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Enhanced Nearby and Vanishing Cycles in
Dimension One and Fourier Transform

by

Andrea D’Agnolo and Masaki Kashiwara

Abstract

Enhanced ind-sheaves provide a suitable framework for the irregular Riemann–Hilbert
correspondence. In this paper, we give some precision on nearby and vanishing cycles
for enhanced perverse objects in dimension one. As an application, we give a topological
proof of the following fact. Let M be a holonomic algebraic D-module on the affine line,
and denote by LM its Fourier–Laplace transform. For a point a on the affine line, denote
by ℓa the corresponding linear function on the dual affine line. Then the vanishing cycles
of M at a are isomorphic to the graded component of degree ℓa of the Stokes filtration
of LM at infinity.
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§1. Introduction

§1.1. Local description of perverse sheaves

Let X be a smooth complex curve and F a perverse sheaf on X. Recall that, near

a singularity a ∈ X, F admits a quiver description in terms of its nearby and

vanishing cycles Ψa(F ) and Φa(F ). Let SaX and S∗
aX be the circles of tangent

and cotangent directions at a, respectively. Using the canonical and variation maps

Ψa(F )
c // Φa(F )
v
oo , one may upgrade the vector spaces Ψa(F ) and Φa(F ) to
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local systems on SaX and S∗
aX, with monodromies 1−vc and 1− cv, respectively.

Then one has

Ψa(F ) ≃ νsph{a}(F ), Φa(F ) ≃ µsph
{a}(F )[1],

where νsph{a} and µsph
{a} denote the traces on SaX and S∗

aX of Sato’s specialization

ν{a} and microlocalization µ{a} functors, respectively.

§1.2. Real oriented blowup

Let X rb
a be the real oriented blowup of X with center a, and consider the natural

embeddings

(1.1) SaX
� � i // X rb

a X \ {a} �
� ja //? _

j
oo X.

Recall that one has

νsph{a}(F ) ≃ i−1Rj∗j
−1
a F,

where i−1, Rj∗, and j−1
a denote the external operations for sheaves.

§1.3. Stokes filtration, de Rham side

LetM be a (not necessarily regular) holonomic DX -module, let a ∈ X be one of

its singularities, and let F := DR(M) be its de Rham complex, which is a perverse

sheaf. IfM is regular, the classical Riemann–Hilbert correspondence implies that

M can be reconstructed near a from the quiver description of F . IfM is irregular,

a result by Deligne and Malgrange (see [7]) implies thatM can be reconstructed

near a by further considering the so-called Stokes filtration1 Ψ≼•
a (F,M) of Ψa(F ),

indexed by Puiseux germs, defined as follows. Let (a, θ, f) be a Puiseux germ, that

is, a holomorphic function f on a small sector around θ ∈ SaX, which admits a

Puiseux series expansion at a. For (a, θ, g) another germ, the order relation g ≼θ f

means that Re(g− f) is bounded from above on a small sector around θ. Then an

element u of the stalk (Ψ≼f
a (F,M))θ is a section of the de Rham complex ofM in

a sectorial neighborhood of θ such that e−fu has tempered growth at a. It turns

out that the graded component Ψf
a(F,M) is a locally constant sheaf on SaX.

§1.4. Riemann–Hilbert correspondence

In [2] we established an extension of the classical Riemann–Hilbert correspondence

to the irregular case, in the framework of enhanced ind-sheaves, which has the ad-

vantage of working in any dimension. More precisely, there is a quasi-commutative

1The Stokes filtration depends on M, and not only on F .
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diagram

Modrh(DX)
��

ι

��

DR
∼

// Perv(CX)
��

eι

��

Modhol(DX)
DRE

∼
// E-Perv(ICX).

Here, ι embeds regular holonomic D-modules into holonomic D-modules which

are not necessarily regular, eι embeds perverse sheaves into enhanced ones2 (see

Definition 3.4), and DRE is an enhancement3 of the de Rham functor DR.

§1.5. Translation to the Betti side

In [3, §6.2] we described the Stokes filtration Ψ≼•
a (F,M) in terms of the en-

hanced de Rham complex DRE(M). Here, using enhanced specialization and

microlocalization from [5], and making more explicit use of the sheafification func-

tor discussed in [6], we propose a description of the Stokes filtration which sheds

some light on the geometry underlying these constructions. We also discuss a tem-

pered version of the vanishing cycles Φa(F ) as follows.

§1.6. Sheafification of enhanced ind-sheaves

Let k be a field, and consider the natural embedding

eι : Db(kX)
ι−→ Db(IkX)

e−→ Eb(IkX)

of sheaves into ind-sheaves into enhanced ind-sheaves. Recall that eι has a left

quasi-inverse sh called the sheafification functor. We say that an enhanced ind-

sheaf K is of sheaf type if it lies in the essential image of eι.

§1.7. Stokes filtration, Betti side

Let K ∈ E-Perv(IkX), and let a ∈ X be a singularity of K. The nearby and

vanishing cycles of K are defined as follows. Consider the bordered analogue of

(1.1),

SaX
� � i // X rb

a (X \ {a})∞ �
� ja //? _

j
oo X,

2This refers to the present case of dimension one. In higher dimensions there is still no
explicit description of the category of perverse enhanced sheaves. See however [14, 15], where
such a category is described via a curve test.

3As DRE is only briefly mentioned in this paper, we do not recall its definition, referring
instead to [2].
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where (X \ {a})∞ denotes the bordered space (X \ {a}, X). We set

Ψa(K) := νsph{a}(sh(K))

≃ i−1Rj∗j
−1
a sh(K)

≃ i−1Rj∗ sh(Ej
−1
a K),

Ψ≼0
a (K) := i−1 sh(Ej∗Ej

−1
a K),

Ψ0
a(K) := sh(Ei−1Ej∗Ej

−1
a K)

≃ sh(Eνsph{a}(K)).

Here, Ei−1, Ej∗, and Ej−1
a denote the external operations for enhanced ind-

sheaves, and Eν{a} is the natural enhancement of Sato’s specialization. Further,

for (a, θ, f) a Puiseux germ, locally at θ set

Ψ≼f
a (K) := Ψ≼0

a (K(f)),

Ψf
a(K) := Ψ0

a(K(f)),

where K(f) is the twist of K by an enhanced ind-sheaf which encodes the expo-

nential growth ef (see Definition 4.1). Finally, set

Φa(K) := µsph
{a}(sh(K))[1],

Φ0
a(K) := sh(Eµsph

{a}(K))[1],

where Eµ{a} is the natural enhancement of Sato’s microlocalization.

As it turns out, Eν{a}(K) and Eµ{a}(K) are of sheaf type.

§1.8. Compatibility with Riemann–Hilbert

If k = C, and K = DRE(M) is the enhanced de Rham complex of a holonomic

DX -moduleM then, setting F := DR(M) ≃ sh(K), one has by definition

Ψa(K) ≃ Ψa(F ), Φa(K) ≃ Φa(F ).

Moreover, one has

Ψ≼•
a (K) ≃ Ψ≼•

a (F,M), Ψ•
a(K) ≃ Ψ•

a(F,M).

Also note that Φ0
a(K) ≃ Φa(F ) only ifM is regular.

§1.9. Formal decomposition

Recall that an exponential factor at a of a holonomic DX -moduleM is a Puiseux

germ (a, θ, f) where the Stokes filtration Ψ≼•
a (F,M) jumps. Assume for simplic-

ity that the exponential factors of M are unramified, so that f is a germ of
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meromorphic function with a pole at a. Let N>0
θ be a set of representatives of

the exponential factors ofM, modulo bounded functions. We can assume that if

f ∈ N>0
θ is bounded, then f = 0.

