∗)(x, y) ds

≤ k2t
α−1
α e−tA(x, y) + k3t

α−1
α

∫ t

0

(Et−s1
B(0,Rt

1
α )
|bε|e−s(Λ

ε)∗)(x, y) ds

+ k3t
α−1
α

∫ t

0

(Et−s1
Bc(0,Rt

1
α )
|b|e−s(Λ

ε)∗)(x, y) ds

≤ k2t
α−1
α e−tA(x, y) + k3t

α−1
α Ltε,R(x, y) + k3κR

1−α
∫ t

0

(Et−se−s(Λ
ε)∗)(x, y) ds

(we are applying (5.4) to the second term, and noting that k3κR
1−α ≤ 1

2 )

≤ (k2 + k3C
′)t

α−1
α e−tA(x, y) +

1

2

∫ t

0

(Et−se−s(Λ
ε)∗)(x, y) ds.

Therefore, ∫ t

0

Eτ (e−(t−τ)(Λε)∗)(x, y) dτ ≤ 2(k2 + k3C
′)t

α−1
α e−tA(x, y),

and so

(5.5) Lc,tε,R(x, y) ≤ 2κ(k2 + k3C
′)R1−αe−tA(x, y).

Applying (5.4) and (5.5) in (5.3), we obtain the desired bound

e−t(Λ
ε)∗(x, y) ≤ Ce−tA(x, y), |x| > 2Dt

1
α , |y| ≤ Dt

1
α ,

for all R > 1 such that k3κR
1−α ≤ 1

2 , D ≥ 2R, where C := 1 + k1C
′ + k12κ(k2 +

k3C
′)R1−α. The assertion of Step 3 follows.

We are in position to complete the proof of Theorem 3.2(i), i.e. to prove the

bound

(5.6) e−t(Λ
ε)∗(x, y) ≤ C1e

−tA(x, y), x, y ∈ Rd, t > 0,

for an appropriate constant C1 = C1(d, α, κ).
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To prove (5.6), we combine Steps 1–3 as follows. Fix D large enough so that

the assertions of both Steps 2 and 3 hold.

Without loss of generality, the assertion of Step 3 holds for all |x| > Dt
1
α ,

|y| ≤ Dt
1
α (indeed, by Step 1, (5.6) is true for all |x| ≤ 2Dt

1
α , |y| ≤ 2Dt

1
α (with

C1 = C ′
0(4D)d+α) and so, in particular, for all Dt

1
α < |x| ≤ 2Dt

1
α , |y| ≤ Dt

1
α ; the

rest follows from the assertion of Step 3 as stated). Thus, the desired bound (5.6)

is true for all |x| > Dt
1
α , |y| ≤ Dt

1
α and, by Step 2, for all x ∈ Rd, |y| > Dt

1
α .

It remains to prove (5.6) in the case |x| ≤ Dt
1
α , |y| ≤ Dt

1
α . But this is the

assertion of Step 1.

Thus, (5.6) is true, with constant C1 equal to the maximum of the constants

in Step 1 (with 2D in place of D) and in Steps 2, 3.

Proof of assertion (ii). The result follows immediately from Step 2 in the proof

of (i) upon taking ε ↓ 0 (cf. Proposition 9.2).

The proof of Theorem 3.2 is completed.

§6. Proof of Theorem 3.3: The weighted upper bound

Recall A ≡ (−∆)
α
2 . The estimates below are after a modification of e−tΛ(x, y),

e−tΛ
∗
(x, y) on a measure zero set, if necessary. We are going to prove that there

is a constant C <∞ such that

(6.1) e−tΛ(x, y) ≤ Ce−tA(x, y)ψt(y), t > 0, x, y ∈ Rd.

Clearly, Theorems 3.1 and 3.2(i) combined yield

(6.2) e−tΛ(x, y) ≤ C1cN,w
(
e−tA(x, y) ∧

(
t−

d
αψt(y)

))
, t > 0, x, y ∈ Rd.

(1) If |y| ≥ t
1
α , then ψt(y) ≥ 1. Then, by (6.2),

e−tΛ(x, y) ≤ C1cN,we
−tA(x, y) ≤ C1cN,we

−tA(x, y)ψt(y),

i.e. (6.1) holds.

(2) If |x| ≤ Dt
1
α , |y| < t

1
α for some constant D > 1, then by (6.2) (cf. Lemma

5.1(i))

e−tΛ(x, y) ≤ C1cN,wt
− d
αψt(y) ≤ C1cN,wk

−1
0 (D + 1)d+αe−tA(x, y)ψt(y),

i.e. (6.1) holds.

(3) It remains therefore to consider the case |x| > Dt
1
α , |y| < t

1
α .



Fractional Kolmogorov Operator 363

By duality (cf. Proposition 9.2), it suffices to prove the estimate

(6.3) e−tΛ
∗
(x, y) ≤ Ce−tA(x, y)ψt(x)

for all |x| < t
1
α , |y| > Dt

1
α , t > 0, for some D > 1.

We will use Corollary 4.10,

⟨e−tΛ
∗
(x, ·)⟩ ≤ C2ψt(x) for all x ∈ Rd, t > 0,

the “standard” upper bound (Theorem 3.2(i))

e−tΛ
∗
(x, y) ≤ C1e

−tA(x, y) for all x, y ∈ Rd, t > 0,

and its partial improvement (Theorem 3.2(ii)): for every δ > 0 there exists a

sufficiently large D such that for all |x| < t
1
α , |y| > Dt

1
α , and all z ∈ B(y, |y−x|2 ),

(6.4) e−tΛ
∗
(x, z) ≤ Cδe

−tA(x, z), e−tΛ
∗
(z, y) ≤ Cδe

−tA(z, y), Cδ := 1 + δ.

We will need the following inequality (this is [JW, Lem. 3.3]):

(6.5) 2⟨1
B(y,

|x−y|
2 )

(·)e− t
2A(x, ·)e− t

2A(·, y)⟩ ≤ e−tA(x, y).

Indeed, by symmetry, the LHS of (6.5) coincides with

⟨1
B(y,

|x−y|
2 )

(·)e− t
2A(x, ·)e− t

2A(·, y)⟩+ ⟨1
B(x,

|x−y|
2 )

(·)e− t
2A(x, ·)e− t

2A(·, y)⟩

≤ ⟨e− t
2A(x, ·)e− t

2A(·, y)⟩ = e−tA(x, y),

i.e. (6.5) follows.

Proposition 6.1. (i) There exists a constant c5 such that

e−tΛ
∗
(x, y) ≤ ⟨1

B(y,
|x−y|

2 )
(·)e− t

2Λ
∗
(x, ·)e− t

2Λ
∗
(·, y)⟩+ c5e

−tA(x, y)ψt(x).

(ii) If |x| < t
1
α , |y| > Dt

1
α with D > 1 sufficiently large, then

e−tΛ
∗
(x, y) ≤

(C2
δ

2
+ c5ψt(x)

)
e−tA(x, y).

Proof. We have

e−tΛ
∗
(x, y) = ⟨1

B(y,
|x−y|

2 )
(·)e− t

2Λ
∗
(x, ·)e− t

2Λ
∗
(·, y)⟩

+ ⟨1
Bc(y,

|x−y|
2 )

e−
t
2Λ

∗
(x, ·)e− t

2Λ
∗
(·, y)⟩

=: J1 + J2.
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(i) For z ∈ Bc(y, |x−y|2 ),

e−
t
2Λ

∗
(z, y) ≤ C1e

− t
2A(z, y) ≤ ke−tA(x, y).

Thus,

J2 ≤ ke−tA(x, y)⟨1
Bc(y,

|x−y|
2 )

(·)e− t
2Λ

∗
(x, ·)⟩

(we are applying Corollary 4.10)

≤ kC2e
−tA(x, y)ψ t

2
(x) ≤ c5e

−tA(x, y)ψt(x),

and so (i) follows.

(ii) Using (i), it remains to estimate J1. Applying (6.4), we have

J1 ≤ C2
δ

〈
1
B(y,

|x−y|
2 )

(·)e− t
2A(x, ·)e− t

2A(·, y)
〉

Finally, we use (6.5).

Let us complete the proof of Theorem 3.3.

By Proposition 6.1(ii),

e−tΛ
∗
(x, y) ≤

(C2
δ

2
+ c5ψt(x)

)
e−tA(x, y).

Set ν := Cδ
2 2

β
α . Fix δ ∈ ]0, (

√
2− 1) ∧ (21−

α
β − 1)[. Then

C2
δ

2 < 1 and ν < 1. Now,

suppose that, for n = 2, 3, . . . ,

(6.6) e−tΛ
∗
(x, y) ≤

(Cn+1
δ

2n
+ c5(1 + ν + · · ·+ νn−1)ψt(x)

)
e−tA(x, y).

Then, using Proposition 6.1(i), we have

e−tΛ
∗
(x, y) ≤ ⟨1

B(y,
|x−y|

2 )
(·)e− t

2Λ
∗
(x, ·)Cδe−

t
2A(·, y)⟩+ c5e

−tA(x, y)ψt(x)

≤
〈
1
B(y,

|x−y|
2 )

(·)Cδ
(Cn+1

δ

2n
+ c5(1 + ν + · · ·+ νn−1)ψ t

2
(x)

)
× e−

t
2A(x, ·)e− t

2A(·, y)
〉
+ c5e

−tA(x, y)ψt(x)

(we are applying (6.5) and inequality ψ t
2
(x) ≤ 2

β
αψt(x))

≤
(Cn+2

δ

2n+1
+ c5(ν + ν2 + · · ·+ νn)ψt(x)

)
e−tA(x, y)+ c5e

−tA(x, y)ψt(x)

=
(Cn+2

δ

2n+1
+ c5(1 + ν + ν2 + · · ·+ νn)ψt(x)

)
e−tA(x, y).

