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Convex Monotone Semigroups on Lattices of
Continuous Functions

by
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Abstract

We consider convex monotone C0-semigroups on a Banach lattice, which is assumed to be
a Riesz subspace of a σ-Dedekind complete Banach lattice. Typical examples include the
space of all bounded uniformly continuous functions and the space of all continuous func-
tions vanishing at infinity. We show that the domain of the classical generator of a convex
semigroup is typically not invariant. Therefore, we propose alternative versions for the
domain, such as the monotone domain and the Lipschitz set, for which we prove invari-
ance under the semigroup. As a main result, we obtain the uniqueness of the semigroup
in terms of an extended version of the generator. The results are illustrated with several
examples related to Hamilton–Jacobi–Bellman equations, including nonlinear versions of
the shift semigroup and the heat equation. In particular, we determine their symmetric
Lipschitz sets, which are invariant and allow us to define the generators in a weak sense.
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§1. Introduction

The topic of model uncertainty or ambiguity in the fields of mathematical eco-

nomics and mathematical finance has been extensively studied in the last decades.

Hereby, a particular focus has been put on parameter uncertainty of stochastic

processes describing the evolution of an underlying asset. Examples include a
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Brownian motion with drift uncertainty (cf. Coquet et al. [6]) or volatility un-

certainty (cf. Peng [30, 31]), a Black–Scholes model with volatility uncertainty

(cf. Avellaneda et al. [2], Epstein and Ji [14], Vorbrink [35]), and Lévy processes

with uncertainty in the Lévy triplet (cf. Hu and Peng [19], Neufeld and Nutz

[27], Hollender [18], Kühn [22]). In the case of a Brownian motion with uncertain

volatility within an interval [σ, σ] for 0 ≤ σ ≤ σ, this leads to the equation

(1.1) ∂tu(t, x) = sup
σ∈[σ,σ]

σ2

2
∂xxu(t, x) for t ≥ 0 and x ∈ R.

The latter is referred to as the G-heat equation, and their solutions (for differ-

ent initial values) can be represented by means of the so-called G-expectation;

cf. Peng [30, 31].

Equation (1.1) falls into the class of Hamilton–Jacobi–Bellman (HJB) equa-

tions, which closely relate to (stochastic) optimal control problems. On a meta

(and structurally very reduced) level, a control problem consists of a nonempty

control set Λ, and a family of semigroups (Sλ)λ∈Λ, where Sλ relates to the value

of a cost functional under the static control λ ∈ Λ. Allowing for a dynamic state-

dependent choice from the control set Λ leads to a convex semigroup S, which

on an abstract level is given as a (viscosity) solution to an HJB equation of the

form

(1.2) ∂tu = sup
λ∈Λ

Aλu,

whereAλ is the generator of the affine linear semigroup Sλ for all λ ∈ Λ. Inspired by

a construction of Nisio [28], such equations have been studied using a semigroup-

theoretic framework for spaces of continuous functions by Denk et al. [12] and

Nendel and Röckner [26]. Choosing Aλ := λ2

2 ∂xx for λ ∈ Λ := [σ, σ], the G-heat

equation (1.1) is a particular instance of (1.2). The related control problem is

the one of optimally choosing a volatility from the control set [σ, σ]. We refer

to Denis et al. [10] for a detailed illustration of this relation. In the context of

optimal control theory, the uniqueness and regularity of solutions to Hamilton–

Jacobi–Bellman equations are fundamental in order to come up with verification

theorems; ensuring that the solution to the HJB equation is in fact the value

function of an optimal control problem; cf. Fleming and Soner [17], Pham [33],

and Yong and Zhou [36]. In an even broader sense, the G-heat equation and HJB

equations of the form (1.2) are examples for convex differential equations and the

related value functions (their solutions) form a convex semigroup on suitable spaces

of continuous functions, where the semigroup property is the abstract analogon of
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the dynamic programming principle. We refer to Denk et al. [12] and Nendel and

Röckner [26] for more details on this relation.

One classical approach to treat nonlinear equations uses the theory of max-

imal monotone or m-accretive operators; cf. Barbu [3], Bénilan and Crandall [4],

Brézis [5], Evans [15], Kato [20], and the references therein. To show that an accre-

tive operator is m-accretive, one has to prove that 1 + hA is surjective for h > 0,

and in many cases it is quite delicate to verify this condition; see Example 5.2

below. Moreover, it is known that m-accretive operators lead to the existence of

a mild solution, but the existence of strong solutions is only known under addi-

tional assumptions on the underlying Banach space, including reflexivity; see [3,

Sect. 4.1]. In terms of nonlinear semigroups, this means that even if the initial

value is smooth, the solution (the semigroup applied to the initial value) does not

belong to the domain of the operator for positive time, so the domain of the op-

erator is not invariant under the semigroup; see [8, Sect. 4] or Example 5.4 below.

Therefore, in the context of HJB equations, one typically considers a more general

solution concept, so-called viscosity solutions; cf. Crandall et al. [7], Crandall and

Lions [9], and the discussion in Evans [15, Sect. 4].

In this paper, we study convex monotone semigroups on spaces of continuous

functions and construct invariant domains with a particular interest in the regular-

ity and uniqueness of the solution. The main object and the starting point of our

investigation is a convex C0-semigroup S = (S(t))t≥0 on a Banach lattice X which

is a Riesz subspace of some Dedekind σ-complete Riesz space X. Typical examples

for X are the space BUC of all bounded uniformly continuous functions, the space

C0 of all continuous functions vanishing at infinity, or spaces of uniformly contin-

uous functions with certain growth at infinity. We focus on monotone semigroups

that are continuous from above, meaning that S(t)xn ↓ 0 for all t ≥ 0, whenever

xn ↓ 0. This additional continuity property allows us to extend the semigroup

to the set Xδ of all x ∈ X for which there exists a sequence (xn)n∈N in X such

that xn ↓ x. Likewise, the generator A of the semigroup extends to the so-called

monotone generator Aδ, whose domain is defined as the set of all x ∈ X such that,

for every sequence (hn)n∈N in (0,∞) with hn ↓ 0, there exists an approximating

sequence (yn)n∈N in X such that∥∥∥S(hn)x− x

hn
− yn

∥∥∥ → 0 and yn ↓ y =: Aδx.

The main results in Sections 3 and 4 state that a convex monotone C0-semigroup

leaves the domain D(Aδ) of its monotone generator invariant, and that the semi-

group is uniquely determined by Aδ on D(Aδ). We also study even weaker forms

of domains requiring only the local Lipschitz continuity of the map t 7→ S(t)x,
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or, in other words, a weak Sobolev regularity of the map t 7→ S(t)x, i.e., for ev-

ery continuous linear functional µ, the map (t 7→ µS(t)x) ∈ W 1,∞
loc ([0,∞)). These

domains are shown to be invariant as well, and we discuss their relation to one

another.

In Section 5 we consider the example of the uncertain shift semigroup on the

space BUC, which corresponds to the fully nonlinear PDE

(1.3) ∂tu(t, x) = |∂xu(t, x)|, u(0, ·) = f.

Here, the nonlinear generator is given by Au = |∂xu| for sufficiently regular

u ∈ BUC. In that case, it holds that BUC1 ⊂ D(Aδ) ⊂ W 1,∞ and W 1,∞ is

invariant under the corresponding semigroup. Note that (1.3) is a special case

of the Hamilton–Jacobi PDE, where, under appropriate conditions on the non-

linearity, the viscosity solution is given by the Hopf–Lax formula; see e.g. [16,

Sect. 3.3], [24, Sect. 11.1]. Similarly, for the second-order differential operator

Au = 1
2 max{σ2∂xxu, σ

2∂xxu} with 0 ≤ σ ≤ σ, we derive that W 2,∞ is invari-

ant under the respective semigroup S, which corresponds to the G-heat equation.

Moreover, we show that the equality limh↓0
S(h)u−u

h = 1
2 max{σ2∂xxu, σ

2∂xxu}
holds on W 2,∞ in a pointwise sense almost everywhere. We remark that in the

parabolic situation σ > 0, many results on the solvability of this second-order

fully nonlinear equation in Sobolev and Hölder spaces were obtained by Krylov;

see [21, Chaps. 12 and 13].

