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Further Examples of Non-geometric Sections of
Arithmetic Fundamental Groups

by

Mohamed Säıdi

Abstract

We show the existence of group-theoretic sections of certain geometrically pro-nilpotent by
abelian arithmetic fundamental groups of hyperbolic curves over p-adic local fields which
are non-geometric, i.e., which do not arise from rational points. Among these quotients
is the geometrically metabelian arithmetic fundamental group.
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§0. Introduction/statement of the main result

Grothendieck’s anabelian section conjecture predicts that sections of arithmetic

fundamental groups of hyperbolic curves over finitely generated fields over Q arise

from rational points (cf. [Säıdi] for a more precise formulation of the conjecture).

Accordingly, sections of arithmetic fundamental groups of hyperbolic curves over

p-adic local fields, which are defined over number fields and which arise from global

sections, should arise from rational points. In this context it is tempting to pre-

dict a p-adic analog of Grothendieck’s anabelian section conjecture. In [Säıdi3] we

investigated such an analog and exhibited two necessary and sufficient conditions

for a section of the arithmetic fundamental group of a hyperbolic curve over a

p-adic local field to be geometric, i.e., to arise from a rational point (cf. [Säıdi3,

Thm. 4.5]).
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For the time being there are no examples of sections of (the full) arithmetic

fundamental groups of hyperbolic curves over p-adic local fields which are non-

geometric, and one can still hope for the validity of a p-adic analog of the section

conjecture. On the other hand, recent examples were found of group-theoretic sec-

tions of certain (geometrically characteristic) quotients of arithmetic fundamental

groups of curves over p-adic local fields which are non-geometric. Hoshi constructed

examples of sections of the geometrically pro-p quotient of arithmetic fundamen-

tal groups of curves over p-adic local fields which are non-geometric (cf. [Hoshi]).

(Actually, Hoshi’s example arises from group-theoretic sections of geometrically

pro-p fundamental groups of hyperbolic curves over number fields (cf. [Hoshi]).)

In [Säıdi] we constructed examples of group-theoretic sections of geometrically

prime-to-p fundamental groups of hyperbolic curves over p-adic local fields which

are non-geometric (cf. [Säıdi, Sect. 3]). Further, in [Säıdi2] we provided examples

of group-theoretic sections of the “étale by geometrically abelian” fundamental

group of hyperbolic curves over p-adic local fields which are non-geometric. The

existence of these examples is crucial for our understanding of the p-adic section

conjecture. Indeed, if the p-adic version of the section conjecture holds true then

it may possibly hold true even for smaller quotients of the arithmetic fundamen-

tal group, and one would like to know these quotients in this case. On the other

hand, more elaborate examples of non-geometric sections as above may lead to a

counterexample for the p-adic version of the section conjecture.

In this note we provide further examples of sections of certain quotients of

arithmetic fundamental groups of curves over p-adic local fields which are non-

geometric. These quotients include the geometrically metabelian and certain geo-

metrically pro-nilpotent by abelian quotients.

Next we fix notation and state our main results:

� Let

1→ H ′ → H
pr−→ G→ 1

be an exact sequence of profinite groups. We will refer to a continuous ho-

momorphism s : G → H satisfying pr ◦s = idG as a (group-theoretic) sec-

tion, or splitting, of the above sequence, or simply a section of the projection

pr : H ↠ G. We denote by Sect(H ↠ G) the set of sections of the projection

H ↠ G.

� Given a profinite group H and a prime integer ℓ, we will denote by Hℓ the

maximal pro-ℓ quotient of H, by Hab the maximal abelian quotient of H and

by Hab,ℓ its maximal abelian pro-ℓ quotient. Thus Hab,ℓ = (Hℓ)ab.

Let p ≥ 2 be a prime integer and k a p-adic local field , meaning that

k/Qp is a finite extension, with ring of integers Ok, and residue field F . Thus
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F is a finite field of characteristic p. Let X → Spec k be a proper, smooth, and

geometrically connected hyperbolic (i.e., genus(X) ≥ 2) curve over k. Let η be

a geometric point of X above its generic point, which determines an algebraic

closure k̄ of k, and a geometric point η̄ ofX
def
= X×k k̄. There exists a canonical

exact sequence of profinite groups (cf. [Grothendieck, Exp. IX, Thm. 6.1])

1→ π1(X, η̄)→ π1(X, η)→ Gk → 1.

