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Quasianalytic Functionals and Ultradistributions
as Boundary Values of Harmonic Functions

by

Andreas DEBROUWERE and Jasson VINDAS

Abstract

We study boundary values of harmonic functions in spaces of quasianalytic functionals
and spaces of ultradistributions of non-quasianalytic type. As an application, we pro-
vide a new approach to Hérmander’s support theorem for quasianalytic functionals. Our
main technical tool is a description of ultradifferentiable functions by almost harmonic
functions, a concept that we introduce in this article. We work in the setting of ultradif-
ferentiable classes defined via weight matrices. In particular, our results simultaneously
apply to the two standard classes defined via weight sequences and via weight functions.
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§1. Introduction

The representation of functions and linear functionals as boundary values of har-
monic functions is an important and useful idea in functional analysis. For analytic
functionals, such a representation follows, e.g., from Bengel’s work [1] (see also [7])
on formal boundary values of zero solutions of elliptic operators, and leads to an
elementary proof of the support theorem for analytic functionals. Moreover, it may
be used to develop a harmonic function approach to the theory of hyperfunctions
in several variables, which is reminiscent of the simple one variable theory. We
refer to [10, 12, 13, 22] for more information on this subject. In [12], Komatsu
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studied boundary values of harmonic functions in ultradistribution spaces of non-
quasianalytic type (see [14] for the distribution case).

The main goal of this article is to enhance these results by developing a theory
of boundary values of harmonic functions in spaces of quasianalytic functionals (=
compactly supported quasianalytic ultradistributions) [9]. Our ideas give rise to
a new approach to the support theorem for quasianalytic functionals, originally
shown by Hérmander in [9] (see also [8]). Hormander’s proof of this result is quite
involved. We believe that the approach given here is conceptually simpler, supply-
ing a description of the support (= minimal carrier) of a quasianalytic functional in
terms of the harmonic continuation properties of its Poisson transform. Further-
more, in the non-quasianalytic case, we obtain alternative proofs of Komatsu’s
results [12]. Our method allows us to work under much weaker assumptions on the
defining weight sequence (see Remark 4.14 for details).

A simple but powerful method to ensure the existence of (ultra)distributional
boundary values of holomorphic functions consists in combining Stokes’ theorem
(more precisely, the formula [10, eqn. (3.1.9), p.62]) with the notion of almost
analytic extensions. This technique was used for the first time by Hormander [10,
p.64] for distributions and was later extended to the ultradistributional setting
by Petzsche and Vogt [18] (see also [17]). We mention that the characterization
of Denjoy—Carleman classes by almost analytic extensions goes back to Dyn’kin
[3, 4]. We refer to the recent article [6] for the newest generalizations of such re-
sults and an overview of the topic of almost analytic extensions. Here we develop
a similar method to establish the existence of ultradistributional boundary values
of harmonic functions. Our method combines Green’s theorem with a novel de-
scription of ultradifferentiable functions by so-called almost harmonic functions.
Therefore, the first part of this article is devoted to an almost harmonic function
characterization of ultradifferentiable classes.

We work with the notion of ultradifferentiability defined via weight matrices,
as introduced in [19]. This leads to a unified treatment of ultradifferentiable classes
defined via weight sequences [11] (Denjoy—Carleman approach) and via weight
functions [2] (Braun—Meise-Taylor approach), but also comprises other spaces, e.g.,
the union and intersection of all Gevrey spaces. We point out that we shall infer
the weight function case from the weight matrix case by employing the method
from [6], which is based upon results from [19, 20, 21].

Finally, we fix some notation. Let  C R? be open. We write K Ccomp (2 to
indicate that K is a compact subset of 2. The notation © € () means that © is
a relatively compact open subset of Q. We write H(Q2) for the space of harmonic
functions on © and endow it with the compact-open topology. Points of R4t! =
R? x R will be denoted by (z,y) = (z1,...,74,y). We will often identify R? with
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the subspace RY x {0} of R4+, If V C R*! is open and symmetric with respect
to y, we write H_ (V) for the space of harmonic functions in V' that are odd with
respect to y.

§2. Ultradifferentiable classes
§2.1. Denjoy—Carleman classes

Let M = (M,),en be a sequence of positive numbers. We set m, = M, /M,_1,
p € Zy. Furthermore, we define M* = (M, /p!)pen and my = M, /My | = m,/p,
p € Z4. We will make use of the following conditions on a positive sequence M:

(M.1)  (mp)pez, is increasing.

(M.1)*  (my)pez, is increasing.

(M.1);, (my)pez, is almost increasing, i.e., m; < C'm, ¢ < p, for some C' > 0.
(M.2) Myy < CHPM,,peN, for some C,H > 0.

We refer to [11] for the meaning of the standard conditions (M.1), (M.2)’, and
(M.1)*. Condition (M.1)% is inspired by [21, Lem. 8]. A sequence M of positive
numbers is called a weight sequence if My = 1, lim,_,oo m;,, = oo, and M satisfies
(M.1). A weight sequence M is called non-quasianalytic if

=1
pz::lmip<00

and quasianalytic otherwise.

The relation N C M between two weight sequences M and N means that
there are C, H > 0 such that N, < CHPM,, p € N. The stronger relation N < M
means that the latter inequality remains valid for every H > 0 and a suitable
C =Cg >0. We write N ~ M if both N ¢ M and M C N hold.

We shall also use the following condition on a weight sequence M:

(NA) p! < M.

Each non-quasianalytic weight sequence satisfies (NA).
The associated function of a positive sequence M is defined as

tP M
w(t) == suplog 0

, t>0.
pEN Mp
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Let M be a weight sequence and let Q@ C R? be open. For h > 0 we write
BM:(Q) for the Banach space consisting of all ¢ € C°°(Q2) such that

_ () ()]
||<P||5Mwh(n) ‘= Sup sup

< 0
aENd zeQ h‘a|M|a\

We define
BM(Q) = lim BM"(Q), BMI(Q):= lim BY"(Q),
h—0t h—s00
and

£M(Q) = lim BM(©), €M (Q) = lim B} (O).

<_
(SIS €N

@

The space £{P'}(Q) coincides with the space A(Q) of real analytic functions in Q.

From now on we shall write [M] instead of (M) or {M} if we want to treat
both cases simultaneously. In addition, we shall often first state assertions for the
Beurling case (= (M )-case) followed in parentheses by the corresponding ones for
the Roumieu case (= {M }-case).

Given two weight sequences M and N, we have that EIN(Q) C £M(Q)
continuously if N ¢ M and £V} (Q) ¢ £M)(Q) continuously if N < M. Hence,
ENI(Q) = EMI(Q) as locally convex spaces if N ~ M and A(Q) c £M(Q)
continuously if M satisfies (NA).

