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Construction of the Affine Super Yangian

by

Mamoru Ueda

Abstract

In this paper, we define the affine super Yangian Yε1,ε2(ŝl(m|n)) with a coproduct struc-
ture. We also obtain an evaluation homomorphism, that is, an algebra homomorphism
from Yε1,ε2(ŝl(m|n)) to the completion of the universal enveloping algebra of ĝl(m|n).
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§1. Introduction

Drinfel’d ([5, 6]) defined the Yangian of a finite-dimensional simple Lie algebra

g in order to obtain a solution of the Yang–Baxter equation. The Yangian is a

quantum group which is the deformation of the current algebra g[z]. He defined

it by three different presentations. One of those presentations is called the Drin-

fel’d presentation, whose generators are {hi,r, x
±
i,r | r ∈ Z≥0}, where {hi, x

±
i } are

Chevalley generators of g. The definition of the Yangian as an associative algebra

naturally extends to the case that g is a symmetrizable Kac–Moody Lie algebra

in the Drinfel’d presentation. Defining its quasi-Hopf algebra structure is more

involved, but this problem has been settled for affine Kac–Moody Lie algebras in

[12, 1, 25].

It is known that the Yangians are closely related to W -algebras. It was shown

in [21] that there exist surjective homomorphisms from Yangians of type A to

rectangular finite W -algebras of type A. More generally, Brundan and Kleshchev

([4]) constructed a surjective homomorphism from a shifted Yangian, a subalgebra

of the Yangian of type A, to a finite W -algebra of type A. Using a geometric

realization of the Yangian, Schiffmann and Vasserot ([23]) have constructed a
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surjective homomorphism from the Yangian of ĝl(1) to the universal enveloping

algebra of the principal W -algebra of type A, and proved the celebrated AGT

conjecture ([8, 2]).

In the case of the Lie superalgebra sl(m|n), the corresponding Yangian in the

Drinfel’d presentation was first introduced by Stukopin ([24], see also [9]). The

relationship between Yangians and W -algebras was also studied in the case of

finite Lie superalgebras by Briot and Ragoucy [3] for sl(m|n) and by Peng [20]

for gl(1|n). In the recent paper [7], Gaberdiel, Li, Peng and H. Zhang defined the

Yangian ĝl(1|1) for the affine Lie superalgebra ĝl(1|1) and obtained similar results

to [23] in the super setting.

In this article we define the affine super Yangian Yε1,ε2(ŝl(m|n)) as a quantum

group (= an associative algebra equipped with a coproduct satisfying compatibil-

ity conditions) in the Drinfel’d presentation. We upgrade the definition of the

Yangian associated with sl(m|n) of Gow [9] to define the affine super Yangian

Yε1,ε2(ŝl(m|n)) as an associative algebra; see Definition 3.1. However, to define the

coproduct for Yε1,ε2(ŝl(m|n)), we need to obtain yet another presentation, that is,

a minimalistic presentation.

Theorem 1.1. The affine super Yangian Yε1,ε2(ŝl(m|n)) is isomorphic to the as-

sociative superalgebra over C generated by x+
i,r, x−

i,r, hi,r (0 ≤ i ≤ m + n − 1,

r = 0, 1) subject to the defining relations (3.17)–(3.25).

By Theorem 1.1, the following assertion gives a coproduct∆ for Yε1,ε2(ŝl(m|n))
that is compatible with the defining relations (3.17)–(3.25).

Theorem 1.2. We can define an algebra homomorphism

∆: Yε1,ε2(ŝl(m|n))→ Yε1,ε2(ŝl(m|n)) ⊗̂ Yε1,ε2(ŝl(m|n))

that satisfies the coassociativity. Here, Yε1,ε2(ŝl(m|n)) ⊗̂ Yε1,ε2(ŝl(m|n)) is the

degreewise completion of Yε1,ε2(ŝl(m|n))⊗ Yε1,ε2(ŝl(m|n)) in the sense of [18].

When g is sl(n), Yh(sl(n)) has an evaluation map ev : Yh(sl(n)) ↠ U(sl(n)),

which enables us to define actions of Yh(sl(n)) on any highest weight representa-

tion of sl(n). In [11], Guay showed that the affine Yangian Yε1,ε2(ŝl(n)) has the

evaluation map ev : Yε1,ε2(ŝl(n)) → Ũ(ĝl(n)), where Ũ(ĝl(n)) is a completion of

the universal enveloping algebra of ĝl(n). The surjectivity of Guay’s evaluation

map is not trivial and was recently shown in [15]. In the second half of this paper,

we construct an evaluation map of the affine super Yangian Yε1,ε2(ŝl(m|n)) (see

Theorem 5.1).
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Theorem 1.3. Assume cℏ = (−m + n)ε1. Then there exists a nontrivial alge-

bra homomorphism ev : Yε1,ε2(ŝl(m|n))→ U(ĝl(m|n))comp,+ determined by (5.2)–

(5.5), where U(ĝl(m|n))comp,+ is a completion of the universal enveloping algebra

of ĝl(m|n).

This paper is organized as follows. In Section 2 we recall the definitions of

the Lie superalgebras sl(m|n) and ŝl(m|n). In Section 3 we define the affine super

Yangian of type A and give the minimalistic presentation. Note that the Yangian

for the finite-dimensional Lie superalgebra is defined only for type A in the litera-

ture. In Section 4 we define its coproduct. Finally, we give the evaluation map for

the affine super Yangian in Section 5.

§2. Preliminaries

In this section we recall the definition and presentation of the Lie superalgebra

ŝl(m|n) (see [13]). First, we recall the definitions of sl(m|n) and gl(m|n).

Definition 2.1. Let us set Mk,l(C) as the set of k× l matrices over C. We define

the Lie superalgebras sl(m|n) and gl(m|n) as

gl(m|n) =
{
(A B
C D )

∣∣A ∈Mm,m(C), B ∈Mm,n(C), C ∈Mn,m(C), D ∈Mn,n(C)
}
,

sl(m|n) =
{
(A B
C D ) ∈ gl(m|n)

∣∣ tr(A)− tr(D) = 0
}
,

where we define
[
(A B
C D ), (E F

G H )
]
as[(

A B

C D

)
,

(
E F

GH

)]
=

(
AE − EA+ (BG+ FC) AF +BH − (EB + FD)

CE +DG− (GA+HC) DH −HD + (CF +GB)

)
.

As with sl(m), sl(m|n) has a presentation whose generators are Chevalley

generators (see [22, 10]).

Proposition 2.2. We set p : {1, . . . ,m+ n} → {0, 1} as

p(i) =

{
0 (1 ≤ i ≤ m),

1 (m+ 1 ≤ i ≤ m+ n).

Suppose that m,n ≥ 2, m ̸= n and A = (ai,j)1≤i,j≤m+n−1 is an (m + n − 1) ×
(m+ n− 1) matrix whose components are

ai,j =


(−1)p(i) + (−1)p(i+1)

if i = j,

−(−1)p(i+1)
if j = i+ 1,

−(−1)p(i) if j = i− 1,

0 otherwise.
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Then sl(m|n) is isomorphic to the Lie superalgebra over C defined by the generators

{x±
i , hi | 1 ≤ i ≤ m+ n− 1} and by the relations

[hi, hj ] = 0, [hi, x
±
j ] = ±ai,jx

±
j , [x+

i , x
−
j ] = δi,jhi, ad(x±

i )
1+|ai,j |

x±
j = 0,

[x±
m, x±

m] = 0, [[x±
m−1, x

±
m], [x±

m+1, x
±
m]] = 0,

where the generators x±
m are odd and all other generators are even.

The isomorphism Ψ is given by

Ψ(hi) = (−1)p(i)Eii − (−1)p(i+1)
Ei+1,i+1,

Ψ(x+
i ) = Ei,i+1,

Ψ(x−
i ) = (−1)p(i)Ei+1,i.

Next we recall the definition of the affinization of sl(m|n) and gl(m|n) (see

[19]). Lie superalgebra sl(m|n) has a nondegenerate invariant bilinear form κ : g⊗
g→ C. The bilinear form is uniquely determined up to a scalar multiple, so we fix

it.

Definition 2.3. Suppose that g is sl(m|n) or gl(m|n). Then we set a Lie super-

algebra g̃ as g⊗ C[t±1]⊕ Cc⊕ Cd whose commutator relations are

[a⊗ ts, b⊗ tu] = [a, b]⊗ ts+u + sδs+u,0κ(a, b)c,

c is a central element of g̃,

[d, a⊗ ts] = sa⊗ ts.

We also set a subalgebra ĝ ⊂ g̃ as g⊗ C[t±1]⊕ Cc.

We have another presentation of ŝl(m|n) (see [26]).

Proposition 2.4. Suppose that m,n ≥ 2, m ̸= n and A = (ai,j)0≤i,j≤m+n−1 is

an (m+ n)× (m+ n) matrix whose components are

ai,j =



(−1)p(i) + (−1)p(i+1)
if i = j,

−(−1)p(i+1)
if j = i+ 1,

−(−1)p(i) if j = i− 1,

1 if (i, j) = (0,m+ n− 1), (m+ n− 1, 0),

0 otherwise.
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Then s̃l(m|n) is isomorphic to the Lie superalgebra over C defined by the generators

{x±
i , hi, d | 0 ≤ i ≤ m+ n− 1} and by the relations

[d, hi] = 0, [d, x+
i ] =

{
x+
i (i = 0),

0 (otherwise),
[d, x−

i ] =

{
−x−

i (i = 0),

0 (otherwise),
(2.5)

[hi, hj ] = 0, [hi, x
±
j ] = ±ai,jx

±
j , [x+

i , x
−
j ] = δi,jhi, ad(x±

i )
1+|ai,j |

x±
j = 0,(2.6)

[x±
0 , x

±
0 ] = 0, [x±

m, x±
m] = 0,(2.7)

[[x±
m−1, x

±
m], [x±

m+1, x
±
m]] = 0, [[x±

m+n−1, x
±
0 ], [x

±
1 , x

±
0 ]] = 0,(2.8)

where the generators x±
m and x±

0 are odd and all other generators are even.

The isomorphism Ξ is given by

Ξ(hi) =

{
−E1,1 − Em+n,m+n + c (i = 0),

(−1)p(i)Eii − (−1)p(i+1)
Ei+1,i+1 (1 ≤ i ≤ m+ n− 1),

Ξ(x+
i ) =

{
Em+n,1 ⊗ t (i = 0),

Ei,i+1 (otherwise),

Ξ(x−
i ) =

{
−E1,m+n ⊗ t−1 (i = 0),

(−1)p(i)Ei+1,i (otherwise).

Moreover, ŝl(m|n) is isomorphic to the Lie superalgebra over C defined by the

generators {x±
i , hi | 0 ≤ i ≤ m+ n− 1} and by the relations (2.6)–(2.8).

Finally, we set some notation. Let us set {αi}0≤i≤m+n−1 as a set of simple

roots of s̃l(m|n) and δ as a positive root
∑

0≤i≤m+n−1 αi. Moreover, we set ∆

(resp. ∆+) as a set of roots (resp. positive roots) of s̃l(m|n). We denote the parity

of Ei,j as p(Ei,j). Obviously, p(Ei,j) is equal to p(i) + p(j). We also set ∆re
+ and

∆re as ∆+ \Z>0δ and ∆\Zδ. We also take an inner product on
⊕

0≤i≤m+n−1 Cαi

determined by (αi, αj) = ai,j . Assume that g = s̃l(m|n) and let gα be the root α

space of g. We set {xkα
α }1≤kα≤dim gα as a basis of gα which satisfies κ(xp

α, x
q
−α) =

δp,q for all α ∈ ∆+. We also denote the parity of xkα
α by p(α). Moreover, we

sometimes identify {0, . . . ,m+ n− 1} with Z/(m+ n)Z and denote it by I.

§3. The minimalistic presentation of the affine super Yangian

First, we define the affine super Yangian Yε1,ε2(ŝl(m|n)). This definition is a gen-

eralization of Stukopin’s super Yangian ([24]). Let us set {x, y} as xy + yx.

Definition 3.1. Suppose that m,n ≥ 2 and m ̸= n. The affine super Yangian

Yε1,ε2(ŝl(m|n)) is the associative superalgebra over C generated by x+
i,r, x

−
i,r, hi,r
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(i ∈ {0, 1, . . . ,m + n − 1}, r ∈ Z≥0) with parameters ε1, ε2 ∈ C subject to the

defining relations

[hi,r, hj,s] = 0,(3.2)

[x+
i,r, x

−
j,s] = δi,jhi,r+s,(3.3)

[hi,0, x
±
j,r] = ±ai,jx

±
j,r,(3.4)

[hi,r+1, x
±
j,s]− [hi,r, x

±
j,s+1] = ±ai,j

ε1+ε2
2
{hi,r, x

±
j,s} − bi,j

ε1−ε2
2

[hi,r, x
±
j,s],(3.5)

[x±
i,r+1, x

±
j,s]− [x±

i,r, x
±
j,s+1] = ±ai,j

ε1+ε2
2
{x±

i,r, x
±
j,s} − bi,j

ε1−ε2
2

[x±
i,r, x

±
j,s],(3.6) ∑

w∈S1+|ai,j |

[x±
i,rw(1)

, [x±
i,rw(2)

, . . . , [x±
i,rw(1+|ai,j |)

, x±
j,s], . . . ]] = 0 (i ̸= j),(3.7)

[x±
i,r, x

±
i,s] = 0 (i = 0,m),(3.8)

[[x±
i−1,r, x

±
i,0], [x

±
i,0, x

±
i+1,s]] = 0 (i = 0,m),(3.9)

where

ai,j =



(−1)p(i) + (−1)p(i+1)
if i = j,

−(−1)p(i+1)
if j = i+ 1,

−(−1)p(i) if j = i− 1,

1 if (i, j) = (0,m+ n− 1), (m+ n− 1, 0),

0 otherwise,

bi,j =



−(−1)p(i+1)
if j = i+ 1,

(−1)p(i) if j = i− 1,

−1 if (i, j) = (0,m+ n− 1),

1 if (i, j) = (m+ n− 1, 0),

0 otherwise,

and the generators x±
m,r and x±

0,r are odd and all other generators are even.

Remark 3.10. In this paper, we set [x, y] as xy − (−1)p(x)p(y)yx for all homoge-

neous elements x, y. Thus, (3.8) is nontrivial.

We also define the affine super Yangian associated with s̃l(m|n).

Definition 3.11. Suppose that m,n ≥ 2 and m ̸= n. We define Yε1,ε2(s̃l(m|n))
as the associative superalgebra over C generated by {x±

i,r, hi,r, d | i ∈ {0, 1, . . . ,
m+ n− 1}, r ∈ Z≥0} with parameters ε1, ε2 ∈ C subject to the defining relations
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(3.2)–(3.9) and

(3.12) [d, hi,r] = 0, [d, x+
i,r] =

{
1 if i = 0,

0 if i ̸= 0,
[d, x−

i,r] =

{
−1 if i = 0,

0 if i ̸= 0,

where the generators x±
m,r and x±

0,r are odd and all other generators are even.

One of the difficulties of Definition 3.1 is that the number of generators is

infinite. In the rest of this section, we construct a new presentation of the affine

super Yangian such that the number of generators is finite.

Let us set h̃i,1 = hi,1 − ε1+ε2
2 h2

i,0. By the definition of h̃i,1, we can rewrite

(3.5) as

(3.13) [h̃i,1, x
±
j,r] = ±ai,j

(
x±
j,r+1 − bi,j

ε1 − ε2
2

x±
j,r

)
.

By (3.13), we find that Yε1,ε2(ŝl(m|n)) is generated by x+
i,r, x

−
i,r, hi,r (i ∈ {0, 1, . . . ,

m+ n− 1}, r = 0, 1). In fact, by (3.13) and (3.3), we have the following relations:

x±
i,r+1 = ± 1

ai,i
[h̃i,1, x

±
i,r],

hi,r+1 = [x+
i,r+1, x

−
i,0] if i ̸= m, 0,

(3.14)

x±
i,r+1 = ± 1

ai+1,i
[h̃i+1,1, x

±
i,r] + bi+1,i

ε1 − ε2
2

x±
i,r,

hi,r+1 = [x+
i,r+1, x

−
i,0] if i = m, 0

(3.15)

for all r ≥ 1. In the following theorem, we construct the minimalistic presentation

of the affine super Yangian Yε1,ε2(ŝl(m|n)) whose generators are x+
i,r, x

−
i,r, hi,r

(i ∈ {0, 1, . . . ,m+n− 1}, r = 0, 1). We remark that we have not checked that the

presentation is minimalistic yet. However, we call this presentation a “minimalistic

presentation” since, in the non-super case, the corresponding presentation is called

a “minimalistic presentation”.

