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On Characteristic Polynomials of Automorphisms
of Enriques Surfaces

by

Simon Brandhorst, S lawomir Rams and Ichiro Shimada

Abstract

Let f be an automorphism of a complex Enriques surface Y and let pf denote the
characteristic polynomial of the isometry f∗ of the numerical Néron–Severi lattice of Y
induced by f . We combine a modification of McMullen’s method with Borcherds’ method
to prove that the modulo-2 reduction (pf (x) mod 2) is a product of modulo-2 reductions
of (some of) the five cyclotomic polynomials Φm, where m ≤ 9 and m is odd. We study
Enriques surfaces that realize modulo-2 reductions of Φ7, Φ9 and show that each of the
five polynomials (Φm(x) mod 2) is a factor of the modulo-2 reduction (pf (x) mod 2) for
a complex Enriques surface.
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§1. Introduction

The subject of this note is isometries of the numerical Néron–Severi lattices in-

duced by automorphisms of Enriques surfaces. To state our results, let Y (resp. X)

be a complex Enriques surface (resp. its K3 cover) and let Num(Y ) be the numer-

ical Néron–Severi lattice of Y (i.e. Num(Y ) := NS(Y )/Tors). Each automorphism

f ∈ Aut(Y ) induces an isometry f∗ ∈ O(Num(Y )). Let pf (x) be its characteristic

polynomial. As observed by Oguiso ([19, Lem. 4.1]), no degree-5 irreducible poly-

nomials can appear in a factorization of the modulo-2 reduction (pf (x) mod 2).
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An attempt to characterize all factors of (pf (x) mod 2) was made in [13]. In this

paper, we give a complete answer to the question of which factors do appear in

the modulo-2 reduction (pf (x) mod 2) for an automorphism f ∈ Aut(Y ), i.e. we

prove the following theorem.

Theorem 1.1. Let f be an automorphism of a complex Enriques surface Y and

let pf be the characteristic polynomial of the isometry f∗ : Num(Y ) → Num(Y ).

(a) The modulo-2 reduction (pf (x) mod 2) is a product of (some of) the following

polynomials:

F1(x) = x + 1, F3(x) = x2 + x + 1, F5(x) = x4 + x3 + x2 + x + 1,

F7(x) = x6 + x5 + x4 + x3 + x2 + x + 1, F9(x) = x6 + x3 + 1.

(b) Each of the five polynomials F1, F3, F5, F7, F9 appears in the factorization

of the modulo-2 reduction (pf (x) mod 2) for an automorphism f of a complex

Enriques surface. Any realization of F9 is by a semi-symplectic automorphism.

Recall that the proof of [13, Thm. 1.2] shows that each factor of (pf (x) mod 2)

either equals one of the five polynomials listed in Theorem 1.1, or is the modulo-2

reduction F15 of the cyclotomic polynomial Φ15 ∈ Z[x]. Moreover, examples with

factors F1, F3, F5 were given in [7] (see also [13, Exa. 3.1]), whereas the question of

whether F7, F9, and F15 can appear in the factorization of the modulo-2 reduction

of pf for an automorphism f ∈ Aut(Y ) was left open (cf. [13, Exa. 3.1.b]).

To state the next theorem, we introduce some notation. Let us denote the

covering involution of the double étale cover π : X → Y by ε. Moreover, we put

f̃ ∈ Aut(X) to denote a (non-unique) lift of an automorphism f ∈ Aut(Y ). Let

N := (H2(X,Z)ε)⊥ be the orthogonal complement of the ε-invariant sublattice

H2(X,Z)ε in the lattice H2(X,Z). Recall that N is stable under the cohomological

action f̃∗ and the restriction fN := f̃∗|N is of finite order. Using Theorem 1.1, we

can sharpen [13, Thm. 1.1] as well.

Theorem 1.2. Let Y be a complex Enriques surface and let f be an automorphism

of Y . Then the order of fN is a divisor of at least one of the following five integers:

36, 48, 56, 84, 120.

Among the 28 numbers that satisfy the above condition, at least the 16 integers

1, . . . , 10, 12, 14, 15, 20, 18, 30

are realized as orders.
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Remark 1.3. We note that if the order of fN is 7 or 9, then the cyclic subgroup

generated by fN is unique up to conjugacy in the orthogonal group O(N). For the

remaining 12 integers

16, 21, 24, 28, 36, 40, 42, 48, 56, 60, 84, 120,

we do not know whether they arise as orders of fN for some f ∈ Aut(Y ).

Originally, our interest in the subject of this note was motivated by the ques-

tion of what constraints on the dynamical spectra of Enriques surfaces result from

the existence of the double étale K3 cover (cf. [19, Thm. 1.2]). Indeed, Theo-

rem 1.1(a) yields a new constraint on the Salem numbers that appear as the dy-

namical degrees of automorphisms of Enriques surfaces (e.g. it implies that none

of the Salem numbers given as # 3, 13, 16, 34, 35 in the table in [13, App.] can be

the dynamical degree of an automorphism of a complex Enriques surface), whereas

Theorem 1.1(b) shows that the above constraint cannot be strengthened.

It should be mentioned that automorphism groups of Enriques surfaces remain

a subject of intensive research. Much is known in the case of Enriques surfaces

with finite automorphism groups (even in positive characteristic) and unnodal

Enriques surfaces, but a general picture is still missing. In this context, both the

constraints given by Theorem 1.2 and the geometry of the families of Enriques

surfaces discussed in Propositions 5.3, 4.1, 4.7 are of separate interest. Still, such

considerations exceed the scope of this paper.

We sketch our strategy for the proof of Theorem 1.1. The argument in [13]

is based on criteria for a polynomial to be the characteristic polynomial of an

isometry of a lattice. Unfortunately, all six polynomials F1, . . . , F9, F15 do appear

as factors of modulo-2 reductions of characteristic polynomials of isometries of the

lattice U ⊕ E8(−1) and the lattice N . Thus we need to take Hodge structures

and the ample cone into account as well. In this note we apply a modification

of McMullen’s method (see [14, 15]) to obtain constraints on automorphisms of

Enriques surfaces that can realize the factors F7, F9, F15. In particular, we can

rule out the existence of the highest-degree factor F15 (Proposition 3.1), and derive

properties of the K3 covers of Enriques surfaces which realize F7 (Proposition 5.2)

and F9 (Section 4). To go further with McMullen’s method, one has to fix the

characteristic polynomial pf . However, there are infinitely many possibilities for

pf . We provide an algorithmic solution based on Borcherds’ method ([1, 2]) and

the ideas from [26] and [3] which allow us to avoid fixing pf . As a result we find

abstract Enriques surfaces realizing F7 and F9. For the readers’ convenience, the

algorithm is presented in Section 6 in pseudocode.
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Notation. In this note, we work over the field of complex numbers C. Given a

prime p, Zp denotes the ring of p-adic integers. For a ring R, we denote by R× its

group of units. For a group G and a prime p, Gp is the p-Sylow subgroup of G.

