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Formal Stationary Phase for the Mellin
Transform of a D-Module

by

Ricardo Garćıa López

Abstract

Given a holonomic C[z, z−1]⟨∂z⟩-module M, following Loeser and Sabbah (Comment.
Math. Helv. 66 (1991), 458–503), one can consider its Mellin transform, which is a differ-
ence system on the affine line over C. In this note we prove a stationary phase formula,
which shows that its formal behavior at infinity is determined by the local germs defined
by M at its singular points.

2020 Mathematics Subject Classification: 14F10, 32C38, 39A70.
Keywords: D-modules, difference modules, Mellin transform, stationary phase.

§1. Introduction

The Fourier transform for D-modules has been extensively studied. The most pre-

cise results available are in dimension one, that is, for holonomic modules over

C[x]⟨∂x⟩; see [24]. In the analogous situation for ℓ-adic sheaves, Laumon [16] de-

fined so-called local Fourier transformations, which are related to the global ℓ-adic

Fourier–Deligne transform via a stationary phase formula. These local transfor-

mations allowed him to give a product formula for local constants, a construction

of the Artin representation in equal characteristic and a simplification of Deligne’s

proof of the Weil conjecture.

Having Laumon’s work as a guideline, local Fourier transforms have been de-

fined in the D-module setting ([6, 12, 23, 3]), where they also satisfy a stationary

phase formula (see [12]), albeit only at the formal level. Beyond this, Stokes struc-

tures have to be considered and the study becomes much more complicated; see

[14, 7, 25, 8].
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Loeser and Sabbah [21] defined the Mellin transform of a D-module on an

algebraic torus (see also [17]), and they used it to prove a product formula for the

determinant of the Aomoto complex ([21, Thm. 2.3.1]).

Graham-Squire [13] defined local Mellin transforms for formal germs of mero-

morphic connections in one variable, and computed them explicitly. They might be

regarded as local analogues of the global Mellin transform of Loeser and Sabbah,

and in this note we prove that a stationary phase formula holds also in this case.

More precisely, if H denotes the category of holonomic C[[x]]⟨∂x⟩-modules,

H′ the category of formal connections and Diffc the category of difference C((θ))-
modules, then we define local Mellin transform functors

M(s,∞)(•) : H −→ Diffc, s ∈ C∖ {0},

M(⋆,∞)(•) : H′ −→ Diffc, ⋆ ∈ {0,∞}.

The definition we give is microlocal, in the spirit of [12], and it allows us to remove

the assumptions made in [13] about slopes and non-existence of horizontal sections

(but while in [13] the local Mellin transforms were equivalences of categories, here

they are not).

Let M be a holonomic C[z, z−1]⟨z∂z⟩-module with singular set S(M) ⊂ C ∖
{0}. For ⋆ ∈ C∪ {∞}, denote by M⋆ the local D-module germ defined by M at ⋆,

denote by M(M) the global Mellin transform of M. This is a difference module on

the affine line with coordinate η, and we can consider its germ at infinity M(M)∞,

which is a C((θ))-difference module, where θ = η−1. Our main result is the following

theorem:

Theorem. There is a functorial isomorphism of C((θ))-difference modules

M(M)∞
∼−→

⊕
⋆∈S(M)∪{0,∞}

M(⋆,∞)(M⋆).

That is, the local (formal) behavior at infinity of the global Mellin transform

of M is determined by the (formal) germs defined by M at zero, infinity and at its

singular points, and no global information is required.

Throughout this note, C will denote the field of complex numbers. If x is a

coordinate, we denote by Kx = C[[x]][x−1] = C((x)) the field of Laurent series with

complex coefficients on the variable x and we denote by C[x]⟨∂x⟩ the Weyl algebra

of differential operators with polynomial coefficients. Unless otherwise specified,

by a module over a non-commutative ring we mean a left module.
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§2. Differential and difference modules

We recall a few well-known notions and results from the local theory of D-modules

and difference modules; we refer to [24, 27, 26] for more details and proofs.

If R = C[x]⟨∂x⟩, R = C[[x]]⟨∂x⟩, R = C[x, x−1]⟨∂x⟩ or R = Kx⟨∂x⟩, an R-

module M is holonomic if there is a non-zero left ideal I ⊂ R such that M is

isomorphic to R/I as an R-module. Holonomic C[[x]]⟨∂x⟩-modules M such that

M = M [x−1] are finite-dimensional over Kx, and they will be called formal con-

nections (the equivalence of this definition with the usual one is shown for instance

in [27, Thm. 4.3.2]). For any holonomic M , the localization M [x−1] is a formal

connection.

Using the cyclic vector lemma, one attaches to a formal connection M its

Newton polygon (see for example [24, Chap. III]); the slopes of its non-vertical

sides are called the formal slopes of M . One has a functorial decomposition

M =
⊕
λ

Mλ,

where λ runs over the set of slopes of M and Mλ is a formal connection which has

only slope λ.

If M is a formal connection, we denote by irr(M) its irregularity, defined as

the height of the Newton polygon ofM ([24, Chap. IV, formula (4.5) on p. 68]), and

by µ(M) the dimension of its space of vanishing cycles ([24, §4]). By [24, Chap. IV,

Cor. 4.10], we have µ(M) = dim(M) + irr(M) (for the purposes of this note, this

equality can be taken as a definition of µ(M)). For a holonomic C[[x]]⟨∂x⟩-module

M , both irr(M) and µ(M) are defined as those of M [x−1].

Definition 1. Let θ be a coordinate, denote by ϕ : Kθ → Kθ the automorphism

given by ϕ(a(θ)) = a(θ/1 + θ). A difference module (V,Φ) is a finite-dimensional

Kθ-vector space V endowed with a C-linear invertible operator Φ: V → V such

that, for all f ∈ Kθ and v ∈ V one has

Φ(f(θ) · v) = f(ϕ(θ)) · Φ(v).