Let M be a weight sequence. For K Ceomp R? and h > 0 we write D%’h
for the Banach space consisting of all ¢ € C°(R?) with suppy C K such that
llollprn(ray < 0o. We set

(M) _ M,h {M}y _ g M,h
D" = lim D", D = lim DI
h—0t h— 00

For Q C R? open we define

pPM(Q) = lim DI
Karht

The space DIM1(Q) is non-trivial if and only if M is non-quasianalytic.
§2.2. Classes defined by weight matrices

Following [6] (see also [19]), we define a weight matriz as a non-empty family 90t
of weight sequences that is totally ordered with respect to the pointwise order
relation < on sequences. We will make use of the following conditions on a weight
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matrix IN:

(M.1), VM eMIN € MIC >0VpeZy V1< q<p:n; <Cm,,.
{MA}Y, VM e MIN e MIC >0VpeZ V1I<qg<p: my < Cny.
(Mm.2) VM eMINeM3IC,H>0VpeN: Nyyy <CHPM,,.
{Mm2} VM eMINeMIC,H>0VpeN: M,1; <CHPN,.
(NA)  each M € 9 satisfies (NA).

The conditions (9.2)" and {901.2}" are denoted respectively by (Mq4c)) and (Mqcy)
in [19]. The conditions (9.1)%, and {<M.1}% were introduced in [21] but no name
was given to them there. A weight matrix 91 is said to be non-quasianalytic if
each M € 91 is non-quasianalytic.
The relation 91(C)M (N{C}M) between two weight matrices I and N means
that
VMeMINeM NCM VM eNINeM: M CN).

We write D[~ if both N[C]M and M[C]N hold. Furthermore, we define the
relation 9T < 9N as
VM eMVYNeI: N <M.

Lemma 2.1. Let M be a weight matriz satisfying [MN.1)% and [9M.2)'. Then there
is a weight matriz N with M[=]N such that N satisfies [MN.2]" and each N € N sat-
isfies (M.1)*. If M satisfies (NA) (is non-quasianalytic, respectively), then I can
be chosen in such a way that N satisfies (NA) (is non-quasianalytic, respectively)
as well.

Proof. By [21, Lem. 8], there is a weight matrix 9N with Em[%]‘ft such that each
N € 9 satisfies (M.1)*. Since the condition [91.2)" is stable under the relation
[~], M also satisfies [M.2)". Suppose that M satisfies (NA) (is non-quasianalytic,

respectively). In the Beurling case, it is clear that 91 = 0N also satisfies (NA)
(is non-quasianalytic, respectively). In the Roumieu case, there exists Ny € 9
that satisfies (NA) (is non-quasianalytic, respectively). The result then holds for

N={NecN|Ny <N} O
Let 9 be a weight matrix and let Q C R? be open. We define
B(Q) = lim BM(Q), BPY(Q) = lim BMHQ),
Mem Mem

and
£M(Q) = lim BP(O).
CISY]
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Given two weight matrices Mt and M, we have that £M(Q) € £M(Q) con-
tinuously if M[C]M and EPH(Q) ¢ £€M(Q) continuously if M < 9. Hence,
EPU(Q) = EPM(Q) as locally convex spaces if N[=]M and A(Q) c EM(Q) con-
tinuously if 9% satisfies (NA).

Let 90 be a weight matrix and let K Ccomp RY. We set

m . M m . M
DR = 1lim DRV, DY = lim DI
MedMm Mem

For Q C R4 open we define

DM(Q) = lim DY
K Ccompf2
The space D™ (Q) is non-trivial if and only if 9 is non-quasianalytic [23, Thm.
4.1]. In fact, if 9 is non-quasianalytic, there is a non-quasianalytic weight sequence
N such that N < M for all M € 9 and, thus, {0} € DIV}H(Q) c DOM(Q) [23,
Prop. 4.7]. Tt is clear that D{™}(Q) is non-trivial if and only if there exists a
non-quasianalytic M € 9. In such a case, we can find a non-quasianalytic weight
matrix 9t C 9 such that M{~}9 and, thus, DI (Q) = DIV (Q).

Remark 2.2. The name weight matrix is justified by the fact that for every
weight matrix 9t there is a countable weight matrix 91 C 9t such that M[~]91 (cf.
the proof of [6, Lem. 2.5]).

§2.3. Braun—Meise—Taylor classes

By a weight function we mean a continuous increasing function w: [0, c0) — [0, 00)
with wjjp,1) = 0 satisfying the following properties:
w(2t) = O(w(t)) as t — oo.
(t) =0O(t) as t — oc.
(7) logt = o(w(t)) as t — oo.

\./\./@\./
S

We refer to [2] for the meaning of these conditions. A weight function w is called

/ wit) dt < oo
o 1+t

and quasianalytic otherwise. Each non-quasianalytic weight function w satisfies

non-quasianalytic if

w(t) = o(t). We also consider the following condition on a weight function w:

(g) AC > 03t > 0VA>1VE > tg: w(At) < CAw(t).
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By [19, Thm. 6.3] (see also the proof of [18, Prop. 1.1]), a weight function w satisfies
(o) if and only if there is a concave weight function o such that w < o (meaning
that w(t) = O(o(t)) and o(t) = O(w(t))).
Let w be a weight function. We define
¢":[0,00) = [0,00), ¢"(t) = sup{tr — ¢(r)}.

>0
The function ¢* is increasing and convex, ¢*(0) = 0, (¢*)* = ¢, and ¢*(¢)/t S o0
on [0, 00).
Let w be a weight function and let @ C R? be open. For h > 0 we write
B« (Q) for the Banach space consisting of all p € C*°(Q) such that

« 1 *
@l = sup sup [o) ()] exp(—1-¢" (hlal)) < oo.

a€eNd zeQ)
We define
BE(Q) = lim B"(Q), B¥HQ) = lim B"(Q),
h—0t h—o0
and
Q) = lim B(8).
CISY]

For w(t) = max{t — 1,0} the space £{“}(Q) coincides with A(RQ).

Given two weight functions w and o, we have that £l°1(Q) C £1(Q) contin-
wously if w(t) = O(a(t)) and EL7H(Q) € £&)(Q) continuously if w(t) = o(a(t)).
Hence, £41(Q) = £71(Q) as locally convex spaces if w =< o and A(Q) C £+1(Q)
continuously if w(t) = o(t).

Let w be a weight function. For K Ccomp R? and h > 0 we write Df(’h
for the Banach space consisting of all ¢ € C(R?) with suppy C K such that
ol pe.n ey < 0o. We set

D) = lim DY, D= lim DY
h—0+ h—o00
For Q C R? open we define
KCcome

The space D(Q) is non-trivial if and only if w is non-quasianalytic.
Given a weight function w, we associate to it the weight matrix 9, =
(M[)n>0, where the weight sequence M = (M[ ) en is defined by

Mu’f)p = exp(%gﬁ*(hp)), peN.
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We have that w =< wy, for each M € 9M,, [19, Lem. 5.7]. Hence, by [11, Lem. 3.10],
w(t) = o(t) if and only if M, satisfies (NA). Similarly, [11, Lem. 4.1] yields that w
is non-quasianalytic if and only if 97, is non-quasianalytic. The next two lemmas
will enable us to infer our results for the weight function case from those for the
weight matrix case.

Lemma 2.3. Let w be a weight function.

(i) [19, Cor. 5.15] EL(Q) = EP(Q) as locally convex spaces for all Q C R?
open.

(ii) /6, Prop. 4.5] If w satisfies (cg) and w(t) = o(t), there is a weight matriz M
with M, [=]IM such that M satisfies [M.1)%, [M.2]', and (NA).

For a weight function w satisfying w(t) = o(t) we define

w*: (0,00) = [0,00), w*(s)= ig}g{w(t) —ts}.