§2. Setup and notation

Throughout this article, we assume that X is a real Banach lattice which is a

Riesz subspace of a Dedekind σ-complete Riesz space X. A typical example is the

space BUC as a subspace of the space L∞ of all bounded measurable functions. We

denote by X ′ the dual space of X, i.e., the space of all continuous linear functionals

X → R. For a sequence (xn)n∈N in X, we write xn ↓ x if (xn)n∈N is decreasing,

bounded from below, and x = infn xn ∈ X. We define

Xδ :=
{
x ∈ X : xn ↓ x for some sequence (xn)n∈N in X

}
.

Let M be the space of all positive linear functionals µ : X → R which are contin-

uous from above, i.e., µxn ↓ 0 for every sequence (xn)n∈N in X such that xn ↓ 0.

Every µ ∈ M has a unique extension µ : Xδ → R which is continuous from above,

i.e., µxn ↓ µx for every sequence (xn)n∈N in Xδ such that xn ↓ x ∈ Xδ; see e.g. [11,

Lem. 3.9]. We assume that the set M separates the points of Xδ, i.e., for every

x, y ∈ Xδ with x ̸= y there exists some µ ∈ M with µx ̸= µy. For an operator
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S : X → X, we define

∥S∥r := sup
x∈B(0,r)

∥Sx∥

for all r > 0, where B(x0, r) := {x ∈ X : ∥x − x0∥ ≤ r} for x0 ∈ X. We say that

an operator S : X → X is convex if S(λx + (1 − λ)y) ≤ λSx + (1 − λ)Sy for all

λ ∈ [0, 1], positive homogeneous if S(λx) = λSx for all λ > 0, sublinear if S is

convex and positive homogeneous, monotone if x ≤ y implies Sx ≤ Sy for all

x, y ∈ X, and bounded if ∥S∥r < ∞ for all r > 0. For x ∈ X, we define the convex

operator Sx : X → X by

Sxy := S(x+ y)− Sx.

Definition 2.1. A family S = (S(t))t≥0 of bounded operators X → X is called

a C0-semigroup on X if

(S1) S(0)x = x for all x ∈ X,

(S2) S(t+ s)x = S(t)S(s)x for all x ∈ X and s, t ∈ [0,∞),

(S3) S(t)x → x as t ↓ 0 for all x ∈ X.

We say that S is monotone, convex, or sublinear if S(t) is monotone, convex, or

sublinear for all t ≥ 0, respectively.

We conclude with a notion of continuity, which we will require on several

occasions.

Definition 2.2. A monotone C0-semigroup S is called continuous from above if

S(t)xn ↓ S(t)0 for all t ∈ [0,∞) and every sequence (xn)n∈N in X with xn ↓ 0.

§3. Invariant domains

In this section, we discuss the invariance of various notions of generators and

domains. Throughout, let S be a convex C0-semigroup on X. In contrast to [13],

where the Banach lattice X is Dedekind σ-complete with order continuous norm,

the domain

D(A) :=
{
x ∈ X : S(h)x−x

h is convergent in X for h ↓ 0
}

is in general not invariant under the semigroup. For instance, for the uncertain

semigroup (S(t))t∈[0,∞) in Section 5.1, there exists some x ∈ D(A) such that

S(t)x ̸∈ D(A) for some t ∈ (0,∞). We therefore introduce the following modified

versions of the domain.

Definition 3.1. The domain D(Aδ) of the monotone generator Aδ of S is defined

as the set of all x ∈ X such that, for every (hn)n∈N in (0,∞) with hn ↓ 0, there
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exists a sequence (Anx)n∈N in X and some y ∈ Xδ such that

(3.1)
∥∥∥S(hn)x− x

hn
−Anx

∥∥∥ → 0 and Anx ↓ y.

We define the monotone generator Aδ : D(Aδ) ⊂ X → Xδ by Aδx := y for x ∈
D(Aδ), where y is the limit in (3.1), which is uniquely determined by Lemma B.1.

Definition 3.2. The Lipschitz set of the semigroup S is defined as

(3.2) DL :=
{
x ∈ X : suph∈(0,h0]

∥∥S(h)x−x
h

∥∥ < ∞ for some h0 > 0
}
.

We further define the symmetric Lipschitz set of the semigroup S by

Ds
L :=

{
x ∈ X : x,−x ∈ DL

}
.

Let W 1,∞
loc ([0,∞)) denote the space of all functions f : [0,∞) → R in the space

L∞
loc([0,∞)) with weak derivative f ′ ∈ L∞

loc([0,∞)). Recall that W 1,∞
loc ([0,∞)) co-

incides with space of all locally Lipschitz continuous functions. The following ob-

servation is one of the basic ingredients in the proof of Section 4, below.

Remark 3.3. Let x ∈ X. Then x ∈ DL if and only if

(t 7→ µS(t)x) ∈ W 1,∞
loc ([0,∞)) for all µ ∈ X ′.

In fact, by Proposition A.4, the map [0,∞) → X, t 7→ µS(t)x is locally Lipschitz

for every x ∈ DL and µ ∈ X ′, which proves one direction of the equivalence. Now,

assume that (t 7→ µS(t)x) ∈ W 1,∞
loc ([0,∞)) for all µ ∈ X ′. Then, for every µ ∈ X ′,

sup
h∈(0,1]

∣∣∣µ(S(h)x− x

h

)∣∣∣ < ∞.

By the Banach–Steinhaus theorem, it follows that x ∈ DL. If supt≥0 ∥S(t)∥r < ∞
for all r ≥ 0, as, for example, in Sections 5.1 and 5.2, we obtain that x ∈ DL if

and only if

(t 7→ µS(t)x) ∈ W 1,∞([0,∞)) for all µ ∈ X ′.

We say that the norm ∥ · ∥ on X is σ-order continuous if limn→∞ ∥xn∥ = 0

for every decreasing sequence (xn)n∈N with infn∈N xn = 0. The prime example

for a Banach lattice with σ-order continuous norm is the closure C0 w.r.t. the

supremum norm ∥ · ∥∞ of the space Cc of all continuous functions Ω → R with

compact support, where Ω is a locally compact metric space. Moreover, we say that

the norm ∥·∥ on X is order continuous if, for every net (xα)α with xα ↓ 0, we have

∥xα∥ → 0. Notice that order continuity of the norm is, for example, implied by

separability of X together with Dedekind σ-completeness of X; cf. [25, Exe. 2.4.1]
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or [34, Cor. to Thm. II.5.14]. Typical examples for Banach lattices with order

continuous norm are the spaces Lp(µ) for p ∈ [1,∞) and an arbitrary measure µ,

the space c0 of all sequences vanishing at infinity, and Orlicz spaces. We would

like to point out that, due to its strong implications, we avoid order continuity of

the norm in the present paper. A detailed study of convex semigroups on Banach

lattices with order continuous norm can be found in [13].

We have the following relations between the domains and generators.

Lemma 3.4. One has D(A) ⊂ D(Aδ) ⊂ DL, and Aδ|D(A) = A. If the norm ∥ · ∥
on X is σ-order continuous, then x ∈ D(Aδ) with Aδx ∈ X implies x ∈ D(A)

and Aδx = Ax. If X is σ-Dedekind complete with σ-order continuous norm, then

Aδ = A.

Proof. We first assume that x ∈ D(A). Then, for every hn ↓ 0 and Anx := Ax for

all n ∈ N, one has ∥∥∥S(hn)x− x

hn
−Anx

∥∥∥ → 0,

which shows that x ∈ D(Aδ) with Aδx = Ax.

We next assume that x ∈ D(Aδ). Then there exists some h0 > 0 such that

sup
h∈(0,h0]

∥∥∥S(h)x− x

h

∥∥∥ < ∞.

Otherwise, there exists a sequence hn ↓ 0 such that ∥S(hn)x−x
hn

∥ ≥ n for all n. Since

x ∈ D(Aδ) there exists a bounded decreasing sequence (Anx)n∈N in X such that

Anx ↓ Aδx and ∥∥∥S(hn)x− x

hn
−Anx

∥∥∥ → 0.

But then,

sup
n∈N

∥∥∥S(hn)x− x

hn

∥∥∥ ≤ sup
n∈N

∥∥∥S(hn)x− x

hn
−Anx

∥∥∥+ sup
n∈N

∥Anx∥ < ∞,

which is a contradiction. This shows that x ∈ DL.