For f unbounded, let Ef be the germ of a DX -module at a associated with

the meromorphic connection d+ df . Set E0 = OX . The Hukuara–Levelt–Turrittin

decomposition theorem asserts that

Mformal
a ≃

⊕
f∈N>0

θ

(Lf ⊗D E−f )formal
a .

Here, Mformal
a is the formal D-module at a associated with M, ⊗D is the inner

product for DX -modules, and Lf is a regular holonomic DX -module.

Set K = DRE(M) and Lf = DR(Lf ). Then we have

Eν{a}(K) ≃ e(ν{a}(L0)), Eνsph{a}(K(f)) ≃ e(νsph{a}(Lf )).

§1.10. Fourier–Laplace and the stationary phase

We give an application of the above constructions to the study of the Fourier–

Laplace transform in dimension one.

Let V be a one-dimensional complex vector space, and V∗ the dual vector

space. Set V∞ := (V,P), where P = V ∪ {∞} is the projective compactification,

and similarly define V∗
∞ and P∗.

LetK ∈ E-Perv(IkV∞), and set LK := LK[1]. (Here, the shift ensures compat-

ibility with the Riemann–Hilbert correspondence.) Assume that LK is an enhanced

perverse ind-sheaf on V∗
∞. For a ∈ P, let (a, θ, f) be a Puiseux germ on P such that

f is unbounded and not linear (modulo bounded functions). Then its Legendre

transform (b, η, g) is a Puiseux germ on P∗ of the same kind. The stationary phase

formula states that there is an isomorphism

(1.2) (Ψg
b(

LK))η ≃ (Ψf
a(K))θ.

This is a classical result for holonomicD-modules, and we gave a proof for enhanced

ind-sheaves in [3].

§1.11. Fourier–Laplace and linear Puiseux germs

Here we consider the case of linear Puiseux germs, excluded from (1.2), which

goes as follows. For a ∈ V, denote by ℓa the corresponding linear function on V∗.

Consider the natural identifications S∞P∗ ≃ S∗
aV and S∗

bV∗ ≃ S∞P, for b ∈ V∗.

Then there are isomorphisms

(1.3) Ψℓa
∞(LK) ≃ Φ0

a(K), Φ0
b(

LK) ≃ r−1Ψ−ℓb
∞ (K),

where r is the antipodal map.
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Our proof of (1.3) proceeds as follows. The second isomorphism is obtained

from the first one by interchanging V and V∗, and replacing K by LK. After

translation from a to 0, the first isomorphism reads

Ψ0
∞(LK) ≃ Φ0

0(K).

By definition, this is implied by the isomorphism

Eνsph{∞}(
LK) ≃ Eµsph

{0}(K).

We prove the above isomorphism using the so-called smash functor of [1, §6], in

its enhanced version from [5, §6].

§1.12. Literature

Concerning related literature, the D-module counterpart of (1.3) is proved in [12]

when k = C and K = DRE(M) is the enhanced de Rham complex of a holo-

nomic algebraic DV-module M which is regular at finite distance, and has only

linear exponential factors at infinity. Note that, in this case, LM satisfies the same

conditions.

In the framework of enhanced ind-sheaves, a proof of (1.3) is given in [1], in

the case where K = eι(F ), for F a perverse sheaf4 on V∞.

See [13] for a recent thorough treatment of the Fourier–Laplace transform of

holonomic algebraic D-modules on the affine line.

§1.13. Contents

The contents of this paper are as follows.

After recalling some notation in Section 2, we recall in Section 3 the notion

of a perverse enhanced ind-sheaf on a complex analytic curve. For such a perverse

object, we show that its specialization and microlocalization are perverse sheaves

in the classical sense.

In Section 4 we discuss nearby and vanishing cycles along the lines presented

in Section 1.7 above.

In Section 5 we apply our constructions to the Fourier–Laplace transform in

dimension one. In particular, we give a proof of (1.3).

Finally, we present in the appendix an alternative description of vanishing

cycles in terms of blow-up transforms. In this setting, both nearby and vanishing

cycles are realized on the circle of normal directions SaX.

4For F = DR(M), this means that M is regular everywhere, including at infinity.
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§2. Review on enhanced ind-sheaves

We recall here some notions and results, mainly to fix notation, referring to the

literature for details. In particular, we refer to [9] for sheaves, to [16] (see also

[8, 4]) for enhanced sheaves, to [10] for ind-sheaves, to [2] (see also [11, 4, 6]) for

bordered spaces and enhanced ind-sheaves, and to [5] for enhanced specialization

and microlocalization.

In this paper, k denotes a base field.

§2.1. Ind-sheaves and bordered spaces

A good space is a topological space which is Hausdorff, locally compact, countable

at infinity, and has finite soft dimension. Let M be a good space.

Denote by Mod(kM ) the category of sheaves of k-vector spaces on M , and by

Db(kM ) its bounded derived category. For f : M → N a morphism of good spaces,

denote by ⊗, f−1, Rf! and RHom , Rf∗, f
! the six operations. Denote by DM the

Verdier dual.

For S ⊂M locally closed, we denote by kS the extension by zero to M of the

constant sheaf on S with stalk k.

A bordered space is a pair M = (M,C) with M an open subset of a good

space C. We set
◦
M := M and

∨
M := C. A morphism f : M→ N of bordered spaces

is a morphism
◦
f :

◦
M →

◦
N of good spaces such that the projection Γf →

∨
M is

proper. Here, Γf denotes the closure in
∨
M×

∨
N of the graph Γf of

◦
f . The morphism

f is called semi-proper if the projection Γf →
∨
N is proper.

By definition, a subset Z of M is a subset of
◦
M. We say that Z is relatively

compact in M if it is contained in a compact subset of
∨
M. For Z ⊂ M locally closed,

we set Z∞ = (Z,Z) where Z is the closure of Z in
∨
M.

Let Modc(kM) ⊂ Mod(k ◦
M
) be the full subcategory of sheaves on

◦
M whose

support is relatively compact in M. We denote by Mod(IkM) the category of ind-

sheaves on M, that is, the category of ind-objects with values in Modc(kM). We

denote by Db(IkM) the bounded derived category of ind-sheaves of k-vector spaces

on M, and by ⊗, f−1, Rf!! and RIhom , Rf∗, f
! the six operations.

We denote by ιM : Db(k ◦
M
)→ Db(IkM) the natural embedding, by αM its left

adjoint, and we set RHom := αMRIhom . For F ∈ Db(k ◦
M
), we often write simply

F instead of ιMF in order to make notation less heavy.

Recall that ι commutes with R
◦
f∗,

◦
f−1, and

◦
f !, but it does not commute in

general with R
◦
f !! . If f is semi-proper, then

(2.1) ιNR
◦
f ! ≃ Rf!!ιM.
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§2.2. Enhanced ind-sheaves

Denote by t ∈ R the coordinate on the affine line, consider the two-point com-

pactification R := R∪{−∞,+∞}, and set R∞ := (R,R). For M a bordered space,

consider the projection

πM : M× R∞ → M.

Denote by Eb(IkM) := Db(IkM×R∞)/π−1
M Db(IkM) the bounded derived category

of enhanced ind-sheaves of k-vector spaces on M. Denote by QM : Db(IkM×R∞)→
Eb(IkM) the quotient functor. Recall that there is a natural splitting Eb(IkM) ≃
Eb
+(IkM)⊕ Eb

−(IkM).

