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Full Justification for the Extended Green–Naghdi
System for an Uneven Bottom with/without

Surface Tension

by

Bashar Khorbatly and Samer Israwi

Abstract

This paper is a continuation of a previous work on the extended Green–Naghdi system.
We prolong the system, in arbitrary dimension, with/without surface tension, and for
a general bottom topography. Confining the work to the one-dimensional case, well-
posedness and consistency with respect to initial data and parameters are proved, taking
into account the effect of surface tension. The results are local, but long term in the sense
of dependence upon initial data. As a conclusion, our solution remains close to the exact
solution of the full Euler system with a better (smaller) precision and therefore the full
justification of the models.
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§1. Introduction

§1.1. The water-wave problem

The two-dimensional full water-wave problem in arbitrary dimension with general

bottom topography is considered. We assume that the fluid is of constant density ρ

and denote by Ωt = {(X, z) ∈ Rd × R, −h0 + b(X) < z < ζ(t,X)} the domain of

the fluid for each time variable t. The surface of the fluid is a graph parametrized
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by ζ and the bottom topography is parametrized by −h0 + b(X) independent of

time with h0 the depth. Take d = 1, 2 as the spatial dimension of the surface of the

fluid, where X ∈ Rd, the spatial variable, is written as X = (x, y) when d = 2 and

X = x when d = 1, while the vertical variable is denoted by z. The motion of an

ideal moving fluid is described by the free-surface Euler equations for steady flow

along a streamline (their well-posedness was recognized after the work of Nalimov

[30], Yosihara [35], Craig [5], Wu [33, 34], and Lannes [21]) which is a connection

between the velocity V , the pressure P , and the density ρ of the fluid that is based

on Newton’s second law of motion and can be written in the form

(1.1) ∂tV + (V · ∇X,z)V = −ge⃗z −
1

ρ
∇X,zP in (X, z) ∈ Ωt, t ≥ 0,

denoting by −ge⃗z the gravitational field which is acting vertically downward, with

g greater than zero, and e⃗z is a unit vector in the vertical direction. This equation

is combined with several physical assumptions. The incompressibility of the fluid

is expressed by

(1.2) ∇X,z · V = 0 in (X, z) ∈ Ωt, t ≥ 0.

Another assumption is that the flow is irrotational:

(1.3) ∇X,z × V = 0 in (X, z) ∈ Ωt, t ≥ 0.

Denote ∇ = ∇X . These equations are complemented with boundary conditions.

At the free surface, a dynamic condition is given by

P − Patm = σκ(ζ) at z = ζ(t,X), t ≥ 0,

where Patm is the (constant) atmospheric pressure, σ > 0 is the surface tension

coefficient, and κ(ζ) = −∇·(∇ζ/
√

1 + |∇ζ|2) is the mean curvature of the surface.

Another boundary condition at the top surface is the kinematic condition:

(1.4) ∂tζ −
√
1 + |∇ζ|2V · n+ = 0 at z = ζ(t,X), t ≥ 0,

where the outward unit normal to the upper boundary is

n+ =
1√

1 + |∇ζ|2
(∇ζ⊤, 1)⊤.

This condition states that fluid particles cannot cross the surface. A similar con-

dition on the velocity at the bottom is given by

(1.5) V · n− = 0 at z = −h0 + b(X), t ≥ 0,
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where the outward unit normal to the lower boundary

n− =
1√

1 + |∇b|2
(∇b⊤,−1)⊤.

Another assumption states that the fluid is at rest at infinity and is given by

(1.6) lim
|(t,X,z)|→+∞

|ζ(t,X, z)|+ |V (t,X, z)| = 0 in (X, z) ∈ Ωt, t ≥ 0.

Equations (1.1)–(1.6) are called the free-surface Euler equations.

§1.2. Non-dimensionalized equations: Bernoulli and

Zakharov/Craig–Sulem

The complexity of the Euler equations is embodied in the many unknowns on a

moving-with-time domain Ωt. Thus we will follow the Eulerian approach that fo-

cuses on specific locations in the space through which the fluid flows as time passes.

More precisely, we derive simpler asymptotic models in some geophysical regimes

that require identification of small parameters. Neglecting rotational effects is the

starting point of the derivation process. In other words, assumption (1.3) ensures

the existence of the potential velocity of the fluid φ(t,X, z). Consequently, the

Euler system can be rewritten under Bernoulli’s formulation:

∆X,zφ = 0 at −h0 + b(X) < z < ζ(t,X),

∂zφ−∇b · ∇φ = 0 at z = −h0 + b(X),

∂tζ +∇φ · ∇ζ − ∂zφ = 0 at z = ζ(t,X),

∂tφ+
1

2
|∇X,zφ|2 + gζ = −σ

ρ
κ(ζ) at z = ζ(t,X).

The Laplacian equation is obtained by taking the divergence of the potential ve-

locity combined with (1.2). The second and third equations are written using the

boundary conditions (1.5)–(1.4) respectively, while the last equation is established

by commuting V = ∇X,zφ in (1.1).

Although the present system has fewer unknowns, in order to solve the Lapla-

cian equation we still need information from the boundary that moves with time,

and its location is determined by two coupled non-linear partial differential equa-

tions, which is a basic difficulty. This leads us to identify some small parameters

from which it is often possible to gain insight on the behavior of the flow. More

precisely, let us introduce some dimensionless parameters that encode the various

regimes of interest:

� non-linearity or the amplitude parameter: ε = a
h0

∈ (0, 1),

� dispersion or the shallowness parameter: µ = (h0

λ )2 ∈ (0, 1),
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� bottom topography parameter: β = b0
h0

∈ (0, 1),

� classical Bond number which measures the ratio of gravity forces over capillary

forces: Bo = ρgλ2

σ > 1,

where a is the amplitude of the wave, λ the wavelength of the wave, b0 the size

of the bottom topography variations, h0 the reference depth, ρ the density of the

fluid, and σ the surface tension coefficient. We now execute the classical shallow-

water (µ≪ 1) non-dimensionalization using the following variables:

X = λX ′, z = h0z
′, ζ = aζ ′, φ =

a

h0
λ
√
gh0φ

′,

b = b0b
′, t =

λ√
gh0

t′.

Therefore, the equations of motion (1.1)–(1.6) are rewritten in the dimensionless

Bernoulli formulation (we eliminate the primes for the sake of clarity) as

(1.7)



µ∂2xφ+ µ∂2yφ+ ∂2zφ = 0 at −1 + βb(X) < z < εζ(t,X),

∂zφ− µβ∇b · ∇φ = 0 at z = −1 + βb(X),

∂tζ −
1

µ
(−µε∇ζ · ∇φ+ ∂zφ) = 0 at z = εζ(t,X),

∂tφ+
1

2

(
ε|∇φ|2 + ε

µ
(∂zφ)

2
)
+ ζ

= − 1

Bo

κ(ε
√
µζ)

ε
√
µ

at z = εζ(t,X).

Now system (1.7) is reduced to a system where all functions are evaluated at the

free surface (i.e. in R+ × Rd). The new system is known as the dimensionless

Zakharov/Craig–Sulem [36] formulation of the water-wave equations. We begin by

introducing ψ : R+×Rd → R the trace of the velocity potential at the free surface,

ψ(t,X) = φ(t,X, εζ(t,X)) = φ|z=εζ

and the Dirichlet–Neumann operator Gµ[εζ, βb]· defined by

Gµ[εζ, βb]ψ = −µ(ε∇ζ) · (∇φ)|z=εζ
+ (∂zφ)|z=εζ

=
√

1 + µε2|∇ζ|2(∂nφ)|z=εζ
,

with φ solving (see [22] for an accurate analysis) the Laplace equation with Neu-

mann (at the bottom) and Dirichlet (at the surface) boundary conditions

(1.8)

{
µ∂2xφ+ µ∂2yφ+ ∂2zφ = 0 in −1 + βb(X) < z < εζ(t,X),

∂nφ|z=−1+βb
= 0, φ|z=εζ

= ψ(t,X),
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where ∂nφ = n− · ∇X,zφ refers to the upward normal derivative at the bottom.

A set of two equations on the free-surface parametrization ζ and the trace of

the velocity potential at the surface ψ = φ|z=εζ
involving the Dirichlet–Neumann

operator are given by

(1.9)



∂tζ −
1

µ
Gµ[εζ, βb]ψ = 0,

∂tψ + ζ +
ε

2
|∇ψ|2 − εµ

(
1
µGµ[εζ, βb]ψ +∇(εζ) · ∇ψ

)2
2(1 + ε2µ|∇ζ|2)

= − 1

Bo

κ(ε
√
µζ)

ε
√
µ

.

§1.3. Shallow-water, large-amplitude regime (µ ≪ 1, ε ∼ 1, β ∼ 1)

The solutions of system (1.9) are very hard to explain and appear more com-

plex than necessary to model. At this stage, a traditional technique is to pick an

asymptotic regime, in which we search for an approximate model and hence an

approximate solution. In the sequel, we seek solutions up to third-order error in

the dispersion parameter. Formally, under this condition one approach is based

on a perturbation method with respect to a small parameter µ≪ 1, where no as-

sumptions are made on ε ∼ 1 and β ∼ 1. The Saint-Venant equations, first derived

in 1871 [6, 7], are O(µ) corrections of the shallow-water equations. These equations

couple the evolution of the free surface ζ to the evolution of the vertically averaged

horizontal component of the velocity v, and are expressed as

(1.10)

{
∂tζ +∇ · (hv) = 0,

∂tv +∇ζ + ε(v · ∇)v = O(µ),

where h(t,X) = 1 + εζ(t,X)− βb(X) and

v(t,X) =
1

h(t,X)

∫ εζ(t,X)

−1+βb(X)

∇φ(t,X, z) dz,

the non-dimensional height of the liquid. The first justification of such a model

goes back to Ovsjannikov [31], and Kano and Nishida [17] who prove that the so-

lution of the shallow-water equations (1.10) converges to the solution of the water-

wave equations as µ → 0 in the one-dimensional case, and under some restrictive

assumptions. However, Li [25] removes these assumptions and gives rigorous jus-

tification. Note that, for such a symmetrizable hyperbolic system (multiply the

second equation by h), classical local existence can be established; see [1, 32].

Up to second-order error in µ, the classical Green–Naghdi system takes into

account dispersive effects ignored by (1.10). This system is derived in [28] through
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Hamilton’s principle and in [23] through a general method of derivation (see Sec-

tion 2) and is exactly the same as the one found in [11], that is,{
∂tζ +∇ · (hv) = 0,

(1 + µT [h, βb])∂tv +∇ζ + ε(v · ∇)v + µε(Q[h]v + βQb[h]v) = O(µ2),

where we recall that h = 1+ εζ − βb, and T v = T [h, βb]v and the quadratic form

Q[h]v are defined as

T v =
−1

3h
∇(h3∇ · v) + 1

2h

(
∇(h2(β∇b) · v)− h2(β∇b)∇ · v

)
+ β2(∇b · v)∇b,

Q[h]v =
−1

3h
∇
(
h3
(
(v · ∇)(∇ · v)− (∇ · v)2

))
,

Qb[h]v =
1

2h

[
∇(h2(v · ∇)2b)− h2

(
(v · ∇)(∇ · v)− (∇ · v)2

)
∇b
]
+ β((v · ∇)2b)∇b.

For this approximation we refer to several works that give a rigorous justification

of the well-posedness of this system using various arguments, such as Li [25],

Alvarez-Samaniego and Lannes [2], Iguchi [12], Israwi [16, 15], Khorbatly [18],

and Fujiwara and Iguchi [10]. We also refer to Lannes and Marche [24] for recent

progress made with this system in the derivation of an alternative new class of

equations having better mathematical structure, which makes them much more

suitable for numerical simulation.

§1.4. Main results: Comments and organization

The aim of this paper is to derive and fully justify (i.e. local existence, consis-

tency, and convergence) the extended Green–Naghdi (modified) system to one

order higher in µ in the presence of a non-trivial bottom topography, thereby in-

troducing quite a few new and non-trivial higher-order terms. In other words, this

system is a much higher-order approximation of the full Euler system, with less

error up to O(µ3), i.e. it combines much better dispersive properties, and thus

a wider range of application in oceanography. In the spirit of the work done in

[26, 27], Matsuno derived the extended equations for a flat bottom by a slightly

different method from the one used here [23, 20]. He showed that they permit a

Hamiltonian structure and stated that the linear dispersion relation of his model

does not have good structure, i.e. we cannot expect the well-posedness of the ini-

tial value problem, so that obtaining an error estimate of the solutions of O(µ3)

is hopeless. In fact, this is not the case in the presence of surface tension, as

the linear part of the µ3 modified model has better structure and the solution

might approximate the solution to the full water-wave equations up to O(µ3) (see

Remark 2.2). Here it is worth noticing that in recent papers, Iguchi [13, 14] ob-

tained and mathematically justified a model in a similar asymptotic regime to
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this work. Also it was shown that the so-called Isobe–Kakinuma model permits a

Hamiltonian structure [8]. Note that one of its strong advantages is that it does

not contain any higher-order derivatives and is thus less troublesome in terms of

numerical computation. However, the only drawback of such a hierarchy is that

Green–Naghdi/Boussinesq systems are not one of the models. Regarding this, a

number of challenging/interesting problems associated with the extended system

are worthy of additional study. We list some of them below:

� Identification of physically relevant models among various extended models,

i.e. having asymptotic models of O(µ3, ε2µ2, εβµ2, β2) (medium amplitude and

bathymetry models), and one can also derive higher-order versions of various

shallow-water models, such as the well-known Boussinesq model in multiple

surface and topography variations etc.

� Numerical computations of the initial value problems, as well as solitary and

periodic wave solutions, for less complicated models mentioned above.