§2. Preliminaries

§2.1. Basic notation

We maintain the notation of the previous section. In particular, π : X → Y is the

K3 cover of Y and ε is the covering involution of π. Moreover, we have the finite

index sublattice

(2.1) M ⊕N ⊆ H2(X,Z),

where M := H2(X,Z)ε coincides with the pullback of H2(Y,Z) by π and N := M⊥

(see e.g. [18]). In particular, we have M ≃ U(2) ⊕ E8(−2) and N ≃ U ⊕ U(2) ⊕
E8(−2), where U (resp. E8) denotes the unimodular hyperbolic plane (resp. the

unique even unimodular positive-definite lattice of rank 8). Let f be an auto-

morphism of Y . The sublattices M and N are preserved by the isometry f̃∗ ∈
Aut(H2(X,Z)), so as in [13] we can define the maps

fM := f̃∗|M and fN := f̃∗|N

and let pM , pN (resp. µM , µN ) denote their characteristic (resp. minimal) poly-

nomials. Then (see [13, proof of Lem. 2.2(a)], [20, Lem. 6.3]) we have

(2.2) pM ≡ pf mod 2 and (x + 1)2 · pM ≡ pN mod 2.

As we have already mentioned, fN is a map of finite order (see e.g. [19, Lem. 4.2]),

so pN is a product of cyclotomic polynomials.

Recall that (see [21, Prop. 2.2], [11, Thm. 1.1])

(2.3) N ∩ NS(X) contains no vectors of square (−2).

For an automorphism f and an integer k ∈ N we define two lattices

(2.4) Nk := ker(Φk(fN )) and Mk := ker(Φk(fM )),

where Φk(x) stands for the kth cyclotomic polynomial. Finally, to simplify our

notation we put

Fk(x) := (Φk(x) mod 2).

An automorphism f of an Enriques surface is called semi-symplectic if it acts

trivially on the global sections H0(Y,K⊗2
Y ) of the bi-canonical bundle. This is the

case if and only if both lifts f̃ and f̃ ◦ ε of f act on H0(X,Ω2
X) as ±1. We denote

by Auts(Y ) the subgroup of semi-symplectic automorphisms.
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§2.2. Lattice

Let R ∈ {Z,Zp} and K be the fraction field of R. An R-lattice is a finitely gener-

ated free R-module equipped with a non-degenerate symmetric K-valued bilinear

form b. If the form is R valued, we call the lattice integral. If, further, b(x, x) ∈ 2R

for every x ∈ L, the lattice is called even. The dual lattice of L is

L∨ =
{
x ∈ L | b(x, L) ⊆ R

}
.

If L is integral, then L ⊆ L∨ and we call the quotient L∨/L the discriminant group

of L. For r ∈ R, an R-lattice L is called r-modular if rL∨ = L. If r = 1, we call

the lattice unimodular. The Gram matrix G = (Gij) with respect to an R-basis

(e1, . . . , en) of L is defined by Gij = b(ei, ej). The determinant detL ∈ R/R×2 of

L is the determinant of any Gram matrix. For R = Z we have |L∨/L| = |detL|.
The discriminant group carries the discriminant bilinear form induced by b(x, y)

mod R for x, y ∈ L∨. If L is an even lattice, its discriminant group moreover carries

a torsion quadratic form induced by x 7→ b(x, x) mod 2R, called the discriminant

form. We say that two R-lattices (L, b), (L′, b′) are isomorphic if there is an R-

linear isomorphism ϕ : L → L′ such that b(x, x) = b′(ϕ(x), ϕ(x)). For r ∈ R we

denote by L(r) the lattice with the same underlying free module as L, but with

bilinear form rb.

Let L, L′, L′′ be lattices. The orthogonal direct sum of two lattices is denoted

by L ⊕ L′. A sublattice L′ ⊆ L is called primitive if L/L′ is torsion-free. This is

equivalent to (L′ ⊗K) ∩ L = L′. We call

L′ ⊕ L′′ ⊆ L

a primitive extension if L′, L′′ are primitive sublattices of L and rankL′+rankL′′ =

rankL. The finite group L′′/(L ⊕ L′) is the glue of the primitive extension. For

any prime p dividing its order, we say that L and L′ are glued above/over p. The

signature (pair) (s+, s−) of a Z-lattice L is the signature of L ⊗ R, where s+ is

the number of positive and s− is the number of negative eigenvalues of a Gram

matrix. We denote by U the even unimodular lattice of signature (1, 1). Moreover,

An (n ∈ N), (resp. Dn (n ≥ 4), E6, E7, E8) stands for the positive-definite root

lattice with the respective Dynkin diagram.

§2.3. Genus

Two Z-lattices L and L′ are in the same genus if L⊗R ∼= L′⊗R and for all prime

numbers p we have L ⊗ Zp
∼= L′ ⊗ Zp. The genus is an effectively computable

invariant and has a compact description in terms of the so-called genus symbols

introduced by Conway and Sloane (see [6, Chap. 15]).
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Definition 2.1. A 2-adic lattice, all of whose Jordan constituents are even, is

called completely even.

We denote by nq the rank of a q-modular Jordan constituent and by ϵq ∈ {±1}
its unit square class. Two completely even lattices are isomorphic if and only if

they have the same symbols qϵqnq for all prime powers q. If the lattices in question

are not completely even, the symbol involves an additional quantity called the

oddity. However, in this note (almost) all lattices considered are completely even.

Note that Conway and Sloane give necessary and sufficient conditions on when

a collection of local symbols defines a non-empty genus [6, Thm. 15.11 on p. 383].

Remark 2.2. The genus symbols and their relation with discriminant forms are

implemented in sageMath [23] by the first author. For instance, the function

sage.quadratic forms.genera.genus.all genera by det returns all (valid) ge-

nus symbols of a given signature, determinant, and level. This allows us to avoid

checking the existence conditions for a genus symbol by hand.

It is possible to compute all classes in a definite genus using Kneser’s neigh-

boring algorithm [24] and Siegel’s mass formula. An indefinite lattice is usually

unique in its genus. Similarly, roots can be found using short vector enumerators

[5, §.2.7.3]. We used the implementation provided by PARI [22] via sageMath.

For later reference we state (without proofs) two immediate lemmas which

relate the genus symbols with primitive extensions and isometries.

Lemma 2.3. Let L and L′ be completely even p-adic lattices with symbols

(ϵq, nq)q, respectively (ϵ′q, n
′
q)q; then L⊕ L′ has symbol (ϵqϵ

′
q, nq + n′

q).

Lemma 2.4. Let L and L′ be completely even p-adic lattices with symbols (ϵq, nq)q
and (ϵ′q, n

′
q)q. Then there is a primitive extension L⊕L′ ⊆ L′′ with L′′ unimodular

if and only if, for all q > 1, n′
q = nq and ϵ′q = δnqϵq, where

δ =

{
1 for p ≡ 1, 2 mod 4,

−1 for p ≡ 3 mod 4.