For f : M→ N a morphism of bordered spaces, denote by
+
⊗, Ef−1, Ef !! and

RIhom+, Ef∗, Ef
! the six operations. Recall that the external operations are

induced via Q by the corresponding operations for ind-sheaves with respect to the

morphism fR := f × idR∞ . Denote by DE
M the Verdier dual. Denote by RHomE the

hom functor taking values in Db(k ◦
M
).

One sets

kE
M := QM

(
“lim−→”
c→+∞

k{t⩾c}
)
,

writing for short {t ⩾ c} = {(x, t) ∈
◦
M× R; t ⩾ c}.

There are embeddings

ϵ±M : Db(IkM) ↣ Eb
±(IkM), F 7→ QMk{±t⩾0} ⊗ π−1

M F,

eM : Db(IkM) ↣ Eb
+(IkM), F 7→ kE

M ⊗ π−1
M F ≃ kE

M

+
⊗ ϵ+M(F ).

Recall that e commutes with Rf!! , f
−1, and f ! , but it does not commute in general

with Rf∗.

The functor eM has as a left quasi-inverse the sheafification functor

shM : Eb
+(IkM)→ Db(k ◦

M
), K 7→ RHomE(kE

M,K).

We call shM(K) the sheaf associated with K. We say that K ∈ Eb
+(IkM) is of sheaf

type if it is in the essential image of eMιM. This is a local property5 on M. The full

subcategory of Eb
+(IkM) consisting of objects of sheaf type is closed by extensions,

and equivalent to Db(k ◦
M
).

For U ⊂ M an open subset, and φ : U∞ → R∞ a morphism of bordered spaces,

we set

(2.2) Eφ
U |M := QMk{t+φ(x)⩾0}, Eφ

U |M := kE
M

+
⊗ Eφ

U |M,

writing for short {t+ φ(x) ⩾ 0} = {(x, t) ∈ U × R; t+ φ(x) ⩾ 0}.

5A property is local on M if any x ∈
∨
M has an open neighborhood V ⊂

∨
M such that the

property holds on the associated bordered space (V ∩
◦
M)∞



Enhanced Nearby and Vanishing Cycles 551

§2.3. Specialization and microlocalization

Let N be a smooth manifold, V → N an R-vector bundle, and SV its fiberwise

sphere compactification given by SV := ((R × V ) \ ({0} × N))/R×
>0. Set V∞ :=

(V,SV ). Let V ∗ → N be the dual bundle.

The enhanced Fourier–Sato transforms

(∗)∧ : Eb
+(IkV∞)→ Eb

(R×
>0)∞

(IkV ∗
∞
),

L(∗) : Eb
+(IkV∞)→ Eb

+(IkV ∗
∞
)

are the integral transforms with kernel, respectively,

F := ϵ+(V×V ∗)∞
k{⟨v,w⟩⩽0}, L := E

−⟨v,w⟩
V×V ∗|(V×V ∗)∞

.

Here,6 Eb
(R×

>0)∞
(IkV ∗

∞
) is the full triangulated subcategory of Eb

+(IkV ∗
∞
) whose

objects are conic for the natural action of the group object (R×
>0)∞. Recall that

L(∗) and (∗)∧ agree on conic objects.

Let M be a smooth manifold, N ⊂M a submanifold, and denote by

TNM
τ // N T ∗

MN
ϖoo

the normal and conormal bundles. Consider the normal deformation pnd : M
nd
N →

M with center N , and the associated commutative diagram of bordered spaces

(TNM)∞
� � ind //

τ

��

(Mnd
N )∞

pnd

��

snd // R∞

N �
�

iN
//

□

M Ω∞
2 R

jnd

cc

pΩ

oo //

□

(R>0)∞,
2 R

cc

where (Mnd
N )∞ is the bordered compactification of pnd, and Ω := s−1

nd (R>0). Sato’s

specialization and microlocalization functors have natural enhancements

EνN : Eb
+(IkN )→ Eb

(R×
>0)∞

(Ik(TNM)∞),

EµN : Eb
+(IkN )→ Eb

(R×
>0)∞

(Ik(TNM)∞),

defined by

EνN (K) := Ei−1
nd Ejnd∗Ep

−1
Ω K,

EµN (K) := LEνN (K) ≃ EνN (K)∧.

6What we denote here by Eb

(R×
>0)∞

(IkV ∗
∞ ) corresponds to Eb

+(IkV ∗
∞ ) ∩ Eb

(R×
>0)∞

(IkV ∗
∞ ) in

the notation of [5].
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Denoting by ṪNM the complement of the zero section, and setting SNM :=

ṪNM/R×
>0, consider the natural morphisms

(TNM)∞ (ṪNM)∞
uoo

γ
// SNM .

We set

EνsphN := Eγ∗Eu
−1EνN ,

so that Eu−1EνN ≃ Eγ−1EνsphN . We similarly define Eµsph
N .

Consider the real oriented blowup prb : M
rb
N → M with center N , and the

associated commutative diagram of bordered spaces

(2.3)

SNM
� � irb //

σ

��

M rb
N

prb

��

(M \N)∞
K k

jN
yy

? _
jrboo

N
� � iN //

□

M.

One has an associated functor

EνrbN : Eb
+(IkN )→ Eb

+(IkSNM ), K 7→ Ei−1
rb Ejrb∗Ej

−1
N K.

Note that one has

(2.4) EνsphN ≃ EνrbN .

§2.4. Constructibility

Let M be a subanalytic bordered space.

We denote by Db
R-c(kM) the full triangulated subcategory of Db(k ◦

M
) whose

objects F are such that RjM !F is R-constructible in
∨
M. Here, jM : M ↪→

∨
M is

the natural morphism.

We denote by Eb
R-c(IkM) the full triangulated subcategory of Eb

+(IkM) whose

objects K satisfy the following property. For any open relatively compact sub-

analytic subset U ⊂ M there exists F ∈ Db
R-c(kM×R∞) such that π−1kU ⊗K ≃

kE
M

+
⊗QMF .

§3. Enhanced perverse ind-sheaves on a curve

In this section we let X be a smooth complex curve.

§3.1. Normal form

Consider the real oriented blowup X rb
a of X with center a ∈ X as in (2.3), and the

associated natural morphisms

(3.1) SaX
� � i // X rb

a (X \ {a})∞ �
� ja //? _

j
oo X,

where we write for short i = irb, j = jrb, and ja = j{a}.
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A sectorial neighborhood of θ ∈ SaX is an open subset U ⊂ X \ {a} such that

SaX ∪ j(U) is a neighborhood of θ in X rb
a . We write U ∋̇ θ to indicate that U is a

sectorial neighborhood of θ. We say that U ⊂ X \ {a} is a sectorial neighborhood

of Z ⊂ SaX, and we write U ⊃̇ Z if U is a sectorial neighborhood of each θ ∈ Z.

The sheaf PSaX of Puiseux germs on SaX is the subsheaf of i−1j∗j
−1
a OX

whose stalk at θ ∈ SaM consists of holomorphic functions on small sectors V ∋̇ θ

admitting a Puiseux expansion at a. We denote by PSaX the quotient of PSaX

modulo bounded functions, and we denote by [f ] ∈ PSaX the equivalence class of

f ∈ PSaX .

For f ̸=0, we set orda(f)=−n0/m if f has a Puiseux expansion
∑

n⩾n0
cnz

n/m
a

with cn0 ̸= 0, where n, n0 ∈ Z, m ∈ Z>0, and za is a local coordinate at a with

za(a) = 0. We set orda(0) = −∞. Note that f is bounded if and only if orda(f) ⩽ 0.