� The effect of higher-order dispersion on the wave characteristics and the effect

of the presence, or lack thereof, of surface tension on the justification of the

asymptotic models by means of rigorous mathematical analysis.

Following the general method for the derivation of asymptotic non-linear models

in shallow and deep water first introduced in [23], we derive the new system gen-

eralizing (in the presence of an arbitrary topography) the investigations of [20]

done by the authors. What is different for this system is the pure intricacy and

number of terms that have not yet been derived or analyzed, especially in the

case when the bottom is not flat. For the sake of constructing the solution by an

energy estimate method, one must go through an impressive set of estimates and

calculations to obtain the correct energy estimate. Due to this, the work is to be

confined to one space dimension. The strategy of the proof is to write the system

in a quasilinear form, i.e. to be treated as a hyperbolic system, and then use a

symmetrizer to derive a good energy estimate of the solution. The existence is

then obtained through a fixed point argument [1, 32]. On behalf of the inadequate

linear dispersion structure of the original extended system (2.9), the study is to

be done on a modified asymptotic variant:

(1.11)



∂tζ + ∂x(hv) = 0,

ℑ(∂tv + εvvx) + h∂xζ −
µ

bo
hζxxx +

2

45
µ2h∂2x(h

4ζxxx) + µ2I[h, βb]ζx

− ε2µ2 1

bo
T [U ]ζx + εµQ1[U ]vx + εµβB1[U ]vx + εµ2Q2[U ]vx

+ εµ2Q3[U ]vx + εµ2βB2[U ]vx + εµ2β2B3[U ]vx +R[µ, εh, βb](U)

= O(µ3),
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where U = (ζ, v)⊤, h = 1+ εζ − βb, and ℑ = h+µT [h, βb]−µ2T[h, βb]. Denoting

T [h, βb]v = −1

3
∂x(h

3∂xv) +
β

2

[
∂x(h

2bxv)− h2bxvxV r
]
+ β2hb2xv,

T [U ]ζx = −1

2
h∂2x(ζ

2
xζx),

T[h, βb]v = − 1

45
∂2x(h

5∂2xv)

+
β

24

[
∂x(∂x(h

4bx)∂xv) + ∂2x(h
4∂x(bxv))− bx∂x(h

4∂2xv)
]

+
β2

12

[
2∂x(h

3b2x∂xv)+∂x(h
3bxbxxv)+2bx∂x(h

3bx∂xv)+bx∂x(h
3bxxv)

]
,

where the non-topographical terms Q1[U ], Q2[U ], Q3[U ] are represented by

Q1[U ]f =
2

3
∂x(h

3vxf), Q2[U ]f =
8

45
∂2x(h

5vxxf), Q3[U ]f =
1

15
∂x(h

5vxx∂xf),

I[h, βb]f =
4

45
hx∂x(h

4∂2xf) +
2

45
h4hxx∂

2
xf

− β

12

[
∂x(∂x(h

4bx)∂xf) + ∂2x(h
4bxxf) + ∂2x(h

4bx∂xf)− bx∂x(h
4∂2xf)

]
− β2

6

[
2∂x(h

3b2x∂xf)+∂x(h
3bxbxxf)+2bx∂x(h

3bx∂xf)+bx∂x(h
3bxxf)

]
,

while the purely topographical terms are represented by B1[U ]f = h2bxvxf and

B2[U ]f = − 1

24
∂2x
{
h4(2bxxv + 9bxvx)f

}
− 1

4
h4bxxvxxf−

1

24
∂x((h

4)xbxvxf)

− 1

24
∂x(h

4bxxvxf)−
1

4
∂x(h

4bxxv∂xf) +
1

12
bx∂x(h

4vxxf),

B3[U ]f =
3

4
∂x(h

3bxbxxvf) +
1

12
h3(bxxv + 2bxvx)bxxf

− 1

12
bx∂x

{
h3(bxxvf + 8bxvxf)

}
,

R[µ, εh, βb](U) =
1

2
εµβ∂x(h

2bxxv
2) + εµβ2hbxbxxv

2 +
1

24
εµ2β∂2x(h

4bxxxv
2)

+
1

12
εµ2β2∂x(h

3bxbxxxv
2) +

1

4
εµ2β2∂x(h

3b2xxv
2)

+
1

12
εµ2β2bx∂x(h

3bxxxv
2).

This new variant shares the same order of precision as the original, but has a

mathematical structure that is more suitable for well-posedness, in particular, its

linear dispersion relation (see for instance Remark 2.2). Consequently, a problem-

atic term appears in the form of fifth-order derivatives on the surface elevation,
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which require special treatment. Several different techniques are used through-

out the proofs to generalize the flat bottom case [20], such as invertibility of the

ℑ = h + µT [h, βb] − µ2T[h, βb] operator, and re-expression of terms. The main

point regarding the justification of such a higher-order asymptotic model is the

following well-posedness result:

Long-time existence with surface tension. Theorem 5.1 states that (1.11)

admits a unique solution in U ∈ Xs = Hs+2(R) × Hs+2(R) on existence time-

scales Tmax up to order 1
max(ε,β) such that 1/Tmax depends on initial data and the

rescaled bond number (2.7) bo−1 as the energy estimate constant (4.4) depends

on the same bo−1 ∈ [0, 1).

In the sequel, Section 2 is devoted to the derivation of the extended two-dimen-

sional Green–Naghdi system for non-flat bottom topography and the modification

process held for the one-dimensional system to be studied. In Section 3, some prop-

erties on the fourth-order elliptic operator ℑ and its inverse are given. In Section

4, a suitable energy norm and symmetrizer are sought, and the linearized system

with surface tension is studied for an appropriate energy preservation. The main

results (Theorem 5.1: existence, Theorem 5.2: stability property, Proposition 5.3:

consistency, and Theorem 5.4: convergence) are deduced and proved in Section 5.

§1.5. Notation

We denote by C(λ1, λ2, . . .) a constant depending on the parameters λ1, λ2, . . . ,

and whose dependence on the λj is always assumed to be non-decreasing. The

notation a ≲ b means that a ≤ Cb, for some non-negative constant C whose

exact expression is of no importance (in particular, it is independent of the small

parameters involved). Also, the notation a∨ b stands for the maximum between a

and b.

We denote the norm |·|L2 simply by |·|2. The inner product of any functions

f1 and f2 in the Hilbert space L2(Rd) is denoted by (f1, f2) =
∫
Rd f1(X)f2(X) dX.

The space L∞ = L∞(Rd) consists of all essentially bounded, Lebesgue-measurable

functions f with the norm |f |L∞ = ess sup|f(X)| < ∞. We denote W 2,∞ =

W 2,∞(R) = {f ∈ L∞, fx and fxx ∈ L∞}, endowed with its canonical norm.

For any real constant s, Hs = Hs(Rd) denotes the Sobolev space of all tem-

pered distributions f with the norm |f |Hs = |Λsf |2 < ∞, where Λ is the pseudo-

differential operator Λs = (1− ∂2x)
s/2.

For any functions u = u(t,X) and v(t,X) defined on [0, T )×Rd with T > 0, we

denote the inner product, the Lp-norm, and in particular the L2-norm, as well as

the Sobolev norm, with respect to the spatial variable, by (u, v) = (u(·, t), v(·, t)),
|u|Lp = |u(·, t)|Lp , |u|L2 = |u(·, t)|L2 , and |u|Hs = |u(·, t)|Hs , respectively.
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Let Ck(Rd) denote the space of k-times continuously differentiable functions

and C∞
0 (Rd) denote the space of infinitely differentiable functions, with compact

support in Rd. We denote by C∞
b (R) the space of infinitely differentiable functions

that are bounded together with all their derivatives. For any closed operator T

defined on a Banach space Y of functions, the commutator [T, f ] is defined by

[T, f ]g = T (fg)− fT (g) with f , g, and fg belonging to the domain of T .

§2. Derivation of the extended Green–Naghdi model with general

bottom topography

§2.1. Derivation of the system in two space dimensions

We start by averaging the horizontal velocity over depth (reducing the dimension

by 1), i.e. we introduce a depth-averaged horizontal velocity such as

(2.1) v(t,X) =
1

h(t,X)

∫ εζ(t,X)

−1+βb(X)

∇φ(t,X, z) dz,

where h(t,X) = 1 + εζ(t,X) − βb(X) is the non-dimensionalized height of the

liquid. The exact expression for − 1
µGµ[εζ, βb]ψ = ∇ · (hv) stems from a clear

outcome of Green’s identity or by a straightforward calculation and rearranging

terms using (1.7). The first evolution equation on ζ in terms of (ζ, v) reads

∂tζ +∇ · (hv) = 0.

Note that this equation exactly coincides with the first equation of (1.9). Now,

proceeding as in [23], for the second evolution equation on v, ∇ψ does not have

an exact expression in terms of (ζ, v). Therefore, since µ ≪ 1, we look for an

asymptotic expansion with respect to µ on ∇ψ in terms of (ζ, v), and this is

obtained through an asymptotic description of φ in the fluid by constructing

(2.2) φapp(t,X, z) = φ0 + µφ1 + µ2φ2 + · · ·+ µNφN =

N∑
j=0

µjφj .

Plugging expression (2.2) into the boundary value problem (1.8), and dropping all

terms of O(µN+1), one gets

(2.3) ∀ j = 0, 1, . . . , N, ∂2zφj = −∂2xφj−1 − ∂2yφj−1,

with the convention φ−1 = 0 by definition and the boundary condition

(2.4) ∀ j = 0, 1, . . . , N,

{
−β∇b∇φj−1 + ∂zφj = 0 at z = −1 + βb,

(φj)|z=εζ
= δ0,jψ,



On the Extended Green–Naghdi System 597

where δ0,j = 1 if j = 0 and 0 otherwise. Solving the ODE (2.3)–(2.4) yields three

solutions that are polynomials of order 0, 2, 4 in z such that

φ0(t,X, z) = ψ(t,X),

φ1(t,X, z) = (z − εζ)
(
−1

2
(z + εζ)− 1 + βb

)
∇ · (∇ψ) + β(z − εζ)∇b · ∇ψ,

φ2(t,X, z) = (z − εζ)β∇b · (∇φ1)|z=−1+βb

+
1

2
((z + 1− βb)2 − h2)(ε∇ζ)(−ε∇ζ + 2(β∇b))∆ψ

− 2
[1
2
((z + 1− βb)2 − h2)h(ε∇ζ)

+
1

2

(1
3
(z − εζ)3 − (z − εζ)h2

)
(β∇b)

]
∇(∆ψ)

−
[1
2
((z + 1− βb)2 − h2)h∇ · (ε∇ζ)

+
1

2

(1
3
(z − εζ)3 − (z − εζ)h2

)
∇ · (β∇b)

]
∆ψ

+
[ 1

24
(z4 − (εζ)4)− 1

6
(−1 + βb)3(z − εζ)

− (εζ)2

4
((z + 1− βb)2 − h2)

− 1

2

(1
3
(z − εζ)3 − h2(z − εζ)

)
(−1 + βb)

]
∇ · (∇(∆ψ))

+ ((z + 1− βb)2 − h2)(ε∇ζ)∇(β∇b · ∇ψ)

+
1

2
((z + 1− βb)2 − h2)∇ · (ε∇ζ)β∇b · ∇ψ

− 1

2

(1
3
(z − εζ)3 − (z − εζ)h2

)
∇ · (∇(β∇b · ∇ψ)).

The horizontal component of the velocity in the fluid domain now reads

V (t,X, z) = ∇φapp

= ∇φ0(t,X, z) + µ∇φ1(t,X, z) + µ2∇φ2(t,X, z) +O(µ3).

The averaged velocity is thus

v(t,X) = ∇ψ +
µ

h

∫ εζ(t,X)

−1+βb(X)

∇φ1 dz +
µ2

h

∫ εζ(t,X)

−1+βb(X)

∇φ2 dz +O(µ3).

As in [23], the second-order approximation O(µ2) of ∇ψ in terms of ζ and v reads∫ εζ(t,X)

−1+βb(X)

∇φ1 dz = −1

3
∇(h3∆ψ) +

β

2
[∇(h2∇b · ∇ψ)− h2∇b∆ψ] + β2h∇b∇b · ∇ψ

= T [h, βb]∇ψ.
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The new ingredient is writing a third-order approximation in µ of ∇ψ in terms of

(ζ, v). Thus we need to compute the integral J2[h, βb]∇ψ =
∫ εζ(t,X)

−1+βb(X)
∇φ2 dz. As

the terms are many, we refer to Appendix A.1 for detailed calculations and a clear

presentation of J2.

Remark 2.1. Here and throughout the rest of this paper we will introduce the

two new notions “non-topographical” and “purely topographical” to differentiate

many terms. Apart from the expression for the height of the fluid h = 1+εζ−βb =
O(ε, β), the non-topographical expressions are the terms that do not include a

bottom parameter βk∈N in front of the term. Otherwise, the terms are purely

topographical.

The averaged velocity expression becomes

v = ∇ψ − µ

h
T [h, βb]∇ψ +

µ2

h
J2[h, βb]∇ψ +O(µ3),

but

∇ψ = v +
µ

h
T [h, βb]v +

µ2

h

[
T [h, βb]

( 1
h
T [h, βb]v

)
− J2[h, βb]v

]
.