Taking as morphisms those C-linear maps which commute with the difference

operators, difference modules over Kθ form an abelian category.

We briefly recall the construction of the Newton polygon attached to a dif-

ference operator (see e.g. [26]): Let Kθ⟨Φ⟩ denote the skew-polynomial ring deter-

mined by the relations Φ · f = ϕ(f) · Φ for f ∈ Kθ. With respect to the degree

function, Kθ⟨Φ⟩ is a Euclidean ring and every finitely generated Kθ⟨Φ⟩-module

is a direct sum of cyclic modules. The datum of a difference module is equiv-

alent to that of a Kθ⟨Φ⟩-module, of finite dimension as a Kθ-vector space and
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such that the action of Φ is invertible, or to the datum of a Kθ⟨Φ,Φ−1⟩-module,

finite-dimensional over Kθ.

Given P =
∑m

i=0 aiΦ
i ∈ Kθ⟨Φ⟩, the Newton polygon N (P ) of P is the convex

envelope in R2 of the union of the half-lines {(x, y) ∈ R2 | x = i, y ⩾ v(ai)}, where
v : Kθ → Z ∪ {∞} is the θ-valuation, given by v(

∑
j αjθ

j) = min{j | αj ̸= 0},
v(0) = ∞. (In [26], the condition defining the half-lines is y ⩽ v(ai) which, in

view of the claimed properties of slopes, seems to be a misprint. Notice also that

Praagman’s polygon is not identical to the one considered in [9]; they differ by a

reflection.)

It is proved in [26, p. 257, Rem. 3] that, up to a vertical translation corre-

sponding to multiplication by a power of θ, the polygon N (P ) depends only on

the difference module DP = Kθ⟨Φ⟩/Kθ⟨Φ⟩ ·P . In particular, it follows easily from

the definitions that the width of N (P ) coincides with the dimension of DP as a

Kθ-vector space (see Figure 1).

dimDP

Figure 1.

In the sequel, the polygon N (P ) will always be considered up to a vertical

translation, and the slopes of its non-vertical sides will be called the slopes of DP .

(Here we use the terminology of [26], which differs from [13]. The orders considered

by Graham-Squire are the negatives of the slopes in Praagman’s article.) In fact,

if V is a difference module over Kθ, a version of the cyclic vector lemma allows us

to attach to V an operator P ∈ Kθ⟨Φ⟩ such that V ∼= DP as difference modules.

Given q ⩾ 1, set Lq = C((θ1/q)). The automorphism ϕ(θ) = θ
1+θ of Kθ has a

unique extension ϕq to C((θ1/q)) ([26, §1]); then one can define difference modules

over Lq as done for Kθ, and the definition of the Newton polygon of an operator

extends as well. Given g ∈ Lq ∖ {0}, we denote by Dg,q the Lq-difference module

(Lq, gϕq). Given m ⩾ 0, put Tm = (Km
θ , (Id + θNm)ϕ), where Nm is the nilpotent

Jordan block of size m. These are unipotent objects in the category of difference

modules over Kθ. The classification theorem for formal difference modules is the

following (see [26, Thm. 8], [9, Thm. 3.3]):
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Theorem 1. Let V be a difference module over Kθ of dimension m. Then there

is a finite cyclic extension Kθ ⊂ Lq and an isomorphism of Lq-difference modules

V ⊗ Lq
∼=

⊕
i∈I

(Dgi,qi ⊗Kθ
Tmi)⊗Lqi

Lq,

where I is a finite set, mi, qi > 0 are positive integers, qi | q, the Dgi,qi are simple

difference modules and
∑

mi = m. Also, gi ∈ C((θ1/qi)) are of the form gi =∑qi
h=0 ai,hθ

λi+
h
qi , where λi ∈ (1/qi)Z is the only slope of Dgi,qi and ai,0 ∈ C∖{0}.

In this decomposition, the rational numbers {λi}i∈I are the formal slopes of V ,

the integers mi, qi are uniquely determined, and the gi ∈ C((θ1/qi)) are uniquely

determined up to addition of an integer multiple of ai,0/qi to ai,qi ∈ C.

It follows from the theorem that we have the following corollary:

Corollary 1. If V , W are difference modules with no common slope, every mor-

phism of difference modules V → W is zero.

To prove a stationary phase formula for the Mellin transform, we will need

some more information on the formal structure of a difference module than pro-

vided by formal slopes. This is in contrast with the situation for the stationary

phase formula for the Fourier transform. In that case, formal slopes are enough;

this difference is ultimately due to the different behavior of slopes with respect to

tensor product in the differential and in the difference case.

Let P =
∑

i⩾0 ai(θ)Φ
i ∈ Kθ⟨Φ⟩ with ai(θ) =

∑
i⩾0 aijθ

j ∈ Kθ, and assume

N (P ) has a horizontal side σ. Let i0 < · · · < ir be those indices such that aiℓΦ
iℓ

corresponds to a point on σ. For 0 ⩽ ℓ ⩽ r, put jℓ = min{j ∈ N | aiℓj ̸= 0} and

consider the polynomial

pσ(t) =

r∑
ℓ=0

aiℓ,jℓt
iℓ−i0 ∈ C[t].

Then the roots of pσ are formal invariants of DP ; see e.g. [4, Sect. 2.3].

Definition 2. Let V be a difference module over Kθ, and choose P ∈ Kθ⟨Φ⟩
with V ∼= DP as difference modules. We define a finite set Hor(V ) of horizontal

zeros as follows: If the Newton polygon N (P ) has no horizontal side, we put

Hor(V ) = ∅. If it has a horizontal side σhor, then Hor(V ) is the set of zeros pσhor
,

with multiplicities. This definition extends to the case P ∈ Lq⟨Φ⟩; notice that for

a Kθ-difference module V we have Hor(V ) = Hor(V ⊗ Lq).