Theorem 3.16. Suppose that m,n ≥ 2 and m ̸= n. The affine super Yangian

Yε1,ε2(ŝl(m|n)) is isomorphic to the associative superalgebra generated by x+
i,r, x

−
i,r,

hi,r (i ∈ {0, 1, . . . ,m+ n− 1}, r = 0, 1) subject to the defining relations

[hi,r, hj,s] = 0,(3.17)

[x+
i,0, x

−
j,0] = δi,jhi,0,(3.18)

[x+
i,1, x

−
j,0] = δi,jhi,1 = [x+

i,0, x
−
j,1],(3.19)

[hi,0, x
±
j,r] = ±ai,jx

±
j,r,(3.20)
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[h̃i,1, x
±
j,0] = ±ai,j

(
x±
j,1 − bi,j

ε1 − ε2
2

x±
j,0

)
,(3.21)

[x±
i,1, x

±
j,0]− [x±

i,0, x
±
j,1] = ± ai,j

ε1 + ε2
2
{x±

i,0, x
±
j,0}

− bi,j
ε1 − ε2

2
[x±

i,0, x
±
j,0],

(3.22)

(adx±
i,0)

1+|ai,j |(x±
j,0) = 0 (i ̸= j),(3.23)

[x±
i,0, x

±
i,0] = 0 (i = 0,m),(3.24)

[[x±
i−1,0, x

±
i,0], [x

±
i,0, x

±
i+1,0]] = 0 (i = 0,m),(3.25)

where the generators x±
m,r and x±

0,r are odd and all other generators are even.

The outline of the proof of Theorem 3.16 is similar to that of [12, Thm. 2.13].

To simplify the notation, we denote the associative superalgebra defined in Theo-

rem 3.16 as Ỹε1,ε2(ŝl(m|n)). We construct x±
i,r and hi,r as the elements of

Ỹε1,ε2(ŝl(m|n)) inductively by (3.14) and (3.15). Since (3.17)–(3.25) are contained

in the defining relations of the affine super Yangian, it is enough to check that

the defining relations of the affine super Yangians (3.2)–(3.9) are deduced from

(3.17)–(3.25) in Ỹε1,ε2(ŝl(m|n)). The proof of Theorem 3.16 is divided into eight

lemmas, that is, Lemmas 3.26, 3.31, 3.35, 3.36, 3.37, 3.38, 3.57 and 3.58.

Most of the defining relations (3.2)-(3.9) are obtained in the same way as

those of [17] or [12]. For example, we have the following lemma in a similar way

to [12, Lem. 2.22].

Lemma 3.26.

(1) The defining relation (3.4) holds for all i, j ∈ I in Ỹε1,ε2(ŝl(m|n)).
(2) For all i, j ∈ I, we obtain

(3.27) [h̃i,1, x
±
j,r] = ±ai,j

(
x±
j,r+1 − bi,j

ε1 − ε2
2

x±
j,r

)
in Ỹε1,ε2(ŝl(m|n)).

Proof. We only show the case that j = 0,m. The other case is proven in the same

way as [12, Lem. 2.22]. We prove (1), (2) by induction on r. When r = 0, they

are nothing but (3.20) and (3.21). Suppose that (3.4) and (3.27) hold when r = k.

First, let us show that (3.4) holds when r = k + 1. By (3.15), we obtain

(3.28) [hi,0, x
±
j,k+1] = ±

1

aj,j+1
[hi,0, [h̃j+1,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[hi,0, x
±
j,k].
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By [hi,0, hj,1] = 0, we find that the first term on the right-hand side of (3.28) is

equal to

± 1

aj,j+1
[hi,0, [h̃j+1,1, x

±
j,k]] = ±

1

aj,j+1
[h̃j+1,1, [hi,0, x

±
j,k]].

By the induction hypothesis on r, we can rewrite the right-hand side of (3.28) as

± 1

aj,j+1
[h̃j+1,1, [hi,0, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[hi,0, x
±
j,k]

=
ai,j

aj,j+1
[h̃j+1,1, x

±
j,k]± ai,jbj,j+1

ε1 − ε2
2

x±
j,k

=
ai,j

aj,j+1

(
±aj,j+1

(
x±
j,k+1 − bj,j+1

ε1 − ε2
2

x±
j,k

))
± ai,jbj,j+1

ε1 − ε2
2

x±
j,k

= ±ai,jx±
j,k+1.

Thus, we have shown that [hi,0, x
±
j,k+1] = ±ai,jx

±
j,k+1.

Next we show that (3.4) holds when r = k + 1. Since we have already proved

that (3.4) holds when r = k + 1, it is enough to check the relation

[h̃i,1, x
±
j,k+1] = ±ai,j

(
x±
j,k+2 − bi,j

ε1 − ε2
2

x±
j,k+1

)
.

By (3.15), we obtain

(3.29) [h̃i,1, x
±
j,k+1] = ±

1

aj,j+1
[h̃i,1, [h̃j+1,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[h̃i,1, x
±
j,k].

By [hi,1, hj,1] = 0, we find that the right-hand side of (3.29) is equal to

± 1

aj,j+1
[h̃j+1,1, [h̃i,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[h̃i,1, x
±
j,k].

By the induction hypothesis on r, we can rewrite the right-hand side of (3.29) as

± 1

aj,j+1
[h̃j+1,1, [h̃i,1, x

±
j,k]] + bj,j+1

ε1 − ε2
2

[h̃i,1, x
±
j,k]

=
ai,j

aj,j+1

(
[h̃j+1,1, x

±
j,k+1]− bi,j

ε1 − ε2
2

[h̃j+1,1, x
±
j,k]
)

± ai,jbj,j+1
ε1 − ε2

2

(
x±
j,k+1 − bi,j

ε1 − ε2
2

x±
j,k

)
.(3.30)

Since x±
j,k+2 is defined by (3.15), we find that the right-hand side of (3.30) is equal

to

± ai,j

(
x±
j,k+2 − bj,j+1

ε1 − ε2
2

x±
j,k+1

)
∓ ai,jbi,j

ε1 − ε2
2

(
x±
j,k+1 − bj,j+1

ε1 − ε2
2

x±
j,k

)
± ai,jbj,j+1

ε1 − ε2
2

(
x±
j,k+1 − bi,j

ε1 − ε2
2

x±
j,k

)
.
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By direct computation, it is equal to

±ai,j
(
x±
j,k+2 − bi,j

ε1 − ε2
2

x±
j,k+1

)
.

This completes the proof.

We also obtain the following lemma in a similar way to [12].

Lemma 3.31.

(1) The relation (3.3) holds in Ỹε1,ε2(ŝl(m|n)) when i = j and r + s ≤ 2.

(2) Suppose that i, j ∈ I and i ̸= j. Then relations (3.3) and (3.6) hold for any

r and s in Ỹε1,ε2(ŝl(m|n)).
(3) The relation (3.6) holds in Ỹε1,ε2(ŝl(m|n)) when i = j, (r, s) = (1, 0).

(4) The relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when i = j, (r, s) = (1, 0).

(5) For all i, j ∈ I, the relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when (r, s) = (1, 0).

(6) Set h̃i,2 = hi,2 − hi,0hi,1 + 1
3h

3
i,0. Then the following equation holds for all

i, j ∈ I in Ỹε1,ε2(ŝl(m|n)):

[h̃i,2, x
±
j,0] = ±ai,jx

±
j,2 ±

1

12
a3i,jx

±
j,0

∓ ai,jbi,j
ε1 − ε2

2

(
x±
j,1 −

1

2
x±
j hi − bi,j

ε1 − ε2
2

x±
j

)
.

(7) For all i, j ∈ I, the relation (3.7) holds in Ỹε1,ε2(ŝl(m|n)) when

(a) r1 = · · · = rb = 0, s ∈ Z≥0;

(b) r1 = 1, r2 = · · · = rb = 0, s ∈ Z≥0;

(c) r1 = 2, r2 = · · · = rb = 0, s ∈ Z≥0;

(d) (b ≥ 2 and) r1 = r2 = 1, r3 = · · · = rb = 0, s ∈ Z≥0.

(8) In Ỹε1,ε2(ŝl(m|n)), we have

[hj,1, x
±
i,1] =

ai,j
ai,i

[hi,1, x
±
i,1]±

ai,j
2

({hj,0, x
±
i,1}−{hi,0, x

±
i,1})∓aj,imj,i

ε1 − ε2
2

x±
i,1

for all i, j ∈ I such that ai,i ̸= 0.

(9) For all i, j ∈ I, we have

[hi,2, hj,0] = 0

in Ỹε1,ε2(ŝl(m|n)).
(10) Suppose that i, j ∈ I such that ai,i = 2 and ai,j = −1. Then

[hi,2, hi,1] = 0

holds in Ỹε1,ε2(ŝl(m|n)).
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Proof. We only prove (1)–(5) since the proof of (6) (resp. (7), (8), (9), (10)) is the

same as that of [12, Lem. 2.31 (resp. Lem. 2.33, Lem. 2.34, Lem. 2.35, Prop. 2.36)].

The proofs of (1) and (2) are the same as those of [12, Lems. 2.22 and 2.26].

In the case where i, j ̸= 0,m, the proof of (3) (resp. (4) and (5)) is also the same

as that of [12, Lem. 2.23 (resp. Lems. 2.24 and 2.28)]. We omit it. We only show

that (3) holds since (4) and (5) are derived from (3) in a similar way to [12].

Suppose that i = j = 0,m. First, we show that [x+
i,1, x

+
i,0] = [x+

i,0, x
+
i,1] = 0

holds. Applying ad(h̃i+1,1) to (3.24), we have ±ai,i+1[x
±
i,1, x

+
i,0] ± ai,i+1[x

±
i,0, x

±
i,1].

Since [x±
i,1, x

±
i,0] is equal to [x±

i,0, x
±
i,1], we obtain [x±

i,1, x
±
i,0] = [x±

i,0, x
±
i,1] = 0. Next

we show that [x±
i,2, x

±
i,0] = [x±

i,1, x
±
i,1] = [x±

i,0, x
±
i,2] holds. Applying ad(h̃i+1,1) to

[x±
i,1, x

±
i,0] = [x±

i,0, x
±
i,1] = 0, we obtain

±ai,i+1([x
±
i,2, x

±
i,0] + [x±

i,1, x
±
i,1]) = 0,(3.32)

±ai,i+1([x
±
i,1, x

±
i,1] + [x±

i,0, x
±
i,2]) = 0.(3.33)

In the case where j = 0,m and i = j + 1, we can prove (5) in a similar way to

[12, Lem. 2.28]. Then, in a discussion similar to that of [17, Lem. 1.4], there exists

ĥi+1,2 such that

[ĥi+1,2, x
±
i,0] = ±ai,i+1x

±
i,2.

Applying ad(ĥi+1,2) to (3.24), we obtain

(3.34) ± ai,i+1([x
±
i,2, x

±
i,0] + [x±

i,0, x
±
i,2]) = 0.

Since (3.32), (3.33) and (3.34) are linearly independent, we obtain [x±
i,2, x

±
i,0] =

[x±
i,1, x

±
i,1] = [x±

i,0, x
±
i,2]. We have proved (3).

In the case where ai,i = −2 and ai,j = 1, we obtain [hi,2, hi,1] = 0 by changing

the proof of [12, Prop. 2.36] a little.

Lemma 3.35. Suppose that i, j ∈ I such that ai,i = −2 and ai,j = 1. Then we

obtain

[hi,2, hi,1] = 0

in Ỹε1,ε2(ŝl(m|n)).

Proof. We change hi,r, x
+
i,r, and x−

i,r, which are written in the proof of [12, Prop.

2.36], into −hi,r, −x+
i,r, and x−

i,r. Then we obtain [−hi,2,−hi,1] = 0.

By Lemma 3.31(10) and Lemma 3.35, we obtain the following lemma in the

same way as [12, Prop. 2.39] since we only need the condition that ai,i ̸= 0 and

ai,j ̸= 0. We omit the proof.



434 M. Ueda

Lemma 3.36. Suppose that i, j ∈ I such that ai,i ̸= 0 and ai,j ̸= 0. Then we have

[hj,2, hj,1] = 0

in Ỹε1,ε2(ŝl(m|n)).

Therefore, we know that [hi,2, hi,1] = 0 holds for all i ∈ I. By using the relation

[hi,2, hi,1] = 0, we obtain the following lemma in a similar way to [17, Thm. 1.2]

since the proof of these statements needs only the condition that ai,i ̸= 0.

Lemma 3.37.

(1) The relation (3.2) holds in Ỹε1,ε2(ŝl(m|n)) when i = j ̸= 0,m.

(2) The relation (3.3) holds in Ỹε1,ε2(ŝl(m|n)) when i = j ̸= 0,m.

(3) The relation (3.6) holds in Ỹε1,ε2(ŝl(m|n)) when i = j ̸= 0,m.

(4) The relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when i = j ̸= 0,m.

Next we prove the same statement as that of Lemma 3.37 in the case that

i = j = 0,m.

Lemma 3.38.

(1) The relation (3.6) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m. In particular,

(3.8) holds in Ỹε1,ε2(ŝl(m|n)).
(2) The relation (3.3) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m.

(3) We obtain [hi,r, x
±
i,0] = 0 when i = 0,m in Ỹε1,ε2(ŝl(m|n)).

(4) The relation (3.5) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m.

(5) The relation (3.2) holds in Ỹε1,ε2(ŝl(m|n)) when i = j = 0,m.

Proof. (1) It is enough to check the equality [x±
i,r, x

±
i,s] = 0. We only show that

[x+
i,r, x

+
i,s] = 0 holds. We can obtain [x−

i,r, x
−
i,s] = 0 in a similar way. We prove (3.6)

holds by induction on k = r + s. When k = 0, it is nothing but (3.24). Applying

ad(h̃i+1,1) to [x+
i,0, x

+
i,0] = 0, we obtain

ai,i+1([x
+
i,1, x

+
i,0] + [x+

i,0, x
+
i,1]) = 0.

Since [x+
i,1, x

+
i,0] = [x+

i,0, x
+
i,1], we have [x+

i,1, x
+
i,0] = [x+

i,0, x
+
i,1] = 0.

Suppose that [x+
i,r, x

+
i,s] = 0 holds for all r, s such that r + s = k, k + 1.

Applying ad(h̃i+1,1) to [x+
i,u, x

+
i,k+1−u] = 0, we have

(3.39) [h̃i+1,1, [x
+
i,u, x

+
i,k+1−u]] = 0.

By Lemma 3.31(4) and the induction hypothesis, we have

(3.40) [h̃i+1,1, [x
+
i,u, x

+
i,k+1−u]] = ai,i+1([x

+
i,u+1, x

+
i,k+1−u] + [x+

i,u, x
+
i,k+2−u]).
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Since ai,i+1 ̸= 0, we find the relation

(3.41) [x+
i,u+1, x

+
i,k+1−u] = −[x

+
i,u, x

+
i,k+2−u]

by (3.39) and (3.40). In particular, we obtain

(3.42) [x+
i,u+2, x

+
i,k−u] = [x+

i,u, x
+
i,k+2−u].

Applying ad(h̃i+1,2) to [x+
i,u, x

+
i,k−u] = 0, we have

(3.43) [h̃i+1,2, [x
+
i,u, x

+
i,k−u]] = 0

by the induction hypothesis. By Lemma 3.31(7), Lemma 3.36 and the induction

hypothesis, we have

(3.44) [h̃i+1,2, [x
+
i,u, x

+
i,k−u]] = ai,i+1([x

+
i,u+2, x

+
i,k−u] + [x+

i,u, x
+
i,k+2−u]).

Since ai,i+1 ̸= 0, we obtain the relation

(3.45) [x+
i,u+2, x

+
i,k−u] = −[x

+
i,u, x

+
i,k+2−u]

by (3.43) and (3.44). Since (3.45) and (3.42) are linearly independent, we have

shown that [x+
i,u, x

+
i,k+2−u] = 0 holds.

(2) We prove the statement by induction on r + s = k. When k = 0, it is

nothing but (3.24). Suppose that [x+
i,r, x

−
i,s] = hi,r+s for all r, s such that r+s ≤ k.

Then we have the following claim.

Claim 3.46.

(a) For all r, s, we obtain

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1] = ai,i+1

ε1 + ε2
2
{hi,r, x

+
i+1,s}

− bi,i+1
ε1 − ε2

2
[hi,r, x

+
i+1,s].(3.47)

(b) For all r + s = k − 1, we obtain

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1] = −ai,i+1

ε1 + ε2
2
{hi,r, x

−
i+1,s}

− bi,i+1
ε1 − ε2

2
[hi,r, x

−
i+1,s].(3.48)

Proof. (a) By the definition of hi,r, we have

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1] = [[x+

i,r+1, x
−
i,0], x

+
i+1,s]− [[x+

i,r, x
−
i,0], x

+
i+1,s+1].
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By the Jacobi identity and Lemma 3.31(4), we obtain

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1] = [{[x+

i,r+1, x
+
i+1,s]− [x+

i,r, x
+
i+1,s+1]}, x

−
i,0].