Here, π1(X, η) denotes the arithmetic étale fundamental group of X with base

point η, π1(X, η̄) the étale fundamental group of X
def
= X×k k̄ with base point

η̄, and Gk
def
= Gal(k̄/k) the absolute Galois group of k.

� Let Π be a quotient of π1(X, η) such that the projection π1(X, η) ↠ Gk factors

as π1(X, η) ↠ Π ↠ Gk, and which is geometrically non-trivial, meaning that

Ker(Π ↠ Gk) is non-trivial. Given a section s : Gk → Π of the projection

Π ↠ Gk, we say that s is geometric if s(Gk) is contained in (hence equal to)

the decomposition group Dx ⊂ Π associated to a rational point x ∈ X(k). In

this case we say s arises from the rational point x. We say that the section

s is non-geometric if s is not geometric in the above sense, i.e., s(Gk) is not

contained in the decomposition group associated to a rational point x ∈ X(k).

(Note that in the above discussion the decomposition group Dx is only defined

up to conjugation by elements of Ker(Π ↠ Gk).)

� We assume X(k) ̸= ∅. We fix a k-rational point x ∈ X(k) and s
def
= sx : Gk →

π1(X, η) a section of the projection π1(X, η) ↠ Gk associated to x. Thus s is

defined only up to conjugation by π1(X, η̄). Note that the section s induces a

structure of Gk-group on any characteristic quotient of π1(X, η̄).

� Let ∆ be a quotient of π1(X, η̄) which fits in an exact sequence

1→ H̃ → π1(X, η̄)→ ∆→ 1,

where H̃
def
= Ker(π1(X, η̄) ↠ ∆). We consider the following Condition (⋆)

on ∆.

Condition (⋆).

(i) ∆ is pro-nilpotent and is a characteristic quotient of π1(X, η̄).

(ii) H0(U,∆) = 0 for every open subgroup U of Gk.

(iii) The quotient π1(X, η̄) ↠ π1(X, η̄)ab factors as

π1(X, η̄) ↠ ∆ ↠ π1(X, η̄)ab.
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(iv) Let H
def
= H̃ab and Γ

def
= π1(X, η̄)/Ker(H̃ ↠ H). We have a push-out

diagram

1 // H̃ //

��

π1(X, η̄) //

��

∆ // 1

1 // H // Γ // ∆ // 1

where the middle and left vertical maps are surjective. There exists a

prime integer ℓ ̸= p, such that the natural surjective map

Γℓ ↠ ∆ℓ

is not an isomorphism.

Let

Π
def
= π1(X, η)/Ker(π1(X, η̄) ↠ Γ),

Π̃
def
= π1(X, η)/Ker(π1(X, η̄) ↠ ∆).

We have the following push-out diagrams:

1 // π1(X, η̄) //

��

π1(X, η) //

��

Gk
// 1

1 // Γ //

��

Π //

��

Gk
// 1

1 // ∆ // Π̃ // Gk
// 1

where the vertical maps are surjective. Thus Ker(Π ↠ Π̃) = Ker(Γ ↠ ∆) = H.

� An example of a quotient ∆ satisfying Condition (⋆) is ∆ = π1(X, η̄)ab,

the maximal abelian quotient of π1(X, η̄) (cf. [Säıdi1, Lem. 1.3] for Condi-

tion (⋆)(ii)). In this case Π̃
def
= π1(X, η)(ab) is the geometrically abelian quotient

of π1(X, η), Γ is the maximal metabelian quotient of π1(X, η̄), and Π is the ge-

ometrically metabelian quotient of π1(X, η). More generally, any pro-nilpotent

characteristic quotient ∆ of π1(X, η̄) which satisfies Conditions (⋆)(ii), (iii),

and for which there exists a prime integer ℓ ̸= p such that the natural projec-

tion π1(X, η̄)ℓ ↠ ∆ℓ is not an isomorphism, satisfies Condition (⋆).