Lemma 1. Let V , W be difference modules over Kθ, both of them purely of slope

zero, with no common horizontal zero. Then every morphism V → W is the zero

map.
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Proof. Taking an extension Kθ ⊂ Lq we can assume both V and W decompose as

in Theorem 1. Given a summand Dg,q ⊗ Tm, a computation as in [26] shows that

Dg,q ⊗ Tm
∼=

Lq⟨Φ⟩
(Φ− g)m

,

where g = a0 + a1θ
1/q + · · · + aqθ and ai ∈ C for 0 ⩽ i ⩽ q. A direct calculation

shows that the only horizontal zero of this difference module is a0 ∈ C. Then, by
the classification theorem, the lemma follows.

Remark 1. It results from Theorem 1, Corollary 1 and Lemma 1 that if

0 −→ V ′ −→ V −→ V ′′ −→ 0

is an exact sequence of difference modules, then

{Slopes of V } = {Slopes of V ′} ∪ {Slopes of V ′′},(1)

Hor(V ) = Hor(V ′) ∪Hor(V ′′).(2)

The second equality is also valid when we consider the corresponding multiplicities.

In fact, if we define the multiplicity of a slope as the length of the vertical projection

of the corresponding side onto the horizontal axis, then the first equality is also

valid when we take multiplicities into account.

For later use, we recall a few definitions and results concerning differential and

difference modules over tori and affine lines. We recall that C[z, z−1]⟨∂z⟩ denotes
the localized Weyl algebra (where [∂z, z] = 1) and C[η]⟨Φ,Φ−1⟩ the algebra of

invertible difference operators on the affine C-line (where [Φ, η] = Φ).

(i) If M is a holonomic C[z, z−1]⟨∂z⟩-module and s ∈ C ∖ {0}, we set zs = z − s

and we denote by Ms the C[[zs]]⟨∂zs⟩-module C[[zs]]⟨∂zs⟩⊗C[z,z−1]⟨∂z⟩M. We denote

by M0 the Kz⟨∂z⟩-module Kz⟨∂z⟩ ⊗C[z,z−1]⟨∂z⟩ M and, if y = z−1, we denote by

M∞ the Ky⟨∂y⟩-module Ky⟨∂y⟩⊗C[z,z−1]⟨∂z⟩M, where ∂y(1⊗m) = 1⊗ (−z2∂z)m.

Both M0 and M∞ are formal connections.

The finite set of points s ∈ C∖{0} such that C[[zs]]⊗C[z]M is not free of finite

type over C[[zs]], will be denoted by S(M) (the singular set of M; see e.g. [27, III,

Prop. 1.1.5]).

(ii) The global Newton polygon attached by Ramis and Malgrange to an operator

P ∈ C[z, z−1]⟨z∂z⟩ is defined as follows: Write P as a finite sum

P =
∑
r

αr(z∂z)z
r, where αr ∈ C[X] for all r ∈ Z,

and, for each αr ̸= 0, consider the half-line {(u, v) ∈ R2 | u ⩽ degαr, v =

r}. The Newton polygon N (P ) of P is the convex envelope of these half-lines.
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(The definition in [24, V.1] looks slightly different to the one given here, but both

give the same polygon. In fact, in [24] the case considered is that of a module

over C[z]⟨∂z⟩. Since we have inverted z, we consider the global Newton polygon

only up to horizontal translation; see Figure 2.) It depends only on the quotient

module M = C[z, z−1]⟨z∂z⟩/C[z, z−1]⟨z∂z⟩P and, in particular, it follows from the

definitions (see [24, V.1]) that the height h(P ) of N (P ) equals

irr(M0) + irr(M∞) +
∑

s∈S(M)

µ(Ms).

h(P )

Figure 2.

As shown in [24], in fact a Newton polygon can be attached to any holonomic

C[z, z−1]⟨z∂z⟩-module, and if

0 −→ M′ −→ M −→ M′′ −→ 0

is an exact sequence, then

(3) {Slopes of M} = {Slopes of M′} ∪ {Slopes of M′′},

also when we consider the slopes with their multiplicities, defined as the length of

the horizontal projection of the corresponding sides onto the vertical axis.

(iii) If N is a C[η]⟨Φ⟩-module, we define its germ at infinity as the Kθ-vector space

N∞ = Kθ ⊗C[η] N, where η 7→ θ−1, endowed with the difference operator given by

a(θ)⊗ n 7−→ a
( θ

1 + θ

)
⊗ Φ · n.

Equivalently, N∞ is the Kθ⟨Φ⟩-module Kθ⟨Φ⟩ ⊗C[η]⟨Φ⟩ N, or the Kθ⟨Φ,Φ−1⟩-
module Kθ⟨Φ,Φ−1⟩ ⊗C[η]⟨Φ⟩ N.

Global Mellin transform. Denote by M : C[z, z−1]⟨z∂z⟩ → C[η]⟨Φ,Φ−1⟩ the

morphism of C-algebras defined by M(z∂z) = −η, M(z) = Φ. Following [21], if
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M is a C[z, z−1]⟨z∂z⟩-module, its Mellin transform is defined as the C[η]⟨Φ,Φ−1⟩-
module

M(M) = C[η]⟨Φ,Φ−1⟩ ⊗C[z,z−1]⟨z∂z⟩ M.

Remark 2.

(i) If M is a C[z, z−1]⟨z∂z⟩-module and N ⊂ M is a C[z]⟨z∂z⟩-submodule which

generates M over C[z, z−1]⟨z∂z⟩, then we have

M(M) ∼= C[η]⟨Φ,Φ−1⟩ ⊗C[z,z−1]⟨z∂z⟩ C[z, z
−1]⟨z∂z⟩ ⊗C[z]⟨z∂z⟩ N

∼= C[η]⟨Φ,Φ−1⟩ ⊗C[z]⟨z∂z⟩ N,

and similarly for a C[z−1]⟨z−1∂z−1⟩-submodule which generates M over

C[z, z−1]⟨z∂z⟩.
(ii) If M is holonomic, then M(M)∞ is a quotient of Kθ⟨Φ,Φ−1⟩ by a non-zero

ideal, and so it is finite-dimensional over Kθ.