If the norm ∥ · ∥ on X is σ-order continuous and x ∈ D(Aδ) with Aδx ∈ X,

then ∥Anx−Aδx∥ → 0, so that S(hn)x−x
hn

→ Aδx. If, in addition, X is σ-Dedekind

complete, then Aδx ∈ X for all x ∈ D(Aδ), which shows that Aδ = A.

For every x ∈ X and y ∈ Xδ, the directional derivative is defined as

S′
+(t, x)y := inf

h>0

S(t)(x+ hy)− S(t)x

h
∈ Xδ.
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For further details on the directional derivative we refer to Appendix B. The

following main result of this subsection provides invariance for DL and D(Aδ),

and states regularity properties in the time variable.

Theorem 3.5. For every x ∈ DL, one has

(i) S(t)x ∈ DL for all t ∈ [0,∞),

(ii) for every µ ∈ M there is a locally bounded measurable function fµ : [0,∞) → R
with µS(t)x = µx+

∫ t

0
fµ(s) ds for all x ∈ D(Aδ) and t ≥ 0.

For every x ∈ D(A), it holds that

(iii) S(t)x ∈ D(Aδ) for all t ≥ 0 with AδS(t)x = S′
+(t, x)Aδx,

(iv) µS(t)x = µx+
∫ t

0
µS′

+(s, x)Aδx ds for every µ ∈ M and all t ≥ 0. In partic-

ular, fµ(s) = µS′
+(s, x)Aδx for almost every s ∈ [0,∞).

Moreover, (iii) and (iv) hold for all x ∈ D(Aδ) if, in addition, the semigroup is

monotone and continuous from above.

Proof. (i) Fix t ≥ 0. By Corollary A.2 there exist L ≥ 0 and r > 0 such that

∥S(t)(y + x)− S(t)x∥ ≤ L∥y∥

for all y ∈ B(x, r). Since S(h)x → x as h ↓ 0, it follows that∥∥∥S(h)S(t)x− S(t)x

h

∥∥∥ =
∥∥∥S(t)S(h)x− S(t)x

h

∥∥∥ ≤ L
∥∥∥S(h)x− x

h

∥∥∥ < ∞

for all h ∈ (0, h′
0] and some h′

0 > 0.

(ii) Since x ∈ DL, it follows from Proposition A.4 that the map [0,∞) → X,

t 7→ S(t)x is locally Lipschitz continuous. Fix µ ∈ M . Since µ is continuous

on X, see e.g. [1, Thm. 9.6], the map [0,∞) → R, t 7→ µS(t)x is also locally

Lipschitz continuous and is therefore in W 1,∞
loc ([0,∞)) by Lebesgue’s theorem.

That is, there exists a locally bounded measurable function fµ : [0,∞) → R with

µS(t)x = µx+
∫ t

0
fµ(s) ds.

(iii) Fix t > 0, let (hn)n∈N be a sequence in (0,∞) with hn ↓ 0, and x ∈ D(A).

By Corollary A.2, there exists some L > 0 such that∥∥∥S(t+ hn)x− S(t)x

hn
− S(t)(x+ hnAx)− S(t)x

hn

∥∥∥
=

∥∥∥S(t)S(hn)x− S(t)(x+ hnAx)

hn

∥∥∥
≤ L

∥∥∥S(hn)x− x− hnAx

hn

∥∥∥ = L
∥∥∥S(hn)x− x

hn
−Ax

∥∥∥ → 0 as n → ∞.
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Moreover, the sequence

An(S(t)x) :=
S(t)(x+ hnAx)− S(t)x

hn

is decreasing and satisfies An(S(t)x) ↓ S′
+(t, x)Ax. This shows that S(t)x ∈ D(Aδ)

with AδS(t)x = S′
+(t, x)Ax. Recall that Ax = Aδx for all x ∈ D(A) by Lemma 3.4.

If, in addition, S is monotone, continuous from above, and x ∈ D(Aδ), then

there exists a bounded decreasing sequence (Anx)n∈N in X such that∥∥∥S(hn)x− x

hn
−Anx

∥∥∥ → 0 and Anx ↓ Aδx.

By Corollary A.2, there exists some L > 0 such that∥∥∥S(t+ hn)x− S(t)x

hn
− S(t)(x+ hnAnx)− S(t)x

hn

∥∥∥ ≤ L
∥∥∥S(hn)x− x

hn
−Anx

∥∥∥ → 0

as n → ∞. By Lemma B.4, the sequence (AnS(t)x) given by

AnS(t)x :=
S(t)(x+ hnAnx)− S(t)x

hn

is decreasing and satisfies AnS(t)x ↓ S′
+(t, x)Aδx. This shows that S(t)x ∈ D(Aδ)

with AδS(t)x = S′
+(t, x)Aδx.

(iv) Since x ∈ D(Aδ), it follows from Lemma 3.4 that x ∈ DL. Fix µ ∈ M .

By (ii) one has

µS(t)x = µx+

∫ t

0

fµ(s) ds

for all t ≥ 0. In particular, t 7→ µS(t)x is differentiable almost everywhere. Since µ

is continuous from above it follows from the previous step (iii) that the derivative

is almost everywhere given by

fµ(t) = lim
h↓0

µS(t+ h)x− µS(t)x

h
= µAδS(t)x = µS′

+(t, x)Aδx.

The proof is complete.

For the symmetric Lipschitz set of a sublinear monotone semigroup, we have

the following result.

Proposition 3.6. Let S be sublinear and monotone. Then the symmetric Lip-

schitz set Ds
L is a linear subspace of X. If

(3.3) − S(s)(−S(t)x) ≥ S(t)(−S(s)(−x)) for all s, t ≥ 0 and x ∈ X,

then S(t)x ∈ Ds
L for all t ≥ 0 and x ∈ Ds

L.
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Proof. The sublinearity of S implies that

S(t)(x+ λy)− (x+ λy) ≤ S(t)x− x+ λ(S(t)y − y)

and

−S(t)(x+ λy) + x+ λy ≤ S(t)(−x) + x+ λ(S(t)(−y) + y)

for all x, y ∈ X and λ > 0. Consequently,

∥S(t)(x+ λy)− (x+ λy)∥
≤ ∥S(t)x− x∥+ ∥S(t)(−x) + x∥+ λ

(
∥S(t)y − y∥+ ∥S(t)(−y) + y∥

)
for all x, y ∈ X and λ > 0, which shows that x + λy ∈ Ds

L for all x, y ∈ Ds
L and

λ > 0. Since −x ∈ Ds
L for all x ∈ Ds

L, it follows that D
s
L is a linear subspace of X.

Now let x ∈ Ds
L and t ≥ 0. Since S(t) is sublinear and bounded, it is globally

Lipschitz with some Lipschitz constant L > 0 (cf. Lemma A.1). Therefore,

∥S(h)S(t)x− S(t)x∥ ≤ L∥S(h)x− x∥,

i.e., S(t)x ∈ DL. It remains to show that −S(t)x ∈ DL. First, observe that

−S(t)x− S(h)(−S(t)x) ≤ −S(t)x+ S(h)S(t)x ≤ S(t)(S(h)x− x)

and, by (3.3),

S(h)(−S(t)x) + S(t)x ≤ −S(t)(−S(t)(−x)) + S(t)x ≤ S(t)(S(h)(−x) + x).

Therefore,

∥S(h)(−S(t)x) + S(t)x∥ ≤ L
(
∥S(h)x− x∥+ ∥(S(h)(−x) + x)∥

)
,

which shows that −S(t)x ∈ DL.

Example 3.7. Let S be a translation-invariant sublinear monotone semigroup

on the space BUC = BUC(G), where G is an abelian group with a translation-

invariant metric d such that (G, d) is separable and complete. Here, translation

invariant means that

(S(t)f(x+ ·))(0) = (S(t)f)(x) for all f ∈ BUC, x ∈ G, and t ≥ 0.

The space BUC of all bounded uniformly continuous functions f : G → R is en-

dowed with the supremum norm ∥f∥∞ := supx∈G |f(x)|. Under mild continuity

assumptions, the semigroup has a dual representation

(3.4) (S(t)f)(x) = sup
µ∈Pt

∫
G

f(x+ y) dµt(y) for all f ∈ BUC, x ∈ G, and t ≥ 0,
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where Pt is a convex set of Borel measures on G for all t ≥ 0. For further details

on dual representations we refer to [11] and, for further examples, we refer to [12].