Thus by induction, (6.6) holds for n+ 1. Sending n→ ∞ there, we obtain

e−tΛ
∗
(x, y) ≤ c5(1− ν)−1e−tA(x, y)ψt(x),

as needed. The proof of (6.3) is completed. The proof of Theorem 3.3 is completed.
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Remark 6.2. Let us prove that ψ t
2
(x) ≤ 2

β
αψt(x). This is equivalent to 2

β
α η(t) ≥

η(2
1
α t) (η was defined in Section 3). For 0 < t ≤ 2−

1
α , the latter is an equality and

is obvious. For t ≥ 1 and all 0 < β < α, the required inequality is almost evident:

clearly, for r = 1− ε,

2
β
α > (1 + r)

β
α > 1 +

β

α
r;

β

α
(1− ε) ≥ β

2

if α ≤ 2(1− ε).

Thus, it remains to consider the case 2−
1
α < t < 1 and 0 < β < α. We have

to prove, for τ = 2
1
α t, that

τβ ≥ β
(
2− τ

2

)
τ + 1− 3

2
β (1 < τ < 2

1
α ).

If τ = 1, this inequality is satisfied. Now, set f(τ) = τβ + β( τ2 − 2)τ + 3
2β − 1.

Then f ′(τ) = β(τβ−1 + τ − 2) > 0 due to β > 0, τ > 1, and τβ−1 + τ ≥ 2τ
β
2 > 2.

Thus f(τ) > 0 whenever 1 < τ < 2
1
α .

§7. Proof of Theorem 3.4: The weighted lower bound

Recall that

(7.1) k−1
0 t(|x− y|−d−α ∧ t−

d+α
α ) ≤ e−tA(x, y) ≤ k0t(|x− y|−d−α ∧ t−

d+α
α )

for all x, y ∈ Rd, x ̸= y, t > 0, for a constant k0 = k0(d, α) > 1.

(1). First, we prove the “standard” lower bound away from the origin. The esti-

mates below are after a modification of e−tΛ(x, y), e−tΛ
∗
(x, y) on a measure zero

set, if necessary.

Lemma 7.1. There exists a generic constant 0 < γ < 1
2 such that, for all r ≥ γ−2

and t > 0,

e−tΛ
∗
(x, y) ≥ 1

2
e−tA(x, y)

whenever |x| ≥ rt
1
α , |y| ≥ rt

1
α .

Proof. In view of Proposition 8.5 it suffices to prove the inequality e−t(Λ
ε)∗(x, y) ≥

1
2e

−tA(x, y).

By the Duhamel formula,

e−t(Λ
ε)∗(x, y) ≥ e−tA(x, y)− |Mt(x, y)|,

where

Mt(x, y) :=

∫ t

0

(e−(t−τ)A∇ · bεe−τ(Λ
ε)∗)(x, y) dτ.
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Using Lemma 5.2(i), we have

|Mt(x, y)| ≤ k1κ

∫ t

0

⟨Et−τ (x, ·)| · |−α+1e−τ(Λ
ε)∗(·, y)⟩ dτ

(we are using Theorem 3.2(i) – the standard upper bound)

≤ k1κC1

∫ t

0

⟨Et−τ (x, ·)| · |−α+1e−τA(·, y)⟩ dτ.

Set

J(1
B(0,γrt

1
α )
| · |1−α) :=

∫ t

0

⟨1
B(0,γrt

1
α )
(·)Et−τ (x, ·)| · |−α+1e−τA(·, y)⟩ dτ,

J(1
Bc(0,γrt

1
α )
| · |1−α) :=

∫ t

0

⟨1
Bc(0,γrt

1
α )
(·)Et−τ (x, ·)| · |−α+1e−τA(·, y)⟩ dτ,

where 0 < γ < 2−1.

Note that if |x| ≥ rt
1
α , then for every z ∈ B(0, γrt

1
α ),

Et−τ (x, z) ≤ C5e
−(t−τ)A(x, z)|x− z|−1 ≤ C52r

−1t−
1
α e−(t−τ)A(x, z).

Thus, using the inequality

(7.2) e−tA(x, z)e−sA(z, y) ≤ Ke−(t+s)A(x, y)(e−tA(x, z) + e−sA(z, y)),

which holds for a constantK = K(d, α), all x, z, y ∈ Rd, and t, s > 0 (see e.g. [BJ]),

we have

J(1
B(0,γrt

1
α )
| · |1−α)

≤ C52r
−1t−

1
αKe−tA(x, y)

∫ t

0

⟨1
B(0,γrt

1
α )
(·)| · |1−α(e−(t−τ)A(x, ·)

+ e−τA(·, y))⟩ dτ.

Next, for all 0 < τ < t, |x| ≥ rt
1
α , |y| ≥ rt

1
α ,

1
B(0,γrt

1
α )
(·)e−τA(·, y) ≤ C6t

− d
α r−d−α if (1− γ)r > 1,

1
B(0,γrt

1
α )
(·)e−(t−τ)A(x, ·) ≤ C7t

− d
α r−d−α if (1− γ)r > 1,

and so

J(1
B(0,γrt

1
α )
| · |1−α) ≤ C8t

− d+1
α r−d−α−1e−tA(x, y)

∫ t

0

⟨1
B(0,γrt

1
α )
(·)| · |1−α⟩ dτ

≤ C9r
−2αγd−α+1e−tA(x, y)

≤ C92
2αγd−α+1e−tA(x, y) if r > (1− γ)−1.



Fractional Kolmogorov Operator 367

Therefore,

(∗) J(1
B(0,γrt

1
α )
| · |1−α) ≤ C10γ

d−α+1e−tA(x, y) if r > (1− γ)−1, 0 < γ < 2−1.

In turn,

J(1
Bc(0,γrt

1
α )
| · |1−α) ≤ c1C

2
C0(γrt

1
α )1−αt1−

1
α e−tA(x, y)

= C11(γr)
1−αe−tA(x, y)

as follows immediately from Lemma 5.2(ii):∫ t

0

⟨e−(t−τ)A(x, ·)Eτ (·, y)⟩ dτ ≤ C0t
1− 1

α e−tA(x, y).

Thus, if r ≥ γ−2, then

(∗∗) J(1
Bc(0,γrt

1
α )
| · |1−α) ≤ C11γ

α−1e−tA(x, y).

Finally, selecting γ > 0 sufficiently small, k1κC(C10 ∨ C11)γ
α−1 ≤ 1

4 , and using

(∗), (∗∗), we have

|Mt(x, y)| ≤
1

2
e−tA(x, y),

which ends the proof.

Corollary 7.2. For every r > 0, there is a constant c(r) > 0 such that

e−tΛ
∗
(x, y) ≥ c(r)e−tA(x, y)

whenever |x| ≥ rt
1
α , |y| ≥ rt

1
α , t > 0.

Proof. In Lemma 7.1, fix some r ≥ γ−2, so that

e−tΛ
∗
(x, y) ≥ 2−1e−tA(x, y), |x| ≥ rt

1
α , |y| ≥ rt

1
α ,(7.3)

e−t
1
2Λ

∗
(x, y) ≥ 2−1e−

t
2A(x, y), |x| ≥ r

( t
2

) 1
α

, |y| ≥ r
( t
2

) 1
α

.(7.4)

We now extend (7.3), by proving existence of a constant 0 < c1 < 2−1 such that

(7.3′) e−tΛ
∗
(x, y) ≥ c1e

−tA(x, y), |x| ≥ r
( t
2

) 1
α

, |y| ≥ r
( t
2

) 1
α

.
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Clearly, we need to consider only the case rt
1
α ≥ |x| ≥ r( t2 )

1
α , r ≥ |y| ≥ r( t2 )

1
α .

By the reproduction property,

e−tΛ
∗
(x, y) ≥ ⟨e− 1

2 tΛ
∗
(x, ·)1

Bc(0,r( t2 )
1
α )
(·)e− 1

2 tΛ
∗
(·, y)⟩

(we are applying (7.4))

≥ 2−2⟨e− 1
2 tA(x, ·)1

Bc(0,r( t2 )
1
α )
(·)e− 1

2 tA(·, y)⟩

> 2−2⟨e− 1
2 tA(x, ·)1

B(0,(r+1)( t2 )
1
α )−B(0,r( t2 )

1
α )
(·)e− 1

2 tA(·, y)⟩

(we are using the lower bound in (7.1))

≥ 2−2c̃t−
d
α (c̃ = c̃(r) > 0)

(we are using the upper bound in (7.1))

≥ c1e
−tA(x, y) for appropriate 0 < c1 = c1(r) < 2−1,

i.e. we have proved (7.3′).

The same argument yields

(7.4′) e−
1
2 tΛ

∗
(x, y) ≥ c1e

− 1
2 tA(x, y), |x| ≥ r

( t

22

) 1
α

, |y| ≥ r
( t

22

) 1
α

.

