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Construction of the Affine Super Yangian

by

Mamoru UEDA

Abstract

In this paper, we define the affine super Yangian Yz, ., (sl(m|n)) with a coproduct struc-
ture. We also obtain an evaluation homomorphism, that is, an algebra homomorphism
from Yz, ¢, (s[(m|n)) to the completion of the universal enveloping algebra of gl(m|n).
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§1. Introduction

Drinfel’d ([5, 6]) defined the Yangian of a finite-dimensional simple Lie algebra
g in order to obtain a solution of the Yang—Baxter equation. The Yangian is a
quantum group which is the deformation of the current algebra g[z]. He defined
it by three different presentations. One of those presentations is called the Drin-
fel’d presentation, whose generators are {hm,xfr | r € Z>o}, where {h;, zF} are
Chevalley generators of g. The definition of the Yangian as an associative algebra
naturally extends to the case that g is a symmetrizable Kac—-Moody Lie algebra
in the Drinfel’d presentation. Defining its quasi-Hopf algebra structure is more
involved, but this problem has been settled for affine Kac-Moody Lie algebras in
[12, 1, 25].

It is known that the Yangians are closely related to W-algebras. It was shown
in [21] that there exist surjective homomorphisms from Yangians of type A to
rectangular finite W-algebras of type A. More generally, Brundan and Kleshchev
([4]) constructed a surjective homomorphism from a shifted Yangian, a subalgebra
of the Yangian of type A, to a finite W-algebra of type A. Using a geometric
realization of the Yangian, Schiffmann and Vasserot ([23]) have constructed a
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surjective homomorphism from the Yangian of é\[(l) to the universal enveloping
algebra of the principal W-algebra of type A, and proved the celebrated AGT
conjecture ([8, 2]).

In the case of the Lie superalgebra sl(m|n), the corresponding Yangian in the
Drinfel’d presentation was first introduced by Stukopin ([24], see also [9]). The
relationship between Yangians and W-algebras was also studied in the case of
finite Lie superalgebras by Briot and Ragoucy [3] for sl(m|n) and by Peng [20]
for gl(1|n). In the recent paper [7], Gaberdiel, Li, Peng and H. Zhang defined the
Yangian gA[(1|1) for the affine Lie superalgebra gl( 1]1) and obtained similar results
to [23] in the super setting.

In this article we define the affine super Yangian Yz, ., (sl(m|n)) as a quantum
group (= an associative algebra equipped with a coproduct satisfying compatibil-
ity conditions) in the Drinfel’d presentation. We upgrade the definition of the
Yangian associated with sl(m|n) of Gow [9] to define the affine super Yangian
Yo, e (sl(m|n)) as an associative algebra; see Definition 3.1. However, to define the
coproduct for Y;, ., (s?[(m\n)), we need to obtain yet another presentation, that is,
a minimalistic presentation.

Theorem 1.1. The affine super Yangian Yz, ., (g[(m\n)) is isomorphic to the as-
sociative superalgebra over C generated by x;fr, T, hir O<i<m+n-1,

r =0,1) subject to the defining relations (3.17)—(3.25).

By Theorem 1.1, the following assertion gives a coproduct A for Y, ., (;[(m\n))
that is compatible with the defining relations (3.17)—(3.25).

Theorem 1.2. We can define an algebra homomorphism
A: Yz, oy (sl(mln)) = Yz, o, (sU(mln)) @ Yz, e, (sl(mln))

that satisfies the coassociativity. Here, Yehsz,(;[(m|n)) ® Yshsz(gl(m\n)) is the
degreewise completion of Yz, o, (sl(m|n)) ® Yz, ., (sl(m|n)) in the sense of [18].

When g is sl(n), Y3, (sl(n)) has an evaluation map ev: Y3 (sl(n)) — U(sl(n)),
which enables us to define actions of Y, (sl(n)) on any highest weight representa-
tion of sl(n). In [11], Guay showed that the affine Yangian Y., ., (sI(n)) has the
evaluation map ev: Y, , (sl(n)) — ﬁ(gA[(n)), where ﬁ(ﬁ[(n)) is a completion of
the universal enveloping algebra of gA[(n) The surjectivity of Guay’s evaluation
map is not trivial and was recently shown in [15]. In the second half of this paper,
we construct an evaluation map of the affine super Yangian Yz, ., (5/-\[(m|n)) (see
Theorem 5.1).
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Theorem 1.3. Assume ch = (—m + n)ey. Then there exists a nontrivial alge-
bra homomorphism ev: Y, ., (g[(m|n)) — U(g/;\[(m|n))comp7+ determined by (5.2)—
(5.?\), where U(gA[(m|n))00mp,+ is a completion of the universal enveloping algebra
of gl(m|n).

This paper is organized as follows. In Section 2 we recall the definitions of
the Lie superalgebras sl(m|n) and ;[(m|n) In Section 3 we define the affine super
Yangian of type A and give the minimalistic presentation. Note that the Yangian
for the finite-dimensional Lie superalgebra is defined only for type A in the litera-
ture. In Section 4 we define its coproduct. Finally, we give the evaluation map for
the affine super Yangian in Section 5.

§2. Preliminaries

In this section we recall the definition and presentation of the Lie superalgebra
sl(m|n) (see [13]). First, we recall the definitions of sl[(m|n) and gl(m|n).

Definition 2.1. Let us set My ;(C) as the set of k x [ matrices over C. We define
the Lie superalgebras sl(m|n) and gl(m|n) as

gl(m|n) = {(AB) | A € My m(C), BE My n(C), C € Mym(C), D € My, (C)},
slimln) = {(45) g[(m|n | tr(A) — tr(D) = 0},

where we define [( )] as

( ) ( (AE EA+ (BG + FC) AF+BH—(EB+FD)>

CE+ DG - (GA+ HC) DH—-HD + (CF + GB)
As with sl(m), sl(m|n) has a presentation whose generators are Chevalley

generators (see [22, 10]).

Proposition 2.2. We setp: {1,...,m+n} — {0,1} as

(i) = 0 (1<i<m),
pe= 1 (m+1<i<m+n).

Suppose that m,n > 2, m # n and A = (@i j)1<ij<mtn—1 8 an (m+n —1) x
m +n — 1) matriz whose components are

( ) D

(=D + (1P ifi=

—(=1)P+ ifj=i+1,

—(-1)?? ifj=i-1,

0 otherwise.

Qi3 =
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Then sl(m|n) is isomorphic to the Lie superalgebra over C defined by the generators
{zF, h; |1 <i<m+n—1} and by the relations

_ 1+lai ;|
[hi, hi] =0, [hi7x;t] = :tai,jx;t7 [xj,xj | =i jhi, ad(mli) xf =0,
[, e =0, ([ 1, 2], [T, 7] =0,

+

m
The isomorphism ¥ is given by

where the generators x> are odd and all other generators are even.

U(hi) = (~)" By — (1" B,
U(x]) = Ei i1,

U(z7) = ()PP B

Next we recall the definition of the affinization of sl(m|n) and gl(m|n) (see
[19]). Lie superalgebra sl(m|n) has a nondegenerate invariant bilinear form x: g ®
g — C. The bilinear form is uniquely determined up to a scalar multiple, so we fix
it.

Definition 2.3. Suppose that g is sl(m|n) or gl(m|n). Then we set a Lie super-

algebra g as g ® C[t*!] @ Cc @ Cd whose commutator relations are

[a®t,b@t"] = [a,b] @ 7 + s851u,06(a, b)c,
c is a central element of g,

[d,a®t°] =sa®@t°.
We also set a subalgebra g C g as g ® C[t*!] @ Cc.
We have another presentation of sl(m|n) (see [26]).

Proposition 2.4. Suppose that m,n > 2, m # n and A = (@i j)o<i j<m+n—1 8
an (m+n) X (m + n) matriz whose components are

(=D + (1P ifi=

_(_1)p(i+1) ifj=1i+1,

ai; = —(=1)"" ifj=i-1,

if (i,§) = (0,m+n—1),(m+n—1,0),

0 otherwise.
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Then ;[(m\n) is isomorphic to the Lie superalgebra over C defined by the generators
{ifihi,d |0 <i<m+n—1} and by the relations

(i=0). [ =0,
d,x; ] =
( ] {

otherwise), 0 (otherwise),

+
Ly

(2.6) [hishj] =0, [he, o] = +ai0F, [uf,27] = 6ishi, ad(@) Tt =0,

vy J’ (R J
(2.7) [zE,2E] =0, [z, 2E] =0,
(2'8) Hx'ni@—la xvjr:z}v [xni@+1’ m” - O Hxi—&-n—l? moi] [.’L‘I‘L, .ﬁg“ 0)

where the generators xt, and xo are odd and all other generators are even.
The isomorphism E is given by

(h) B _El,l - E7rz+n,m+n +c (Z = 0),
l (1P E; — ()" VB A<i<m+n-—1),

(1]

(1’+) _ {E’m+n,1 ®t (Z = O)a
! Eiit1 (otherwise),

[1]

—Eimyn @t (i=0),
_1)P(i)Ei+1’i (otherwise).

(1]

Moreover, ;[(m|n) is isomorphic to the Lie superalgebra over C defined by the
generators {x= h; |0 <i <m+n—1} and by the relations (2.6)~(2.8).

Finally, we set some notation. Let us set {c;}o<i<m+n—1 as a set of simple
roots of sl(m|n) and & as a positive root > 0<i<min_1 Q- Moreover, we set A
(resp. Ay) as a set of roots (resp. positive roots) of sl(m|n). We denote the parity
of E; ; as p(£; ;). Obviously, p(E; ;) is equal to p(i) + p(j). We also set A’ and
A™ as Ay \Z>05 and A\ Z§. We also take an inner product on Py, 41 Covi
determined by (a;, ;) = a; ;. Assume that g = sl(m|n) and let g, be the root o
space of g. We set {2 }1<4 <dimg. as a basis of g, which satisfies k(22,27 ) =
8pq for all @ € Ay. We also denote the parity of z¥ by p(a). Moreover, we
sometimes identify {0,...,m +n — 1} with Z/(m + n)Z and denote it by I

§3. The minimalistic presentation of the affine super Yangian

First, we define the affine super Yangian Yz, ., (sl(m|n)). This definition is a gen-
eralization of Stukopin’s super Yangian ([24]). Let us set {z,y} as xy + yz.

Definition 3.1. Suppose that m,n > 2 and m # n. The affine super Yangian
Y., e, (sl(m|n)) is the associative superalgebra over C generated by xz v Tigs Py
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(t € {0,1,...,m+n—1}, r € Z>o) with parameters e1,e2 € C subject to the
defining relations

(3 2) [ 17‘7]7’],8] =0,
(3.3) [ i Ly, 9] 0ijhirts,
(3.4) [hip, ]r} :I:a”m;tT,
£1 +52 E1—E9
(3 5) [ i r+1a ;ts] - [hi,rax;‘fs_i,_l] = iai ] {hz ry L ] s bi,j 92 [hi,ra ;‘lfs]a
61—|—€2 £1—E€9
(3.6) [a:itrﬂ,xji’s] - [a:fr,mji’sﬂ] = *+a;; 5 xii’r,xji’s — b 5 [xfr,mfs],
(3‘7) CZ [:C:;lv:rw(l)’ [:C'?,:Tw(2)) ctt [I?’:Tw(1+‘ai,j\) I xfs}? cr ]] = 0 (Z # J)’
weh’lﬁ—lai,j\
(3.8) [z, 2] =0 (i=0,m),
(3.9) [[xiiq,rvxii,o]’ [xi[o:xﬁm]] =0 (i=0,m),
where
(=) 4+ (1P it =,
—(=1)PD ifj=i+1,
ai; =4 —(—1)P® ifj=i—1,
1 if (i,5) = (0,m+n—1),(m+n—1,0),
0 otherwise,
—(=D)PUED g =41,
(—1)P® ifj=i—1,
0 otherwise,

+

and the generators z;. . and :rgr are odd and all other generators are even.

Remark 3.10. In this paper, we set [z,y] as zy — (—l)p(z)p(y)yx for all homoge-
neous elements x, y. Thus, (3.8) is nontrivial.

We also define the affine super Yangian associated with sl(m/|n).

Definition 3.11. Suppose that m,n > 2 and m # n. We define Y;, ., (sl(m|n))
hig d | i€ {0,1,...,
m+n—1},r € Z>o} with parameters £1,e2 € C subject to the defining relations

as the associative superalgebra over C generated by {x

ZT"
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(3.2)-(3.9) and

1 ifi=0 -1 ifi=0
(312)  [dhi,]=0, [daf]=4 "7 ()= e
’ 0 ifs 7é 0, ’ 0 if 1 #£ 0,

+

m,

where the generators =, .. and a:gfr are odd and all other generators are even.

One of the difficulties of Definition 3.1 is that the number of generators is
infinite. In the rest of this section, we construct a new presentation of the affine
super Yangian such that the number of generators is finite.

Let us set Ei,l = h;1 — %hio. By the definition of ﬁi,l, we can rewrite
(3.5) as

~ + + €1 — €2 4
(3.13) hia, @5, = +ai (xj,r+1 —biy Tm“)'

By (3.13), we find that Y, ., (sl(m|n)) is generated by af ., x,, hie (i €40,1,...,

m+n—1},r=0,1). In fact, by (3.13) and (3.3), we have the following relations:

1 -
x?:r—&-l = ii[hi’h ‘le'tr]’
(3.14) ’ @i ’

hig1 = 2,1, 20] i 0 # m,0,

1 - €1 —€

+ + 1 2 _+

i =+ hizt11,2;,.] +b; 1,4 =
(315) i,r+1 ai+1,1’[ i+1, l,r] i+1,1 9 i,r

hivsr =[], 1,250 ifi=m,0
for all » > 1. In the following theorem, we construct the minimalistic presentation
of the affine super Yangian Y., ., (sl(m|n)) whose generators are m:,q Ty, hir
(1€{0,1,...,m+n—1}, r=0,1). We remark that we have not checked that the
presentation is minimalistic yet. However, we call this presentation a “minimalistic
presentation” since, in the non-super case, the corresponding presentation is called
a “minimalistic presentation”.

Theorem 3.16. Suppose that m,n > 2 and m # n. The affine super Yangian
Y., e, (sl(m|n)) is isomorphic to the associative superalgebra generated by xjﬂ_, Ti s

hir (1€40,1,...,m+n—1}, r=0,1) subject to the defining relations

(3.17) (i hj,s] =0,

(3.18) [0, 7] = di jhio,

(3.19) [z, 25 0] = dijhin = [, 27,4,
(3.20) [hio, ;] = +ai 75,
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(3.21) [ﬁi’l,xfo] = +a; (a:jtl bi,; = ;Ez w}0)7

(3.22) [xfl,xfo] - [xfo,x;fl] = *a, 61 - 52{ Li05T5, 0}
—bij 2 ; = [0, 750);

(3.23) (aday) 1ol (@) =0 (i # ),

(3.24) 2 zio= 10] 0 (i=0,m),

(3.25) [[xii—l,oa xfo]a [x?,th xi—l,o]] =0 (i=0,m),

+

. and x, are odd and all other generators are even.

where the generators x

The outline of the proof of Theorem 3.16 is similar to that of [12, Thm. 2.13].
To simplify the notation, we denote the associative superalgebra defined in Theo-
rem 3.16 as }751’52 (;I(m|n)) We construct xfr and h;, as the elements of
}751752 (f?[(m|n)) inductively by (3.14) and (3.15). Since (3.17)—(3.25) are contained
in the defining relations of the affine super Yangian, it is enough to check that
the defining relations of the affine super Yangians (3.2)-(3.9) are deduced from
(3.17)—(3.25) in }751752 (;[(m\n)) The proof of Theorem 3.16 is divided into eight
lemmas, that is, Lemmas 3.26, 3.31, 3.35, 3.36, 3.37, 3.38, 3.57 and 3.58.