Given a finite extension k′/k (all finite extensions of k we consider are con-

tained in k̄) and the corresponding open subgroup Gk′ ⊆ Gk, we will denote by Πk′

the pull-back of the group extension Π by Gk′ ↪→ Gk. Thus we have a commutative
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diagram of exact sequences

1 // Γ // Πk′ //

��

Gk′ //

��

1

1 // Γ // Π // Gk
// 1

where the right square is cartesian. Likewise we write Π̃k′
def
= Π̃×Gk

Gk′ . Note that

Πk′ is a quotient of π1(Xk′ , η), where Xk′
def
= X ×Spec k Spec k′ and η is naturally

induced by the above geometric point η. Our first main result in this paper is the

following.

Theorem A. We use notation as above. Let X be a proper, smooth, and geo-

metrically connected hyperbolic curve over the p-adic local field k. Assume that

X(k) ̸= ∅ and that X has potentially good reduction. Let ∆ be a quotient of

π1(X, η̄) satisfying Condition (⋆), and Π the corresponding quotient of π1(X, η) as

in the above discussion which fits in the exact sequence 1 → Γ → Π → Gk → 1.

Then there exists a finite extension k̃/k such that the following holds. For ev-

ery finite extension k′/k̃, there exists a section s : Gk′ → Πk′ of the projection

Πk′ ↠ Gk′ which is non-geometric.

As a corollary of Theorem A we obtain the following (cf. examples discussed

after introducing Condition (⋆)).

Corollary B. There exist non-geometric sections of geometrically metabelian

arithmetic fundamental groups of hyperbolic curves over p-adic local fields.

Let m ≥ 1 be an integer. With the notation above, let ∆m
def
= ∆m,X be

the maximal m-step solvable pro-p quotient of π1(X, η̄), and Πm
def
= Πm,X the

geometrically m-step solvable pro-p quotient of π1(X, η) which sits in the exact

sequence

1→ ∆m → Πm → Gk → 1

(cf. [Säıdi1, Sect. 1]). Note that ∆m does not satisfy Condition (⋆)(iii). It is plau-

sible, in light of Hoshi’s example in [Hoshi] (cf. above discussion), that there exist

non-geometric sections of Πm for a suitable X/k as above (this is easily seen if

m = 1, using the Kummer exact sequence associated to Pic0X). In this context we

prove the following.

Theorem C. We use notation as above. There exists an integer N ≥ 2, such

that the following holds. For every prime integer p ≥ N there exists a proper,
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smooth, and geometrically connected hyperbolic curve X over a p-adic local field

k, an integer m ≥ 2, and a section s : Gk → Πm,X of the projection Πm,X ↠ Gk

which is non-geometric.

§1. Proof of Theorem A

We use the notation introduced in Section 0, as well as the notation and assump-

tions in Theorem A. Thus X is a proper, smooth, and geometrically connected

hyperbolic curve over the p-adic local field k, X(k) ̸= ∅, and we assume (without

loss of generality) thatX has good reduction overOk. Further, ∆ is a characteristic

quotient of π1(X, η̄) satisfying Condition (⋆), and Π is the corresponding quotient

of π1(X, η) as above which fits in the exact sequence 1 → Γ → Π → Gk → 1 (cf.

Section 0). We have the following commutative diagram of exact sequences:

(1.1)

1

��

1

��

H

��

H

��

1 // Γ //

��

Π //

��

Gk
// 1

1 // ∆ //

��

Π̃ //

��

Gk
// 1

1 1

Recall that x ∈ X(k) is a k-rational point and s
def
= sx : Gk → π1(X, η) is

a section of the projection π1(X, η) ↠ Gk associated to x. Further, s induces

sections s1
def
= s1,x : Gk → Π̃ of the projection Π̃ ↠ Gk and s2

def
= s2,x : Gk → Π of

the projection Π ↠ Gk, which fit in a commutative diagram

Gk
s2 // Π

��

Gk
s1 // Π̃

where the right vertical map is the one in diagram (1.1).
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The profinite group ∆ is finitely generated, as follows from the well-known

finite generation of the profinite group π1(X, η̄) which projects onto ∆. Let {∆i}i≥1

be a countable system of characteristic open subgroups of ∆ such that

∆i+1 ⊆ ∆i, ∆1 = ∆, and
⋂
i≥1

∆i = {1}.