Thus, we can repeat the above procedure m− 1 times obtaining

e−tΛ
∗
(x, y) ≥ cme

−tA(x, y), |x| ≥ r
( t

2m

) 1
α

, |y| ≥ r
( t

2m

) 1
α

for appropriate cm > 0, from which the assertion of Corollary 7.2 follows.

(2). Next, in Proposition 7.4 we will prove an “integral lower bound”. We need

the following lemma:

Lemma 7.3. For every 0 ≤ h ∈ L1, t > 0,

t−1

∫ t

0

∥ψτh∥1 dτ ≤ Ĉ∥ψth∥1

for a constant Ĉ = Ĉ(α, β).

Proof. Define ψ0,t(y) = η0(t
− 1
α |y|), where

η0(u) =

{
uβ , 0 < u < 1,

1, u ≥ 1.

Since c−1ψt ≤ ψ0,t ≤ cψt, c > 1, it suffices to prove Lemma 7.3 for weight ψ0,t.

For brevity, write ψt := ψ0,t. We have

∥ψτh∥1 = ⟨1
B(0,τ

1
α )
(τ−

1
α | · |)βh⟩+ ⟨1

Bc(0,τ
1
α )
h⟩,
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and so∫ t

0

∥ψτh∥1 dτ =

〈(∫ t

0

1
B(0,τ

1
α )
τ−

β
α dτ

)
| · |βh

〉
+

〈(∫ t

0

1
Bc(0,τ

1
α )
dτ

)
h

〉
.

If |x| ≤ t
1
α , then∫ t

0

1
B(0,τ

1
α )
(x)τ−

β
α dτ =

∫ t

|x|α
τ−

β
α dτ =

1

1− β
α

(t−
β
α+1 − |x|−β+α)

and ∫ t

0

1
Bc(0,τ

1
α )
(x) dτ =

∫ |x|α

0

dτ = |x|α.

If |x| > t
1
α , then∫ t

0

1
B(0,τ

1
α )
(x)τ−

β
α dτ = 0,

∫ t

0

1
Bc(0,τ

1
α )
(x) dτ = t.

Thus,∫ t

0

∥ψτh∥1 dτ =
〈
1
B(0,t

1
α )

α

α− β
(t−

β
α+1 − | · |−β+α)| · |βh

〉
+ ⟨1

B(0,t
1
α )
| · |αh⟩+ t⟨1

Bc(0,t
1
α )
h⟩

= t
α

α− β
⟨1
B(0,t

1
α )
ψth⟩ −

β

α− β
⟨1
B(0,t

1
α )
| · |αh⟩+ t⟨1

Bc(0,t
1
α )
ψth⟩

≤ t
2α− β

α− β
⟨ψth⟩.

Proposition 7.4. Define gt = ψth, 0 ≤ h ∈ S – the L. Schwartz space of test

functions. Then there exists a generic constant ν > 0 such that, for all t > 0,

⟨ψte−tΛψ−1
t gt⟩ ≥ ν⟨gt⟩.

Proof. Recall that both e−tΛ
ε

and e−t(Λ
ε)∗ are holomorphic in L1 and Cu due to

Hille’s perturbation theorem. We have ψ = ψ(1) + ψ(u), where

ψ(1) ∈ D((−∆)
α
2
1 )

(
= D((Λε)∗1) = D(Λε1)

)
,

ψ(u) ∈ D((−∆)
α
2

Cu
)

(
= D((Λε)∗Cu) = D(ΛεCu)

)
(see the proof of Proposition 4.3 for details), so (Λε)∗ψ = (Λε)∗L1ψ(1)+(Λε)∗Cuψ(u)

belongs to L1 + Cu.
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Now, set gs,n = ϕs,nh, ϕs,n(x) = (e−
(Λε)∗
n ψs)(x). We have, for s > t > 0,

⟨gs,n⟩ − ⟨ϕs,ne−tΛ
ε

h⟩ =
∫ t

0

⟨ψs,Λεe−τΛ
ε

e−
Λε

n h⟩ dτ

= lim
r↓0

r−1

∫ t

0

⟨ψs, (1− e−rΛ
ε

)e−τΛ
ε

e−
Λε

n h⟩ dτ

= lim
r↓0

r−1

∫ t

0

⟨(1− e−r(Λ
ε)∗)ψs, e

−τΛεe−
Λε

n h⟩ dτ

=

∫ t

0

⟨(Λε)∗ψs, e−τΛ
ε

e−
Λε

n h⟩ dτ.

Arguing as in the proof of Proposition 4.3, we represent

(Λε)∗ψs = 1
B(0,s

1
α )
Wεψs + vε,

where

Wε(x) = κ(|x|−αε − |x|−α)β + κ
[
d|x|−αε − α|x|−α−2

ε |x|2 − (d− α)|x|−α
]

and 0 ≤ vε ∈ L∞, ∥vε∥∞ ≤ c′

s , c
′ ̸= c′(ε) (see Remark 7.5 below for a detailed

calculation).

Then

⟨gs,n⟩ − ⟨ϕs,ne−tΛ
ε

h⟩

≤
∫ t

0

⟨1
B(0,s

1
α )
Wεψs, e

−(τ+ 1
n )Λεh⟩ dτ +

∫ t

0

⟨vε, e−τΛ
ε

e−
Λε

n h⟩ dτ

or, sending n→ ∞,

⟨gs⟩ − ⟨ψse−tΛ
ε

h⟩ ≤
∫ t

0

⟨1
B(0,s

1
α )
Wεψs, e

−τΛεh⟩ dτ +
∫ t

0

⟨vε, e−τΛ
ε

h⟩ dτ

≤
∫ t

0

⟨1
B(0,s

1
α )
Wεψs, e

−τΛεh⟩ dτ + c′s−1

∫ t

0

∥e−τΛ
ε

h∥1 dτ.

Next, we pass to the limit ε ↓ 0:

(⋆) ⟨gs⟩ − ⟨ψse−tΛh⟩ ≤ c′s−1

∫ t

0

∥e−τΛh∥1 dτ.

We estimate the RHS of (⋆) using the upper bound (Theorem 3.3):

c′s−1

∫ t

0

∥e−τΛh∥1 dτ ≤ c′s−1C

∫ t

0

∥e−τAψτh∥1 dτ ≤ c′s−1C

∫ t

0

∥ψτh∥1 dτ

(we are applying Lemma 7.3)

≤ c′CĈ
t

s
∥ψth∥1.
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Therefore, using ψs ≥ ( ts )
β
αψt, we obtain

c′s−1

∫ t

0

∥e−τΛh∥1 dτ ≤ c′CĈ
t

s

( t
s

)− β
α ∥gs∥1.

Thus, by (⋆), (1− c′CĈ( ts )
α−β
α )⟨gs⟩ ≤ ⟨ψse−tΛh⟩. Since β < α, we can select s > t

such that c′CĈ( ts )
α−β
α = 1

2 , which yields the bound

⟨ψse−tΛψ−1
s gs⟩ ≥

1

2
⟨gs⟩.

Finally, using ψt ≥ ψs ≥ ( ts )
β
αψt and setting 2ν := ( ts )

β
α = (2c′CĈ)−

β
α−β , we

have

⟨ψte−tΛψ−1
t gt⟩= ⟨ψte−tΛψ−1

s gs⟩ ≥ ⟨ψse−tΛψ−1
s gs⟩ ≥

1

2
⟨gs⟩ ≥

1

2

( t
s

) β
α ⟨gt⟩= ν⟨gt⟩.

Remark 7.5. In the proof of Proposition 7.4, we calculate (Λε)∗ψs arguing as in

the proof of Proposition 4.3:

(Λε)∗ψ = (−∆)
α
2 ψ + div(bεψ), ψ = ψs,

where

(−∆)
α
2 ψ = −s−

β
α β(d+ β − 2)

γ(d+ β − 2)

γ(d+ β − α)
|x|β−α + h0

for h0 := −I2−α∆(ψ − ψ̃) ∈ L∞, ∥h0∥∞ ≤ c0s
−1. In turn,

div(bεψ) = div(bψ̃) +Wε + h1 + h2 + h3,

where ∥hi∥∞ ≤ cis
−1, i = 1, 2, 3. Since, by the choice of β,

−β(d+ β − 2)
γ(d+ β − 2)

γ(d+ β − α)
|x|−αψ̃ + div(bψ̃) = 0,

we have

(Λε)∗ψ = 1
B(0,s

1
α )
Wε + vε, vε := 1

Bc(0,s
1
α )
Wε + h0 + h1 + h2 + h3,

where, it is easily seen, ∥vε∥∞ ≤ c′s−1, as claimed.

Proposition 7.6. For every R0 > 0 there exist constants 0 < r < R0 < R such

that for all t > 0,

ν

2
ψt(x) ≤ e−tΛ

∗
ψt1Rt,rt(x) for all x ∈ B(0, R0,t), x ̸= 0,

where rt := rt
1
α , R0,t := R0t

1
α , Rt := Rt

1
α , 1Rt,rt := 1B(0,Rt) − 1B(0,rt).
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Proof. It suffices to prove that, for all g := ψth, 0 ≤ h ∈ S with sprth ⊂ B(0, R0,t),

ν

2
⟨g⟩ ≤ ⟨1Rt,rtψte−tΛψ−1

t g⟩.