Most of the defining relations (3.2)-(3.9) are obtained in the same way as
those of [17] or [12]. For example, we have the following lemma in a similar way

o [12, Lem. 2.22].

Lemma 3.26.

(1) The defining relation (3.4) holds for alli,5 € I in }751752 (ﬁA[(m|n))
(2) For alli,j € I, we obtain

- + €1 — €2 4
(327) [hz 1, 7, r] :ta%]< dyr+1 bi,j TI]'7T)

in i;61 €2 (f/’\[(mln))

Proof. We only show the case that j = 0, m. The other case is proven in the same
way as [12, Lem. 2.22]. We prove (1), (2) by induction on r. When r = 0, they
are nothing but (3.20) and (3.21). Suppose that (3.4) and (3.27) hold when r = k.
First, let us show that (3.4) holds when r = k 4+ 1. By (3.15), we obtain

1 ~ €1 —¢€
(3:28)  [hi0, %] 4pq) = F———[hio, [hjyr1, 27, ]] + bjjs1——m—

+
[hi0 Tkl
a5,5+1
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By [hi0,hj1] = 0, we find that the first term on the right-hand side of (3.28) is

equal to
1 ~ 1

+ [hi o, [hys11,25,)) = +

il ji+1,1, h; 0 xi .
aj i1 aj,j+1[ J+1, [ Z, ],k:]]
By the induction hypothesis on r, we can rewrite the right-hand side of (3.28) as

1 ~ + €1 — &2 +
£ ——[hjr1,1, [hio, 255 ]] + by 1= lhio, 255
aj,5+1

@ij 13 + €182 +

= lhjr, 25 £ aigbjge——F— 25
Aj5+1
@i, j ( + €1 — €2 4 €1 — €2 4

= —>—|=a;; 1(30- —bj i1 ——x; +a; ;b it1———2;
aj i1 3,3+ J,k+1 7,3+ 2 g,k 4,5 %3,J+ 2 i,k

— S
= £ Ty

Thus, we have shown that [hi,o,xka] = ia@jx;’%k-&-l‘
Next we show that (3.4) holds when r = k + 1. Since we have already proved
that (3.4) holds when r = k + 1, it is enough to check the relation

+ _ + €1 — &2 4
[hi,l’xj,kﬂ] =ta;; (xj,k+2 —bi; 9 xj,k+1)-

By (3.15), we obtain

b4 1 bt b4 €1 — €23
(329)  [hin, @] = F——[hin, Ty, @ )l + by ——— i, a5, )-

Qj i+1 2
By [hi,1,h;1] = 0, we find that the right-hand side of (3.29) is equal to
1 g g + €1 —€&2.7 +
iaj’jﬂ [hg+1,1, Thiy, 25 ]] 4 by ——— [hig, 255

By the induction hypothesis on r, we can rewrite the right-hand side of (3.29) as
1

iy
a5,5+1

B) i,1> %k
Gij (17 + 1~ %27 +
= ([hj+1,1,xj k1) = Ui hj 10,25
aj,j+1 ’ 2 ’

€1 — &2 ( 4+ €1 — &2 4
(3.30) +aijbjj1—5— (xj,kJrl —bi; ij,k)'

Since x;.'ka is defined by (3.15), we find that the right-hand side of (3.30) is equal
to

+

11, (i, 25 ]) 405541

+ €1 — €2 4
ta;; <$j,k+2 - bj,j+142 xj,k-i—l)

€1 — &2/ 4 €1 — &2 4

Faigbij—5— (mj,k+1 —bjg— 5 TG

€1 — &2/ 4+ €1 — &2 4
+aijbj i —5— (xj,k-i-l —big 5Tk )-
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By direct computation, it is equal to

+ €1 —€2 4
ta;; (xj,k:+2 —bi; B JUj,k+1)-

This completes the proof. O
We also obtain the following lemma in a similar way to [12].

Lemma 3.31.

(1) The relation (3.3) holds in 3751752 (;[(m|n)) wheni=j andr+s < 2.

(2) Suppose that i, j € I and i # j. Then relations (3.3) and (3.6) hold for any
rand s in Yz, ¢, (s[(m|n)).

(3) The relation (3.6) holds in 3751’52 (;[(m|n)) when i = j, (r,s) = (1,0).

(4) The relation (3.5) holds in )751752 (f/;\[(m|n)) when i = j, (r,s) = (1,0).

(5) For alli,j € I, the relation (3.5) holds in Yz, ., (sl(m|n)) when (r,s) = (1,0).
(6) Set iLLQ = hio — hiohi1 + %hio- Then the following equation holds for all
i,j €I inYy, ., (sl(mln)):

~ +9 + 1 3 .+
[hi,2, w50] = £ai 5255 £ 15675250
€1—e2/ 4 1. €1 — &2 4
Faigbij—o— (%1 Tt b T

(7) For alli,j € I, the relation (3.7) holds in Yz, ., (sl(m|n)) when

(@) ri=--=1,=0, 8 € Z>o;
b) ri=1,rg=---=1m,=0, 5 € ZL>o;
(€ m=2r0="--=r,=0,5€ Lxo;
d) b>2and)ri=ro=1,r3=---=1,=0, s € Z>g.
(8) In Yz, o, (sl(m|n)), we have
[hja,xia] = ZZ [hi,1, xz{[l]ia;j ({hj.0, xitl}_{hi’o’xfl}):‘:aj’imj’i¥xfl

for alli,j € I such that a;; # 0.

(9) For alli,j € I, we have
[hiz2, hjo]l =0

in Yz, o, (sl(m|n)).
(10) Suppose that i,j € I such that a;; =2 and a; j = —1. Then

[hiz2, hia] =0

holds in Y., ., (sl(m|n)).
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Proof. We only prove (1)—(5) since the proof of (6) (resp. (7), (8), (9), (10)) is the
same as that of [12, Lem. 2.31 (resp. Lem. 2.33, Lem. 2.34, Lem. 2.35, Prop. 2.36)].
The proofs of (1) and (2) are the same as those of [12, Lems. 2.22 and 2.26].
In the case where i,j # 0,m, the proof of (3) (resp. (4) and (5)) is also the same
as that of [12, Lem. 2.23 (resp. Lems. 2.24 and 2.28)]. We omit it. We only show
that (3) holds since (4) and (5) are derived from (3) in a similar way to [12].
Suppose that i = j = 0,m. First, we show that [z],z}(] = [z, 2] =0
holds. Applying ad(h;y1.1) to (3.24), we have +a; ;41[z ffl, zlo) £ a; ,+1[ fto, 7,i1]

Since [xfl,xfo] is equal to [xfo,xfl], we obtain [a:fl,acii’o] = [xlio, ;. £1]=0. Next
we show that [fo,xii’O] = [xfl,mfl] = [xfo,xfg] holds. Applying ad(hiy1.1) to
[xitl, xfo] = [xii’(), a:fl] = 0, we obtain

(3.32) a1 (03 5] + 255, 274]) = 0,

(3.33) aii([oiy 23] + o5, 23] = 0.

In the case where j = 0,m and i = j + 1, we can prove (5) in a similar way to
[12, Lem. 2.28]. Then, in a discussion similar to that of [17, Lem. 1.4], there exists
iLi+1,2 such that

+ +
[hit1,2, 75 0] = £ai 11755

Applying ad(ili+172) to (3.24), we obtain
(3.34) + a’i,i-i-l([x'f% 1'?7[0] + ['rii,Oa Iziz]) =0.

Since (3.32), (3.33) and (3.34) are linearly independent, we obtain [fo,xfo] =
[33?,[17x¢i,1] [ Zio, ] We have proved (3). O

In the case where a;; = —2 and a; ; = 1, we obtain [k, 2, h; 1] = 0 by changing
the proof of [12, Prop. 2.36] a little.

Lemma 3.35. Suppose that i,j € I such that a;; = —2 and a;; = 1. Then we
obtain

[hi2, hia] =0
in Yz, o, (sl(m|n)).

Proof. We change h; .,
236], into hz,'r‘a -

T + ., and x;r, which are written in the proof of [12, Prop.
., and z; .. Then we obtain [—h; 2, —hi1] = 0. O

By Lemma 3.31(10) and Lemma 3.35, we obtain the following lemma in the
same way as [12, Prop. 2.39] since we only need the condition that a;; # 0 and
a;; 7 0. We omit the proof.
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Lemma 3.36. Suppose that i,j € I such that a;; # 0 and a; ; # 0. Then we have
[hj2,hja] =0
in Yz, o, (sl(m|n)).

Therefore, we know that [h; 2, h; 1] = 0 holds for all ¢ € I. By using the relation
[hiz2, hi1] = 0, we obtain the following lemma in a similar way to [17, Thm. 1.2]
since the proof of these statements needs only the condition that a;; # 0.

Lemma 3.37.

(1) The relation (3.2) holds in }751752 (ﬁA[(m|n)) when i = j # 0,m.
(2) The relation (3.3) holds in 5751,52 (a(m|n)) when i = j # 0, m.
(3) The relation (3.6) holds in Ye, ., (sl(m|n)) when i =j #0,m.
(4) The relation (3.5) holds in }751752(7(m|n)) when i = j # 0,m.

Next we prove the same statement as that of Lemma 3.37 in the case that
i=3j=0,m.
Lemma 3.38.
(1) The relation (3.6) holds in Ve, e, (sl(m|n)) when i = j = 0,m. In particular,
(3.8) holds in Yz, ¢, (sl(m|n)).
(2) The relation (3.3) holds in )751752 (g[(m|n)) when i = j =0, m.
(3) We obtain [hi,r,xfo] =0 wheni=0,m in Yz, ., (sl(m|n)).
(4) The relation (3.5) holds in 5751,52 (ﬁA[(m|n)) when i =j =0,m.
(5) The relation (3.2) holds in 5751,52 (a(m|n)) when i =j =0, m.

Proof. (1) It is enough to check the equality [z ,2F. ] = 0. We only show that

1,77 Vi,s

[z}, 2} ] = 0 holds. We can obtain [z, z;,] = 0 in a similar way. We prove (3.6)

1,70 1,8 i,m7Vi,s

holds by induction on k = r + s. When k = 0, it is nothing but (3.24). Applying

ad(hi1,1) to [z, 2] = 0, we obtain

ain‘—&-l([ﬂfipﬁ,—o] + [$Z0axi1]) =0.

Since [xj"l,x;-fo] = [37:0795:1]7 we have [a:j}'l, 37:0] = [xzo,mi'l] =0.
Suppose that [x;fr,x;-fs] = 0 holds for all r, s such that r +s = k,k + 1.

Applying ad(hi111) to [xwaZkeru] = 0, we have

(3.39) (Pig1,1, [xju, x;fkﬂfu]] =0.

By Lemma 3.31(4) and the induction hypothesis, we have

(3.40) [Pit1,1 [x:uvx:mku” = ai,i+1([m:_u+1’w:k+17u] + [x:u7x:k:+27u])'
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Since a; 41 # 0, we find the relation

(3.41) [$:u+1a x:k.u_u] = *[x:ua $:k+2_u]

by (3.39) and (3.40). In particular, we obtain

(3.42) [qu+2’ x:k_u] = [:U;“u, m;kw_u].

Applying ad(hiy1.2) to [xju, xik_u] =0, we have

(3.43) [Pit12, [, 2]l = 0

by the induction hypothesis. By Lemma 3.31(7), Lemma 3.36 and the induction
hypothesis, we have

(3.44) (hivrzs [ ol = avaa ([ o ol )+ e 2f WD)

Since a; 41 7 0, we obtain the relation

(3.45) [x:u+27 x'j_kfu] = —[xim x:kJeru]

by (3.43) and (3.44). Since (3.45) and (3.42) are linearly independent, we have
shown that [, 27, ,,_ ] =0 holds.

(2) We prove the statement by induction on r + s = k. When k = 0, it is
nothing but (3.24). Suppose that [x;,., z; ] = hi 4 for all 7, s such that r+s < k.
Then we have the following claim.

Claim 3.46.

(a) For all r, s, we obtain

(it 2y ] = Thies 2 o] = ai,i+1¥{h“,xﬁl7s}
(3.47) - bi,i+1%[hi,m w1l
(b) For all r+ s =k — 1, we obtain
[hi,T+17xi_+1,s] - [hi,raxi_ﬂ,sﬂ] = —Qi,i+1 = —;62 {hiﬂ‘?xi_Jrl,s}
(3.48) - bi,i+1¥[hiﬂ’7 Tittsl

Proof. (a) By the definition of h; ., we have

[hi,T+17xz++1,s] - [hi7T’m?:|»1,s+1} = [[x?,_rJrl?x'ZO]?x;trl,s] - [[xi—T’xi_,O]’xz—':l,erl]'
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By the Jacobi identity and Lemma 3.31(4), we obtain
[hiﬂ“+1’ m;’:—l,s] - [hi”” xi}-l,s—‘—l] = [{[m;tr+l7 xi}-l,s} - [‘T;Cr’ xi}-l,s—o—l]}? ‘T;O]
By Lemma 3.31(4), we have

[hi,TJrlv xi{-l,s] - [hiﬂ“’ x;L+1,s+1]

€1+¢€2, + 4 €1~ €2 4+ 4+ _
= |£a4,i+1 5 xi,r"ri—&-l,s} = bijit1 D) [‘Ti,r’xi-i-l,s}?xi,o .