Notice that, under (3.4),

−(S(t)(−f))(x) = inf
µ∈Pt

∫
G

f(x+ y) dµt(y) for all f ∈ BUC, x ∈ G, and t ≥ 0.

Then, for f ∈ BUC, x ∈ G, µt ∈ Pt, and µs ∈ Ps, it follows from (3.4) and Fubini’s

theorem that∫
G

(S(t)f)(x+ y) dµs(y) ≥
∫
G

∫
G

f(x+ y + z) dµt(z) dµs(y)

=

∫
G

∫
G

f(x+ y + z) dµs(y) dµt(z)

≥
∫
G

−(S(s)(−f))(x+ z) dµt(z).

Taking the infimum over all µs ∈ Pt and supremum over all µt ∈ Ps yields

−S(s)(−S(t)f) ≥ S(t)(−S(s)(f)).

By Proposition 3.6, we thus find that Ds
L is S(t)-invariant for all t ≥ 0.

Remark 3.8. Consider the setup of the previous example. Given C ≥ 0 and

h0 > 0, let Ds
L(C, h0) denote the set of all f ∈ Ds

L such that ∥S(h)f − f∥∞ ≤ Ch

and ∥S(h)(−f) + f∥∞ ≤ Ch for all h ∈ [0, h0]. Let f ∈ Ds
L(C, h0) and ν be

a Borel probability measure on G. Then it holds that fν ∈ Ds
L(C, h0), where

fν(x) :=
∫
G
f(x + y) ν(dy). In fact, by a Banach-space-valued version of Jensen’s

inequality (cf. [12] or [26]) and the translation invariance of S,

S(h)fν − fν = S(h)

(∫
G

f( ·+ y) dν(y)

)
− fν ≤

∫
G

(S(h)f)( ·+ y) dν(y)− fν

=

∫
G

(S(h)f)( ·+ y)− f( ·+ y) dν(y) ≤ Ch

for all h ≥ 0. In a similar way, it follows that

S(h)(−fν) + fν ≤
∫
G

(S(h)(−f))(·+ y) + f( ·+ y) dν(y) ≤ Ch

for all h ∈ [0, h0]. Combining these two estimates yields

∥S(h)fν − fν∥∞ ≤ Ch and ∥S(h)(−fν) + fν∥∞ ≤ Ch

for all h ∈ [0, h0]. This shows that fν ∈ Ds
L(C, h0).
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§4. Uniqueness

In this section we show that a convex semigroup is uniquely determined on D(Aδ)

through its generator Aδ if the semigroup is, in addition, monotone and continuous

from above. The following is the main result of this paper.

Theorem 4.1. Let S be a convex monotone C0-semigroup on X which is contin-

uous from above with monotone generator Aδ. Let y : [0,∞) → X be a continuous

function with y(t) ∈ D(Aδ) for all t ≥ 0, and assume that, for all t ≥ 0 and (hn)n∈N
in (0,∞) with hn ↓ 0, there exists a bounded decreasing sequence (Bny(t))n∈N in

X such that∥∥∥y(t+ hn)− y(t)

hn
−Bny(t)

∥∥∥ → 0 and Bny(t) ↓ Aδy(t).

Then y(t) = S(t)x for all t ≥ 0, where x := y(0).

Proof. Let t > 0 and g(s) := S(t− s)y(s) for all s ∈ [0, t]. Fix s ∈ (0, t). For every

h > 0 with h < t− s one has

g(s+ h)− g(s)

h
=

S(t− s− h)y(s+ h)− S(t− s)y(s)

h

=
S(t− s− h)y(s+ h)− S(t− s− h)y(s)

h

− S(t− s− h)S(h)y(s)− S(t− s− h)y(s)

h
.

Let (hn)n∈N in (0,∞) with hn ↓ 0 and µ ∈ M . By assumption, for y := y(s) ∈
D(Aδ), there exists a bounded decreasing sequence (Bny)n∈N in X with

(4.1)
∥∥∥y(s+ hn)− y(s)

hn
−Bny

∥∥∥ → 0 and Bny ↓ Aδy.

We define

νnz :=
µS(t− s− hn)(y + hnz)− µS(t− s− hn)y

hn

for all z ∈ Xδ and n ∈ N with t− s− hn > 0, where we take the unique extension

of S to Xδ given by Lemma B.2. Moreover, let

νz := lim sup
n→∞

νnz for all x ∈ X.

We first show that

(4.2) νz ≤ inf
h>0

µS(t− s)(y + hz)− µS(t− s)y

h
for all z ∈ X.
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Indeed, for every ε > 0 there exists some h0 > 0 and, by Corollary A.3, there

exists some m0 ∈ N such that

inf
h>0

µS(t− s)(y + hz)− µS(t− s)y

h
+ 2ε ≥ µS(t− s)(y + h0z)− µS(t− s)y

h0
+ ε

≥ µS(t− s− hm)(y + h0z)− µS(t− s− hm)y

h0

for all m ≥ m0. Hence, for all n ≥ m0, which satisfy hn ≤ h0, one has

inf
h>0

µS(t− s)(y + hz)− µS(t− s)y

h
+ 2ε

≥ µS(t− s− hn)(y + hnz)− µS(t− s− hn)y

hn
= νnz,

which shows (4.2) by taking the limit superior as n → ∞ and letting ε ↓ 0. As a

consequence of (4.2), it follows that ν is continuous from above (on X). Indeed,

for every sequence (zn)n∈N in X with zn ↓ 0, one has

0 ≤ inf
n∈N

νzn ≤ inf
h>0

inf
n∈N

µS(t− s)(y + hzn)− µS(t− s)y

h
= 0

so that νzn ↓ 0. Moreover, by definition, νz = limn→∞ supk≥n νkz for all z ∈ X,

and therefore ν : X → R is convex. By [11, Lem. 3.9], ν uniquely extends to a

convex monotone functional ν : Xδ → R, which is continuous from above. We next

show that

(4.3) lim sup
n→∞

νnBny = νAδy.

To that end, let ε > 0. Then there exist n0,m0 ∈ N such that

νAδy + 2ε ≥ νBn0y + ε = νBn0y + ε ≥ νmBn0y ≥ νmBmy

for all m ≥ m0 ∨n0, where the last inequality follows by monotonicity of νm. This

shows that

νAδy ≥ lim sup
n→∞

νnBny.

Further,

νAδy = inf
m∈N

νBmy = inf
m∈N

inf
n∈N

sup
k≥n

νkBmy = inf
n∈N

inf
m∈N

sup
k≥n

νkBmy

≤ inf
n∈N

sup
k≥n

νkBky = lim sup
n→∞

νnBny.
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By Lemma A.2 there exists some L > 0 such that∥∥∥S(t− s− hn)y(s+ hn)− S(t− s− hn)(y + hnBny)

hn

∥∥∥
≤ L

∥∥∥y(s+ hn)− y

hn
−Bny

∥∥∥ → 0

as n → ∞. Therefore, we conclude that

lim sup
n→∞

µ
(S(t− s− hn)y(s+ hn)− S(t− s− hn)y

hn

)
= lim sup

n→∞
νnBny

= νAδy.(4.4)

Since y = y(s) ∈ D(Aδ), it follows from (3.1) that there exists a bounded

decreasing sequence (Any)n∈N with∥∥∥S(hn)y − y

hn
−Any

∥∥∥ → 0 and Any ↓ Aδy.