By Lemma 3.31(4), we have

[hi,r+1, x
+
i+1,s]− [hi,r, x

+
i+1,s+1]

=
[
±ai,i+1

ε1 + ε2
2
{x+

i,r, x
+
i+1,s} − bi,i+1

ε1 − ε2
2

[x+
i,r, x

+
i+1,s], x

−
i,0

]
.

By Lemma 3.31(4), we obtain

[hi,r+1, x
+
i+1,s]− [hm,r, x

+
m+1,s+1]

= ±ai,i+1
ε1 + ε2

2
{hi,r, x

+
i+1,s} − bi,i+1

ε1 − ε2
2

[hi,r, x
+
i+1,s].

(b) By the assumption that [x+
i,p, x

−
i,q] = hi,p+q holds for all p + q ≤ k, we

have

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1] = [[x+

i,r, x
−
i,1], x

−
i+1,s]− [[x+

i,r, x
−
i,0], x

−
i+1,s+1]

since r + 1 ≤ k. By a similar discussion to (a), we have

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1] = [x+

i,r, {[x
−
i,1, x

−
i+1,s]− [x−

i,0, x
−
i+1,s+1]}].

By Lemma 3.31(4), we obtain

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1]

=
[
x+
i,r,−ai,i+1

ε1 + ε2
2
{x−

i,0, x
−
i+1,s} − bi,i+1

ε1 − ε2
2

[x−
i,0, x

−
i+1,s]

]
.

Then, by Lemma 3.31(4), we have

[hi,r+1, x
−
i+1,s]− [hi,r, x

−
i+1,s+1]

= −ai,i+1
ε1 + ε2

2
{hi,r, x

−
i+1,s} − bi,i+1

ε1 − ε2
2

[hi,r, x
−
i+1,s].

By a similar discussion to [17, Lem. 1.4], there exists h̃i,k such that

h̃i,k = hi,k + polynomial of
{
hi,t

∣∣ 0 ≤ t ≤ k − 1
}
,

[h̃i,k, x
+
i+1,1] = ai,i+1x

+
i+1,k+1,

[h̃i,k, x
−
i+1,0] = −ai,i+1x

−
i+1,k.

Claim 3.49. The following equation holds:

(3.50) [h̃i+1,1, hi,k] = 0.
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Proof. By the assumption that [x+
i,p, x

−
i,q] = hi,k holds for all p+ q ≤ k we have

[h̃i+1,1, hi,s] = [[h̃i+1,1, x
+
i,s], x

−
i,0] + [x+

i,s, [h̃i+1,1, x
−
i,0]] = 0

for all s < k. Thus, it is enough to show that [h̃i,k, hi+1,1] = 0 holds. By the

definition of hi+1,1, we obtain

[h̃i,k, hi+1,1] = [h̃i,k, [x
+
i+1,1, x

−
i+1,0]]

= ai,i+1[x
+
i+1,k+1, x

−
i+1,0]− ai,i+1[x

+
i+1,1, x

−
i+1,k].(3.51)

By Lemma 3.37, it is equal to zero.

Applying ad(h̃i+1,1) to [x+
i,r, x

−
i,k−r] = hi,k, we obtain

(3.52) [h̃i+1,1, [x
+
i,r, x

−
i,k−r]] = [h̃i+1,1, hi,k]

by the induction hypothesis. By Lemma 3.31(4), we can rewrite (3.52) as

(3.53) ai,i+1([x
+
i,r+1, x

−
i,k−r]− [x+

i,r, x
−
i,k−r+1]) = [h̃i+1,1, hi,k] = 0.

It is nothing but the statement.

(3) We only show the statement for +. The other case is proven in a similar

way. By (2), [hi,r, x
+
i,0] is equal to [[x+

i,r, x
−
i,0], x

+
i,0]. By (1) and the Jacobi identity,

we have

(3.54) [[x+
i,r, x

−
i,0], x

+
i,0] = [x+

i,r, [x
−
i,0, x

+
i,0]].

The right-hand side of (3.54) is equal to [x+
i,r, hi,0]. By Lemma 3.26(1), the right-

hand side is equal to zero since ai,i = 0.

(4) It is enough to check the equality [hi,r, x
±
i,s] = 0. We only show the state-

ment for +. The other case is proven in a similar way. We use proof by induction

on s. When s = 0, it is nothing but (3). Suppose that [hi,r, x
+
i,s] = 0 holds. Apply-

ing ad(h̃i+1,1) to [hi,r, x
+
i,s] = 0, we find the equality

(3.55) [h̃i+1,1, [hi,r, x
+
i,s]] = 0

by the induction hypothesis. By the proof of (2), we obtain [h̃i+1,1, hi,n] = 0. Thus,

the right-hand side of (3.55) is equal to [hi,r, [h̃i+1,1, x
+
i,s]]. By Lemma 3.31(4), we

obtain

(3.56) [hi,r, [h̃i+1,1, x
+
i,s]] = ai,i+1

[
hi,r,

(
x+
i,s+1 −

ε1 − ε2
2

bi+1,ix
+
i,s

)]
.

By the induction hypothesis, we find that the right-hand side of (3.56) is equal to

ai,i+1[hi,r, x
+
i,s+1]. Since ai,i+1 ̸= 0, we obtain [hi,r, x

+
i,s+1] = 0.
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(5) By (2), [hi,r, hi,s] is equal to [hi,r, [x
+
i,s, x

−
i,0]]. By the Jacobi identity, we

have

[hi,r, [x
+
i,s, x

−
i,0]] = [[hi,r, x

+
i,s], x

−
i,0] + [x+

i,s, [hi,r, x
−
i,0]].

By (4), the right-hand side is equal to zero. We have shown the relation

[hi,r, hi,s] = 0.

We obtain the relation (3.6) by Lemmas 3.31(2), 3.37(3) and 3.38(1). We also

find that the relation (3.3) holds by Lemmas 3.31(2), 3.37(2) and 3.38(2).

In the same way as [17, Thm. 1.2], we obtain the defining relations (3.5), (3.2)

and (3.7). Thus, we omit the proof.

Lemma 3.57.

(1) The relations (3.5) and (3.2) hold in Ỹε1,ε2(ŝl(m|n)) when i ̸= j.

(2) The relation (3.7) holds for all i, j ∈ I in Ỹε1,ε2(ŝl(m|n)).

We remark that the relation (3.2) holds by Lemmas 3.37(1), 3.38(5) and

3.57(1). We also find that the relation (3.5) holds by Lemmas 3.37(4), 3.38(4)

and 3.57(1).

Now, it is enough to show that (3.8) and (3.9) are deduced from (3.17)–(3.25).

However, we have already obtained (3.8), since (3.8) is equivalent to (3.6) when

i = j = 0,m. Thus, to accomplish the proof, we only need to show that (3.9) holds.

Lemma 3.58. The relation (3.9) holds for i = 0,m in Ỹε1,ε2(ŝl(m|n)).

Proof. We prove it by induction on k = r+s. When k = 0, it is nothing but (3.25).

Suppose that (3.25) holds for all r, s such that r + s = k. Applying ad(h̃i+2,1) to

[[x±
i−1,r, x

±
i,0], [x

±
i,0, x

±
i+1,s]] = 0, we obtain

ai−2,i−1[[x
±
i−1,r+1, x

±
i,0], [x

±
i,0, x

±
i+1,s]] = 0.

Similarly, applying ad(h̃i+2,1) to [[x±
i−1,r, x

±
i,0], [x

±
i,0, x

±
i+1,s]] = 0, we have

ai+2,i+1[[x
±
i−1,r, x

±
i,0], [x

±
i,0, x

±
i+1,s+1]] = 0.

Thus, we have shown that (3.9) holds for all r, s such that r + s = k + 1.

This completes the proof of Theorem 3.16.

By Theorem 3.16, we also obtain the minimalistic presentation of Yε1,ε2(s̃l(m|n)).
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Theorem 3.59. Suppose that m,n ≥ 2 and m ̸= n. Then Yε1,ε2(s̃l(m|n)) is iso-

morphic to the superalgebra generated by x+
i,r, x

−
i,r, hi,r (i ∈ {0, 1, . . . ,m+ n− 1},

r = 0, 1) subject to the defining relations (3.17)–(3.25) and

(3.60) [d, hi,r] = 0, [d, x+
i,r] =

{
x+
i,r if i = 0,

0 if i ̸= 0,
[d, x−

i,r] =

{
−x−

i,r if i = 0,

0 if i ̸= 0,

where the generators x±
m,r and x±

0,r are odd and all other generators are even.

The relation (3.12) is derived from (3.60) in a similar way to that of Lem-

ma 3.26. We omit the proof.

§4. Coproduct for the affine super Yangian

In this section we define the coproduct for the affine super Yangian Yε1,ε2(ŝl(m|n)).
We recall the definition of standard degreewise completion (see [18]).

Definition 4.1. Let A =
⊕

i∈Z A(i) be a graded algebra. For all i ∈ Z, we set a

topology on A(i) such that for a ∈ A(i) the set{
a+

∑
r>N A(i− r) ·A(r)

∣∣N ∈ Z≥0

}
forms a fundamental system of open neighborhoods of a. The standard degreewise

completion of A is
⊕

i∈Z Â(i), where Â(i) is the completion of the space A(i). By

the definition of Â(i), we find that

Â =
⊕
i∈Z

lim←−
N

A(i)
/∑

r>N

A(i− r) ·A(r).

Let us set the degree on Yε1,ε2(ŝl(m|n)) determined by

(4.2) deg(hi,r) = 0, deg(x+
i,r) =

{
1 if i = 0,

0 if i ̸= 0,
deg(x−

i,r) =

{
−1 if i = 0,

0 if i ̸= 0.

Then Yε1,ε2(ŝl(m|n)) and Yε1,ε2(ŝl(m|n))⊗2 become the graded algebra. We de-

fine Ŷε1,ε2(ŝl(m|n)) (resp. Yε1,ε2(ŝl(m|n)) ⊗̂ Yε1,ε2(ŝl(m|n))) as the standard de-

greewise completion of Yε1,ε2(ŝl(m|n)) (resp. Yε1,ε2(ŝl(m|n))⊗2) in the sense of

Definition 4.1.

We prepare some notation. There exists a homomorphism from s̃l(m|n) to

Yε1,ε2(s̃l(m|n)) determined by Φ(hi) = hi,0, Φ(x±
i ) = x±

i,0 and Φ(d) = d. We

sometimes denote Φ(x) by x in order to simplify the notation. In particular, we

denote Φ(xp
α) by xp

α for all α ∈ ∆. By Theorem 5.1, we note that dim(Φ(gα)) = 1

for all α ∈ ∆re.
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Theorem 4.3. The linear map

∆: Yε1,ε2(ŝl(m|n))→ Yε1,ε2(ŝl(m|n)) ⊗̂ Yε1,ε2(ŝl(m|n)),

uniquely determined by

(4.4)

∆(hi,0) = hi,0 ⊗ 1 + 1⊗ hi,0,

∆(x±
i,0) = x±

i,0 ⊗ 1 + 1⊗ x±
i,0,

∆(hi,1) = hi,1 ⊗ 1 + 1⊗ hi,1 + (ε1 + ε2)hi,0 ⊗ hi,0

− (ε1 + ε2)
∑

α∈∆+

∑
1≤kα≤dim gα

(α, αi)x
kα
−α ⊗ xkα

α

is an algebra homomorphism. Moreover, ∆ satisfies the coassociativity.

The rest of this section is devoted to the proof of Theorem 4.3. The outline of

the proof is similar to that of [12, Thm. 4.9]. In [12], the analogy of the Drinfel’d

J presentation is considered in order to prove the existence of the coproduct for

the affine Yangian. We construct elements similar to those constructed in [12,

equation (3.7)].

Definition 4.5. We set

J(hi) = hi,1 + vi, J(x±
i ) = x±

i,1 + w±
i ,

where

vi =
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

(α, αi)x
kα
−αx

kα
α −

ε1 + ε2
2

h2
i ,

w+
i = −ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

[x+
i , x

kα
−α]x

kα
α ,

w−
i =

ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

xkα
−α[x

kα
α , x−

i ].

Then J(hi) and J(x±
i ) are elements of Ŷε1,ε2(ŝl(m|n)).

Next we prove similar results to [12, Lem. 3.9 and Prop. 3.21]. In fact, they

are (4.8)–(4.11) and (4.27). We prepare one lemma in order to obtain (4.8)–(4.11)

and (4.27). It is an analogy of [14, Prop. 2.4].

Lemma 4.6 ([19, Lem. 18.4.1]). For all α, β ∈ ∆+, we obtain∑
1≤kβ≤dim gβ

[x
kβ

β , z]⊗ x
kβ

−β =
∑

1≤kα≤dim gα

xkα
α ⊗ [z, xkα

−α]

if z ∈ gβ−α.
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Lemma 4.7. The following relations hold:

[J(hi), hj ] = 0,(4.8)

[J(hi), x
±
j ] = ±(αi, αj)J(x

±
j )∓ ai,jbi,j

ε1 − ε2
2

x±
j,0,(4.9)

[J(x±
i ), x

±
j ] = [x±

i , J(x
±
j )]−

ε1 − ε2
2

bi,j [x
±
i,0, x

±
j,0],(4.10)

[J(x±
i ), x

∓
j ] = [x±

i , J(x
∓
j )] = δi,jJ(hi).(4.11)

Proof. Since hi,1 commutes with hj by (3.2) and vi commutes with hj by the

definition of vi, we obtain (4.8). We only show the other relations hold for +. In

a similar way, we obtain them for −. First, we prove (4.9) holds for +. By (3.21),

the left-hand side of (4.9) is equal to[
h̃i,1 + vi +

ε1 + ε2
2

h2
i,0, x

+
j

]
= ai,j

(
x+
j,1 − bi,j

ε1 − ε2
2

x+
j,0

)
+
[ε1 + ε2

2

∑
α,β∈∆+

∑
1≤kα≤dim gα

(α, αi)x
kα
−αx

kα
α , x+

j

]
.(4.12)

By direct computation, the second term on the right-hand side of (4.12) is equal

to

ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

(α, αi)x
kα
−α[x

kα
α , x+

j ]

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αj)(α, αi)[x
kα
−α, x

+
j ]x

kα
α .(4.13)

By Lemma 4.6, (4.13) is equal to

ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

(α− αj , αi)[x
+
j , x

kα
−α]x

kα
α

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αj)(α, αi)[x
kα
−α, x

+
j ]x

kα
α .(4.14)

Since (−1)p(α)p(αj)[xkα
−α, x

+
j ] + [x+

j , x
kα
−α] = 0 holds, the sum of the first and sec-

ond terms of (4.14) is equal to − ε1+ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

(αj , αi)[x
+
j , x

kα
−α]x

kα
α .

Thus, we obtain

[J(hi), x
+
j ] = ai,j

(
x+
j,1 − bi,j

ε1 − ε2
2

x+
j,0

)
− ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

(αj , αi)[x
+
j , x

kα
−α]x

kα
α .

Thus, we have obtained (4.9) for +.
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Next we show that (4.10) holds for +. By the definition of J(x+
i ), [J(x

+
i ), x

+
j ]−

[x+
i , J(x

+
j )] is equal to

[x+
i,1, x

+
j,0]− [x+

i,0, x
+
j,1] + [w+

i , x
+
j ]− [x+

i , w
+
j ].

By (3.22), [x+
i,1, x

+
j,0]−[x

+
i,0, x

+
j,1] is equal to

ε1+ε2
2 ai,j{x+

i,0, x
+
j,0}−

ε1−ε2
2 bi,j [x

+
i,0, x

+
j,0].

By the definition of w+
i , we obtain

[w+
i , x

+
j ]− [x+

i , w
+
j ]

= −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

[x+
i , x

kα
−α][x

kα
α , x+

j ]

− ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αj)[[x+
i , x

kα
−α], x

+
j ]x

kα
α

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

[x+
i , [x

+
j , x

kα
−α]]x

kα
α

+
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αi)+p(αj)p(αi)[x+
j , x

kα
−α][x

+
i , x

kα
α ].(4.15)

By Lemma 4.6, we find the equality

the first term on the right-hand side of (4.15)

= −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

[x+
i , [x

+
j , x

kα
−α]]x

kα
α +

ε1 + ε2
2

[x+
i , hj ]x

+
j .(4.16)

We also find the relation

the fourth term on the right-hand side of (4.15)

=
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αi)+p(αj)p(αi)[x+
j , [x

kα
−α, x

+
i ]]x

kα
α

+
ε1 + ε2

2
(−1)p(αi)p(αj)[x+

j , hi]x
+
i(4.17)

by Lemma 4.6. Applying (4.16) and (4.17) to (4.15), we obtain

[w+
i , x

+
j ]− [x+

i , w
+
j ] =

ε1 + ε2
2

[x+
i , hj ]x

+
j +

ε1 + ε2
2

(−1)p(αi)p(αj)[x+
j , hi]x

+
i .