Write ∆i
def
= ∆/∆i. Thus ∆i is a finite characteristic quotient of ∆, and we have

a push-out diagram of exact sequences

1 // ∆ //

��

Π̃ //

��

Gk
// 1

1 // ∆i
// Πi

// Gk
// 1

which defines a (geometrically finite) quotient Πi of Π̃. The section s1 induces a

section

ρi : Gk → Πi

of the projection Πi ↠ Gk for all i ≥ 1. Write

Π̃i def
= Π̃i[s1]

def
= ∆i.s1(Gk).

Note that Π̃i ⊆ Π̃ is an open subgroup which contains the image s1(Gk) of s1.

Write Πi for the inverse image of Π̃i in π1(X, η). Thus Πi ⊆ π1(X, η) is an open

subgroup corresponding to an étale cover

Xi → X1
def
= X

defined over k (since Πi maps onto Gk via the natural projection π1(X, η) ↠ Gk,

by the very definition of Πi).

Note that the étale cover Xi
def
= Xi ×Spec k Spec k̄ → X is Galois with Galois

group ∆i, and we have a commutative diagram of étale covers

Xi
//

��

X

��

Xi
// X
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where Xi → X is Galois with Galois group Πi, and Xi → Xi is Galois with Galois

group ρi(Gk). We have a commutative diagram of exact sequences

1

��

1

��

1 // ∆̃i = π1(Xi, η̄) //

��

Πi = π1(Xi, η) //

��

Gk
// 1

1 // π1(X, η̄) // π1(X, η) // Gk
// 1

where ∆̃i is the inverse image of ∆i in π1(X, η̄), and the equalities ∆̃i = π1(Xi, η̄),

Πi = π1(Xi, η), are natural identifications; the base points η (resp. η̄) of Xi (resp.

Xi) are those induced by the base points η (resp. η̄) of X (resp. X). Note that

Πi+1 ⊆ Πi and ∆̃i+1 ⊆ ∆̃i, as follows from the various definitions.

Lemma 1.1. With the above notation and that in Section 0, the following holds:

H̃ =
⋂
i≥1

∆̃i.

Proof. Follows from the various definitions.

We take this opportunity to correct a mistake that occurred in [Säıdi2, Lem.

1.1]. The claim there that IX =
⋂

i≥1 Πi is false; however, this does not affect the

validity of the results or other assertions made in [Säıdi2].

For each integer i ≥ 1, consider the push-out diagram

1 // ∆̃i = π1(Xi, η̄) //

��

Πi = π1(Xi, η) //

��

Gk
// 1

1 // ∆̃i,ab // Π(i,ab) // Gk
// 1

where ∆̃i,ab is the maximal abelian quotient of ∆̃i and Π(i,ab) is the geometrically

abelian fundamental group of Xi. Consider the commutative diagram

(1.2)

1 // H //

��

H def
= H[s1] //

��

Gk
//

s1
��

1

1 // H // Π // Π̃ // 1

where the right square is cartesian. Thus (the group extension) H is the pull-back

of (the group extension) Π via the section s1 : Gk → Π̃.
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Lemma 1.2. We have natural identifications

H
∼→lim←−

i≥1

∆̃i,ab and H ∼→lim←−
i≥1

Π(i,ab).

Proof. Similar to the proof of [Säıdi2, Lem. 1.3].

The section s2 : Gk → Π, which lifts the section s1, induces a section s2 : Gk →
H of the projectionH↠ Gk (since s2(Gk) ⊂ H). We fix the section s2 : Gk → H as

a base point of the torsor of splittings of the upper sequence in diagram (1.2). Thus

the set of splittings of the group extension H, modulo conjugation by elements of

H, is a torsor under H1(Gk, H), the Gk-module structure of H being deduced from

diagram (1.2). The splitting s2 : Gk → H thus corresponds to 0 ∈ H1(Gk, H). Note

that the set of splittings s̃ : Gk → H of the group extension H is in one-to-one

correspondence with the set of sections s̃ : Gk → Π of the projection Π ↠ Gk

which lift the section s1.