The function w* is decreasing and convex. Given h > 0, we set pw(t) = hw(t) and
wp(t) = w(ht). Then

* _ * f * _x f
(2.1) (hw)*(s) = hw (h) (wi)*(s) = w (h) s> 0.

For a weight sequence M satisfying (NA) it holds that [18, proof of Lem. 5.6] (cf.
20, Lem. 3.10])

(2.2) Wi (s) < war- (é) <wir(2

Lemma 2.4. Let w be a weight function satisfying w(t) = o(t).

), s> 0.

(&

(i) For all M € M, and h > 0 there are C,k > 0 such that

1 1
(2.3) ware (E) < 2w'(ks) +1ogC, s> 0.

(ii) For all k > 0 there are M € M, and C,h > 0 such that (2.3) holds.
(iii) For all M € M, and h > 0 there are C,k > 0 such that

1 1
—w* < * .
(2.4) i (ks) <wnm (hs) +logC, s>0

(iv) For all k > 0 there are M € M., and C,h > 0 such that (2.4) holds.

Proof. By (2.1) and (2.2), (2.3) holds if

(2.5) wM(ei) <

W w(t)+logC, t>0,

x| =
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while (2.4) holds if

1 t
. — < — > 0.
(2.6) L) < wM(h> YlogC, >0

Since w =< wys for each M € M, condition () implies that for all M € M, and
h > 0 there are C,k > 0 such that (2.5) and (2.6) hold. This shows (i) and (iii).
Next, note that

1 1 1
wyr(t) = sup{plogt — fqﬁ*(kp)} < sup{rlogt — fqﬁ*(kr)} = —w(t)

¢ peEN k r>0 k k
for all k¥ > 0. Hence, for each k& > 0, we have that (2.5) actually holds with
M = MF eM,, h=e, and C = 1. This shows (ii). Finally, note that

MJ o < M2EM2" . pgeN,

w,p+q — w,q?

for all A > 0. By [20, Lem. 3.12], we have
QWMgh(t) < wa,(t), t>0,

for all A > 0. Hence,
QHWM(}J (t) S le/zn (t), t Z O,

for all n € Z. Since w < wyy1, the latter inequality implies that for all £ > 0 there
are M € M, and C > 0 such that (2.6) holds with ~ = 1. This shows (iv). O

§3. Ultradifferentiable classes via almost harmonic functions

Let © C R? be open and let ¢y, ¢1: Q — C. The Cauchy-Kovalevski theorem
implies that ¢, 1 € A(Q) if and only if for all © € Q there exist V' C R¥*! open
with VNR? = © and ® € H(V) such that ®|g = ¢gje and 8, Pje = ¢1je- The goal
of this section is to characterize the classes () and D™ (Q) in a similar way
by almost harmonic functions. Namely, we shall show the following two results.

Theorem 3.1. Let M be a weight matriz satisfying [PN.1]%, [MM.2]', and (NA).
Let Q C R? be open and let g, p1: Q — C. Then @q, o1 € EPN(Q) if and only if
for all ©® € Q and for all M € M, h > 0 (for some M € M, h > 0) the following
holds: for some/all V. C Rt open with V NRY = O there exists ® € C*(V) such
that ®10 = poje, 0,Pje = p1je, and

sup \A@(m,yﬂewM*(ﬁ) < 00.
(z,y)eV

Theorem 3.2. Let M be a non-quasianalytic weight matriz satisfying [M.1]% and
[.2)". Let Q C R? be open and let V- C RI*Y be open such that V N RY = Q. Let
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00,01 Q@ — C. Then o, p1 € DN(Q) if and only if for all M € O, h > 0 (for
some M € M, h > 0) there exists ® € C2(V) such that ®jq = o, 0y®10 = 1,
and

sup \A@(x,yﬂewM*(ﬁ) < 00.
(z,y)eV

The proofs of Theorems 3.1 and 3.2 are divided into several intermediate
results.

Proposition 3.3. Let M, N, and Q be three weight sequences satisfying (NA).
Suppose that Q satisfies (M.1)* and

(31) Mp+2 < CngQp, Qp+2 < CleNp, pE N,

for some Cy, Hy,C1, H, > 0. Then there is A > 0 such that for all © C R?
open and h > 0 the following holds: for all pg, 1 € BM"(O) there exists ® =
(0, 1) € C%(O x R) such that

(i) @l = wo and 9yPje = ¥1;
3 W (=L —
(ii) @[l = sup(sy)coxr |AL(z, y)|e™ (T < 0o.

Moreover, there is C' > 0 such that for all pg, o1 € BM:"(0),

maX{\H‘I’(Sﬁo, 901)\“amaxaeNd+l;|a\§1 0“® (o, <P1)HL°°(GXR)}
(3.2) < Cjné%}i{”SOjHBM’h(@)}'

For g, ¢1 € BP'}(O) the series (cf. [10, p. 330])

St 2p+1

Dy (
(3.3) @o(w,y) 2 1)

(x)» (I)l "T y = Z )pwl(x)’

p=0 p=0

are absolutely convergent in some open subset V of R*! with VR = © and
® = ®¢+ Py is a harmonic function on V' such that &\ = ¢ and 9,P|e = 1. The
idea of the proof of Proposition 3.3 is to suitably modify the series in (3.3). This
approach is inspired by Petzsche’s construction of almost analytic extensions by
means of modified Taylor series [17, Prop. 2.2]. Furthermore, in our estimates we
follow the same technique as in [6, Prop. 3.12], which is essentially due to Dyn’kin
3, 4].
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Proof of Proposition 3.3. Pick x € D(R) such that supp x C [-2,2] and x =1 on
[—1,1]. Set = 2v/2dHy. Let j = 0,1. For ¢ € BM"(0) we define

(7, y) = i(p)(z,y)
> y2p+J

(3.4) = ;) m(—A)Pw(x)x(uhq§p+jy), (z,y) € © xR

Since g;; /* oo, the above series is finite on © x {y € R | |y| > ¢} for each ¢ > 0.
Hence, ®; € C°(0© x (R\{0})). Set A = 2v2dHoH; = H,. We claim that

(3.5)  limsupsup |AD;(z, y)|ewN*(Ahl\yl) < 00,
y—0 2€0©

(3.6) hi% 98P (x,y) = 6;,00%(x) uniformly for x € O, a € N |a| < 2,
y

(3.7) lin%J 0,0%®;(2,y) = 6;10%(x) uniformly for z € ©, a € N¢, |a| <1,
y—r
where d; 5 denotes the Kronecker delta. These properties imply that

(38) (I)(<)007 301) = (I)O(SOO) + @1(901)7 $o,P1 € BM’h(@)v

belongs to C?(© x R) and satisfies (i) and (ii). We now prove the above claims. In
the rest of the proof, C will denote a positive constant that is independent of ¢
but may vary from place to place. We introduce the auxiliary function

1
I(t)=min{peN|qg,, > 1}, 0<t<—.
, @
Fix 0 <t < 1/gj. Then p < I'(t) if and only if g, < 1 for all p € Z, . Hence,
the function p +— tPQ; is decreasing for p < I'(t) and increasing for p > T'(t).
Consequently, tr(t)Ql’i(t) = e~we* (1), We start by showing (3.5). Note that A®,; =
S1+ Sy + S3, where