Since m,n ≥ 2, there exist no i, j such that ai,j ̸= 0 and p(αi)p(αj) = 1. Thus,

we obtain

ε1 + ε2
2

[x+
i , hj ]x

+
j +

ε1 + ε2
2

(−1)p(αi)p(αj)[x+
j , hi]x

+
i = −ε1 + ε2

2
ai,j{x+

i , x
+
j }.

Hence, we have obtained

[J(x+
i ), x

+
j ]− [x+

i , J(x
+
j )] = −

ε1 − ε2
2

bi,j [x
+
i,0, x

+
j,0].
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Finally, we show that [J(x+
i ), x

−
j ] = δi,jJ(hi) holds. By the definition of J(x+

i ),

[J(x+
i ), x

−
j ] is equal to [x+

i,1, x
−
j,0] + [w+

i , x
−
j,0]. By (3.3), [x+

i,1, x
−
j,0] is δi,jhi,1. By

direct computation, we have

[w+
i , x

−
j,0] = −

ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

[x+
i , x

kα
−α][x

kα
α , x−

j ]

− ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αj)[[x+
i , x

kα
−α], x

−
j ]x

kα
α .(4.18)

By Lemma 4.6, we have

the first term on the right-hand side of (4.18)

= −ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

[x+
i , [x

−
j , x

kα
−α]]x

kα
α −

ε1 + ε2
2

δi,jh
2
i .(4.19)

By the Jacobi identity, we find the equality

[x+
i , [x

−
j , x

kα
−α]] = −(−1)

p(α)p(αj)[x+
i , [x

kα
−α, x

−
j ]]

= −(−1)p(α)p(αj)[[x+
i , x

kα
−α], x

−
j ]x

kα
α

− (−1)p(α)p(αj)(−1)p(α)p(αi)[xkα
−α, [x

+
i , x

−
j ]]x

kα
α .(4.20)

Thus, we obtain

[w+
i , x

−
j,0] =

ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αj)[[x+
i , x

kα
−α], x

−
j ]x

kα
α

+
ε1 + ε2

2
δi,j

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αj)(−1)p(α)p(αj)

× [xkα
−α, [x

+
i , x

−
j ]]x

kα
α −

ε1 + ε2
2

δi,jh
2
i

− ε1 + ε2
2

∑
α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)p(αj)[[x+
i , x

kα
−α], x

−
j ]x

kα
α

=
ε1 + ε2

2

∑
α∈∆+

∑
1≤kα≤dim gα

δi,j(αi, α)x
kα
−αx

kα
α −

ε1 + ε2
2

δi,jh
2
i ,

where the first equality is due to (4.19) and the second equality is due to (4.20).

Then we have shown that [J(x+
i ), x

−
i ] = δi,jJ(hi). Similarly, we can obtain

[x+
i , J(x

−
j )] = δi,jJ(hi). This completes the proof.

By (4.8)–(4.11), we obtain the following convenient relation.
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Corollary 4.21.

(1) When i ̸= j, j ± 1, [J(x±
i ), x

±
j ] = 0 holds.

(2) Suppose that j < i− 1. We have the following relation:

ad(J(x±
i ))

∏
i+1≤k≤m+n−1

ad(x±
k )

∏
0≤k≤j−1

ad(x±
k )(x

±
j )

= ad(x±
i ) ad(J(x

±
i+1))

∏
i+2≤k≤m+n−1

ad(x±
k )

∏
0≤k≤j−1

ad(x±
k )(x

±
j )

− bi,i+1
ε1 − ε2

2

∏
i≤k≤m+n−1

ad(x±
k )

∏
0≤k≤j−1

ad(x±
k )(x

±
j ).

(3) For all α ∈
∑

1≤l≤m+n−1 Z≥0αi and x±α ∈ g±α, there exists a number dαi,j
such that

(αj , α)[J(hi), x±α]− (αi, α)[J(hj), x±α] = ±dαi,jx±α.

(4) Suppose that j < i− 1. We have[
J(hs),

∏
i≤k≤m+n−1

ad(x±
k )

∏
0≤k≤j−1

ad(x±
k )(x

±
j )

]
= ±(αs, α)

∏
i≤k≤m+n−1

ad(x±
k )

∏
0≤k≤j−1

ad(x±
k )J(x

±
j )

± c2
∏

i≤k≤m+n−1

ad(x±
k )

∏
0≤k≤j−1

ad(x±
k )(x

±
j ),

where α =
∑

i≤k≤m+n−1 αk +
∑

0≤k≤j αk and c2 is a complex number.

Proof. We only show the relations for +. The other case is proven in a similar way.

(1) By the definition of the commutator relations of ŝl(m|n), [x+
i , x

+
j ] = 0

holds when i ̸= j, j ± 1. There exists an index p such that ai,p ̸= 0 and aj,p = 0.

Applying ad(J(hp)) to [x+
i , x

+
j ] = 0, we obtain

ai,p([J(x
+
i ), x

+
j ]− bi,p

ε1 − ε2
2

[x+
i , x

+
j ]) = 0

by (4.9). Since ai,p ̸= 0, we have shown that [J(x+
i ), x

+
j ] = 0 holds.

(2) By (1), the left-hand side is equal to

ad([J(x+
i ), x

+
i+1])

∏
i+2≤k≤m+n−1

ad(x+
k )

∏
0≤k≤j−1

ad(x+
k )(x

+
j ).
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By (4.11), it is equal to

ad([x+
i , J(x

+
i+1)])

∏
i+2≤k≤m+n−1

ad(x+
k )

∏
0≤k≤j−1

ad(x+
k )(x

+
j )

− bi,i+1
ε1 − ε2

2
ad([x+

i , x
+
i+1])

∏
i+2≤k≤m+n−1

ad(x+
k )

∏
0≤k≤j−1

ad(x+
k )(x

+
j ).(4.22)

By the Jacobi identity, the first term of (4.22) is equal to

ad(x+
i ) ad(J(x

+
i+1))

∏
i+2≤k≤m+n−1

ad(x+
k )

∏
0≤k≤j−1

ad(x+
k )(x

+
j ).

This completes the proof.

(3) It is enough to assume that x±α =
∏

s≤k≤t−1 ad(x
±
k )x

±
t . By (4.9), we

have

[J(hi), x±α] = ±δ(s ≥ i+ 1 ≥ t)ai,i+1

∏
s≤k≤i

ad(x±
k )J(x

±
i+1)

∏
i+2≤k≤t−1

ad(x±
k )x

±
t

± δ(s ≥ i ≥ t)ai,i
∏

s≤k≤i−1

ad(x±
k )J(x

±
i )

∏
i+1≤k≤t−1

ad(x±
k )x

±
t

± δ(s ≥ i− 1 ≥ t)ai,i−1

∏
s≤k≤i−2

ad(x±
k )J(x

±
i−1)

∏
i+1≤k≤t−1

ad(x±
k )x

±
t

± d1i (αi, α)
∏

s≤k≤t−1

ad(x±
k )x

±
t ,

where d1i is a complex number. By a discussion similar to the one in the proof of

(2), we find that there exists a complex number d2i such that the sum of the first

three terms is equal to

±(αi, α)
∏

s≤k≤t−1

ad(x±
k )J(x

±
t )± d2i (αi, α)

∏
s≤k≤t−1

ad(x±
k )x

±
t .

Then we obtain

(αj , α)[J(hi), x±α]− (αk, α)[J(hj), x±α]

= ±{(αj , α)(d
1
i + d2i )− (αi, α)(d

1
j + d2j )}x±α.

We complete the proof.

(4) It is proven in a similar way to (3).

Next, in order to obtain (4.27), we prepare {τi}i ̸=0,m, which are automor-

phisms of the affine super Yangian. Let us set {si}i ̸=0,m as an automorphism of
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∆ such that si(α) = α− 2(αi,α)
(αi,αi)

αi. By the definition of ŝl(m|n), we can rewrite si
explicitly as

si(αj) =


−αj if i = j,

αi + αj if j = i± 1,

αj otherwise.

It is called a simple reflection. We also define {τi}i̸=0,m as an operator on the affine

super Yangian determined by

(4.23) τi(x) = exp(ad(x+
i )) exp(− ad(x−

i )) exp(ad(x
+
i ))x.

By the defining relation (3.7), τi is well defined as an operator on the affine super

Yangian. The following lemma is well known (see [14]).

Lemma 4.24.

(1) The action of τi preserves the inner product κ.

(2) For all α ∈ ∆, τi(gα) = gsi(α).

Then, in a similar way to of [12, Lems. 3.17 and 3.19], we can compute the

action of τi on J(hj) and write it explicitly.

Lemma 4.25. When i ̸= 0,m, we obtain

τi(J(hj)) = J(hj)−
2(αi, αj)

(αi, αi)
J(hi) + ai,jbj,i(ε1 − ε2)hi.

Since dim gα = 1 for all α ∈ ∆re, we sometimes denote xkα
−α and xkα

α as x−α

and xα for all α ∈ ∆re
+ .

Proposition 4.26. For i, j ∈ I and a positive real root α, the following equation

holds:

(4.27) (αj , α)[J(hi), xα]− (αi, α)[J(hj), xα] = cαi,jxα,

where cαi,j is a complex number such that cαi,j = −c
−α
i,j .

Proof. We divide the proof into two cases: one is that α is even, the other is that

α is odd.

Case 1, α is even. Suppose that α is even. Then there exists s ∈ Z such

that α is an element of
∑

1≤l≤m−1 Zαi + sδ or
∑

m+1≤l≤m+n−1 Zαi + sδ. We only

prove the case where α ∈
∑

1≤l≤m−1 Z≥0αi +Z≥0δ. The other cases are proven in

a similar way.

First, we prove the case where α = αk + sδ, where k ̸= 0,m.
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Claim 4.28. Suppose that α = αk + sδ such that k ̸= 0,m. Then we have

[J(hi), xα] =
(αi, αk)

(αk, αk)
[J(hk), xα] + dαxα,

[J(hi), x−α] =
(αi, αk)

(αk, αk)
[J(hk), x−α]− dαx−α,

where dα is a complex number.

Proof. Let us set

x1
±δ =

[
x±
k ,

∏
k+1≤p≤m+n−1

ad(x±
p )

∏
0≤p≤k−2

ad(x±
p )(x

±
k−1)

]
.

It is enough to suppose that x±α = ad(x1
±δ)

sx±
k since ad(x1

±δ)
sx±

k is nonzero. By

the Jacobi identity, we obtain

[(αk, α)J(hi)− (αi, α)J(hk), ad(x
1
±δ)

sx±
k ]

=
∑

0≤t≤s−1

ad(x1
±δ)

t ad([(αk, α)J(hi)−(αi, α)J(hk), x
1
±δ]) ad(x

1
±δ)

s−1−tx±
k

+ ad(x1
±δ)

s[(αk, α)J(hi)− (αi, α)J(hk), x
±
k ].(4.29)

By (4.9), [(αk, α)J(hi)− (αi, α)J(hk), x
±
k ] can be written as ±fkx±

k , where fk is a

complex number. Then we have

[J(hi), x
1
±δ] =

[
x±
k ,

[
(αk, α)J(hi)− (αi, α)J(hk),∏
k+1≤p≤m+n−1

ad(x±
p )

∏
0≤p≤k−2

ad(x±
p )(x

±
k−1)

]]
± fkx

1
±δ.

By Corollary 4.21(4), we can rewrite the first term as

± (αk, α)(αi, α)

[
x±
k ,

∏
k+1≤p≤m+n−1

ad(x±
p )

∏
0≤p≤k−2

ad(x±
p )J(x

±
k−1)

]

∓ (αk, α)(αi, α)

[
x±
k ,

∏
k+1≤p≤m+n−1

ad(x±
p )

∏
0≤p≤k−2

ad(x±
p )J(x

±
k−1)

]
± gkx

1
±δ

= ±gkx1
±δ,

where gk is a complex number. We have obtained the statement.

Now let us consider the case where α is a general even root. Any even root α =∑
0≤k≤l αp+k can be written as

∏
0≤k≤l−1 sp+k(αp+l) by the explicit presentation

of si. Let us prove that the statement of Proposition 4.26 holds by induction on l.
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When l = 1, it is nothing but Claim 4.28. Assume that (4.27) holds when l = q.

We set α and β as
∏

0≤k≤q sp+k(αp+q+1) and
∏

1≤k≤q sp+k(αp+q+1). Suppose that

xβ is a nonzero element of gβ . By Lemma 4.24, gα contains a nonzero element

τsp(xβ). Thus, we obtain

(αj , α)[J(hi), τsp(x±β)]− (αi, α)[J(hj), τsp(x±β)]

= τsp

{
(αj , α)

[
J(hi)−

2(αi, αp)

(αp, αp)
J(hp), x±β

]
− (αi, α)

[
J(hj)−

2(αi, αp)

(αp, αp)
J(hp), (x±β)

]}
∓ {(αj , α)ap,ibi,p − (αi, α)ap,jbj,p}(ε1 − ε2)x±α(4.30)

by Lemma 4.25. Let us suppose that (αt, β) ̸= 0. Then, by the induction hypoth-

esis, we find the relation

(4.31) [J(hu), x±β ] = ±
(αu, β)

(αt, β)
[J(ht), x±β ]± cβu,tx±β .

Applying (4.31) to (4.30), we obtain[
J(hi)−

2(αi, αp)

(αp, αp)
J(hp), x±β

]
= ±

{ (αi, β)

(αt, β)
− 2(αi, αp)

(αp, αp)
· (αp, β)

(αt, β)

}
([J(ht), x±β ] + cβi,tx±β)

= ±
(αi, β − 2(αi,αp)

(αp,αp)
αp)

(αt, β)
([J(ht), x±β ] + cβi,tx±β).

By the definition of sp, α is equal to β − 2(αi,αp)
(αp,αp)

αp. Then we have

(4.32)
[
J(hi)−

2(αi, αp)

(αp, αp)
J(hp), x±β

]
= ± (α, αi)

(αt, β)
([J(ht), x±β ] + cβi,tx±β).

Similarly, we find the relation

(4.33)
[
J(hj)−

2(αj , αp)

(αp, αp)
J(hp), x±β

]
= ± (α, αj)

(αt, β)
([J(ht), x±β ] + cβj,tx±β).

Applying (4.32) and (4.33) to the right-hand side of (4.30),

(αj , α)[J(hi), τsp(x±β)]− (αi, α)[J(hj), τsp(x±β)]

= ±τsp
{
(αj , α)

(α, αi)

(αt, β)
cβi,tx±β − (αi, α)

(α, αj)

(αt, β)
cβj,tx±β

}
∓ {(αj , α)ap,ibi,p − (αi, α)ap,jbj,p}(ε1 − ε2)x±α.

This completes the proof of the case where α is even.



Construction of the Affine Super Yangian 449

Case 2, α is odd. Hereafter, we suppose that m is greater than 3. The

other case is proven in a similar way. First, we consider the case where α =∑
1≤l≤m−1 αi + αm + sδ.

Claim 4.34.

(1) When i ̸= 0, 1,m,m + 1, [J(hi), x±α] = ±ciαx±α, where cα is a complex

number.

(2) We obtain the following equations:

[J(h0), x±α] =
(α0, α)

(α1, α)
[J(h1), x±α]± d0,1x±α,(4.35)

[J(hm), x±α] =
(αm, α)

(α1, α)
[J(h1), x±α]± dm,1x±α,(4.36)

[J(hm+1), x±α] =
(αm+1, α)

(αm, α)
[J(hm), x±α]± dm,m+1x±α,(4.37)

where d0,1, dm,1 and dm,m+1 are complex numbers.

Proof. (1) When i ̸= 0, 1, 2,m,m+1, we set x2
±δ = [x±

1 ,
∏

2≤p≤m+n−1 ad(x
±
p )(x

±
0 )].

It is sufficient to assume that

x±α = ad(x2
±δ)

s
∑

1≤l≤m−1

ad(x±
i )(x

±
m)

since the right-hand side is nonzero. In a similar way to Claim 4.28, we also have

[J(hi), x
2
±δ] = ±hδx

2
±δ,(4.38) [

J(hi),
∑

1≤l≤m−1

ad(x±
i )(x

±
m)

]
= ±iα

∑
1≤l≤m−1

ad(x±
i )(x

±
m),(4.39)

where hδ and iα are complex numbers. Thus, we find the equality

[J(hi), x
kα
α ] = ±(shδ + iα) ad(x

2
±δ)

s
∑

1≤l≤m−1

ad(x±
i )(x

±
m)

by the Jacobi identity, (4.38) and (4.39). We have proved the statement when

i ̸= 0, 1, 2,m,m+ 1. When i = 2, we set x3
±δ as[

x±
m+1,

∏
m+2≤p≤m+n−1

ad(x±
p )

∏
0≤p≤m−1

ad(x±
p ) ad(x

±
m)

]
.