In the sequel we will apply the following lemma.

Lemma 2.5. Let L be a Z-lattice and let g ∈ O(L) be an isometry with minimal

polynomial Φ3. Then L is completely even and the 2-adic symbols of the genus of

L are of the form

qϵini
i , where qi = 2i, ni is even and ϵi = (−1)ni/2.

Proof. This is a special case of [10, Prop. 2.17, Kor. 2.36].
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In particular, when L is a rank-2 (resp. rank-4) lattice of discriminant at

most 4 (resp. 16) its 2-adic symbols are 1−2, 2−2 (resp. 14, 1−22−2, 24, 1−24−2).

§2.4. Φn-lattices

In the sequel we need the notion of a Φn-lattice.

The reader can consult [9], [15, §5] for a concise and more general exposition

of the facts we briefly sketch below.

Recall that a Φn-lattice is defined to be a pair (L, f), where L is an integral

lattice and f ∈ O(L) is an isometry with characteristic polynomial Φn.

Let n > 2; the principal Φn-lattice (L0, ⟨·, ·⟩0, f0) is defined as the Z-module

L0 := Z[ζn] equipped with the scalar product

⟨g1, g2⟩0 = Tr
Q[ζn]
Q

( g1g2

r′n(ζn + ζ−1
n )

)
where ζn is a primitive nth root of unity, Tr is the field trace of Q[ζn]/Q, rn ∈ Q[x]

is the minimal polynomial of (ζn +ζ−1
n ), and r′n is its derivative. Finally, f0 : L0 →

L0, x 7→ ζn ·x, is an isometry with minimal polynomial Φn. One can show that L0

is an even lattice and

(2.5) det(L0) = |Φn(1)Φn(−1)|.

Given a pair (L, f) as above and an element a ∈ Z[f + f−1] ⊂ End(L) one can

define another inner product on L by the formula ⟨g1, g2⟩a := ⟨ag1, g2⟩0. We say

that the resulting lattice is the twist of L by a and denote it by L(a). Recall that

for 2 < n with deg(Φn) ≤ 20 the class number of Q(ζn) is 1. Thus, if deg(Φn) ≤ 20,

then

(2.6) any even Φn-lattice is a twist of the principal lattice (L0, ⟨·, ·⟩0, f0),

by [15, Thm. 5.2], [9, §4]. The genus symbols of Φn-lattices are computed in [10,

Satz 2.57], though in practice we used a computer to construct the lattice and

compute its symbol.

§2.5. Equivariant gluing

We note the following well-known lemma for later use.

Lemma 2.6. If A⊕B ⊆ C is a primitive extension, then

detA detB = [C : A⊕B]2 · detC

and

detA | [C : A⊕B] · detC.
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Moreover, if p is a prime such that p ∤ [C : A⊕B], then

C ⊗ Zp = (A⊗ Zp) ⊕ (B ⊗ Zp).

Let a ∈ O(A), b ∈ O(B), c ∈ O(C) be isometries. We call (A, a) ⊕ (B, b) ⊆
(C, c) an equivariant primitive extension if the restriction c|A⊕B = a⊕ b.

Lemma 2.7. Let (A, a) ⊕ (B, b) ↪→ (C, c) be an equivariant primitive extension

with characteristic polynomials pA, pB. Then any prime dividing the index [C :

A⊕B] divides the resultant res(pA, pB).

Proof. Apply [15, Prop. 4.2] to G = C/(A⊕B).

Lemma 2.8. Let (A, a) ⊕ (B, b) ↪→ (C, c) be an equivariant primitive extension.

Suppose that the characteristic polynomial pa of a is Φn(x). Then the glue G =

C/(A⊕B) satisfies

|G|
∣∣ res(Φn, µ),

where µ = µb is the minimal polynomial of b.

Proof. Let GA denote the orthogonal projection of G to A∨/A and a the auto-

morphism on GA induced by a. Since A∨ and A are Z[ζn]-modules of rank 1, they

are isomorphic to fractional ideals of Z[ζn]. Thus we have GA = Z[ζn]/I, where

I is the kernel of the map Z[ζn] 7→ EndGA that sends the root of unity ζn to a.

This yields

µ(a) = 0, thus µ(ζn) ∈ I

and

|G| = |GA| = |OK/I| = N(I) | N(µ(ζn)) =
∏

(k,n)=1

µ(ζkn) = res(ϕn, µb),

where N(I) is the norm of the ideal I.

The following lemma is elementary. For the convenience of the reader, we give

a proof below.

Lemma 2.9. If L is a lattice of rank 2 and g ∈ O(L) is an isometry of spectral

radius 0, then g is of finite order.

Proof. By Kronecker’s theorem, the characteristic polynomial of g is a product of

cyclotomic polynomials. Moreover, it suffices to prove the claim for a power of g,

so we can assume that the characteristic polynomial of g is (x− 1)2.

Let v ∈ L be an eigenvector of g. If v is anisotropic, then we have (Zv)⊥ ̸= Zv
and (Zv)⊥ consists of eigenvectors of g. Thus g = id and we are done.
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If v is isotropic, we find w ∈ L with ⟨w, v⟩ ≠ 0. Then g(w) = av+bw for some

a, b ∈ Q. From ⟨w, v⟩ = ⟨g(w), g(v)⟩ we infer b = 1. Finally, ⟨w,w⟩ = ⟨g(w), g(w)⟩
yields a = 0. Thus g(w) = w and the proof is complete.

§3. Ruling out the factor F15

The main aim of this section is to prove the following proposition.

Proposition 3.1. Let f be an automorphism of an Enriques surface Y and let

pf be the minimal polynomial of the map f∗ : Num(Y ) → Num(Y ). Then the

modulo-2 reduction (pf (x) mod 2) is never divisible by the polynomial

F15 = x8 + x7 + x5 + x4 + x3 + x + 1,

i.e. by the modulo-2 reduction of the cyclotomic polynomial Φ15(x) ∈ Z[x].

Recall (see e.g. [4]) that pf is a product of cyclotomic polynomials and at

most one Salem factor. Since pf is reciprocal, (pf (x) mod 2) is divisible by an

irreducible factor of F15 if and only if it is divisible by the whole F15 (cf. [13]).

Proof of Proposition 3.1. Assume that F15 | (pf mod 2). Combined with [13, Rem.

2.4], this implies that

(3.1) (pM mod 2) = F15 · F 2
1 and (F15 · F 4

1 ) = (pN mod 2).

By [13, Lems. 2.1 and 2.5], the characteristic polynomial pN is a product of

cyclotomic polynomials of degree at most 8. Computing modulo-2 reductions of all

such cyclotomic polynomials, one infers that either Φ15 | pN or Φ30 | pN . Replacing

f̃ by a power coprime to 15 we can assume that pN is a product of the Φk for

k ∈ {1, 3, 5, 15}. Together with (3.1) this leaves us with

pN = Φ15 · Φ4
1.