Definition 3.1. One says that K ∈ Eb
R-c(IkX) has normal form at θ ∈ SaX if

there exist a finite subset Φθ ⊂ PSaX,θ and integers nθ(f) ∈ Z>0 for f ∈ Φθ such

that

(3.2) π−1kVθ
⊗K ≃

⊕
f∈Φθ

(ERe f
Vθ|X)nθ(f)[1]

for some Vθ ∋̇ θ. (Recall that ERe f
Vθ|X was defined in (2.2).) One says that K has

normal form at I ⊂ SaX if it has normal form at any θ ∈ I. One says that K has

normal form at a if it has normal form at SaX.

If K has normal form at a connected open subset I ⊂ SaX, and f ∈ PSaX(I),

the number

N([f ]) =
∑

h∈Φθ,[f ]=[h]

nθ(h)

is finite, does not depend on the choice of θ ∈ I, and only depends on the class [f ]

of f . If N([f ]) > 0, one says that [f ] is an exponential factor of K, and N([f ]) is

called its multiplicity.

Proposition 3.2. Let K ∈ Eb
R-c(IkX) have normal form at I ⊂ SaX. Then

Eνrb{a}(K)|I is of sheaf type. More precisely, Eνrb{a}(K)|I ≃ eι(L) for L ∈ Mod(kI)

a local system of rank N([0]).

Proof. The statement is a local problem on I.

Let θ ∈ I. Since K has normal form at θ, there is an open neighborhood Iθ ∋ θ

such that (3.2) holds with Vθ ⊃̇ Iθ. Thus, we can reduce to the case K ≃ EReh
Vθ|X [1]

for h ∈ PSaX(Iθ). By definition of Eνrb{a}, it is then enough to check that

Ei−1Ej∗Ej
−1
a EReh

Vθ|X
∣∣
Iθ
≃

{
eι(kIθ ) if orda(h) ⩽ 0,

0 if orda(h) > 0.
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The statement is clear if orda(h) ⩽ 0. If orda(h) > 0, after a change of variable

and a ramification we can assume that h(z) = z−1
a . Hence, one concludes using

Lemma 3.3.

Lemma 3.3. Let M = R⩾0 × R with coordinates (ρ, s). Set U = {ρ > 0}, N =

{ρ = 0}, and consider the embeddings N
i−→M

j←− U∞. Then one has

E
s/ρ
U |M ≃ Ej∗Ej

−1E
s/ρ
U |M ,(3.3)

Ei−1Ej∗Ej
−1E

s/ρ
U |M ≃ 0,(3.4)

shM (Es/ρ
U |M ) ≃ k{ρ>0}∪{s<0}.(3.5)

Proof.

(i) One has

E
s/ρ
U |M = QMk{ρ>0,t+s/ρ⩾0}

= QMk{ρ>0,s+ρt⩾0},

Ej∗Ej
−1E

s/ρ
U |M ≃ QMRjR∗j

−1
R k{ρ>0,s+ρt⩾0}

≃ QMk{ρ⩾0,s+ρt⩾0}.

Consider the distinguished triangle

k{ρ>0,s+ρt⩾0} → k{ρ⩾0,s+ρt⩾0} → k{ρ=0,s⩾0}
+1−−→ .

Since QMk{ρ=0,s⩾0} ≃ 0, (3.3) follows.

(ii) (3.4) is implied by (3.3), since Ei−1E
s/ρ
U |M ≃ QN i−1

R k{ρ>0,s+ρt⩾0} ≃ 0.

(iii) By [6, Cor. 3.7], denoting by LE the left adjoint to Q, one has

shM (Es/ρ
U |M ) ≃ Rπ∗ L

E E
s/ρ
U |M

≃ Rπ∗k{ρ>0,s+ρt⩾0}

≃ DMRπ!DM×Rk{ρ>0,s+ρt⩾0}

≃ (DMRπ!k{ρ⩾0,s+ρt>0})[−3]
≃ (DMk{ρ>0}∪{s>0})[−2]
≃ k{ρ>0}∪{s<0}.

§3.2. Perversity

For a ∈ X, let ia : {a} → X be the embedding. Recall that F ∈ Db
R-c(kX) is

perverse if and only if there exists a discrete subset Σ ⊂ X such that
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(a) Hni−1
a F = 0 for any n > 0 and a ∈ Σ;

(b) Hni !aF = 0 for any n < 0 and a ∈ Σ;

(c) F |X\Σ ≃ L[1], for L ∈ Mod(kX\Σ) a local system of finite rank.

Denote by Perv(kX) ⊂ Db
R-c(kX) the full triangulated subcategory of perverse

sheaves.

Definition 3.4.

(i) We say that K ∈ Eb
R-c(IkX) is C-constructible if there exists a discrete subset

Σ ⊂ X such that

(a) for any n ∈ Z, Hn(K)|X\Σ ≃ eι(Ln) for a local system Ln on X \ Σ of

finite rank;

(b) for any n ∈ Z, Hn(K) has normal form at any a ∈ Σ.

Denote by Eb
C-c(IkX) ⊂ Eb

R-c(IkX) the full triangulated subcategory of C-
constructible enhanced ind-sheaves.

(ii) We say that K ∈ Eb
R-c(IkX) is an enhanced perverse ind-sheaf if there exists

a discrete subset Σ ⊂ X such that

(a) HnEi−1
a K = 0 for any n > 0 and a ∈ Σ;

(b) HnEi !aK = 0 for any n < 0 and a ∈ Σ;

(c) K|X\Σ ≃ eι(L[1]), for L ∈ Mod(kX\Σ) a local system of finite rank;

(d) H−1(K) has normal form at any a ∈ Σ.

Denote by E-Perv(IkX) ⊂ Eb
C-c(IkX) the full subcategory of enhanced per-

verse ind-sheaves.

Lemma 3.5. The functor eι :Db(kX)→Eb
+(IkX)sends Perv(kX)to E-Perv(IkX),

and the functor sh : Eb
+(IkX)→ Db(kX) sends E-Perv(IkX) to Perv(kX).

Proof. The first statement is clear from the definitions. The second statement

follows using Lemma 3.3.

Note that E-Perv(IkX) is an abelian subcategory of the quasi-abelian heart
1/2E0

R-c(IkX) for the middle perversity t-structure introduced in [4]. Note also that,

using [3, Prop. 4.1.2] (see also [14, 15]), one has the following theorem:

Theorem 3.6. The enhanced de Rham functor induces an equivalence between

E-Perv(ICX) and the category of holonomic DX-modules.

Proposition 3.7. Let K ∈ E-Perv(IkX) and a ∈ X a singularity of K. Then

both Eν{a}(K) and Eµ{a}(K)[1] are of sheaf type. Moreover, they, as well as their

associated sheaves, are perverse with the zero section as their only singularity.
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Proof. Consider the morphisms

X {a}? _iaoo � � o // TaX (ṪaX)∞? _uoo
γ
// SaX,

and consider the distinguished triangle

(3.6) Eu!!Eu
−1Eν{a}K → Eν{a}K → Eo∗Eo

−1Eν{a}K
+1−−→ .

(i) Let us show that Eν{a}K is of sheaf type. By Proposition 3.2, there exists

a local system L ∈ Mod(kSaX) such that Eνsph{a}(K) ≃ eι(L[1]). Since u is

semi-proper, one has by (2.1),

Eu!!Eu
−1Eν{a}K ≃ Eu!!Eγ

−1Eνsph{a}K ≃ eι(Ru! γ
−1L[1]).

Hence Eu!!Eu
−1Eν{a}K is of sheaf type. Since any R-constructible enhanced

ind-sheaf on a point is of sheaf type, Eo−1Eν{a}K is of sheaf type. This implies

that Eν{a}K is of sheaf type by the distinguished triangle (3.6).

