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Quasianalytic Functionals and Ultradistributions
as Boundary Values of Harmonic Functions

by

Andreas Debrouwere and Jasson Vindas

Abstract

We study boundary values of harmonic functions in spaces of quasianalytic functionals
and spaces of ultradistributions of non-quasianalytic type. As an application, we pro-
vide a new approach to Hörmander’s support theorem for quasianalytic functionals. Our
main technical tool is a description of ultradifferentiable functions by almost harmonic
functions, a concept that we introduce in this article. We work in the setting of ultradif-
ferentiable classes defined via weight matrices. In particular, our results simultaneously
apply to the two standard classes defined via weight sequences and via weight functions.
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§1. Introduction

The representation of functions and linear functionals as boundary values of har-

monic functions is an important and useful idea in functional analysis. For analytic

functionals, such a representation follows, e.g., from Bengel’s work [1] (see also [7])

on formal boundary values of zero solutions of elliptic operators, and leads to an

elementary proof of the support theorem for analytic functionals. Moreover, it may

be used to develop a harmonic function approach to the theory of hyperfunctions

in several variables, which is reminiscent of the simple one variable theory. We

refer to [10, 12, 13, 22] for more information on this subject. In [12], Komatsu
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studied boundary values of harmonic functions in ultradistribution spaces of non-

quasianalytic type (see [14] for the distribution case).

The main goal of this article is to enhance these results by developing a theory

of boundary values of harmonic functions in spaces of quasianalytic functionals (=

compactly supported quasianalytic ultradistributions) [9]. Our ideas give rise to

a new approach to the support theorem for quasianalytic functionals, originally

shown by Hörmander in [9] (see also [8]). Hörmander’s proof of this result is quite

involved. We believe that the approach given here is conceptually simpler, supply-

ing a description of the support (= minimal carrier) of a quasianalytic functional in

terms of the harmonic continuation properties of its Poisson transform. Further-

more, in the non-quasianalytic case, we obtain alternative proofs of Komatsu’s

results [12]. Our method allows us to work under much weaker assumptions on the

defining weight sequence (see Remark 4.14 for details).

A simple but powerful method to ensure the existence of (ultra)distributional

boundary values of holomorphic functions consists in combining Stokes’ theorem

(more precisely, the formula [10, eqn. (3.1.9), p. 62]) with the notion of almost

analytic extensions. This technique was used for the first time by Hörmander [10,

p. 64] for distributions and was later extended to the ultradistributional setting

by Petzsche and Vogt [18] (see also [17]). We mention that the characterization

of Denjoy–Carleman classes by almost analytic extensions goes back to Dyn’kin

[3, 4]. We refer to the recent article [6] for the newest generalizations of such re-

sults and an overview of the topic of almost analytic extensions. Here we develop

a similar method to establish the existence of ultradistributional boundary values

of harmonic functions. Our method combines Green’s theorem with a novel de-

scription of ultradifferentiable functions by so-called almost harmonic functions.

Therefore, the first part of this article is devoted to an almost harmonic function

characterization of ultradifferentiable classes.

We work with the notion of ultradifferentiability defined via weight matrices,

as introduced in [19]. This leads to a unified treatment of ultradifferentiable classes

defined via weight sequences [11] (Denjoy–Carleman approach) and via weight

functions [2] (Braun–Meise–Taylor approach), but also comprises other spaces, e.g.,

the union and intersection of all Gevrey spaces. We point out that we shall infer

the weight function case from the weight matrix case by employing the method

from [6], which is based upon results from [19, 20, 21].

Finally, we fix some notation. Let Ω ⊆ Rd be open. We write K ⊂comp Ω to

indicate that K is a compact subset of Ω. The notation Θ ⋐ Ω means that Θ is

a relatively compact open subset of Ω. We write H(Ω) for the space of harmonic

functions on Ω and endow it with the compact-open topology. Points of Rd+1 =

Rd × R will be denoted by (x, y) = (x1, . . . , xd, y). We will often identify Rd with
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the subspace Rd × {0} of Rd+1. If V ⊆ Rd+1 is open and symmetric with respect

to y, we write H−(V ) for the space of harmonic functions in V that are odd with

respect to y.