By the upper bound (Theorem 3.3),

⟨1B(0,rt)ψte
−tΛψ−1

t g⟩ ≤ C⟨1B(0,rt)ψt, e
−tAg⟩

≤ CC1t
− d
α ∥1B(0,rt)ψt∥1∥g∥1

= CC1∥1B(0,r)ψ1∥1∥g∥1, ∥1B(0,r)ψ1∥1 → 0 as r ↓ 0.

⟨1Bc(0,Rt)ψte
−tΛψ−1

t g⟩ ≤ C⟨1Bc(0,Rt)ψt, e
−tAg⟩

≤ C⟨e−tA1Bc(0,Rt), g1B(0,R0,t)⟩
≤ 2C sup

x∈B(0,R0,t)

e−tA1Bc(0,Rt)(x)∥g∥1

≤ C(R0, R)∥g∥1, C(R0, R) → 0 as R−R0 ↑ ∞,

where at the last step we have used, for x ∈ B(0, R0,t), y ∈ Bc(0, Rt) and x̃ =

R−1
0 t−

1
αx ∈ B(0, 1), ỹ = R−1t−

1
α y ∈ Bc(0, 1),

e−tA(x, y) ≤ k0t|x− y|−d−α

≤ k0t|R0t
1
α x̃−Rt

1
α ỹ|−d−α

< 2k0t
− d
α (R−R0)

−d−α|ỹ|−d−α.

It remains to apply Proposition 7.4 to obtain ν
2 ⟨g⟩ ≤ ⟨1Rt,rtψte−tΛψ−1

t g⟩.

Proposition 7.7. We have ⟨h⟩ = ⟨e−tΛ∗
h⟩ for every h ∈ L1, t > 0.

Proof. Proposition 7.7 follows from ⟨h⟩ = ⟨e−t(Λε)∗h⟩ and Proposition 8.5.

Proposition 7.8. For every R0 > 0 there exist constants 0 < r < R0 < R such

that for all t > 0,

1

2
≤ e−tΛ1Rt,rt(x) for all x ∈ B(0, R0,t),

where rt := rt
1
α , R0,t := R0t

1
α , Rt := Rt

1
α , 1Rt,rt := 1B(0,Rt) − 1B(0,rt).

Proof. We essentially repeat the proof of Proposition 7.6. It suffices to prove that,

for all 0 ≤ h ∈ S with sprth ⊂ B(0, R0,t),

1

2
⟨h⟩ ≤ ⟨1Rt,rte−tΛ

∗
h⟩.
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By the upper bound (Theorem 3.3),

⟨1B(0,rt)e
−tΛ∗

h⟩ ≤ C⟨1B(0,rt)ψt, e
−tAh⟩

≤ CC1t
− d
α ∥1B(0,rt)ψt∥1∥h∥1

= o(r)∥h∥1, o(r) → 0 as r ↓ 0;

⟨1Bc(0,Rt)e
−tΛ∗

h⟩ ≤ C⟨1Bc(0,Rt)ψt, e
−tAh⟩

≤ C⟨e−tA1Bc(0,Rt), h1B(0,R0,t)⟩
≤ C sup

x∈B(0,R0,t)

e−tA1Bc(0,Rt)(x)∥h∥1

= C(R0, R)∥h∥1, C(R0, R) → 0 as R−R0 ↑ ∞.

The last two estimates and Proposition 7.7 yield 1
2 ⟨h⟩ ≤ ⟨1Rt,rte−tΛ

∗
h⟩.

(3). We are in position to complete the proof of the lower bound using the so-

called 3q argument.

Set qt(x, y) := ψ−1
t (x)e−tΛ

∗
(x, y), x ̸= 0.

(a) Let x, y ∈ Bc(0, t
1
α ), x ̸= y. Then, using that ψ−1

3t ≥ 1
1+β/2 , we have by

Corollary 7.2,

q3t(x, y) ≥
1

1 + β/2
e−3tΛ∗

(x, y) ≥ ce−3tA(x, y).

Let rt = rt
1
α , Rt = Rt

1
α be as in Propositions 7.6 and 7.8, where we fix

R0 = 1 (hence r < 1).

(b) Let x ∈ B(0, t
1
α ), |y| ≥ rt

1
α , x ̸= y. By the reproduction property,

q2t(x, y) ≥ ψ−1
2t (x)⟨e−tΛ

∗
(x, ·)ψ−1

t (·)ψt(·)e−tΛ
∗
(·, y)1Rt,rt(·)⟩

≥ ψ−1
2t (x)ψ

−1
t (Rt)⟨e−tΛ

∗
(x, ·)ψt(·)e−tΛ

∗
(·, y)1Rt,rt(·)⟩

≥ ψ−1
2t (x)ψ

−1
t (Rt)(e

−tΛ∗
ψt1Rt,rt)(x) inf

rt≤|z|≤Rt
e−tΛ

∗
(z, y)

(we are applying Corollary 7.2, Proposition 7.6,

and using ψ−1
t (Rt) =

1
1+β/2 )

≥ ν

2

1

1 + β/2
ψ−1
2t (x)ψt(x)c(r) inf

rt≤|z|≤Rt
e−tA(z, y)

(we are using ψt ≥ ψ2t)

≥ C1e
−2tA(x, y).

(b′) Let x ∈ B(0, t
1
α ), |y| ≥ t

1
α , x ̸= y. Arguing as in (b), we obtain

q3t(x, y) ≥ C2e
−3tA(x, y).
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(c) Let |x| ≥ rt
1
α , y ∈ B(0, t

1
α ), x ̸= y. We have

q2t(x, y) ≥ ψ−1
2t (x)⟨e−tΛ

∗
(x, ·)e−tΛ

∗
(·, y)1Rt,rt(·)⟩

= ψ−1
2t (x)⟨e−tΛ

∗
(x, ·)e−tΛ(y, ·)1Rt,rt(·)⟩

(we are using ψ−1
2t ≥ 1

1+β/2 and applying Corollary 7.2)

≥ c(r)
1

1 + β/2
⟨e−tA(x, ·)e−tΛ(y, ·)1Rt,rt(·)⟩

(we are applying (7.1))

≥ C3(r)t(Rt
1
α + |x|)−d−α⟨e−tΛ(y, ·)1Rt,rt(·)⟩

(we are applying Proposition 7.8)

≥ C3(r)2
−1t(Rt

1
α + |x|)−d−α ≥ C4(r)e

−2tA(x, y).

(c′) Let |x| ≥ t
1
α , y ∈ B(0, t

1
α ), x ̸= y. Arguing as in (c), we obtain

q3t(x, y) ≥ C5(r)e
−3tA(x, y).

(d) Let x, y ∈ B(0, t
1
α ), x ̸= y. By the reproduction property,

q3t(x, y) ≥ ψ−1
3t (x)⟨e−tΛ

∗
(x, ·)e−2tΛ∗

(·, y)1Rt,rt(·)⟩
(we are using (c))

≥ C4(r)ψ
−1
3t (x)⟨e−tΛ

∗
(x, ·)ψ2t(·)e−2tA(·, y)1Rt,rt(·)⟩

(we are using ψ2t ≥ 2
β
αψt and e

−2tA(z, y) ≥ c(r,R)t−
d
α > 0

for rt ≤ |z| ≤ Rt, |y| ≤ t
1
α )

≥ c(r,R)C42
β
αψ−1

3t (x)t
− d
α ⟨e−tΛ

∗
(x, ·)1Rt,rt(·)ψt(·)⟩

(we are applying Proposition 7.6 and using ψt ≥ ψ3t)

≥ c(r,R)C42
β
α
ν

2
t−

d
α

(we are applying (7.1))

≥ C5(r,R)e
−3tA(x, y).

By (a), (b′), (c′), (d), q3t(x, y) ≥ Ce−3tA(x, y) for all x, y ∈ Rd, x ̸= y, x ̸= 0,

and so

e−3tΛ∗
(x, y) ≥ Ce−3tA(x, y)ψ3t(x), t > 0.

The lower bound is proved.
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§8. Construction of the semigroup e−tΛr , Λr = (−∆)
α
2 − b · ∇ in Lr,

1 ≤ r < ∞

Set bε(x) := κ|x|−αε x, κ > 0, |x|ε :=
√

|x|2 + ε, ε > 0,

Λεr := (−∆)
α
2 − bε · ∇, D(Λεr) = Wα,r := (1 + (−∆)

α
2 )−1Lr.

To prove that −Λε ≡ −Λεr is the generator of a holomorphic semigroup in Lr,

1 ≤ r <∞, we appeal to the Hille perturbation theorem [Ka, Chap. IX, Sect. 2.2].

To verify its assumptions, we use a well-known estimate (A ≡ (−∆)
α
2 )

|∇(ζ +A)−1(x, y)| ≤ C(Re ζ +A)−
α−1
α (x, y), Re ζ > 0, C = C(d, α)

(for the proof see e.g. [KM, App. A]). Then for Y = Lr,

∥bε · ∇(ζ +A)−1∥Y→Y ≤ C∥bε∥∞∥(Re ζ +A)−
α−1
α ∥Y→Y ≤ C∥bε∥∞(Re ζ)−

α−1
α ,

and so ∥bε ·∇(ζ+A)−1∥Y→Y , Re ζ ≥ cε, can be made arbitrarily small by selecting

cε sufficiently large. It follows that the Neumann series for

(ζ + Λε)−1 = (ζ +A)−1(1 + T )−1, T := −bε · ∇(ζ +A)−1

converges in Lp and Cu and satisfies ∥(ζ + Λε)−1∥Y→Y ≤ Cε|ζ|−1, Re ζ ≥ cε,

i.e. −Λε is the generator of a holomorphic semigroup.