By Lemma 3.31(4), we obtain

[hi,r+1,$;:1,s} - [hmyr’xzﬂ,sﬂ]
€1 — &2
2

{hir @iy} = biin [hirs 21 )

(b) By the assumption that [z;" T; ] = hip+q holds for all p+q < k, we

©p? L,
have
[hi7T+17x7l_+1,s] - [hi,raxi_+1,s+1] = [[x:raxi_,l],zi_ﬂ,s] - [[x;tmxi_,o]vxi_-i-l,s—i-l]

since r + 1 < k. By a similar discussion to (a), we have

[hi,r+1a$i_+1,s] — [hirs 332‘_+1,s+1] = [x'j,_r’ {[mi_,hxijrl,s] - [xi_,o’xi_+1,s+1]}]'

By Lemma 3.31(4), we obtain

[hi,r+17xi_+1,s] - [hi;T’x;Ll,erl]

e1+ex . _ _ €1 — €2 _
_ | . _p
= | T —Aiyit1 9 {xi,07 $i+1,s} bi,i+1 2 [mi,O’ wi+1,s]:|‘

Then, by Lemma 3.31(4), we have

[hi7r+lv$;+1,s] - [hi,rvx;rl,sﬂ]

€1+ é2

_ €1 — €2
= _ai,i+1T{hi,’r‘7$i+l,s} — bijit1

9 [h’i,“ w;+l,s]‘ 0

By a similar discussion to [17, Lem. 1.4], there exists iLM such that

hii; = hi 1, + polynomial of {h; l0<t<k-1},

+ _ +
(i ks zi+171] = Q1% k1o

(Piks Tig1,0) = —Qiit1Ti 41 g

Claim 3.49. The following equation holds:

(3.50) (hit1,1,hik] = 0.
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Proof. By the assumption that [z 01 Tigl = hig holds for all p+ ¢ < k we have

[hig11shis] = [[higrn, 2] 2] + (27, [hivnn, 270]] = 0

for all s < k. Thus, it is enough to show that [ili7k,hi+171} = 0 holds. By the
definition of h; 1,1, we obtain

(M ges hir1) = [k, [0 15 240 ]
(3.51) = ai,i+1[$;5r1,k+1v 93i7+1,0} - ai,i+1[xz‘++1,1a 37;+1,k]~
By Lemma 3.37, it is equal to zero. O
Applying ad(ﬁi_i_])]_) to [xifr,x;kw] = h; , we obtain

(3.52) igans ()i, 0] = [higa, hig]
by the induction hypothesis. By Lemma 3.31(4), we can rewrite (3.52) as
(3.53) a2 o, = 2w a]) = [higaa, hig] = 0.

It is nothing but the statement.

(3) We only show the statement for 4+. The other case is proven in a similar

way. By (2), [hw,x:o] is equal to [[z ;"7,% ols 77 F,]- By (1) and the Jacobi identity,
we have
(3~54) [[x;,_r’ xz‘_,o]’ xj,_o] = [x:_'r'? [‘rz‘_,o’ mj:o]]

The right-hand side of (3.54) is equal to [
hand side is equal to zero since a;; = 0.

., hio]. By Lemma 3.26(1), the right-

(4) It is enough to check the equality [h; ,, z; s] = 0. We only show the state-
ment for +. The other case is proven in a similar way. We use proof by induction
on s. When s = 0, it is nothing but (3). Suppose that [h; ., z; s] = 0 holds. Apply-
ing ad(hi41.1) to [hir, x;rs] = 0, we find the equality
(3.55) [Ei—‘rl,lv [hz ry L i, s]] =0
by the induction hypothesis. By the proof of (2), we obtain [h; 1.1, hin] = 0. Thus,
the right-hand side of (3.55) is equal to [hy ., [hit1.1, Z; s]] By Lemma 3.31(4), we
obtain

7 + + €1~ &2 +
(3.56) (i [Pit1,1, 27 )] = @i [hz’,m (zi7s+1 - wauxi,s)]
By the induction hypothesis, we find that the right-hand side of (3.56) is equal to
ai,i+1[hi,r,x;+1]. Since a; ;41 # 0, we obtain [h; ., a::sﬂ] =0.
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(5) By (2), [hi,r,his| is equal to [h; ., [x;fs,as;o]]. By the Jacobi identity, we
have

i, [ s w7 o)) = (i 2 ) i) + [ (i, )]

By (4), the right-hand side is equal to zero. We have shown the relation

[hi,ra hi,s] =0. O

We obtain the relation (3.6) by Lemmas 3.31(2), 3.37(3) and 3.38(1). We also
find that the relation (3.3) holds by Lemmas 3.31(2), 3.37(2) and 3.38(2).

In the same way as [17, Thm. 1.2], we obtain the defining relations (3.5), (3.2)
and (3.7). Thus, we omit the proof.

Lemma 3.57.

(1) The relations (3.5) and (3.2) hold in 1751,52 (;[(m\n)) when i # j.
(2) The relation (3.7) holds for alli,j € I in }751752 (gl(m|n))

We remark that the relation (3.2) holds by Lemmas 3.37(1), 3.38(5) and
3.57(1). We also find that the relation (3.5) holds by Lemmas 3.37(4), 3.38(4)
and 3.57(1).

Now, it is enough to show that (3.8) and (3.9) are deduced from (3.17)—(3.25).

However, we have already obtained (3.8), since (3.8) is equivalent to (3.6) when
i = j = 0, m. Thus, to accomplish the proof, we only need to show that (3.9) holds.

Lemma 3.58. The relation (3.9) holds for i =0,m in 5751,52 (sl(m|n)).

Proof. We prove it by induction on k = r+s. When k = 0, it is nothing but (3.25).

Suppose that (3.25) holds for all , s such that r + s = k. Applying ad(h;42,1) to
[[x;t_lvr, xfo], [mii,o, xf+17s]] =0, we obtain

+ + + 4
ai—2,i—1[[a7i71,r+1a 'Ti,O]’ [mi,o’ xiJrl,sH =0.
s . 7 + + + + _
Similarly, applying ad(hit2,1) to [[2;_y ., 27 ol [27 0, Tit1 5] = 0, we have
+ + + o+
ai+2,i+1[[xi71,r7xi,0]’ ['ri,07mi+1,s+1“ =0.
Thus, we have shown that (3.9) holds for all r, s such that r +s =k + 1. O

This completes the proof of Theorem 3.16.

By Theorem 3.16, we also obtain the minimalistic presentation of Yz, , (sl(m|n)).
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Theorem 3.59. Suppose that m,n > 2 and m # n. Then Y, ., (sl(m|n)) is iso-
morphic to the superalgebra generated by . T hig (i€ {0,1,...,m+n—1},

@77

r =0,1) subject to the defining relations (3.17)—(3.25) and

Y ooifi=0 2T ifi=0
(3.60) [d7 hi,r] = O7 [d7 x;‘rr] _ xz,T le 9 [d7 {L';T] _ zzﬂ‘ Zfl )
’ 0 ifi#0, ’ 0 ifi 0,

and x(fr are odd and all other generators are even.

+
where the generators xy;

The relation (3.12) is derived from (3.60) in a similar way to that of Lem-
ma 3.26. We omit the proof.

8§4. Coproduct for the affine super Yangian

In this section we define the coproduct for the affine super Yangian Yz, ., (sl(m|n)).
We recall the definition of standard degreewise completion (see [18]).

Definition 4.1. Let A = @, ., A(i) be a graded algebra. For all i € Z, we set a
topology on A(i) such that for a € A() the set

{a+ZT>NA(i—r) - A(r) | N e Zzo}

forms a fundamental system of open neighborhoods of a. The standard degreewise
completion of A is ,., A(i), where A(i) is the completion of the space A(i). By
the definition of A(i), we find that

A= @@A(i)/ 3" A - r) - A(r).

icZ N r>N

Let us set the degree on Y, ., (fﬁ(m|n)) determined by

1 ifi=0 -1 ifi=0
4.2 deg(h; ) =0, deg ;ﬁr = " deg(z; ) = ’
(4.2) (i) (i) {o if i #0, (i) 0 ifi#0.

Then Y., ., (f/,\[(m|n)) and Yz, ., (f:\[(m|n))®2 become the graded algebra. We de-
fine Yz, .,(sl(m|n)) (resp. Yz, ., (sl(m|n)) ® Yz, o,(sl(m|n))) as the standard de-
greewise completion of Y, ., (;[(m|n)) (resp. Ye, e, (;[(m\n))®2) in the sense of
Definition 4.1.

We prepare some notation. There exists a homomorphism from sl(m|n) to
)’Ehez(;[(m|n)) determined by ®(h;) = hig, ®(zF) = xfo and ®(d) = d. We
sometimes denote ®(z) by x in order to simplify the notation. In particular, we
denote ®(aL) by 2 for all & € A. By Theorem 5.1, we note that dim(®(g,)) =1

for all @ € Are.
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Theorem 4.3. The linear map
A Yz, ey (sl(min)) = Yz, ey (sl(min)) & Y, c, (sl(mln)),
uniquely determined by
A(hip) =hio®1+1Q h;o,
A(xfo) = mfo R1+1® xfo,
(4.4) A(hin) =hia®@1+1Qh1+ (61 +¢€2)hio ® hig
—(e1+¢€2) Z Z (o, ai)x}i‘*a ® x’fj‘

a€A; 1<k, <dimgq
is an algebra homomorphism. Moreover, A satisfies the coassociativity.
The rest of this section is devoted to the proof of Theorem 4.3. The outline of
the proof is similar to that of [12, Thm. 4.9]. In [12], the analogy of the Drinfel’d
J presentation is considered in order to prove the existence of the coproduct for

the affine Yangian. We construct elements similar to those constructed in [12,
equation (3.7)].
Definition 4.5. We set

J(hi) = hiq +v;,  J(zF) = xfi +wy,

K2

where

€1+ €2 ko K €1+¢€2, 9
v; = 5 g E (o, )z e — 5 h,
ac€Ay 1<k, <dimgq

€1+ €2

+ _ + ko k

w; == 2 E E : [‘Tz 7‘7"704]:1"04&’
a€A; 1<k, <dim gq

_  E1t¢2 _
Wy == Z Z ae [zhe 27].

a€Ay 1<ky<dim gq

Then J(h;) and J(z) are elements of )751752 (ﬁA[(m|n))

Next we prove similar results to [12, Lem. 3.9 and Prop. 3.21]. In fact, they
are (4.8)—(4.11) and (4.27). We prepare one lemma in order to obtain (4.8)—(4.11)
and (4.27). It is an analogy of [14, Prop. 2.4].

Lemma 4.6 ([19, Lem. 18.4.1]). For all o, f € Ay, we obtain
Z [xgﬁ,z] ® x]iﬁﬁ = Z zke @ [z, 2% )

1<k <dim gz 1<kq <dim ga

if z € 98—a-
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Lemma 4.7. The following relations hold:

(4.8) [J(hi), hj] =0,

(4.9) (k)] = s, 0,)d (2F) F ag iy .
(4.10) (@), i) = lof, J@)) - 25 bislety 2t
(4.11) [7(@F),aF] = [, @] = 6,57 ().

Proof. Since h;1 commutes with h; by (3.2) and v; commutes with h; by the
definition of v;, we obtain (4.8). We only show the other relations hold for +. In
a similar way, we obtain them for —. First, we prove (4.9) holds for +. By (3.21),
the left-hand side of (4.9) is equal to

2 . (T R
hlo’j}*az,a(%J*bw B) Tio

€1+ €2
(4.12) + [T Z Z (o, al)xliax’;”,xﬂ

a,BEA; 1<k <dimga

= € +€
hix +vi + -

By direct computation, the second term on the right-hand side of (4.12) is equal
to

f1t+é2 ka [oka o+
2 Z Z (avai)xfa[xa 7$j]

a€Ay 1<k, <dim g
&1 + &2 @ ;i ka «
(4.13) s D DR DR G Vi CHR CoE te
a€Ay 1<k, <dim go
By Lemma 4.6, (4.13) is equal to
£1+¢2 + ka1 ka
2 Z Z (a L ai)[‘rj 7x7a]xa

a€Ay 1<k, <dim g

€1+e¢ Vplas
(4.14) +% S Y (P (g ay) et 2 ke

a€A; 1<k, <dim go

Since (—1)PP(@)[gha af]+ [z],a%] = 0 holds, the sum of the first and sec-
ond terms of (4.14) is equal to —=-F=2 DoaeA, 2a1<ka <dim go (5 )], ahe ke

Thus, we obtain

1 — &2
()] = ai (o — b= 2ty

€
& ; 2 Z Z (aj,ai)[x;r,wli“a ke

a€A} 1<k, <dim g

Thus, we have obtained (4.9) for +.
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Next we show that (4.10) holds for +. By the definition of J(z;"), [J(z]),z}]—
[z, J(xj')] is equal to

[xj,ux;fo] - [xj,o@;fl] + [w;r,xj] - [xjij]

By (3.22), [x;fbxj,o]_[xioﬁjﬁ] is equal to SIJQFEQ ai,j{xio,xjfo}—“?z b;,; [wio,xj,o]'

By the definition of w;" , we obtain

[’w:_,l‘j} - [x;‘r’w;-]

__&1te + ko (ke o
- 9 Z Z [xz ,$7a}[$a 7xj]

acAy 1<k, <dimgq

€1+ ¢e2 p(a)p(a;) i+ kol .+],.ka
- T Z Z (_1) [[ivz 7x7a]7xj ]ma

a€Ay 1<ky<dim go

€1+ &2 k
i e R SR N CEEN |
a€A; 1<k, <dim go

(4.15) + €1 ;’E? Z Z (_l)p(a)p(ai)+p(<¥j)p(az:)[x;-’xliaa] [xj_, xka].

o
a€A; 1<ky,<dimgq

By Lemma 4.6, we find the equality

the first term on the right-hand side of (4.15)

€1+ ¢e2 ko, ., E1téE2
(416) = 77 Z Z [Ij_7 [‘T;rvx—aﬂxlocz + 9 [l‘j—, hj]‘rj_
a€Ay 1<k, <dim g

We also find the relation
the fourth term on the right-hand side of (4.15)

€1+ €2 a)p(ay a;)p(a; o .
= Z Z (71)10( )p(ai)+p(a;)p( )[x-ff-’[l,k w2k

92 i —ar g @
a€Ay 1<k, <dim g

(4.17) + %(_1)19(@1)1)@;-)[%;-7 hz]xj'

by Lemma 4.6. Applying (4.16) and (4.17) to (4.15), we obtain
€1+ ¢e2 €1+ ¢e2 a;)p(oy

boif ] = [ )] = =5l hylef + =5 (F1P O bl
Since m,n > 2, there exist no 4, j such that a; ; # 0 and p(a;)p(e;) = 1. Thus,
we obtain
g1+ €2

2
Hence, we have obtained

€1+ €2
2

€1+ €2 + o+
-~ ai{z;, xj }.

[ gl + (—1)P D [kt =

€1 — &2
= ————bi;lxio, 7o)
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Finally, we show that [J(z]),z x| = 0;;J(h;) holds. By the definition of J(z ),
[J(l’j)a%_] is equal to [Ij,—l’ 3,0] + [wj', j70] By (3.3), [z} i1 ]0] is 0, jhi. By
direct computation, we have

_ €1+ ¢e9
[w:r’xj,o] = D) Z Z [$j7xliaa][x’;aﬂxj ]

a€A 4 1<ky <dim go

g1+ ¢ a)p(ay @ — o
(4.18) S D DR DR G VAl (AR Ny e

a€Ay 1<k, <dim g

By Lemma 4.6, we have

the first term on the right-hand side of (4.18)

€1+ &2 _ €1+ &2
(4.19) = Z Z [z, [z ,ahe ke — 8iih3.

acAy 1<k, <dim g4

By the Jacobi identity, we find the equality

2], x5, ab )] = — ()PP o b o7]]
G D LA PP LON g P
(4.20) . (_1)p(a)p(aj)(_1) (a)p(al)[ aPe [xj,x;]]x’;"‘

Thus, we obtain

_ 51+€2 _
[wi, a5 o) = R S G § LA ARl e g

a€A; 1<k,<dim g,

+ a)p(a; a)p(a;
n €1 : 5252‘,1‘ Z Z (_1)17( )p( J)(_l)p( )p(es)

a€Ay 1<k, <dimgqo

ko [ +

Sl @y ka“ 2 +525 h?