=yt
Z ) — D) o(@) (X (g5 s0459) — X(Bha3,159)),
p=
e 2p+7 1
=2 Z 2p Gp 7 A e @nhasy X g3y ),
p=1—j

= 2p+] A)P * 2.1 *
pz o 1A @ahgsy )X (ihdy ).
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For all (z,y) € © x (R\{0}) with |y| small enough, we have

|y[>PH \ .
|S1 (2, y)| < Z WIA”“s@(:c)I |X(thbp+2+jy) - X(#hQQp+jy)|
D(phlyl)—2<2p+j '
<T'(nhlyl|/2)
|y‘2p+j 2p+2
< Cllellsmn ey Z — ,(\/cjh) Mapio
Pyl (2p+)!
phly|)—2<2p+j
<T(uhly|/2)
1 .
< Cligllpm.ne) Z 27(#“3/\/2)2”]@2%]'
T(phly|)—2<2p+j
<T(uhly|/2)

< Cligllpmne) (#h|y|/Q)F(uh‘yl)%Qit(Mh\yD
< Cllellsmn o) (uhly|)~2e~e" Ganr)

< C||SD||B]\/I,)1(@)67MN* (ﬁ\y\)

Likewise, for all (z,y) € © x (R\{0}) with |y| small enough, one gets

ly|*P*7 ! . o
|S2(z,y)| < C Z WIA%(@\%HIX (1ha3,49)]
I'(phly|)<2p+j

<T(pnhlyl/2)
ly[*P+7 2 2
< Cllellprn ey Z Qpiioo) (Vdh)* My,
T'(ph|y]) <2p+j ’
<T(puhlyl/2)
1 o
< Clliellpmne) Z 27,(Nh|y|/2)2pﬂ 2Q2p+j—2
D(phlyl)<2p+j
<T(unhlyl/2)

< Cligllparney (hlyl /2T * ¥ =2Q5 o

< Ollpllgannoye™ " ()

and
|y[>+7 \ \
Ss(z, ) <C Y (2p+j),IN’sO(fv)\(q2p+j)2|x”(uhq2p+jy)l
T(phly|)<2p+j ’
<T'(uhl|yl|/2)
|y|?PHi—2 2
< Cllollprn (o) > Cpri=2) (Vidh)*? My,

T'(phly|)<2p+j
<T(nhly|/2)

S C”SD”BMJL(@)Q_UJN*(ﬁM).
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Next we show (3.6) and (3.7). We only treat the case j = 0 as the case j =1 is
similar. Let o € N%, |a| < 2, be arbitrary. For all (z,) € © x R\{0} with |y| small
enough it holds that

2p

(0% (6% y 164 *

|05 ®o(z,y) — 0%p(x)| < (E ) |(2| ) |APO%p(x)] |X(,uhq2py)|
1<p<I'(pnh|y|/2)/2

2p
Yy

<Cllglsmne) Y. lQL)'(\/Eh)%Mng
1<p<T(phly|/2)/2 ’

1 *
< Cllollgm.n(oy Z g(ﬂh\yVQ)Qszp
1<p<T(uhlyl|/2)/2

< lyl*Cliellsne)-

Similarly, for all @ € N, |a| < 1, and (z,y) € © x R with |y| small enough, we
have

2p—1
o Yy a *
D000yl < Y (('Qp_ AP 9% (@) [x(jahad, )]

1)!
1<p<T'(nhly|/2)/2

|y|2p APH * / *
+ o [APO% () | phas, | X (1has,y)|

(2p)!
|y|2p—1 \[ 2p
< Cllelisrnie) Z m( dh)™ Map 41
1<p<T'(uhly|/2)/2 )
1 1
SCHQPHBMJL((—)) Z 27,(Nh|y‘/2)2p 1Q2p71

1<p<T(uhlyl/2)/2

< [y[Cllellgm.ne)-

Finally, (3.2) follows from an inspection of the estimates in the proofs of (3.5)—
(3.7). O

Proposition 3.4. Let M, N, and Q be three non-quasianalytic weight sequences
satisfying (3.1). Suppose that Q satisfies (M.1)*. There is A > 0 such that for all
K Ccomp R? and e,h > 0 the following holds: for all @q,p, € D%’h there exists
® = ®(pg, 1) € C*(RI*Y) with supp ® C K x [—¢,¢] such that

(i) ®jo = o and 9y®jo = ¢1;
(ii) Il = sup(y,y)era+r |A<I>(:Jc7y)\e°’N*(Ahly\) < o0,
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Moreover, there is C' > 0 such that for all pg,p1 € D%’h,

max { [|® (o, ©1)ll, max,ena+1;ja <1 |0 (g0, 1) || Lo (ra+1) }
< C max{|lgjllprn e }-

Proof. Choose ¢ € D(R) such that supp) C [—¢,¢] and ¢ = 1 on a neighborhood
of 0. Let ® = ® (g, 1) be the function from Proposition 3.3 but call it ® instead of
®. Set ®(z,y) = ¥(y)®(x,y). The definition of ® (see (3.4) and (3.8)) implies that
supp® C K x [—e,¢e]. Since ® satisfies the conditions of Proposition for = R,

® satisfies all requirements. O

Proposition 3.5. Let M be a weight sequence satisfying (NA). There is A > 0
such that for all V.C R open and h > 0 the following holds: Let ® € C2(V) be
such that

(3.9) sup |A<I>(x,y)|e“’M*(h\lyl) < 00.
(z,y)eV

Then both ®e and 0,P|e belong to BM-AM@Q) for all © € V NRY.

We need some preparation for the proof of Proposition 3.5. Consider the
following fundamental solution of the Laplacian:

1
E(z,y) = 5-log|(@,y)l,  (z,y) € R\{0},
and for d > 1,
-1
(d—1)cara|(w,y)|d=1

where cq41 denotes the area of the unit sphere in R%*!. The Poisson kernel is given
by

E(r,y) = (z,y) € RTT1\{0},

P(z,y) = 0yE(x,y) = ma (z,y) € R\ {0}.

We need the following bounds for the derivatives of £ and P.

Lemma 3.6.
(i) There are C, H > 0 such that
CH"n!max{1, [log|(z, y)| [}

OME(z,y)| < ., neN,(z,y) € R%\{0},
0, E(x,y)| Ok (z,y) \{0}
and for d > 1,
CHel|al!
02 E(z,y)] < ol e N (,y) € BT\ (0},

[z, )|l ta=1?
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(ii) There are C,H > 0 such that

[l 1
102 P(a,y) < CHlo!

d d
= @ y)ferd’ a e N, (z,y) e R\ {0}.

Proof. We only show (ii) as (i) can be treated similarly. We will use the following
property of harmonic functions (cf. [5, p.29, Thm. 7]): there are C, H > 0 such
that for all w € R%*! and r > 0,

CHIPlg|!
10°U (w)| < T”U”Lx(B(w,r))a B e NI+t

for all functions U that are harmonic in a neighborhood of B(w,r). Fix (z,y) €
RI*1\{0} and a € N? By applying the above inequality to w = (z,y), r =
|(z,9)]/2, 8 = (a,0), and U = P, we obtain

C(2H)!*l|al!

The result now follows from the inequality

2d
Pllpe T T S - O
IPlz (B((z,y):|(z,y)1/2)) cas|(z,y)|?