Let s̃ : Gk → H be a section of the group extension H, which induces a section

s̃ : Gk → Π of the projection Π ↠ Gk which lift the section s1. Let [s̃] be the class

of s̃ in H1(Gk, H) (cf. above discussion).

Fact 1.3. The section s̃ : Gk → Π is geometric if and only if [s̃] = 0. In this case

the section s̃ is associated to the rational point x ∈ X(k).

Proof. First, assume that the section s̃ : Gk → Π is geometric and arises from a

rational point x̃ ∈ X(k). Both sections, s̃ : Gk → Π and s2 : Gk → Π, induce split-

tings s̃ab : Gk → π1(X, η)(ab) and sab2 : Gk → π1(X, η)(ab) of the group extension

1→ π1(X, η̄)ab → π1(X, η)(ab) → Gk → 1, where π1(X, η)(ab) is the geometrically

abelian quotient of π1(X, η). Further, one has s̃ab = sab2 (cf. Condition (⋆)(iii) and

the fact that both s̃ and s2 lift the section s1). A standard argument, resorting

to the Kummer exact sequence associated to the jacobian Pic0X of X, shows that

x̃ = x (cf. [Tamagawa, Prop. 2.8]).

Next we claim [s̃] = 0. Indeed, the classes of s̃ and s2 in H1(Gk,Γ) coincide

as both sections are geometric and associated to the same rational point x, hence

s̃ and s2 are conjugate by an element of Γ. Here we view the set of splittings of

the group extension Π (of Γ by Gk) as a torsor under H1(Gk,Γ), with base point

the class of the section s2. Further, the natural map H1(Gk, H) → H1(Gk,Γ) of

pointed cohomology sets is injective as follows from Condition (⋆)(ii) (cf. [Serre,

I.§5, Prop. 38,] and diagram (1.1)). (Here, the Gk-module structure on H (resp.

Gk-group structure on Γ) is induced by the section s1 (resp. s2) (cf. diagram

(1.1)).) Thus [s̃] = 0.

Conversely, if [s̃] = 0, then s̃ is conjugate to s2 by an element of H, hence is

geometric and associated to the rational point x.
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As a consequence we obtain the following.

Lemma 1.4. Let k′/k be a finite extension. There exists a section s̃ : Gk′ → Πk′ of

the projection Πk′ ↠ Gk′ , which lifts the section s1,k′ : Gk′ → Π̃k′ of the projection

Π̃k′ ↠ Gk induced by s1, and which is non-geometric, if and only if H1(Gk′ , H)

̸= 0.

Thus proving Theorem A reduces to proving the following.

Proposition 1.5. There exists a finite extension k̃/k such that H1(Gk′ , H) ̸= 0

for every finite extension k′/k̃.

The rest of this section is devoted to proving Proposition 1.5. Let ℓ ̸= p be

a prime integer such that the map Γℓ ↠ ∆ℓ is not an isomorphism (cf. Condi-

tion (⋆)(iv)). Write π1(X, η̄)ℓ for the maximal pro-ℓ quotient of π1(X, η̄), and

π1(X, η)(ℓ)
def
= π1(X, η)/Ker(π1(X, η̄) ↠ π1(X, η̄)ℓ)

for the geometrically pro-ℓ quotient of π1(X, η), which fits in the exact sequence

1→ π1(X, η̄)ℓ → π1(X, η)(ℓ) → Gk → 1.

Let sℓ = sℓx : Gk → π1(X, η)(ℓ) be the section of the projection π1(X, η)(ℓ) ↠
Gk induced by the section s = sx. This section induces a representation

ρℓ : Gk → Aut(π1(X, η̄)ℓ)

which factors as Gk ↠ GF → Aut(π1(X, η̄)ℓ), where GF is the quotient of Gk

by its inertia subgroup, since X has good reduction over Ok. Further, the image

of the representation ρℓ is almost pro-ℓ, i.e., ρℓ(Gk) possesses an open subgroup

which is pro-ℓ. In particular, there exists a finite extension k̃/k such that the

restriction ρℓ
k̃
: Gk̃ → Aut(π1(X, η̄)ℓ) of ρℓ to Gk̃ has a pro-ℓ image. In order to

prove Proposition 1.5 we will, without loss of generality, assume that the image of

ρℓ is pro-ℓ and will show H1(Gk, H) ̸= 0.