7
@ 2 g1

€1 +tée2 p(a)p(aj) ko —1..ka
- T Z Z ( 1) ! [[ i ’x—oz}?xj ]xa

ac€Ay 1<k, <dim g

€1+ €9 ko .k €1+ €2 2
= 5 E E 6i’j(ai,a)x7axa“ — B 6i,jhi,
a€Ay 1<k, <dim go

X [zl

where the first equality is due to (4.19) and the second equality is due to (4.20).
Then we have shown that [J(z]),z;] = & ;J(h;). Similarly, we can obtain

3 ? 7

[z, J(z} )] = 8;,;J(hi). This completes the proof. O

By (4.8)—(4.11), we obtain the following convenient relation.
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Corollary 4.21.
(1) Wheni#j4,j+1, [J(a:f':),mji] =0 holds.
(2) Suppose that j < i— 1. We have the following relation:

ad(J(z7) [ ad) I ad@)E))

i+1<k<m+n—1 0<k<j—1
= ad(;") ad(J(2;5,)) 1T ad(zy) [[ ad@i)())

i+2<k<m+n—1 0<k<j—1

g1 —¢
—bi,z‘-{-l% H ad(zi) H ad(xki)(xf)

i<k<m+n-—1 0<k<j—1

3) For all a € 1 Z>o0; and T € g+a, there exists a number dS¥.
1<I<m+n—1%=2 2y
such that

(a7, 0)[ (), 0] — (00, @) (b)), 40] = %240

(4) Suppose that j < i—1. We have

[J(hs>, I aded) I ad(x@(xf)]

i<k<m+4n—1 0<k<j—1

=+os0) [ adei) [ ad@i)ied)

i<k<m+n—1 0<k<j—1
+ e H ad(xf) H ad(x,f)(x]i),
i<k<m4n-—1 0<k<j—1

where o = Zigkgmﬂhl o + Zogkgg‘ ar and co is a complex number.

Proof. We only show the relations for 4. The other case is proven in a similar way.

(1) By the definition of the commutator relations of sl(m/|n), [a:j,xj] =0
holds when i # j,j = 1. There exists an index p such that a;, # 0 and a;, = 0.

Applying ad(J(hy,)) to [xj,xj] = 0, we obtain

€1 —¢&2

aip([J (), 2] — by 5

? J

[z, 27]) =0

by (4.9). Since a;, # 0, we have shown that [J(z]), 2] = 0 holds.
(2) By (1), the left-hand side is equal to

ad(J(z)),«fn]) [T adh) [T ad))).

i+2<k<m+n—1 0<k<j—1
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By (4.11), it is equal to

ad(lzf, J(z})) [T ad@d) JI adl@)i)

i+2<k<m+n-—1 0<k<j-—-1
€1 — &2
(422) — bi,i—i—l ad([l’j, 5”;':-1” H ad(.Tz_) H ad(acZ)(:rj‘)
i+2<k<m+n-—1 0<k<j-—1

By the Jacobi identity, the first term of (4.22) is equal to
ad(z;) ad(J (z4)) [T adh) [T ad@@))).
i+2<k<m+n—1 0<k<j—1
This completes the proof.

(3) It is enough to assume that x4, = Hsgkgt_lad(xf)xti. By (4.9), we
have

[J(hi), 70l = 20(s > i+ 1> Baiipr [[ ad@i)J@E,) [[  ad@d)ei
s<k<i i+2<k<t—1

(s >1i>t)ai, H ad(zi)J (zF) H ad ()i

s<k<i—1 i+1<k<t—1

+i(s>i—1>ta; i1 H ad(mf)J(mf_l) H ad(:rf):vti
s<k<i—2 i+1<k<t—1

+ d} (o, @) H ad(mf)xfﬁ,
s<k<t—1

where d} is a complex number. By a discussion similar to the one in the proof of
(2), we find that there exists a complex number d? such that the sum of the first
three terms is equal to

+(ay, @) H ad(x)J(af) £ d2(ai, @) H ad(zi)afE.

s<k<t—1 s<k<t—1
Then we obtain
(aj7 a)[J(hi)v wia] - (ak7 a)[J(hj)7 xia]
= :i:{(ozj,oz)(dz1 +d?) — (ai,a)(d} + d?)}xia.
We complete the proof.
(4) Tt is proven in a similar way to (3). O

Next, in order to obtain (4.27), we prepare {7;}, 40,m» Which are automor-
phisms of the affine super Yangian. Let us set {s;}i-0,m as an automorphism of
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A such that s;(a) = a — %al By the definition of f/;\[(m|n), we can rewrite s;
explicitly as
—ay ifi =7,
sila) =S ai+a; ifj=i+1,
o otherwise.

It is called a simple reflection. We also define {7;}, £0,m a8 an operator on the affine
super Yangian determined by

(4.23) 7:(7) = exp(ad(z]")) exp(— ad(x; ) exp(ad(z;))=.

By the defining relation (3.7), 7; is well defined as an operator on the affine super
Yangian. The following lemma is well known (see [14]).

Lemma 4.24.

(1) The action of T; preserves the inner product k.
(2) Foralla € A, 7(ga) = 8s,(a)-

Then, in a similar way to of [12, Lems. 3.17 and 3.19], we can compute the
action of 7; on J(h;) and write it explicitly.

Lemma 4.25. When i # 0, m, we obtain
2(0[2‘7 Oéj)

(cviy ;)

TZ(J(hJ)) = J(h]) - J(hz) + ai,jbj’i(sl — Eg)hi.

Since dim g, = 1 for all @ € A™, we sometimes denote z’i‘*a and zf;‘ as T_q

and z,, for all @ € AT,

Proposition 4.26. Fori,j € I and a positive real root «, the following equation
holds:
(4.27) (aj, @)[J(hi), o] = (0, @)[J(hy), Za] = €7 570,

—x

where i ; is a complex number such that ¢i'; = —c¢; 7.
; ;

)

Proof. We divide the proof into two cases: one is that « is even, the other is that
« is odd.

Case 1, « is even. Suppose that « is even. Then there exists s € Z such
that o is an element of >, o, Za; +86 Or 32, 1 <jcpin_y Zovi + s0. We only
prove the case where o € > ;.. | Z>oq; + Z>d. The other cases are proven in
a similar way.

First, we prove the case where a = a, + sd, where k #£ 0, m.
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Claim 4.28. Suppose that o = a, + s such that k& # 0, m. Then we have

(akaak)
(auak)
J hi sy L] = J(h » L —a —da.’E,a,
(b, -] = (oS i), 2
where d, is a complex number.
Proof. Let us set
als = {xf 1T ad(z) [ ad@@)@i)|.
0<p<k-—-2

k+1<p<m+n—1

It is enough to suppose that x4, = ad(z}z)%z; since ad(x)4)z} is nonzero. By
the Jacobi identity, we obtain

(@) I (hi) = (i, @) T (hi), ad (2 5)

> ad(aly) ad([(aw, @) (he) = (ai, @) (), k) ad (k)

0<t<s—1
+ad(zls)*[(ar, )T (hi) — (g, @) (hy), xf]

s, .t
;]
s—1—t .+
Ll

(4.29)
By (4.9), [(ak, ) J (h;) — (e, ) J (hy), xf] can be written as :i:ka,f, where fi is a

complex number. Then we have

010 ks] = [ |0, (0) — (05 0) ),
H ad(m;[) H ad(x;[)(:rf_l)”:tkalﬂ.
0<p<k—2

k+1<p<m+n-—1

By Corollary 4.21(4), we can rewrite the first term as

i(ak,a)(ai,a){xf, H ad(x;t) H ad(x;t)J(xfl)}
E+1<p<m+n-—1 0<p<k-2
qc(ak,axai,a)[x;:, [ adeh I ad(x;wwf_l)}igkx;a
k+1<p<m+n-—1 0<p<k-2
:igkxi(ﬁ
O

where g is a complex number. We have obtained the statement.

Now let us consider the case where « is a general even root. Any even root a =

Y o<k<i Op+k can be written as [[y<j<;_1 Sp+k(apt1) by the explicit presentation
of s;. Let us prove that the statement of Proposition 4.26 holds by induction on [.
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When [ = 1, it is nothing but Claim 4.28. Assume that (4.27) holds when [ = g.

We set v and 3 as [[p<p<y Sp+h(Qptqt+1) and [ [ <p<, Sp+r(apqt1). Suppose that
zg is a nonzero element of gg. By Lemma 4.24, g, contains a nonzero element
75, (x3). Thus, we obtain

(g, )T (hi), 75, (w2p)] = (i, @)[ T (hy), 75, (2£)]

= Tsp{(% @) [J(hi) - m,](hp),xiﬁ]
— (a1, 0) {J(hj) - mJ(hp), (xiﬁ)] }

(4.30) F {(aj,a)ap ibip — (ai, @)ay jbjp}E1 — €2)T+a

by Lemma 4.25. Let us suppose that («y, 8) # 0. Then, by the induction hypoth-
esis, we find the relation

(431) (), 25] = =0 0]
Applying (4.31) to (4.30), we obtain
2(0&1', O‘p)
|:J(hl) — me](hp), $i5:|

(
(@i, B)  2(ci,ap) (0, B) i .
{(Oét,ﬁ) (ap’ ap) (Oétaﬂ) }([J(ht)a :t,B] + it iﬁ)

(i, B M%)

B (avp,cp) B
=+ J(he), 48] + ;1 T+8)-
) ([J(he), wap] + €47 45)
By the definition of s,, a is equal to 3 — 72(55"’5")) op,. Then we have

2(oy, p)
(ap, )

Similarly, we find the relation

(o, ;)

(at, B)

(432 |J(h) - I(hp)swas| = £ (1 (he)was] + 0] wes).

mJ(hp)yxiB} = iqu(ht)wiﬁ] + c?,tx:tﬁ)~

Applying (4.32) and (4.33) to the right-hand side of (4.30),
(g, @[T (hi), 75, (22p)] = (i, @)[T (hy), 75, (2£5)]

= 2, {0, @ 00 — (o) B )

F {(ag, @)ap,ibip — (i, @)ap jbj p HE1 — €2)T+a-

(4.33) [J(hj) -

This completes the proof of the case where « is even.
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Case 2, o is odd. Hereafter, we suppose that m is greater than 3. The
other case is proven in a similar way. First, we consider the case where a =

Zlglgm—l a; + gy, + S6.
Claim 4.34.

(1) When i # 0,1,m,m + 1, [J(h;),7+a] = +c 214, Where ¢, is a complex
number.

(2) We obtain the following equations:

(4.35) (o). 0] = Ejf 3 (1), 20] & do 1220
(4.36) [ (A, 0] = ((275)) [J(h1), 0] £ din 1@,
430 Ul sal = G ) 0] £ s

where do1, dm,1 and dp, my1 are complex numbers.

Proof. (1) Wheni # 0,1,2,m, m+1, weset v2; = [27, [locp<min ad(zF)(z7)).
It is sufficient to assume that

ria =ad(zl;)’ Y| ad(zf)(ad)
1<i<m—1

since the right-hand side is nonzero. In a similar way to Claim 4.28, we also have

(4.38) [J(h), x2%s] = £hsa’s,
(4.39) [J(h», 3 ad(xﬁ(xfz)}ﬂa S ad(eb) k),
1<i<m—1 1<i<m—1

where hs and i, are complex numbers. Thus, we find the equality
[J(hi), o] = £(shs +ia) ad(ads)® D ad(a)(ar,)
1<i<m—1

by the Jacobi identity, (4.38) and (4.39). We have proved the statement when
i #0,1,2,m,m+ 1. When i = 2, we set 35 as

[x,inﬂ, H ad(xf) H ad(x;t)ad(xﬁ)}
m+2<p<m+n-—1 0<p<m-—1

It is enough to assume that

ria =ad(zl;)® Y ad(zf)(ad)
1<i<m-—1
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since the right-hand side is nonzero. In a similar way to Claim 4.28, we also have

(4.40) (k) k] = sy,
(4.41) [J(hn, D ad(xfxxf;)]:ika S adeF) (),
1<I<m—1 1<I<m—1

where j5 and k, are complex numbers. Thus, we find the relation

[J(h), wa] = £(sjs + ko) ad(z3s)* D ad(ef)(ar)

1<i<m—1
by the Jacobi identity, (4.40) and (4.41). We have proved the statement when
1=2.

(2) First, we prove that (4.35) holds. By the definition of «, zi, can be
written as [r44, 7], where x4 4 is a nonzero element of g, . Since [J(ho), 2]

) ’ITL]

and [J(hy),x5] are equal to zero by (4.9), we obtain

(4.42) [J(ho), w4a] = [[J (ho), 2], 7],
(4.43) [J(h), @4a] = ([T (h), 2], 273).

Then, because (8 is even, we have

e R N L e B re
by Case 1. By (4.42), (4.43) and (4.44), we find the equality
_ (ao, B) . (a0, B) o gt
['](hO)axia} = (011;5) [J(h1)7 ia] + (041;5)[ +8> m]'

Thus we have shown that (4.35) holds. Similarly, we obtain (4.36) since also
[J(hm), z;5] = 0 holds.
Finally, we prove that (4.37) holds. We set

vy = [i 1 ad<x;5><x§>].
2<p<m+n—1

It is enough to check the relation under the assumption that

rro =ad(els)” [ ad(ey)(an)

1<p<m-—1
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since the right-hand side is nonzero. Then we obtain

[J(hm)vxia]
= Y ad(zly) " ad([J(hm), 2ds]) ad(ads) " [ ad(ei)(ain)
(4.45) +[J(hm),ad(x4ﬂ)s H ad(xi)(xi)],

1<p<m-—1

[J(hmy1), Z+a)
= > ad(@ly) " ad([J(hmir), 2hs]) ad(ahs)* ™" [ ad(ai)(@h)

1<t<s 1<p<m-—1

(4.46) +{J(hm+1),ad(o:4ié)s H ad(x;f)(xﬁ)]

1<ps<m-—1

by the Jacobi identity. First, we rewrite the first term on the right-hand sides of
(4.45) and (4.46). By the assumption m is greater than 3, [J(hy,),zF] = 0 holds
by (4.9). Then, in a similar way to Claim 4.28, we find the equalities

(4.47) [T (hn), ws] = £tsals,
(4'48) [J(herl)’ xfl:é] = iu(s:ci(;,

where t5 and us are complex numbers. Then we obtain

the first term on the right-hand side of (4.45)

(4.49) —ttyad(aly) [[ aded) (),
1<p<m—1
the first term on the right-hand side of (4.46)
(4.50) = fusad(zis)® H ad(x;,t)(acﬁ)
1<p<m-—1

by (4.47) and (4.48). Next we rewrite the second term on the right-hand sides of
(4.45) and (4.46). By (4.9), we obtain

the second term on the right-hand side of (4.45)

(4.51) =adels)® [[  ad(@)J(hm), fag ol
1<p<m-—2
the second term on the right-hand side of (4.46)
(4.52) =adels)” [ ad(@)J(hnr) g,y 2l

1<p<m—2
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By (4.9) and (4.10), we find that

€1 — €
= iam,mfl[J(x;—l,:zfl)v wrjr:l] + am,mflbm,mfl ! 9 2 [x:qtqfla .’Ei]
= iam,m—l[l’i—ly J(xﬁ)]
g1 — €
(4.53) F am,m—1(bm—1,m + bm,m—1) - B : [x;tm—lv xi]a

[J(hm+1)7 [xi—lv z;l;:@]]

1 — €
(4.54) = iaerl,M[x;tqflv J(xi)] F @mt1,mbm,m+1 - 2 [mi i]'

T
2

m—1"*m
Since pmym—1 = (o, o) and amt1,m = (@, my1), by (4.53) and (4.54), we obtain

(O‘v am+1)[°](hm)v [‘r’ro:L*l’ .’Ei]] - (O" am)[J(hm+1)’ [xrjr:L—la xi]]

(4.55) = Fuqlal_y, 7},

m—1*m

where u,, is a complex number. Thus, we know that

(e, @t y1) (the second term on the right-hand side of (4.45))
— (o, oy, ) (the second term on the right-hand side of (4.46))
(4.56) =uqad(@ly)® [ ad@i)(ah)

1<p<m-—1

holds. By (4.49), (4.50) and (4.56), we have

(@, ami1)[J (hin ), Txa] = (@, am)[J (A1), Txal

= +(s(a, amy1)ts — s(a, am)us + ug) ad(ziy)® H ad(:c;,t)(:c,in).
1<p<m-—1

Then we have obtained (4.37). O

Next, let us consider the case where « is a general odd root. We only show
the case where o € «,, + 21§t§m+n—1,t;&m Z>oo + s6. The other case is proven
in a similar way.