Proof of Proposition 3.5. We only show the statement for J,® as the one for ®
can be shown similarly. Set V NR? = Q and ¢ = 0y®|q. Fix an arbitrary z¢ €
and choose r > 0 such that B! (zg,r) € V. Note that

Bz, y) = /B Blo—&y—n)AB(E 1) dEdn+ Ulz,y),  (2.y) € B (wo,7),

d+1(w07,,.)

for some U € H (B (zg,r)). Hence,
p(e) = — /Bd+1( )P(fc — & AR, n) dEdn + 9, U(x,0), x € B(xo,r).
Zo,T

Since U € H(B*(x¢,7)), we have 0,U|pa (s, ) € A(B(wo, 1)) C EM (B (20,7)).
Set

v@==[ | Pa-gnasEmedr oe B

Lemma 3.6(ii) and (3.9) yield that ¢ € C>°(B%(z¢,r)) with

rvw == [ oPE-gnAREndt, ac,
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and that there are C, H > 0 such that

1
e_WM* ( h‘m)

9 < CHI! !/ d€d
0%(2)] < | i1 gy (7 — E + n2) (a2 S
1
< C(Hh)'*'M,, / d¢ dn
(Hh) e B+ (zg,r) ([T = &% +7?)4/2

1
< C(HR)*I M, /Bd+1 0,20 1€ m)]4 dedn

for all & € N? and 2 € B%(xg,r). Since xq was arbitrary, this proves the result. [

Proofs of Theorems 3.1 and 3.2. By Lemma 2.1, we may assume that each M €
M satisfies (M.1)*. Hence, the direct implication in Theorem 3.1 (Theorem 3.2,
respectively) follows from Proposition 3.3 (Proposition 3.4, respectively), while the
reverse ones follow from Proposition 3.5. O

Theorem 3.1 particularly applies to £ (), where M is a weight sequence
satisfying (M.2)’, (M.1)%, and (NA). Similarly, Theorem 3.2 applies to DIM}(Q),
where M is a non-quasianalytic weight sequence satisfying (M.2)" and (M.1)%.
Furthermore, our results yield characterizations of £41(Q) and DI“!(Q) by almost
harmonic functions as well:

Corollary 3.7. Let w be a weight function satisfying (ag) and w(t) = o(t). Let
Q C R? be open and let g, 1: Q — C. Then o, 01 € EXNQ) if and only if for
all © € Q and for all h > 0 (for some h > 0) the following holds: for some/all
V C R4 open with V N RY = @ there exists ® € C%(V) such that P10 = oo,
0y®le = 110, and

sup |A<I>(x,y)|e%“*(h‘y‘) < 00.
(z,y)eV

Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 3.1. O

Corollary 3.8. Let w be a non-quasianalytic weight function satisfying (ag). Let
Q C R? be open and let V- C R be open such that V NR® = Q. Let o, p1: Q —
C. Then @g, 1 € DNQ) if and only if for all h > 0 (for some h > 0) there exists
® € C?(V) such that Q10 = o, 9yP)q = 1, and

sup |AD(z,y)|er Pl < oo,
(zy)eV

Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 3.2. O
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§4. Boundary values of harmonic functions
§4.1. Analytic functionals via harmonic functions

Given © C R? open, we denote by A’(Q) the dual of A(f2). Since the space of
entire functions is dense in A(£2), we may view A’(£2) as a subspace of A’(R%). A
compact set K in R? is said to be a carrier of f € A'(R?) if f € A'(Q) for all
Q C R? open with K Ceomp Q. We denote by A’'(K) the space consisting of all
f € A(RY) such that K is a carrier of f. The space A’(K) may be characterized in
terms of harmonic functions, as we now proceed to explain. We follow Hérmander’s
exposition [10, Sect. 9.1] (see also [12, 13, 22]).
Let K Ceomp RY. The Poisson transform of f € A'(K) is defined as

Plf](x,y) = (f(), Pz = &y)), (x,y) € RTTNK.

Recall that H_ (R4T1\ K) stands for the space of harmonic functions in R4\ K
that are odd with respect to y. We denote by Ho — (R¥*1\ K) the space consisting
of all F € H_(R¥1\K) such that F(x,y) — 0 as (z,y) — oc.

Theorem 4.1. Let K Ccomp R4,

(i) /10, Prop. 9.1.3] Let f € A'(K). Then P[f] € Ho,— (R*1\K) and

(f, Oy Biga) = — / Pf)(x, 1) A(p®) (2, y) dz dy

Rd+1

for all ® € H(RI1L) and p € D(R*!) such that p = 1 on an R -neighborhood
of K.

(ii) /10, Prop. 9.1.5] Let F € H_(R41\K). Then there ezists a unique f € A'(K)
such that

(f,0y®pra) = — F(z, y)A(p®) (2, y) de dy

Rd+1
for all ® € H(RM1L) and p € D(R*!) such that p = 1 on an R -neighborhood
of K. Moreover, there is U € H(R*Y) such that F = P[f] + U.

Corollary 4.2. Let K Ccomp R? and let V' be an open R -neighborhood of K
that is symmetric with respect to y. For each F € H_(V\K) there is a unique
fe A(K) such that

(4.1) (f. 0y Biga) = — / F(z,y)A(p®) (2, y) dz dy

Rd+1

for all ® € H(RY) and p € D(V) such that p = 1 on an R -neighborhood of
K. Moreover, there is U € H(V') such that F = P[f]+U.
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Proof. Since V\K = (R1\K) NV, the Mittag-Leffler theorem for harmonic
functions [12, Thm. 2.4] implies that there are Fy € H_(R\K) and F, € H_(V)
such that F' = F} — F5 on V\K. The result therefore follows from Theorem 4.1(ii)
(applied to Fy). O

Remark 4.3. Let K Ccomp R¢ and let V be an open Rd“—neighborhood of K
that is symmetric with respect to y. Let F' € H_(V\K) and consider the associated
f € A(K) from Corollary 4.2. By Green’s theorem (cf. the proof of Proposition
4.4 below), we have

(10,0 == [ Pl A(p) (e dedy

y—0t+ Jrd
for all ® € H(R%*1) and p € D(V) even with respect to y such that p = 1 on an
R%*1_neighborhood of K. Hence, f may be interpreted as the boundary value of
F in A'(K) and we write f = bv(F).

§4.2. Spaces of ultradistributions

Let 9 be a weight matrix satisfying [91.2]" and (NA). Given Q C RY open, we
denote by £'™(Q) the strong dual of ™ (Q). We have once again that the space
of entire functions is dense in EM(Q) (cf. [9, Prop. 3.2]); we therefore obtain that
E'™M(Q) may be viewed as a subspace of A’'(R?). A compact set K in R is said
to be an [M]-carrier of f € EP(RY) if f € £ (Q) for all @ C R? open with
K Ceomp Q. We denote by &'™(K) the space consisting of all f € £™(R?) such
that K is an [9]-carrier of f. We have the following canonical isomorphism of
vector spaces:
EM(K) =~ ) CI%Q £ Q).

We endow &' (K) with the projective limit topology induced by this isomor-
phism.

Suppose that 9 is non-quasianalytic. Given @ C R? open, we denote by
D'™(Q) the strong dual of DI™U(Q).