Let ∆ℓ be the maximal pro-ℓ quotient of ∆, and Π̃(ℓ) def
= Π̃/Ker(∆ ↠ ∆ℓ) the

geometrically pro-ℓ quotient of Π̃. We have the following commutative diagram of

exact sequences:

1 // ∆ //

��

Π̃ //

��

Gk
// 1

1 // ∆ℓ // Π̃(ℓ) // Gk
// 1
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where the left and middle vertical maps are surjective. For i ≥ 1, let N i be the

image of ∆i in ∆ℓ, and Ñ i, N̂ i the pre-images of N i in π1(X, η̄) and π1(X, η̄)ℓ,

respectively. Note that Ñ i is a characteristic subgroup of π1(X, η̄), and N̂ i is stable

by the action of sℓ(Gk).

Let Ũ i def
= Ñ i.s(Gk) and Û i def

= N̂ i.sℓ(Gk), for i ≥ 1. Thus Ũ i is an open

subgroup of π1(X, η) corresponding to an étale cover Yi → X, and the étale cover

Xi → X factorises as

Xi → Yi → X

[π1(Xi, η) ⊂ π1(Yi, η) as follows from the various definitions], where Xi → Yi is an

étale cover of degree prime-to-ℓ, since ∆ (hence also ∆i, for i ≥ 1) is pro-nilpotent

(see Condition (⋆)(i)). Further, Ũ i and Û i, are naturally identified with π1(Yi, η)

and π1(Yi, η)
(ℓ), respectively, for all i ≥ 1. Here, π1(Yi, η)

(ℓ) is the geometrically

pro-ℓ quotient of π1(Yi, η), and sits in an exact sequence

1→ π1(Y i, η̄)
ℓ → π1(Yi, η)

(ℓ) → Gk → 1,

where Y i
def
= Y ×k k̄.

The natural action of Gk on π1(X, η̄)ℓ, and which factorises through Gℓ
F by

our assumption on the representation ρℓ, is compatible with its action on the open

subgroup π1(Y i, η̄)
ℓ, hence this latter action also factorises through Gℓ

F .

There is a surjective homomorphism (recall Lemma 1.2)

H1(Gk, H) = lim←−
i≥1

H1(Gk, ∆̃
i,ab) ↠ lim←−

i≥1

H1(Gk, ∆̃
i,ab,ℓ).

(Indeed, lim←−i≥1
H1(Gk, ∆̃

i,ab)
∼→

∏
l∈Primes lim←−i≥1

H1(Gk, ∆̃
i,ab,l), where the

product is over all prime integers l and the above homomorphism is the pro-

jection onto the ℓth factor.) Further, the étale covers {Xi → Yi}i≥1 induce a

homomorphism (recall ∆̃i = π1(Xi, η̄))

lim←−
i≥1

H1(Gk, ∆̃
i,ab,ℓ)→ lim←−

i≥1

H1(Gk, π1(Y i, η̄)
ab,ℓ),

which is surjective. More precisely, the map

H1(Gk, ∆̃
i,ab,ℓ)→ H1(Gk, π1(Y i, η̄)

ab,ℓ)

is surjective for all i ≥ 1, as follows easily from a restriction–corestriction argument

using the fact that the degree of the cover Xi → Yi is prime-to-ℓ (observe the

maps on cohomology induced by the natural maps π1(Y i, η̄)
ab,ℓ res−−→ ∆̃i,ab,ℓ cor−−→

π1(Y i, η̄)
ab,ℓ arising from the morphisms Pic0(Yi) → Pic0(Xi) → Pic0(Yi), where

the first one is the pull-back map of line bundles and the second is the norm map).

Thus in order to prove Proposition 1.5 it suffices to show the following:
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Proposition 1.6. With the above notation, it holds that

lim←−
i≥1

H1(Gk, π1(Y i, η̄)
ab,ℓ) ̸= 0.

Proof. As discussed above the natural action of Gk on π1(Y i, η̄)
ab,ℓ factors through

Gℓ
F (which is isomorphic to Zℓ). There is an injective inflation map

inf : lim←−
i≥1

H1(Gℓ
F , π1(Y i, η̄)

ab,ℓ) ↪→ lim←−
i≥1

H1(Gk, π1(Y i, η̄)
ab,ℓ).