Lemma 2. If M is a holonomic C[z, z−1]⟨z∂z⟩-module, the Newton polygon of

M(M)∞ is the polygon obtained from the Newton polygon of M by applying a

rotation of 90 degrees in the clockwise direction.

Proof. If M = C[z, z−1]⟨z∂z⟩/C[z, z−1]⟨z∂z⟩ · P , the claim is a consequence of the

definitions, and also for modules with punctual support, which are a direct sum

of modules of type C[z, z−1]⟨z∂z⟩/C[z, z−1]⟨z∂z⟩ · (z − s)m, with s ∈ C∖ {0} and

m ⩾ 1. In general, there exists an exact sequence of C[z, z−1]⟨z∂z⟩-modules

0 −→ K −→ M′ −→ M −→ 0,

where K has punctual support (and so its Newton polygon consists only of a

vertical side), and M′ is a quotient by the left ideal generated by a single operator.

By (3) and the remark which follows it, the Newton polygon of M′ coincides with

that of M, except for the fact that the vertical side of M′ has as length the sum of

the lengths of the vertical sides of M and of K. By exactness of the global Mellin

transform and localization, we get an exact sequence

0 −→ M(K)∞ −→ M(M′)∞ −→ M(M0
N )∞ −→ 0.

Then the claim follows from Remark 1.

Canonical good filtrations. Let R denote the ring C[z, z−1]⟨z∂z⟩. Consider in
R the increasing filtration, indexed by Z, given by

VkR =
{∑

i ai(z, z
−1)∂i

z ∈ R | maxi{i− ordz(ai)} ⩽ k
}
,
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and denote

Σ =
{
α ∈ C | −1 ⩽ Reα ⩽ 0, Imα ⩾ 0 if Reα = −1, Imα < 0 if Reα = 0

}
.

IfM is a holonomic R-module, there exists a unique increasing, Z-indexed filtration

V•M ofM which is good for V•R and such that the roots of its Bernstein polynomial

are contained in Σ (see [27, Prop. 6.1.2]). This will be called the canonical good

z-filtration of M. As in [27], this choice of Σ will play no special role in the sequel;

it only matters that Σ is a fundamental domain for the action of Z on C given by

the translations z 7→ z + k, k ∈ Z.
We can also consider the increasing filtration indexed by Z given by

ṼkR =
{∑

i ai(z, z
−1)∂i

z ∈ R | maxi{i− ordz−1(ai)} ⩽ k
}
,

and, in the same way, we obtain a filtration Ṽ•M on M that we call its canonical

good z−1-filtration.

One can also define a canonical good filtration for holonomic modules over

C[[z]]⟨∂z⟩. If M is a holonomic R-module, then it is not difficult to see that we have

V•M0 = C[[z]]⊗C[z] V•M and V•M∞ = C[[z]]⊗C[z] Ṽ•M.

§3. Microdifference operators and local Mellin transforms

In this section we will consider several rings, which differ by the product considered

in each case. Set

M =
{∑

i⩾r ai(u)η
−i | r ∈ Z and ai(u) ∈ C[[u]]

}
.

The order of an operator P ∈ M is ordη(P ) = max{i | ai ̸= 0}. Let ∂η = d/dη

denote the formal derivative with respect to η and let δ be a C-derivation of C[[u]].
They can be formally extended to maps defined in M, and we consider in M the

multiplication

P ◦δ Q =
∑
α⩾0

1

α!
∂α
η P · δαQ,

where, on the right-hand side, it is understood that the product is first performed

in C[[u]]((η−1)), and then the result is reordered so as to obtain an element of M.

It is easy to see that the set M, endowed with the obvious addition and the

multiplication ◦δ, is a non-commutative unitary ring. We will only consider the

derivations δs = −(u+ s)∂u, where s ∈ C, and δ∞ = u∂u.
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Definition 3.

(i) For s ∈ C, we denote by M(s,∞) the ring which is M as a set and where

the product is ◦δs . We regard it also as a Kθ-algebra via the C-morphism

Kθ → M(s,∞) defined by θ 7→ −η−1.

(ii) We denote by M(∞,∞) the set{∑
i⩾r ai(u

−1)η−i | r ∈ Z and ai(u
−1) ∈ C[[u−1]]

}
endowed with the product ◦δ∞ defined as above, where the derivation is δ∞ =

−u−1∂u−1 (= u∂u). We regard it also as a Kθ-algebra via the morphism of

C-algebras Kθ → M(∞,∞) defined by θ 7→ η−1.

The proof of the following theorem is analogous to the one for the usual formal

microdifferential operators (see [10, Thm. 1.c.2]):

Theorem 2 (Division). For ⋆ ∈ C∪{∞}, set u⋆ = u+s if ⋆ = s ∈ C, u∞ = u−1.

Let P =
∑

i⩽d ai(u⋆)η
i ∈ M(⋆,∞) be an operator of order d. Assume ad(u⋆) ∈

C[[u⋆]] has u⋆-adic valuation p ∈ N. Then, for all S ∈ M(⋆,∞), there are unique

Q,R ∈ M(⋆,∞) such that1

S = Q ◦δ⋆ P +R with R =

p−1∑
i=0

Rj ◦δ⋆ uj
⋆, Rj ∈ Kη−1 .