The same argument (with Y = Cu) shows that Λε := (−∆)
α
2 − bε · ∇, with

D(Λε) := D((−∆)
α
2

Cu
), generates a holomorphic semigroup in Cu.

To prove that these semigroups are positivity preserving, it suffices to consider

Y = L2. It is not difficult to verify that e−tΛ
ε

are contractions in L2 (see Propo-

sition 8.1 below). Thus, the required result will follow from the Phillips criterion:

e−tΛ
ε

ReL2 ⊂ ReL2 (clear) and

⟨Λεu, u+⟩ ≥ 0, u ∈ D(Λε) = Wα,2,

where u+ := u ∨ 0. Indeed, since e−tA is positivity preserving, ⟨Au, u+⟩ ≥ 0. On

the other hand, taking into account that α > 1 and integrating by parts, we find

⟨−bε · ∇u, u+⟩ = ⟨−bε · ∇u+, u+⟩ =
1

2
⟨div bε, u2+⟩ ≥ 0

(recall div bε = κ(d|x|−αε − α|x|−α−2
ε |x|2) ≥ 0), so ⟨Λεu, u+⟩ ≥ 0, as needed.

Proposition 8.1. For every r ∈ [1,∞[ and ε > 0, e−tΛ
ε
r is a contraction C0

semigroup in Lr. There exists a constant cN ̸= cN (ε) such that

∥e−tΛ
ε
r∥r→q ≤ cN t

− d
α ( 1

r−
1
q ), t > 0,

for all 1 ≤ r < q ≤ ∞.
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In particular, there is a constant cS > 0, cS ̸= cS(ε) such that (Λε ≡ Λε2)

Re⟨Λεu, u⟩ ≥ cS∥u∥22j , u ∈ D(Λε), j =
d

d− α
.

Proof. First, let 1 < r < ∞. Set u ≡ u(t) := e−tΛ
ε
rf , f ∈ L1 ∩ L∞, and write

A := (−∆)
α
2 . Multiplying the equation ∂tu+Λεru = 0 by ū|u|r−2 and integrating in

the spatial variables, we obtain (taking into account that D(Λεr) = D(Ar) ⊂W 1,r)

1

r
∂t∥u∥rr +Re⟨Au, u|u|r−2⟩ − Re⟨bε · ∇u, u|u|r−2⟩ = 0.

Note that, since −A is a Markov generator,

Re⟨Au, u|u|r−2⟩ ≥ 4

rr′
∥A 1

2 |u| r2 ∥22

(indeed, by [LS, Thm. 2.1] or by Theorem A.1, Re⟨Au, u|u|r−2⟩ ≥ 4
rr′ ∥A

1
2u

r
2 ∥22,

u
r
2 := u|u| r2−1, and by the Beurling–Deny theory ∥A 1

2u
r
2 ∥22 ≥ ∥A 1

2 |u| r2 ∥22). Inte-
gration by parts yields

−Re⟨bε · ∇u, u|u|r−2⟩ = κ

r
⟨(d|x|−αε −α|x|−α−2

ε |x|2)|u|r⟩ ≥ κ
d− α

r
⟨|x|−αε |u|r⟩ ≥ 0.

Thus,

(8.1) − ∂t∥u∥rr ≥
4

r′
∥A 1

2 |u| r2 ∥22.

From (8.1) we obtain ∥u(t)∥r ≤ ∥f∥r, t ≥ 0 and since L1 ∩ L∞ is dense in Lr,

∥e−tΛεr∥r→r ≤ 1 as needed.

Since e−tΛ
ε
1 ↾ L1 ∩ Lr = e−tΛ

ε
r ↾ L1 ∩ Lr, the latter clearly yields

∥e−tΛ
ε
1f∥r ≤ ∥f∥r, f ∈ L1 ∩ L∞.

Sending r ↑ ∞, we have ∥e−tΛεrf∥∞ ≤ ∥f∥∞, and sending r ↓ 1, we have

∥e−tΛε1∥1→1 ≤ 1.

Let us prove the ultracontractivity of e−tΛ
ε
r . By (8.1),

−∂t∥u∥2r2r ≥
4

(2r)′
∥A 1

2 |u|r∥22, 1 ≤ r <∞.

Using the Nash inequality ∥A 1
2h∥22 ≥ CN∥h∥2+

2α
d

2 ∥h∥−
2α
d

1 and ∥u(t)∥r ≤ ∥f∥r, we
have, setting v := ∥u∥2r2r,

∂t(v
−α
d ) ≥ c1∥f∥

− 2rα
d

r ,

where c1 = CN
α
d

4
(2r)′ . Integrating this inequality yields

(∗) ∥e−tΛ
ε
r∥r→2r ≤ c

− d
2αr

1 t−
d
α ( 1

r−
1
2r ), t > 0,
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and so, by the semigroup property,

∥e−tΛ
ε
r∥1→2m ≤ cN t

− d
α (1− 1

2m ), t > 0, m ≥ 1,

where the constant cN ̸= cN (m). Thus, sending m to infinity we arrive at

∥e−tΛ
ε
r∥1→∞ ≤ cN t

− d
α , t > 0.

The latter and the contractivity of e−tΛ
ε
r in all Lq, 1 ≤ q ≤ ∞ yield via interpola-

tion the desired bound ∥e−tΛ
ε
p∥p→q ≤ cN t

− d
α ( 1

p−
1
q ), t > 0, for all 1 ≤ p < q ≤ ∞.

Finally, since D(Λε) = D(A), we have, for u ∈ D(A), Re⟨Λεu, u⟩ ≥ ∥A 1
2u∥22 ≥

cS∥u∥22j (the last inequality is proved e.g. in [Zi, Sect. 2.8]).

§8.1. Case d ≥ 4

We will first provide an elementary argument that allows us to treat all d =

4, 5, . . . , except the particularly important case d = 3.

Proposition 8.2. For every r ∈ [1,∞[ the limit

s-Lr- lim
ε↓0

e−tΛ
ε
r (loc. uniformly in t ≥ 0)

exists and determines a contraction C0 semigroup on Lr, say e−tΛr .

For all 1 ≤ r < q ≤ ∞,

∥e−tΛr∥r→q ≤ cN t
− d
α ( 1

r−
1
q ), t > 0,

with cN from Proposition 8.1.

Proof. First, let r = 2. Set uε(t) := e−tΛ
ε

f , f ∈ C∞
c .

Claim 8.3. ∥∇uε(t)∥2 ≤ ∥∇f∥2, t ≥ 0.

Proof. Denote u ≡ uε, w := ∇u, wi := ∇iu. Due to f ∈ C∞
c and ∇n

i b
i
ε ∈ C∞∩L∞,

i = 1, . . . , d, n ≥ 1 we can and will differentiate the equation ∂tu+Λεu = 0 in xi,

obtaining

∂twi + (−∆)
α
2 wi − bε · ∇wi − (∇ibε) · w = 0.

Multiplying the latter by wi, integrating by parts and summing up in i = 1, . . . , d

we have

1

2
∂t∥w∥22 +

d∑
i=1

∥(−∆)
α
4 wi∥22 − Re

d∑
i=1

⟨bε · ∇wi, wi⟩ − Re

d∑
i=1

⟨(∇ibε) · w,wi⟩ = 0,

−Re⟨bε · ∇wi, wi⟩ =
κ

2
⟨(d|x|−αε − α|x|−α−2

ε |x|2)wi, wi⟩,

−⟨(∇ibε) · w,wi⟩ = −κ⟨|x|−αε wi, wi⟩+ κα⟨|x|−α−2
ε xiwi(x · w)⟩.



378 D. Kinzebulatov and Yu. A. Semënov

Thus,

1

2
∂t∥w∥22 +

d∑
i=1

∥(−∆)
α
4 wi∥22 + κ

d− α

2
⟨|x|−αε |w|2⟩+ καε

2
⟨|x|−α−2

ε |w|2⟩

− κ⟨|x|−αε |w|2⟩+ κα⟨|x|−α−2
ε |x · w|2⟩ = 0,

and so, since κ > 0,

1

2
∂t∥w∥22 + κ

d− α− 2

2
⟨|x|−αε |w|2⟩ ≤ 0.

Since d ≥ 4, α < 2, we have d − α − 2 > 0. Thus, integrating in t, we obtain

∥w(t)∥22 ≤ ∥∇f∥22, t ≥ 0, as needed.

Next, set un := uεn , bn := bεn , where εn ↓ 0, and put

g(t) := un(t)− um(t), t ≥ 0.

Claim 8.4. We have ∥g(t)∥2 → 0 uniformly in t ∈ [0, 1] as n,m→ ∞.