Since o € oy, + Zlgtgm+n_17t¢m Z>ooy + 80, the root o can be written as
[Ti<i<p $ic(Xi<icm @i + am). Then we prove the statement by induction on p.
When p = 0, it is nothing but Claim 4.34. Other cases are proven in a similar way
to Case 1. O

We easily obtain the following corollary.
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Corollary 4.57. The following equations hold:
(4.59) [J (i), J (hy)] + [vi, 03] = 0,
where U; = v; + —‘51;52 .

Proof. First, we show that (4.58) holds. Since v; = ££=2 ZaeAf(aj,a)x’i"‘
holds, we obtain

(), )+ (75, T ()] = P22 3 (g, )T (), 2ol
aEAﬂf
DS (g a)aald (). )

aEALE

Y (@i a)lr—a, J(hy)]ea

aEAL®

S (o) —ola, T ().

aEALS

€1+ €2

L

(4.60) 4 ate

By Proposition 4.26, there exists ¢f'; € C such that

g1+ €2 €1+ ¢é2
9 Z (O‘j,a)[‘](hi)ax—a}xa + Z (O‘iaa)[z—avj(hj)]za
acAre aEAT?
(461) = —81 —552 Z ngxfocmon
aEATS
€1+ &2 €1+ &9
IR S (g aeald () m] + LS (0 0)ealra, J()]
aeAr aEAY
(462) =223 e e,

aEAT?

Therefore, applying (4.61) and (4.62) to (4.60), we have obtained the relation
(4.58). By the defining relation (3.3), we find the equality

(4.63) [J(hi) — 03, J(hj) — 0] = [hi;x, hja] = 0.
On the other hand, we find the relation
(4.64) [J(hi) = vi, J(hy) = vj] = [J(ha), J(hj)] = [vi, J (hy)] = [ (ha), 0] + [03, 0]

By (4.58), the right-hand side of (4.64) is equal to the left-hand side of (4.59).
Thus, by (4.63), we have found that (4.59) holds. O



454 M. UEDA

Now we are in position to obtain the proof of Theorem 4.3. To simplify the
notation, we set O(z) to 2 ® 1 + 1 ®  for all z € Y., ., (sl(m|n)).

Proof of Theorem 4.3. Tt is enough to check that A is compatible with (3.17)-
(3.25), which are the defining relations of the minimalistic presentation of the
affine super Yangian. Since the restriction of A to sl(m|n) is nothing but the usual
coproduct of sl(m|n), A is compatible with (3.18), (3.23), (3.24) and (3.25). We
also know that A is compatible with (3.20) since A(mfl) is defined as

1

£ [A(hi1), Alai)] if § # m, 0,
1 7 + €1 —¢&2 + e
ia . [A(Rit1,1), A(Ii,o)] + bit1, B A(Ii,o) if i =m,0,
i+1,i

and A(hiy11) and A(h,; 1) commute with A(hj ) by the definition. We find that
the defining relation (3.19) (resp. (3.21), (3.22)) is equivalent to (4.11) (resp. (4.9),
(4.10)) by the proof of Lemma 4.7. It is easy to show that A is compatible with
(4.11), (4.9) and (4.10) in the same way as [12, Thm. 4.9]. Thus, it is enough to
show that A is compatible with (3.17). By the definition of J(h;), we obtain

[A(hir), Alhj1)] = [A(T (hi)) = A1), A(J(hy)) — A(v;)]
= [A((ha), AT (hy))] + [A0:), Aw;)]
(4.65) = [A(J(h), Aw7)] = [A(0:), A(J ()],

where v; = v; + %hf It is enough to show that

(4.66) [A(J(hi)), A(J (h)))] + [A(0s), A(v;)] =0
and
(4.67) [A(J(hi)), A(0;)] + [A(vi), A(T(hy))] =0

hold. We only show that (4.66) holds. The outline of the proof of (4.67) is the
same as that of [12, Thm. 4.9]. In order to simplify the computation, we define

Q= Z uf @ up + Z Z (_1)17(&)%12& ®xli%”

1<k<dim b Q€A 1<k, <dim gq

QO=> > at ek

ac€A; 1<k <dim gq

Q = Z uf @ ug + Z Z (=1)? p(e) xke @ gha 4 ghe @ gha)

1<k<dim b €A 1<k, <dim gq
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where {u*} and {u} are basis of b such that x(ug,u') = 6. By the definition of
J(h;), it is easy to obtain

€1+ ¢g
2

(4.68) A(J(hi)) = B(J (hi)) + [hio ® 1,9

since we have
Azy) =(201+102)(y@1+107y)
= (_1)P(1)P(y)xy Q14+ (_I)P(ac)P(l)l @ zy + (—l)p(l)p(l)x ®y
+ (_1)P(x)17(y)y QT

by the relation (z®y)(z @ w) = (—1)*®P# 22 @ yw for all homogeneous elements
x, y, z, w. Thus, by (4.68), we obtain
[A((hi)), A(J (hy))]
= 0([J(ha), I (hy)]) +

€1t e
2
First, we prove that

€1+ €2
2

[ (h;)), [hio @1, Q]| +

[O(J (i), [hj0 ® 1,9]]

1 +£2)?
%[[hw ®1,9], [hjo ®1,9]].
g1+ €2 €1+ &2

2 2
holds. Since [h; o ® 1,9Q] = ZaeAYf(a, ;) (T—q ® To — T ® T_q) holds, we have

(4.69)

[A(J (i), [hjo®1,9]] —

[O(J(hy)), [hio ®1,Q]] =0

(O (ha)); [hy0 @1, 9] = [O(J (hy)), [hio @ 1, Y]

= Y (@) ()" VI (hi), 2] @ 20 = (—1)" Vo @ [J (i), 0]

aEA®
+ [J(hi), 2—a] @ o — T—a @ [J (i), 24))
o Z (a7Ozi)((_l)p(a)[t](hj)’xa] QT_o — (_1)17(04):1;(1 ® [J(hj)7x—0¢]

aEALS
+ [J(hj)ax—a] QLo —T—a® [J(hj)axa])
- Z (avaj)(aaai)cﬁj

aEA®
X ((71)p(a)xa QT — (71)17(0()3304 RTa+Ta®@Ta —T-a® CEa)

= > (wai)(aay)c;

ocEArf

X ((_l)p(a)xa QT _q — (_1)p(04)xa RToqa+Toa®@Ta —T-a® CEa)
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where the third equality is due to Proposition 4.26. Therefore (4.69) holds. Since
A(v;) = 0(0;) — 23=2[h; 0 ® 1,94 — Q_] holds, we obtain

€1+ €2

[A@i), Al))] = O([vi, 95]) + —

(—[0@), [hjo © 1,04 — Q_]]

+ [O(0;), [hip ® 1,94 — Q_]])

" (e1+ 52)2
4

Using this along with Q = Q4 + Q_ and (4.69), we find the equality
[AJ (i), A(J (h)))] + [A(05), A(v;)]
= 0([J (hi), J (hy)] + [0i, v5])
A2 (D@, o @ 1,24 — 2]
+ [0(5), [hip ® 1,94 — Q_]])
+ M([[h' .
9 i,0 ® 1, Q+]7 [hj,o ®1, Q+H
(4.70) F{[hio ®1,Q], [hjo®1,2_])).

[[hipo® 1,24 —Q_],[hjo @1, QL —Q_]].

In the same way as [12, Thm. 4.9], we can check that the sum of the last four terms
on the right-hand side of (4.70) vanishes. By Corollary 4.57, O([J(h;), J(h;)] +
[0;,7;]) = 0 holds. The coassociativity is proven in a similar way to [12]. We
complete the proof. O

By setting the degree on Yz, , (sl(m|n)) determined by (4.2) and deg(d) = 0,
we can define the YEl s (5[(m|n)) (resp. Yz, e, (5[(m|n)) ® Yz, e (sl(m|n))) as the
degreewise completion of Yz, ., (sl(m|n)) (resp. Ye, c, (5[(m|n))®2) in the sense of
[18]. We regard a representation of Y, ., (s(m|n)) as that of sl(m|n) via ®. By
Theorem 4.3, we easily obtain the following corollary.

Corollary 4.71. There ezists a linear map A: Yz, ., (sl(m|n)) = Yz, o, (sI(m|n))®
Y., e, (sl(m|n)), uniquely determined by

A(hig) = hio @1+ 1@ hig, A(riy) =a7,®1+1@af,, Ald)=d®1+1®d,
A(hin) =hia®1+1Qhi1+ (1 +¢€2)hio @ hig

— (1 +€2) Z Z (o, i)z, @ ahe,

acAy 1<k,<dim gy

which is an algebra homomorphism. Moreover, A satisfies the coassociativity.
In particular, A defines an action on Yz, .,(sl(m[n)) on V@ W for any
Ye, e, (8I(m|n))-modules V., W which are in the category O as sl(m|n)-modules.
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§5. Evaluation map for the affine super Yangian

Since the definition of the affine super Yangian is very complicated, it is not clear
whether the affine super Yangian is trivial or not. In this section, we construct
the nontrivial homomorphism from the affine super Yangian to the completion of
U(g[(m|n)) In this section, we set g[(m|n) = gl(m|n) @ C[t*1] @ Cc® Cz as a Lie
superalgebra whose defining relations are

¢, z are central elements,

[z, y] @ 5T + 88544 0 str(zy)c if 2,y € sl(m|n),
[T @1°,y @t"] = < [eap, €ii] @ 5T + 805100 Str(eapeii)c
+35a,b(_1)p(a)+p(i)z ifez = €aby, Y = €4 -

For all s € Z, we denote E; ;®t° by E; ;(s). We also set the grading of U(a[(m\n))/
U(A(m|n))(z — 1) as deg(X(s)) = s and deg(c ) = 0. We define U(g[(m|n))mmp T
as the standard degreewise completion of U(g[(m|n))/U( [(m|n))(z — 1) in the
sense of Definition 4.1.

Let us state the main result of this section. In order to simplify the notation,
we denote €1 + €5 as h.

Theorem 5.1. Assume ch = (—m+n)e; and z = 1. Let a be a complex number.
Then there exists an algebra homomorphism

ev: Yoy, (s1(mln)) = U (gl(mln))comp.+
uniquely determined by

(5.2) ev(x:ro) =z, ev(xifo) =uz;, ev(hio)=hi,

(a— (m —n)ey)zgd
m-+n

+FLZ Z (_1>p(k)Em+n,k(_S)Ek)1(S + 1) ZfZ =0,

s>0 k=1
(o= = 2600 2 m+ i = m)e)of

+hy Z VPN E; y(—5)Egifa(s)

s>0 k=1

m—+n

+hz Z p(k)E k(=s = ) Egi1(s+1) ifi#0,

s>0 k=i+1
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(5.4) ev(z;,) =

(55) ev(hi,l) =

M. UEDA
(= (m —n)er)zg
m-+n
0N ()" M E k(=5 — 1) Egnn(s)
s>0 k=1

(= (i —25(i > m+1)(i —m))er)z;

+(DPORY ST (1P B () Era(s)
s>0 k=1

m—+n

+(DPIRYT ST ()PP B (s = DEi(s +1)

§>0 k=i+1

(CK - (m - n)El)hO + FLE’nL+n,7n+n(El,l - C)

m—+n

7hz Z (71)p(k>Em+n.,k(73)Ek,m+n(3)
>0 k=1
m+n
13T ()PP B (=5 = 1) Epa(s + 1)
s>0 k=1

(@ — (i — 26(i = m + 1)(i — m))er)hs
7(71)13(&,”1)&& B

+h(— 1””22 1PN E, (=) Epi(s)
s>0 k=1

m—+n

+h(=1)PDN T ST ()Y E (=5 — 1) Era(s +1)

$>0 k=i+1

—h(- 1”“*”22 DM B (=) i (5)
s>0 k=1

m+n

—h(=1)" IS S ()PP B k(s — 1) Briga (s + 1)

$>0 k=i+1

if i =0,

ifi #0,

ifi=0,

ifi #0.

The outline of the proof is the same as that of [16]. It is enough to check
that ev is compatible with (3.17)—(3.25), which are the defining relations of the
minimalistic presentation of the affine super Yangian. When we restrict ev to

;[(m|n), ev is an identity map on s:\[(m\n) Thus, ev is compatible with (3.18),
(3.20), (3.23)(3.25).
We set an anti-automorphism w: U(gl(m|n)) — U(gl(m|n)) as

wXet)=(D"XTat", wlk) =c

where X7 is the transpose of a matrix X. Then the compatibility of ev with (3.21)

and (3.22) for — is deduced from that for + by applying the anti-automorphism w
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since we have w(ev(h; 1)) = ev(h;1) and w(ev(xi‘l)) = (fl)p(i) ev(z, ). Therefore,
it is enough to check the following lemma.

Lemma 5.6. The following equations hold:

(5.7) [ev(@}y),ev(ajo)] = dijev(hia),
~ g1 —€
(5.8) [ev(hin), ] = ai (eV( ) - bi,j%ﬁ)’
E —I—E 8 — &
(5.9) [ev(aiy)af] = o) ev(ef))] = as———{ai o] =t o],
(510) [eV(hi’l),EV(h]‘yl)] =0.

The rest of the paper is devoted to the proof of Lemma 5.6.

§5.1. The proof of (5.7)

We prepare one claim before starting the proof.