Remark 3. In the theorem above, consider for example the case ⋆ = 0. Following

[10, Thm. 1.c.2], the first step is to prove division in the case P = up. It is

immediate to prove that one has right division, namely that for any S ∈ M(0,∞)

there are Q, R such that S = upQ+R and R =
∑p−1

i=0 uj
⋆Rj . To prove left division

as in the theorem, notice that for a(u) ∈ C[[u]] and k ∈ Z one has the formula

(4) a(u)ηk =
∑
i⩾0

(−1)i
(
k

i

)
· ηk−i ◦δ0 δi0(a(u)),

where (
k

i

)
=

k(k − 1) · · · (k − i+ 1)

i!

for all k, i ∈ Z. In fact, formula (4) is valid for any derivation δ. One also has

ηk ◦δ a(u) =
∑
i⩾0

(
k

i

)
δi(a(u))ηk−i.

1One can also give bounds on the orders of Q and R, but we will not need them.
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If a(u) = uℓ, then δi0(u
ℓ) = ℓ(ℓ−1) · · · (ℓ−i+1)uℓ, and so from the quotient and the

remainder of right division we obtain those for left division. Similar considerations

apply to the rest of the proof.

Definition 4.

(i) M(s,∞): Let H denote the category of holonomic C[[x]]⟨∂x⟩-modules, and Diffc

the category of difference Kθ-modules. For any s ∈ C∖ {0}, we define a functor

M(s,∞)(•) : H −→ Diffc

as follows: Consider the ring homomorphism φs : C[[x]]⟨∂x⟩ → M(s,∞) defined by

x 7→ u and (x + s)∂x 7→ −η. Then M(s,∞) is a right C[[x]]⟨∂x⟩-module via the

product

M(s,∞) × C[[x]]⟨∂x⟩ −→ M(s,∞),

(P, q) 7−→ P ◦δs φs(q).

If M is a C[[x]]⟨∂x⟩-module, we put M(s,∞)(M) = M(s,∞) ⊗C[[x]]⟨∂x⟩ M . If we

set θ = η−1, thenM(s,∞)(M) is a vector space overKθ, where scalar multiplication

is given by f(θ) · (P (u, η)⊗m) = (f(η−1) ◦δs P (u, η))⊗m.

It is not difficult to check that the map Φs : M
(s,∞)(M) → M(s,∞)(M) defined

by P (u, η)⊗m 7→ (u+ s) · P (u, η)⊗m endows M(s,∞)(M) with the structure of

a Kθ-difference module. It will follow from Theorem 3 and Lemma 5 below that

this Kθ-vector space has finite dimension (see Remark 5), and so M(s,∞)(•) is a

well-defined functor.

(ii) M(0,∞): If H′ denotes the category of formal connections, we define a functor

M(0,∞)(•) : H′ −→ Diffc

as follows: As before, M(0,∞) is a right C[[x]]⟨x∂x⟩-module via the ring homomor-

phism φ0 : C[[x]]⟨x∂x⟩ → M(0,∞) defined by x 7→ u and x∂x 7→ −η.

Let M be a formal connection and consider its canonical good filtration V∗M ,

recall that V0M is a V0C[[x]]⟨∂x⟩ = C[[x]]⟨x∂x⟩-module. In the tensor product

M(0,∞) ⊗C[[x]]⟨x∂x⟩ V0M we have a Kθ-vector space structure, defined as in the

previous case, and a difference operator Φ0 given by

Q(u, η)⊗m 7−→ u ·Q(u, η)⊗m.

However, Φ0 might not be invertible, and then we would not have a difference

module as defined before. So, we invert it formally and set

M(0,∞)(M) := M(0,∞) ⊗C[[x]]⟨x∂x⟩ V0M ⊗Kθ⟨Φ0⟩ Kθ⟨Φ0,Φ
−1
0 ⟩.

As in (i), this is a finite-dimensional Kθ-vector space (see Remark 5 below).
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(iii) M(∞,∞): Finally, we define

M(∞,∞)(•) : H′ −→ Diffc

as in (ii), replacing u by u−1. Namely, M(∞,∞) is a right C[[x]]⟨x∂x⟩-module via

the ring homomorphism φ∞ : C[[x]]⟨x∂x⟩ → M(∞,∞) defined by x 7→ u−1 and

x∂x 7→ −η. Given a formal connection M , we consider in the Kθ-vector space

M(∞,∞) ⊗C[[x]]⟨x∂x⟩ V0M the difference operator Φ∞ given by

Q(u, η)⊗m 7−→ u−1 ·Q(u, η)⊗m,

and we put M(∞,∞)(M) := M(∞,∞)⊗C[[x]]⟨x∂x⟩V0M⊗Kθ⟨Φ∞⟩Kθ⟨Φ∞,Φ−1
∞ ⟩. Finite-

dimensionality is proved as in the previous cases.

The functors M(s,∞)(•) send a morphism f : M → N to Id ⊗ f . The functors

M(0,∞)(•) and M(∞,∞)(•) send f to Id⊗f⊗Id; this is well defined by functoriality

of the canonical good filtration.

Proposition 1. The ring homomorphisms φs (s ∈ C) and φ∞ are flat.

Proof. It is proved similarly to [5, Chap. 5, §5], considering the η-order filtration

in the spaces M(⋆,∞), ⋆ ∈ C ∪ {∞}.

Remark 4. It follows immediately from this proposition and from [27, Cor. 6.1.3]

that the functors M(⋆,∞)(•) are exact.

We want to study formal slopes and horizontal zeros of local Mellin transforms.

For modules with punctual support, we have the following lemma:

Lemma 3. Let M be a holonomic C[[x]]⟨∂x⟩-module supported only at zero. If

s ∈ C∖ {0}, then M(s,∞)(M) is purely of slope zero, Hor(M(s,∞)(M)) ⊂ {s} and

dimKθ
M(s,∞)(M) = µ(M).