Further,

(lim←−
i≥1

π1(Y i, η̄)
ab,ℓ)Gℓ

F
= H1(Gℓ

F , lim←−
i≥1

π1(Y i, η̄)
ab,ℓ) = lim←−

i≥1

H1(Gℓ
F , π1(Y i, η̄)

ab,ℓ),

where the notation ( )Gℓ
F

stands for the co-invariant module, the first equality

follows from the fact that Gℓ
F is procyclic, and the second equality follows from

[Neukirch-Schmidt-Winberg, Cor. (2.3.5)].

There is a natural isomorphism

(Ker(Γℓ → ∆ℓ))
∼→ lim←−

i≥1

π1(Y i, η̄)
ab,ℓ.

(The proof is similar to the proof of Lemma 1.2.) Thus lim←−i≥1
π1(Y i, η)

ab,ℓ ̸= 0

(cf. Condition (⋆)(iii) and our choice of ℓ). The proof of Proposition 1.6 is from

the following.

Lemma 1.7. Let T be an abelian pro-ℓ group and P an infinite pro-ℓ cyclic group.

Assume T is a continuous P -module. Then, the co-invariant module (T )P = {0}
is trivial if and only if T = {0} itself is trivial.

Proof. Let T∧ be the Pontryagin dual of T which is an ℓ-primary torsion group.

The dual of (T )P is the invariant group (T∧)P . It suffices to show that (T∧)P is

trivial if and only if (T∧) is trivial. The action of P on T∧ is discrete, in particular

T∧ is the union of finite ℓ-groups which are stable P -submodules. We can thus

reduce to the case where T∧ and P are finite. Suppose (T∧) is finite and non-trivial;

then (T∧)P is non-trivial since its order is divisible by ℓ, and (T∧)P contains 0.

This finishes the proof of Proposition 1.6, hence the proof of Proposition 1.5,

and the proof of Theorem A.

§2. Proof of Theorem C

The rest of this paper is devoted to proving Theorem C. We use the notation

introduced in Section 0 and the statement of Theorem C.
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Let K be a number field (finite extension of Q) and K an algebraic closure of

K. Let X be a proper, smooth, and geometrically connected hyperbolic curve over

K. Write J
def
= Pic0X for the jacobian of X. Assume X(K) ̸= ∅. Fix a rational point

x ∈ X(K), and consider the embedding ι : X ↪→ J defined by ι(x) = 0J . For any

field extension K ⊂ L, with L algebraically closed, let J tor def
= J(L)tor = J(K)tor

be the torsion subgroup of J . The intersection X ∩J tor is finite by [Raynaud]. Let

M be the cardinality of the subgroup of J tor generated by X ∩ J tor. We assume

M ≥ 2 (this M will be the integer N required in Theorem C).

Let p > M be a prime integer, k a p-adic completion of K, k̄ an algebraic

closure of k, Xk
def
= X ×K k, and Xk̄

def
= X ×K k̄. Recall the exact sequence of

fundamental groups (cf. Section 0)

1→ π1(Xk̄, η̄)→ π1(Xk, η)→ Gk → 1.

Let ∆ be the maximal pro-p quotient of π1(Xk̄, η̄), and

Π
def
= π1(Xk, η)/Ker(π1(Xk̄, η̄) ↠ ∆)

the geometrically pro-p arithmetic fundamental group of Xk.

For an integer m ≥ 1, let ∆m be the maximal m-step solvable pro-p quotient

of π1(Xk̄, η̄), and

Πm
def
= π1(Xk, η)/Ker(π1(Xk̄, η̄) ↠ ∆m)

the geometrically m-step solvable pro-p arithmetic fundamental group of Xk. We

have a commutative diagram of exact sequences

1

��

1

��

∆[m]

��

∆[m]

��

1 // ∆m+1
//

��

Πm+1
//

��

Gk
// 1

1 // ∆m
//

��

Πm
//

��

Gk
// 1

1 1
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where ∆[m]
def
= Ker(∆m+1 ↠ ∆m) = Ker(Πm+1 ↠ Πm) (cf. [Säıdi1, Sect. 1] for

more details). Further, we have natural identifications

∆ = lim←−
m≥1

∆m and Π = lim←−
m≥1

Πm.