Proof. We subtract the equations for un and um and obtain

∂tg + (−∆)
α
2 g − bn · ∇g − (bn − bm) · ∇um = 0,

1

2
∂t∥g∥22 + ∥(−∆)

α
4 g∥22 − Re⟨bn · ∇g, g⟩ − Re⟨(bn − bm) · ∇um, g⟩ = 0.(8.2)

Concerning the last two terms, we have

−Re⟨bn · ∇g, g⟩ = κ

2
⟨(d|x|−αε − α|x|−α−2

ε |x|2)g, g⟩ ≥ κ
d− α

2
⟨|x|−αε , |g|2⟩,

|⟨(bn − bm) · ∇um, g⟩| ≤ |⟨1B(0,1)(bn − bm) · ∇um, g⟩|
+ |⟨1cB(0,1)(bn − bm) · ∇um, g⟩|

(we are using ∥g∥∞ ≤ 2∥f∥∞, ∥g∥2 ≤ 2∥f∥2)
≤ ∥1B(0,1)(bn − bm)∥2∥∇um∥22∥f∥∞
+ ∥1cB(0,1)(bn − bm)∥∞∥∇um∥22∥f∥2
(we are using Claim 8.3)

≤ ∥1B(0,1)(bn − bm)∥2∥∇f∥22∥f∥∞
+ ∥1cB(0,1)(bn − bm)∥∞∥∇f∥22∥f∥2

→ 0 as n,m→ ∞.

Thus, integrating (8.2) in t and using the last two observations, we end the proof

of Claim 8.4.
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By Claim 8.4, {e−tΛεn f}∞n=1, f ∈ C∞
c is a Cauchy sequence in L∞([0, 1], L2).

Set

(8.3) T t2f := s-L2- lim
n
e−tΛ

εn
f uniformly in 0 ≤ t ≤ 1.

(Clearly, the limit does not depend on the choice of {εn} ↓ 0.) Since e−tΛ
εn

are

contractions in L2, we have ∥T t2f∥2 ≤ ∥f∥2, t ∈ [0, 1]. Extending T t2 by continuity

to L2, we obtain that T t2 is strongly continuous. Furthermore,

T t2f = lim
n
e−tΛ

εn
f in L2 for all f ∈ L2, 0 ≤ t ≤ 1.

Finally, extending T t2 to all t ≥ 0 using the reproduction property, we obtain a

contraction C0 semigroup T t2 =: e−tΛ, t ≥ 0.

Now, let 1 ≤ r < ∞. Since e−tΛ
ε

is a contraction in Lr, we obtain, by

construction (8.3) of e−tΛf , f ∈ C∞
c , appealing e.g. to Fatou’s lemma, that

∥e−tΛf∥r ≤ ∥f∥r, t ≥ 0.

Thus, extending e−tΛ by continuity to Lr, we can define contraction semigroups

T tr := [e−tΛ]closLr→Lr , t ≥ 0. The strong continuity of T tr in Lr is a consequence of

strong continuity of e−tΛ, contractivity of T tr , and Fatou’s lemma. Write T tr =:

e−tΛr . Clearly,

e−tΛr = s-Lr- lim
n
e−tΛ

εn
r , t ≥ 0.

The latter and Proposition 8.1 complete the proof of Proposition 8.2.

§8.2. Case d = 3

The proof of the next proposition works in all dimensions d ≥ 3.

Proposition 8.5. For every r ∈ [1,∞[ the limit

s-Lr- lim
ε↓0

e−tΛ
ε
r (loc. uniformly in t ≥ 0)

exists and determines a contraction C0 semigroup on Lr, say, e−tΛr . For all 1 ≤
r ≤ q ≤ ∞,

∥e−tΛr∥r→q ≤ cN t
− d
α ( 1

r−
1
q ), t > 0,

with cN from Proposition 8.1.

Proof. Denote uε(t) := e−tΛ
ε
rf , f ∈ C∞

c . For brevity, write u ≡ uε and w := ∇u.
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Claim 8.6. For every r ∈ ]1,∞[,

1

r
∥w(t1)∥rr +

4

rr′

∫ t1

0

d∑
i=1

∥(−∆)
α
4 (wi|w|

r−2
2 )∥22 dt

+ κ
d− α− r

r

∫ t1

0

⟨|x|−αε |w|r⟩ dt

+ ακ

∫ t1

0

⟨|x|α−2
ε |x · w|2|w|r−2⟩ dt ≤ 1

r
∥∇f∥rr, t1 > 0.

In particular, for 1 < r < d− α,

∥w(t1)∥rr +
4

r′
cSd

−α
d

∫ t1

0

∥w∥rrj dt ≤ ∥∇f∥rr, t1 > 0, j :=
d

d− α
.

Proof. Set wi := ∇iu. We differentiate ∂tu+Λεru = 0 in xi, obtaining the identity

∂twi + (−∆)
α
2 wi − bε · ∇wi − (∇ibε) · w = 0,

which we multiply by wi|w|r−2, integrate in the spatial variables, and then sum

in 1 ≤ i ≤ d to obtain

1

r
∂t∥w∥rr +Re⟨(−∆)

α
2 w,w|w|r−2⟩

− Re

d∑
i=1

⟨bε · ∇wi, wi|w|r−2⟩ − Re

d∑
i=1

⟨(∇ibε) · w,wi|w|r−2⟩ = 0.

By Theorem A.1,

Re⟨(−∆)
α
2 w,w|w|r−2⟩ ≥ 4

rr′

d∑
i=1

∥(−∆)
α
4 (wi|w|

r−2
2 )∥22.

Next, integrating by parts, we obtain

−Re

d∑
i=1

⟨bε · ∇wi, wi|w|r−2⟩ = κ

r
⟨(d|x|−αε − α|x|−α−2

ε |x|2)|w|r⟩

≥ κ
d− α

r
⟨|x|−αε |w|r⟩,

and

Re

d∑
i=1

⟨(∇ibε) · w,wi|w|r−2⟩ = κ⟨|x|−αε |w|r⟩ − ακ⟨|x|−α−2
ε (x · w)2|w|r−2⟩.

The first required inequality follows.
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Now, let 1 < r < d− α. Note that

d∑
i=1

∥(−∆)
α
4 (wi|w|

r−2
2 )∥22 ≥ cS

d∑
i=1

∥wi|w|
r−2
2 ∥22j = cS

d∑
i=1

⟨|wi|2j |w|(r−2)j⟩
1
j

≥ cS

(
⟨|w|(r−2)j

d∑
i=1

|wi|2j⟩
) 1
j

(we use (
∑d
i=1 |w|2j)1/j ≥ (

∑d
i=1 |wi|2)d−1/j′

= |w|2d−1/j′)

≥ cSd
−1/j′⟨|w|rj⟩

1
j = cSd

−α
d ∥w∥rrj .

The second required inequality follows.

Set un := uεn , bn := bεn , where εn ↓ 0. Let g(t) := un(t)− um(t), t ≥ 0.

Claim 8.7. We have ∥g(t)∥2 → 0 uniformly in t ∈ [0, 1] as n,m→ ∞.

Proof. We subtract the equations for un and um:

∂tg + (−∆)
α
2 g − bn · ∇g − (bn − bm) · ∇um = 0.

Multiplying the latter by ḡ and integrating, we obtain

∥g(t1)∥22 +
∫ t1

0

∥(−∆)
α
4 g∥22 dt− Re

∫ t1

0

⟨bn · ∇g, g⟩ dt

− Re

∫ t1

0

⟨(bn − bm) · ∇um, g⟩ dt = 0

for every t1 > 0. Since

−Re⟨bn · ∇g, g⟩ = κ

2
⟨(d|x|−αε − α|x|−α−2

ε |x|2)g, g⟩

≥ κ
d− α

2
⟨|x|−αε , |g|2⟩,

we have

∥g(t1)∥22 +
∫ t1

0

∥(−∆)
α
4 g∥22 dt+ κ

d− α

2

∫ t1

0

⟨|x|−α, |g|2⟩ dt

≤
∫ t1

0

|⟨(bn − bm) · ∇um, g⟩| dt.(8.4)
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Let us estimate the RHS of (8.4). Fix 1 < r < d−α (as in the second assertion of

Claim 8.6). Then

|⟨(bn − bm) · ∇um, g⟩| ≤ |⟨1B(0,1)(bn − bm) · ∇um, g⟩|
+ |⟨1Bc(0,1)(bn − bm) · ∇um, g⟩|
(we apply estimates ∥g∥∞ ≤ 2∥f∥∞, ∥g∥(rj)′ ≤ 2∥f∥(rj)′)

≤ ∥1B(0,1)(bn − bm)∥(rj)′∥∇um∥rj2∥f∥∞
+ ∥1Bc(0,1)(bn − bm)∥∞∥∇um∥rj2∥f∥(rj)′ .

Clearly ∥1Bc(0,1)(bn−bm)∥∞ → 0 as n,m→ ∞. The same is true for ∥1B(0,1)(bn−
bm)∥(rj)′ since (rj)′ = rd

rd−d+α <
d

α−1 . Thus, in view of Claim 8.6,∫ t1

0

|⟨(bn − bm) · ∇um, g⟩| dt

≤ (∥1B(0,1)(bn − bm)∥(rj)′∥f∥∞

+ ∥1Bc(0,1)(bn − bm)∥∞∥f∥(rj)′)2
∫ t1

0

∥∇um∥rj dt→ 0

as n,m→ ∞.

Now, we argue as in the proof of Proposition 8.2 to obtain that for every

r ∈ [1,∞[ the limit s-Lr- limn e
−tΛεnr , t ≥ 0 exists and determines a contraction

C0 semigroup on Lr. It is easily seen that the limit does not depend on the choice

of εn.

The last assertion follows now from Proposition 8.1.

The proof of Proposition 8.5 is completed.