Proof. We can assume that M = C[[x]]⟨∂x⟩/C[[x]]⟨∂x⟩ · xm for some m ⩾ 1; then

µ(M) = m. We have isomorphisms of difference modules

M(s,∞)(M) =
M(s,∞)

M(s,∞) · um
∼=

Kθ⟨Φ⟩
Kθ⟨Φ⟩(Φ− s)m

,

and the assertions follow easily.

To treat the general case, we will need the following theorem, proved in [22,

Sect. (5.1)] (see also [15, Thm. 2.4.10]):

Theorem 3. Let N be a holonomic C[[z]]⟨∂z⟩-module. Then there exists a holo-

nomic C[z]⟨∂z⟩-module MN with no singularity on A1
C ∖ {0}, regular at infinity

and such that (MN )0 ∼= N .
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If s ∈ C, τs : A1
C → A1

C is the translation z 7→ z − s and i : A1
C ∖ {0} ↪→ A1

C
is the inclusion map, we put Ms

N = i∗τ∗s (MN ). If j : A1
C ∖ {0} → A1

C ∖ {0} is the

inversion z 7→ z−1, we put M∞
N = j∗i∗(MN ), where τ∗s , i

∗, j∗ denote inverse images

as D-modules.

Lemma 4.

(i) The slopes of M(M0
N )∞, the germ at infinity of the global Mellin transform

of M0
N , are strictly negative.

(ii) For s ∈ C∖ {0}, M(Ms
N )∞ has only slope 0 and Hor(M(Ms

N )∞) ⊂ {s}.
(iii) The slopes of M(M∞

N )∞ are strictly positive.

Proof. Since M0
N is regular at infinity, the Newton polygon of M0

N has only sides

of non-negative slope (corresponding to the slopes of N) and no vertical side (since

M0
N has no singular points in A1

C ∖ {0}). Then, item (i) follows from Lemma 2.

The claims about slopes in (ii) and (iii) are proved in the same way.

In case (ii), take an exact sequence

0 −→ K −→ M′ −→ Ms
N −→ 0,

where M′ = C[z, z−1]⟨z∂z⟩/C[z, z−1]⟨z∂z⟩ · P and K has punctual support. Since

the only singular point of Ms
N is s ∈ C ∖ {0} and Ms

N is of exponential type

in the sense of [24, Chap. XII], M′ will be of exponential type as well, and if

K = C[z, z−1]⟨z∂z⟩/C[z, z−1]⟨z∂z⟩ · q(z) with q(z) ∈ C[z], we will have

P = (z − s)mq(z)∂n
z + · · · , where m+ deg(q) = degz(P ), n = deg∂z

(P ),

where the coefficients of ∂i
z are in C[z] for all i ⩾ 0. A computation using just the

definitions and (2) shows that Hor(M(Ms
N )∞) ⊂ {s}.

Lemma 5. Let M be a holonomic C[z, z−1]⟨z∂z⟩-module. If ⋆ ∈ C∪{∞}, consider
the maps Ξ⋆ : M(M)∞ → M(⋆,∞)(M⋆) defined as follows:

(i) If ⋆ = s ∈ C∖ {0}, then

Ξs : M(M)∞ = Kθ⟨Φ,Φ−1⟩ ⊗C[z,z−1]⟨z∂z⟩ M −→ M(s,∞)(Ms),

Φk ⊗m 7−→ (u+ s)k ⊗m.

(ii) If ⋆ = 0,

Ξ0 : M(M)∞ = Kθ⟨Φ,Φ−1⟩ ⊗C[z]⟨z∂z⟩ V0M −→ M(0,∞)(M0),

Φk ⊗m 7−→ 1⊗m⊗ Φk
0 .
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(iii) If ⋆ = ∞,

Ξ∞ : M(M)∞ = Kθ⟨Φ,Φ−1⟩ ⊗C[z−1]⟨z−1∂z−1 ⟩ Ṽ0M −→ M(∞,∞)(M∞),

Φk ⊗m 7−→ 1⊗m⊗ Φk
∞.

In all three cases we extend by Kθ-linearity. Then the maps Ξ⋆ are epimorphisms

of Kθ-difference modules, functorial on M.

Proof. That the given maps are morphisms of Kθ-difference modules, functorial

on M, follows from the definitions. To see they are onto, take an epimorphism of

holonomic C[z, z−1]⟨z∂z⟩-modules

C[z, z−1]⟨z∂z⟩
C[z, z−1]⟨z∂z⟩ · P (z, z∂z)

−→ M −→ 0.

Since both local and global Mellin transforms are exact functors, by functoriality

we can assume that

M =
C[z, z−1]⟨z∂z⟩

C[z, z−1]⟨z∂z⟩ · P (z, z∂z)
.

Case Ξs, s ∈ C∖ {0}: We have

M(M)∞ =
Kθ⟨Φ,Φ−1⟩

Kθ⟨Φ,Φ−1⟩ · P (Φ,−θ−1)

and

M(s,∞)(Ms) =
M(s,∞)

M(s,∞) · P (u+ s,−η)
.

The map Ξs is given by [a(θ)Φk] 7→ [a(η−1) ◦δs (u+ s)k]. Surjectivity follows from

the division theorem.

Case Ξ0: Let b(s) ∈ C[s] be the Bernstein polynomial of the canonical good

z-filtration V∗M of M (see for example [27, I, Sect. 6]). By definition of b(s), there

is a P ′ ∈ V−1C[z, z−1]⟨z∂z⟩ such that Q(z, z∂z) = b(z∂z)− zP ′ annihilates M. So,

we have an epimorphism

C[z, z−1]⟨z∂z⟩
C[z, z−1]⟨z∂z⟩ ·Q(z, z∂z)

−→ M −→ 0

and, as before, we can assume

M =
C[z, z−1]⟨z∂z⟩

C[z, z−1]⟨z∂z⟩ ·Q(z, z∂z)
.
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In this case, and by the special shape of Q(z, z∂z) (see [27, Exer. 6.1.4(3)]), the

canonical good z-filtration of M is given by

VkM =
VkC[z, z−1]⟨z∂z⟩

VkC[z, z−1]⟨z∂z⟩ ·Q
.