Claim 5.11. The following relations hold:

DR ML NEREHEN

s>p k=1
a

=610 3 > (1PN E; k(=) Epy(5)

s>p k=1
-~ E; j)p(Esy) P(k)E E.
(-1 > Z (—5)Ei.(s)
s>p k=1

+{6(x<a<y)—5(x>a>y)}
(5.12) XZ (96)+p TJ)P(Ezy)E (=8 Eq ;(s),

s>p

m+n
5 PP BB 0B

s>p k=a

m—+n

=0 Z Z p(k)E (—5)Eky(s)

s>p k=a

_ ( EL J)p(E‘73 'y) Z Z p(k)E S)Ekvj(s)

s>p k=a
+{d(x>a>y)—dz<a<y)}
(5.13) x 3 (~)P TP E ) 5V B, 4 (s).

s>p
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Proof. We prove only (5.12) since (5.13) is proven in a similar way. By direct
computation, the first term of (5.12) is equal to

8jw ZZ p(k)E (—=8)Ej y(s)

s>p k=1
E, i)p(Ey
_ 6(y < a) Z (_1)10(’!!)+P( .3)P( Vy)Ei,y(_s)EI,j (S)

s>p

+5($ S a)z (71)p(m)+P(Ez,j)p(EZ,y)El_yy(7S)Ez7j(s)

s>p

(5.14) — (—1)PEP(Es ) ZZ 1P By 1, (—5)Eg 5 (s).

s>p k=1

Since p(y) + p(Ey ;)p(Ez,y) = p(x) + p(Es ;)p(Es,y), the sum of the second and
third terms of (5.14) is equal to

{fz<a<y)—d@>azy}y (-1)HEEDE, (B, ().
s2p

Then we obtain (5.13). O

Suppose that i, j # 0. Other cases are proven in a similar way. By the defini-
tion of ev(zi’l), we obtain

lev(z])), ev(z),)]
= [(a = (i = 26(i > m+1)(i —m))er) i, (~1)"DEj 11 5]

{ZZ P E; (=) Erita(s), (— )p(])EJ“’]}

s>0 k=1

m—+n
(5.15) [ S > )P E (s = DB (s +1), (- )”(”Eﬁm}

s>0 k=i+1

By (5.12), [nY 50 ket ()P Bik(=5)Briya(s), (~1)"V Bj11 ], the second
term on the right-hand side of (5.15) is equal to

{h YN ()P Ek(=8) B (s), (1)p(j)Ej+1,a}

>0 k=1
i

=60 > ()PP B, (—s) By i(s)

>0 k=1
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%hZZ AP ORPESD B G (—8) B ()

5>0 k=1

(5.16) — 5 th P(Ez i+1)p(Es, 1+1)E ( )Ei+1,i+1 (S)
s>0

Similarly, by (513), [FL ZSZO Z;cnztil (_1)p(k)Ei,k(_S _ 1)Ek7i+1($ + 1)7 (_1)P(j) X

E;11 ], the third term on the right-hand side of (5.15) is equal to
m-+n
1S B (s - DB (s DD B
5§20 k=i+1
m+n
=03 N 6 (1) ITPOE, i (—s — 1) Era(s + 1)
s>0 k=i+1
m—+n
_ hz Z 6 P(H‘H’( )+p(Ei, 1+1)E ( s — 1)Ek,i+1(5 + 1)
s>0 k=i+1
(517) + FLZ(S J p(i+1)+pG )E ( S — 1)Ei+1,i+1(8 + 1)
s>0

We can rewrite the sum of the last term of (5.16) and the last term of (5.17).
Since p(E; ;+1) = p(i) + p(i + 1) holds, we obtain

_ hz (_I)P(Ei,i-u)p(Ei,71+1)Ei7i(_S)Ei+17i+1(S)

s>0

+ hz p(i+1)+p(d)+p(Eit1,i+1)p(Es, LH)Ei (=5 — 1) Ejy1441(s+1)
s>0

=—hy (- DPE ) By 5 (—8) Eigr g (s)

s>0

+ hz (1) F VB (=5 — 1) Erpraga (s +1)
s>0

(518) = —h(—l)p(Ei’iJrl)Ei’iEiJrl’H,l.

Thus, we have shown that [ev(x;-fl), ev(x; )] = dijev(hi1) holds by (5.16), (5.17)
and (5.18).

§5.2. The proof of (5.8)

We only show the case where i, # 0 and when ¢ = 0 and j # 0. The other case

is proven in a similar way.
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Case 1, i,j # 0. First, we show the case where i,j # 0. By the definition
of ev(h; 1), we obtain

lev(hi1), ev(az))]
- [(a — (i —26(i > m+1)(i —m))e1)h

1
— §h((Ei’i)2 + (Ei+1,i+1)2)7Ej7j+1}

+ oo > Z 1PN By i (—5) Egi(s), Ej7j+1]

s>0 k=1

n 1yl )Z Z PO B, o (—s — 1)Ek,i(8+1)7Ej,j+1}

s>0 k=i+1

. p(i+1) Z Z p( )E i+1, k( )Ek,i+1(s)7 Ej7j+1:|

- s>0 k=1

r m—+n

(5:19) = |A(-1PEIS Z<—1>P<’“>Ei+1,k<—s—1>Ek,i+1<s+1>,Ej,m}.

L >0 k=i+1

Let us compute these terms respectively. By direct computation, the first term on
the right-hand side of (5.19) is equal to

[(a — (i =200 > m+1)(i — m))e1 ) h

1
- §ﬁ((Ei,i)2 + (Ei+1,i+1)2)7Ej,j+1}
=(a—=(i—26(i>m+1)(i— m))sl)ai,jx;Ir
h
— 5(5i,j({Ez’,i+17Ei,i} —{Eiit1, Fit1i41})
(5.20) — i j41{Biz1,is Bii} + 0iv1,j{Bit1,i42, Biv1,i41})-

By (5.12) and (5.13), we also find that the sum of the second and third terms on
the right-hand side of (5.19) is equal to

[ oy Z )" E, . (—5) Bii(s), Ej,j+1}

s>0 k=1

m—+n
+ [h(—l)p@ ST ()PP B — 1) Er(s + 1),Ej,j+1]
k=i+1
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_ p( ZZ(S p(k)E 1 (=) Eg.ip1(s)

s>0 k=1
_ P(Z ZZ(SJ L :D( )E ( S)E;w(s)
s>0 k=1
+ A=) Y655 (— 1) By (—8) Bia(s)
s>0
m-+n
+h p( Z Z di ik(—s = 1)Eyj41(s+1)
s>0 k=i+1
m-+n
— BN N G (PP (s = DE(s + 1)
s>0 k=i+1
;D(l 25 p(i+1)+p(Ei,i+1)P(Eit1,i)
s>0
(521) X Ei7i+1(—s — l)Ei,i(s + 1)

By a direct computation, we obtain
(5.22) the sum of the third and sixth terms of (5.21) = kd; ; E; i+1F; 5.

Next, let us rewrite the sum of the first and fourth terms of (5.21). By the definition
of ev(gcifl), we obtain

the first term of (5.21) 4 the fourth term of (5.21)
(5.23) =bij(ev(zfy) — (= (1 —20(i > m +1)(i — m))er) ;).

By the definition of ev(z; 1), we also obtain

the second term of (5.21) + the fifth term of (5.21)

= =0 j1h(— p(l ZZ —8)Ek,i(s)

s>0 k=1

m+n

— 0t h(=D)PO ST ST ()PP B (s — 1) Br(s + 1)

s>0 k=j+1
—hoij1Ej i By
= =i (=1 (ev(a)y) = (= (= 260 = m+1)(j —m))er) )
(5.24) — oy j1 BB
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Therefore, by (5.22), (5.23) and (5.24), the sum of first, second and third terms
on the right-hand side of (5.19) is equal to

(= (i—25(i>m+1)(i— m))el)ai7jzj

h
- 5(6z‘,j({Ei,i+17 Ei;} —{Eiit1, Eiv1,i+1}) — 0ij41{Ei-14, Eii }

+ i1, i{Eit1,i42, Ei+1,i+l})
+ hé; j By i1 B
+ (—1)P9g, (ev(a;y) — (= (i —26(i = m+ 1)(i —m))er) ;)
(5.25) — (~)P5 1 (ev(aly) — (a— (5 — 20(i > m +1)(j — m))er)a]).
Similarly to (5.25), we find that the sum of the fourth and fifth terms on the
right-hand side of (5.19) is equal to
— R B i1 By i
— (P (ev(ady) — (o — (i — 20(5 = m +1)(j — m))er)x})
+0iy1,ih i1 i1 1,41
(5:26) 485 (~D)"T (ev(afy) = (@ = (- 266 = m + 1)(i - m)er)a).
Then [ev(ﬁi,l),ev(x;-‘:o)] is equal to the sum of (5.20), (5.25) and (5.26):

(= (i—26(i>m+1)(i— m))sl)aiyjm;'

h
- 5(5i,j({Ei7i+1a Eii} —{Eiiz1, Eiv1,641})

—bij41{Bi—1i, Eii} + 0iv1,;{Bit1,iv2, Biy1,i41})
(i—26(i>m+1)(i— ))sl)ai,jx;'
(6:.;({Eii+1, Bii} — {Eiit1, EBix1,i41}) — 6ij41{Bi-1,i, Ei i}
+ 6it1,{Ei+1,i+2, Bit1,i41})
+ 1o j B i1 B
+ (—1)P9s, (ev(z])) — (= (i —26(i > m +1)(i —m))eq) ;)
— (=P8 (ev(aly) — (@ — (G — 20(i = m +1)(j —m))er)z])
— 6B, E i1
= (DM Ybi g (ev(afy) = (o= (0= 20( 2 m+ 1) = m))er)a])
F i1, i h i i1 B
48, ()P (ev(at)) — (a— (i — 20(i > m + 1)(i — m))er) ).

+ (-
h
2
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By (5.20), (5.25) and (5.26), when ¢ # j,j £ 1, [ev(ﬁiyl),ev(zzo)] is zero. Provided
that ¢ = j, [ev(ﬁijl),ev(a:jjo)} is equal to

(= (i—26(i >m+1)(i —m))er)a; iz
- g({Ei,HhEM} —{EBii+1, Bit1,41})
+ hE; i1 E;;
+ (1P (ev(afy) = (a = (1= 20(i = m +1)(i — m))a1)))
—hEii1 i1 i1
(5.27) + (1P (ev(at,) — (o — (i — 206 = m+ 1) (i — m))er)z]).
Since a;; = (—1)" 4 (=1)P™) holds, we have
(= (i —26(i >m+1)(i —m))er)a;z;
— ()" (a = (i - 20(i = m+1)(i - >>sl) 7
— ()" (@ — (i = 28(i > m +1)(i — m))er)zf =0
and

h
- 5({Ei,i+17 Eii} —{Eiit1, Bix1i11}) + B i1 By — hEi1 i1 B i

h
—5 (BiiEiir1 = Eiiv1Eii + Birvivi Biiv1 = Eiiv1 Eivi i)
h
= _g(Ei,i-i-l = Eiit1) = 0.
Then we find that [ev(h; 1), ev(z; T0)] is equal to a;; ev(z])).
When i =5+ 1, [ev(hi1),ev (;ro]lsequalto

(a — (Z — 25(i >m+ 1)(2 — m))sl)ai,j;v;r + S{Ei*L%Ei,i}
— ()" (ev(zfy) — (a = (j — 206 > m +1)(j — m))er)a}) — hEj By .

Since a; ; = —(=1)* holds, we have

h
Eii,EBi_1,]=—=

h h
§{Ei—1,z‘7Ei,i} —hE; B = 5

2[ Ei_1;

and
(= (i—26(i>m+1)(i — m))sl)ai,jx;r
+ (=1 = (- 26(i > m+1)(j — m)e1)z}) = era}.

Then we find that [ev(ﬁm), ev(wIO)] is equal to a; ;1 (ev(z; |)+a; ;1% 52 Ei 1)
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When i =j—1, [ev(ﬁi71),ev(x;f0)] is equal to

St

(= (i—26(i>m+1)(i— m))sl)ai7jxj - 5({Ei+1,i+27Ei+1,i+1})
— (=1 (ev(af)) = (a— (i —20(j = m+1)(j —m))e)x])
+hEi1 i1 Ei1 1

Since a; ; = —(=1)*Y holds, we have

h h h
—E{Ei+1,z‘+2,Ei+1,i+1} +hEi1 i1 B j4 = E[Ei+1,z‘+1’Ez‘+1,i+2] = §Ei+1,i+2

and
(= (i—26(i >m~+1)(i — 771))51)CL1-J36].+

+ ()P (@ (- 26 > m+ 1)(j — m))er)af = —e1Biprive.

£2

Then [ev(hi 1), ev(zf,; )] is equal to a;iy1(ev(zfyy 1) — Gii+1252 Big1it2).

Case 2, ¢ = 0 and j # 0. By the definition of ev, we obtain
[ev(Ro,1), ev(a]y)]

= [(a— (m = m)e0)ho — SA(Emrmmin)? + (Fry = ), B

2
m—+n X
|: Z Z p( )Em+n,k(_s)Ek,m+n(8)7Ej7j+1:|
s>0 k=1
m—+n
(5.28) [hz > (- VPP By (=5 — 1) Epa(s +1), Eju‘ﬂ]-
s>0 k=1

By direct computation, the first term of (5.28) is equal to

h
(a - (m - n)El)GOJQT;r - 5 <_6m+n—1,j({Em+n7m+n7 Em+n—1,m+n}

(529) —+ (51’]'{E1’2, (El,l — C)}))
We also find that the second term of (5.28) is equal to

hz p(G+1)+p(E; j+1)p(Ej+1, m+n)Em+n,j+1(_S)Ej,m+n(s)

s>0
_ hz (—l)p(ij(Ej’j“)p(Ej’m+”’)Em+n,j+1(—S)Ej7m+n(8)
s>0
m—+n L

(530) =+ hz Z §m+n,]+1 p( )Em+n—1,k(*5)Ek,m+n(5)-

s>0 k=1
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By direct computation, we also know that the third term of (5.28) is equal to

m+n

—hY N ()PP By (=5 — 1) Era(s +1)
s>0 k=1
Ry (PO B R (<5 DB (s + 1)
s>0
(531) _ hz (71)P(j)+P(Ej,j+1)P(Ej,l)ELj_H(75 _ 1)Ej71(5 + 1)
s>0

First, we show that the sum of the first and second terms of (5.30) is equal to
zero. By direct computation, we have

the first term of (5 30) + the second term of (5.30)
= hz p(F+1)+p(Ej j+1)p(Ejt1, m+")Em+n,j+1(—S)Ej,m+n(5)
5>0

(5.32) — by ()OI I E ) 11 (=8) Ejanaa(s) = 0.

s>0

Similarly, by direct computation, we also obtain

the second term of (5.31) + the third term of (5.31)

_ hz (_I)P(j+1)+P(Ej,j+1)p(Ej+1,1)E17j+1(_3 —1)Ej1(s+1)
5>0
(5.33) — 1Y (~1)PDPE P ED By L (—s — 1) B (s + 1) = 0.

s>0

Next we rewrite the third term of (5.30). By direct computation, we have

the third term of (5.30)

m+n—1

= hz Z Omn,j+1(—1 )p(k)E tn—1,k(—8) Ekm+n(S)
>0 k=1
+ fiz 6m+n7j+1(_1)p(m+n)Em+n—1,m+n(_5 — D Emtnmin(s+1)
s>0

+ Bt 41 ()P Bt et Bt et
= Omtn,j+1 (ev(x;:zﬁ»nfl,l) —(a—=(m—-n+ 1)51) Tintn— 1)

(534) + h6m+n,j+1 (_ l)p(m+n) Em+n71 ,m+nEm+n,m+n .
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Similarly, we rewrite the first term of (5.31) as

the first term of (5.31) :—hZcSl]Ell s)E1 2(s)
s>0

m—+n

_hzzélj Elk( S—l)Ek$2(8+1)

s>0 k=2

+ hz 01;E11E1 2
s>0

(535) = —5j71(CV($1~:1) — (O& — 61)1’1’_) + h5j71E171E1,2.
Then, by (5.28), (5.32), (5.33), (5.34) and (5.35), we can rewrite [ev(ﬁ071),x;fo] as

(= (m— n)gl)ao7jxj

h
-3 (=Om+n,j+1{Emtnm+n, Ejmint + 01;{F1 41, (B11 — ¢)})

+ Omtn,j+1 (ev($;+n—1,1) —(a=(m—-n-— 1)51)‘1:7—;+n—1)
+ h5m+n,j+1(_1)p(m+n)Em+n 1 m+nEm+n m—+n

(536) — j’l(ev(mfl (Oé — 81)131 )) + h(sj 1E1 1E1 2.