We consider the (primitive) fN -invariant sublattices N15 and N1 (see (2.4)).

Since Φ15(x) has no real roots, the signature of N15 is of the form (2k, 2(4 − k))

with k ∈ {0, 1, 2, 3, 4}. Recall that N is of signature (2, 10) and contains N15. Thus

the signature of N15 is either (0, 8) or (2, 6).

By Lemma 2.8 the glue between N15 and N⊥
15 is trivial, i.e.

N15 ⊕N⊥
15 = N ∈ II(2,10)2

10.

Let (ϵq, nq) be the 2-adic genus symbol of N15 and (ϵ′q, n
′
q) the symbol of N⊥

15.

From Lemma 2.3 we infer that 10 = n2 + n′
2. Further, n′

2 ≤ rankN⊥
15 = 4 and

n2 ≤ rankN15 = 8. Thus we obtain 6 ≤ n2 ≤ 8. Since N15 is a Φ15-lattice, we can
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calculate all Φ15-lattices matching this condition. There is exactly one such lattice

up to isometry:

(3.2) N15
∼= E8(−2) ∈ II(0,8)2

8.

Using Lemma 2.3 once more, we calculate the genus symbol of N1 = N⊥
15 from

those of N and N15 and see that

(3.3) N1
∼= U ⊕ U(2) ∈ II(2,2)2

2

is the unique class in its genus. From (3.2), (3.3), and [20, Lem. 7.7] we infer that

the spectral radius of fM is 1 (i.e. f has trivial entropy). Thus pM is not divisible

by a Salem polynomial and must be a product of cyclotomic polynomials. A direct

computation of modulo-2 reductions of all cyclotomic polynomials of degree at

most 8 shows that either Φ30 or Φ15 divides pM . By replacing f̃ with its iteration

(i.e. by f̃2 or f̃4) we can assume that

pM = Φ15 · Φ2
1.

We consider the equivariant orthogonal decomposition M = M⊥
15 ⊕M15 into

the rank-2 lattice M⊥
15 and the rank-8 lattice M15 (see (2.4)). Being a Φ15-lattice,

M15 has signature (2k, 2(4 − k)) for some k. But M is of signature (1, 9), so M15

is definite and fM |M15 is of finite order. Since M⊥
15 is of rank 2 and fM |M⊥

15

has spectral radius 0, it is of finite order (cf. Lemma 2.9). Thus a power of f is

an automorphism of a complex Enriques surface of order 15. However, no such

automorphisms exist (by [17, Prop. 4.5 and Cor. 4.7]; see also [16, Props. 1.1

and 3.14]).

§4. The factor F9

In this section we maintain the notation of previous sections and prove Theo-

rems 1.1, 1.2. We assume that f ∈ Aut(Y ) satisfies the condition

F9 | (pf mod 2).

After replacing f̃ by some power coprime to 3, we assume that fN is of order 9.

Since F9F
2
1 divides pN , we can rule out pN = Φ2

9. Furthermore, by [13, Rem. 2.4],

we have (pM mod 2) ̸= F 2
3F9, which rules out pN = Φ2

1Φ2
3Φ9. This leaves us with

the two possibilities

pN = Φ9Φ6
1 or pN = Φ9Φ3Φ4

1.
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As usual we set N9 := ker(Φ9(fN )) and denote by N⊥
9 the orthogonal complement

of N9 in N ∈ II(2,10)2
10. By Lemma 2.8, detN9 | 26 res(Φ9,Φ3Φ1) = 26 · 33. Using

the description of N9 as a Φ9-lattice, we enumerate the possibilities for N9. This

yields 4 cases and with Lemmas 2.3 and 2.4 we calculate the corresponding genus

of N⊥
9 :

N9 ∈ II(0,6)2
−631 and N⊥

9 ∈ II(2,4)2
−43−1,(4.1)

N9 ∈ II(0,6)2
−63−3 and N⊥

9 ∈ II(2,4)2
−433,(4.2)

N9 ∈ II(2,4)2
−63−1 and N⊥

9 ∈ II(0,6)2
−431,(4.3)

N9 ∈ II(2,4)2
−633 and N⊥

9 ∈ II(0,6)2
−43−3.(4.4)

We can rule out cases (4.3) and (4.4) since in each case the genus of N⊥
9 consists of a

single class (see Remark 2.2), which contains roots. We continue by determining the

characteristic polynomial. If pN = Φ9Φ6
1, then we must be in case (4.1) and N⊥

9 =

N1. Since the signature of N1 is (2, 4), it contains the transcendental lattice. In

particular, f is semi-symplectic. Choosing the covering K3 surface general enough,

we may assume that N1 is its transcendental lattice. This situation is analyzed in

the next proposition.

Proposition 4.1. Let Y be an Enriques surface such that its covering K3 surface

X has transcendental lattice

T (X) ∼= U ⊕ U(2) ⊕A2(−2) ∈ II(2,4)2
−43−1

and satisfies the condition

N ∩ NS(X) ∼= E6(−2) ∈ II(0,6)2
−631.

Then the image of Auts(Y ) → O(Num(Y )) ⊗ F2 generates a group isomorphic

to S5.

Proof. The image of Auts(Y )→O(Num(Y )) can be calculated with Algorithm 6.6.

It is generated by 64 explicit matrices (see [28]). Their modulo-2 reductions gen-

erate a group isomorphic to S5. The latter can be checked with the help of [8].

Since S5 does not contain an element of order 9, we are left with

pN = Φ9Φ3Φ4
1.

We derive further restrictions.

Lemma 4.2. Let g ∈ O(N) be an isometry with characteristic polynomial

pN = Φ9Φ3Φ4
1.

Then N3 = A2(n) with n ∈ {±2,±6}.
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Proof. One can easily see that A2 is the principal Φ3-lattice. By (2.6), N3 = A2(n)

for some n ∈ Z. In the following we show that n ∈ {±2,±6} by bounding the

determinant of N3. By Lemma 2.8 we have

detN3 | 22 res(Φ3,Φ9Φ1) = 2233.

By Lemma 2.5, the 2-adic symbol of N3 is either 1−2 or 2−2. The first one is not

a direct summand of N⊥
9 ⊗ Z2 (see Lemma 2.3), so we are left with the second.

Hence |n| ≠ 1, 3.

Lemma 4.3. Let f ∈ Aut(Y ) be an automorphism of an Enriques surface such

that pN = Φ9Φ1
3Φ4

1 and (4.1) holds. Then N3
∼= A2(−2) and N1

∼= U(2) ⊕ U .

Proof. By assumption (4.1), detN⊥
9 = 243, and Lemma 2.8 yields detN3 | 229.

Thus, by Lemma 4.2, we are left with N3 = A2(±2). We see that detN1 | 2232.