§4.3. Boundary values of harmonic functions in £/[™(K)

Let M be a weight sequence satisfying (NA). Let V' C R9*! be open and symmetric
with respect to y and let S € VNR? be closed in V. For h > 0 we write ’Hggi(V\S)
for the Banach space consisting of all F' € H_(V\S) such that

. s+ (g
||F||’HM’h V\S) " sup ‘F(gjvy”e M Rdg (@) < 00,
== ens
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where dg(z,y) denotes the distance from (z,y) to S. We set

HED(V\S) = lim 1A (V\S), 1D (\8) = tim HIE (V\8).
h—0t h— o0
Next, let M be a weight matrix satisfying (NA). Let K Ccomp R? and let V be
an open R4 1-neighborhood of K that is symmetric with respect to y. Choose a
sequence (V},)nen of relatively compact open sets in R4*! that are symmetric with
respect to y such that K Ccomp Vi, Vo €@ Vipy1, and V = UneN V,, and a sequence
(Kn)nen of compact sets in R? such that K Ceomp int Ky, Knt1 Ceomp int Ky,

Ky, Ceomp Vi and K = ﬂneN K,,. We define

HEV(VAK) = Jim T HET (V\K),
neN MeMm
HPY(N\K) = tim lim 1D (V,\ ).
neN Mem
This definition is independent of the chosen sequences (V,,)nen and (K )nen-
For two weight matrices 9t and M with M[~]M we have that H[im](V\K ) =
H[im(V\K ) as locally convex spaces.

Let K Ccomp R and let V be an open Rd+1—neighborhood of K that is
symmetric with respect to y. Recall from Remark 4.3 that we employ the notation
f = bv(F) for the analytic functional corresponding to a harmonic function F €
H_(V\K) via the relation (4.1). We now show that the elements of ’H[gn](V\K)
have boundary values in &'™(K).

Proposition 4.4. Let M be a weight matrixz satisfying [PN.1]%, [9M.2]', and (NA).
Let K Ceomp R? and let V' be an open R¥*1-neighborhood of K that is symmetric
with respect to y. For each F € ’H[Em](V\K) we have that bv(F) € E'P(K) and
this quasianalytic functional may be represented as follows: for all @ C V NR?
open with K Cgomp 2 it holds that

(bv(F), ) = lim [ (F(z,y) = Fz,~y)x(@)p(x) dz, o EM(Q),

y—0t JRrd

where x € D(Q) is such that x = 1 on a neighborhood of K.
Moreover, the boundary value mapping

bv: HT(V\K) — €P0(K)
s continuous.

As stated in the introduction, we shall show Proposition 4.4 by combining
Green’s theorem with our description of ultradifferentiable functions by almost
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harmonic functions (Proposition 3.3). This method is suggested by (4.1) (see Re-
mark 4.3).

Proof of Proposition 4.4. We only consider the Beurling case as the Roumieu case
can be treated similarly. By Lemma 2.1, we may assume that each M € 9 satisfies
(M.1)*.

Fix an arbitrary open subset @ C V NR? with K Ceomp £ and let x € D(Q)
be such that y = 1 on a neighborhood of K. Choose © &€ () with piecewise smooth
boundary such that supp x Ccomp ©. Let 7 > 0 be such that © x (—r,r) € V. Pick
L Ceomp © such that K Ccomp int L and x = 1 on a neighborhood of L. It suffices
to show that for all NV € 91 and k > 0 there is M € 9 such that

(4.2) bva: Hoo™ (0 x (—r,r)\L) — &' (Q),
where

(bva(F),p) = lim [ (F(z,y) - F(z, —y))x(z)p(z) dz

y—0t Jra

=2 lim [ F(z,y)x@)p@)dz, »eE™(Q),
y—0t JRrd

is well defined and continuous. Choose @, M € 9 such that (3.1) holds. For
¢ € EM(Q) consider the function ® = ®(0,¢|g) € C*(O© x R) from Proposition
3.3 with h = k/A. Let € > 0 be such that © x (—r —e,r+¢) € V. For F €
’Hf:;’i(@ x (=r,r)\L) and 0 < y <&, we set Fy(x,n) = F(z,n +y). Then F, is
harmonic in a neighborhood of © x [0,r]. Choose p € D(O X (—r,r)) such that
p =1 on an R4 1-neighborhood of L and pire = X- By applying Green’s theorem
to the pair (F,, p®) on the region © x (0,7), we obtain

/ Pz, y)x(@)p(z) dz = — / F(,n + 9)A(p®) () da dn
R4 Ox(0,r)

forall 0 < y < e. Let J Ceomp © X (—7,7) be such that L Ceomp intJ and p =1
on J. Property (ii) of Proposition 3.3 implies that

lim F(a,n+ 4)A(p®)(z, ) dz dn = / F(z,n)Ad(z, ) dz dn
y—=0T Jox(0,r)nJ Ox(0,r)NJ

and

/ Fle,m)A® (e, ) dxdn\ <10 x (0,r) nJ1 |7 @],
ox(0,r)NnJ
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W N * L
where | Fl| = [ F Lyt o (o zy @04 121 = sub(s g |AB(w, m)]e T,

Since F is continuous on a neighborhood of © x [0,7]\J, we have

lim Faty) M) dedy = [ Fla,)A(pd) () dedy
y=0% Jox(0,r)\J Ox(0,r)\J

and, if § > 0 is such that dp(z,y) > 6 for all (z,y) € © x (0,7)\J, then

[N dn‘
Ox(0,r)\

< e 5910 x (0,r)\J| | F|| | A(p®)| 2 (@ xm)-
Note that there is C > 0 (independent of ¢) such that

IA(p®)|| (o xr) < C max{[| P[], max,eni+1;aj<1 0P| Lo @xR) }-

Hence,

teaPle) =2 [ F@mape)ededr, pee@)

and there is C' > 0 such that

[(bva(F), )| < C|IF || max{[|@(0, g, maxaen+1;ja<1 [10“P(0, o)l L= (@xR) }

for all F' € ”Hévok,(@ x (=r,7)\L) and ¢ € EM)(Q). Therefore, (3.2) implies that
the mapping in (4.2) is well defined and continuous. O

Our next goal is to study the Poisson transform of elements of £'™(K). To
this end, we need to introduce some additional spaces of harmonic functions. Let M
be a weight sequence satisfying (NA). Let K Ceomp R<. Recall that Ho,— (R K)
stands for the space of harmonic functions on Rd+1\K that are odd with respect
to y and vanish at infinity. For h > 0 we write ?—li‘gj&_(Rd“\K) for the Banach
space consisting of all F' € Hy _ (R¥1\K) such that HFHH&*E(W“\K) < 00. We
set

HE (RINK) = lim HIG (RTE),

h—0+
HUY RPNK) = lim HI)(RITV\K).
h— o0

Next, let 9 be a weight matrix satisfying (NA). Let K Ceomp R?. Choose a
sequence (K, )nen of compact sets in R? such that K Ceomp int Ky, Knt1 Ceomp
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int K,, and K = K,,. We define

neN

HEY(RUNEK) = lim lim HO)  (RITNK,),

m
neN MeM
neN MeM

This definition is independent of the chosen sequence (K, )nen.