(ii) Let us show that Eν{a}(K) ∈ Eb
R-c(IkTaX) is perverse, with {a} as its only

singularity. Since Eo−1Eν{a}(K) ≃ Ei−1
a K and Eo !Eν{a}(K) ≃ Ei !aK by [5,

Lem. 4.8], we have

(a) Hn(Eo−1Eν{a}(K)) ≃ Hn(Ei−1
a K) ≃ 0 for n > 0;

(b) Hn(Eo !Eν{a}(K)) ≃ Hn(Ei !aK) ≃ 0 for n < 0;

(c) Eu−1Eν{a}(K) ≃ eι(γ−1L[1]), with L as in (i).

(iii) It remains to show that Eµ{a}(K)[1] is of sheaf type, and that its associated

sheaf is perverse. Setting F := sh(Eν{a}(K)), this follows from

Eµ{a}(K) ≃ Eν{a}(K)∧ ≃ eι(F )∧ ≃ eι(F∧),

and the fact that the classical Fourier–Sato transform for sheaves preserves

the perversity of R×
>0-conic objects, up to shift [1].

§4. Nearby and vanishing cycles

As we mentioned in the introduction, nearby cycles for enhanced ind-sheaves were

discussed in [3, §6.2]. However, defining them through enhanced specialization, as

we do here, sheds some light on the underlying geometry. Moreover, using enhanced

microlocalization, we can here also deal with vanishing cycles. In this section we

thus recall and complement some results from [3].
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§4.1. Definitions

Let X be a smooth complex curve, and a ∈ X. Consider the natural morphisms

associated with the real blowup X rb
a of X with center a as in (3.1):

SaX
� � i // X rb

a (X \ {a})∞ �
� ja //? _

j
oo X.

Definition 4.1. Let K ∈ Eb
R-c(IkX).

(i) Consider the objects of Db(kSaX):

Ψa(K) := νsph{a}(shX(K)) ≃ νrb{a}(shX(K))

= i−1Rj∗j
−1
a shX(K)

≃
(∗)

i−1Rj∗ sh(X\{a})∞(Ej−1
a K),

Ψ≼0
a (K) := i−1 shXrb

a
(Ej∗Ej

−1
a K),

Ψ0
a(K) := shSaX(Ei−1Ej∗Ej

−1
a K)

= shSaX(Eνrb{a}(K)) ≃ shSaX(Eνsph{a}(K)),

where (∗) follows from [6, Lem. 3.9].

(ii) Let I ⊂ SaX be an open subset and f ∈ PSaX(I). For U ⊂ X \ {a} an open

subset such that U ⊃̇ I and f extends on U , set

K(f) := RIhom+(ERe f
U |X ,K) ∈ Eb

+(IkX),

Ψ≼f
a (K) := Ψ≼0

a (K(f))|I ∈ Db(kI),

Ψf
a(K) := Ψ0

a(K(f))|I ∈ Db(kI).

Note that Ψ≼f
a (K) and Ψf

a(K) do not depend on the choice of U .

(iii) Consider the object of Db(kS∗
aX

):

Φa(K) := µsph
{a}(shX(K))[1],

Φ0
a(K) := shS∗

aX
(Eµsph

{a}(K))[1].

Lemma 4.2. Let I ⊂ SaX be an open subset, f, g ∈ PSaX(I) with f ≼I g, and

K ∈ Eb
+(IkX). Then there are natural morphisms in Eb

+(IkI),

Ψa(K)|I ←− Ψ≼g
a (K)←− Ψ≼f

a (K)→ Ψf
a(K).

Proof. It follows from [6, Lem. 3.9].
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Let θ ∈ SaX, f ∈ PSaX,θ, and denote by za a local coordinate at a with

za(a) = 0. Assuming K ∈ Eb
R-c(IkX), it follows from [6, Lem. 5.1] that one has

Ψf
a(K)θ ≃ lim−→

δ,ε→0+
V ∋̇θ

RHomE(E
Re f(x)▷Re f(x)−δ|za(x)|−ε

V |X ,K).

See [6, Not. 2.3] for the notation E
φ+(x)▷φ−(x)
V |X .

§4.2. The case of perverse objects

Let us collect in the following lemma some results from [3, §6]. Note that statement

(iii) below also follows from Proposition 3.2.

Lemma 4.3. Let I ⊂ SaX be a connected open subset. Let f, g ∈ PSaX(I) with

f ≼I g, and K ∈ Eb
R-c(IkX). Assume that K has normal form at I. Then

(i) Ψa(K)|I is concentrated in degree zero and is a local system on I of rank∑
[h]∈PSaX,θ

N(h) for θ ∈ I;

(ii) Ψ≼f
a (K) is concentrated in degree zero, and is an R-constructible sheaf on I;

moreover, the morphisms Ψ≼f
a (K) → Ψ≼g

a (K) → Ψa(K)|I are monomor-

phisms, and Ψ≼f
a (K)→ Ψf

a(K) is an epimorphism;

(iii) Ψf
a(K) is concentrated in degree zero, and is a local system of rank N([f ])

on I.

Recall the notion of a Stokes filtration, e.g. from [3, §6.1].

Proposition 4.4. Let K ∈ E-Perv(IkX). Then

(i) Ψa(K) is a local system on SaX with Stokes filtration Ψ≼•
a (K), and associated

graded components Ψ•
a(K) which are local systems on SaX;

(ii) Φ0
a(K) is a local system on S∗

aX.

Proof. (i) is a particular case of Lemma 4.3, and (ii) follows from Proposition 3.7.

Refer to Appendix A for an alternative description of the vanishing cycles

Φ0
a(K) as a local system on SaX, via some blow-up transforms.

§5. Fourier transform on the affine line

Let K be an enhanced perverse ind-sheaf on the affine line, and assume that

so is its shifted enhanced Fourier–Sato transform LK := LK[1]. The stationary

phase formula provides a relation (see (1.2)) between the graded components of
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the Stokes filtrations of K and LK, for degrees which are not linear (modulo a

bounded function). We discuss here the case of linear degrees.

§5.1. Linear exponential factors

Let z be a coordinate on the complex line V, and w the dual coordinate on V∗, so

that the pairing V× V∗ → C is given by (z, w) 7→ zw. The underlying real vector

spaces are in duality by the pairing ⟨z, w⟩ = Re(zw). Denoting by P = V ∪ {∞}
the complex projective line with affine chart V, one has V∞ ≃ (V,P). Similarly,

V∗
∞ ≃ (V∗,P∗), for P∗ = V∗ ∪ {∞}.

Let E-Perv(IkV∞) be the full triangulated subcategory of Eb
R-c(IkV∞) whose

objects are of the form Ej−1K for some K ∈ E-Perv(IkP). Here, j : V∞ ↪→ P is

the natural morphism.

Consider the enhanced Fourier–Sato transform

Eb
+(IkV∞)→ Eb

+(IkV∗
∞
), K 7→ LK := LK[1].

Here, the shift ensures compatibility with the Riemann–Hilbert correspondence.

Theorem 5.1. Let K ∈ E-Perv(IkV∞). Assume LK ∈ E-Perv(IkV∗
∞
). Then

(i) for any a ∈ V, under the canonical identification S∞P∗ ≃ S∗
aV, there is an

isomorphism of local systems

Ψaw
∞ (LK) ≃ Φ0

a(K);

(ii) for any b ∈ V∗, under the canonical identification S∗
bV∗ ≃ S∞P, there is an

isomorphism of local systems

Φ0
b(

LK) ≃ r−1Ψ−bz
∞ (K);

where r denotes the antipodal map.