Suppose that N3 = A2(2) ∈ II(2,0)2
−231. There is a single genus of signature (0, 4),

2-adic symbol 1222, and determinant dividing 2232, namely N1 ∈ II(0,4)2
232. It

consists of a single class which has roots. Thus N3
∼= A2(−2). We calculate the

possible genus symbols of N1 as II(2,2)2
2 and II(2,2)2

29±1. In the second case,

N1 and N3 must be glued non-trivially over 3. This is impossible, as the only

possibilities for the glue groups are (N∨
3 /N3)3, whose discriminant form is non-

degenerate, and 3(N∨
1 /N1)3, whose discriminant form is degenerate. Thus N1 ∈

II(2,2)2
2, which implies N1

∼= U(2) ⊕ U since it is unique in this genus.

If the transcendental lattice is U⊕U(2), then as before we see that the spectral

radius of f̃ is 1. Since M ′
1 = ker(fM − 1)2 is of rank 2 and fM |M ′

1 has spectral

radius 0, it is of finite order (cf. Lemma 2.9) and M1 = M ′
1. Since M⊥

1 is definite,

fM is of finite order there as well. Thus f is an automorphism of order 9 on a

complex Enriques surface. However, no such automorphism exists (cf. [17]). We

are left with case (4.2) and pN = Φ9Φ3Φ4
1.

Lemma 4.4. Let f ∈ Aut(Y ) be an automorphism of an Enriques surface such

that pN = Φ9Φ1
3Φ4

1 and (4.2) holds. Then N3
∼= A2(−6) and N1 ∈ II(2,2)2

−291.

Moreover, N⊥
1

∼= A8(−2).

Proof. Recall that ζ9 · x := g(x) defines a Z[ζ9]-module structure on N9 and its

discriminant group. Thus N∨
9 /N9

∼= Z[ζ9]/I for some ideal I. Since we are in case

(4.2), I is of norm detN9 = 2633. There is only one such ideal, namely 2(1 − ζ9)3

(since (2) is inert and (3) completely ramified in Z[ζ9]). We see that the action

of g on the 3-primary part (N∨
9 /N9)3 ∼= Z[ζ9]/(1 − ζ9)3 has minimal polynomial

(x− 1)3 = x3 − 1. In particular, it has order 3. Thus the order of g on

(N⊥∨
9 /N⊥

9 )3 ∼= (N∨
9 /N9)3
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is 3 as well. This is only possible if the order of g on (N∨
3 /N3)3 ∼= Z[ζ3]/(1 − ζ3)i

is 3 (this group is a subquotient of (N3⊕N1)∨/(N3⊕N1)). This implies that i ≥ 2,

i.e. that detN3 is divisible by 9. From Lemma 4.2 we see that N3 = A2(±6). Now

that we know the determinants of N3 and N⊥
9 , we can estimate that of N1 to be

a divisor of 2232. Since N3 has a 3-adic Jordan component of scale 9 and N⊥
9 not,

N3 cannot be a direct summand of N⊥
9 . Thus N3 and N1 are glued non-trivially

over 3. Consequently, the determinant of N1 is 2232.

Suppose that N3
∼= A2(6); then the signature of N1 is (0, 4). There is only

one genus with 2-adic genus symbol 1222, signature (0, 4), and determinant 2232:

II(0,4)2
232 which consists of a single class that has roots.

Suppose now that N3
∼= A2(−6). Then we obtain three possibilities for the

genus of N1:

(1) II(2,2)2
23−2: There is only one possibility to glue N3 and N1 equivariantly over

3 (up to isomorphism). It results in II(2,4)2
−43191, which is not what we need.

(2) II(2,2)2
29−1: The full 3-adic symbol is 1−39−1. But that has the wrong sign at

scale 1.

(3) II(2,2)2
291: Indeed, there is a unique possibility to glue N3 and N1 equivariantly

over 3. It yields the correct result.

Corollary 4.5. If F9 divides (pf mod 2), then F 2
1F3F9 = (pf mod 2).

Proof. If we replace f by some power fk with k coprime to 3, then the previous

considerations apply and lead us to pN = Φ9Φ3Φ4
1. By Lemma 4.4, (N∨

3 /N3)2 ∼= F2
2.

Hence F3 divides pN mod 2. Since F 2
1 (pf mod 2) = pN mod 2 = F9F3F

4
1 , the

corollary is proven for fk. If k is a power of 2, then the characteristic polynomials of

fM and fk
M coincide and we are done. If k is not a power of 2 then (pf mod 2) must

be divisible by one of F5, F7, F15, which is absurd. For instance, if (pf mod 2) =

F9F15, then (pf5 mod 2) = F9F
2
3 ̸= F 2

1F3F9.

After these preparations, we can prove the following lemma that we will need

for the proof of Theorem 1.1(b).

Lemma 4.6. If F9 divides (pf mod 2), then f is semi-symplectic.

Proof. By Corollary 4.5 we have (pN mod 2) = F9F3F
4
1 . Thus the order of fN is

2k9 for some k. Set L = ker(f2k−1) ∈ II(2,2)2
−291 and note that the transcendental

lattice T is contained in L. We suppose that f is not semi-symplectic. Then the

order of f̃ on H2(X,Ω2
X) is 2l for some l > 1. After replacing f̃ by f̃ l−2 we may

and will assume that l = 2, i.e. the order of fN |T is 4.
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Set L4 = ker Φ4(fN |L). Suppose that rankL4 = 4, i.e. L = L4. Then the

discriminant group of L is a Z[ζ4] module. But since 3 is prime in Z[ζ4], there

is no Z[ζ4] module isomorphic to Z/9Z. Thus rankL4 = 2 and 3 ∤ detL4. Since

detL4 | 22 res(Φ4,Φ2Φ1) = 24 and L4 is a Φ4-lattice, either L4
∼= [2] ⊕ [2] or

L4
∼= [4]⊕ [4] holds. In both cases L⊥

4 ⊆ L has 3-adic symbol 9−1 and determinant

36. The only such lattice is [−2] ⊕ [−18], which contains roots.

At this point we have determined the Néron–Severi lattice of the K3 cover of a

generic Enriques surface admitting an automorphism with F9 dividing pf mod 2.

This allows us to compute the semi-symplectic part of the automorphism group

and locate f in there.

Proposition 4.7. Let Y be an Enriques surface such that its K3 cover X satisfies

the condition

NS(X) ∩N ∼= A8(−2) ∈ II(0,8)2
891

and has transcendental lattice given by

N1 ∈ II(2,2)2
−291.

Then the image of Auts(Y ) → O(Num(Y ) ⊗ F2) generates a group isomorphic

to S9.

In particular, the polynomials F7 and F9 do appear as factors of modulo-2

reductions of characteristic polynomials of isometries induced by some automor-

phisms of the Enriques surface Y .