By (5.36), when j # 0,1,m +n — 1, [ev(ﬁo’l),ev(xjfo)] is equal to zero. When
j=m+n-—1, [ev(iLOJ),ev(x;fO)] is equal to

(Oé - (m )51) Totn—1 + = {Eern m-+n Eg m+n}

+ev(x:;7,+n 11) (a_( _n+1)51) Tmgn-1

+ h(i 1)p(m+n) Em+n— 1,m+nEm+n,m+n .

Since

h m—+n
E{Eermerna Em+n71,m+n} + h(_l)p( )Em+n71,m+nEm+n,m+n

h h
= §[Em+n,m+na Em+n—1,m+n] - §Em+n—1,m+n
holds, [ev(ﬁo71),ev(xfn+n_170)] is equal to

€1 — €2
+
am—i—n—l,O (ev(xm+n_1,1) + a'm-i-n—l,O 2 Em+n—1,m+n) .

By (5.36), when j = 1, [ev(ho,1),ev(x] )] can be written as

h
—(a — (m — TL)El)SCIr — §{E1’j+1, (El,l — C)} — ev(xfl) — (O[ — El)xf + hE1,1E1,2'
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Since

h h h
hE11Eq 2 — §{E1,2, (Bhvgp—c)} = §[E1,1, Ey o]+ hcEy g = (5 + hC>E1,2

holds, [ev(lzg,l),xfo] = a071(ev(a:i1) — a1 ev(xfo)) is equivalent to the re-
lation chi = (m — n)ey. It is nothing but assumption. This completes the proof of
the case j # 0 and i = 0.

Other cases are proven in the same way. Thus, we show that

€1—"€2
2

~ €1 — &2
lev(hi,1), eV(Ij‘:o)} Qi,j (ev( j1) —bi; 9 ev(x;fo))

holds.

§5.3. The proof of (5.9)

We only show the cases where 4,7 # 0 and i = 0,5 # 0. The other case is proven
in a similar way.

Case 1, i, 7 7% 0. Suppose that i, j # 0. First, we compute [ev(a:;fl), ev(z]y)]
By the definition of ev(z; +.), we have

[ev(xifl),ev(x;fo)] = [(a —(i—20(i>m+1)(i— m))sl)xﬁEj,jH}

+ |:hz Z (—1)p(k)Ei7k(—S)Ek’i+1(S), Ej’j+1:|

s>0 k=1

m-+n
(537) |:hz Z ( s — I)Ek z+1<5 + 1) Ej,j+l:| .

s>0 k=i+1

By direct computation, the second term of (5.37) is equal to

[ZZ VY'Y E; 1 (=8)Briva(s), Ej

s>0 k=1
=hy Zazm )"W By i (—5) Br 41 (s)
5>0 k=1
_ hz Z 8i (= p(K)+p(Eit1,:)p(Ej, ]+1)E k(=) Epiv1(s)
§>0 k=1
(5.38) + hz 5;.4( P( )Hp(Eiira)p(Eiit) g 2 i1 (—8)Ei i1 (s).

s>0
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We also find that the third term of (5.37) is equal to

m-4n
{ SN ()P VB (=5 = 1) B (s + 1), By
s>0 k=i+1

m+n

k
=503 > G (P E (=5 — DBk ja(s +1)
50 k—it1

m—+n

k FEit1.4 g
—BYD 3 G ()P P B (s 1) B (51)
s>0 k=i+1

(5.39) _ 52(5 p(z+1)+p(EL+1 )p(Ei, L+1)E is1(=s = 1D)E;ip1(s +1).
s>0

Thus, we can rewrite [ev(x;fl), eV(l‘;:O)] as

[(a= (i —26(i >m~+1)(i —m))er)x], Ejj11Vr]

+ 1Y G ()P Ei g (—5) Bk 1 (5)

s>0 k=1
_ hz Z 5 ,g+1 E)+(p(Biy1,k)+p(Ek,:))p(Ej, J+1)E 1 (—5)Egiz1(s)
s>0 k=1
m-+n
+hY N G (1) VB p(—s — 1) B (s + 1)
s>0 k=i+1
(R k E. E E
_ hz Z 5i7j+1(_1)p( )+ (P(Eit1,k)+p(Ek,i))p( j'Hl)Ej,k(—S —1)
s>0 k=i+1 % Ek,i+1(8 + 1)
+h Z 854 (—1)PO TP EeepBre) oo (VB i1 (s)
s>0
(5.40) - ﬁz i 4( p(1+1)+p( 7+1’i)p(Ei’i+l)Ei,¢+1(*s —DEiit(s+1).
s>0

Next, let us compute [ev(:cj"o), ev(w;’:l)]. Since it is equal to
(1) fev (), ev(afo)],
we can rewrite [ev(:v;fo),ev(x;l)] as

[Eiiv1, (a—= (5 —26(j = m+1)(j —m))er)z]]

J
_ hz Z 51,7j+1(71)P(k)+P(Ei,i+1)(P(Ej,k)-i-P(Ek,Hl))EM(75)Ek7i+1(S)
>0 k=1
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+ﬁzz5z+1y 1M B k(—5) Br j1(s)
s>0 k=1

m+n

B ST i (PP E) B B (g )

s>0 k=j+1 % Ek,i+1(8 + 1)
m—+n

+ hz Z 5i+17j(—1)p(k)Ei7k(—S — I)Ek7j+1(8 + 1)

>0 k=j+1

— 1Y 8 (1P By i1 (—8) B i (s)

s>0

(541) + FLZ(S i, @ 1)E,L Z+1( S — 1)Ei7i+1(s + 1)
s>0

By (5.40) and (5.41), when ¢ # j,j £+ 1, [ev(xifl),ev(x;fo)} - [ev(xio),ev(x;tl)] is
equal to zero.
When i = j, [ev(mifl),ev(x;fo)] - [ev(;v;fo),ev(xjfl)] is equal to
(= (i —26(i =m+1)(i —m))er)x], Ejjt]
— [Biirr, (= (5 —26(j = m+1)(j —m))er) x|

+hY (- PV E; i (—8)Ei i (s)
5>0

—hY (1" B (=5 = DB (s +1)

s>0

+ hz (—1)p(i)Ei,i+1(_S)Ei7i+1(8)

s>0

(5.42) Y (D) VE; (=5 = 1) Biga(s + 1).
s>0

Since [z;, z]] = 0 holds, the first and second terms are zero. We also obtain
the third term of (5.42) + the fourth term of (5.42) = A(—1)*VE; ;11 Fi 141
and

the fifth term of (5.42) + the sixth term of (5.42) = h(—1)* "V E; ;11 E; ;14

by direct computation. Thus, [ev(x;fl),ev(xzo)] - [ev(x?"o),ev(x;l)] is equal to

hai7iEi7i+1Ei7i+1 since Qi3 = (—1)p(i) + (—1)p(i+1) holds.
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When i =j — 1, [ev(zil),ev(xj:o)] - [ev(xj)'o), ev(zj:l)] is equal to

[(o = (i —26(i > m+1)(i —m))er)x;, Ejj1]
— [Biigr, (0= (5 = 26(j > m+1)(j —m))er) ] ]

th Z Z dit1, (*1)p(k)Ei,k(*5)Ek,j+1 (s)
s>0 k=1

m+n

+hYN T G (V)P E (=5 — 1) B (s + 1)

>0 k=i+1

J
7Y i1 i (1P B (=) B ja ()

>0 k=1

m—+n

(5.43) YN G ()PP B (s — 1) By (s +1).

5>0 k=j+1
By direct computation, we obtain

the third term of (5.43) + the fifth term of (5.43)

=—hy_ (0P Ey 41 (—8) Bigiga(s)
s>0

and

the fourth term of (5.42) 4 the sixth term of (5.42)

- hz ZH)EZ i1(=s = ) Eiy142(s +1).
s>0

Then [ev(xjjl),ev(z;to)] - [ev(x;-fo),ev(x;l)} is equal to
[(a = (i = 26(i > m + 1)(i = m))er) ", Ej 1]
— [Ez i+1, (Oé — (] — 25(] Z m + 1)(] — m))sl)xﬂ
—hY (1) E 1 (=8) Bipriva(s)

5>0
+ Y ()" VB (=5 = 1D Bipriea(s + 1),

s>0
Since a; ;41 = —(—1)p(i+1) holds, we have
— by (1" VB (=8) B iva(s)

s>0

+ hz (71)p(i+1)Ei7i+1(75 — l)Ei+1,i+2(5 —+ 1)
s>0
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*(*1)1)(“_1)hEi,i+1Ei+1,i+2

h
= ai,i+1§{Ei,i+1a Eit1it2} + aiit1=[Fiit1, Bigi,ivo]

2
and
[(a= (i =20(i >m+1)(i —m))er)a], Ej 1]
— [Eiivr, (0= (5 = 26(j > m+1)(j —m))er) ]|
= (~)"* Ve [Eiivr, Bitive)

= —aii11€1[Eiit1, Fig1,it2]-
Then [ev(x;fl),ev(x;to)] - [ev(xxo),ev(xjjl)} is equal to

1 —€&2

5 [Eiit1, Eit1,it2)-

R
@i it1 §{Ei,i+1a Eit1it2} — i it1
When i =j + 1, [ev(x;'fl),ev(xj:o)] - [ev(xjjo), ev(z;:l)] is equal to

(o= (i—26(i >m~+1)(i —m))er)x], Ejji1]
— [Biiz1, (a = (5 = 20(j = m +1)(j —m))er)x]]

- 52 Z Gij+1(— B (Ei)p(E, J+1)E]J€(_S>Ek,i+l(s)
5>0 k=1

m+n

_ hz Z 8ija(— p(k)+p(El+1 )p(Ej, J+1)E k(=5 — 1) Ejip1(s + 1)
s>0 k=i+1

A (P B B )1 (6)
s>0 k=1

m4n

(544) + hz Z 5; ,]+1 p(k)+p(Eit1,:)p(E;, J+1)E ( s — I)Ek,i-i-l(s + 1)
s>0 k=j5+1

By direct computation, we find that
the third term of (5.44) + the fifth term of (5.44)
= *hz p( )E1 1,i(—8)E; iy1(s)

s>0
and

the fourth term of (5.44) + the sixth term of (5.44)

= hz DPDE;i_1i(~s — 1) Eiia(s +1)
s>0



474 M. UEDA

hold. Since a; ;-1 = f(fl)p(i) holds, we have

- hz YOE; i(=s)E;iit1(s) + ﬁz p(‘)Ei—l,i(_S —1)E;it1(s+1)

s>0 s>0
= _h(_l)p(i)Ei Ll it

h

= §ai—1,i{Ez’,i+la =14} — az 1i[Biit1, Bic1]

and
[(a — (Z — 25(2 >m+ 1)(2 — m))el)zj, Ej7j+1j|
— [Eiivr, (0= (5 = 26(j > m+1)(j —m))er) ]|

= _(_1)p(i)51[Ez‘,i+1yEi—l,i]

= a;;-161Eiit1, Bio1,]
holds, [ev(z;’l), ev(xzo)] — [ev(:cj)'o), ev(:z:;fl )] is equal to

(o= (i —28(i > m+1)(i —m))er)x], Ejji]
— [Biitr, (@ = (G —20(j > m+1)(j —m))er)z]]

- h(*l)p( ){Ei—l,h Eiit1}+ (*UP( )§Ei—1,i+l-

LI, h £1—¢€
Therefore, it is equal to —a;;—15{Ei—14, Eiit1} + aii 1952 Ei1,i41-

Case 2, i # 0 and j = 0. Suppose that i # 0. First, we compute

[ev(x;-fl), ev(xa',o)]. By the definition of ev, we obtain

lev(iy), ev(zgo)] = [(a — (i — 26(i > m +1)(i = m))e1) ", Bmin,1(1)]

+ [hZ > <1)2’““)Ei,k<s)Ek,iH(s),Emm,l(l)]

s>0 k=1

m—+n
(5.45) [hz kz —s—1)Ejiy1(s + 1), Emml(l)].
s>0 i+1

By direct computation, the second term of (5.45) is equal to

m+n—1

k
hz Z 5m+n,i+1(_1)p( )Em+n—1,k(_8)Ek,l(8+ 1)

s>0 k=1

_ hz (_1)P(Em+n,1)P(El,i)JrP(l)Ei’l(_S)Emﬂm(s +1)
s>0

(5.46) - ﬁz 01,iBmin1 (1 — ) Eq 2(s)
s>0
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and the third term of (5.45) is equal to

m—+n

hz Z m+n)Em+n—1,m+n(*5 - 1)Em+n,1(5 + 2)
s>0 k=i+1

Ry () B SO By () By (5 1)
s>0

m+n

(5.47) Y 011" Y B (= 8) Bi i (s + 1) + 85,1 Bpn 2(1).
s>0 k=2

Next we rewrite the sum of the second term of (5.46) and the second term of
(5.47):
the second term of (5.46) 4 the second term of (5.47) = 0.