Proposition 4.5. Let M be a weight matriz satisfying [M.2)" and (NA). Let
K Ceomp RY. Then the Poisson transform

P[-]: EM(K) — HYI(RMN\K)
is well defined and continuous.

Proof. We only consider the Beurling case as the Roumieu case is similar. It suffices
to show that for all Q € R with K Coomp 2 and all M € M, there is N € 9 such
that

P[-]: &) — 1) _(RHNQ)

is well defined and continuous. Choose N € 9t such that
Npia < CoH{M,, peN,

for some Cy, Hy > 0. By Theorem 4.1(i), we have that P[f] € Ho _ (R¥1\Q) for
all f € &M(Q) c A(Q). Since £M)(Q) is bornological, it is enough to show
that for every bounded set B C &™M)(Q) the set {P[f] | f € B} is contained
and bounded in Hg’%ﬁ(RdH\ﬁ). By the Banach-Steinhaus theorem, there are
C1,h >0 and © € () such that

(£ 0)l < Cullellprniey, v € EM(Q),
for all f € B. Lemma 3.6(ii) therefore implies that for all (z,y) € R4T1N\Q,

|PIf](z,y)| = [(f(&), Pz =& y))]

0¢P(x — &,
oo s [EPE=E0)
c€6aena MMy

Hlel ]!
<CcC
= O SR Dl — € + )T

HHy)l**(|a| + d)!
< CCyCy(h/HHy)? (H Ho
< CCCr(h/H Ho) aséllgd (hdg(x, )1 *1H9N| o) 14

d ‘*’N*(%)
SCCQCl(h/HHQ) e ol®y

for all f € B. O
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We are ready to prove the main result of this article.

Theorem 4.6. Let M be a weight matriz satisfying [DN.1)%, [M.2]', and (NA).
Let K Ceomp R4.

(i) Let V be an open R4t -neighborhood of K that is symmetric with respect to y.
Then the sequence

0— H_(V) — HPV oK) 2 &™(K) — 0

1s exact. Moreover, the boundary value mapping is continuous and it has the
Poisson transform

P[-]: EPV(K) —» H™N(V\K)
as a continuous linear right inverse.

(ii) The boundary value mapping
bv: HiyH(RNE) — £(K)
18 a topological isomorphism whose inverse is given by the Poisson transform
P[-]: E™U(K) — HV (RN K).

Proof. (i) The boundary value mapping and the Poisson transform are well defined
and continuous by Propositions 4.4 and 4.5, respectively. Theorem 4.1(i) and Re-
mark 4.3 yield that P is a right inverse of bv. Finally, the equality ker bv = H_ (V)
follows from Corollary 4.2 and Remark 4.3.

(ii) This follows from part (i), Proposition 4.5, and Liouville’s theorem for
harmonic functions. O

Theorem 4.6 particularly applies to £/[M] (K), where M is a weight sequence
satisfying (M.2)’, (M.1)%, and (NA). Finally, we give two representations of
E'“I(K) by boundary values of harmonic functions. Let w be a weight function
satisfying w(t) = o(t). Let V' C R be open and symmetric with respect to y
and let S C VNRY be closed in V. For h > 0 we write ’H:’(;fi(V\S) for the Banach

space consisting of all F' € H_(V\S) such that

1, ,%
(| Py = sup |F(z,y)|le”»* (hds(z.y)) ~ 5.
Hoo - (VAS) (E)EV\S

We set

HE(V\S) = lim ML (V\S), M (V\8) = lim HZ" (V\S).

00,—
h—0+ h—o0
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Let K Cecomp R? and let V be an open R%*!-neighborhood of K that is symmetric
with respect to y. The spaces H“ (VAK) and H([;‘i (RIH\K) are defined in the
natural way.

Corollary 4.7. Let w be a weight function satisfying (ag) and w(t) = o(t). Let
K Ceomp R?.

(i) Let V be an open R4t -neighborhood of K that is symmetric with respect to y.
Then the sequence

0— H_(V) — HY\K) 25 &)(K) — 0

1s exact. Moreover, the boundary value mapping ts continuous and it has the
Poisson transform

P[-]: &¥(K) = H¥ (V\K)
as a continuous linear right inverse.

(ii) The boundary value mapping
bv: HE (R K) - &(K)
18 a topological isomorphism whose inverse is given by the Poisson transform
P[-]: EM(K) —» HE RHNK).
Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 4.6. O

§4.4. Application: The support theorem for quasianalytic functionals

A fundamental result in the theory of analytic functionals states that each f €
A'(R?) has a unique minimal carrier, called the support of f and denoted by
supp 4 f. Martineau [15] (see also [16]) showed this by using cohomological prop-
erties of the sheaf of germs of analytic functions.

Theorem 4.1 may be used to give a simpler proof of the existence of supp 4/ f
(cf. [10, Thm. 9.1.6]). In fact, by Theorem 4.1, a compact set K in R¢ is a carrier
of f if and only if its Poisson transform P[f] can be continued as a harmonic
function to R\ K. Hence, supp v [ is given by the compact set K C R? with
the property that R4\ K is the largest open set in R4*! on which P[f] has a
harmonic extension and, in particular, this notion is well defined.

The existence of a unique minimal carrier can also be established for quasi-
analytic functionals, but the only known treatment in the literature, due to
Hoérmander [9], turns out to be much harder. However, in view of Theorem 4.6, we
can now repeat the simple reasoning involving the harmonic continuation of the
Poisson transform to directly infer the ensuing support theorem for £'(R%).
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Theorem 4.8. Let M be a weight matriz satisfying [IN.1]%, [M.2], and (NA).
For each f € EM™U(R?) there exists a smallest compact set K C RY such that
fe&PNK); in fact, K = supp 4 f.

It should be noted that Theorem 4.8 contains the corresponding support the-
orem for £&'J(R%), where w is a weight function satisfying (ag) and w(t) = o(t),
which was earlier obtained by Heinrich and Meise in [8] via the method from [9]
(without the assumption («ag)). We end this subsection with two remarks.

Remark 4.9. Hérmander [9] showed the support theorem for £{M}(R%), where
M is a weight sequence satisfying (M.2)" and (NA). His technique can be adapted
to show that Theorem 4.8 is still valid if one removes the hypothesis [.1]%, from
its statement. We omit details since it is out of the scope of this article.

Remark 4.10. Suppose that 9t is a non-quasianalytic weight matrix. The as-
signment Q + D'™P(Q) is a soft sheaf on R?. For K Ceomp R? the space {f €
D' (RY) | supp f € K} is canonically isomorphic to & (K). Hence, there ex-
ists a unique minimal [90]-carrier for each f € &'™U(R?), which is well known to
coincide with supp 4 f (cf. [11, Lem. 7.4]), a fact that also follows from Theorem
4.13 below.

§4.5. Boundary values of harmonic functions in D’ (Q)

Let 9 be a non-quasianalytic weight matrix. Let Q C R? be open and let V' C R4+!
be open and symmetric with respect to y such that VNR? = . Choose a sequence
(Vi)nen of relatively compact open sets in R?*! that are symmetric with respect
to y such that V,, € V,41 and V = UneN V... Set Q,, = V;, NR?. We define

neNMeIMn
HED Q) = i im HET(\0).
neN MeM

This definition is independent of the chosen sequence (V,,)nen. For two weight
matrices 9 and N with M[~|N we have that ’H[im](V\Q) = ’H[:m(V\Q) as locally
convex spaces.