Then we have

M(0,∞)(M0) ∼=
M(0,∞)

M(0,∞) ·Q(u,−η)
⊗Kθ⟨Φ0⟩ Kθ⟨Φ0,Φ

−1
0 ⟩,

M(M)∞ ∼=
Kθ⟨Φ,Φ−1⟩

Kθ⟨Φ,Φ−1⟩ ·Q(Φ,−θ−1)
,

and, via these isomorphisms, the map Ξ0 is given by [a(θ)Φk] 7→ [a(η−1)] ⊗ Φk
0 .

Again, one gets surjectivity from the division theorem.

Case Ξ∞: It is analogous to the previous one, considering the canonical z−1-

filtration.

Remark 5. If M is a formal connection and ⋆ ∈ {0,∞}, it follows from this

lemma applied toM⋆
M that theKθ-vector spacesM

(⋆,∞)(M) are finite-dimensional.

By the same argument, if M is a holonomic C[[x]]⟨∂x⟩-module and s ∈ C ∖ {0},
then M(s,∞)(M) is finite-dimensional as well.

Proposition 2.

(i) Let M be a formal connection. Then

(a) all slopes of M(0,∞)(M) are strictly negative and dimKθ
M(0,∞)(M) ⩾

irr(M);

(b) all slopes of M(∞,∞)(M) are strictly positive and dimKθ
M(∞,∞)(M) ⩾

irr(M).

(ii) Let M be a holonomic C[[x]]⟨∂x⟩-module. If s ∈ C∖ {0}, then M(s,∞)(M) has

only slope zero, Hor(M(s,∞)(M)) ⊂ {s} and dimKθ
M(s,∞)(M) = µ(M).

Proof. All assertions about slopes and the assertion in (ii) about horizontal zeros

follow from Lemmas 4 and 5 applied to M⋆
M . We prove the remaining claim in (a):

We can assume that

M =
C[[x]]⟨∂x⟩

C[[x]]⟨∂x⟩ · P (x, x∂x)
,

where

P (x, x∂x) = ad(x)(x∂x)
d + · · ·+ a0(x),

ai(x) ∈ C[[x]] for all i ⩾ 0, at least one of the ai(x) is a unit and ad(x) ̸= 0. Then

the irregularity of M is ordx(ad(x)).
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We have a good filtration on M defined by

UkM =
VkC[[x]]⟨∂x⟩

VkC[[x]]⟨∂x⟩ · P
for k ∈ Z.

In general, this will not be the canonical good filtration V∗M because the roots of

the Bernstein polynomial of U∗M do not need to be contained in Σ. However, we

will have U−kM ⊂ V0M for some k ⩾ 0 (see e.g. [27, Exer. 5.13, 5]). Also, there is

an isomorphism of V0C[[x]]⟨∂x⟩-modules

U−kM =
V−kC[[x]]⟨∂x⟩

V−kC[[x]]⟨∂x⟩ · P
=

V0C[[x]]⟨∂x⟩xk

V0C[[x]]⟨∂x⟩xk · P
∼=

V0C[[x]]⟨∂x⟩
V0C[[x]]⟨∂x⟩xk · P · x−k

,

where the second equality follows from V−kC[[x]]⟨∂x⟩ = V0C[[x]]⟨∂x⟩xk and the

last isomorphism holds because right multiplication by xk is a morphism of left

V0C[[x]]⟨∂x⟩-modules. If we set Q = xk ·P ·x−k, then one sees that Q ∈ V0C[[x]]⟨∂x⟩
and, perhaps increasing k, we have

Q(x, x∂x) = bd(x)(x∂x)
d + · · ·+ b0(x),

where bi(x) ∈ C[[x]] for all i ⩾ 0, at least one of the bi(x) is a unit, and bd(x) =

ad(x). (All this follows easily from the identity xk(x∂x)
dx−k = (x∂x−k)dk, d ∈ N.

To ensure that at least one of the bi(x) is a unit, it might be necessary to increase

the value of k.) We put

(5) MQ := M(0,∞) ⊗C[[x]]⟨x∂x⟩
V0C[[x]]⟨∂x⟩
V0C[[x]]⟨∂x⟩Q

∼=
M(0,∞)

M(0,∞) ·Q(u,−η)
.

By the flatness of M(0,∞) as a C[[x]]⟨x∂x⟩-module we have an injective mor-

phism MQ ↪→ M(0,∞) ⊗ V0M , and it follows from the division theorem that

dimKθ
MQ = ordx(bd(x)) = irr(M).

Thus, to prove the desired inequality it suffices to show that

(6) dimKθ
MQ ⩾ dimKθ

MQ ⊗Kθ⟨Φ0⟩ Kθ⟨Φ0,Φ
−1
0 ⟩.

We claim that the action of Φ0 on MQ is bijective: Since MQ is finite-dimensional

over Kθ and ϕ : Kθ → Kθ is an automorphism, it is enough to prove that Φ0

is injective. Via the isomorphism (5), the action of Φ0 is given by [R(u, η)] 7→
[uR(u, η)]. If uR = TQ for some T ∈ M(0,∞), then, dividing T by u, we have

uR = (uT ′ + T ′′)Q and, if we take classes in the quotient of M(0,∞) by the right

ideal generated by u, we obtain an equality 0 = T̃ ′′ · Q̃ in the field Kθ = Kη−1 .