Proof. The proof is a direct computation with the help of Algorithm 6.6 (cf. the

proof of Proposition 4.1). The existence of the factors F7 and F9 follows since the

symmetric group S9 has elements of order 7 and 9.

Finally, we can give the proofs of the main results of this note.

Proof of Theorem 1.1.

(a) One can repeat verbatim the proof of [13, Thm. 1.2] to see that the modulo-2

reduction (pN (x) mod 2) is the product of some of the polynomials F1, F3,

F5, F7, F9, F15. By (2.2) the same holds for (pf (x) mod 2). The claim follows

from Proposition 3.1.

(b) The existence of the automorphisms with required properties follows from

Proposition 4.7. Lemma 4.6 implies the second claim.

Proof of Theorem 1.2. In view of [13, Thm. 1.1] it suffices to rule out the possibility

that the order of the map fN is one of the integers 90, 45, 72. Suppose to the
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contrary that the order of fN is 90, 45, 72. Then F9 divides (pN mod 2). Thus,

by (2.2), F9 divides (pf mod 2) and we can apply Corollary 4.5 to show that (pN
mod 2) is divisible by F 2

1F3F9.

In particular, pN (of degree 12) cannot be divisible by Φ5 as well. This excludes

orders 45 and 90. Suppose that the map fN is of order 72. Then its characteristic

polynomial pN cannot be divisible by Φ72 and Φ24Φ9 for they have the wrong

degree. Thus Φ9 or Φ18 must divide pN . In particular, F9 divides (pN mod 2) and

Corollary 4.5 implies that (pN mod 2) is divisible by F 2
1F3F9. This leaves us with

pN = Φ8Φ3aΦ9b, where a, b ∈ {1, 2}. From Lemma 4.4 (applied to f̃8) we know

that N8 ∈ II(2,2)2
−291. This is impossible, as can be seen using the description of

N8 as a twist of the principal Φ8-lattice. Indeed, 3 splits into two primes of degree

2 in Z[ζ8].

§5. The factor F7

The main aim of this section is to study Enriques surfaces Y with an automorphism

f ∈ Aut(Y ) such that

(5.1) F7 | (pf mod 2).

The existence of such surfaces follows from Proposition 4.7. Here we derive a

lattice-theoretic constraint given by (5.1) and show that it indeed defines Enriques

surfaces with the desired property. We maintain the notation of the previous sec-

tions. Recall (see (2.1)) that

N ∈ II(2,10)2
10.

In the sequel we will need the following lemma.

Lemma 5.1. Let g ∈ O(N) be an isometry of finite order such that its charac-

teristic polynomial is the product Φ7(x)Φ1(x)6. Then there are two possibilities for

the genera of the lattices N7 := ker Φ7(g) and N1 := ker Φ1(g): either

N7 ∈ II(2,4)2
67−1 and N1 ∈ II(0,6)2

471

or

N7 ∈ II(0,6)2
671 and N1 ∈ II(2,4)2

47−1.

In either case the genus of N1 contains a single class. In the first case the class of

N1 has roots.

Proof. Observe that we assumed g to be of finite order, so it is semi-simple,

and rank(N1) = 6. Since res(Φ1,Φ7) = 7, Lemma 2.8 implies that the index
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[N : N7 ⊕ N1] divides 7. But in any case 7 = |Φ7(1)Φ7(−1)| divides detN7 (see

(2.5) and (2.6)). Thus we obtain

[N : N7 ⊕N1] = 7.

Consequently, for all p ̸= 7, N ⊗ Zp = (N7 ⊗ Zp) ⊕ (N1 ⊗ Zp), and in particular

for p = 2. Using the description of N7 as a twist of the principal Φ7-lattice we

compute the two possibilities for the genus of N7 (see Remark 2.2).

It remains to determine the genus of N1. Since we have

N ⊗ Z2 = (N7 ⊗ Z2) ⊕ (N1 ⊗ Z2),

the 2-adic symbol of N1 must be 24. To compute the 7-adic symbol note that

N ⊗ Z7 is unimodular, thus Lemma 2.4 applies. As (−1) is a non-square in Z7

this means that the signs ϵ7 of the 7-modular Jordan constituents of N7 and N1

must be different. The claim that N1 is unique in its genus in the first case is

checked with a computer algebra system (see Remark 2.2). In the second case, N1

is indefinite and we can use [6, Thm. 15.19].

Recall that X (resp. f̃ ∈ Aut(X)) stands for the K3 cover of an Enriques

surface Y (resp. for a lift of an automorphism f ∈ Aut(Y )).

Proposition 5.2. Let Y be an Enriques surface with automorphism f ∈ Aut(Y )

such that (5.1) holds. Then NS(X) contains a primitive f̃∗-invariant sublattice

which belongs to the genus II(1,15)2
471 and N ∩ NS(X) contains the f̃∗-invariant

sublattice A6(−2) ∼= N7 ∈ II(0,6)2
671 primitively.

Proof. Since F7 divides pf , (2.2) implies that the characteristic polynomial pN is

divisible by the cyclotomic polynomial Φ7. Moreover, after replacing f by fk with

k ∈ N coprime to 7, we may assume that

pN = Φ7(x)Φ1(x)6.

Now we can apply Lemma 5.1. The first case is impossible as then N1 is contained

in NS(X) ∩ N and contains roots (see (2.3)). Thus we are left with the second

case. Since N1 ⊆ N is of signature (2, 4) it must contain the transcendental lattice

(and f is semi-symplectic). Thus the orthogonal complement of N1 in H2(X,Z) is

the sought for f̃∗-invariant sublattice of NS(X).

Finally, we apply Algorithm 6.6 to check that the condition of Proposition 5.2

indeed gives Enriques surfaces such that (5.1) holds.

Proposition 5.3. If the K3 cover X of an Enriques surface Y satisfies the con-

ditions
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(a) NS(X) ∈ II(1,15)2
471 and

(b) N ∩ NS(X) ∼= A6(−2) ∈ II(0,6)2
671,

then the image of Auts(Y ) → O(Num(Y )) ⊗ F2 generates a group isomorphic

to S7. In particular, the Enriques surface Y admits an automorphism f ∈ Aut(Y )

such that the modulo-2 reduction (pf (x) mod 2) is divisible by the polynomial F7.

Proof. Apply Algorithm 6.6 and [8] as in the proof of Proposition 4.1.

§6. An algorithm to calculate generators

In this section we present an algorithm to calculate a finite generating set of

the image of the natural homomorphism from the automorphism group of an

Enriques surface to the orthogonal group of the numerical Néron–Severi lattice of

the Enriques surface. Our algorithm is based on Borcherds’ method [1, 2] with the

result in [3].