By the same arguments as before, we get

lim sup
n→∞

µ
(S(t− s− hn)S(hn)y − S(t− s− hn)y

hn

)
= lim sup

n→∞
νnAny

= νAδy.(4.5)

Hence, in combination with (4.4), we get

lim sup
n→∞

µ
(S(t− s− hn)y(s+ hn)− S(t− s− hn)y(s)

hn

)
= lim sup

n→∞
µ
(S(t− s− hn)S(hn)y(s)− S(t− s− hn)y(s)

hn

)
(4.6)

for every sequence (hn)n∈N in (0,∞) with hn ↓ 0 and all µ ∈ M . As a consequence,

we conclude that

(4.7)
µg(s+ hn)− µg(s)

hn
→ 0

for every sequence (hn)n∈N in (0,∞) with hn ↓ 0 and all µ ∈ M . Indeed, by passing

to a subsequence (nk)k∈N, we may assume that

lim sup
n→∞

µg(s+ hn)− µg(s)

hn
= lim

k→∞

µg(s+ hnk
)− µg(s)

hnk

.
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By passing to another subsequence, which we still denote by (nk)k, we can further

assume that

lim inf
k→∞

µ
(S(t− s− hnk

)S(hnk
)y(s)− S(t− s− hnk

)y(s)

hnk

)
= lim sup

k→∞
µ
(S(t− s− hnk

)S(hnk
)y(s)− S(t− s− hnk

)y(s)

hnk

)
.(4.8)

Then, by applying the equality (4.6) to the subsequence (hnk
)k∈N, we obtain

lim sup
n→∞

µg(s+ hn)− µg(s)

hn
= lim

k→∞

µg(s+ hnk
)− µg(s)

hnk

≤ lim sup
k→∞

µ
(S(t− s− hnk

)y(s+ hnk
)− S(t− s− hnk

)y(s)

hnk

)
− lim inf

k→∞
µ
(S(t− s− hnk

)S(hnk
)y(s)− S(t− s− hnk

)y(s)

hnk

)
= 0,

where the last equality follows from (4.6) and (4.8). With similar arguments, we

also obtain lim infn→∞
µg(s+hn)−µg(s)

hn
≥ 0, which shows (4.7).

Since µ is continuous on X, see e.g. [1, Thm. 9.6], it follows by the same

arguments as in the proof of [13, Thm. 3.5] that s 7→ µg(s) is continuous on [0, t].

By [29, Lem. 1.1, Chap. 2], we conclude that the map s 7→ µg(s) is constant on

[0, t], since it is continuous and its right derivative vanishes on [0, t). In particular,

µy(t) = µg(t) = µg(0) = µS(t)y(0) for all µ ∈ M . This shows that y(t) = S(t)y(0)

as M separates the points of X.

Corollary 4.2. Let S be a convex monotone C0-semigroup on X which is contin-

uous from above with monotone generator Aδ, and let T be a convex C0-semigroup

on X with generator B and monotone generator Bδ such that Bδ ⊂ Aδ. If D(B) =

X, then S(t) = T (t) for all t ≥ 0.

Proof. For every x ∈ D(B), the mapping y : [0,∞) → X, y(t) := T (t)x satisfies the

assumptions of Theorem 4.1. Indeed, y(0) = x by definition, t 7→ y(t) is continuous

by Corollary A.3, and y(t) ∈ D(Bδ) ⊂ D(Aδ) by Theorem 3.5 with∥∥∥y(t+ hn)− y(t)

hn
−Bny(t)

∥∥∥ → 0 and Bny(t) ↓ Bδy(t) = Aδy(t),

where Bny(t) :=
T (t)(x+hnBx)−T (t)x

hn
for all n ∈ N. Hence, by Theorem 4.1, it follows

that T (t)x = y(t) = S(t)x for all t ≥ 0. Since, by Lemma A.1, the bounded convex

functions T (t) and S(t) are continuous, and D(B) = X, it holds that S(t) = T (t)

for all t ≥ 0.
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§5. Examples

§5.1. The uncertain shift semigroup

Let G be a convex set endowed with a metric d : G × G → [0,∞). We assume

that, for every x, y ∈ G and λ ∈ (0, 1), there exists some λ(x, y) ∈ G such that

d(x, λ(x, y)) = λd(x, y) and d(λ(x, y), y) = (1−λ)d(x, y). The space of all bounded

uniformly continuous functions f : G → R is denoted by BUC = BUC(G) and

endowed with the supremum norm ∥f∥∞ := supx∈G |f(x)|. Notice that BUC is a

Riesz subspace of the Dedekind σ-complete Riesz space L∞ of all bounded Borel

measurable functions f : G → R. On L∞ we consider the partial order f ≤ g

whenever f(x) ≤ g(x) for all x ∈ G.

The uncertain shift semigroup S on BUC is defined by

(S(t)f)(x) := sup
d(x,y)≤t

f(y) for all f ∈ BUC, x ∈ G, and t ≥ 0.

Lemma 5.1. The family S = (S(t))t≥0 is a sublinear monotone C0-semigroup on

BUC. Moreover,

DL = Ds
L = Lipb,

where Lipb = Lipb(G) is the space of all bounded Lipschitz continuous functions

G → R.

Proof. We first show that S(t) : BUC → BUC is well defined and bounded. To

this end, fix f ∈ BUC. Since

|S(t)f(x)| ≤ sup
d(x,y)≤t

|f(y)| ≤ ∥f∥∞ for all x ∈ G,

it follows that ∥S(t)f∥∞ ≤ ∥f∥∞. Fix ε > 0 and δ > 0 such that |f(x)− f(y)| ≤ ε

for all x, y ∈ G with d(x, y) ≤ δ. Let x, y ∈ G with d(x, y) ≤ δ and z ∈ G with

d(x, z) ≤ t. Then, for λ := t
t+δ , one has

d(y, λ(y, z)) = λd(y, z) ≤ λ(t+ δ) = t

and

d(z, λ(y, z)) = (1− λ)d(y, z) ≤ (1− λ)(t+ δ) = δ.

Hence,

f(z)− (S(t)f)(y) ≤ f(z)− f(λ(y, z)) ≤ ε.

Taking the supremum over all z ∈ G with d(x, z) ≤ t, it follows that

(S(t)f)(x)− (S(t)f)(y) ≤ ε.
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By a symmetry argument, we obtain that |S(t)f(x)−S(t)f(y)| ≤ ε, showing that

S(t)f is uniformly continuous with the same modulus of continuity as f . We thus

have shown that S(t) : BUC → BUC is well defined and bounded. By definition,

each S(t) is sublinear and monotone, and S(0)f = f for all f ∈ BUC. Moreover,

for t ≤ δ,

|(S(t)f)(x)− f(x)| ≤ sup
d(x,y)≤t

|f(y)− f(x)| ≤ ε

for all x ∈ G. Hence, ∥S(t)f − f∥∞ ≤ ε for all t ≤ δ, which shows that S is

strongly continuous. It remains to show that S satisfies the semigroup property.

Let s, t ≥ 0. Further, let x ∈ G and z ∈ G with d(x, z) ≤ s+ t. Then, for λ := t
s+t ,

it holds that

d(z, λ(x, z)) = (1− λ)d(x, z) ≤ s

and

d(x, λ(x, z)) = λd(x, z) ≤ t.

Hence,

f(z) ≤ sup
d(λ(x,z),y)≤s

f(y) = (S(s)f)(λ(x, z)) ≤ sup
d(x,y)≤t

(S(s)f)(y)

= (S(t)S(s)f)(x).

Taking the supremum over all z ∈ G with d(x, z) ≤ s+ t, it follows that

(S(s+ t)f)(x) ≤ (S(t)S(s)f)(x).

Now let z ∈ G with d(x, z) ≤ t. Then there exists a sequence (zn)n∈N in G with

d(z, zn) ≤ s and f(zn) → (S(s)f)(z). Then

(S(s)f)(z) = lim
n→∞

f(zn) ≤ sup
d(x,y)≤s+t

f(y) = (S(s+ t)f)(x).

Taking the supremum over all z ∈ G with d(x, z) ≤ t, yields that

(S(t)S(s)f)(x) ≤ (S(s+ t)f)(x).

Altogether, we have shown that S is a sublinear monotone C0-semigroup on BUC.

Now let f ∈ DL. Then there exist h0 > 0 and C ≥ 0 such that ∥S(h)f−f∥∞ ≤
Ch for all h ∈ [0, h0]. Hence, for all x, y ∈ G with d(x, y) =: h ≤ h0,

f(x)− f(y) ≤ (S(h)f)(y)− f(y) and f(y)− f(x) ≤ (S(h)f)(x)− f(x).