§2. Ultradifferentiable classes

§2.1. Denjoy–Carleman classes

Let M = (Mp)p∈N be a sequence of positive numbers. We set mp = Mp/Mp−1,

p ∈ Z+. Furthermore, we define M∗ = (Mp/p!)p∈N and m∗
p = M∗

p /M
∗
p−1 = mp/p,

p ∈ Z+. We will make use of the following conditions on a positive sequence M :

(mp)p∈Z+
is increasing.(M.1)

(m∗
p)p∈Z+ is increasing.(M.1)∗

(m∗
p)p∈Z+ is almost increasing, i.e., m∗

q ≤ Cm∗
p, q ≤ p, for some C > 0.(M.1)∗w

Mp+1 ≤ CHpMp, p ∈ N, for some C,H > 0.(M.2)′

We refer to [11] for the meaning of the standard conditions (M.1), (M.2)′, and

(M.1)∗. Condition (M.1)∗w is inspired by [21, Lem. 8]. A sequence M of positive

numbers is called a weight sequence if M0 = 1, limp→∞mp = ∞, and M satisfies

(M.1). A weight sequence M is called non-quasianalytic if

∞∑
p=1

1

mp
<∞

and quasianalytic otherwise.

The relation N ⊂ M between two weight sequences M and N means that

there are C,H > 0 such that Np ≤ CHpMp, p ∈ N. The stronger relation N ≺M
means that the latter inequality remains valid for every H > 0 and a suitable

C = CH > 0. We write N ≈M if both N ⊂M and M ⊂ N hold.

We shall also use the following condition on a weight sequence M :

(NA) p! ≺M.

Each non-quasianalytic weight sequence satisfies (NA).

The associated function of a positive sequence M is defined as

ωM (t) := sup
p∈N

log
tpM0

Mp
, t ≥ 0.
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Let M be a weight sequence and let Ω ⊆ Rd be open. For h > 0 we write

BM,h(Ω) for the Banach space consisting of all φ ∈ C∞(Ω) such that

∥φ∥BM,h(Ω) := sup
α∈Nd

sup
x∈Ω

|φ(α)(x)|
h|α|M|α|

<∞.

We define

B(M)(Ω) := lim←−
h→0+

BM,h(Ω), B{M}(Ω) := lim−→
h→∞

BM,h(Ω),

and

E(M)(Ω) := lim←−
Θ⋐Ω

B(M)(Θ), E{M}(Ω) := lim←−
Θ⋐Ω

B{M}(Θ).

The space E{p!}(Ω) coincides with the space A(Ω) of real analytic functions in Ω.

From now on we shall write [M ] instead of (M) or {M} if we want to treat

both cases simultaneously. In addition, we shall often first state assertions for the

Beurling case (= (M)-case) followed in parentheses by the corresponding ones for

the Roumieu case (= {M}-case).
Given two weight sequences M and N , we have that E [N ](Ω) ⊆ E [M ](Ω)

continuously if N ⊂ M and E{N}(Ω) ⊂ E(M)(Ω) continuously if N ≺ M . Hence,

E [N ](Ω) = E [M ](Ω) as locally convex spaces if N ≈ M and A(Ω) ⊂ E [M ](Ω)

continuously if M satisfies (NA).

Let M be a weight sequence. For K ⊂comp Rd and h > 0 we write DM,h
K

for the Banach space consisting of all φ ∈ C∞(Rd) with suppφ ⊆ K such that

∥φ∥BM,h(Rd) <∞. We set

D(M)
K := lim←−

h→0+

DM,h
K , D{M}

K := lim−→
h→∞

DM,h
K .

For Ω ⊆ Rd open we define

D[M ](Ω) := lim−→
K⊂compΩ

D[M ]
K .

The space D[M ](Ω) is non-trivial if and only if M is non-quasianalytic.