Hence (see the details of T (h−1T ) in Appendix A.2 and of T = T (h−1T )− J2 in

Appendix A.3), we obtain

(2.5) ∇ψ = v +
µ

h
T [h, βb]v +

µ2

h
T[h, βb]v +O(µ3),

where

T [h, βb]w = −1

3
∇(h3∇ · w) + β

2

[
∇(h2∇b · w)− h2∇ · w∇b

]
+ β2h(∇b · w)∇b

and

T[h, βb]w = − 1

45
∇
(
∇ · (h5∇(∇ · w))

)
+

1

24
β∇
(
∇ · (h4∇(∇b · w))

)
+

1

24
β∇(∇ · w∇ · (h4∇b))− 1

24
β∇ · (h4∇(∇ · w))∇b

+
1

12
β2∇(h3∇ · w(∇b∇b)) + 1

12
β2∇(h3∇b∇(∇b · w))

+
1

12
β2∇ · (h3∇ · w∇b)∇b+ 1

12
β2∇ · (h3∇(∇b · w))∇b.

It follows the lines of derivation using (multiple) scales in general, and the deriva-

tion of the Green–Naghdi system itself in particular. As such, it is formal and

essentially algebraic (there is no functional analytic framework), but it is also

lengthy and a feat in thoroughness and endurance, as the terms of the extended

topography order are many, involved, and require clever tricks to gather in a suit-

able form. The main steps are
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(1) take the gradient of the second equation of (1.9) then multiply it by h;

(2) replace ∇ψ by its expression (2.5) in the second equation of (1.9);

(3) replace G[εζ, βb]ψ by −µ∇ · (hv) in the resulting equations;

(4) drop the O(µ3) terms;

(5) expand then reduce terms of the same size;

(6) take advantage of the following vector triple products and vector identities:

u× (ν × ω) = (u · ω)ν − (u · ν)ω,
∇× (∇G) = 0 and ∇× (GF ) = G∇× F +∇G× F,

where G is a differentiable scalar function and u, ν, ω, and F are differentiable

vector fields.

Finally, after capturing the information above we obtain the extended two-dimen-

sional Green–Naghdi system for an uneven bottom topography (β ̸= 0) without

surface tension (σ = 0) with an error of order µ3:

(2.6)


∂tζ +∇ · (hv) = 0,

(h+ µT [h, βb] + µ2T[h, βb])∂tv + h∇ζ + εh(v · ∇)v + εµQ1[U ]v

+ εµβB1[U ]v + εµβ2B2[U ]v + εµ2Q2[U ]v + εµ2βB3[U ]v

+ εµ2β2B4[U ]v = O(µ3),

where v = (v1, v2)
⊤, U = (ζ, v)⊤, and h(t,X) = 1 + εζ(t,X) − βb(X), and we

denote

T [h, βb]w = −1

3
∇(h3∇ · w) + β

2

[
∇(h2∇b · w)− h2∇ · w∇b

]
+ β2h(∇b · w)∇b,

T[h, βb]w = − 1

45
∇
(
∇ · (h5∇(∇ · w))

)
+

1

24
β∇
(
∇ · (h4∇(∇b · w))

)
+

1

24
β∇(∇ · w∇ · (h4∇b))− 1

24
β∇ · (h4∇(∇ · w))∇b

+
1

12
β2∇(h3∇ · w(∇b∇b)) + 1

12
β2∇(h3∇b∇(∇b · w))

+
1

12
β2∇ · (h3∇ · w∇b)∇b+ 1

12
β2∇ · (h3∇(∇b · w))∇b.

Here, the non-topographical terms Q1[U ], Q2[U ] are represented by

Q1[U ]v = −1

3
∇
(
h3
(
(v · ∇)(∇ · v)− (∇ · v)2

))
,

Q2[U ]v = − 1

45
∇
[
∇ ·
{
h5(∇2(∇ · v))v − 5h5(∇ · v)∇(∇ · v)

+∇h5 × (v ×∇(∇ · v))
}]
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+
2

45
∇
(
h5(∇(∇ · v))2

)
+

1

45
∇ ·
(
h5∇(∇ · v)

)
∇(∇ · v)

+
1

90
h5∇

{
(∇(∇ · v))2

}
,

while the purely topographical terms B1[U ], B2[U ], B3[U ], B4[U ] are represented

by

B1[U ]v =
1

2
∇(h2(v · ∇)2b)− 1

2
h2
(
(v · ∇)(∇ · v)− (∇ · v)2

)
∇b,

B2[U ]v = h((v · ∇)2b)∇b,

B3[U ]v = +
1

24
∇
{
∇ ·
(
h4∇2(∇b · v)v + h4(∇ · v∇ · ∇b)v

− 4h4(∇ · v)2∇b− 4h4∇ · v∇(∇b · v)
+∇ · v∇h4 × (v ×∇b) +∇h4 × (v ×∇(∇b · v))

)}
+

1

48
∇b× (∇h4 ×∇(∇ · v)2)− 1

48
h4∇ · ∇b∇(∇ · v)2

− 1

24
∇ · (h4∇(∇b · v))∇(∇ · v)− 1

24
h4∇2(∇ · v)∇(∇b · v)

+
1

24
∇(∇ · v)× (∇(∇b · v)×∇h4)− 1

6
∇(h4∇(∇ · v)∇(∇b · v))

+
1

24
∇
(
(∇h4 · v)(∇b∇(∇ · v))

)
− 1

24
∇ ·
{
h4(∇2(∇ · v)v − 2∇(∇ · v)2) +∇h4 × (v ×∇(∇ · v))

}
∇b,

B4[U ]v =
1

12
∇
{
h3∇ ·

(
∇b× (v ×∇(∇b · v))

)
+ h3∇ · (∇ · v∇b× (v ×∇b))

+ h3(∇b · v)∇2(∇b · v) + h3(∇b · v)∇ · (∇ · v∇b)
+ 2h3(∇(∇b · v))2 − 2h3(∇ · v)2∇b∇b

}
+

1

12
∇ · (h3∇ · v∇b)∇(∇b · v) + 1

12
∇ · (h3∇(∇b · v))∇(∇b · v)

+
1

12
h3∇ · v∇(∇b∇(∇b · v)) + 1

24
h3(∇ · v)2∇(∇b∇b)

+
1

24
h3∇

{
(∇(∇b · v))2

}
+

1

12
∇ ·
{
−3h3(∇ · v)2∇b+∇ · v∇h3 × (v ×∇b)

+ h3v∇ · (∇ · v∇b)
}
∇b

+
1

12
∇ ·
{
h3∇2(∇b · v)v − 3h3∇ · v∇(∇b · v)

+∇h3 × (v ×∇(∇b · v))
}
∇b,

where the expression for Q2 introduces the Laplacian operator ∇2 = ∇ · ∇ = ∆.
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§2.2. The capillary components

Different strategies exist to deal with the presence of surface tension (σ ̸= 0) in the

water-wave problem, such as [36, 29, 3, 4]. The main contrast in our work is that

the gradient of the capillary term − 1
Bo

κ(ε
√
µζ)

ε
√
µ multiplied by h must be added to

the right-hand side of the second equation of (2.6). From a physical point of view,

the effect of surface tension on the water surface is negligible, so the only condition

we need is that there is a small amount of surface tension. More precisely, since

the Bond number Bo is generally large, we assume that the capillary parameter

Bo−1 is of the same order as the shallowness parameter µ ≪ 1. And therefore we

define the rescaled Bond number bo instead of the classical Bond number Bo, as

follows:

(2.7) 0 < bo = µBo =
ρgh20
σ

≪ Bo,

where h0 is the reference depth, ρ the positive constant density of the fluid, g the

acceleration of gravity, and σ the surface tension coefficient. Regarding this, bo is

not assumed too small so that Bo−1 = µbo−1 = O(µ), and the two-dimensional

capillary terms that should be added stand for

− 1

Bo
h∇
{κ(ε√µζ)

ε
√
µ

}
=

1

bo
µh∇(∇ · (∇ζ))

− 1

2bo
ε2µ2h∇(∇ · (|∇ζ|2∇ζ)) +O(ε4µ3).(2.8)

§2.3. The one-dimensional case

For the mathematical analysis of the model we will confine the work to one space

dimension. The extended Green–Naghdi system (2.6) with surface tension is re-

arranged after a few calculations, taking into account the capillary terms (2.8),

as

(2.9)



∂tζ + ∂x(hv) = 0,(
h+ µT [h, βb] + µ2T[h, βb]

)
∂tv + h∂xζ + εhvvx + εµQ1[U ]v

+ εµβB1[U ]v + εµβ2B2[U ]v + εµ2Q2[U ]v + εµ2βB3[U ]v

+ εµ2β2B4[U ]v =
1

bo
µhζxxx + ε2µ2 1

bo
T [U ]ζx +O(µ3),

where U = (ζ, v)⊤ and denoting by h = h(t, x) = 1 + εζ(t, x) − βb(x) the total

non-dimensional height of the liquid, with

T [h, βb]v = −1

3
∂x(h

3∂xv) +
β

2

[
∂x(h

2bxv)− h2bxvx
]
+ β2hb2xv,
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T [U ]ζx = −1

2
h∂2x(ζ

2
xζx),

T[h, βb]v = − 1

45
∂2x(h

5∂2xv)

+
β

24

[
∂x(∂x(h

4bx)∂xv) + ∂2x(h
4∂x(bxv))− bx∂x(h

4∂2xv)
]

+
β2

12

[
2∂x(h

3b2x∂xv)+∂x(h
3bxbxxv)+2bx∂x(h

3bx∂xv)+bx∂x(h
3bxxv)

]
.

The non-topographical terms Q1[U ], Q2[U ] are represented by

Q1[U ]v = −1

3
∂x(h

3(vvxx − v2x)),

Q2[U ]v = − 1

45
∂x
{
∂x(h

5(vvxxx − 5vxvxx))− 3h5(vxx)
2
}
,

while the purely topographical terms B1[U ], B2[U ], B3[U ], B4[U ] are represented

by

B1[U ]v =
1

2

[
∂x(h

2bxxv
2) + ∂x(h

2bxvvx)− h2(vvxx − v2x)bx
]
,

B2[U ]v = h
{
bxxv

2 + bxvvx
}
bx,

B3[U ]v =
1

24
∂2x
{
h4(bxxxv

2 − bxxvvx + bxvvxx − 8bxv
2
x)
}
− 1

4
h4bxxvxvxx

+
1

24
∂x(h

4
xbxvvxx)−

5

24
∂x(h

4bxxvvxx)−
1

24
bx∂x

{
h4(vvxxx + vxvxx)

}
,

B4[U ]v =
1

12
∂x
{
h3(bxxxbxv

2 + 2b2xvvxx + 10bxbxxvvx + 2b2xv
2
x + 3b2xxv

2)
}

+
1

12
h3(bxxv + 2bxvx)bxxvx +

1

12
bx∂x

{
h3(bxxxv

2 + 2bxvvxx − 6bxv
2
x)
}
.

§2.4. New invariant of (2.9)

The main interest of this reformulation is to gather all terms of fifth-order deriva-

tives in the leftmost term, that is, (h+µT [h]+µ2T[h])(∂tv+εvvx). This is reachable

by setting ±εµT [h, βb](vvx) and ±εµ2T[h, βb](vvx) in the second equation of (2.9).

The new formulation then reads

(2.10)



∂tζ + ∂x(hv) = 0,(
h+ µT [h, βb] + µ2T[h, βb]

)
(∂tv + εvvx) + h∂xζ + εµQ1[U ]v

+ εµβB1[U ]v + εµβ2B2[U ]v + εµ2Q2[U ]v + εµ2βB3[U ]v

+ εµ2β2B4[U ]v =
1

bo
µhζxxx + ε2µ2 1

bo
T [U ]ζx +O(µ3),
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where U = (ζ, v)⊤ and h(t, x) = 1+ εζ(t, x)−βb(x), and one may write the above

expressions as

T [h, βb]v = −1

3
∂x(h

3∂xv) +
β

2

[
∂x(h

2bxv)− h2bxvx
]
+ β2hb2xv,

T [U ]ζx = −1

2
h∂2x(ζ

2
xζx),

T[h, βb]v = − 1

45
∂2x(h

5∂2xv)

+
β

24

[
∂x(∂x(h

4bx)∂xv) + ∂2x(h
4∂x(bxv))− bx∂x(h

4∂2xv)
]

+
β2

12

[
2∂x(h

3b2x∂xv)+∂x(h
3bxbxxv)+2bx∂x(h

3bx∂xv)+bx∂x(h
3bxxv)

]
,

where the reformulated non-topographical terms Q1[U ], Q2[U ] are represented by

Q1[U ]v =
2

3
∂x(h

3v2x), Q2[U ]v =
1

45
∂x
{
8∂x(h

5vxvxx) + 3h5v2xx
}
,

while the reformulated purely topographical terms are represented by B1[U ]v =
1
2∂x(h

2bxxv
2) + h2bxv

2
x, and B2[U ]v = hbxxbxv

2 with

B3[U ]v =
1

24
∂2x
{
h4(bxxxv

2 − 2bxxvvx − 9bxv
2
x)
}
− 1

4
h4bxxvxvxx

− 1

24
∂x((h

4)xbxv
2
x)−

1

24
∂x(h

4bxxv
2
x)

− 1

4
∂x(h

4bxxvvxx) +
1

12
bx∂x(h

4vxvxx),

B4[U ]v =
1

12
∂x
{
h3(bxxxbxv

2 + 9bxbxxvvx + 3b2xxv
2)
}
+

1

12
h3(bxxv + 2bxvx)bxxvx

+
1

12
bx∂x

{
h3(bxxxv

2 − bxxvvx − 8bxv
2
x)
}
.

§2.5. The modified system to be studied (2.11)

In this subsection we will state in Remark 2.2 the reason behind the use of the

BBM trick and consequently the corresponding modified model (2.11).

Remark 2.2. The linear dispersion relation of the original/reformulated extended

model (2.9)–(2.10) reads(
1 +

1

3
µ|ξ|2 − 1

45
µ2|ξ|4

)
ω2 − |ξ|2 = 0.