§6.1. Borcherds’ method

We use the notation and terminologies in [3]. In particular, we denote by Y an

Enriques surface, π : X → Y the universal covering of Y , and SX and SY the

numerical Néron–Severi lattices of X and of Y , respectively (that is, SX = NS(X)

and SY = Num(Y ) in the notation of previous sections.) Let PX (resp. PY ) be

the positive cone of SX ⊗ R (resp. SY ⊗ R) containing an ample class. Let NX

(resp. NY ) be the cone consisting of all x ∈ PX (resp. all x ∈ PY ) such that

⟨x, [Γ]⟩ ≥ 0 for any curve Γ on X (resp. on Y ). We let the orthogonal group O(L)

of a Z-lattice L act on the lattice from the right. Suppose that L is even. A vector

r ∈ L is a (−2)-vector if ⟨r, r⟩ = −2. Let W (L) denote the subgroup of O(L)

generated by the reflections sr : x 7→ x + ⟨x, r⟩r with respect to (−2)-vectors r

of L. For a subset A of L⊗ R, we denote by Ag the image of A under the action

of g ∈ O(L) (not the fixed locus of g in A), and put

O(L,A) :=
{
g ∈ O(L) | A = Ag

}
.

We have natural homomorphisms

Aut(X) → O(SX ,PX), Aut(Y ) → O(SY ,PY ).

We denote by aut(X) and aut(Y ) the images of these homomorphisms. Recall

that Auts(Y ) consists of the semi-symplectic automorphisms, i.e. those that

act trivially on H0(Y, ω⊗2
Y ). We denote by Auts(X) the subgroup consisting of

those automorphisms acting as ±1 on H0(X,Ω2
X) ∼= H2,0(X). The subgroups
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auts(X) ⊆ aut(X) and auts(Y ) ⊆ aut(Y ) are defined as the respective images.

Our goal is to calculate a finite generating set of auts(Y ).

Remark 6.1. We note that Auts(Y ) is of finite index in Aut(Y ). This index is 1

if the only isometries of TX that preserve H2,0(X) ⊂ TX ⊗C are ±1, where TX is

the transcendental lattice of X.

We have the primitive embedding

π∗ : SY (2) ↪→ SX ,

which induces PY ↪→ PX . We regard SY as a submodule of SX , and PY as a

subspace of PX by π∗. Then we have

(6.1) NY = NX ∩ PY .

If α ∈ SY is ample on Y , then π∗(α) is ample on X. Hence we have N◦
Y = N◦

X∩PY ,

where N◦
Y and N◦

X are the interiors of NY and NX , respectively. Let Q denote the

orthogonal complement of the sublattice SY (2) in SX . Since Q is negative definite,

the group O(Q) is finite. We consider the following assumptions for an element g

of O(SY ,PY ):

(i) There exists an isometry h ∈ O(Q) such that the action of g⊕h on SY (2)⊕Q

preserves the overlattice SX of SY (2) ⊕Q and the action of (g ⊕ h)|SX on

the discriminant group S∨
X/SX of SX is ±1.

(ii-a) There exists an ample class α ∈ SY of Y such that there exist no vectors

r ∈ SX with ⟨r, r⟩ = −2 satisfying ⟨π∗(α), r⟩ > 0 and ⟨π∗(αg), r⟩ < 0.

(ii-b) For an arbitrary ample class α ∈ SY of Y , there exist no vectors r ∈ SX

with ⟨r, r⟩ = −2 satisfying ⟨π∗(α), r⟩ > 0 and ⟨π∗(αg), r⟩ < 0.

Proposition 6.2. Let g be an element of O(SY ,PY ). Then g is in auts(Y ) if (i)

and (ii-a) hold. If g is in auts(Y ), then (i) and (ii-b) hold.

Proof. An element g of O(SY ,PY ) is in auts(Y ) if and only if there exists an

element g̃ ∈ auts(X) that preserves SY ⊂ SX and satisfies g̃|SY = g. By the

Torelli theorem, we see that an element g̃′ of O(SX ,PX) is in auts(X) if and only

if the action of g̃′ on S∨
X/SX is ±1 and g̃′ preserves NX . Since NX is a standard

fundamental domain of the action of W (SX) on PX (see [3, Exa. 1.5]), we have

N◦
X ∩Nh

X ̸= ∅ =⇒ NX = Nh
X

for any h ∈ O(SX ,PX). Therefore, both (ii-a) and (ii-b) are equivalent to

the condition that N g̃
X = NX for any g̃ ∈ O(SX ,PX) satisfying Sg̃

Y = SY and

g̃|SY = g.
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Suppose that we have a primitive embedding

ιX : SX ↪→ L26,

where L26 is an even unimodular hyperbolic lattice of rank 26, which is unique

up to isomorphism. (More standard notation is II1,25.) Composing π∗ and ιX , we

obtain a primitive embedding

ιY : SY (2) ↪→ L26.

Let P26 be the positive cone of L26 into which PY is mapped. We regard SY as a

primitive submodule of L26, and PY as a subspace of P26 by ιY . Recall from [3]

that a Conway chamber is a standard fundamental domain of the action of W (L26)

on P26. The tessellation of P26 by Conway chambers induces a tessellation of PY

by induced chambers.

Proposition 6.3. The action of auts(Y ) on PY preserves the tessellation of PY

by induced chambers.

Proof. Let g be an element of auts(Y ). By the proof of Proposition 6.2, there exists

an isometry g̃ ∈ O(SX ,PX) such that Sg̃
Y = SY , g̃|SY = g and the action of g̃ on

S∨
X/SX is ±1. By the last condition, we see that g̃ further extends to an isometry

g26 ∈ O(L26,P26). Since the action of g26 on P26 preserves the tessellation by

Conway chambers, the action of g on PY preserves the tessellation by induced

chambers.

Let L10 be an even unimodular hyperbolic lattice of rank 10, which is unique

up to isomorphism. In [3] we classified all primitive embeddings of SY (2) ∼= L10(2)

into L26, and studied the tessellation of PY by induced chambers. It turns out

that, up to the actions of O(L10) and O(L26), there exist exactly 17 primitive

embeddings L10(2) ↪→ L26, and except for one primitive embedding named “infty”,

the associated tessellation of PY by induced chambers has the following properties:

� Each induced chamber D is bounded by a finite number of walls, and each

wall is defined by a (−2)-vector.

� If a (−2)-vector r defines a wall w = D∩ (r)⊥ of an induced chamber D, then

the reflection sr : x 7→ x + ⟨x, r⟩r into the mirror (r)⊥ maps D to the induced

chamber adjacent to D across the wall w.

In particular, the tessellation of PY by induced chambers is simple in the sense

of [27].
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§6.2. Main algorithm

Suppose that the primitive embedding ιY is not of type “infty”. Suppose also that

we have calculated the walls of an induced chamber D0 ⊂ PY contained in NY .

Before starting the main algorithm, we calculate the finite groups O(Q) and

O(SY , D0). We also fix an ample class α that is contained in the interior of D0. In

the following, an induced chamber D is expressed as an element τD ∈ O(SY ,PY )

such that D = D0
τD . Note that τD is uniquely determined by D up to left multi-

plications of elements of O(SY , D0).