We now show that the elements of H[_m](V\Q) have boundary values in
DI ().

Proposition 4.11. Let M be a non-quasianalytic weight matric satisfying [9N.1]%
and [M.2). Let Q C R? be open and let V. C R be open and symmetric with
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respect to y such that VNR? = Q. For F € ’H[_m](V\Q) we set

<bV(F),(p> = lim (F((E,y) - F(:L’, 72/))50(1') dz, ¢€ D[m](Q)

y—0t JRa
Then bv(F) belongs to D' (Q). Moreover, the boundary value mapping
bv: HP(\Q) = DI(Q)
18 CONtINUOUS.

Proof. This can be shown in a similar way to Proposition 4.4 but by using Propo-
sition 3.4 instead of Proposition 3.3. O

Next we show an ultradistributional version of the Schwarz reflection principle.

Proposition 4.12. Let M be a non-quasianalytic weight matriz satisfying [IN.2]’.
Let Q C R? be open and let V. C R be open and symmetric with respect to y
such that VR = Q. Let F € H_(V\Q) be such that

lim (F(z,y) — F(z,—y))e(x)dz =0, ¢ e D™(Q).

y—0t Jrd

Then F extends to a harmonic function on V.

Proof. Let © € Q) be arbitrary and choose r > 0 such that © x (—r,;r) € V. It
suffices to show that F' extends to a harmonic function on © x (—r,r). Since A
is elliptic, it is enough to show that there is I € D/™(O x (—r,r)) such that
ﬂ@X( rone = F and AF =0in DO x (—r,r)). To this end, we use the same
technique as in [14, Satz 1.2]. Let € > 0 be such that O x(—r—g,r+e) V. For
0 <71 < e we define f‘;,ﬁl_ € D'P(O x (—r,7)) via

Frogy = [ [ P 2,y) da (0 x (—r,
(o) //@F( Yt ey drdy, o eD™(O x (—r,r)),

and

0
(Fr o) = / /O F(z,y — npl(e,y)dzdy, o€ DO x (—r,1).

We claim that (F Jo<n<e is a Cauchy net in D'U(O x (—r,7)). Before we prove
the claim, let us show how it entails the result. Since D’ 1(©x(—r,7)) is complete,
there exist F= € D'™)(© x (—r,r)) such that lim,, o+ F = F*. Set F = F+ +
F~ e D™ (© x (—r,1r)). It is clear that ﬁex(,m)\@ = F. We now show that
AF =0 in D'™(© x (=r,1)). Let ¢ € DO x (—r,7)) be arbitrary. Green’s
theorem (cf. the proof of Proposition 4.4) and the fact that F' is odd imply that



BOUNDARY VALUES OF HARMONIC FUNCTIONS 683
for all o € DP(O x (—r

(AF,cp = lim // (x,y + n)Ap(z,y)dz dy

n—0t

’ /_ /@F@y —n)Ap(z,y)dzdy
== lim | (F(2,) = F(z, ~n)0y(z,0) dz = .

n—0t

We now show the claim. We only consider (F, +)0<n<€ as (F, )o<y<e can be treated
similarly. We have

lim O2F (z,y)p(x) dz = — lim AL F(z,y)p(x)de

y—0t Jrd y—0t+ Jrd

= — lim F(z,y)Azp(z)de =0

y—0t JRrd

for all ¢ € DP(). Using the mean-value theorem, we obtain that

lim Oy F(z,y)p(x)dz

y—0t Jrd
exists and is finite for all ¢ € D™ (). Hence, the set {9, F(-,y) | 0 <y < r4¢}is
bounded in D'™(©). Let B be an arbitrary bounded subset of D™(@ x (—r,r)).
Then B’ = {¢(-,y) | 0 < y < r} is bounded in DP(O). For all 0 < 7,7’ < ¢ it
holds that

sup [(F,| — /,w\—sup//Fwarn F(w,y+n’)w($,y)dwdy‘
p€eB pEB
:sup/ / /8yF(x,y+/\)<p(x,y)d:vdyd)\‘
weBlJy Jo Je

<rlp—n| sup  sup
YeB! 0<y<r+e

[ o) i
C]

This proves the claim. O

We can now give the representation of D'™I(Q) by boundary values of har-
monic functions.

Theorem 4.13. Let M be a non-quasianalytic weight matriz satisfying [IM.1]%
and [.2). Let @ C R? be open and let V. C R be open and symmetric with
respect to y such that V NR? = Q. Then the sequence

(4.3) 0— H_(V) — HT Q) 2% DU Q) — 0

is exact and the boundary value mapping is a topological homomorphism.
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Proof. The boundary value mapping is well defined and continuous by Proposition
4.11, while Proposition 4.12 yields that kerbv = H_ (V). Next we show that the
boundary value mapping is surjective. To this end, we shall use some basic facts
about the derived projective limit functor (see the book [24] for more information).
Choose a sequence (Vj,)nen of relatively compact open sets in R?*! such that
V. €@ Vg, Vn+2\‘7n has no connected component that is relatively compact in
Vg2 and V =, oy Voo Set ©Q,, = V;, NR% We need to show that the mapping

bv: HP Q) = Proj(H™ (Vo \ Q) e — D'PN(Q) = Proj(D'™ Q) nen

is surjective. Consider the following spectrum of short exact sequences:

|
|

H (V\Qy) 2 DI ()

T |

) ——
Va) —— H(V5\Qp) —2 DI ().

I I

The Runge approximation theorem for harmonic functions in [12, Thm. 2.3] (see
also [10, Thm. 4.4.5]) and [24, Thm. 3.2.1] yields that Proj'(H_(V;))nen = 0.
By [24, Prop. 3.1.8], it therefore suffices to show that for each f € D'™(Q, ;1)
there is F € ’H[im](Vn\Qn) such that bv(F) = fq,. Choose x € DM(Q, 4 1)
such that y = 1 on Q,,. Then xf € &™(Q,,1). Set F = P[xf]. Theorem 4.6
implies that F' € H (RHINQ, 1) C H[Em](Vn\Qn) and bv(F) = fjq,. Finally,
the boundary value mapping is a topological homomorphism by De Wilde’s open
mapping theorem. O

Vi

0——H

Remark 4.14. Theorem 4.13 particularly applies to D'[M)(Q), where M is a non-
quasianalytic weight sequence satisfying (M.2)" and (M.1)Z%,. For weight sequences
satisfying the more restrictive assumptions (M.2) and (M.3) [11], this result also
follows from the work of Komatsu [12]. He had to assume these stronger conditions
because he employed the parametrix method.

Finally, we can also represent D’[“](Q) via boundary values of harmonic func-
tions. Let w be a non-quasianalytic weight function. Let  C R? be open and let
V C R be open and symmetric with respect to y such that VN R? = Q. The
space H“! (V\Q) is defined in the natural way.

Corollary 4.15. Letw be a non-quasianalytic weight function satisfying (o). Let
Q C R? be open and let V.C R be open and symmetric with respect to y such
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that VN R? = Q. Then the sequence

0— H_(V) — H1\Q) 25 Q) — 0

is exact and the boundary value mapping is a topological homomorphism.

Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 4.13. O
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