Remark 5.2. With notation as in Section 1.4, for k = C let K := DRE(M) for

M an algebraic holonomic DV-module. Then LK ≃ DRE(M∧), whereM∧ is the

Fourier–Laplace transform ofM. SinceM∧ is an algebraic holonomic DV∗ -module,
LK ∈ E-Perv(IkV∗

∞
).

Proof of Theorem 5.1. (ii) follows from (i). In fact, interchanging the roles of V
and V∗, one has

Φ0
b(

LK) ≃ Ψbz
∞(LLK) ≃

(∗)
Ψbz

∞(Er−1K) ≃ r−1Ψ−bz
∞ (K).

For (∗) refer e.g. to [5, §5.2].
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(i) The translation τa : V → V, z 7→ z + a, induces an identification SaV ≃ S0V.
Moreover, one has

Φ0
a(K) ≃ Φ0

0(Eτ
−1
a K),

Ψaw
∞ (L(Eτ−1

a K)) ≃ Ψaw
∞ ((LK)(−aw))

≃ Ψ0
∞(LK).

Hence, we may assume a = 0. It is then enough to check that there is an isomor-

phism

Ψ0
∞(LK) ≃ Φ0

0(K).

Since Eνsph{∞}(
LK) and Eµsph

{0}(K) are of sheaf type, it is equivalent to prove that

there is an isomorphism

Eνsph{∞}(
LK) ≃ Eµsph

{0}(K).

This follows from Lemma 5.3 and (5.2) below.

§5.2. Smash functor

We consider here the smash functor of [1], in its enhanced version from [5], and

establish a small additional result needed to complete the proof of Theorem 5.1.

The sphere compactification SV := ((Ru×V)\{(0, 0)})/R×
>0 of V decomposes

as SV = V+ ⊔H ⊔ V−, corresponding to u > 0, u = 0, or u < 0. Let us identify

V = V+. Note that H is a real hypersurface of SV. One has a natural identification

V̇ := V \ {0} = T+
HSV, where T+

HSV ⊂ ṪHSV denotes the normal directions

pointing to V = V+. With these identifications, EνH induces a functor

EνH|V̇ : E
b
+(IkV̇∞

)→ Eb
(R×

>0)∞
(IkV̇∞

)

which can be considered a “specialization at ∞”.

The enhanced smash functor

EσV : E
b
+(IkV∞)→ Eb

(R×
>0)∞

(IkV∞),

for which we refer to [5, §6], provides an extension of EνH|V̇ from V̇∞ to V. In
fact, EσV induces a functor

EσV|V̇ : E
b
+(IkV̇∞

)→ Eb
(R×

>0)∞
(IkV̇∞

),

and one has

(5.1) EσV|V̇ ≃ EνH|V̇.

Recall also that, by [5, Prop. 6.6], for K ∈ Eb
+(IkV∞) one has

(5.2) Eµ{0}(K) ≃ EσV∗(LK).
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Lemma 5.3. Let K ∈ Eb
+(IkV∞). Then, with the natural identification S∞P ≃

V̇/R×
>0, one has

Eνsph{∞}(K) ≃ Eσsph
V (K).

Proof. With H,V± ⊂ SV defined as above, one has SVrb
H = (SVrb

H)+ ⊔ (SVrb
H)+

and SHSV = (SHSV)+ ⊔ (SHSV)−. Moreover, the identification V ≃ V+ implies

identifications Prb
∞ ≃ (SVrb

H)+ and S∞P ≃ (SHSV)+.
With these identifications, and using (2.4) and (5.1), it is enough to prove the

isomorphism

Eνrb{∞}(K) ≃ EνrbH(K)|S+
HSV.

This follows by considering the commutative diagram

V∞

≀

V̇∞?
_oo � � //

≀

Prb
∞

≀

S∞P? _oo

≀

V+
∞ V̇+

∞
? _oo � � //

□

(SVrb
H)+

□

(SHSV)+.? _oo □

Appendix A. Vanishing cycles by blow-up transform

Appendix A.1. Blow-up transforms

Let M be a real analytic manifold, and N ⊂M a smooth submanifold. As in (2.3)

consider the real oriented blowup M rb
N of M with center N , and the associated

commutative diagram of bordered spaces

SNM �
� i //

σ

��

M rb
N

p

��

(M \N)∞
L l

jN
yy

? _
j

oo

N �
� iN //

□

M,

where we write for short i = irb, j = jrb, and p = prb.

Definition A.1. For K ∈ Eb
+(IkM ), consider the objects of Eb

+(IkSNM ),

Eλrb
N (K) := Ei !Ep−1K[1],

Eλ̃rb
N (K) := Ei−1Ep !K.

We denote by λrb
N and λ̃rb

N the analogous functors for sheaves.

Note that one has

e ◦ λrb
N ≃ Eλrb

N ◦ e, e ◦ λ̃rb
N ≃ Eλ̃rb

N ◦ e,

and similarly for e replaced by ϵ, ϵ+, or ϵ−.
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Remark A.2. Note that Eλrb
N ̸≃ Eλ̃rb

N in general, as shown by the following

example. (See however Proposition A.8.) For M = Rx and N = {0}, one has

M rb
N ≃ {x ⩽ 0} ⊔ {x ⩾ 0}. Restricted to the left component, the maps i and p are

the embeddings {0} i−→ {x ⩽ 0} p−→ R. Then, for F = k{x>0}, one has

λrb
N (F ) ≃ i ! p−1k{x>0}[1] ≃ i ! (k{x>0}|{x⩽0}[1]) ≃ 0,

λ̃rb
N (F ) ≃ i−1p !k{x>0} ≃ (RΓ{x⩽0}k{x>0})0 ≃ k[−1].

Lemma A.3. For K ∈ Eb
+(IkM ), there are distinguished triangles

(i) Eσ−1Ei−1
N K → EνrbN (K)

c−→ Eλrb
N (K)

+1−−→;

(ii) Eσ !Ei !NK → Eλ̃rb
N (K)

v−→ EνrbN (K)
+1−−→.

Proof.

(i) For L ∈ Eb
+(IkM rb

N
), there is a distinguished triangle

Ej!!Ej
−1L→ L→ Ei!!Ei

−1L
+1−−→ .

When L = Ep−1K, the above distinguished triangle reads

Ej!!Ej
!
NK → Ep−1K → Ei!!Eσ

−1Ei−1
N K

+1−−→ .

By applying Ei ! we get (i).

(ii) Consider the distinguished triangle

Ei∗Ei
!L→ L→ Ej∗Ej

!L
+1−−→ .

When L = Ep !K, the above distinguished triangle reads

Ei∗Eσ
!Ei !NK → Ep !K → Ej∗Ej

−1
N K

+1−−→ .

One concludes by applying Ei−1.

The following result is clear from the definitions and [5, Lem. 4.7].

Lemma A.4. For K ∈ Eb
R-c(IkM ), one has

DEEνrbN (K) ≃ EνrbN (DEK), DEEλ̃rb
N (K) ≃ Eλrb

N (DEK)[−1].

Lemma A.5. For K ∈ Eb
+(IkM ) one has

(i) Eλrb
N (K) ≃ Eλrb

N (EνN (K));

(ii) Eλ̃rb
N (K) ≃ Eλ̃rb

N (EνN (K));

with the identification SNM ≃ SN (TNM).
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Proof. Since the proofs are similar, we will only discuss (i).

(a) We will construct in part (b) below a natural morphism

(A.1) Eλrb
N (EνN (K))→ Eλrb

N (K).