In fact, in the high-frequency regime |ξ| ≫ 1, an instability appears. As a result,

the Cauchy problem for the µ3 model is ill posed. Therefore, a modification is

required to the structure of the model, so that the dispersion relation does not

give rise to any singularities.
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In other words, the positive sign of T[h, βb] in the µ2 fifth-order factorized term

is problematic and prevents the invertibility proof of the operator h+µT [h, βb] +

µ2T[h, βb] by a Lax–Milgram theorem. This property is of highest interest for the

well-posedness demonstration. To overcome this difficulty we replace the positive

sign by a negative sign. A remainder term in the expression 2µ2T[h, βb](∂tv+εvvx)

appears. At this stage, in order to trade the time-dependent derivative on v for a

spatial one, a BBM trick is used and is represented by the approximate equation

∂tv + εvvx = −ζx +O(µ).

It is noteworthy that one may replace the relation h+µT [h, βb]+µ2T[h, βb] =

ℑ+2µ2T[h, βb], which defines the new operator ℑ, by an alternative one ℑ+(α+

1)µ2T[h, βb] = h+µT [h, βb] +µ2T[h, βb], with an arbitrary real parameter α > 0.

The special case α = 1 recovers the present definition. In this general setting, the

linear dispersion relation would also not give rise to any singularities.

In this case, the modified linear dispersion relation of the new system (2.11)

(with bo−1 = 0) exhibits no singularity and reads(
1 +

1

3
µ|ξ|2 + 1

45
µ2|ξ|4

)
ω2 − |ξ|2 − 2

45
µ2|ξ|6 = 0.

On the other hand, in the presence of surface tension (with bo−1 ̸= 0), the modified

linear dispersion relation of the new system (2.11) reads(
1 +

1

3
µ|ξ|2 + 1

45
µ2|ξ|4

)
ω2 − |ξ|2 − 1

bo
µ|ξ|4 − 2

45
µ2|ξ|6 = 0.

In view of the above remark, we introduce a new operator ℑ = h+µT [h, βb]−
µ2T[h, βb]. This has to be followed by some necessary rearrangements due to

a suitable specification of an appropriate symmetrizer (4.2). The modified one-

dimensional extended Green–Naghdi system with surface tension then reads

(2.11)



∂tζ + ∂x(hv) = 0,

ℑ(∂tv + εvvx) + h∂xζ −
µ

bo
hζxxx +

2

45
µ2h∂2x(h

4ζxxx) + µ2I[h, βb]ζx

− ε2µ2 1

bo
T [U ]ζx + εµQ1[U ]vx + εµβB1[U ]vx + εµ2Q2[U ]vx

+ εµ2Q3[U ]vx + εµ2βB2[U ]vx + εµ2β2B3[U ]vx +R[µ, εh, βb](U)

= O(µ3),

where U = (ζ, v)⊤ and h(t, x) = 1 + εζ(t, x)− βb(x). We denote

T [h, βb]v = −1

3
∂x(h

3∂xv) +
β

2

[
∂x(h

2bxv)− h2bxvx
]
+ β2hb2xv,(2.12)

T [U ]ζx = −1

2
h∂2x(ζ

2
xζx),(2.13)
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T[h, βb]v = − 1

45
∂2x(h

5∂2xv)

+
β

24

[
∂x(∂x(h

4bx)∂xv) + ∂2x(h
4∂x(bxv))− bx∂x(h

4∂2xv)
]

+
β2

12

[
2∂x(h

3b2x∂xv) + ∂x(h
3bxbxxv)

+ 2bx∂x(h
3bx∂xv) + bx∂x(h

3bxxv)
]
,(2.14)

where the non-topographical terms Q1[U ], Q2[U ], Q3[U ] are represented by

Q1[U ]f =
2

3
∂x(h

3vxf), Q2[U ]f =
8

45
∂2x(h

5vxxf), Q3[U ]f =
1

15
∂x(h

5vxx∂xf),

I[h, βb]f =
4

45
hx∂x(h

4∂2xf) +
2

45
h4hxx∂

2
xf

− β

12

[
∂x(∂x(h

4bx)∂xf) + ∂2x(h
4bxxf) + ∂2x(h

4bx∂xf)− bx∂x(h
4∂2xf)

]
− β2

6

[
2∂x(h

3b2x∂xf) + ∂x(h
3bxbxxf)

+ 2bx∂x(h
3bx∂xf) + bx∂x(h

3bxxf)
]
,

while the purely topographical terms are represented by B1[U ]f = h2bxvxf and

B2[U ]f = − 1

24
∂2x
{
h4(2bxxv + 9bxvx)f

}
− 1

4
h4bxxvxxf

− 1

24
∂x((h

4)xbxvxf)−
1

24
∂x(h

4bxxvxf)

− 1

4
∂x(h

4bxxv∂xf) +
1

12
bx∂x(h

4vxxf),

B3[U ]f =
3

4
∂x(h

3bxbxxvf) +
1

12
h3(bxxv + 2bxvx)bxxf

− 1

12
bx∂x

{
h3(bxxvf + 8bxvxf)

}
,

R[µ, εh, βb](U) =
1

2
εµβ∂x(h

2bxxv
2) + εµβ2hbxbxxv

2 +
1

24
εµ2β∂2x(h

4bxxxv
2)

+
1

12
εµ2β2∂x(h

3bxbxxxv
2) +

1

4
εµ2β2∂x(h

3b2xxv
2)

+
1

12
εµ2β2bx∂x(h

3bxxxv
2).

§3. Preliminary results

From a physical point of view we will assume that the fluid depth is constantly

limited. This assumption is essential for the mathematical analysis. Therefore, the
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analysis is to be done under a non-zero depth condition:

(3.1) there exist hmin > 0, inf
x∈R

h ≥ hmin where h(t, x) = 1 + εζ(t, x)− βb(x).

We will intensively use two formulations of the leftmost operator ℑ = h +

µT [h, βb]−µ2T[h, βb] (we recall (2.12)–(2.14) the definitions of T and T) which at

some points provide more convenience in the energy estimate derivation and the

analysis of the operator itself. These two expressions correspond to two formula-

tions of the operator T[h, βb], one defined by (2.14) and the other by

T[h, βb] = − 1

45
∂2x(h

5∂2x·)

+
β

24

[
2∂2x(h

4bx∂x·) + ∂2x(h
4bxx(·))− 2∂x(h

4bx∂
2
x·) + h4bxx∂

2
x·
]

+
β2

12

[
4∂x(h

3b2x∂x·) + 2∂x(h
3bxbxx(·))− 2h3b2x∂x(·)− h3bxbxx(·)

]
.(3.2)

The following two lemmas provide important invertibility results on ℑ and

specify some properties on its inverse ℑ−1.

Lemma 3.1. Let b ∈ C∞
b (R) and assume that ζ(t, ·) ∈W 2,∞(R) is a differentiable

scalar function under condition (3.1). Then the operator

ℑ : H4(R) −→ L2(R)

is well defined, one-to-one, and onto.

Proof. The proof of the invertibility of ℑ is a direct application of the Lax–Milgram

theorem. We define by H2
µ(R) the space H2(R) endowed with the norm |·|µ as

H2
µ(R) =

{
v ∈ H2(R); |v|2µ = |v|22 + µ|vx|22 + µ2|vxx|22 <∞

}
,

where |·|µ is equivalent to |·|H2 but not uniformly with respect to µ ∈ (0, 1). Let

f ∈ L2(R). Consider the weak problem{
find v ∈ H2

µ(R) such that

a(v, u) = L(u) ∀u ∈ H2
µ(R),

with L(u) = (f, u) and the bilinear form a(v, u) = (ℑv, u) which can be written as

a(v, u) = (hv, u) + µ
(
h
(√3

3
hvx −

√
3

2
βbxv

)
,

√
3

3
hux −

√
3

2
βbxu

)
+
µβ2

4
(hbxv, bxu)
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+ µ2
(
h
(√5

15
h2vxx −

√
5

4
βhbxvx −

√
5

8
βhbxxv

)
,

√
5

15
h2uxx −

√
5

4
βhbxux −

√
5

8
βhbxxu

)
+ µ2β2

(
h
(√3

12
hbxvx +

√
3

24
hbxxv

)
,

√
3

12
hbxux +

√
3

24
hbxxu

)
.

It is easy to see that a and L are continuous on H2
µ(R) × H2

µ(R) and H2
µ(R)

respectively. In addition, using (3.1) we have

a(v, v) ≥ hmin|v|22 + µhmin

∣∣∣√3

3
hvx −

√
3

2
βbxv

∣∣∣2
2
+
µβ2

4
|bxv|22

+ µ2hmin

∣∣∣√5

15
h2vxx −

√
5

4
βhbxvx −

√
5

8
βhbxxv

∣∣∣2
2

+ µ2β2hmin

∣∣∣√3

12
hbxvx +

√
3

24
hbxxv

∣∣∣2
2
,

but it holds that

|v|2µ ≤ |v|22 +
3µ

h2min

∣∣∣√3

3
hvx

∣∣∣2
2
+

45µ2

h4min

∣∣∣√5

15
h2vxx

∣∣∣2
2

≤ |v|22 +
18

h2min

µ
(∣∣∣√3

3
hvx −

√
3

2
βbxv

∣∣∣2
2
+
β2

4
|bxv|22

)
+

90

h4min

µ2
∣∣∣√5

15
h2vxx −

√
5

4
βhbxvx −

√
5

8
βhbxxv

∣∣∣2
2

+
1350

h4min

µ2β2
∣∣∣√3

12
hbxvx +

√
3

24
hbxxv

∣∣∣2
2
.

Therefore, after denoting Mhmin
= max{1, 18

h2
min
, 90
h4
min
, 1350
h4
min

}, we deduce the coer-

civity condition on H2
µ(R)×H2

µ(R) represented by the inequality

(3.3) a(v, v) ≥ hmin

Mhmin

|v|2µ.

Therefore by the Lax–Milgram theorem, for every f ∈ L2(R), there exists a unique

v ∈ H2
µ(R) such that for all u ∈ H2

µ(R) we have a(v, u) = (ℑv, u) = L(u) = (f, u).

Equivalently, there is a unique variational solution to the equation

(3.4) ℑv = f.

It remains to prove that v ∈ H4(R). Indeed, fix µ ∈ (0, 1) and introduce the well-

defined invertible operator J : H2(R) → L2(R) defined by Jϕ = ϕ− µ2

45 ∂x(h
5∂xϕ)

such that (see Appendix A.4 for further discussion), for all q, g ∈ L2(R), it holds
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that

(3.5)

{
µ|J−1∂xg|H1

µ
≲ |g|L2 ,

|J−1q|H1
µ
≲ |q|L2 .

From the definition of operators ℑ and J combined with (3.4), it holds that vxx =

J−1ψ such that

ψ = hv + vxx + µT [h, βb]v +
1

45
µ2∂x(h

5
xvxx)

− µ2β

24

[
∂x(∂x(h

4bx)∂xv) + ∂2x(h
4∂x(bxv))− bx∂x(h

4∂2xv)
]

− µ2β2

12

[
2∂x(h

3b2x∂xv)+ ∂x(h
3bxbxxv)+ 2bx∂x(h

3bx∂xv)+ bx∂x(h
3bxxv)

]
− f.

Since v ∈ H2(R), f ∈ L2(R) and using (3.5), one may deduce that J−1ψ = vxx ∈
H1(R). Thus by (3.4) and (3.1) we have

vxxxx = − 45

h4µ2
v − 45

h5µ
T [h, βb]v − h5xx

h5
vxx − 2h5x

h5
vxxx

+
15β

8h5
[
∂x(∂x(h

4bx)∂xv) + ∂2x(h
4∂x(bxv))− bx∂x(h

4∂2xv)
]

+
15β2

4h5
[
2∂x(h

3b2x∂xv) + ∂x(h
3bxbxxv) + 2bx∂x(h

3bx∂xv) + bx∂x(h
3bxxv)

]
+ f ∈ L2(R).

Hence the proof is complete.

The following lemma gives functional properties to the operator ℑ−1.

Lemma 3.2. Let ζ ∈ Ht0+1(R) and b ∈ Ht0+3(R) be such that (3.1) is satisfied.

Then we have the following:

(i) For all 0 ≤ s ≤ t0 + 1,

|ℑ−1f |Hs +
√
µ|∂xℑ−1f |Hs + µ|∂2xℑ−1f |Hs

≤ C(h−1
min, |h− 1|Ht0+1 , |b|Ht0+3)|f |Hs .

(ii) For all 0 ≤ s ≤ t0 + 1,

√
µ|ℑ−1∂xf |Hs + µ|∂xℑ−1∂xf |Hs + µ

√
µ|∂2xℑ−1∂xf |Hs

≤ C(h−1
min, |h− 1|Ht0+1 , |b|Ht0+3)|f |Hs ,

µ|ℑ−1∂2xf |Hs + µ
√
µ|∂xℑ−1∂2xf |Hs + µ2|∂2xℑ−1∂2xf |Hs

≤ C(h−1
min, |h− 1|Ht0+1 , |b|Ht0+3)|f |Hs .
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(iii) For all s ≥ t0 + 1,

∥ℑ−1∥Hs(R)→Hs(R)+
√
µ∥ℑ−1∂x∥Hs(R)→Hs(R)+µ∥ℑ−1∂2x∥Hs(R)→Hs(R) ≤ Cs,

µ∥∂xℑ−1∂x∥Hs(R)→Hs(R) + µ
√
µ∥∂2xℑ−1∂x∥Hs(R)→Hs(R) ≤ Cs,

µ
√
µ∥∂xℑ−1∂2x∥Hs(R)→Hs(R) + µ2∥∂2xℑ−1∂2xf∥Hs(R)→Hs(R) ≤ Cs,

where Cs is a constant depending on h−1
min, |h−1|Hs , |b|Hs+3 and independent

of (ε, µ) ∈ (0, 1)2.