It is enough to assume that

x±α = ad(x3
±δ)

s
∑

1≤l≤m−1

ad(x±
i )(x

±
m)
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since the right-hand side is nonzero. In a similar way to Claim 4.28, we also have

[J(hi), x
3
±δ] = ±jδx3

±δ,(4.40) [
J(hi),

∑
1≤l≤m−1

ad(x±
i )(x

±
m)

]
= ±kα

∑
1≤l≤m−1

ad(x±
i )(x

±
m),(4.41)

where jδ and kα are complex numbers. Thus, we find the relation

[J(hi), xα] = ±(sjδ + kα) ad(x
2
±δ)

s
∑

1≤l≤m−1

ad(x±
i )(x

±
m)

by the Jacobi identity, (4.40) and (4.41). We have proved the statement when

i = 2.

(2) First, we prove that (4.35) holds. By the definition of α, x±α can be

written as [x±β , x
±
m], where x±β is a nonzero element of gα−αm

. Since [J(h0), x
±
m]

and [J(h1), x
±
m] are equal to zero by (4.9), we obtain

[J(h0), x±α] = [[J(h0), x±β ], x
±
m],(4.42)

[J(h1), x±α] = [[J(h1), x±β ], x
±
m].(4.43)

Then, because β is even, we have

(4.44) [[J(h0), x±β ], x
±
m] =

(α0, β)

(α1, β)
[[J(h1), x±β ], x

±
m] +

(α0, β)

(α1, β)
[x±β , x

±
m]

by Case 1. By (4.42), (4.43) and (4.44), we find the equality

[J(h0), x±α] =
(α0, β)

(α1, β)
[J(h1), x±α] +

(α0, β)

(α1, β)
[x±β , x

±
m].

Thus we have shown that (4.35) holds. Similarly, we obtain (4.36) since also

[J(hm), x+
m] = 0 holds.

Finally, we prove that (4.37) holds. We set

x4
±δ =

[
x±
1 ,

∏
2≤p≤m+n−1

ad(x±
p )(x

±
0 )

]
.

It is enough to check the relation under the assumption that

x±α = ad(x4
±δ)

s
∏

1≤p≤m−1

ad(x±
p )(x

±
m)
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since the right-hand side is nonzero. Then we obtain

[J(hm), x±α]

=
∑

1≤t≤s

ad(x4
±δ)

t−1 ad([J(hm), x4
±δ]) ad(x

4
±δ)

s−t
∏

1≤p≤m−1

ad(x±
p )(x

±
m)

+

[
J(hm), ad(x4

±δ)
s

∏
1≤p≤m−1

ad(x±
p )(x

±
m)

]
,(4.45)

[J(hm+1), x±α]

=
∑

1≤t≤s

ad(x4
±δ)

t−1 ad([J(hm+1), x
4
±δ]) ad(x

4
±δ)

s−t
∏

1≤p≤m−1

ad(x±
p )(x

±
m)

+

[
J(hm+1), ad(x

4
±δ)

s
∏

1≤p≤m−1

ad(x±
p )(x

±
m)

]
(4.46)

by the Jacobi identity. First, we rewrite the first term on the right-hand sides of

(4.45) and (4.46). By the assumption m is greater than 3, [J(hm), x±
1 ] = 0 holds

by (4.9). Then, in a similar way to Claim 4.28, we find the equalities

[J(hm), x4
±δ] = ±tδx4

±δ,(4.47)

[J(hm+1), x
4
±δ] = ±uδx

4
±δ,(4.48)

where tδ and uδ are complex numbers. Then we obtain

the first term on the right-hand side of (4.45)

= ±tδ ad(x4
±δ)

s
∏

1≤p≤m−1

ad(x±
p )(x

±
m),(4.49)

the first term on the right-hand side of (4.46)

= ±uδ ad(x
4
±δ)

s
∏

1≤p≤m−1

ad(x±
p )(x

±
m)(4.50)

by (4.47) and (4.48). Next we rewrite the second term on the right-hand sides of

(4.45) and (4.46). By (4.9), we obtain

the second term on the right-hand side of (4.45)

= ad(x4
±δ)

s
∏

1≤p≤m−2

ad(x±
p )[J(hm), [x±

m−1, x
±
m]],(4.51)

the second term on the right-hand side of (4.46)

= ad(x4
±δ)

s
∏

1≤p≤m−2

ad(x±
p )[J(hm+1), [x

±
m−1, x

±
m]].(4.52)
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By (4.9) and (4.10), we find that

[J(hm), [x±
m−1, x

±
m]]

= ±am,m−1[J(x
±
m−1), x

±
m]∓ am,m−1bm,m−1

ε1 − ε2
2

[x±
m−1, x

±
m]

= ±am,m−1[x
±
m−1, J(x

±
m)]

∓ am,m−1(bm−1,m + bm,m−1)
ε1 − ε2

2
[x±

m−1, x
±
m],(4.53)

[J(hm+1), [x
±
m−1, x

±
m]]

= ±am+1,m[x±
m−1, J(x

±
m)]∓ am+1,mbm,m+1

ε1 − ε2
2

[x±
m−1, x

±
m].(4.54)

Since am,m−1 = (α, αm) and am+1,m = (α, αm+1), by (4.53) and (4.54), we obtain

(α, αm+1)[J(hm), [x±
m−1, x

±
m]]− (α, αm)[J(hm+1), [x

±
m−1, x

±
m]]

= ±uα[x
±
m−1, x

±
m],(4.55)

where uα is a complex number. Thus, we know that

(α, αm+1)(the second term on the right-hand side of (4.45))

− (α, αm)(the second term on the right-hand side of (4.46))

= uα ad(x4
±δ)

s
∏

1≤p≤m−1

ad(x±
p )(x

±
m)(4.56)

holds. By (4.49), (4.50) and (4.56), we have

(α, αm+1)[J(hm), x±α]− (α, αm)[J(hm+1), x±α]

= ±(s(α, αm+1)tδ − s(α, αm)uδ + uα) ad(x
4
±δ)

s
∏

1≤p≤m−1

ad(x±
p )(x

±
m).

Then we have obtained (4.37).

Next, let us consider the case where α is a general odd root. We only show

the case where α ∈ αm +
∑

1≤t≤m+n−1,t̸=m Z≥0αt + sδ. The other case is proven

in a similar way.

Since α ∈ αm +
∑

1≤t≤m+n−1,t̸=m Z≥0αt + sδ, the root α can be written as∏
1≤t≤p sit(

∑
1≤i≤m αi + αm). Then we prove the statement by induction on p.

When p = 0, it is nothing but Claim 4.34. Other cases are proven in a similar way

to Case 1.

We easily obtain the following corollary.
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Corollary 4.57. The following equations hold:

[J(hi), ṽj ] + [ṽi, J(hj)] = 0,(4.58)

[J(hi), J(hj)] + [ṽi, ṽj ] = 0,(4.59)

where ṽi = vi +
ε1+ε2

2 hi
2.

Proof. First, we show that (4.58) holds. Since ṽi = ε1+ε2
2

∑
α∈∆re

+
(αj , α)x

kα
−αx

kα
α

holds, we obtain

[J(hi), ṽj ] + [ṽi, J(hj)] =
ε1 + ε2

2

∑
α∈∆re

+

(αj , α)[J(hi), x−α]xα

+
ε1 + ε2

2

∑
α∈∆re

+

(αj , α)x−α[J(hi), xα]

+
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)[x−α, J(hj)]xα

+
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)x−α[xα, J(hj)].(4.60)

By Proposition 4.26, there exists cαi,j ∈ C such that

ε1 + ε2
2

∑
α∈∆re

+

(αj , α)[J(hi), x−α]xα +
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)[x−α, J(hj)]xα

= −ε1 + ε2
2

∑
α∈∆re

+

cαi,jx−αxα,(4.61)

ε1 + ε2
2

∑
α∈∆re

+

(αj , α)x−α[J(hi), xα] +
ε1 + ε2

2

∑
α∈∆re

+

(αi, α)x−α[xα, J(hj)]

=
ε1 + ε2

2

∑
α∈∆re

+

cαi,jx−αxα.(4.62)

Therefore, applying (4.61) and (4.62) to (4.60), we have obtained the relation

(4.58). By the defining relation (3.3), we find the equality

(4.63) [J(hi)− ṽi, J(hj)− ṽj ] = [hi,1, hj,1] = 0.

On the other hand, we find the relation

(4.64) [J(hi)− ṽi, J(hj)− ṽj ] = [J(hi), J(hj)]− [ṽi, J(hj)]− [J(hi), ṽj ] + [ṽi, ṽj ].

By (4.58), the right-hand side of (4.64) is equal to the left-hand side of (4.59).

Thus, by (4.63), we have found that (4.59) holds.
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Now we are in position to obtain the proof of Theorem 4.3. To simplify the

notation, we set □(x) to x⊗ 1 + 1⊗ x for all x ∈ Yε1,ε2(ŝl(m|n)).

Proof of Theorem 4.3. It is enough to check that ∆ is compatible with (3.17)–

(3.25), which are the defining relations of the minimalistic presentation of the

affine super Yangian. Since the restriction of ∆ to ŝl(m|n) is nothing but the usual

coproduct of ŝl(m|n), ∆ is compatible with (3.18), (3.23), (3.24) and (3.25). We

also know that ∆ is compatible with (3.20) since ∆(x±
i,1) is defined as

± 1

ai,i
[∆(h̃i,1),∆(x±

i,0)] if i ̸= m, 0,

± 1

ai+1,i
[∆(h̃i+1,1),∆(x±

i,0)] + bi+1,i
ε1 − ε2

2
∆(x±

i,0) if i = m, 0,

and ∆(h̃i+1,1) and ∆(h̃i,1) commute with ∆(hj,0) by the definition. We find that

the defining relation (3.19) (resp. (3.21), (3.22)) is equivalent to (4.11) (resp. (4.9),

(4.10)) by the proof of Lemma 4.7. It is easy to show that ∆ is compatible with

(4.11), (4.9) and (4.10) in the same way as [12, Thm. 4.9]. Thus, it is enough to

show that ∆ is compatible with (3.17). By the definition of J(hi), we obtain

[∆(hi1),∆(hj1)] = [∆(J(hi))−∆(ṽi),∆(J(hj))−∆(ṽj)]

= [∆(J(hi)),∆(J(hj))] + [∆(ṽi),∆(ṽj)]

− [∆(J(hi)),∆(ṽj)]− [∆(ṽi),∆(J(hj))],(4.65)

where ṽi = vi +
ε1+ε2

2 h2
i . It is enough to show that

(4.66) [∆(J(hi)),∆(J(hj))] + [∆(ṽi),∆(ṽj)] = 0

and

(4.67) [∆(J(hi)),∆(ṽj)] + [∆(ṽi),∆(J(hj))] = 0

hold. We only show that (4.66) holds. The outline of the proof of (4.67) is the

same as that of [12, Thm. 4.9]. In order to simplify the computation, we define

Ω+ =
∑

1≤k≤dim h

uk ⊗ uk +
∑

α∈∆+

∑
1≤kα≤dim gα

(−1)p(α)xkα
α ⊗ xkα

−α,

Ω− =
∑

α∈∆+

∑
1≤kα≤dim gα

xkα
−α ⊗ xkα

α ,

Ω =
∑

1≤k≤dim h

uk ⊗ uk +
∑

α∈∆+

∑
1≤kα≤dim gα

((−1)p(α)xkα
α ⊗ xkα

−α + xkα
−α ⊗ xkα

α ),
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where {uk} and {uk} are basis of h such that κ(uk, u
l) = δk,l. By the definition of

J(hi), it is easy to obtain

(4.68) ∆(J(hi)) = □(J(hi)) +
ε1 + ε2

2
[hi,0 ⊗ 1,Ω]

since we have

∆(xy) = (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)

= (−1)p(1)p(y)xy ⊗ 1 + (−1)p(x)p(1)1⊗ xy + (−1)p(1)p(1)x⊗ y

+ (−1)p(x)p(y)y ⊗ x

by the relation (x⊗ y)(z⊗w) = (−1)p(y)p(z)xz⊗ yw for all homogeneous elements

x, y, z, w. Thus, by (4.68), we obtain

[∆(J(hi)),∆(J(hj))]

= □([J(hi), J(hj)]) +
ε1 + ε2

2
[□(J(hi)), [hj,0 ⊗ 1,Ω]]

− ε1 + ε2
2

[□(J(hj)), [hi,0 ⊗ 1,Ω]] +
(ε1 + ε2)

2

4
[[hi,0 ⊗ 1,Ω], [hj,0 ⊗ 1,Ω]].

First, we prove that

(4.69)
ε1 + ε2

2
[□(J(hi)), [hj,0 ⊗ 1,Ω]]− ε1 + ε2

2
[□(J(hj)), [hi,0 ⊗ 1,Ω]] = 0

holds. Since [hj,0 ⊗ 1,Ω] =
∑

α∈∆re
+
(α, αi)(x−α ⊗ xα − xα ⊗ x−α) holds, we have

[□(J(hi)), [hj,0 ⊗ 1,Ω]]− [□(J(hj)), [hi,0 ⊗ 1,Ω]]

=
∑

α∈∆re
+

(α, αj)
(
(−1)p(α)[J(hi), xα]⊗ x−α − (−1)p(α)xα ⊗ [J(hi), x−α]

+ [J(hi), x−α]⊗ xα − x−α ⊗ [J(hi), xα]
)

−
∑

α∈∆re
+

(α, αi)
(
(−1)p(α)[J(hj), xα]⊗ x−α − (−1)p(α)xα ⊗ [J(hj), x−α]

+ [J(hj), x−α]⊗ xα − x−α ⊗ [J(hj), xα]
)

=
∑

α∈∆re
+

(α, αj)(α, αi)c
α
i,j

×
(
(−1)p(α)xα ⊗ x−α − (−1)p(α)xα ⊗ x−α + x−α ⊗ xα − x−α ⊗ xα

)
−
∑

α∈∆re
+

(α, αi)(α, αj)c
α
j,i

×
(
(−1)p(α)xα ⊗ x−α − (−1)p(α)xα ⊗ x−α + x−α ⊗ xα − x−α ⊗ xα

)
= 0,
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where the third equality is due to Proposition 4.26. Therefore (4.69) holds. Since

∆(ṽi) = □(ṽi)− ε1+ε2
2 [hi,0 ⊗ 1,Ω+ − Ω−] holds, we obtain

[∆(ṽi),∆(ṽj)] = □([ṽi, ṽj ]) +
ε1 + ε2

2

(
−[□(ṽi), [hj,0 ⊗ 1,Ω+ − Ω−]]

+ [□(ṽj), [hi,0 ⊗ 1,Ω+ − Ω−]]
)

+
(ε1 + ε2)

2

4
[[hi,0 ⊗ 1,Ω+ − Ω−], [hj,0 ⊗ 1,Ω+ − Ω−]].

Using this along with Ω = Ω+ +Ω− and (4.69), we find the equality

[∆(J(hi)),∆(J(hj))] + [∆(ṽi),∆(ṽj)]

= □([J(hi), J(hj)] + [ṽi, ṽj ])

+
ε1 + ε2

2

(
−[□(ṽi), [hj,0 ⊗ 1,Ω+ − Ω−]]

+ [□(ṽj), [hi,0 ⊗ 1,Ω+ − Ω−]]
)

+
(ε1 + ε2)

2

2

(
[[hi,0 ⊗ 1,Ω+], [hj,0 ⊗ 1,Ω+]]

+ [[hi,0 ⊗ 1,Ω−], [hj,0 ⊗ 1,Ω−]]
)
.(4.70)

In the same way as [12, Thm. 4.9], we can check that the sum of the last four terms

on the right-hand side of (4.70) vanishes. By Corollary 4.57, □([J(hi), J(hj)] +

[ṽi, ṽj ]) = 0 holds. The coassociativity is proven in a similar way to [12]. We

complete the proof.

By setting the degree on Yε1,ε2(s̃l(m|n)) determined by (4.2) and deg(d) = 0,

we can define the Ŷε1,ε2(s̃l(m|n)) (resp. Yε1,ε2(s̃l(m|n)) ⊗̂ Yε1,ε2(s̃l(m|n))) as the

degreewise completion of Yε1,ε2(s̃l(m|n)) (resp. Yε1,ε2(s̃l(m|n))⊗2) in the sense of

[18]. We regard a representation of Yε1,ε2(s̃l(m|n)) as that of s̃l(m|n) via Φ. By

Theorem 4.3, we easily obtain the following corollary.

Corollary 4.71. There exists a linear map ∆: Yε1,ε2(s̃l(m|n))→Yε1,ε2(s̃l(m|n))⊗̂
Yε1,ε2(s̃l(m|n)), uniquely determined by

∆(hi,0) = hi,0 ⊗ 1 + 1⊗ hi,0, ∆(x±
i,0) = x±

i,0 ⊗ 1 + 1⊗ x±
i,0, ∆(d) = d⊗ 1 + 1⊗ d,

∆(hi,1) = hi,1 ⊗ 1 + 1⊗ hi,1 + (ε1 + ε2)hi,0 ⊗ hi,0

− (ε1 + ε2)
∑

α∈∆+

∑
1≤kα≤dim gα

(α, αi)x
kα
−α ⊗ xkα

α ,

which is an algebra homomorphism. Moreover, ∆ satisfies the coassociativity.