By Lemma A.3(i), it enters the commutative diagram

Eσ−1Eo−1EνN (K)

≀
��

// EνrbN (EνN (K))

≀
��

// Eλrb
N (EνN (K))

+1−−→

��

Eσ−1Ei−1
N K // EνrbN (K) // Eλrb

N (K)
+1−−→ .

Here, the first vertical isomorphism is due to [5, Lem. 4.8], and the second vertical

isomorphism follows from [5, Lem. 4.10]. Hence, also the third vertical arrow is an

isomorphism, and the statement follows.

(b) In order to obtain (A.1), we are going to connect the relevant spaces in a

commutative diagram.

We refer to [5, §§2.3, 2.4] for notation and details on the real oriented blowup

M rb
N , the real projective blowup Mpb

N , the normal deformation Mnd
N , and the open

embedding Mnd
N ⊂ (M × R)pbN×{0}.

With the natural identification M × R>0 ≃ Ω ⊂ Mnd
N , consider the open

embeddings (see Figure 1)

(M × R)rbN×R

U :=Ωrb
N×R>0

) 	

j
66

� u

ȷ̃
((

� �
ȷ̂ // (Mnd

N )rb
N×R̸=0

((M × R)rbN×{0})
rb
N×R ̸=0

.

Here, ȷ̃ is induced by the natural embedding Ω ⊂ (M × R)rbN×{0}, compatible with

the open embedding Mnd
N ⊂ (M × R)pbN×{0} of [5, §2.4]. More precisely, there is a

commutative diagram

Ω �
�

//� _

��

(M × R)rbN×{0}

q

��

Mnd
N
� � // (M × R)pbN×{0},



564 A. D’Agnolo and M. Kashiwara

j(U)

M rb
N

ȷ̃(U)

X

ȷ̂(U)

(TNM)rbN

Figure 1. The sets j(U), ȷ̃(U), and ȷ̂(U) pictured in the case M = R and N = {0}.
The red lines are fibers of the projection pU : U → Ω→M . (Color figure online.)

where q is the natural projection from the real oriented blowup to the projective

blowup.

Let X be the closed subset of ((M × R)rbN×{0})
rb
N×R ̸=0

given by

X := ȷ̃(U) \ ȷ̃(U)

= (M \N) ⊔ SNM ⊔ ṪNM ⊔ SN (TNM).

Consider the commutative diagram with cartesian squares, where ũ and u are

open embeddings,

M

U

pU

OO

p̂
//

kK
j

xx

� _

ȷ̃

��

� u

ȷ̂
''

Ω

pΩ

kk

� _

ȷ

��

j(U) ȷ̃(U)
r̃

oo ȷ̂(U)

□

p̃
//? _

ũ
oo Ω

M rb
N

□

p

00

?�

k

OO

X

□

?�

k̃

OO

r
oo (TNM)rbN

□

p
//? _

u
oo

?�
k̂

OO

TNM
?�

k

OO

SNM

□

?�

i

OO

X \ (M \N)

□

r
oo

?�

ℓ̃

OO

SN (TNM).? _

ℓ̄

oo
?�

ı

OO

Note that r◦ℓ̄ gives the identification SN (TNM) ≃ SNM . Hence, by definition,

(A.1) is written as

(A.2) Er∗Eℓ̄∗Eı
!Ep−1EνN (K)[1]→ Ei !Ep−1K[1].



Enhanced Nearby and Vanishing Cycles 565

On one hand, there is a chain of morphisms

Eı !Ep−1EνN (K) ≃ Eı !Ep−1Ek−1Eȷ∗Ep
−1
Ω K ≃ Eı !Ek̂−1Ep̃−1Eȷ∗Ep

−1
Ω K

→
(1)

Eı !Ek̂−1Eȷ̂∗Ep̂
−1Ep−1

Ω K ≃ Eı !Ek̂−1Eȷ̂∗Ep
−1
U K

≃ Eı !Ek̂−1Eũ−1Eȷ̃∗Ep
−1
U K ≃ Eı !Eu−1Ek̃−1Eȷ̃∗Ep

−1
U K

≃
(2)

Eℓ̄ !Eℓ̃ !Ek̃−1Eȷ̃∗Ep
−1
U K = Eℓ̄ !L,

where we set

L := Eℓ̃ !Ek̃−1Eȷ̃∗Ep
−1
U K.

Here, (1) follows by adjunction from the isomorphism Eȷ̂−1Ep̃−1Eȷ∗ ≃ Ep̂−1, and

(2) uses the fact that Eu−1 ≃ Eu !.

Hence, there is a morphism

(A.3) Er∗Eℓ̄∗Eı
!Ep−1EνN (K)→ Er∗Eℓ̄∗Eℓ̄

!L.

On the other hand, there is a chain of isomorphisms

Ei !Ep−1K ≃
(3)

Ei !Ek−1Ej∗Ep
−1
U K ≃ Ei !Ek−1Er̃∗Eȷ̃∗Ep

−1
U K

≃
(4)

Ei !Er∗Ek̃
−1Eȷ̃∗Ep

−1
U K ≃ Er∗Eℓ̃

!Ek̃−1Eȷ̃∗Ep
−1
U K

≃ Er∗L.

Here, (3) easily follows using the identification (M ×R)rbN×R ≃ (M rb
N )×R, and (4)

uses the fact that r̃ and r are proper.

Hence, the natural morphism Eℓ̄∗Eℓ̄
!L → L, combined with (A.3), induces

(A.2).

Appendix A.2. The case of vector bundles

Let τ : V → N be a vector bundle, and o : N → V its zero section. Let V̇ =

V \ o(N), and consider the quotient γ : V̇ → SNV by the R×
>0-action.

Consider the projections

V V ×N V̇
p1oo

p2 // V̇ .

For K ∈ Eb
+(IkV ) and C ∈ Eb

+(IkV×N V̇ ), we set

ΦC(K) := Ep2!!(C
+
⊗ Ep−1

1 K),

ΨC(K) := Ep2∗RIhom
+(C,Ep !

1K).
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Lemma A.6. Let K ∈ Eb
(R×

>0)∞
(IkV ). With the identifications N ≃ o(N) ⊂ V

and TNV ≃ V , one has

Eγ−1Eλrb
N (K) ≃ ΦC(K),

Eγ−1Eλ̃rb
N (K) ≃ ΨC(K),

for C = ϵ(kB)[1], with B = {(x, y) ∈ V ×N V̇ ;x = λy, for some λ ⩾ 0} a closed

subset of V ×N V̇ .

Proof. Since the proofs are similar, let us only discuss the first isomorphism.

Consider the morphisms

V̇ V̇ × (R⩾0)∞q1
oo

p̃

**

γ̃
//

ȷ̃xx

V rb
N p

// V

V̇ × R∞

q̃1

OO

V̇

i0

OO

ı̃0
oo

γ
//

□

SNV,

i

OO

where i0(x) = (x, 0). One has

Eγ−1Eλrb
N (K) ≃ Eγ !Ei !Ep−1K ≃ Ei !0Eγ̃

!Ep−1K

≃
(∗)

Ei !0Eγ̃
−1Ep−1K[1] ≃ Ei !0Ep̃

−1K[1]

≃ Ei !0Eȷ̃
!Eȷ̃!!Ep̃

−1K[1] ≃ E ı̃ !0Eȷ̃!!Ep̃
−1K[1]

≃
(∗∗)

Eq̃1!!Eȷ̃!!Ep̃
−1K[1] ≃ Eq1!!Ep̃

−1K[1],

where (∗) is due to the fact that γ̃ is an (R×
>0)∞-bundle, and (∗∗) holds because

Eȷ̃!!Ep̃
−1K is (R×

>0)∞-conic with respect to the action on the second factor of

V̇ × R∞.