Proof. The proof is a generalization of the proof when β = 0 of operator ℑ in [20].

Note that here it is more convenient to use the second formulation (3.2) of the

operator ℑ.
Assume that f ∈ Hs(R) and u = ℑ−1f ; then ℑu = f . Apply Λs to both

sides, then multiply by Λsu, which yields the following equality (note that ℑΛsu =

Λsf − [Λs,ℑ]u):

a(Λsu,Λsu) = (f̃ ,Λsu) +
√
µ(∂xg̃,Λ

su) + µ(∂2xp̃,Λ
su),

such that f̃ , g̃, and p̃ read

f̃ = Λsf − [Λs, h]u+
µβ

2
[Λs, h2bx]ux − µβ2[Λs, hb2x]u+

µ2β

24
[Λs, h4bxx]uxx

− µ2β2

6
[Λs, h3b2x]ux − µ2β2

12
[Λs, h3bxbxx]u,

g̃ =

√
µ

3
[Λs, h3]ux −

√
µβ

2
[Λs, h2bx]u−

µ
√
µβ

12
[Λs, h4bx]uxx

+
µ
√
µβ2

3
[Λs, h3b2x]ux +

µ
√
µβ2

6
[Λs, h3bxbxx]u,

p̃ = − µ

45
[Λs, h5]uxx +

µβ

12
[Λsh4bx]ux +

µβ

24
[Λs, h4bxx]u.

Integrating by parts and using (3.3), we get

hmin

Mhmin

|Λsu|µ ≤ |f̃ |2 + |g̃|2 + |p̃|2.

Now, using the necessary Kato–Ponce commutator estimates below (see [2, Lem.

4.6]),

|[Λs, f ]u|2 ≲ |∇f |Ht0 |u|Hs−1 if 0 ≤ s ≤ t0 + 1,(3.6)

|[Λs, f ]u|2 ≲ |∇f |Hs−1 |u|Hs−1 if s ≥ t0 + 1,(3.7)

it holds that

|f̃ |2 + |g̃|2 + |p̃|2 ≤ |f |Hs + C(|h− 1|Ht0+1)|Λs−1u|µ.
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Hence, the inequality (i) holds after a continuous induction on s. For the proof of

(ii), one has to replace u =
√
µℑ−1∂xf and u = µℑ−1∂2xf for a second time. The

general strategy is the same as in (i), noticing that Λs commutes with ∂x, ∂
2
x. The

only difference is in the expression for f̃ , g̃, p̃ when setting u =
√
µℑ−1∂xf and

similarly when u = µℑ−1∂2xf . The rest of the proof is as in [20].

§4. The linearized system

In order to rewrite the extended Green–Naghdi system for an uneven bottom with

surface tension in a condensed form, we introduce a new symmetric operator Jbo:

Jbo = 1− µ

bo
∂2x(·) +

2

45
µ2∂2x(h

4∂2x·), with h(t, x) = 1 + εζ(t, x)− βb(x).

The first equation in (2.11) can be written as

∂tζ + εv∂xζ + h∂xv − βv∂xb = 0.

For the second equation in (2.11), applying ℑ−1 to both sides we get

∂tv + εvvx + ℑ−1(hJboζx) + µ2ℑ−1(I[h, βb]ζx)− ε2µ2 1

bo
ℑ−1(T [U ]ζx)

+ εµℑ−1(Q1[U ]vx) + εµβℑ−1(B1[U ]vx) + εµ2ℑ−1(Q2[U ]vx)

+ εµ2ℑ−1(Q3[U ]vx) + εµ2βℑ−1(B2[U ]vx)

+ εµ2β2ℑ−1(B3[U ]vx) + ℑ−1(R[µ, εh, βb](U)) = O(µ3).

Hence, the extended Green–Naghdi system (β ̸= 0) with surface tension can be

written in the form

∂tU +A[U ]∂xU +B(U) = 0,

where U = (ζ, v)⊤ and

A[U ] =

 εv h

ℑ−1(hJbo·) + µ2ℑ−1(I[h, βb]·)
−ε2µ2 1

boℑ
−1(T [U ]·)

εv + εµQb[U ] ·+εµ2Qbb[U ]·

 ,

with

Qb[U ]· = ℑ−1(Q1[U ]·) + ℑ−1(βB1[U ]·),
Qbb[U ]· = ℑ−1(Q2[U ] ·+Q3[U ] ·+βB2[U ] ·+β2B3[U ]·),

and

B(U) =

(
−βbxv

ℑ−1(R[µ, εh, βb](U))

)
.
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We consider now the linearized system around some reference state U =

(ζ, v)⊤:

(4.1)

{
∂tU +A[U ]∂xU +B(U) = 0,

U|t=0
= U0.

The proof of the energy estimate which permits the convergence of an iterative

scheme to construct a solution to the extended system (2.11) for the initial value

problem (4.1) requires us to define the Xs spaces, which are the energy spaces for

this problem.

Definition 4.1. For all s ≥ 0 and T > 0, we denote by Xs the vector space

Hs+2(R)×Hs+2(R) endowed with the norm

|U |2Xs := |ζ|2Hs +
µ

bo
|ζx|2Hs + µ2|ζxx|2Hs + |v|2Hs + µ|vx|2Hs + µ2|vxx|2Hs ,

while µ
bo = O(µ) and Xs

T stands for C([0, T
ε∨β ];X

s) endowed with its canonical

norm.

First, recall that a pseudo-symmetrizer for A[U ] is given by

S =

(
Jbo 0

0 ℑ

)

=

(
1− µ

bo∂
2
x(·) + 2

45µ
2∂2x(h

4∂2x·) 0

0 h+ µT [h, βb]− µ2T[h, βb]

)
,(4.2)

where h = 1 + εζ − βb. A natural energy for the initial value problem (4.1) is

suggested to be

Es(U)2 = (ΛsU, SΛsU).

The connection between Es(U) and the Xs-norm is examined using the lemma

below.

Lemma 4.2. Let s ≥ 0, b ∈ C∞
b (R), and ζ ∈ L∞(R). Under the non-zero-depth

condition

(4.3) there exists hmin > 0, inf
x∈R

h ≥ hmin, h(t, x) = 1 + εζ(t, x)− βb(x),

Es(U) is uniformly equivalent to the |·|Xs-norm with respect to (µ, ε,bo−1) ∈
(0, 1)3:

Es(U) ≤ C(|ζ|∞)|U |Xs and |U |Xs ≤ C(h−1
min)E

s(U).
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Proof. First note that Es(U)2 = (ΛsU, SΛsU) with SΛsU = (JboΛ
sζ,ℑΛsv).

Then we get

Es(U)2 = (Λsζ, JboΛ
sζ) + (Λsv,ℑΛsv).

Using the expressions for ℑ, Jbo, and the proof of Lemma 3.1, by integrating by

parts it holds that

Es(U)2 = (Λsζ,Λsζ) +
µ

bo
(Λsζx,Λ

sζx) +
2

45
µ2(h4Λsζxx,Λ

sζxx) + a(Λsv,Λsv),

where

a(v, u) = (hv, u) + µ
(
h
(√3

3
hvx −

√
3

2
βbxv

)
,

√
3

3
hux −

√
3

2
βbxu

)
+
µβ2

4
(hbxv, bxu)

+ µ2
(
h
(√5

15
h2vxx −

√
5

4
βhbxvx −

√
5

8
βhbxxv

)
,

√
5

15
h2uxx −

√
5

4
βhbxux −

√
5

8
βhbxxu

)
+ µ2β2

(
h
(√3

12
hbxvx +

√
3

24
hbxxv

)
,

√
3

12
hbxux +

√
3

24
hbxxu

)
.

From the assumption of the lemma we know that b ∈ C∞
b (R), ζ ∈ L∞(R), and

that the water depth is constantly limited (4.3). Then by the Cauchy–Schwarz

inequality and with the help of the proof of Lemma 3.1, we get the two inequalities

of the desired lemma.

A derivation of the prior energy estimate is given in the proposition below.

Proposition 4.3. Let s > 3/2, bo−1 ∈ [0, 1), and b(x) ∈ Hs+3(R). Also let

U = (ζ, v)⊤ ∈ Xs
T be such that ∂tU ∈ Xs−1

T and satisfy condition (3.1) on [0, T
ε∨β ].

Then, for all U0 ∈ Xs, there exists a unique solution U = (ζ, v)⊤ ∈ Xs
T to (4.1)

and for all 0 ≤ t ≤ T
ε∨β satisfying

Es(U(t)) ≤ (e(ε∨β)λT t)1/2Es(U0)

+ (ε ∨ β)
∫ t

0

(e(ε∨β)λT (t−t′))1/2C(Es(U)(t′),bo−1) dt′,(4.4)

for some λT = λT (sup0≤t≤T/ε∨β E
s(U(t)), sup0≤t≤T/ε∨β |∂th(t)|L∞ ,bo−1), where

ε ∨ β = max{ε, β}.

Remark 4.4. In the following proof and for the sake of simplicity, we will not

attempt to show the dependence on the bottom parametrization b ∈ Hs+3(R) in



On the Extended Green–Naghdi System 613

all of the verifications. For an explanation of why s+ 3 regularization is required,

consider the control of term D3 +D4.

Proof of Proposition 4.3. The existence and uniqueness of the solution is a direct

adaptation of the proof in [16, App. A] (one may see also [32, 1] for general details).

Our attention targets mainly the demonstration of the energy estimate. Consider

any λ ∈ R; the key point is to bound from above, in terms of Es(U), the component

below:

e(ε∨β)λt∂t(e
−(ε∨β)λtEs(U)2) = −(ε ∨ β)λEs(U)2 + ∂t(E

s(U)2).

Using the fact that ℑ and Jbo are symmetric, in addition to the identities

∂t(ℑΛsv) = [∂t,ℑ]Λsv + ℑΛsvt, ∂t(JboΛ
sζ) = [∂t, Jbo]Λ

sζ + JboΛ
sζt,

one gets after using (4.1) that

∂t(E
s(U)2) = −2(SΛsU, [Λs, A[U ]]∂xU)− 2(SΛsU,A[U ]Λs∂xU)

− 2(ΛsB(U), SΛsU) + (Λsζ, [∂t, Jbo]Λ
sζ) + (Λsv, [∂t,ℑ]Λsv).

Therefore, we obtain

1

2
e(ε∨β)λt∂t(e

−(ε∨β)λtEs(U)2) = − (ε ∨ β)λ
2

Es(U)2 − (SA[U ]Λs∂xU,Λ
sU)

− ([Λs, A[U ]]∂xU, SΛ
sU)− (ΛsB(U), SΛsU)

+
1

2
(Λsζ, [∂t, Jbo]Λ

sζ) +
1

2
(Λsv, [∂t,ℑ]Λsv).(4.5)

We will focus now on bounding from above the purely topographical components

of the right-hand side of (4.5), knowing that the non-topographical expressions

have been controlled in [20]. Note that by Parseval’s identity, the Cauchy–Schwarz

inequality, and then Young’s inequality, we will use the inequality

(4.6) µ|ζx|2Hs ≤ 1

2
|ζ|2Hs +

1

2
µ2|ζxx|2Hs .

Estimation of (SA[U ]Λs∂xU,Λ
sU). Put

R[U ]· = εµQ1[U ] ·+εµ2Q2[U ] ·+εµ2Q3[U ] · .

By definition we have

SA[U ] =

 εJbo(v·) Jbo(h·)
hJbo ·+µ2I[h, βb]·
−ε2µ2 1

boT [U ]·
εℑ(v·) +R[U ] ·+εµβB1[U ]·
+εµ2βB2[U ] ·+εµ2β2B3[U ]·

 .
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Then it holds that

(SA[U ]Λs∂xU,Λ
sU) = ε(Jbo(vΛ

sζx),Λ
sζ) + (Jbo(hΛ

svx),Λ
sζ)

+ (hJboΛ
sζx,Λ

sv) + µ2(I[h, βb]Λsζx,Λ
sv)

− ε2µ2 1

bo
(T [U ]Λsζx,Λ

sv) + ε(ℑ(vΛsvx),Λ
sv)

+ (R[U ]Λsvx,Λ
sv) + εµβ(B1[U ]Λsvx,Λ

sv)

+ εµ2β(B2[U ]Λsvx,Λ
sv) + εµ2β2(B3[U ]Λsvx,Λ

sv)

= A1 +A2 + · · ·+A10.

From [20] and with inequality (4.6) in hand, one may deduce that the non-

topographical terms A1, A2, A3, A5, A7 are controlled as

|A1 +A2 +A3 +A5 +A7| ≲ (ε ∨ β)C(Es(U),bo−1)Es(U)2.

To control A4, an integration by parts yields

A4 =
4

45
µ2(hx∂x(h

4Λsζxxx),Λ
sv) +

2

45
µ2(h4hxxΛ

sζxxx,Λ
sv)

+
1

12
µ2β(∂x(h

4bx)Λ
sζxx,Λ

svx)−
1

12
µ2β(h4bxxΛ

sζx,Λ
svxx)

− 1

12
µ2β(h4bxΛ

sζxx,Λ
svxx)−

1

12
µ2β(h4Λsζxxx, ∂x(bxΛ

sv))

+
1

3
µ2β2(h3b2xΛ

sζxx,Λ
svx) +

1

6
µ2β2(h3bxbxxΛ

sζx,Λ
svx)

+
1

3
µ2β2(h3bxΛ

sζxx, ∂x(bxΛ
svx)) +

1

6
µ2β2(h3bxxΛ

sζx, ∂x(bxΛ
svx))

= A41 +A42 + · · ·+A4(10).