This implies that |f(x)− f(y)| ≤ ∥S(h)f − f∥∞ ≤ Ch = Cd(x, y). Since f ∈ BUC

is bounded, it follows that f ∈ Lipb. On the other hand, if f ∈ Lipb ⊂ BUC with

Lipschitz constant C > 0, it follows that

∥(S(h)f)(x)− f(x)∥ ≤ sup
d(x,y)≤h

|f(y)− f(x)| ≤ Cd(x, y) ≤ Ch
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for all x ∈ G and h ≥ 0. Therefore, f ∈ DL. Since −f ∈ Lipb for all f ∈ Lipb, it

follows that Lipb ⊂ Ds
L. Since, by definition, Ds

L ⊂ DL, the assertion follows.

We now specialize to the case where G = R endowed with the Euclidean

distance d(x, y) = |x− y|. In this case, the uncertain shift semigroup is given by

(S(t)f)(x) = sup
|y|≤t

f(x+ y)

for all x ∈ R and t ∈ [0,∞). By Lemma 5.1, it follows that S is a sublinear

monotone C0-semigroup on BUC. In addition, by Dini’s lemma, it is continuous

from above. Denote by Aδ : D(Aδ) ⊂ BUC → BUCδ the monotone generator of

S. Notice that BUCδ is the space of all bounded upper semicontinuous functions

R → R. Moreover, by Lemma 5.1, we have that DL = Ds
L = W 1,∞. Recall that

the space of all Lipschitz continuous functions coincides with the space W 1,∞ of

all functions with weak derivative f ′ ∈ L∞ (w.r.t. the Lebesgue measure). As

usual, we denote by BUC1 the space of all f ∈ BUC which are differentiable with

f ′ ∈ BUC. From a PDE point of view, one might consider BUC1 to be the canonical

choice for the domain of the generator of S. However, the following example shows

that this does not yield an m-accretive operator.

Example 5.2. Let X = BUC and B : D(B) → X with Bf := |f ′| for f ∈
D(B) := BUC1. Then B is accretive, i.e., for some (equivalently, for any) h > 0,

1 + hB is injective and

∥(1 + hB)−1g1 − (1 + hB)−1g2∥ ≤ ∥g1 − g2∥ for all g1, g2 ∈ R(1 + hB);

cf. [3, Prop. 3.1] and [8, Form. (8)]. To see this, let f1, f2 ∈ D(B) and h > 0. We set

g := f1 − f2 and choose a sequence (xk)k∈N in R with |g(xk)| → ∥g∥∞ as k → ∞.

If (xk)k∈N has a finite accumulation point x0, then we have |g(x0)| = ∥g∥∞, and

the function g has a local extremum at x0. Consequently, g
′(x0) = 0 and therefore

f ′
1(x0) = f ′

2(x0). We obtain

∥f1 − f2 + h(|f ′
1| − |f ′

2|)∥∞ ≥
∣∣f1(x0)− f2(x0) + h(|f ′

1(x0)| − |f ′
2(x0)|)

∣∣
= |f1(x0)− f2(x0)| = |g(x0)| = ∥g∥∞ = ∥f1 − f2∥∞.

If (xk)k∈N has no finite accumulation point, we may w.l.o.g. assume that xk → ∞
as k → ∞. Moreover, taking a subsequence we may also assume that g(xk) →
±∥g∥∞ as k → ∞. Again, w.l.o.g. let g(xk) → ∥g∥∞ as k → ∞. Let ε > 0, and

choose k0 ∈ N with

∥g∥∞ − ε̃ ≤ g(xk) ≤ ∥g∥∞ for all k ≥ k0,
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where we have set ε̃ := min{ ε
2 ,

ε
2h}. Let ℓ0 > k0 with xℓ0 ≥ xk0

+1. As g ∈ BUC1,

there exists some y0 ∈ (xk0
, xℓ0) with

ε̃ ≥ |g(xℓ0)− g(xk0
)| = |g′(y0)| |xℓ0 − xk0

| ≥ |g′(y0)|.

We obtain

∥f1 − f2 + h(|f ′
1| − |f ′

2|)∥∞ ≥
∣∣f1(y0)− f2(y0) + h(|f ′

1(y0)| − |f ′
2(y0)|)

∣∣
≥ |f1(y0)− f2(y0)| − h

∣∣|f ′
1(y0)| − |f ′

2(y0)|
∣∣

≥ |f1(y0)− f2(y0)| − h|f ′
1(y0)− f ′

2(y0)|
= |g(y0)| − h|g′(y0)| ≥ ∥g∥∞ − ε

2 − h ε
2h

= ∥f1 − f2∥∞ − ε.

As ε > 0 was arbitrary, we see that also in this case the inequality

∥f1 − f2 + h(|f ′
1| − |f ′

2|)∥∞ ≥ ∥f1 − f2∥∞

holds, which shows that B is accretive.

However, the operator B is not m-accretive, i.e., the operator 1 + hB is not

surjective. For this, let h > 0, and set u(x) := (1−|x|)1[−1,1](x) for x ∈ R. Assume

that there exists some f ∈ D(B) with

(5.1) f(x) + h|f ′(x)| = u(x) for x ∈ R.

As u is an even function, we see that the function f̄ defined by f̄(x) := f(−x) is

also a solution of (5.1). As B is accretive, the operator 1 + hB is injective, which

shows that f̄ = f , i.e., the solution f is an even function too. As f ∈ BUC1, we

get f ′(0) = 0 and therefore f(0) = u(0) = 1. Now, the differentiability of f leads

to a contradiction with f(x) ≤ u(x) for all x ∈ R, which holds by (5.1).

Proposition 5.3. Let G = R. Then BUC1 ⊂ D(A) ⊂ D(Aδ) ⊂ DL = Ds
L =

W 1,∞. In particular, S(t)f ∈ W 1,∞ for every f ∈ W 1,∞ and all t ≥ 0. Further,

for f ∈ D(Aδ), one has Aδf = |f ′| almost everywhere.

Proof. If f ∈ BUC1, it follows from Taylor’s theorem that∥∥∥S(h)f − f

h
− |f ′|

∥∥∥
∞

→ 0 as h ↓ 0.

Hence, by Lemmas 3.4 and 5.1,

BUC1 ⊂ D(A) ⊂ D(Aδ) ⊂ DL = Ds
L = W 1,∞.

In particular, W 1,∞ is invariant under the uncertain shift semigroup by Theo-

rem 3.5.
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Let f ∈ W 1,∞. By Rademacher’s theorem the function f is differentiable

almost everywhere. If f is differentiable at x, then

lim
h↓0

(S(h)f)(x)− f(x)

h
= lim

h↓0
sup
|y|≤h

f(x+ y)− f(x)

h

= lim
h↓0

sup
|y|=h

f(x+ y)− f(y)

h
= |f ′(x)|.

Since, for f ∈ D(Aδ), one has

(Aδf)(x) = lim
h↓0

(S(h)f)(x)− f(x)

h

for all x ∈ Rd, we conclude that Aδf = |f ′| almost everywhere. Here, f ′ is under-

stood as the weak derivative in L∞.

The following example shows that, in general, D(A) is not invariant under

the semigroup (S(t))t≥0.

Example 5.4. Consider the case G = R, and let f ∈ BUC1 with

f(x) =

{
x2, x ∈ [0, 2],

x4, x ∈ [−2, 0).

Then, by Proposition 5.3, S(1)f ∈ D(Aδ) ⊂ W 1,∞ with AδS(1)f = |(S(1)f)′|. By
definition of S(1),

(S(1)f)(x) =

{
(x+ 1)2, x ∈ [0, 1],

(x− 1)4, x ∈ [−1, 0),

which implies that

(S(1)f)′(x) =

{
2(x+ 1), x ∈ (0, 1),

4(x− 1)3, x ∈ (−1, 0).

Therefore, AδS(1)f = |(S(1)f)′| /∈ BUC and, in particular, S(1)f /∈ D(A).

§5.2. The G-expectation

Let 0 ≤ σ ≤ σ. We consider the G-expectation on BUC = BUC(R), which corre-

sponds to the sublinear semigroup

(S(t)f)(x) := sup
σ∈Σ

E
[
f

(
x+

∫ t

0

σs dWs

)]
for f ∈ BUC, x ∈ G, and t ≥ 0,
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where W is a Brownian motion on a filtered probability space (Ω,F , (Ft),P) and
Σ denotes the set of all progressively measurable processes with values in [σ, σ]; see

e.g. [10] and [32] for an overview on G-expectations. Note that we do not assume

that σ > 0, which is a standard assumption in PDE theory for obtaining regularity

results in Hölder spaces (cf. Lieberman [23, Chap. XIV] and Peng [32, App. C, §4]

for a short survey). An inspection shows that S is a translation-invariant sublinear

C0-semigroup on BUC which is continuous from above. Moreover, an application

of Itô’s formula leads to

(5.2) lim
h↓0

S(h)f − f

h
=

1

2
max

{
σ2f ′′, σ2f ′′} for all f ∈ BUC2,

where BUC2 denotes the set of all f ∈ BUC1 with first derivative f ′ ∈ BUC1. In

particular, BUC2 ⊂ D(A). We next determine the symmetric Lipschitz set.