Then we have the following auxiliary algorithms.

Algorithm 6.4. Given an induced chamber D, we can determine whether D ⊂
NY or not. Indeed, by (6.1), we have D ⊂ NY if and only if there exist no (−2)-

vectors r of SX such that ⟨π∗(α), r⟩ > 0 and ⟨π∗(ατD ), r⟩ < 0. The set of such

(−2)-vectors can be calculated by the algorithm in [25, Sect. 3.3].

Suppose that D ⊂ NY . A wall D∩ (r)⊥ of D is said to be inner if the induced

chamber Dsr adjacent to D across D∩ (r)⊥ is contained in NY . Otherwise, we say

that D ∩ (r)⊥ is outer.

Algorithm 6.5.

Input: An embedding SY (2) ↪→ SX ↪→ L26, the groups O(SY , D0), O(Q), and

two induced chambers D, D′ ⊂ NY represented by τD, τD′ .

Output: The set {γ ∈ auts(Y ) | D′ = Dγ}.

1: Compute Isom(D,D′) := τ−1
D O(SY , D0)τD′ .

This is the set of all isometries g ∈ O(SY ,PY ) that satisfy D′ = Dg.

2: Initialize I := {}.

3: for g ∈ Isom(D,D′) do

Use O(Q) and Proposition 6.2 to check

4: if g ∈ auts(Y ) then

5: add g to I.

6: Return I.

Note that since both D and D′ are contained in NY , condition (ii-a) of Propo-

sition 6.2 is always satisfied in line 4. For D = D′, Algorithm 6.5 calculates the

group

auts(Y,D) := O(SY , D) ∩ auts(Y ).

Two induced chambers D and D′ in NY are said to be auts(Y )-equivalent if there

exists an element γ ∈ auts(Y ) such that D′ = Dγ .
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Algorithm 6.6.

Input: An embedding SY (2) ↪→ SX ↪→ L26 and an induced chamber D0 ⊂ NY .

Output: A list R of representatives of auts(Y )-equivalence classes of induced

chambers contained in NY and a generating set G of auts(Y ).

1: Initialize R := [D0], G := {}, and i := 0.

2: while i ≤ |R| do
3: Let Di be the (i + 1)st element of R.

4: Replace G by G ∪ auts(Y,Di).

5: Let W be the set of walls of Di.

6: Compute orbit representatives of W under the action of auts(Y,Di).

7: for each representative wall w of W/ auts(Y,Di) do

8: Let r be the (−2)-vector of SY defining the wall w = D ∩ (r)⊥.

9: Let sr be the reflection x 7→ x + ⟨x, r⟩r.

10: Let Dw = Dsr
i be the induced chamber adjacent to Di across w.

11: Set τDw
:= τDisr.

12: if Dw ̸⊂ NY then

13: Continue with the next representative wall.

14: Set f := true.

15: for each D ∈ R do

16: if D is auts(Y )-equivalent to Dw then

17: Let γ ∈ auts(Y ) be an element such that Dw = Dγ .

18: Add γ to G.

19: Replace f by false.

20: Break the for loop.

21: if f = true then

22: Add Dw to R.

23: Increment i.

24: Return R and G.

Proof. This algorithm is proved in the same way as [26, Prop. 6.3].

Remark 6.7. The termination of Algorithm 6.6 follows, in the same way as in

[26, proof of Thm. 3.7], from the fact that the subgroup of O(SY ,PY ) consisting

of isometries g that extends to an isometry of H2(X,Z) preserving the sublattice

SX ⊂ H2(X,Z) is of finite index, and its membership can be decided by the action

of g on the discriminant form of SY (2). This algorithm provides us with an effective

version of the cone theorem for Enriques surfaces ([18, 29]).



654 S. Brandhorst, S. Rams and I. Shimada

§6.3. Examples

The details of the following computations are available at [28].

6.3.1. The Enriques surface in Proposition 5.3. The Picard number of the

covering K3 surface is 16, and the orthogonal complement Q of SY (2) in SX is

A6(−2). Therefore O(Q) is of order 10080. The ADE-type of (−2)-vectors in the

orthogonal complement P of SY (2) in L26 is 8A1 + 2D4. Hence the embedding

ιY is of type 40B in the notation of [3]. The number |R| of auts(Y )-equivalence

classes of induced chambers in NY is 2. Let D0 and D1 be the representatives

of auts(Y )-equivalence classes. For i = 0, 1, the group auts(Y,Di) is isomorphic

to Z/2Z × Z/2Z and the 40 walls of Di are decomposed into 10 orbits under the

action of auts(Y,Di). Among the 40 walls, exactly 3×4 = 12 walls are outer walls.

For each inner wall w, the two induced chambers containing w are not auts(Y )-

equivalent, that is, one is auts(Y )-equivalent to D0 and the other is auts(Y )-

equivalent to D1.

6.3.2. The Enriques surface in Proposition 4.1. The Picard number of the

covering K3 surface is 16, and the orthogonal complement Q of SY (2) in SX is

E6(−2). Therefore O(Q) is of order 103680. The ADE-type of (−2)-vectors in the

orthogonal complement P of SY (2) in L26 is D4+D5. Hence the embedding ιY is of

type 20A, which means that D0 is bounded by walls defined by (−2)-vectors that

form the dual graph of Nikulin–Kōndo type V [12]. The number |R| of auts(Y )-

equivalence classes of induced chambers in NY is 20. They are decomposed into

the following three types:

Type |auts(Y,D)| Outer walls Inner walls Number

a 1 1 × 7 1 × 13 2

b 1 1 × 5 1 × 15 6

c 2 1 × 2 + 2 × 2 1 × 2 + 2 × 6 12

For example, there exist 12 auts(Y )-equivalence classes of type c. If D is an

induced chamber of type c, then auts(Y,D) is Z/2Z, and D has 6 outer walls and

14 inner walls. Under the action of auts(Y,D), the 6 outer walls are decomposed

into 4 orbits of sizes 1, 1, 2, 2, and the 14 inner walls are decomposed into 8 orbits

of sizes 1, 1, 2, . . . , 2.

6.3.3. The Enriques surface in Proposition 4.7. The Picard number of the

covering K3 surface is 18, and the orthogonal complement Q of SY (2) in SX is

A8(−2). Therefore O(Q) is of order 725760. The ADE-type of (−2)-vectors in the

orthogonal complement P of SY (2) in L26 is A3+A4. Hence the embedding ιY is of

type 20D, which means that D0 is bounded by walls defined by (−2)-vectors that
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form the dual graph of Nikulin–Kōndo type VII [12]. The number |R| of auts(Y )-

equivalence classes of induced chambers in NY is 1. The group auts(Y,D0) is

isomorphic to S3, and the 20 walls of D0 are decomposed into 6 orbits, each of

which consists of

6 outer, 3 outer, 3 outer, 3 inner, 3 inner, 2 inner.
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