To control A41 and A42, by integration by parts and (4.6) it holds that

|A41 +A42| ≤ (ε ∨ β)C(|ζ|W 1,∞ , |ζ|Hs , µ|ζxx|Hs)Es(U)2.

Again, using integration by parts one can write

|A46| =
1

12
µ2β

∣∣∣(Λsζxx, ∂x(h
4bxxΛ

sv)) +
1

12
µ2β(Λsζxx, ∂x(h

4bxΛ
svx))

∣∣∣
≤ βC(|ζ|W 1,∞)Es(U)2.

The rest of the components are controlled similarly, so it holds that

|A4| ≤ (ε ∨ β)C(|ζ|W 1,∞ , |ζ|Hs , µ|ζxx|Hs)Es(U)2.
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To control A6 one should notice that the non-topographical terms are bounded

from above in [20] by

(ε ∨ β)C(|ζ|W 1,∞ , |vx|∞,
√
µ|vxx|∞)Es(U)2,

while the purely topographical terms can be written as

− 1

2
εµβ(h2bxvΛ

svx,Λ
svx)−

1

2
εµβ(h2bx∂x(vΛ

svx),Λ
sv)

+ εµβ2(hb2xvΛ
svx,Λ

sv) +
1

24
εµ2β((h4bx)x∂x(vΛ

svx),Λ
svx)

− 1

24
εµ2β(h4∂x(bxvΛ

svx),Λ
svxx)−

1

24
εµ2β(h4∂2x(vΛ

svx), ∂x(bxΛ
sv))

+
1

6
εµ2β2(h3b2x∂x(vΛ

svx),Λ
svx) +

1

12
εµ2β2(h3bxbxxvΛ

svx,Λ
svx)

+
1

6
εµ2β2(h3bx∂x(vΛ

svx), ∂x(bxΛ
sv)) +

1

6
εµ2β2(h3bxxvΛ

svx, ∂x(bxΛ
sv))

= A61 +A62 + · · ·+A6(10).

Again, by integration by parts one has

|A66| =
1

24
εµ2β

∣∣(∂x(vΛsvx), ∂x(h
4bxxΛ

sv)) + (∂x(vΛ
svx), ∂x(h

4bxΛ
svx))

∣∣
≤ εβC(|ζ|W 1,∞ , |v|W 1,∞)Es(U)2.

Hence, we get

|A6| ≤ (ε ∨ β)C(|ζxx|W 1,∞ , |v|W 1,∞ ,
√
µ|vxx|∞)Es(U)2.

Similarly, using the expressions for B1[U ], B2[U ], B3[U ] and integrations by parts

one has

|A8| ≤ εβC(|ζ|∞, |vx|∞)Es(U)2,

|A9| ≤ εβC(|ζ|W 1,∞ , |v|W 1,∞ ,
√
µ|vxx|∞)Es(U)2,

|A10| ≤ εβC(|ζ|∞, |v|W 1,∞)Es(U)2.

Therefore, we get

|(SA[U ]Λs∂xU,Λ
sU)|

≤ (ε ∨ β)C
(
|ζ|W 1,∞ , |ζ|Hs , µ|ζxx|Hs , |v|W 1,∞ ,

√
µ|vxx|∞,bo−1

)
Es(U)2.

Estimation of ([Λs, A[U ]]∂xU, SΛ
sU). First of all, we have

([Λs, A[U ]]∂xU, SΛ
sU)

= ε([Λs, v]ζx, JboΛ
sζ) + ε([Λs, h]vx, JboΛ

sζ)

+ ([Λs,ℑ−1(hJbo·)]ζx,ℑΛsv) + µ2([Λs,ℑ−1(I[h, βb]·)]ζx,ℑΛsv)
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− ε2µ2 1

bo
([Λs,ℑ−1(T [U ]·)]ζx,ℑΛsv) + ε([Λs, v]vx,ℑΛsv)

+ εµ([Λs,ℑ−1(Qb[U ]·)]vx,ℑΛsv) + εµ2([Λs,ℑ−1(Qbb[U ]·)]vx,ℑΛsv)

= D1 +D2 + · · ·+D8.

To control D1, D2 we use the expression for Jbo, the commutator estimate (3.7),

and the fact that

(4.7) ∂2x[Λ
s,M ]N = [Λs,Mxx]N + 2[Λs,Mx]Nx + [Λs,M ]Nxx.

Then, with (4.6) in hand, it holds that

|D1+D2| ≤ (ε∨β)C
(
|ζ|∞, |h−1|Hs , |ζ|Hs , µ|ζxx|Hs , |v|Hs , µ|vxx|Hs ,bo−1

)
Es(U)2.

To control D3 +D4, remark that ℑ is symmetric to

ℑ[Λs,ℑ−1]hJboζx = ℑ[Λs,ℑ−1(hJbo·)]ζx − [Λs, hJbo]ζx.

Moreover, since [Λs,ℑ−1] = −ℑ−1[Λs,ℑ]ℑ−1, one gets

ℑ[Λs,ℑ−1(hJbo·)]ζx = −[Λs,ℑ]ℑ−1hJboζx + [Λs, hJbo]ζx.

By using the explicit expression for ℑ, integration by parts, and the facts

(4.8) [Λs, ∂x(M∂x·)]N = ∂x[Λ
s,M ]Nx, [Λs, ∂2x(M∂2x·)]N = ∂2x[Λ

s,M ]Nxx,

one can write

D3 +D4 = ([Λs,ℑ]ℑ−1(hJboζx),Λ
sv) + ([Λs, hJbo]ζx,Λ

sv)

+ µ2([Λs,ℑ]ℑ−1(I[h, βb]ζx),Λsv) + µ2([Λs, I[h, βb]]ζx,Λsv).

Now, using the expression for Jbo one has

2

45
µ2h∂2x(h

4ζxxx) = 2ℑζx − 2hζx +
µ

3
∂x(h

3ζxx)− µβ[∂x(h
2bxζx)− h2bxζxx]

− 2µβ2hb2xζx − µ2I[h, βb]ζx.

Then it holds that

ℑ−1(hJboζx) + µ2ℑ−1(I[h, βb]ζx)

= 2ζx −ℑ−1(hζx)−
µ

bo
ℑ−1(hζxxx) +

2µ

3
ℑ−1∂x(h

3ζxx)

− µβℑ−1
(
∂x(h

2bxζx)− h2bxζxx + 2βhb2xζx
)
.
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The above equality then implies

D3 +D4 = 2([Λs,ℑ]ζx,Λsv)− ([Λs,ℑ]ℑ−1(hζx),Λ
sv)

+
2µ

3
([Λs,ℑ]ℑ−1∂x(h

3ζxx),Λ
sv)− µ

bo
([Λs,ℑ]ℑ−1(hζxxx),Λ

sv)

+ ([Λs, hJbo]ζx,Λ
sv)

− µβ
(
[Λs,ℑ]ℑ−1

(
∂x(h

2bxζx)− h2bxζxx + 2βhb2xζx
)
,Λsv

)
+ µ2([Λs, I[h, βb]]ζx,Λsv)

= D341 +D342 + · · ·+D347.

In order to facilitate our way of controlling D3 +D4, we will use the re-expression

(3.2) of ℑ, which reads

ℑ = h− 1

3
µ∂x(h

3∂x·) +
µβ

2
∂x(h

2bx(·))−
µβ

2
h2bx∂x·

+ µβ2hb2x(·) +
1

45
µ2∂2x(h

5∂2x·)

− µ2β

24

[
2∂2x(h

4bx∂
2
x·) + ∂2x(h

4bxx(·))− 2∂x(h
4bx∂

2
x·) + h4bxx∂

2
x·
]

− µ2β2

12

[
4∂x(h

3b2x∂x·) + ∂x(h
3bxbxx(·))− 2h3bxbxx∂x · −h3b2xx(·)

]
.

Using this, the commutator estimate (3.7), identities (4.8), and Lemma 3.2, it

holds that

|D341| ≤ (ε ∨ β)C(|h− 1|Hs)Es(U)2,

|D342 +D343 +D344| ≤ (ε ∨ β)C(|h− 1|Hs , Cs)E
s(U)2

To control D345, one should use the explicit expression for Jbo and the fact that

[Λs,M∂(ı)x (N∂2x·)]P = [Λs,M∂(ı)x ]N∂2xP

+M∂(ı)x [Λs, N ]∂2xP with ı = {1, 2},(4.9)

to write D345 as

D345 = ([Λs, h]ζx,Λ
sv)− µ

bo
([Λs, h]ζxxx,Λ

sv)

+
2

45
µ2([Λs, h5]ζxxx, ∂

2
x(hΛ

sv)) +
2

45
µ2([Λs, h∂2x]h

5ζxxx,Λ
sv)

= D3451 +D3452 +D3453 +D3454,

such that

|D3451 +D3452 +D3453| ≤ (ε ∨ β)C(|h− 1|Hs , |ζ|∞,bo−1)Es(U)2.



618 B. Khorbatly and S. Israwi

To control D3454, one should note the commutator identity

[Λs,M∂2x]N = ∂2x[Λ
s,M ]N − 2∂x[Λ

s, ∂xM ]N + [Λs, ∂2xM ]N

= [Λs,M ]∂2xN.(4.10)

Then, with (4.6) in hand, it holds that

|D3454| ≤ (ε ∨ β)C(|h− 1|Hs , |ζ|Hs , µ|ζxxx|Hs−1)Es(U)2.

Therefore, we obtain

|D345| ≤ (ε ∨ β)C(|h− 1|Hs , |ζ|∞, |ζ|Hs , µ|ζxxx|Hs−1 , Cs,bo
−1)Es(U)2.

To control D346, by integration by parts and using the explicit expression for ℑ,
the commutator estimate (3.7), identities (4.8), and Lemma 3.2, we get

|D346| ≤ βC(|h− 1|Hs , Cs)E
s(U)2.

To control D347, we use integration by parts, the commutator (3.7) with the help

of (4.9), (4.10), (4.6), and the commutator identity below,

[Λs,M∂x]N = ∂x[Λ
s,M ]N − [Λs, ∂xM ]N = [Λs,M ]∂xN.

The non-topographical terms are bounded from above by

(ε ∨ β)C(|h− 1|Hs , |ζ|Hs , µ|ζxx|Hs)Es(U)2.

On the other side, for the purely topographical terms in D347 we use

(4.11) [Λs, ∂x(M ·)]N = ∂x[Λ
s,M ]N and [Λs, ∂2x(M ·)]N = ∂2x[Λ

s,M ]N,

and by integration by parts and (3.7) we write

µ2β − 1

6
([Λs, h4bx]ζxxx,Λ

svxx)−
1

12
([Λs, h4bxx]ζx,Λ

svxx)

− 1

6
([Λs, h4bx]ζxxx,Λ

svx)−
1

12
([Λs, h4bxx]ζxxx,Λ

sv)

− 2

3
β([Λs, h3b2x]ζxx,Λ

svx) +
1

6
β([Λs, h3bxbxx]ζx,Λ

svx)

+
1

3
β([Λs, h3bxbxx]ζxx,Λ

sv) +
1

6
β([Λs, h3b2xx]ζx,Λ

sv)

≤ (ε ∨ β)C(|h− 1|Hs)Es(U)2.

Thus, after collecting the information above, we obtain

|D3 +D4| ≤ (ε ∨ β)C(|h− 1|Hs , |ζ|∞, |ζ|Hs , µ|ζxxx|Hs−1 , Cs,bo
−1)Es(U)2.
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To control D5, let us note the commutator identities (4.11) and

[Λs,M∂(ı)x (N ·)]P = [Λs,M∂(ı)x ]NP +M∂(ı)x [Λs, N ]P

= [Λs,M ]∂(ı)x (NP ) +M∂(ı)x [Λs, N ]P,

with ı = {1, 2}. Now, as in D3, using (4.8), by integration by parts, Lemma 3.2,

and the Kato–Ponce commutator estimate (3.7), it holds that

|D5| ≤ (ε ∨ β)C(|h− 1|Hs−1 , |ζx|Hs−1 , |ζ|Hs , µ|ζxx|Hs , Cs,bo
−1)Es(U)2.

To control D6, one can write, after checking the expression for ℑ and using (4.7)

with integration by parts and the fact that ∂x[Λ
s,M ]N = [Λs,Mx]N +[Λs,M ]Nx,

|D6| = ε
∣∣∣([Λs, v]vx, hΛ

sv) +
1

3
µ([Λs, vx]vx, h

3Λsvx)

+
1

3
µ([Λs, v]vxx, h

3Λsvx)−
1

2
µβ([Λs, vx]vx, h

2bxΛ
sv)

− 1

2
µβ([Λs, v]vxx, h

2bxΛ
sv) + µβ2([Λs, v]vx, hb

2
xΛ

sv)

+
1

45
µ2([Λs, vxx]vx, h

5Λsvxx) +
2

45
µ2([Λs, vx]vxx, h

5Λsvxx)

+
1

45
µ2([Λs, v]vxxx, h

5Λsvxx)−
1

12
µ2β([Λs, vxx]vx, h

4bxΛ
svxx)

− 1

12
µ2β([Λs, v]vxxx, h

4bxΛ
svxx)−

1

6
µ2β([Λs, vx]vxx, h

4bxΛ
svxx)

− 1

24
µ2β([Λs, vxx]vx, h

4bxxΛ
sv)− 1

24
µ2β([Λs, v]vxxx, h

4bxxΛ
sv)

− 1

12
µ2β([Λs, vx]vxx, h

4bxxΛ
sv)− 1

12
µ2β([Λs, vx]vx, h

4bxΛ
svxx)

− 1

12
µ2β([Λs, v]vxx, h

4bxΛ
svxx)−

1

24
µ2β([Λs, v]vx, h

4bxxΛ
svxx)

+
2

3
µ2β2([Λs, vx]vx, h

3b2xΛ
svx) +

2

3
µ2β2([Λs, v]vxx, h

3b2xΛ
svx)

+
1

12
µ2β2([Λs, vx]vx, h

3bxbxxΛ
sv) +

1

12
µ2β2([Λs, v]vxx, h

3bxbxxΛ
sv)

+
1

6
µ2β2([Λs, v]vx, h

3bxbxxΛ
sv) +

1

12
µ2β2([Λs, v]vx, h

3b2xxΛ
sv)
∣∣∣

≤ (ε ∨ β)C(|ζ|∞, |v|Hs ,
√
µ|vxx|Hs−1 , µ|vxxx|Hs−1)Es(U)2.