Let sx : Gk → Π be a section of the projection Π ↠ Gk associated to the

k-rational point (image in Xk of) x, which induces sections sx,m : Gk → Πm of

the projections Πm ↠ Gk for all m ≥ 1. (Thus sx is defined up to conjugation

by ∆.) We fix the section sx,1 as a base point of the torsor of splittings of the

exact sequence 1 → ∆1 → Π1 → Gk → 1 (Π1 is the geometrically abelian pro-p

arithmetic fundamental group of Xk), which is a torsor under H1(Gk,∆1).

Let y ∈ (X ∩ J tor)(K) \ {0J} (the existence of y follows from our assumption

M ≥ 2), sy : Gk → Π be a section of the projection Π ↠ Gk associated to the

k-rational point (image in Xk of) y, which induces sections sy,m : Gk → Πm of

the projections Πm ↠ Gk for all m ≥ 1. The classes [sx,1] = 0 and [sy,1], of the

sections sx,1 and sy,1, respectively, in H1(Gk,∆1) coincide. Indeed, this follows

easily from the (pro-p) Kummer exact sequence associated to J and the fact that

ι(y) is a torsion point of order prime-to-p (recall p > M).

More generally, for m ≥ 1, consider the following commutative diagram:

(2.1)

1 // ∆[m+ 1] // E[m+ 1] //

��

Gk
//

sx,m

��

1

1 // ∆[m+ 1] // Πm+1
// Πm

// 1,

where the right square is cartesian. Thus the group extension E[m + 1] is the

pull-back of the group extension Πm+1 via the section sx,m.

The upper exact sequence in diagram (2.1) splits. Indeed, this follows from

the existence of the section sx,m+1 : Gk → Πm+1 which lifts the section sx,m and

induces a splitting sx,m+1 : Gk → E[m+1] of the group extension E[m+1]. We fix

the section sx,m+1 as a base point for the torsor of splittings of the group extension

E[m+ 1], which is a torsor under H1(Gk,∆[m+ 1]); the Gk-module structure of

∆[m+1] is deduced from diagram (2.1). If z ∈ X(k) and sz,m = sx,m : Gk → Πm,

then the section sz,m+1 gives rise to a splitting sz,m+1 : Gk → E[m+1] of the upper

exact sequence in diagram (2.1), hence to a class [sz,m+1] ∈ H1(Gk,∆[m+ 1]).

Define Sm to be the set of rational points z ∈ X(k) such that sx,m(Gk)

coincide with a decomposition group of Πm associated to z. We have the following

inclusions:

· · · ⊆ Sm+1 ⊆ Sm ⊆ · · · ⊆ S2 ⊆ S1 = X(k) ∩ J tor,p′
⊆ X ∩ J tor.
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The equality S1 = X(k)∩J tor,p′
follows from the (pro-p) Kummer exact sequence

associated to J and from the well-known structure of J(k).

Lemma 2.1. The equality
⋂

m≥1 Sm = {x} holds.

Proof. Follows from [Mochizuki, Thm. C] and a limit argument using the fact that

Π = lim←−m≥1
Πm.

It follows from Lemma 2.1, and the above discussion, that there exists m ≥ 1

such that

{x} ⊊ Sm and {x} = Sm+1.

Let

A
def
=

{
[sz,m+1] : z ∈ Sm

}
⊂ H1(Gk,∆[m+ 1]).

Note that {0} ⊊ A, which follows from the facts that {x} ⊊ Sm and {x} = Sm+1.

Further, Card(A) ≤ Card(Sm) ≤M < p. In particular,

∃α ∈ H1(Gk,∆[m+ 1]) \A,

since H1(Gk,∆[m + 1]) is p-primary. Thus α corresponds to a section α : Gk →
Πm+1 of the projection Πm+1 ↠ Gk, which lifts the section sx,m.

Lemma 2.2. The section α : Gk → Πm+1 is non-geometric.

Proof. Follows from the various definitions and the fact that α /∈ A.

This finishes the proof of Theorem C.
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