In particular, ∆ defines an action on Yε1,ε2(s̃l(m|n)) on V ⊗ W for any

Yε1,ε2(s̃l(m|n))-modules V , W which are in the category O as s̃l(m|n)-modules.
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§5. Evaluation map for the affine super Yangian

Since the definition of the affine super Yangian is very complicated, it is not clear

whether the affine super Yangian is trivial or not. In this section, we construct

the nontrivial homomorphism from the affine super Yangian to the completion of

U(ĝl(m|n)). In this section, we set ĝl(m|n) = gl(m|n)⊗C[t±1]⊕Cc⊕Cz as a Lie

superalgebra whose defining relations are

c, z are central elements,

[x⊗ ts, y ⊗ tu] =


[x, y]⊗ ts+u + sδs+u,0 str(xy)c if x, y ∈ sl(m|n),
[ea,b, ei,i]⊗ ts+u + sδs+u,0 str(ea,bei,i)c

+sδa,b(−1)p(a)+p(i)
z if x = ea,b, y = ei,i.

For all s ∈ Z, we denote Ei,j⊗ts by Ei,j(s). We also set the grading of U(ĝl(m|n))/
U(ĝl(m|n))(z − 1) as deg(X(s)) = s and deg(c) = 0. We define U(ĝl(m|n))comp,+

as the standard degreewise completion of U(ĝl(m|n))/U(ĝl(m|n))(z − 1) in the

sense of Definition 4.1.

Let us state the main result of this section. In order to simplify the notation,

we denote ε1 + ε2 as ℏ.

Theorem 5.1. Assume cℏ = (−m+n)ε1 and z = 1. Let α be a complex number.

Then there exists an algebra homomorphism

ev : Yε1,ε2(ŝl(m|n))→ U(ĝl(m|n))comp,+

uniquely determined by

(5.2) ev(x+
i,0) = x+

i , ev(x−
i,0) = x−

i , ev(hi,0) = hi,

(5.3) ev(x+
i,1) =



(α− (m− n)ε1)x
+
0

+ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,1(s+ 1) if i = 0,

(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

+ℏ
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s)

+ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1) if i ̸= 0,
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(5.4) ev(x−
i,1) =



(α− (m− n)ε1)x
−
0

−ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,m+n(s) if i = 0,

(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x−
i

+(−1)p(i)ℏ
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i(s)

+(−1)p(i)ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i(s+ 1) if i ̸= 0,

(5.5) ev(hi,1) =



(α− (m− n)ε1)h0 + ℏEm+n,m+n(E1,1 − c)

−ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s)

−ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,1(s+ 1) if i = 0,

(α− (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi

−(−1)p(Ei,i+1)ℏEi,iEi+1,i+1

+ℏ(−1)p(i)
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s)

+ℏ(−1)p(i)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1)

−ℏ(−1)p(i+1)
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s)

−ℏ(−1)p(i+1)
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1) if i ̸= 0.

The outline of the proof is the same as that of [16]. It is enough to check

that ev is compatible with (3.17)–(3.25), which are the defining relations of the

minimalistic presentation of the affine super Yangian. When we restrict ev to

ŝl(m|n), ev is an identity map on ŝl(m|n). Thus, ev is compatible with (3.18),

(3.20), (3.23)–(3.25).

We set an anti-automorphism ω : U(ĝl(m|n))→ U(ĝl(m|n)) as

ω(X ⊗ tr) = (−1)rXT ⊗ tr, ω(c) = c,

where XT is the transpose of a matrix X. Then the compatibility of ev with (3.21)

and (3.22) for − is deduced from that for + by applying the anti-automorphism ω
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since we have ω(ev(hi,1)) = ev(hi,1) and ω(ev(x+
i,1)) = (−1)p(i) ev(x−

i,1). Therefore,

it is enough to check the following lemma.

Lemma 5.6. The following equations hold:

[ev(x+
i,1), ev(x

−
j,0)] = δi,j ev(hi,1),(5.7)

[ev(h̃i,1), x
+
j ] = ai,j

(
ev(x+

j,1)− bi,j
ε1 − ε2

2
x+
j

)
,(5.8)

[ev(x+
i,1), x

+
j ]− [x+

i , ev(x
+
j,1)] = ai,j

ε1 + ε2
2
{x+

i , x
+
j } − bi,j

ε1 − ε2
2

[x+
i , x

+
j ],(5.9)

[ev(hi,1), ev(hj,1)] = 0.(5.10)

The rest of the paper is devoted to the proof of Lemma 5.6.

§5.1. The proof of (5.7)

We prepare one claim before starting the proof.

Claim 5.11. The following relations hold:[∑
s≥p

a∑
k=1

(−1)p(k)Ei,k(−s)Ek,j(s), Ex,y

]

= δj,x
∑
s≥p

a∑
k=1

(−1)p(k)Ei,k(−s)Ek,y(s)

− (−1)p(Ei,j)p(Ex,y)
∑
s≥p

a∑
k=1

(−1)p(k)Ex,k(−s)Ek,j(s)

+ {δ(x ≤ a < y)− δ(x > a ≥ y)}

×
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s),(5.12)

[∑
s≥p

m+n∑
k=a

(−1)p(k)Ei,k(−s)Ek,j(s), Ex,y

]

= δj,x
∑
s≥p

m+n∑
k=a

(−1)p(k)Ei,k(−s)Ek,y(s)

− (−1)p(Ei,j)p(Ex,y)
∑
s≥p

m+n∑
k=a

(−1)p(k)Ex,k(−s)Ek,j(s)

+ {δ(x ≥ a > y)− δ(x < a ≤ y)}

×
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s).(5.13)
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Proof. We prove only (5.12) since (5.13) is proven in a similar way. By direct

computation, the first term of (5.12) is equal to

δj,x
∑
s≥p

a∑
k=1

(−1)p(k)Ei,k(−s)Ek,y(s)

− δ(y ≤ a)
∑
s≥p

(−1)p(y)+p(Ey,j)p(Ex,y)Ei,y(−s)Ex,j(s)

+ δ(x ≤ a)
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s)

− (−1)p(Ei,j)p(Ex,y)
∑
s≥p

a∑
k=1

(−1)p(k)Ex,k(−s)Ek,j(s).(5.14)

Since p(y) + p(Ey,j)p(Ex,y) = p(x) + p(Ex,j)p(Ex,y), the sum of the second and

third terms of (5.14) is equal to

{δ(x ≤ a < y)− δ(x > a ≥ y)}
∑
s≥p

(−1)p(x)+p(Ex,j)p(Ex,y)Ei,y(−s)Ex,j(s).

Then we obtain (5.13).

Suppose that i, j ̸= 0. Other cases are proven in a similar way. By the defini-

tion of ev(x+
i,1), we obtain

[ev(x+
i,1), ev(x

−
j,0)]

=
[(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i , (−1)

p(j)
Ej+1,j

]
+

[
ℏ
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), (−1)p(j)Ej+1,j

]

+

[
ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), (−1)p(j)Ej+1,j

]
.(5.15)

By (5.12), [ℏ
∑

s≥0

∑i
k=1 (−1)

p(k)
Ei,k(−s)Ek,i+1(s), (−1)p(j)Ej+1,j ], the second

term on the right-hand side of (5.15) is equal to[
ℏ
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), (−1)p(j)Ej+1,j

]

= δi,jℏ
∑
s≥0

i∑
k=1

(−1)p(i)+p(k)
Ei,k(−s)Ek,i(s)
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− δi,jℏ
∑
s≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,i+1)Ei+1,k(−s)Ek,i+1(s)

− δi,jℏ
∑
s≥0

(−1)p(Ei,i+1)p(Ei,i+1)Ei,i(−s)Ei+1,i+1(s).(5.16)

Similarly, by (5.13), [ℏ
∑

s≥0

∑m+n
k=i+1 (−1)

p(k)
Ei,k(−s−1)Ek,i+1(s+1), (−1)p(j)×

Ej+1,j ], the third term on the right-hand side of (5.15) is equal to

[
ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), (−1)p(j)Ej+1,j

]

= ℏ
∑
s≥0

m+n∑
k=i+1

δi,j(−1)p(k)+p(i)
Ei,k(−s− 1)Ek,i(s+ 1)

− ℏ
∑
s≥0

m+n∑
k=i+1

δi,j(−1)p(k)+p(i)+p(Ei,i+1)Ei+1,k(−s− 1)Ek,i+1(s+ 1)

+ ℏ
∑
s≥0

δi,j(−1)p(i+1)+p(i)
Ei,i(−s− 1)Ei+1,i+1(s+ 1).(5.17)

We can rewrite the sum of the last term of (5.16) and the last term of (5.17).

Since p(Ei,i+1) = p(i) + p(i+ 1) holds, we obtain

− ℏ
∑
s≥0

(−1)p(Ei,i+1)p(Ei,i+1)Ei,i(−s)Ei+1,i+1(s)

+ ℏ
∑
s≥0

(−1)p(i+1)+p(i)+p(Ei+1,i+1)p(Ei,i+1)Ei,i(−s− 1)Ei+1,i+1(s+ 1)

= −ℏ
∑
s≥0

(−1)p(Ei,i+1)Ei,i(−s)Ei+1,i+1(s)

+ ℏ
∑
s≥0

(−1)p(Ei,i+1)Ei,i(−s− 1)Ei+1,i+1(s+ 1)

= −ℏ(−1)p(Ei,i+1)Ei,iEi+1,i+1.(5.18)

Thus, we have shown that [ev(x+
i,1), ev(x

−
j,0)] = δi,j ev(hi,1) holds by (5.16), (5.17)

and (5.18).

§5.2. The proof of (5.8)

We only show the case where i, j ̸= 0 and when i = 0 and j ̸= 0. The other case

is proven in a similar way.
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Case 1, i, j ̸= 0. First, we show the case where i, j ̸= 0. By the definition

of ev(hi,1), we obtain

[ev(h̃i,1), ev(x
+
j,0)]

=
[
(α− (i− 2δ(i ≥ m+ 1)(i−m))ε1)hi

− 1

2
ℏ((Ei,i)

2 + (Ei+1,i+1)
2), Ej,j+1

]
+

[
ℏ(−1)p(i)

∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s), Ej,j+1

]

+

[
ℏ(−1)p(i)

∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1), Ej,j+1

]

−
[
ℏ(−1)p(i+1)

∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s), Ej,j+1

]

−
[
ℏ(−1)p(i+1)

∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s−1)Ek,i+1(s+1), Ej,j+1

]
.(5.19)

Let us compute these terms respectively. By direct computation, the first term on

the right-hand side of (5.19) is equal to[(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
hi

− 1

2
ℏ((Ei,i)

2 + (Ei+1,i+1)
2), Ej,j+1

]
=
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
ai,jx

+
j

− ℏ
2

(
δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})

− δi,j+1{Ei−1,i, Ei,i}+ δi+1,j{Ei+1,i+2, Ei+1,i+1}
)
.(5.20)

By (5.12) and (5.13), we also find that the sum of the second and third terms on

the right-hand side of (5.19) is equal to[
ℏ(−1)p(i)

∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s), Ej,j+1

]

+

[
ℏ(−1)p(i)

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1), Ej,j+1

]



Construction of the Affine Super Yangian 463

= ℏ(−1)p(i)
∑
s≥0

i∑
k=1

δi,j(−1)p(k)Ei,k(−s)Ek,i+1(s)

− ℏ(−1)p(i)
∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)Ej,k(−s)Ek,i(s)

+ ℏ(−1)p(i)
∑
s≥0

δi,j(−1)p(i)Ei,i+1(−s)Ei,i(s)

+ ℏ(−1)p(i)
∑
s≥0

m+n∑
k=i+1

δi,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ℏ(−1)p(i)
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)Ej,k(−s− 1)Ek,i(s+ 1)

− ℏ(−1)p(i)
∑
s≥0

δi,j(−1)p(i+1)+p(Ei,i+1)p(Ei+1,i)

× Ei,i+1(−s− 1)Ei,i(s+ 1).(5.21)

By a direct computation, we obtain

(5.22) the sum of the third and sixth terms of (5.21) = ℏδi,jEi,i+1Ei,i.

Next, let us rewrite the sum of the first and fourth terms of (5.21). By the definition

of ev(x+
i,1), we obtain

the first term of (5.21) + the fourth term of (5.21)

= δi,j
(
ev(x+

i,1)−
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

)
.(5.23)

By the definition of ev(x+
i,1), we also obtain

the second term of (5.21) + the fifth term of (5.21)

= −δi,j+1ℏ(−1)p(i)
∑
s≥0

j∑
k=1

(−1)p(k)Ej,k(−s)Ek,i(s)

− δi,j+1ℏ(−1)p(i)
∑
s≥0

m+n∑
k=j+1

(−1)p(k)Ej,k(−s− 1)Ek,i(s+ 1)

− ℏδi,j+1Ej,iEi,i

= −δi,j+1(−1)p(i)
(
ev(x+

j,1)−
(
α− (j − 2δ(i ≥ m+ 1)(j −m))ε1

)
x+
j

)
− ℏδi,j+1Ej,iEi,i.(5.24)
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Therefore, by (5.22), (5.23) and (5.24), the sum of first, second and third terms

on the right-hand side of (5.19) is equal to(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
ai,jx

+
j

− ℏ
2

(
δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})− δi,j+1{Ei−1,i, Ei,i}

+ δi+1,j{Ei+1,i+2, Ei+1,i+1}
)

+ ℏδi,jEi,i+1Ei,i

+ (−1)p(i)δi,j
(
ev(x+

i,1)−
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

)
− (−1)p(i)δi,j+1

(
ev(x+

j,1)−
(
α− (j − 2δ(i ≥ m+ 1)(j −m))ε1

)
x+
j

)
.(5.25)

Similarly to (5.25), we find that the sum of the fourth and fifth terms on the

right-hand side of (5.19) is equal to

− ℏδj,iEi+1,i+1Ei,i+1

− (−1)p(i+1)
δi+1,j

(
ev(x+

j,1)−
(
α− (i− 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

)
+ δi+1,jℏEi+1,i+1Ei+1,j+1

+ δi,j(−1)p(i+1)(
ev(x+

i,1)−
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

)
.(5.26)

Then [ev(h̃i,1), ev(x
+
j,0)] is equal to the sum of (5.20), (5.25) and (5.26):(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
ai,jx

+
j

− ℏ
2

(
δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})

− δi,j+1{Ei−1,i, Ei,i}+ δi+1,j{Ei+1,i+2, Ei+1,i+1}
)

+
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
ai,jx

+
j

− ℏ
2

(
δi,j({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})− δi,j+1{Ei−1,i, Ei,i}

+ δi+1,j{Ei+1,i+2, Ei+1,i+1}
)

+ ℏδi,jEi,i+1Ei,i

+ (−1)p(i)δi,j
(
ev(x+

i,1)−
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

)
− (−1)p(i)δi,j+1

(
ev(x+

j,1)−
(
α− (j − 2δ(i ≥ m+ 1)(j −m))ε1

)
x+
j

)
− ℏδj,iEi+1,i+1Ei,i+1

− (−1)p(i+1)
δi+1,j

(
ev(x+

j,1)−
(
α− (i− 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

)
+ δi+1,jℏEi+1,i+1Ei+1,j+1

+ δi,j(−1)p(i+1)(
ev(x+

i,1)−
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

)
.
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By (5.20), (5.25) and (5.26), when i ̸= j, j± 1, [ev(h̃i,1), ev(x
+
j,0)] is zero. Provided

that i = j, [ev(h̃i,1), ev(x
+
i,0)] is equal to(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
ai,ix

+
i

− ℏ
2
({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1})

+ ℏEi,i+1Ei,i

+ (−1)p(i)
(
ev(x+

i,1)−
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

)
− ℏEi+1,i+1Ei,i+1

+ (−1)p(i+1)(
ev(x+

i,1)−
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

)
.(5.27)

Since ai,i = (−1)p(i) + (−1)p(i+1)
holds, we have(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
ai,ix

+
i

− (−1)p(i)
(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i

− (−1)p(i+1)(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i = 0

and

− ℏ
2
({Ei,i+1, Ei,i} − {Ei,i+1, Ei+1,i+1}) + ℏEi,i+1Ei,i − ℏEi+1,i+1Ei,i+1

= −ℏ
2
(Ei,iEi,i+1 − Ei,i+1Ei,i + Ei+1,i+1Ei,i+1 − Ei,i+1Ei+1,i+1)

= −ℏ
2
(Ei,i+1 − Ei,i+1) = 0.

Then we find that [ev(h̃i,1), ev(x
+
i,0)] is equal to ai,i ev(x

+
i,1).

When i = j + 1, [ev(h̃i,1), ev(x
+
j,0)] is equal to(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
ai,jx

+
j +

ℏ
2
{Ei−1,i, Ei,i}

− (−1)p(i)
(
ev(x+

j,1)−
(
α− (j − 2δ(i ≥ m+ 1)(j −m))ε1

)
x+
j

)
− ℏEj,iEi,i.