To control D7, one can realize D3 and integrate by parts with the help of (4.8) to

write

D7 = −εµ([Λs,ℑ]ℑ−1Q1[U ]vx,Λ
sv) + εµ([Λs,Q1[U ]]vx,Λ

sv)

− εµβ([Λs,ℑ]ℑ−1B1[U ]vx,Λ
sv) + εµβ([Λs,B1[U ]]vx,Λ

sv).
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Furthermore, as above, using the expressions for ℑ, Q1[U ], B1[U ], with the help

of Lemma 3.2, the commutator (3.7), and (4.8), (4.11), one gets

|D7| ≤ (ε ∨ β)C(|h− 1|Hs , |vx|Hs−1 ,
√
µ|vxx|Hs−1 , Cs)E

s(U)2.

To control D8, one can write, by integration by parts,

D8 = −εµ2([Λs,ℑ]ℑ−1Q2[U ]vx,Λ
sv) + εµ2([Λs,Q2[U ]]vx,Λ

sv)

− εµ2([Λs,ℑ]ℑ−1Q3[U ]vx,Λ
sv) + εµ2([Λs,Q3[U ]]vx,Λ

sv)

− εµ2β([Λs,ℑ]ℑ−1B2[U ]vx,Λ
sv) + εµ2β([Λs,B2[U ]]vx,Λ

sv)

− εµ2β2([Λs,ℑ]ℑ−1B3[U ]vx,Λ
sv) + εµ2β2([Λs,B3[U ]]vx,Λ

sv).

Now, as above, using the expressions for ℑ, Q2[U ], Q3[U ], B2[U ], B3[U ], with the

help of Lemma 3.2, the commutator (3.7), and (4.8)–(4.11), one gets

|D8| ≤ (ε ∨ β)C(|h− 1|Hs , |vx|Hs−1 ,
√
µ|vxx|Hs−1 , µ|vxx|, Cs)E

s(U)2.

Eventually, as a conclusion, it holds that

|([Λs, A[U ]]∂xU, SΛ
sU)| ≤ εC(|h− 1|Hs , |ζ|Hs , |ζ|Hs , µ|ζxx|Hs , |v|Hs ,

√
µ|vx|Hs , µ|vxx|Hs , Cs,bo

−1)Es(U)2.

Estimation of (ΛsB(U), SΛsU). We recall that

B(U) =

(
−βbxv

ℑ−1(R[µ, εh, βb](U))

)
,

knowing that the expressions for the operators ℑ and R read

ℑ = h− 1

3
µ∂x(h

3∂x·) +
µβ

2
∂x(h

2bx(·))−
µβ

2
h2bx∂x·

+ µβ2hb2x(·) +
1

45
µ2∂2x(h

5∂2x·)

− µ2β

24

[
2∂2x(h

4bx∂x·) + ∂2x(h
4bxx(·))− 2∂x(h

4bx∂
2
x·) + h4bxx∂

2
x·
]

− µ2β2

12

[
4∂x(h

3b2x∂x·)+∂x(h3bxbxx(·))−2h3bxbxx∂x ·−h3b2xx(·)
]
,

R[µ, εh, βb](U) =
1

2
εµβ∂x(h

2bxxv
2) + εµβ2hbxbxxv

2 +
1

24
εµ2β∂2x(h

4bxxxv
2)

+
1

12
εµ2β2∂x(h

3bxbxxxv
2) +

1

4
εµ2β2∂x(h

3b2xxv
2).

Now, as in D3, one may write

(ΛsB(U), SΛsU) = −β(Λs(bxv), JboΛ
sζ) + (ΛsR[µ, εh, βb](U),Λsv)

− ([Λs,ℑ]ℑ−1R[µ, εh, βb](U),Λsv).
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Using the expressions for ℑ, R[µ, εh, βb](U), Jbo, with Lemma 3.2 and the com-

mutator estimate (3.7) in hand, in addition to (4.8)–(4.11), it holds that

|(ΛsB(U), SΛsU)| ≤ (ε ∨ β)C(Es(U),bo−1)Es(U).

Estimation of (Λsζ, [∂t,Jbo]Λ
sζ). One can write, after checking the expression

for Jbo and performing an integration by parts, that

|(Λsζ, [∂t, Jbo]Λ
sζ)| =

∣∣∣ 2
45
µ2(∂th

4Λsζxx,Λ
sζxx)

∣∣∣ ≤ (ε ∨ β)C(|∂th|∞)Es(U)2.

Estimation of (Λsv, [∂t,ℑ]Λsv). Note that we have

[∂t, h]Λ
sv = ∂thΛ

sv, [∂t, ∂x(h
3∂x·)]Λsv = ∂x(∂th

3Λsvx),

and

[∂t, ∂
2
x(h

5∂2x·)]Λsv = ∂2x(∂th
5Λsvxx).

Thus, by integration by parts, it holds that

|(Λsv, [∂t,ℑ]Λsv)|

=
∣∣∣(∂thΛsv,Λsv) +

µ

3
(∂th

3Λsvx,Λ
svx) +

µ2

45
(∂th

5Λsvxx,Λ
svxx)

∣∣∣
≤ (ε ∨ β)C(|∂th|∞, Es(U))Es(U)2.

Gathering the information provided by the above estimates and using the fact that

Hs(R) is continuously embedded in W 1,∞(R), it holds that

1

2
e(ε∨β)λt∂t((ε ∨ β)−ελtEs(U)2) ≤ (ε ∨ β)(C(Es(U), |∂th|L∞ ,bo−1)− λ)Es(U)2

+ (ε ∨ β)C(Es(U),bo−1)Es(U).

Taking λ = λT large enough (how large depends on supt∈[0, T
ε∨β ] C(E

s(U), |∂th|L∞ ,

bo−1)) to have the first term of the right-hand side negative for all t ∈ [0, T
ε∨β ],

one deduces that

∀ t ∈
[
0,

T

ε ∨ β

]
,

1

2
e(ε∨β)λt∂t(e

−(ε∨β)λtEs(U)2) ≤ (ε ∨ β)C(Es(U),bo−1)Es(U).

Integrating this differential inequality with the help of Grönwall’s inequality yields

therefore

∀ t ∈
[
0,

T

ε ∨ β

]
, Es(U(t)) ≤ e

(ε∨β)
2 λT tEs(U0)

+ (ε ∨ β)
∫ t

0

e
(ε∨β)

2 λT (t−t′)C(Es(U)(t′),bo−1) dt′,

which is the desired estimate.
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§5. Full justification of the asymptotic model (2.11)

The main result of this paper, i.e. the long-time existence of a solution to the

extended Green–Naghdi system (2.11) in Xs = Hs+2(R) × Hs+2(R) with s >

3/2 and time of order t = O( 1
ε∨β ) is stated below. Note that if some smallness

assumption is made on ε ∨ β, at that point the presence time ends up bigger.

It is worth noticing that the case when bo−1 = 0 holds for a new energy space

Y s>3/2 endowed with the norm |U |2Y s := |ζ|2Hs + µ2|ζxx|2Hs + |v|2Hs + µ|vx|2Hs +

µ2|vxx|2Hs . In view of inequality (4.6), it is not hard to check that a similar energy

estimate holds with bo−1 = 0.

Theorem 5.1 (Long-term local existence). Fix any s > 3/2 and b ∈ Hs+3(R).
Let U0 = (ζ0, v0)

⊤ ∈ Xs be such that the depth condition (3.1) is satisfied.

Then there exists a maximal Tmax = T (|U0|Xs) > 0, uniformly bounded from

below with respect to ε, µ, β ∈ (0, 1)3 and bo−1 ∈ [0, 1), such that the extended one-

dimensional Green–Naghdi equations (2.11) with surface tension admit a unique

solution U = (ζ, v)⊤ ∈ Xs
Tmax

with the initial condition (ζ0, v0)
⊤ and preserving

the non-vanishing depth condition (3.1) for any t ∈ [0, Tmax

ε∨β ). In particular, if

Tmax <∞ one has

|U(t, ·)|Xs −→ ∞ as t −→ Tmax

ε ∨ β
,

or

inf
R
h(t, ·) = inf

R
[1 + εζ(t, ·)− βb(·)] −→ 0 as t −→ Tmax

ε ∨ β
.

Proof. The proof of the well-posedness is a straightforward readjustment of the

proof of [9, Thm. 7.3] or of [20, Thm. 1] using the energy estimate from the linear

analysis proved in Proposition 4.3 (see also [19] for similar proofs of unidirectional

equations). The techniques here are those used for hyperbolic systems (see [1,

32] for general details) with additional standard arguments, where no smallness

assumption on the parameters ε, µ, β is required in the theorem. Note that, when

a sequence of non-linear problems is devised, the difference with respect to the flat

bottom case (see [20, Thm. 1] for details of the proof) occurs in the convergence

of solutions that is established using the energy estimate. So, one has to deal with

topography terms such as (B(Un)− B(Un−1), S(Un+1 − Un)) to be controlled by

(ε∨β)C0|Un+1−Un|X0 |Un−Un−1|X0 , where C0 is a constant depending on initial

data U0. It is worth noticing that the constant λT appearing in Proposition 4.3 is

independent of ∂tζ
n and depends only on |U0|Xs . Indeed, by induction on n and

using the mass conserved equation, it holds that |∂thn+1|L∞ ≲ ε|Un+1|Xs .

Theorem 5.1 is complemented by the following result that shows the sta-

bility of the solution with respect to perturbations, which is very useful for the
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justification of asymptotic approximations of the exact solution. (The solution

U = (ζ, v)⊤ and time Tmax that appear in the statement below are those furnished

by Theorem 5.1).

Theorem 5.2 (A stability property). Let the assumption of Theorem 5.1 be sat-

isfied and moreover assume that there exists Ũ = (ζ̃, ṽ)⊤ ∈ C([0, Tmax

ε∨β ], Xs+1(R))
such that

∂tζ̃ + ∂x(h̃ṽ) = f1,

ℑ̃(∂tṽ + εṽṽx) + h̃∂xζ̃ −
1

bo
µh̃ζ̃xxx +

2

45
µ2h̃∂2x(h̃

4ζ̃xxx) + µ2I[h̃, βb]ζ̃x

−ε2µ2 1

bo
T [Ũ ]ζ̃x + εµQ1[Ũ ]vx + εµβB1[Ũ ]ṽx + εµ2Q2[Ũ ]ṽx + εµ2Q3[Ũ ]ṽx

+εµ2βB2[Ũ ]ṽx + εµ2β2B3[Ũ ]ṽx +R[µ, εh̃, βb](Ũ) = ℑ̃f2,

with ℑ̃ = h̃ + µT [h̃, βb] − µ2T[h̃, βb], h̃ = 1 + εζ̃ − βb, and F̃ = (f1, f2)
⊤ ∈

L∞([0, Tmax

ε∨β ], Xs(R)2). Then, for all t ∈ [0, Tmax

ε∨β ], the error E = U − Ũ = (ζ, v)⊤−
(ζ̃, ṽ)⊤ with respect to U given by Theorem 5.1 satisfies for all 0 ≤ (ε∨β)t ≤ Tmax

the inequality

|E|L∞([0,t],Xs(R)) ≤ (ε ∨ β)C̃
(
|E|t=0

|Xs(R) + t|F̃ |L∞([0,t],Xs(R))
)
,

where the constant C̃ depends on |U |L∞([0,Tmax/ε],Xs(R)), |Ũ |L∞([0,Tmax/ε∨β],Xs+1(R)).

Proof. The proof is a direct and classical consequence of the same energy estimate

as evaluated in Theorem 5.1 which is itself similar to the energy estimate proved in

Proposition 4.3. Subtracting the equations satisfied by U = (ζ, v)⊤ and Ũ = (ζ̃, ṽ)⊤

we get the following system:{
∂tE+A[U ]∂xE = −(A[U ]−A[Ũ ])∂xŨ − [B(U)−B(Ũ)]− F̃ ,

E|t=0
= U0 − Ũ0.

Therefore, in view of the proof of Proposition 4.3, one may similarly deduce the

estimate

1

2

d

dt
|E|2Xs(R) = −(SA[U ]Λs∂xE,Λ

sE)− ([Λs, A[U ]]∂xE, SΛ
sE)

+ ([Λs, A[Ũ ]]∂xŨ , SΛ
sE)− ([Λs, A[U ]]∂xŨ , SΛ

sE)

+ (SA[U ]∂xΛ
sŨ ,ΛsE)− (SA[Ũ ]∂xΛ

sŨ ,ΛsE)− (ΛsF̃ , SΛsE)

+
1

2
([∂t, S]Λ

sE,ΛsE)− (ΛsB(U), SΛsE) + (ΛsB(Ũ), SΛsE)

≤ (ε ∨ β)C̃[|E|2Xs(R) + |E|Xs(R)|F̃ |Xs(R)],(5.1)
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where C̃ = C(|U |L∞([0,Tmax/ε∨β],Xs(R)), |Ũ |L∞([0,Tmax/ε∨β],Xs+1(R))) and we use the

fact that s− 1 > t0 with |∂th|∞ = (ε∨β)|vhx+hvx|∞ ≲ |U |2Xs(R). Integrating the

differential inequality (5.1) by applying Grönwall’s inequality therefore yields the

desired result.