§9. Construction of the semigroup e−tΛ∗
r , Λ∗

r = (−∆)
α
2 + ∇ · b in Lr,

1 ≤ r < ∞

Set (Λε)∗r := (−∆)
α
2 +∇·bε, D((Λε)∗r) = Wα,r. By the Hille perturbation theorem,

−(Λε)∗r is the generator of a holomorphic C0 semigroup in Lr (arguing as in Section

8; the argument there also shows that (Λε)∗ := (−∆)
α
2 + ∇ · bε, D((Λε)∗) =

D((−∆)
α
2

Cu
) is the generator of a holomorphic semigroup in Cu).

Proposition 9.1. For every r ∈ [1,∞[ and ε > 0, e−t(Λ
ε)∗r is a contraction C0

semigroup. For all 1 ≤ r ≤ q ≤ ∞,

∥e−t(Λ
ε)∗r∥r→q ≤ cN t

− d
α ( 1

r−
1
q ), t > 0,

with cN from Proposition 8.1.
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Proof. The semigroup e−t(Λ
ε)∗r is constructed in Lr repeating the argument in Sec-

tion 8. The ultracontractivity estimate for 1 < r ≤ q <∞ follows from Proposition

8.1 by duality, and for all 1 ≤ r ≤ q ≤ ∞ upon taking limits r ↓ 1, q ↑ ∞.

Proposition 9.2. For every r ∈ [1,∞[ the limit

s-Lr- lim
ε↓0

e−t(Λ
ε)∗r (loc. uniformly in t ≥ 0)

exists and determines a contraction C0 semigroup in Lr, say, e−tΛ
∗
r . For all 1 ≤

r ≤ q ≤ ∞,

∥e−tΛ
∗
r∥r→q ≤ cN t

− d
α ( 1

r−
1
q ), t > 0,

with cN from Proposition 8.1.

We have for 1 < r <∞,

⟨e−tΛr′ (b)f, g⟩ = ⟨f, e−tΛ
∗
r(b)g⟩, t > 0, f ∈ Lr

′
, r′ =

r

r − 1
, g ∈ Lr.

Proof. First, let r = 2. In view of Proposition 9.1, we can argue as in the proof

of [KSS, Prop. 10], appealing to the Rellich–Kondrashov theorem, to obtain the

following: for every sequence εn ↓ 0 there exists a subsequence εnm such that the

limit

(9.1) s-L2- lim
m
e−t(Λ

εnm )∗ (loc. uniformly in t ≥ 0)

exists and determines a C0 semigroup in L2.

On the other hand, since

⟨e−tΛ
ε

f, g⟩ = ⟨f, e−t(Λ
ε)∗g⟩, t > 0, f, g ∈ L2,

it follows from Proposition 8.5 that, for every g ∈ L2, e−t(Λ
ε)∗g converges weakly

in L2 as ε ↓ 0. Thus, the limit in (9.1) does not depend on the choice of εnm and

εn.

For 1 ≤ r <∞, we repeat the argument at the end of the proof of Proposition

8.2, appealing to Proposition 9.1.

The ultracontractivity estimate now follows from Proposition 9.1.

The last assertion follows from the analogous property of e−tΛ
ε
r′ , e−t(Λ

ε)∗r ,

ε > 0 and Propositions 8.5, 9.1.
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Appendix A. Lr (vector) inequalities for

symmetric Markov generators

Let X be a set and µ a σ-finite measure on X. Let T t = e−tA, t ≥ 0 be a symmetric

Markov semigroup in L2(X,µ). Let

T tr :=
[
T t ↾ L2 ∩ Lr

]
Lr→Lr

, t ≥ 0,

a contraction C0 semigroup on Lr, r ∈ [1,∞[. Put T tr =: e−tAr .

Theorem A.1. Let fi ∈ D(Ar) (1 ≤ i ≤ m), r ∈ ]1,∞[. Set f := (fi)
m
i=1,

f(r) := f |f | r−2
2 . Then fi|f |

r−2
2 ∈ D(A

1
2 ) (1 ≤ i ≤ m) and, applying the operators

coordinate-wise, we have

4

rr′
⟨A 1

2 f(r), A
1
2 f(r)⟩ ≤ Re⟨Arf, f |f |r−2⟩ ≤ κ(r)⟨A 1

2 f(r), A
1
2 f(r)⟩,(i) ∣∣Im⟨Arf, f |f |r−2⟩

∣∣ ≤ |r − 2|
2
√
r − 1

Re⟨Arf, f |f |r−2⟩,(ii)

where

κ(r) := sup
s∈]0,1[

[
(1 + s

1
r )(1 + s

1
r′ )(1 + s

1
2 )−2

]
, r′ =

r

r − 1
,

⟨A 1
2 f(r), A

1
2 f(r)⟩ =

m∑
i=1

∥A 1
2 (fi|f |

r−2
2 )∥22,

⟨Arf, f |f |r−2⟩ =
m∑
i=1

⟨Arfi, fi|f |r−2⟩.

Theorem A.1 is a prompt but useful modification of [LS, Thm. 2.1] (corre-

sponding to the case m = 1): it allows us to control higher-order derivatives of

u(t) = e−tΛf , Λ ⊃ (−∆)
α
2 − b · ∇, f ∈ C∞

c in the proof of Proposition 8.5 (see

Claim 8.6 there).

For the sake of completeness, we included the detailed proof below.

(1). We will need the following claim:

Claim A.2. There exists a finitely additive measure µt on X ×X, symmetric in

the sense that µt(A×B) = µt(B ×A) on any µ-measurable sets of finite measure

A and B, and satisfying

⟨T tf, g⟩ =
∫
X×X

f(x)g(x) dµt(x, y) (f, g ∈ L1 ∩ L∞).

In order to justify the claim, let us introduce the space L∞ = L∞(X,Mµ),

i.e. the Banach space of all bounded µ-measurable (≡ Mµ-measurable) functions,
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endowed with the norm |||f ||| := sup{|f(x)| | x ∈ X}. Here Mµ is the σ-algebra of

µ-measurable sets.

Let N∞ ≡ N∞(X,Mµ) be the set of all µ-negligible functions, so that L∞ =

L∞/N∞. Denoting by π : f → f̃ the canonical mapping of L∞ onto L∞, we can

identify L∞ with π(L∞). Since µ is σ-finite, there exists a lifting ρ : L∞ → L∞, a

linear multiplicative positivity-preserving map such that

ρ(1G) = 1G for all G ∈ Mµ with µ(G) <∞.

Given t > 0 define T tρ : L∞ → L∞ by

T tρf := ρ(T t∞f),

and so T tρ is a positivity-preserving semigroup, and

⟨T tρf, g⟩ = ⟨T tf̃ , g̃⟩ (f̃ , g̃ ∈ L∞ ∩ L1).

The following set function is associated with the semigroup T t∞:

P (t, x,G) := (T tρ1G)(x) (t > 0, x ∈ X, G ∈ Mµ).

This function satisfies the following evident properties:

(1) P (t, x,G) (G ∈ Mµ) is finitely additive.

(2) P (t, x,X) ≤ 1.

(3)
∫
f(y)P (t, ·, dy) exists and equals T tρf(·) (f ∈ L∞).

Set by definition

µt(A×B) =

∫
A

P (t, x,B) dµ(x) (A,B ∈ Mµ).

The claimed symmetry of µt is a direct consequence of the self-adjointness of

T t and the fact that we can identify T t∞1G and T t1G for every G ∈ Mµ of finite

measure.

(2). We are in position to complete the proof of Theorem A.1.

Proof of Theorem A.1. We are going to establish the following inequalities: for all

f ∈ Lr,

4

rr′
⟨(1− T t2)f(r), f(r)⟩ ≤ Re⟨(1− T tr )f, f |f |r−2⟩ ≤ κ(r)⟨(1− T t2)f(r), f(r)⟩,(A.1) ∣∣Im⟨(1− T tr )f, f |f |r−2⟩

∣∣ ≤ |r − 2|
2
√
r − 1

Re⟨(1− T tr )f, f |f |r−2⟩.(A.2)
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Then the required estimates will follow from the definitions of Ar and A
1
2 . Indeed,

for f ∈ D(Ar),

s-Lr- lim
t↓0

1

t
(1− T tr )f exists and equals Arf.

On the other hand, e.g. by the spectral theorem for self-adjoint operators,

s-L2- lim
t↓0

1

t
⟨(1− T t2)g, g⟩ = tA[g], g ∈ D(tA),

where tA[g] := ⟨A 1
2 g,A

1
2 g⟩, D(tA) = D(A

1
2 ), and

D(tA) =
{
g ∈ L2 | supt>0

1
t ⟨(1− T t2)g, g⟩ <∞

}
.

It is now clear that (A.1), (A.2) yield (i) and (ii).

First, let f ∈ L1 ∩ L∞ with sprt f ⊂ G, G ∈ Mµ, µ(G) < ∞. Using Claim

A.2, we have

⟨T tf, f |f |r−2⟩ = 1

2
⟨T tf, f |f |r−2⟩+ 1

2
⟨f, T t(f |f |r−2)⟩

=
1

2

∫ [
f(x) · f̄(y)|f(y)|r−2 + f(y) · f̄(x)|f(x)|r−2

]
dµt(x, y),

⟨T tf(r), f(r)⟩ =
1

2

∫
f(r)(x) · f̄(r)(y) dµt(x, y) +

1

2

∫
f̄(r)(x) · f(r)(y) dµt(x, y),

⟨T t1G, |f |r⟩ = ⟨1G, T t|f |r⟩

=
1

2
⟨P (t, ·, G)|f(·)|r⟩+ 1

2

〈
1G(·)

∫
|f(y)|rP (t, ·, dy)

〉
=

1

2

∫ [
|f(x)|r + |f(y)|r

]
dµt(x, y),

∥f∥rr = ⟨T t1G, |f |r⟩+ ⟨(1− T t1G), |f |r⟩.