Since ai,j = −(−1)p(i) holds, we have

ℏ
2
{Ei−1,i, Ei,i} − ℏEj,iEi,i =

ℏ
2
[Ei,i, Ei−1,i] = −

ℏ
2
Ei−1,i

and (
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
ai,jx

+
j

+ (−1)p(i)
(
α− (j − 2δ(i ≥ m+ 1)(j −m)ε1)x

+
j

)
= ε1x

+
j .

Then we find that [ev(h̃i,1), ev(x
+
j,0)] is equal to ai,i−1(ev(x

+
i−1)+ai,i−1

ε1−ε2
2 Ei−1,i).
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When i = j − 1, [ev(h̃i,1), ev(x
+
j,0)] is equal to(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
ai,jx

+
j −

ℏ
2
({Ei+1,i+2, Ei+1,i+1})

− (−1)p(i+1)(
ev(x+

j,1)−
(
α− (i− 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

)
+ ℏEi+1,i+1Ei+1,j+1.

Since ai,j = −(−1)p(j) holds, we have

−ℏ
2
{Ei+1,i+2, Ei+1,i+1}+ ℏEi+1,i+1Ei+1,j+1 =

ℏ
2
[Ei+1,i+1, Ei+1,i+2] =

ℏ
2
Ei+1,i+2

and (
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
ai,jx

+
j

+ (−1)p(i+1)(
α− (i− 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j = −ε1Ei+1,i+2.

Then [ev(h̃i,1), ev(x
+
i+1,0)] is equal to ai,i+1(ev(x

+
i+1,1)− ai,i+1

ε1−ε2
2 Ei+1,i+2).

Case 2, i = 0 and j ̸= 0. By the definition of ev, we obtain

[ev(h̃0,1), ev(x
+
j,0)]

=
[
(α− (m− n)ε1)h0 −

1

2
ℏ((Em+n,m+n)

2 + (E1,1 − c)2), Ej,j+1

]
−
[
ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,m+n(s), Ej,j+1

]

−
[
ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)E1,k(−s− 1)Ek,1(s+ 1), Ej,j+1

]
.(5.28)

By direct computation, the first term of (5.28) is equal to

(α− (m− n)ε1)a0,jx
+
j −

ℏ
2

(
−δm+n−1,j({Em+n,m+n, Em+n−1,m+n}

+ δ1,j{E1,2, (E1,1 − c)})
)
.(5.29)

We also find that the second term of (5.28) is equal to

ℏ
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,m+n)Em+n,j+1(−s)Ej,m+n(s)

− ℏ
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,m+n)Em+n,j+1(−s)Ej,m+n(s)

+ ℏ
∑
s≥0

m+n∑
k=1

δm+n,j+1(−1)p(k)Em+n−1,k(−s)Ek,m+n(s).(5.30)
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By direct computation, we also know that the third term of (5.28) is equal to

− ℏ
∑
s≥0

m+n∑
k=1

δ1,j(−1)p(k)E1,k(−s− 1)Ek,2(s+ 1)

+ ℏ
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,1)E1,j+1(−s− 1)Ej,1(s+ 1)

− ℏ
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,1)E1,j+1(−s− 1)Ej,1(s+ 1).(5.31)

First, we show that the sum of the first and second terms of (5.30) is equal to

zero. By direct computation, we have

the first term of (5.30) + the second term of (5.30)

= ℏ
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,m+n)Em+n,j+1(−s)Ej,m+n(s)

− ℏ
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,m+n)Em+n,j+1(−s)Ej,m+n(s) = 0.(5.32)

Similarly, by direct computation, we also obtain

the second term of (5.31) + the third term of (5.31)

= ℏ
∑
s≥0

(−1)p(j+1)+p(Ej,j+1)p(Ej+1,1)E1,j+1(−s− 1)Ej,1(s+ 1)

− ℏ
∑
s≥0

(−1)p(j)+p(Ej,j+1)p(Ej,1)E1,j+1(−s− 1)Ej,1(s+ 1) = 0.(5.33)

Next we rewrite the third term of (5.30). By direct computation, we have

the third term of (5.30)

= ℏ
∑
s≥0

m+n−1∑
k=1

δm+n,j+1(−1)p(k)Em+n−1,k(−s)Ek,m+n(s)

+ ℏ
∑
s≥0

δm+n,j+1(−1)p(m+n)
Em+n−1,m+n(−s− 1)Em+n,m+n(s+ 1)

+ ℏδm+n,j+1(−1)p(m+n)
Em+n−1,m+nEm+n,m+n

= δm+n,j+1

(
ev(x+

m+n−1,1)− (α− (m− n+ 1)ε1)x
+
m+n−1

)
+ ℏδm+n,j+1(−1)p(m+n)

Em+n−1,m+nEm+n,m+n.(5.34)
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Similarly, we rewrite the first term of (5.31) as

the first term of (5.31) = −ℏ
∑
s≥0

δ1,jE1,1(−s)E1,2(s)

− ℏ
∑
s≥0

m+n∑
k=2

δ1,j(−1)p(k)E1,k(−s− 1)Ek,2(s+ 1)

+ ℏ
∑
s≥0

δ1,jE1,1E1,2

= −δj,1(ev(x+
1,1)− (α− ε1)x

+
1 ) + ℏδj,1E1,1E1,2.(5.35)

Then, by (5.28), (5.32), (5.33), (5.34) and (5.35), we can rewrite [ev(h̃0,1), x
+
j,0] as

(α− (m− n)ε1)a0,jx
+
j

− ℏ
2

(
−δm+n,j+1{Em+n,m+n, Ej,m+n}+ δ1,j{E1,j+1, (E1,1 − c)}

)
+ δm+n,j+1

(
ev(x+

m+n−1,1)− (α− (m− n− 1)ε1)x
+
m+n−1

)
+ ℏδm+n,j+1(−1)p(m+n)

Em+n−1,m+nEm+n,m+n

− δj,1
(
ev(x+

1,1 − (α− ε1)x
+
1 )
)
+ ℏδj,1E1,1E1,2.(5.36)

By (5.36), when j ̸= 0, 1,m + n − 1, [ev(h̃0,1), ev(x
+
j,0)] is equal to zero. When

j = m+ n− 1, [ev(h̃0,1), ev(x
+
j,0)] is equal to

(α− (m− n)ε1)x
+
m+n−1 +

ℏ
2
{Em+n,m+n, Ej,m+n}

+ ev(x+
m+n−1,1)− (α− (m− n+ 1)ε1)x

+
m+n−1

+ ℏ(−1)p(m+n)
Em+n−1,m+nEm+n,m+n.

Since

ℏ
2
{Em+n,m+n, Em+n−1,m+n}+ ℏ(−1)p(m+n)

Em+n−1,m+nEm+n,m+n

=
ℏ
2
[Em+n,m+n, Em+n−1,m+n]−

ℏ
2
Em+n−1,m+n

holds, [ev(h̃0,1), ev(x
+
m+n−1,0)] is equal to

am+n−1,0

(
ev(x+

m+n−1,1) + am+n−1,0
ε1 − ε2

2
Em+n−1,m+n

)
.

By (5.36), when j = 1, [ev(h̃0,1), ev(x
+
1,0)] can be written as

−(α− (m− n)ε1)x
+
1 −

ℏ
2
{E1,j+1, (E1,1 − c)} − ev(x+

1,1)− (α− ε1)x
+
1 + ℏE1,1E1,2.
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Since

ℏE1,1E1,2 −
ℏ
2
{E1,2, (E1,1 − c)} = ℏ

2
[E1,1, E1,2] + ℏcE1,2 =

(ℏ
2
+ ℏc

)
E1,2

holds, [ev(h̃0,1), x
+
1,0] = a0,1(ev(x

+
1,1) − a0,1

ε1−ε2
2 ev(x+

1,0)) is equivalent to the re-

lation cℏ = (m− n)ε1. It is nothing but assumption. This completes the proof of

the case j ̸= 0 and i = 0.

Other cases are proven in the same way. Thus, we show that

[ev(h̃i,1), ev(x
+
j,0)] = ai,j

(
ev(x+

j,1)− bi,j
ε1 − ε2

2
ev(x+

j,0)
)

holds.

§5.3. The proof of (5.9)

We only show the cases where i, j ̸= 0 and i = 0, j ̸= 0. The other case is proven

in a similar way.

Case 1, i, j ̸= 0. Suppose that i, j ̸= 0. First, we compute [ev(x+
i,1), ev(x

+
j,0)].

By the definition of ev(x+
i,1), we have

[ev(x+
i,1), ev(x

+
j,0)] =

[(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i , Ej,j+1

]
+

[
ℏ
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), Ej,j+1

]

+

[
ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), Ej,j+1

]
.(5.37)

By direct computation, the second term of (5.37) is equal to

[
ℏ
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), Ej,j+1

]

= ℏ
∑
s≥0

i∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ℏ
∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

+ ℏ
∑
s≥0

δj,i(−1)p(i)+p(Ei,i+1)p(Ei,i+1)Ei,i+1(−s)Ei,i+1(s).(5.38)
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We also find that the third term of (5.37) is equal to[
ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), Ej,j+1

]

= ℏ
∑
s≥0

m+n∑
k=i+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ℏ
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s−1)Ek,i+1(s+1)

− ℏ
∑
s≥0

δi,j(−1)p(i+1)+p(Ei+1,i)p(Ei,i+1)Ei,i+1(−s− 1)Ei,i+1(s+ 1).(5.39)

Thus, we can rewrite [ev(x+
i,1), ev(x

+
j,0)] as[(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
x+
i , Ej,j+1V r

]
+ ℏ

∑
s≥0

i∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ℏ
∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)+(p(Ei+1,k)+p(Ek,i))p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

+ ℏ
∑
s≥0

m+n∑
k=i+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ℏ
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)+(p(Ei+1,k)+p(Ek,i))p(Ej,j+1)Ej,k(−s− 1)

× Ek,i+1(s+ 1)

+ ℏ
∑
s≥0

δj,i(−1)p(i)+p(Ei,i+1)p(Ej,i+1)Ei,i+1(−s)Ei,i+1(s)

− ℏ
∑
s≥0

δi,j(−1)p(i+1)+p(Ei+1,i)p(Ei,i+1)Ei,i+1(−s− 1)Ei,i+1(s+ 1).(5.40)

Next, let us compute [ev(x+
i,0), ev(x

+
j,1)]. Since it is equal to

−(−1)p(Ei,i+1)p(Ej,j+1)[ev(x+
j,1), ev(x

+
i,0)],

we can rewrite [ev(x+
i,0), ev(x

+
j,1)] as[

Ei,i+1,
(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
− ℏ

∑
s≥0

j∑
k=1

δi,j+1(−1)p(k)+p(Ei,i+1)(p(Ej,k)+p(Ek,j+1))Ej,k(−s)Ek,i+1(s)
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+ ℏ
∑
s≥0

j∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ℏ
∑
s≥0

m+n∑
k=j+1

δi,j+1(−1)p(k)+p(Ei,i+1)(p(Ej,k)+p(Ek,j+1))Ej,k(−s− 1)

× Ek,i+1(s+ 1)

+ ℏ
∑
s≥0

m+n∑
k=j+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ℏ
∑
s≥0

δi,j(−1)p(i)Ei,i+1(−s)Ei,i+1(s)

+ ℏ
∑
s≥0

δi,j(−1)p(i+1)
Ei,i+1(−s− 1)Ei,i+1(s+ 1).(5.41)

By (5.40) and (5.41), when i ̸= j, j ± 1, [ev(x+
i,1), ev(x

+
j,0)] − [ev(x+

i,0), ev(x
+
j,1)] is

equal to zero.

When i = j, [ev(x+
i,1), ev(x

+
j,0)]− [ev(x+

i,0), ev(x
+
j,1)] is equal to[(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
x+
i , Ej,j+1

]
−
[
Ei,i+1,

(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
+ ℏ

∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei,i+1(s)

− ℏ
∑
s≥0

(−1)p(i)Ei,i+1(−s− 1)Ei,i+1(s+ 1)

+ ℏ
∑
s≥0

(−1)p(i)Ei,i+1(−s)Ei,i+1(s)

− ℏ
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei,i+1(s+ 1).(5.42)

Since [x+
i , x

+
i ] = 0 holds, the first and second terms are zero. We also obtain

the third term of (5.42) + the fourth term of (5.42) = ℏ(−1)p(i)Ei,i+1Ei,i+1

and

the fifth term of (5.42) + the sixth term of (5.42) = ℏ(−1)p(i+1)
Ei,i+1Ei,i+1

by direct computation. Thus, [ev(x+
i,1), ev(x

+
j,0)] − [ev(x+

i,0), ev(x
+
j,1)] is equal to

ℏai,iEi,i+1Ei,i+1 since ai,i = (−1)p(i) + (−1)p(i+1)
holds.
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When i = j − 1, [ev(x+
i,1), ev(x

+
j,0)]− [ev(x+

i,0), ev(x
+
j,1)] is equal to[(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
x+
i , Ej,j+1

]
−
[
Ei,i+1,

(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
+ ℏ

∑
s≥0

i∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

+ ℏ
∑
s≥0

m+n∑
k=i+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1)

− ℏ
∑
s≥0

j∑
k=1

δi+1,j(−1)p(k)Ei,k(−s)Ek,j+1(s)

− ℏ
∑
s≥0

m+n∑
k=j+1

δi+1,j(−1)p(k)Ei,k(−s− 1)Ek,j+1(s+ 1).(5.43)

By direct computation, we obtain

the third term of (5.43) + the fifth term of (5.43)

= −ℏ
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei+1,i+2(s)

and

the fourth term of (5.42) + the sixth term of (5.42)

= ℏ
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei+1,i+2(s+ 1).

Then [ev(x+
i,1), ev(x

+
j,0)]− [ev(x+

i,0), ev(x
+
j,1)] is equal to[(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
x+
i , Ej,j+1

]
−
[
Ei,i+1,

(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
− ℏ

∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei+1,i+2(s)

+ ℏ
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei+1,i+2(s+ 1).

Since ai,i+1 = −(−1)p(i+1)
holds, we have

− ℏ
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s)Ei+1,i+2(s)

+ ℏ
∑
s≥0

(−1)p(i+1)
Ei,i+1(−s− 1)Ei+1,i+2(s+ 1)
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= −(−1)p(i+1)ℏEi,i+1Ei+1,i+2

= ai,i+1
ℏ
2
{Ei,i+1, Ei+1,i+2}+ ai,i+1

ℏ
2
[Ei,i+1, Ei+1,i+2]

and [(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i , Ej,j+1

]
−
[
Ei,i+1,

(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
= (−1)p(i+1)

ε1[Ei,i+1, Ei+1,i+2]

= −ai,i+1ε1[Ei,i+1, Ei+1,i+2].

Then [ev(x+
i,1), ev(x

+
j,0)]− [ev(x+

i,0), ev(x
+
j,1)] is equal to

ai,i+1
ℏ
2
{Ei,i+1, Ei+1,i+2} − ai,i+1

ε1 − ε2
2

[Ei,i+1, Ei+1,i+2].

When i = j + 1, [ev(x+
i,1), ev(x

+
j,0)]− [ev(x+

i,0), ev(x
+
j,1)] is equal to[(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
x+
i , Ej,j+1

]
−
[
Ei,i+1,

(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
− ℏ

∑
s≥0

i∑
k=1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

− ℏ
∑
s≥0

m+n∑
k=i+1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s− 1)Ek,i+1(s+ 1)

+ ℏ
∑
s≥0

j∑
k=1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s)Ek,i+1(s)

+ ℏ
∑
s≥0

m+n∑
k=j+1

δi,j+1(−1)p(k)+p(Ei+1,i)p(Ej,j+1)Ej,k(−s− 1)Ek,i+1(s+ 1).(5.44)

By direct computation, we find that

the third term of (5.44) + the fifth term of (5.44)

= −ℏ
∑
s≥0

(−1)p(i)Ei−1,i(−s)Ei,i+1(s)

and

the fourth term of (5.44) + the sixth term of (5.44)

= ℏ
∑
s≥0

(−1)p(i)Ei−1,i(−s− 1)Ei,i+1(s+ 1)
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hold. Since ai,i−1 = −(−1)p(i) holds, we have

− ℏ
∑
s≥0

(−1)p(i)Ei−1,i(−s)Ei,i+1(s) + ℏ
∑
s≥0

(−1)p(i)Ei−1,i(−s− 1)Ei,i+1(s+ 1)

= −ℏ(−1)p(i)Ei−1,iEi,i+1

=
ℏ
2
ai−1,i{Ei,i+1, Ei−1,i} −

ℏ
2
ai−1,i[Ei,i+1, Ei−1,i]

and [(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i , Ej,j+1

]
−
[
Ei,i+1,

(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
= −(−1)p(i)ε1[Ei,i+1, Ei−1,i]

= ai,i−1ε1[Ei,i+1, Ei−1,i]

holds, [ev(x+
i,1), ev(x

+
j,0)]− [ev(x+

i,0), ev(x
+
j,1)] is equal to[(

α− (i− 2δ(i ≥ m+ 1)(i−m))ε1
)
x+
i , Ej,j+1

]
−
[
Ei,i+1,

(
α− (j − 2δ(j ≥ m+ 1)(j −m))ε1

)
x+
j

]
− ℏ(−1)p(i){Ei−1,i, Ei,i+1}+ (−1)p(i) ℏ

2
Ei−1,i+1.

Therefore, it is equal to −ai,i−1
ℏ
2{Ei−1,i, Ei,i+1}+ ai,i−1

ε1−ε2
2 Ei−1,i+1.