We state here that the solutions to the water-wave equations (1.9) are consis-

tent at O(µ3) with the extended Green–Naghdi equations (2.9).

Proposition 5.3 (Consistency). Let U euler = (ζ, ψ)⊤ be a family of solutions to

the full Euler system (1.9) such that there exists T > 0, s > 3/2 for which (ζ, ψ′)⊤

is bounded in L∞([0;T );Hs+N )2 with N sufficiently large, uniformly with respect

to ε, µ, β ∈ (0, 1)3 and bo−1 ∈ [0, 1). Moreover, assume that b ∈ Hs+N and that ζ

satisfies (3.1). Define v as in (2.1). Then (ζ, v)⊤ satisfies (2.11) up to a remainder

R, bounded by

∥R∥(L∞[0,T );Hs) ≤ µ3C,

where C = C(h−1
min, |b|Hs+N , ∥ζ∥L∞([0,T [;Hs+N ), ∥ψ′∥L∞([0,T [;Hs+N )).

Proof. The proof follows the same lines as the proof of [22, Thm. 6.10] with N

sufficiently large. In fact, it is sufficient to show that the second equation of (2.11)

is satisfied up to a term µ3R, with R as in the statement of the proposition. Indeed,

taking the derivative of the second equation of (1.9) and replacing G[εζ, βb]ψ by

−µ∂x(hv) and in view of (2.5), replace ψ′ by v+ µ
hT [h, βb]v+ µ2

h T[h, βb]v+µ3R3.

At this stage, denote by µ3R all terms of order µ3; then taking advantage of similar

estimates to those of [22, Lem. 5.11], such that

|R3|Hs ≤ C(h−1
min, |ζ|Hs+6 , |b|Hs+6)|ψ′|Hs+6 ,

and

|∂tR3|Hs ≤ C(h−1
min, |ζ|Hs+8 , |b|Hs+8 , |ψ′|Hs+8),

yields the desired control of R.

Finally, the following convergence result states that the solutions of the full

Euler system remain close to those of our system (2.11), with a little more precision

as µ3 is smaller.

Theorem 5.4 (Convergence). Let ε, µ, β ∈ (0, 1)3 and bo−1 ∈ [0, 1), s > 3/2,

b ∈ Hs+N , and U0 = (ζ0, ψ0)
⊤ ∈ Hs+N (R)2 satisfy condition (3.1) where N is

sufficiently large. Moreover, assume U euler = (ζ, ψ)⊤ is a unique solution of the

full Euler system (1.9) that satisfies the assumption of Proposition 5.3. Then there

exist C, T > 0, independent of ε, µ, β, bo−1, such that
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� there exists a unique solution Uex = (ζex, vex)
⊤ to our new model (2.11),

defined on [0, T
ε∨β ] and with initial data (ζ0, v0)⊤ (provided by Theorem 5.1);

� the following error estimate holds, for all 0 ≤ t ≤ T/(ε ∨ β):

|(ζ, v)− (ζex, vex)|L∞([0,t];Xs) ≤ Cµ3t.

Proof. The existence of Uex is given by our Theorem 5.1 (we choose T as the

minimum of the existence time of both solutions; it is bounded from below, inde-

pendently of ε, µ, β, bo−1 ∈ (0, 1)4). Assuming that U euler satisfies the assumptions

of our consistency result, Proposition 5.3, therefore (ζ, v)⊤ solves (2.11) up to a

residual R bounded from above by µ3. The result then follows from the stability

property (Theorem 5.2).

Appendix A. Derivation of the extended Green–Naghdi system

In this section we denote w = ∇ψ (note that w is independent of z).

Appendix A.1. Computation of the integral J2[h, βb]∇ψ

Note that the following integrals are essential to our computation:∫ εζ(t,X)

−1+βb(X)

(z − εζ) dz = −1

2
h2,∫ εζ(t,X)

−1+βb(X)

[(z + 1− βb)β∇b+ h∇h] dz = h2∇h+
1

2
βh2∇b,∫ εζ(t,X)

−1+βb(X)

[1
3
(z − εζ)3 − (z − εζ)h2

]
dz =

5

12
h4,∫ εζ(t,X)

−1+βb(X)

[(z + 1− βb)2 − h2] dz = −2

3
h3,∫ εζ(t,X)

−1+βb(X)

[(z − εζ)2ε∇ζ − εh2∇ζ + 2(z − εζ)h∇h] dz = −5

3
h3∇h− 2

3
βh3∇b,∫ εζ(t,X)

−1+βb(X)

f1(z) dz =
2

15
h5,∫ εζ(t,X)

−1+βb(X)

f2(z) dz =
2

15
∇h5 + 5

24
h4β∇b,

where the fourth-order polynomials in z, f1 and f2, are given by

f1(z) =
1

24
(z4 − (εζ)4)− 1

6
(−1 + βb)3(z − εζ)− (εζ)2

4
((z + 1− βb)2 − h2)

− 1

2

(1
3
(z − εζ)3 − h2(z − εζ)

)
(−1 + βb),
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f2(z) = −1

6
(εζ)3ε∇ζ − 1

2
(−1 + βb)2(z − εζ)β∇b+ 1

6
(−1 + βb)3ε∇ζ

− (εζ)

2
ε∇ζ((z + 1− βb)2 − h2) +

(εζ)2

2
((z + 1− βb)β∇b+ h∇h)

+
1

2
((z − εζ)2 − h2)(−1 + βb)ε∇ζ + (z − εζ)h∇h(−1 + βb)

− 1

2

(1
3
(z − εζ)3 − (z − εζ)h2

)
β∇b.

The strategy is to expand then reduce all terms of the same size. First, find ∇φ2,

and note that using the expression for ∇φ1 we have

∇[(z − εζ)β∇b · (∇φ1)|z=1−βb
]

= −βh∇ · w(∇b · ∇h)∇h− β2h∇ · w(∇h · ∇b)∇b

+ β(z − εζ)∇(h∇ · w(∇h · ∇b))− 1

2
βh2∇h(∇b · ∇(∇ · w))

− 1

2
β2h2(∇b · ∇(∇ · w))∇b+ 1

2
(z − εζ)β∇

(
h2(∇b · ∇(∇ · w))

)
+ β2∇h((∇h · ∇b)(∇b · w)) + β3((∇h · ∇b)(∇b · w))∇b
− (z − εζ)β2∇((∇h · ∇b)(∇b · w)) + β3∇h((∇b · ∇b)(∇b · w))
+ β4((∇b · ∇b)(∇b · w))∇b− (z − εζ)β3∇((∇b · ∇b)(∇b · w))
+ β2h∇h(∇b · ∇(∇b · w)) + β3h(∇b∇(∇b · w))∇b
− (z − εζ)β2∇

(
h∇(∇b · ∇(∇b · w))

)
.

Rearranging the many expressions for ∇φ2, then integrating over ]−1+βb, εζ[ and

taking advantage of the integrals above one may simplify J2 as follows.

The non-topographical expressions (see Remark 2.1) of

J2[h, βb]w =

∫ εζ(t,X)

−1+βb(X)

∇φ2 dz

are factorized into the two terms

2

15
∇
(
∇ · (h5∇(∇ · w))

)
+

1

3
∇(h3∇ · (h∇h)∇ · w).

The purely topographical expressions (see Remark 2.1) of J2[h, βb]w are separated

into four categories where they are multiplied by β, β2, β3, β4 respectively.

The β-contributions are

− 1

2
∇(h3∇ · w(∇h∇b)) + 1

8
∇(h4∇ · w∇ · (∇b))

− 2

3
∇(h3∇(∇b · w)∇h)− 1

3
∇(h3∇ · (∇h)(∇b · w))
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− 5

24
∇
(
h4∇ · (∇(∇b · w))

)
+

5

24
h4∇ · (∇(∇ · w))∇b

+
1

2
(∇ · w∇ · (∇h))∇b+ 1

2
h2∇ · w(∇h∇h)∇b+ h3(∇h∇(∇ · w))∇b

= T1 + T2 + · · ·+ T9.

The β2-contributions are

1

2
∇(h2(∇h∇b)(∇b · w))− 1

6
∇(h3∇b∇(∇b · w))− 1

3
∇(h3∇ · w(∇b∇b))

− 1

3
∇(h3(∇b · w)∇ · (∇b))− h2∇ · w(∇h∇b)∇b− 1

6
h3(∇b∇(∇ · w))∇b

+
1

6
h3(∇ · w∇ · (∇b))∇b− h2(∇h∇(∇b · w))∇b

− 1

2
h2((∇b · w)∇ · (∇h))∇b− 1

3
∇ · (∇(∇b · w))∇b

= P1 + P2 + · · ·+ P10.

The β3-contributions are

h((∇h∇b)(∇b · w))∇b+ h((∇b∇b)(∇b · w))∇h− 1

2
h2∇ · w(∇b∇b)∇b

+
1

2
h2∇((∇b∇b)(∇b · w))− 1

2
h2((∇b · w)∇ · (∇b))∇b.

Lastly, the only term of size β4 is h(∇b · w)(∇b∇b)∇b.

Appendix A.2. Computation of the operator T [h, βb](h−1T [h, βb]w)

Expanding then reducing terms of the same size, the expressions for T [h, βb] ×
( 1hT [h, βb]w) will be simplified as follows. Recall that

T [h, βb]w = −1

3
∇(h3∇ · w) + β

2
[∇(h2∇b · w)− h2∇b∇ · w] + β2h∇b∇b · w.

The non-topographical terms (see Remark 2.1) are

1

9
∇
(
h3∇ ·

( 1
h
∇(h3∇ · w)

))
=

1

9
∇
(
∇ · (h5∇(∇ · w))

)
+

1

3
∇(h3∇ · (h∇h)∇ · w).

The purely topographical expressions (see Remark 2.1) of T [h, βb]( 1hT [h, βb]w) will

be separated into four categories where they are of size β, β2, β3, β4 respectively.

The β-contributions are

− 1

6
∇(h∇b∇(h3∇ · w))− 1

3
∇(h3(∇b · w)∇ · (∇h))− 1

2
∇(h3∇h∇(∇b · w))

− 1

6
∇
(
h4∇ · (∇(∇b · w))

)
+

1

6
∇(h3∇ · (h∇ · w∇b))
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− 1

6
(∇h∇(h3∇ · w))∇b+ 1

6
h∇ · (∇(h3∇ · w))∇b

= T ′
1 + T ′

2 + · · ·+ T ′
7.

The β2-contributions are

+
1

4
∇
(
h∇b∇(h2(∇b · w))

)
− 1

4
∇(h3∇ · w(∇b∇b))− 1

3
∇
(
h3∇ · ((∇b · w)∇b)

)
− 1

3
(∇b∇(h3∇ · w))∇b− 1

2
h2∇ · ((∇b · w)∇h)∇b

− 1

4
h2∇ · (h∇(∇b · w))∇b+ 1

4
h2∇ · (h∇ · w∇b)∇b

= P ′
1 + P ′

2 + · · ·+ P ′
7.

The β3-contributions are

1

2

(
∇b∇(h2(∇b · w))

)
∇b− 1

2
h2∇ · w(∇b∇b)∇b

+
1

2
∇(h2(∇b∇b)(∇b · w))− 1

2
h2∇ · ((∇b · w)∇b)∇b.

Lastly, the only term of order β4 is h(∇b · w)(∇b∇b)∇b.

Appendix A.3. Factorization of T = T (h−1T ) − J2

As a result of the above two sections, the difference between the two operators is

now simplified as follows. The non-topographical expression can be factorized in

the term

− 1

45
∇
(
∇ · (h5∇(∇ · v))

)
.

The purely topographical expressions are split into two categories where they are

multiplied by β, β2 respectively.

The β-contributions are

T ′
1 + · · ·+ T ′

5 − T1 − · · · − T5 =
1

24
∇
(
∇ · (h4∇(∇b · w))

)
+

1

24
∇(∇ · w∇ · (h4∇b)),

T ′
6 + T ′

7 − T6 − · · · − T9 = − 1

24
∇ · (h4∇(∇ · w))∇b.

The β2-contributions are

P ′
1 + P ′

2 + P ′
3 − P1 − · · · − P4 =

1

12
∇(h3∇ · w(∇b∇b)) + 1

12
∇(h3∇b∇(∇b · w)),

P ′
4 + · · ·+ P ′

7 − P5 − · · · − P10 =
1

12
∇ · (h3∇ · w∇b)∇b+ 1

12
∇ · (h3∇(∇b · w))∇b.

One can see from above sections that the terms of size β3 and β4 will be eliminated.
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Appendix A.4. Invertibility of operator J

The proof of the invertibility of J : H2(R) → L2(R), defined by Jϕ = ϕ −
µ2

45 ∂x(h
5∂xϕ), is a direct application of the Lax–Milgram theorem (see [16] for

a similar operator). Concerning (3.5), one can show that for a fixed µ ∈ (0, 1), if

ϕ ∈ H1
µ(R) solves Jϕ = q + µ∂xg for any q, g ∈ L2(R), then using the coercivity

condition and integration by parts one has

|ϕ|H1
µ
≲ |q|L2 + |g|L2 .

The estimates follow by taking q = 0 once and g = 0 for a second time.
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