Lemma 5.5. The symmetric Lipschitz set is given by Ds
L = W 2,∞.

Proof. First, we show that Ds
L ⊂ W 2,∞. To that end, fix f ∈ Ds

L. By definition of

the symmetric Lipschitz set, there exist C > 0 and h0 > 0 such that f ∈ Ds
L(C, h0).

For every δ > 0, we define fδ(x) :=
∫
R f(x + y) νδ(dy), where νδ is the normal

distribution N (0, δ) with mean zero and variance δ. Then it holds that fδ ∈ BUC2

for all δ > 0, and ∥fδ − f∥∞ → 0 as δ ↓ 0. It follows from Remark 3.8 that

S(h)fδ − fδ ≤ Ch and − S(h)(−fδ)− fδ ≥ −Ch

for all h ∈ [0, h0] and δ > 0. Hence, letting h ↓ 0, we obtain

1

2
σ2f ′′

δ ≤ C and
1

2
σ2f ′′

δ ≥ −C.

This shows that ∥f ′′
δ ∥∞ is uniformly bounded in δ > 0. Hence, there exists a

sequence δn ↓ 0 such that
∫ y

x
f ′′
δn
(z)− g(z) dz → 0 for all x, y ∈ R with x < y and

some g ∈ L∞. By the dominated convergence theorem, we obtain

f(x+ h)− f(x)

h
= lim

n→∞

(fδn(x+ h)− fδn(x)

h

)
= lim

n→∞

(
f ′
δn(x) +

1

h

∫ x+h

x

∫ y

x

f ′′
δn(z) dz dy

)
= lim

n→∞
f ′
δn(x) +

1

h

∫ x+h

x

∫ y

x

g(z) dz dy

for all x ∈ R and h > 0. Since limh↓0
1
h

∫ x+h

x

∫ y

x
g(z) dz dy → 0 for all x ∈ R,

we conclude that f is differentiable with f ′(x) = limn→∞ f ′
δn
(x) and second weak

derivative f ′′ = g. For the special choice h = 1, we observe that f ′ ∈ L∞. This

shows that f ∈ W 2,∞.
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Second, we show that W 2,∞ ⊂ Ds
L. Fix f ∈ W 2,∞ and set fn :=

∫
R f( · +

y) νδn(dy) for all n ∈ N. Then fn ∈ BUC2 with ∥f ′
n∥∞ ≤ ∥f ′∥∞ and ∥f ′′

n∥∞ ≤
∥f ′′∥∞ for all n ∈ N. For all σ ∈ Σ, x ∈ R, and n ∈ N, it follows from Itô’s formula

that

E
[
fn

(
x+

∫ h

0

σs dWs

)]
− fn(x) ≤ 1

2∥f
′′∥∞σ2h.

Since fn → f pointwise and ∥fn∥∞ ≤ ∥f∥∞, we obtain from the dominated

convergence theorem that

E
[
f

(
x+

∫ h

0

σs dWs

)]
− f(x) ≤ 1

2∥f
′′∥∞σ2h.

Taking the supremum over all σ ∈ Σ, replacing f by −f , and using the subaddi-

tivity of S(h) yield

S(h)f − f ≤ 1
2∥f

′′∥∞σ2h and − S(h)f + f ≤ S(h)(−f) + f ≤ 1
2∥f

′′∥∞σ2h.

Combining the previous two estimates implies that f ∈ Ds
L.

The previous result can be seen as a regularity result, ensuring that W 2,∞-

regularity of the initial value is preserved under the semigroup. The following

proposition shows that the equality (5.2) extends from BUC2 to W 2,∞ in a point-

wise sense almost everywhere.

Proposition 5.6. Let f ∈ W 2,∞. Then S(t)f ∈ W 2,∞ for all t ≥ 0. Moreover,

lim
h↓0

S(h)f − f

h
= 1

2 max
{
σ2f ′′, σ2f ′′} almost everywhere,

where the limit on the left-hand side exists pointwise almost everywhere.

Proof. Fix f ∈ W 2,∞. As an application of Proposition 3.6 and Lemma 5.5, we

obtain that Ds
L = W 2,∞ is invariant under the semigroup S, i.e., S(t)f ∈ W 2,∞

for all t ≥ 0.

For σ ∈ Σ, we consider the stochastic integral Xσ,t :=
∫ t

0
σs dWs for all

t ≥ 0. Since f ∈ W 2,∞, it holds that f ′ ∈ Lipb and, by Rademacher’s theo-

rem, the function f ′ is differentiable almost everywhere, and the pointwise deriva-

tive coincides with the weak derivative f ′′ ∈ L∞ almost everywhere. Suppose

that f ′ is differentiable at x ∈ R with |f ′′(x)| ≤ ∥f ′′∥∞, so that f(x + ξ) =



Convex Monotone Semigroups on Lattices of Continuous Functions 415

f(x) + f ′(x)ξ + 1
2f

′′(x)ξ2 + o(ξ2) as |ξ| → 0.1 Then we obtain for every h > 0,∣∣∣ (S(h)f)(x)− f(x)

h
− 1

2
max

{
σ2f ′′(x), σ2f ′′(x)

}∣∣∣
=

∣∣∣ (S(h)f)(x)− f(x)

h
− sup

σ∈Σ

1

2
f ′′(x)E

[X2
σ,h

h

]∣∣∣
≤ sup

σ∈Σ

∣∣∣ 1
h
E
[
f(x+Xσ,h)− f(x)− 1

2
f ′′(x)X2

σ,h

]∣∣∣
= sup

σ∈Σ

∣∣∣ 1
h
E[R(Xσ,h)]

∣∣∣ with R(ξ) := f(x+ ξ)− f(x)− f ′(x)ξ − 1
2f

′′(x)ξ2.

Note that (Xσ,t)t≥0 is a martingale, so that E[Xσ,t] = 0 for all t ≥ 0. Since the first

derivative f ′ of f is Lipschitz with Lipschitz constant ∥f ′′∥∞ and |f ′′(x)| ≤ ∥f ′′∥∞,

it follows that

|R(ξ)| ≤
∫ 1

0

∣∣(f ′(x+ τξ)− f ′(x))ξ − τξ2f ′′(x)
∣∣ dτ ≤ 2∥f ′′∥∞ξ2 for all ξ ∈ R,

and the Burkholder–Davis–Gundy inequality implies that there exists a constant

C > 0, such that

sup
σ∈Σ

∣∣∣ 1
h
E[R(Xσ,h)1{|Xσ,h|≥δ}]

∣∣∣ ≤ sup
σ∈Σ

1

h
E[R(Xσ,h)

2]1/2 · P(|Xσ,h| ≥ δ)1/2

≤ 1

h
· Cσ2h · σ

√
h

δ
≤ Cσ3

√
h

δ
for all δ > 0.

Let ε > 0. Since R(ξ) = o(ξ2), there exists some δ > 0 such that R(ξ) ≤ εξ2 for

|ξ| < δ. Hence,

sup
σ∈Σ

∣∣∣ 1
h
E[R(Xσ,h)]

∣∣∣ ≤ Cσ3
√
h

δ
+ sup

σ∈Σ

∣∣∣ 1
h
E[R(Xσ,h)1{|Xσ,h|<δ}]

∣∣∣
≤ Cσ3

√
h

δ
+ εσ2.

Letting h ↓ 0, this shows that (S(h)f)(x)−f(x)
h → 1

2 max{σ2f ′′(x), σ2f ′′(x)}. The
proof is complete.

Appendix A. Some auxiliary results

In this section, we list some basic properties for convex operators and semigroups,

which can be found, for example, in [13].