Case 2, i ̸= 0 and j = 0. Suppose that i ̸= 0. First, we compute

[ev(x+
i,1), ev(x

+
0,0)]. By the definition of ev, we obtain

[ev(x+
i,1), ev(x

+
0,0)] =

[(
α− (i− 2δ(i ≥ m+ 1)(i−m))ε1

)
x+
i , Em+n,1(1)

]
+

[
ℏ
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i+1(s), Em+n,1(1)

]

+

[
ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i+1(s+ 1), Em+n,1(1)

]
.(5.45)

By direct computation, the second term of (5.45) is equal to

ℏ
∑
s≥0

m+n−1∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

− ℏ
∑
s≥0

(−1)p(Em+n,1)p(E1,i)+p(1)
Ei,1(−s)Em+n,i(s+ 1)

− ℏ
∑
s≥0

δ1,iEm+n,1(1− s)E1,2(s)(5.46)
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and the third term of (5.45) is equal to

ℏ
∑
s≥0

m+n∑
k=i+1

(−1)p(m+n)
Em+n−1,m+n(−s− 1)Em+n,1(s+ 2)

+ ℏ
∑
s≥0

(−1)p(Em+n,1)p(Em+n,i)+p(m+n)
Ei,1(−s)Em+n,i(s+ 1)

− ℏ
∑
s≥0

m+n∑
k=2

δ1,i(−1)p(k)Em+n,k(−s)Ek,1(s+ 1) + δi,1cEm+n,2(1).(5.47)

Next we rewrite the sum of the second term of (5.46) and the second term of

(5.47):

the second term of (5.46) + the second term of (5.47) = 0.

Therefore, [ev(x+
i,1), ev(x

+
0,0)] is equal to[

(α− iε1)x
+
i , Em+n,1(1)

]
+ ℏ

∑
s≥0

m+n−1∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

− ℏ
∑
s≥0

δ1,iEm+n,1(1− s)E1,2(s)

+ ℏ
∑
s≥0

δm+n,i+1(−1)p(m+n)
Em+n−1,m+n(−s− 1)Em+n,1(s+ 2)

− ℏ
∑
s≥0

m+n∑
k=2

δ1,i(−1)p(k)Em+n,k(−s)Ek,1(s+ 1) + δi,1cEm+n,2(1).(5.48)

Next, let us compute [ev(x+
i,0), ev(x

+
0,1)]. By direct computation, we have

[ev(x+
i,0), ev(x

+
0,1)]

= [Ei,i+1, (α− (m− n)ε1)x
+
0 ]

+

[
Ei,i+1, ℏ

∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,1(s+ 1)

]
.(5.49)

By direct computation, the second term of (5.49) is equal to

ℏ
∑
s≥0

m+n∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

− ℏ
∑
s≥0

(−1)p(i)+p(Ei,i+1)p(Em+n,i)Em+n,i+1(−s)Ei,1(s+ 1)
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+ ℏ
∑
s≥0

(−1)p(i+1)+p(Ei,i+1)p(Em+n,i+1)Em+n,i+1(−s)Ei,1(s+ 1)

− ℏ
∑
s≥0

m+n∑
k=1

δ1,i(−1)p(k)+p(E1,2)p(Em+n,1)Em+n,k(−s)Ek,i+1(s+ 1).(5.50)

The sum of the second term of (5.50) and the third term of (5.50) is equal to zero.

Thus, [ev(x+
i,0), ev(x

+
0,1)] is equal to

[Ei,i+1, (α− (m− n)ε1)x
+
0 ]

+ ℏ
∑
s≥0

m+n∑
k=1

δm+n,i+1(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

− ℏ
∑
s≥0

m+n∑
k=1

δ1,i(−1)p(k)+p(E1,2)p(Em+n,1)Em+n,k(−s)Ek,2(s+ 1).(5.51)

Therefore, when i ̸= 0, 1,m+ n− 1, [ev(x+
i,1), ev(x

+
0,0)]− [ev(x+

i,0), ev(x
+
0,1)] is

zero. When i = 1, [ev(x+
1,1), ev(x

+
0,0)]− [ev(x+

1,0), ev(x
+
0,1)] is equal to

[(α− ε1)x
+
1 , Em+n,1(1)]− [E1,2, (α− (m− n)ε1)x

+
0 ]

− ℏ
∑
s≥0

Em+n,1(1− s)E1,2(s)

− ℏ
∑
s≥0

m+n∑
k=2

(−1)p(k)Em+n,k(−s)Ek,2(s+ 1)

+ cEm+n,2(1) + ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n,k(−s)Ek,2(s+ 1).(5.52)

By direct computation, we obtain

the third term of (5.52) + the fourth term of (5.52) + the sixth term of (5.52)

= −ℏEm+n,1(1)E1,2(0)

= −ℏ
2
{E1,2(0), Em+n,1(1)}+

ℏ
2
[E1,2(0), Em+n,1(1)].

Moreover, by direct computation, we obtain

[(α− ε1)x
+
1 , Em+n,1(1)]− [E1,2, (α− (m− n)ε1)x

+
0 ]

= (m− n− 1)ε1[x
+
1 , Em+n,1(1)].

Therefore, [ev(x+
1,1), ev(x

+
0,0)]− [ev(x+

1,0), ev(x
+
0,1)] is equal to

−ℏ
2
{E1,2(0), Em+n,1(1)} −

ε1 − ε2
2

[x+
1 , Em+n,1(1)]

by the assumption ℏc = (m− n)ε1.
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When i = m + n − 1, [ev(x+
m+n−1,1), ev(x

+
0,0)] − [ev(x+

m+n−1,0), ev(x
+
0,1)] is

equal to

[(α− (m− n+ 1)ε1)x
+
m+n−1, Em+n,1(1)]− [Em+n−1,m+n, (α− (m− n)ε1)x

+
0 ]

+ ℏ
∑
s≥0

m+n−1∑
k=1

(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1)

+ ℏ
∑
s≥0

m+n∑
k=m+n

(−1)p(k)Em+n−1,k(−s− 1)Ek,1(s+ 2)

− ℏ
∑
s≥0

m+n∑
k=1

(−1)p(k)Em+n−1,k(−s)Ek,1(s+ 1).

By direct computation, we obtain

the third term of (5.52) + the fourth term of (5.52) + the fifth term of (5.52)

= ℏEm+n−1,m+n(0)Em+n,1(1)

=
ℏ
2
{Em+n−1,m+n(0), Em+n,1(1)}+

ℏ
2
[Em+n−1,m+n(0), Em+n,1(1)].

Moreover, by direct computation, we have

[(α− (m− n+ 1)ε1)x
+
i , Em+n,1(1)]− [Ei,i+1, (α− (m− n)ε1)x

+
0 ] = −ε1[x

+
i , x

+
0 ].

Then [ev(x+
m+n−1,1), ev(x

+
0,0)]− [ev(x+

m+n−1,0), ev(x
+
0,1)] is equal to

ℏ
2
{Em+n−1,m+n(0), Em+n,1(1)} −

ε1 − ε2
2

[x+
m+n−1, x

+
0 ].

This completes the proof of (5.9).

§5.4. The proof of (5.10)

Finally, we show [ev(hi,1), ev(hj,1)] = 0. Suppose that i, j ̸= 0. It is enough to

show the case where i < j. We set

Ai =
∑
s≥0

i∑
k=1

(−1)p(k)Ei,k(−s)Ek,i(s),

Bi =
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei,k(−s− 1)Ek,i(s+ 1),
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Ci =
∑
s≥0

i∑
k=1

(−1)p(k)Ei+1,k(−s)Ek,i+1(s),

Di =
∑
s≥0

m+n∑
k=i+1

(−1)p(k)Ei+1,k(−s− 1)Ek,i+1(s+ 1).

Then, by the definition of ev(hi,1), we have

[ev(hi,1), ev(hj,1)] = (−1)p(i)+p(j){[Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] + [Ai, Bj ]}

+ (−1)p(i)+p(j+1){[Ai, Cj ] + [Bi, Cj ] + [Bi, Dj ] + [Ai, Dj ]}

+ (−1)p(i+1)+p(j){[Ci, Aj ] + [Di, Bj ] + [Di, Aj ] + [Ci, Bj ]}

+ (−1)p(i+1)+p(j+1){[Ci, Cj ] + [Di, Cj ] + [Di, Dj ] + [Ci, Dj ]}.

By the definitions of Ai, Bi, Ci and Di, we obtain

[Ai, Bj ] = [Ai, Dj ] = 0.

Thus, it is enough to show the following lemma.

Lemma 5.53. The following relations hold:

[Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] = 0,

[Ai, Cj ] + [Bi, Cj ] + [Bi, Dj ] + [Ai, Dj ] = 0,

[Ci, Aj ] + [Di, Bj ] + [Di, Bj ] + [Ci, Bj ] = 0,

[Ci, Cj ] + [Di, Cj ] + [Di, Dj ] = 0.

Proof. We only show that [Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] = 0 holds. The other rela-

tions are obtained in the same way. By direct computation, we can rewrite [Ai, Aj ]

as

[Ai, Aj ] = −
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−t)Ei,j(−s+ t)Ek,i(s)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,k)Ei,k(−s)Ej,i(s− t)Ek,j(t)
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+
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t)

+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)).(5.54)

Since we find the two relations

the second term of (5.54)

=
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1),

the third term of (5.54)

=
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ek,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t),

we have

[Ai, Aj ] = −
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ek,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t)

+
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s)Ej,i(−t)Ek,j(s+ t)

+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)).(5.55)
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We simplify the right-hand side of (5.55). By direct computation, we obtain

the first term of (5.55) + the second term of (5.55)

= −
∑
s,t≥0

i∑
k=1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t)Ei,j(t)Ek,i(s)

+
∑
s,t≥0

i∑
k=1

(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t)Ei,j(t)Ek,i(s) = 0(5.56)

since p(k) + p(i) + p(Ei,k)p(Ej,i) = p(Ei,k)p(Ej,k). Similarly, we have

(5.57) the fourth term of (5.55) + the sixth term of (5.55) = 0.

By (5.56) and (5.57), we find the equality

[Ai, Aj ]

=
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(k)+p(l)+p(Ei,k)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

i∑
k=1

j∑
l=1

δk,l(−1)p(k)+p(l)+p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)El,j(t)

+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)).

Computing the parity, we obtain

[Ai, Aj ] =
∑
s,t≥0

i∑
k=1

(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)Ek,i(s+ t+ 1)

−
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s≥0

(sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)).(5.58)

Similarly, by direct computation, we have

[Bi, Bj ] =
∑
s,t≥0

m+n∑
l=j+1

(−1)p(j)+p(l)+p(Ej,l)p(Ej,i)Ei,l(−s− t− 2)Ej,i(s+ 1)

× El,j(t+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ej,k)p(Ek,i)Ei,k(−s− t− 2)Ej,i(s+ 1)

× Ek,j(t+ 1)
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−
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ej,k)p(Ek,i)Ei,k(−s− 1)Ej,i(−t)
× Ek,j(s+ t+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ek,i)p(Ek,j)Ej,l(−s− t− 1)Ei,j(t)

× Ek,i(s+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ek,i)p(Ek,j)Ej,k(−t− 1)Ei,j(−s− 1)

× Ek,i(s+ t+ 2)

−
∑
s,t≥0

m+n∑
l=j+1

(−1)p(j)+p(l)+p(Ej,i)p(El,j)Ej,l(−t− 1)Ei,j(−s− 1)

× El,i(s+ t+ 2).

(5.59)

We simplify the right-hand side of (5.59). By direct computation, we obtain

(5.60) the first term of (5.59) + the second term of (5.59) = 0

and

(5.61) the fifth term of (5.59) + the sixth term of (5.59) = 0.

By (5.60) and (5.61), we find the equality

[Bi, Bj ] = −
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ej,k)p(Ek,i)Ei,k(−s− 1)Ej,i(−t)
× Ek,j(s+ t+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

m+n∑
l=j+1

δk,l(−1)p(Ek,i)p(Ek,j)Ej,k(−s− t− 1)Ei,j(t)

× Ek,i(s+ 1)

= −
∑
s,t≥0

m+n∑
l=j+1

(−1)p(Ej,l)p(El,i)Ei,l(−s− 1)Ej,i(−t)El,j(s+ t+ 1)

+
∑
s,t≥0

m+n∑
l=j+1

(−1)p(El,i)p(El,j)Ej,l(−s− t− 1)Ei,j(t)El,i(s+ 1).(5.62)

By direct computation, we also obtain

[Bi, Aj ] =
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,j(t)Ej,i(s+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)

× Ek,i(s+ 1)
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+
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,l)Ej,l(−s− t− 1)Ei,j(t)

× Ek,i(s+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)

× Ek,i(s+ t+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− 1)Ej,i(−t)
× El,j(s+ t+ 1)

−
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,l)Ei,k(−s− t− 1)Ej,i(s+ 1)

× El,j(t)

+
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s− 1)Ej,i(−t)
× Ek,j(s+ t+ 1)

−
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,j(−s− 1)Ej,l(−t)El,i(s+ t+ 1).(5.63)

Let us simplify the right-hand side of (5.63). We prepare the following four relations

by direct computation:

the second term of (5.63) + the third term of (5.63)

= −
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)

× Ek,i(s+ 1)

+
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s− t− 1)Ei,j(t)

× Ek,i(s+ 1)

= −
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1),(5.64)

the first term of (5.63) + the sixth term of (5.63)

=
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,j(t)Ej,i(s+ 1)

−
∑
s,t≥0

j∑
l=1

m+n∑
k=i+1

δk,l(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)

× Ek,j(t)
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=
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)[El,j(t), Ej,i(s+ 1)]

=
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

+
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,i(s+ t+ 1)

−
∑
s,t≥0

Ei,i(−s− t− 1)Ej,j(s+ t+ 1),(5.65)

the fourth term of (5.63) + the eighth term of (5.63)

=
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ei,k)p(Ej,k)Ej,k(−s)Ei,j(−t− 1)

× Ek,i(s+ t+ 1)

−
∑
s,t≥0

j∑
l=1

(−1)p(k)+p(l)
Ei,j(−s− 1)Ej,l(−t)El,i(s+ t+ 1)

= −
∑
s,t≥0

i∑
l=1

(−1)p(Ei,l)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)El,i(s+ t+ 1)

−
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
[Ei,j(−s− 1), Ej,l(−t)]El,i(s+ t+ 1)

= −
∑
s,t≥0

i∑
l=1

(−1)p(Ei,l)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)El,i(s+ t+ 1)

−
∑
s,t≥0

j∑
l=1

(−1)p(j)+p(l)
Ei,l(−s− t− 1)El,i(s+ t+ 1)

+
∑
s,t≥0

Ej,j(−s− t− 1)Ei,i(s+ t+ 1),(5.66)

the fifth term of (5.63) + the seventh term of (5.63)

= −
∑
s,t≥0

m+n∑
k=i+1

j∑
l=1

δk,l(−1)p(Ek,i)p(Ej,k)Ei,k(−s− 1)Ej,i(−t)
× Ek,j(s+ t+ 1)
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+
∑
s,t≥0

m+n∑
k=i+1

(−1)p(k)+p(i)+p(Ek,i)p(Ei,j)Ei,k(−s− 1)Ej,i(−t)
× Ek,j(s+ t+ 1)

=
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1).(5.67)

Thus, by (5.64)–(5.67), we have

[Bi, Aj ] = −
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ei,k)p(Ej,i)Ej,k(−s− t− 1)Ei,j(t)Ek,i(s+ 1)

+
∑
s,t≥0

i∑
k=1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− t− 1)Ej,i(s+ 1)Ek,j(t)

−
∑
s,t≥0

i∑
l=1

(−1)p(Ei,l)p(Ej,l)Ej,l(−s)Ei,j(−t− 1)El,i(s+ t+ 1)

+
∑
s,t≥0

m+n∑
k=j+1

(−1)p(Ek,i)p(Ej,k)Ei,k(−s− 1)Ej,i(−t)Ek,j(s+ t+ 1)

−
∑
s≥0

(
sEi,i(−s)Ej,j(s)− sEj,j(−s)Ei,i(s)

)
.(5.68)

Adding (5.58), (5.62) and (5.68), we obtain [Ai, Aj ] + [Bi, Aj ] + [Bi, Bj ] = 0.

This completes the proof of Lemma 5.6.
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