But Q̃ ̸= 0 because at least one of the bi(u) is a unit in C[[u]], so T ′′ = 0 and it

follows that R ∈ M(0,∞)Q, as desired.
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Finally, since Φ0 : MQ → MQ is bijective, MQ
∼= MQ ⊗Kθ⟨Φ0⟩ Kθ⟨Φ0,Φ

−1
0 ⟩

and (6) follows. The proof of the inequality in item (b) is analogous.

We prove next the last assertion in (ii): There is an exact sequence of C[[x]]⟨∂x⟩-
modules

0 −→ K1 −→ M −→ M ′ =
C[[x]]⟨∂x⟩

C[[x]]⟨∂x⟩ · P (x, x∂x)
−→ K2 −→ 0,

where K1, K2 are supported at zero and M ′ is a formal connection. To prove that

dimKθ
M(s,∞)(M) = µ(M), it suffices to prove this same equality for K1, K2 and

M ′. For K1 and K2, see Lemma 3; for M ′ we have

M(s,∞)(M ′) =
M(s,∞)

M(s,∞) · P (u, (
∑

i⩾0(
−u
s )i+1)η)

,

and P (u, (
∑

i⩾0(
−u
s )i+1)η) = cd(u)η

d + cd−1(u)η
d−1 + · · · , with ordu(cd(u)) =

d + ordu(ad(u)). Again by the division theorem, we have dimKθ
M(s,∞)(M ′) =

d+ ordu(ad(u)) = µ(M ′), as desired.

§4. Formal stationary phase for the Mellin transform

In this section we prove the main theorem stated in the introduction:

Theorem 4. Let M be a holonomic C[z, z−1]⟨z∂z⟩-module. The map

Ξ =
⊕

⋆∈S(M)∪{0,∞}

Ξ⋆ : M(M)∞ −→
⊕

⋆∈S(M)∪{0,∞}

M(⋆,∞)(M⋆)

is a functorial isomorphism of difference modules over Kθ.

Proof. We show first that the map Ξ is onto: We can decomposeM(M)∞ according

to slopes

M(M)∞ ∼= M(M)>0
∞ ⊕M(M)=0

∞ ⊕M(M)<0
∞ ,

and then, by Corollary 1, Lemma 5 and Proposition 2, it follows that it suffices to

prove that the map ⊕
s∈S(M)

Ξs : M(M)=0
∞ −→

⊕
s∈S(M)

M(s,∞)(Ms)

is onto. By the classification theorem, after a cyclic extension of Kθ we can as-

sume that M(M)=0
∞ can be decomposed according to its horizontal zeros. But

from Proposition 2 we have Hor(M(s,∞)(Ms)) ⊂ {s} for s ∈ S(M), and then by

Lemmas 1 and 5 the surjectivity of
⊕

s∈S(M) Ξs follows.

Thus, it is enough to show that the dimension over Kθ of the source of Ξ

is smaller than or equal to the dimension of its target: By Lemma 2, the height
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of the Newton polygon of M coincides with the width of the Newton polygon of

M(M)∞. So, we have

dimKθ
(M(M)∞) = irr(M0) + irr(M∞) +

∑
s∈S(M)

µ(Ms).

To my knowledge, this formula was first proved by Sabbah, using a different

method (unpublished, but see [20] for a special case). Then, by Proposition 2,

we are done.

Applying the theorem to modules of type M0
N , M∞

N , we get the following

corollary:

Corollary 2. The inequalities in Proposition 2(a), (b), are in fact equalities.

Remark 6. Local Fourier transforms can be defined at the analytic level (this

is well known: take first an extension to a holonomic module on the affine C-
line, apply the global Fourier transform and localize at infinity), denote by Φ(⋆,∞)

the functors so defined (⋆ ∈ C ∪ {∞}). For differential modules of rank one in

one variable, the formal and the analytic classifications coincide, so the formal

stationary phase isomorphism for the Fourier transform [12, Sect. 1] implies that if

M is a holonomic module over the affine line, then there is an analytic isomorphism2

detFour(M)∞ ∼= ⊗⋆∈C∪{∞} detΦ
(⋆,∞)(M⋆).

Following the analogous procedure, local Mellin transforms can also be defined

at the analytic level. However, for difference modules of rank one, the analytic

classification is much finer than the formal one (see [28, Sect. 10.2]), and therefore

Theorem 4 above does not allow us to derive a similar conclusion as in the Fourier

case. If M is a module with regular singularities, then the analytic type of the

determinant of its Mellin transform was determined in [21] (as explained in [21],

in fact only regularity at zero and at infinity is needed).

One could ask about possible ℓ-adic analogues of the local Mellin transforms.

The global Mellin transform does have an ℓ-adic analogue, see [11], and its determi-

nant was computed in [18]. Also, since in our approach the local Mellin transforms

are a kind of slightly modified microlocalization and since there is a good theory

of p-adic microdifferential operators and local Fourier transforms (see [1, 2]), one

could also hope for a p-adic theory of local Mellin transforms, which might be

related to the results in [19].

2See [25, formula (5.11) on p. 156] for a description, in terms of local data, of the determinant
of the global Fourier transform (and not just of its germ at infinity).
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Fr. (N.S.) (1996), no. 66, 105 pp. Zbl 0886.14005 MR 1484366

[19] F. Loeser, Principe de Boyarsky et D-modules, Math. Ann. 306 (1996), 125–157.
Zbl 0911.14012 MR 1405321
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96, Birkhäuser Boston, Boston, MA, 1991. Zbl 0764.32001 MR 1117227

[25] T. Mochizuki, Note on the Stokes structure of Fourier transform, Acta Math. Vietnam. 35
(2010), 107–158. Zbl 1201.32016 MR 2642166

[26] C. Praagman, The formal classification of linear difference operators, Nederl. Akad. Weten-
sch. Indag. Math. 45 (1983), 249–261. Zbl 0519.39003 MR 705431

[27] C. Sabbah, Introduction to algebraic theory of linear systems of differential equations, in
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