1Indeed, since f ′ is differentiable at x, it holds that sup0≤τ≤1 |f ′(x+τξ)−f ′(x)−τξf ′′(x)| =
o(ξ). Integrating w.r.t. τ yields | f(x+ξ)−f(x)

ξ
− f ′(x) − 1

2
ξf ′′(x)| ≤

∫ 1
0 |f ′(x + τξ) − f ′(x) −

τξf ′′(x)| dτ = o(ξ).
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Lemma A.1 ([13, Cor. A.4]). Let S : X → X be a bounded and convex operator.

Then S is Lipschitz on bounded subsets, i.e., for every r > 0, there exists some

L > 0 such that ∥Sx− Sy∥ ≤ L∥x− y∥ for all x, y ∈ B(0, r).

For the remainder of this subsection, let S be a convex C0-semigroup on X.

Lemma A.2 ([13, Cor. 2.4]). Let T > 0 and x0 ∈ X. Then there exist L ≥ 0 and

r > 0 such that

sup
t∈[0,T ]

∥S(t)y − S(t)z∥ ≤ L∥y − z∥

for all y, z ∈ B(x0, r).

Corollary A.3 ([13, Cor. 2.5]). The map [0,∞) → X, t 7→ S(t)x is continuous

for all x ∈ X.

Proposition A.4 ([13, Prop. 2.7]). Let x ∈ X with

sup
h∈(0,h0]

∥∥∥S(h)x− x

h

∥∥∥ < ∞ for some h0 > 0.

Then the map [0,∞) → X, t 7→ S(t)x is locally Lipschitz continuous, i.e., for

every T > 0, there exists some LT ≥ 0 such that ∥S(t)x− S(s)x∥ ≤ LT |t− s| for
all s, t ∈ [0, T ].

Appendix B. Directional derivatives of convex operators

In this section, we provide some results on directional derivatives of convex oper-

ators.

Lemma B.1. Let (xn)n∈N be a sequence in X. If (yn)n∈N and (zn)n∈N are de-

creasing sequences in X which are bounded from below such that ∥xn − yn∥ → 0

and ∥xn − zn∥ → 0, then infn∈N yn = infn∈N zn.

Proof. Fix µ ∈ M . Since µ is continuous on X, see e.g. [1, Thm. 9.6], one has

µ(yn − zn) = µ(yn − xn) + µ(xn − zn) → 0,

which shows that

µ
(
inf
n∈N

yn
)
= lim

n→∞
µyn + lim

n→∞
µ(zn − yn) = lim

n→∞
µzn = µ

(
inf
n∈N

zn
)
.

Since infn∈N yn, infn∈N zn ∈ Xδ, and M separates the points of Xδ, it follows that

infn∈N yn = infn∈N zn.
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Lemma B.2. Let S : X → X be a convex monotone operator which is continuous

from above. Then it has a unique monotone convex extension S : Xδ → Xδ which

is continuous from above.

Proof. For each µ ∈ M , the convex monotone functional µS : X → R is continuous

from above. Thus, by [11, Lem. 3.9], it has a unique extension to a convex monotone

functional µS : Xδ → R which is continuous from above.

Fix x ∈ Xδ. For (xn)n∈N and (yn)n∈N in X with xn ↓ x and yn ↓ x, one has

µ
(
inf
n∈N

Sxn

)
= inf

n∈N
µSxn = µS

(
inf
n∈N

xn

)
= µS

(
inf
n∈N

yn
)

= inf
n∈N

µSyn = µ
(
inf
n∈N

Syn
)
.

Hence, Sx := infn∈N Sxn is well defined as M separates the points of Xδ. Then S

is convex and continuous from above as

µ
(
inf
n∈N

Sxn

)
= inf

n∈N
µSxn = µSx

for every (xn)n∈N in Xδ with xn ↓ x ∈ Xδ. Moreover, if S̃ is another extension

which is continuous from above, then S̃x = limn→∞ S̃xn = limn→∞ Sxn = Sx

for every (xn)n∈N in X with xn ↓ x ∈ Xδ, which shows that such an extension is

unique.

Let S : X → X be a convex operator. Then the function

R \ {0} → X, h 7→ S(x+ hy)− Sx

h

is increasing for all x, y ∈ X. Hence, for all x ∈ X, the operators

(B.1) S′
+(x)y := inf

h>0

S(x+ hy)− Sx

h
and S′

−(x)y := sup
h<0

S(x+ hy)− Sx

h

for y ∈ X are well defined with values in X since

S′
+(x)y = inf

n∈N

S(x+ hny)− Sx

hn
∈ Xδ

and

S′
−(x)y = sup

n∈N

Sx− S(x− hny)

hn
∈ −Xδ

for every sequence (hn)n∈N in (0,∞) with hn → 0. The following properties follow

directly from the definition.
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Remark B.3. For every x, y ∈ X, it holds that

(i) S′
−(x)y = −S′

+(x)(−y),

(ii) S′
−(x)y ≤ S′

+(x)y,

(iii) S′
+(x)y = S′

−(x)y = Sy if S is linear.

If S : X → X is a convex monotone operator which is continuous from above,

then by Lemma B.2, it has a unique convex monotone extension S : Xδ → Xδ

which is continuous from above. Therefore, S(x + hy) ∈ Xδ for all y ∈ Xδ and

h > 0. Hence, S′
+(x) extends to

S′
+(x) : Xδ → Xδ, y 7→ inf

h>0

S(x+ hy)− Sx

h

for all x ∈ X.

Lemma B.4. Let S : X → X be a convex monotone operator which is continuous

from above. For every x ∈ X, the mapping S′
+(x) has the following properties:

(i) S′
+(x)y ≤ Sxy for all y ∈ Xδ,

(ii) S′
+(x) : Xδ → Xδ is convex and positive homogeneous,

(iii) S′
+(x) is continuous from above,

(iv) S(x+hnyn)−Sx
hn

↓ S′
+(x)y for all sequences (hn)n∈N in (0,∞) and (yn)n∈N in

Xδ which satisfy hn ↓ 0 and yn ↓ y ∈ Xδ.

Proof. (i) For every y ∈ Xδ, one has S′
+(x)y ≤ S(x+ y)− S(x) = Sx(y).

(ii) For ε > 0, µ ∈ M , and λ ∈ [0, 1], there exists some h > 0 such that

µ(λS′
+(x)y1 + (1− λ)S′

+(x)y2) + ε

≥ λ
µS(x+ hy1)− µS(x)

h
+ (1− λ)

µS(x+ hy2)− µS(x)

h

≥
µS

(
x+ h(λy1 + (1− λ)y2)

)
− µS(x)

h

≥ µS′
+(x)(λy1 + (1− λ)y2).

This shows that S′
+(x) is convex on Xδ. Moreover, for λ > 0 and y ∈ Xδ, it holds

that

S′
+(x)(λy) = inf

h>0

S(x+ λhy)− Sx

h

= λ inf
h>0

(S(x+ λhy)− Sx

λh

)
= λS′

+(x)y.
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(iii) For every yn ↓ y,

inf
n∈N

S′
+(x)yn = inf

h>0
inf
n∈N

S(x+ hyn)− S(x)

h

= inf
h>0

S(x+ hy)− S(x)

h
= S′

+(x)y.

(iv) Fix ε > 0, and µ ∈ M . By definition of S′
+ and continuity from above of

S, there exist n0,m0 ∈ N such that

µS′
+(x)y + 2ε ≥ µS(x+ hn0y)− µSx

hn0

+ ε

≥ µS(x+ hn0
ym0

)− µSx

hn0

≥ µS(x+ hn1
yn1

)− µSx

hn1

for n1 := n0∨m0. This shows that
S(x+hnyn)−Sx

hn
↓ S′

+(x)y. The proof is complete.
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[27] A. Neufeld and M. Nutz, Nonlinear Lévy processes and their characteristics, Trans. Amer.
Math. Soc. 369 (2017), 69–95. Zbl 1356.60075 MR 3557768

[28] M. Nisio, On a non-linear semi-group attached to stochastic optimal control, Publ. Res.
Inst. Math. Sci. 12 (1976/77), 513–537. Zbl 0364.93039 MR 0451420

[29] A. Pazy, Semigroups of linear operators and applications to partial differential equations,
Applied Mathematical Sciences 44, Springer, New York, 1983. Zbl 0516.47023 MR 710486

[30] S. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type,
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