Therefore, [ev(gcj,l),ev(xaio)] is equal to

[(a —ie1)x), Emina(1 )]

m+n—1

+hY Z Sttt (<1 B (=) B (s + 1)

s>0 k=1

— hz 51,1‘Em+n,1(1 — S)ELQ(S)

s>0

+ hz 5m+n,i+1(_1)p(m+n)Em+nfl,m+n(_5 - 1)Em+n,1(3 +2)
s>0

m—+n

(5.48) — FLZ Z (51)2‘(—1)p(k)Em+n,k(_3)Ek,1(5 +1) 4 0i1¢Em1n2(1).
s>0 k=2

Next, let us compute [ev(:cj)'o), ev(:zzaj 1)]- By direct computation, we have

lev(a7y), ev(ag )]

= [BEiiy1, (0 — (m —n)ey)ag]
m+n
(5.49) + [EM-HJ‘LZ ST (D)"Y B (=) B (s + 1) .
s>0 k=1

By direct computation, the second term of (5.49) is equal to

m—+n

hz Z §m+n,i+1(_1)p(k)Em+n*1,k(_S)Ek>1(S +1)

s>0 k=1

by (R P E e DB () B (s + 1)
5>0
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+ hz p(z+1 +p(E;, 7+1)p(Em+n’i+1)Em+n,i+l(*S)Ei,l(5 + 1)

s>0
m-+n

(5.50) . hz Z 51 p(k)-i-p(El 2)P(Emtn, I)Em+n,k(_3)Ek7i+l<5 +1).
5>0 k=1

The sum of the second term of (5.50) and the third term of (5.50) is equal to zero.
Thus, [ev(xxo),ev(war’l)] is equal to

[Eiit1, (@ = (m —n)er)ag]
m+n
3N Gt ()P B (—5) B (s + 1)
§>0 k=1
m—+n
(5.51) _ hz Z 51 p(k)er (E1,2)P(Emtn, 1)E i~ B(— )Ek,Z(s +1).
§>0 k=1

Therefore, when i # 0,1,m +n — 1, [ev(xil), ev(zd,)] — [ev(xio), ev(zd,)] is

zero. When ¢ =1, [ev(xfl)mv(mg’o)] — [ev(xfo),ev(xal)] is equal to

(o — ez, Bnina(D)] = [Er2, (@ = (m — n)er)ag]

- hz Eern,l(]' - S)E172(s)

s>0
m+n
20393 (1" By o (—8) Epa(s +1)
s>0 k=2
m—+n
(5'52) + CEm+n 2 + hz Z p(k)Eern,k(_S)Ekﬂ(S + 1)'
s>0 k=1

By direct computation, we obtain
the third term of (5.52) + the fourth term of (5.52) + the sixth term of (5.52)
= —hEp4n1(1)E1,2(0)
h h
= _§{E1,2(0)7Em+n,1(1)} + §[E1,2(0), Ergna (1))
Moreover, by direct computation, we obtain
(@ = e1)ay, Emin1(1)] = [Er2, (@ — (m — n)e1)zy]
=(m—n—Dela], Enini(1)]

Therefore, [ev(xfl), ev(zgo)] — [ev(zfo),ev(xafl)] is equal to

_S{El,z( ) Emina(1)} = 25207, By (1)

by the assumption fic = (m — n)e;.
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When i = m+n —1, [ev(z, 1 1), ev(zgo)] — [ev(zh n10),ev(zg,)] is
equal to
[(a—(m—mn+ 1)51) Toptn—1> Em+n,1(1)] - [Em-&-n—l,m+nv (a@—(m— n)él)x(ﬂ
m+n—1
+ hz Z p(k)E m4n—1 k( )Ek,1(3 + 1)
s>0 k=1
m—+n
+ hz Z p(k m—i—n—l,k(—s — 1)E1€71(S + 2)
s>0 k=m+n
m—+n
~hy > (1" By 1 5(—8) Ex 1 (s + 1).
s>0 k=1

By direct computation, we obtain

the third term of (5.52) + the fourth term of (5.52) + the fifth term of (5.52)
= hEm+n71,m+n(0)Em+n,1(1)
h
= §{Em+n71,m+n(0)v Em+n,1(1)} + §[Em+nfl,m+n(0)a Eern-,l(l)]'
Moreover, by direct computation, we have

[(a—(m—n+1)e1)a], Enini(1)] = [Biiv1, (@ — (m —n)er)zd] = —er [z, 2]

Then [ev(z;), ., 11)sev(2g0)] — [ev(z), _10),ev(zg,)] is equal to

h €1 — 62
i{Em—s—n—l,m-&-n(O) m-+n, 1( )} - [$;+n,1, xa—]

This completes the proof of (5.9).

§5.4. The proof of (5.10)

Finally, we show [ev(h;1),ev(hj1)] = 0. Suppose that 4,5 # 0. It is enough to
show the case where ¢ < j. We set

A—ZZ 1" By gy (—5) Epi(s),

s>0 k=1

m—+n

Bi=>" 3" (-1)"WE(~s — 1)Brai(s + 1),

s>0 k=i+1
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~.

(—1)p(k)Ei+1,k(—S)Ek,i+1(S)a

Q2
[

\VM IVM

+
Z PP By k(=5 — 1) Epipa (s +1).

Then, by the definition of ev(h; 1), we have
[ov(hia), ev(hy)] = (~1)P D[4 A)) + [Bi, Aj] + [Bi, By + [4i, By}
+ (=P ITPUE (4G, O] + [Bi, O] + [Bi, Dy + [Ai, Dy}
+ (~1PETPONCs, Aj] + [Di, By] + [Di, Ay + Ci, By}
+ (~1)PVIIE (G, O] + [Di, §g) + Dy, Dy + (G, Dy}
By the definitions of A;, B;, C; and D;, we obtain
[Ai, Bj] = [Ai, Dj] = 0.
Thus, it is enough to show the following lemma.
Lemma 5.53. The following relations hold:
[Ai, Aj] + [Bi, Aj] + [Bi, Bj] = 0,
[Ai, Cj] + [Bi, Cj] + [Bi, Dj] + [As, D;] = 0,
[Ci, A;] + [Ds, Bj] + [Ds, Bj] + [Cs, Bj] = 0,
[Ci, Cj] + [Ds, C5] + [Di, Dj] = 0.

Proof. We only show that [A;, A;] + [B;, A;] + [B;, B;] = 0 holds. The other rela-
tions are obtained in the same way. By direct computation, we can rewrite [A;, A;]

as
A A ==Y Z PO EPE) B (s VB, (1) By a(s)
5,t>0 k=1
J
2 ZZ PEOMEL) By (~1) B (=5 + 0)Bi(5)

s,t>0k=11

N

Mu

S (1P ERIPER By (VB (s — 1) By (1)

— Z _’

s,t>

(=)
E

,_.
~
I

1
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i Z Z k)+p(i)+p(Ek, 1)p(Eu)E w(=8)Eji(—t) By j(s + 1)
5,620 k=1
(5.54) + D (sEii(=5)E;;(s) = 5Ej ; (=) By i(s))-
s>0

Since we find the two relations

the second term of (5.54)

Z Z Z Sl p(El 1)P(Ej, k)E (—s — t)Ei,j(t)Ek}i(s)
s,t>0 k=1 l=1

J

+ 33N G ()PP By () By (—t — 1) Ega(s +t+ 1),
=1
(5

5,t>0 k=1
the third term of 4)

ZZZ@ 1P EeIPE B (s — £ — 1) By (s + 1) B 4 (1)

5,t>0 k=1 l=1

+ZZZ6M )PP EeD) By (o) By i (—t)Eg (s + 1),

5,t>0 k=1 1=1

we have
i

[Ai7 Aj] _ Z (_1)p(k)‘i’P(i)‘i’P(Ei,k)p(Ej,i)Ej’k(_S _ t)Ei,j (t)Ek,i(S)
J
+ > G ()P ERPER By (s — ) B () Egi(s)
J
+ > (-1 E By 8V By (—t — 1) Bpa(s + £+ 1)
J
— Z 5]6,1(71)p(Ek’i)p(Ej’l)Ei7k(75 —t— 1)Ej71‘(5 + 1)Ek7j (t)

_1)p(Ek,i)p(Ek,j)Ei7k(_S)Ej,i(_t)E‘k7j (s+1)

|
M-
=%}
>
=N

+ (_1)P(k)+p(i)+P(Ek,i)p(Ei,j)Ei,k(_S)E‘j’i(_t)Ek)j(5 + 1)
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We simplify the right-hand side of (5.55). By direct computation, we obtain

the first term of (5.55) 4 the second term of (5.55)

=-> Z ROt EaIr B By (<5 — 0By (1) Eras)

5,t>0 k=1

(5.56) + 3 zl:(—l)p(Ei”“)p(Ej"“)Ej,k(—s—t)EiJ(t)Ek,i(s) =0

5,6>0 k=1
since p(k) + p(3) + p(Eix)p(E;:) = p(Eir)p(E; k). Similarly, we have
(5.57) the fourth term of (5.55) + the sixth term of (5.55) = 0.
By (5.56) and (5.57), we find the equality
[Ai; Aj]

i J

= 3 SN (PO EIRED B () By (—t — 1) By (s + £+ 1)

Computing the parity, we obtain

[Ai, Aj] =" Z NP ERPER B (VB j(—t — 1) By (s + £ + 1)

5,t>0 k=1
- ZZ 1P ERIPEDE, | (—s — £ — 1)y a(s + 1) By (1)
5,t>0 k=1
(558) + Z(SE@Z‘(—S)E]*J‘(S) — SEjJ(—S)Ei’i(S)).
s>0

Similarly, by direct computation, we have

m—+n

B“ B Z Z P(J)+P(l)+P(EJ 1)p(Ej, 7)E l( s—t— Z)Ej,i(s + 1)
s,t>01=j+1 X El,j (t + 1)

m+n m—+n

I PE B (=5 —t — 2)Eja(s +1)

5,t>0 k=i+11=j+1 X By ;(t+1)
J
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m+n m-4n
_ Z Z Z 5kl P(EJ k)p(Ek, 1)E ( s — 1)Ej,i(_t)
5,120 k=i+11l=j+1 % Ek’j(s_f_t_t'_]_)
m4+n m-4n
30D D G-I By (s — £ = 1B (1)
5,620 k=i+1l=j+1 X Erpi(s+1)
m+n m-4n . 5
0D D S )RR B (- 1) (-s - 1)
5,620 k=i+1I=j+1 X Ei(s +1t+2)
m—+n
(559) - Z Z p(5)+p()+p(E;:)p(E;, J)E ( t— I)Ei,j(—s . 1)
s:t201=5+1 X Epi(s+t+2).
We simplify the right-hand side of (5.59). By direct computation, we obtain
(5.60) the first term of (5.59) + the second term of (5.59) =0
and
5.61 the fifth term of (5.59) + the sixth term of (5.59) = 0.
(5.61)
By (5.60) and (5.61), we find the equality
m+n m+n
BiuBil== 3" > > oea(=)"ERIE, (s — 1)Eja(-t)
s5,t>0 k=i4+11l=75+1 % Ek,j(s Lt 1)
m4+n m-4n
DD D Sk IR B (s — b = 1)E (1)
s,t>0 k=i+11l=5j+1 % Ek:,i(s + 1)
m—+n
==Y 3 PO E, (s — 1) B (D Br(s + £+ 1)
s5,t>01=75+1
m—+n
(5.62) + 303 (PRI B (—s — £ — 1) By (1) Eya(s + 1),
5,1>01=j5+1

By direct computation, we also obtain

[Bi, 4] ZZ PO R, (—s —t —1)Ey () Eja(s + 1)
5,620 1=1
m—+n
— Z Z k)+p(i)+p(E; )p(Ej’i)ELk(*S*tf1)E1;7j(t)

s,t>0 k=i+1 XEk)i(S—i-l)
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m+n j
Ei)p(E;,
LS S ) E (- 1B )
s,t>0 k=i+1 I=1 XEkZ(S+1)
m—+n

E;, E;,
e S S )R E (B (- 1)
$,t>0 k=i+1 I=1 XEk7Z(S+t+1)

m—+n

-2 > Z‘Skl PEINED B (= = 1)Ej i)

s,t>0 k=141 I=1 XE[J'(S—Ft—Fl)

m-+n i
- > 25“ PEIPED B, (=5 —t = 1) By (s + 1)
s,t>0 k=141 I=1 ~ El,j(t)
m—+n
+ 3 > (TR E) B (s~ 1)Ey (1)
$,6>0 k=i+1 XEkJ'(S—Ft—Fl)
J
(5.63) Z ST ()PITPOE, (—s — 1) Eji(—t) Eya(s + t+1).
,t>0 =1

Let us simplify the right-hand side of (5.63). We prepare the following four relations
by direct computation:

the second term of (5.63) + the third term of (5.63)

m—+n

— Z Z p(k)+p( )+p(Eqik)p(E;, ‘)E p(—s —t — 1)E; (1)
s$,t>0 k=i+1 > Ek71(8+1)
m+n j
FY T S ) B s - B0
s,t>0 k=i+1 I=1 « Ek,i(5+1)
m-+n
(564) == Y (I (s — t = DE (0 Bra(s + 1),
s,t>0 k=j+1

the first term of (5.63) + the sixth term of (5.63)
J

=3 S (—)POPOE, (—s — t = 1) By (8 (s + 1)

_ Z Z Z 5k,l(*1) p(Er,i)p(Ej, k)E k( sftfl)Ej’i(erl)

s,t>0 =1 k=i+1 % Ek:,j( )
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= Z (—1)PERIPER B (s —t —1)E; (s + 1) By (t)
>0 k=1
J
> 3 (T E (s~ = DE 0, Byals + 1)

PEIPED B (s —t — 1)E; (s + 1) Ep (1)

J
Z WO (—s—t— 1D E(s+t+1)

(5.65) - Eii(—s—t—1)E;;(s+t+1),
s,6>0
the fourth term of (5.63) + the eighth term of (5.63)
m—+n i
Y Y S By (o)t - 1
s,t>0 k=141 I=1 XEk7i(3+t_|-1)
j
o Z Z (k)+p(l)E j(=s—1E; (-t)E; (s +t+1)
- _ Z Z (_1)p(Ei,z)p(Ej,z)Ej,l(—s)Ei,j(—t ~D)E(s+t+1)
5,6>0 =1
J
B Z Z( )p(ij(l)[E g(=s=1), Ej (=t Ei(s+t+1)
5,6>0 =1
== > > (VI E () Byt = DBl + £+ 1)
5,6>0 =1
j .
_ Z Z (71)p(J)+p(l)E“(fs —t—1Ei(s+t+1)
5,t>0 =1
(5.66) + Z Ejj(=s—t=1)Ei(s+t+1),

s,t>0

the fifth term of (5.63) 4 the seventh term of (5.63)

m—+n

:72 Z Z6k (Ekf)p(EJk)E W(— sfl)Ej,i(ft)

s5,t>0 k=i+1 =1 XEkJ(S-i-t—Fl)
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m—+n

k E % EZ
+ 20 D (BRI By (s — 1 Eji(—1)

s,t>0 k=i+1 XEk’j(S‘Ft"‘].)
m—+n
(5.67) =3 3 (PRI E (s — 1) By () By (s + t+ 1),
5,6>0 k=j+1

Thus, by (5.64)—(5.67), we have

m—+n

Bi,Ajl=->" > (- PE B (s —t = 1)E; (1) Eji(s + 1)

s,t>0 k=j+1

1
+ 3N ()P ERIPE B (s — t— 1) By (s + 1) By (t)
s,t>0 k=1

— Z Z p(Ezz)p(E;z)E W(=8)E; j(—t —1)Ei(s +t+1)

20
m-+n
+ 303 ()P ERIPES B (s — 1) B (—t) Egy(s + £+ 1)
$,t>0 k=j+1
(5.68) — (sEii(=5)Ej () — sEj ;(=8)Eii(s))-
s>0

Addlng (558), (562) and (568), we obtain [AZ,AJ] + [BZ,A]] + [Bl, B]] =0. O
This completes the proof of Lemma 5.6.
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