Setting s := |f(x)|, l := |f(y)|, β := f(x)·f̄(y)
|f(x)| |f(y)| , b := Reβ, a := Imβ, we obtain

⟨(1− T t)f, f |f |r−2⟩ = ⟨(1− T t1G), |f |r⟩+
1

2

∫
[sr + lr − βslr−1 − β̄lsr−1] dµt,

Re⟨(1− T t)f, f |f |r−2⟩ = ⟨(1− T t1G), |f |r⟩+
1

2

∫
[sr + lr − b(slr−1 + lsr−1)] dµt,

⟨(1− T t)f(r), f(r)⟩ = ⟨(1− T t1G), |f |r⟩+
1

2

∫
[sr + lr − 2b(st)

r
2 ] dµt,

Im⟨(1− T t)f, f |f |r−2⟩ = 1

2

∫
a(slr−1 − lsr−1) dµt.
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Now we employ the following elementary inequalities: for all s, t ∈ [0,∞[,

r ∈ [1,∞[, b ∈ [−1, 1],

4

rr′
(sr + tr − 2b(st)

r
2 ) ≤ sr + tr − b(str−1 + tsr−1) ≤ κ(r)(sr + tr − 2b(st)

r
2 )

(Lemma A.4(l3),(l5) below),

|a| |str−1 − tsr−1| ≤ |r − 2|
2
√
r − 1

[
sr + tr −

√
1− a2(str−1 + tsr−1)

]
, a ∈ [−1, 1]

(Lemma A.4(l4) below). We obtain (A.1), (A.2) but for f ∈ L1∩L∞ with sprt f ∈
G, µ(G) <∞.

To end the proof, we note that µ is a σ-finite measure, and so we can first

get rid of the condition “sprt f ∈ G, µ(G) < ∞”, and then, using the truncated

functions

gn =

{
g if |g| ≤ n,

0 if |g| > n,
n = 1, 2, . . .

and the dominated convergence theorem, get rid of “f ∈ L1 ∩ L∞”.

For the sake of completeness, we also include the following result concerning

the scalar case.

Theorem A.3. If 0 ≤ f ∈ D(Ar), then

(iii)
4

rr′
∥A 1

2 f
r
2 ∥22 ≤ ⟨Arf, fr−1⟩ ≤ ∥A 1

2 f
r
2 ∥22.

If f ∈ D(A) ∩ L∞, then f(r) := |f | r2 sgn f ∈ D(A
1
2 ), r ∈ [2,∞[ and

(i′)
4

rr′
∥A 1

2 f(r)∥22 ≤ Re⟨Af, |f |r−1 sgn f⟩ ≤ κ(r)∥A 1
2 f(r)∥22, sgn f :=

f

|f |
.

If 0 ≤ f ∈ D(A) ∩ L∞, then f
r
2 ∈ D(A

1
2 ), r ∈ [2,∞[ and

(iii′)
4

rr′
∥A 1

2 f
r
2 ∥22 ≤ ⟨Af, fr−1⟩ ≤ ∥A 1

2 f
r
2 ∥22.

Proof. Following closely the proof of Theorem A.1, we obtain

4

rr′
⟨(1− T t)f

r
2 , f

r
2 ⟩ ≤ ⟨(1− T t)f, fr−1⟩ ≤ ⟨(1− T t)f

r
2 , f

r
2 ⟩ (f ∈ Lr+),

which yields the required.

In the proofs of Theorems A.1 and A.3 we use the following lemma:
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Lemma A.4. Let s, t ∈ [0,∞[, r ∈ [1,∞[ and b ∈ [−1, 1]. Then

4

rr′
(s

r
2 − t

r
2 )2 ≤ (s− t)(sr−1 − tr−1) ≤ (s

r
2 − t

r
2 )2,(l1)

(s
r
2 + t

r
2 )2 ≤ (s+ t)(sr−1 + tr−1) ≤ κ(r)(s

r
2 + t

r
2 )2,(l2)

4

rr′
(sr + tr + 2b(st)

r
2 ) ≤ sr + tr + b(str−1 + tsr−1),(l3)

|b| |str−1 − tsr−1| ≤ |r − 2|
2
√
r − 1

[
sr + tr −

√
1− b2(str−1 + tsr−1)

]
,(l4)

sr + tr + b(str−1 + tsr−1) ≤ κ(r)(sr + tr + 2b(st)
r
2 ).(l5)

Proof.

� The RHS of (l1) and the LHS of (l2) are consequences of the inequality

2|α| |β| ≤ α2 + β2.

� The RHS of (l2) follows from the definition of κ(r).
� The LHS of (l1) follows from

4

r2
(s

r
2 − t

r
2 )2 =

(∫ s

t

z
r
2−1 dz

)2

≤
∫ s

t

dz ·
∫ s

t

zr−2 dz.

� (l3) is a consequence of the LHS of (l1).

� To derive (l4) set

A = str−1 − tsr−1, B =
|r − 2|
2
√
r − 1

(str−1 + tsr−1), C =
|r − 2|
2
√
r − 1

(sr + tr),

and note that A2 +B2 ≤ C2 ⇒ |Ab|+ |B
√
1− b2| ≤ C.

The inequality A2 +B2 ≤ C2 follows from

(⋆) (str−1 − tsr−1)2 ≤
(r − 2

r

)2

(sr − tr)2

and the LHS’s of (l1) and (l2).

Setting v = s/t, (⋆) takes the form

|vr−1 − v| ≤ |r − 2|
r

|vr − 1|.

All possible cases are reduced to the case where v > 1 and r > 2.

If r−2
r v ≥ 1, then the inequality vr−1− v ≤ r−2

r vr− r−2
r is self-evident. If

1 < v < r
r−2 , we set ψ(v) =

r−2
r vr − vr−1 + v− r−2

r and note that d
dvψ(v) ≥ 0

by Young’s inequality.
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� Finally, (l5) follows from the RHS of (l2) and the following elementary in-

equality:

A+ bB

A+ bC
≤ A+B

A+ C
(b ∈ [−1, 1]), provided that A > C and B ≥ C > 0,

where we take A = sr + tr, B = str−1 + tsr−1, C = 2(st)
r
2 .

Appendix B. Extrapolation theorem

Theorem B.1 (T. Coulhon–Y. Raynaud [VSC, Props. II.2.1, II.2.2]). Let U t,s :

L1 ∩ L∞ → L1 + L∞ be a two-parameter evolution family of operators:

U t,s = U t,τUτ,s, 0 ≤ s < τ < t ≤ ∞.

Suppose that, for some 1 ≤ p < q < r ≤ ∞, ν > 0, M1, and M2, the inequalities

∥U t,sf∥p ≤M1∥f∥p and ∥U t,sf∥r ≤M2(t− s)−ν∥f∥q

are valid for all (t, s) and f ∈ L1 ∩ L∞. Then

∥U t,sf∥r ≤M(t− s)−ν/(1−β)∥f∥p,

where β = r
q
q−p
r−p and M = 2ν/(1−β)

2

M1M
1/(1−β)
2 .

Proof. Set 2ts = t+ s. The hypotheses and Hölder’s inequality imply

∥U t,sf∥r ≤M2(t− ts)
−ν∥U ts,sf∥q

≤M2(t− ts)
−ν∥U ts,sf∥βr ∥U ts,sf∥1−βp

≤M2M
1−β
1 (t− ts)

−ν∥U ts,sf∥βr ∥f∥1−βp ,

and hence

(t−s)ν/(1−β)∥U t,sf∥r/∥f∥p ≤M2M
1−β
1 2ν/(1−β)

[
(ts−s)ν/(1−β)∥U ts,sf∥r /∥f∥p

]β
.

Setting R2T := supt−s∈]0,T ][(t− s)ν/(1−β)∥U t,sf∥r/∥f∥p], we obtain from the last

inequality that R2T ≤M1−β(RT )
β . But RT ≤ R2T , and so R2T ≤M .

Appendix C. The range of an accretive operator

In the proof of Theorem 3.1 we use the following well-known result.

Let P be a closed operator on L1 such that Re⟨(λ + P )f, f|f | ⟩ ≥ 0 for all

f ∈ D(P ), and R(µ+ P ) is dense in L1 for some µ > λ.

Then R(µ+ P ) = L1.
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Indeed, let yn ∈ R(µ + P ), n = 1, 2, . . . , be a Cauchy sequence in L1; yn =

(µ+ P )xn, xn ∈ D(P ). Write [f, g] := ⟨f, g|g| ⟩. Then

(µ− λ)∥xn − xm∥1 = (µ− λ)
[
xn − xm, xn − xm

]
≤ (µ− λ)

[
xn − xm, xn − xm

]
+
[
(λ+ P )(xn − xm), xn − xm

]
=

[
(µ+ P )(xn − xm), xn − xm

]
≤ ∥yn − ym∥1.

Thus, {xn} is itself a Cauchy sequence in L1. Since P is closed, the result follows.
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