It follows that Eγ−1Eλrb
N (K) ≃ ΦC(K) for C := R(p̃, q1)!kV̇×R⩾0

[1]. Since

(p̃, q1) decomposes into

(p̃, q1) : V̇ × R⩾0
∼ // B �

�
// V ×N V̇ ,

we have R(p̃, q1)!kV̇×R⩾0
≃ kB .

Appendix A.3. Blow-up and vanishing cycles

Let X be a smooth complex curve, and a ∈ X. Let z be a coordinate on the

complex vector line TaX, and w the dual coordinate on T ∗
aX, so that the pairing

TaX × T ∗
aX → C is given by (z, w) 7→ zw. Then the isomorphism

c : (ṪaX)∞ → (Ṫ ∗
aX)∞, z 7→ −z−1
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does not depend on the choice of the coordinate, and induces a homeomorphism

c : SaX ∼−−→ S∗
aX.

Lemma A.7. For K ∈ Eb
+(IkX), there is a natural morphism

Ec−1Eµsph
{0}(K)[1]→ Eλrb

{0}(K).

Proof. Since c is an isomorphism and γ−1 is fully faithful, it is enough to show

that there is a natural morphism

Eu−1Eµ{0}(K)[1]→ Ec∗Eγ
−1Eλrb

{0}(K),

where u : (Ṫ ∗
aX)∞ → (T ∗

aX)∞ is the natural morphism. Write L = Eν{0}(K).

By Lemma A.5, it is equivalent to prove that there is a natural morphism in

Eb
+(Ik(Ṫ∗

aX)∞
),

(A.4) Eu−1L∧[1]→ Ec∗Eγ
−1Eλrb

{0}(L).

Set V = TaX and V∗ = T ∗
aX. Consider the subsets of V× V̇∗,

F =
{
Re zw ⩽ 0

}
, G =

{
Re zw ⩽ 0, Im zw = 0

}
.

The inclusion of closed subsets G ⊂ F gives a morphism

(A.5) Φϵ+(kF )(L)→ Φϵ+(kG)(L).

Then we obtain (A.4) by applying Eu−1 to (A.5). In fact, on one hand, recalling

the notation used for the enhanced Fourier–Sato transforms from Section 2.3, one

has

Eu−1L∧[1] ≃ Eu−1Φϵ+(kF )(L)[1].

On the other hand, one has G∩ (V× V̇∗) = {(z, w); z = −λw−1, ∃λ ⩾ 0}. Hence

Ec∗Eγ
−1Eλrb

{0}(L) ≃ Eu−1Φϵ+(kG)(L)[1] by Lemma A.6.

Proposition A.8. Let K ∈ E-Perv(IkX). Then there are natural isomorphisms

in Eb
+(IkSaX),

Eλ̃rb
{a}(K) ∼←−− Ec−1Eµsph

{a}(K)[1] ∼−−→ Eλrb
{a}(K).

In particular, Eλrb
{a}(K) ≃ Eλ̃rb

{a}(K) is of sheaf type, and its associated sheaf is a

local system.

Proof.

(i) Let us show that the first isomorphism follows by duality from the second one.
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One has

Eλ̃rb
{a}(K) ≃ Eλ̃rb

{a}(D
EDEK) ≃

(∗)
DE(Eλrb

{a}(D
EK)[−1]),

Ec−1Eµsph
{a}(K) ≃ Ec−1Eµsph

{a}(D
EDEK) ≃

(∗∗)
DE(Ec−1Eµsph

{a}(D
EK)[−1]),

where (∗) follows from Lemma A.4, and (∗∗) from [5, Lem. 4.5].

(ii) Let us prove the first isomorphism. Set V = TaX and V∗ = T ∗
aX. By Propo-

sition 3.7, one has Eν{a}(K) ≃ eι(F ) for some F ∈ Perv(kV) ∩ Db
R×

>0

(kV). By [5,

Lem. 4.10] and Lemma A.5, we may take X = V, a = 0, and K = eι(F ). Hence,

we are reduced to proving that the morphism

Ec−1Eµsph
{0}(eι(F ))[1]→ Eλrb

{0}(eι(F )),

from Lemma A.7, is an isomorphism. One has

Ec−1Eµsph
{0}(eι(F )) ≃ eι(c−1µsph

{0}(F )),

Eλrb
{0}(eι(F )) ≃ eι(λrb

{0}(F )).

Since eι is fully faithful, it is enough to show that there is an isomorphism

c−1µsph
{0}(F )[1] ∼−−→ λrb

{0}(F ),

which can be checked at the level of stalks.

The underlying real vector spaces to V and V∗ are in duality by the pairing

⟨v, w⟩ = Re(zw). For Γ ⊂ V∗, the set

Γ◦ =
{
v ∈ V; ⟨v, w⟩ ⩾ 0 for any w ∈ Γ

}
is called the polar cone of Γ.

For θ ∈ SaX = S0V, by [9, Thms. 4.2.3, 4.3.2] one has

(νsph{0}(F ))θ ≃ lim−→
Λ,r

RHom(kΛ∩{|z|<r}, F )

≃
(∗)

lim−→
Λ

RHom(kΛ, F ),

(µsph
{0}(F ))c(θ) ≃ lim−→

Γ,r

RHom(kΓ◦∩{|z|<r}, F )

≃
(∗)

lim−→
Γ

RHom(kΓ◦ , F ),

where Λ runs over the open convex proper cones in V containing θ, Γ runs over

the open convex proper cones in V∗ containing c(θ), and r → 0+. Here, the

isomorphisms (∗) are due to the fact that F is conic.
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It then follows from Lemma A.3(i) that one has

(λrb
{0}(F ))θ[−1] ≃ lim−→

Λ

RHom(kV\Λ, F ).

For any Λ as above, taking Γ = c(Λ), one has λ2 := V \Λ ⊃ Γ◦ =: λ1. Hence,

it is enough to prove

RHom(kλ2\λ1
, F ) ≃ 0.

Consider the maps

V V̇? _
j

oo
q
// S0V = V̇/R×

>0.

Let ∅ ⊊ Ik ⊊ S0V be the closed connected subset such that λ̇k = q−1(Ik), for

k = 1, 2. Let L be a local system on S0V such that j−1F ≃ q−1L[1]. Then one has

RHom(kλ2\λ1
, F ) ≃ RHom(Rj!kλ̇2\λ̇1

, F ) ≃ RHom(kλ̇2\λ̇1
, q−1L[1])

≃ RHom(kλ̇2\λ̇1
, q !L) ≃ RHom(Rq!kλ̇2\λ̇1

, L)

≃ RHom(kI2\I1 [−1], L).

The last term vanishes, since

V ≃ RHom(kI1 [−1], L) ∼−−→ RHom(kI2 [−1], L) ≃ V,

where V is the stalk of L.

Remark A.9. Let us use notation as in Lemma A.7 and its proof. Then, for

L = Eν{0}K with K ∈ E-Perv(IkX), the morphism (A.5) is an isomorphism. In

fact, on one hand, Eu−1(A.5) = (A.4) is an isomorphism by Proposition A.8. On

the other hand,

Eo−1Φϵ+(kF )(L) ≃ Eτ∗L ≃ Eo−1Φϵ+(kG)(L),

where o : {0} → V is the linear embedding, and τ : V→ {0} its transpose.
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D-modules, J. Éc. polytech. Math. 8 (2021), 27–55. Zbl 1460.32008 MR 4180259

[7] P. Deligne, B. Malgrange, and J.-P. Ramis, Singularités irrégulières, Documents Mathé-
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