§2.2. Classes defined by weight matrices

Following [6] (see also [19]), we define a weight matrix as a non-empty family M

of weight sequences that is totally ordered with respect to the pointwise order

relation ≤ on sequences. We will make use of the following conditions on a weight
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matrix M:

∀M ∈M∃N ∈M∃C > 0 ∀ p ∈ Z+ ∀ 1 ≤ q ≤ p : n∗q ≤ Cm∗
p.(M.1)∗w

∀M ∈M∃N ∈M∃C > 0 ∀ p ∈ Z+ ∀ 1 ≤ q ≤ p : m∗
q ≤ Cn∗p.{M.1}∗w

∀M ∈M∃N ∈M∃C,H > 0 ∀ p ∈ N : Np+1 ≤ CHpMp.(M.2)′

∀M ∈M∃N ∈M∃C,H > 0 ∀ p ∈ N : Mp+1 ≤ CHpNp.{M.2}′

each M ∈M satisfies (NA).(NA)

The conditions (M.2)′ and {M.2}′ are denoted respectively by (M(dc)) and (M{dc})

in [19]. The conditions (M.1)∗w and {M.1}∗w were introduced in [21] but no name

was given to them there. A weight matrix M is said to be non-quasianalytic if

each M ∈M is non-quasianalytic.

The relation N(⊂)M (N{⊂}M) between two weight matrices M and N means

that

∀M ∈M ∃N ∈ N : N ⊂M (∀M ∈ N∃N ∈M : M ⊂ N).

We write N[≈]M if both N[⊂]M and M[⊂]N hold. Furthermore, we define the

relation N ≺M as

∀M ∈M∀N ∈ N : N ≺M.

Lemma 2.1. Let M be a weight matrix satisfying [M.1]∗w and [M.2]′. Then there

is a weight matrix N with M[≈]N such that N satisfies [M.2]′ and each N ∈ N sat-

isfies (M.1)∗. If M satisfies (NA) (is non-quasianalytic, respectively), then N can

be chosen in such a way that N satisfies (NA) (is non-quasianalytic, respectively)

as well.

Proof. By [21, Lem. 8], there is a weight matrix Ñ with M[≈]Ñ such that each

N ∈ Ñ satisfies (M.1)∗. Since the condition [M.2]′ is stable under the relation

[≈], Ñ also satisfies [M.2]′. Suppose that M satisfies (NA) (is non-quasianalytic,

respectively). In the Beurling case, it is clear that N = Ñ also satisfies (NA)

(is non-quasianalytic, respectively). In the Roumieu case, there exists N0 ∈ Ñ

that satisfies (NA) (is non-quasianalytic, respectively). The result then holds for

N = {N ∈ Ñ | N0 ≤ N}.

Let M be a weight matrix and let Ω ⊆ Rd be open. We define

B(M)(Ω) := lim←−
M∈M

B(M)(Ω), B{M}(Ω) := lim−→
M∈M

B{M}(Ω),

and

E [M](Ω) := lim←−
Θ⋐Ω

B[M](Θ).
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Given two weight matrices M and N, we have that E [N](Ω) ⊆ E [M](Ω) con-

tinuously if N[⊂]M and E{N}(Ω) ⊂ E(M)(Ω) continuously if N ≺ M. Hence,

E [N](Ω) = E [M](Ω) as locally convex spaces if N [≈]M and A(Ω) ⊂ E [M](Ω) con-

tinuously if M satisfies (NA).

Let M be a weight matrix and let K ⊂comp Rd. We set

D(M)
K := lim←−

M∈M

D(M)
K , D{M}

K := lim−→
M∈M

D{M}
K .

For Ω ⊆ Rd open we define

D[M](Ω) := lim−→
K⊂compΩ

D[M]
K .

The space D(M)(Ω) is non-trivial if and only if M is non-quasianalytic [23, Thm.

4.1]. In fact, ifM is non-quasianalytic, there is a non-quasianalytic weight sequence

N such that N ≺ M for all M ∈ M and, thus, {0} ⊊ D{N}(Ω) ⊂ D(M)(Ω) [23,

Prop. 4.7]. It is clear that D{M}(Ω) is non-trivial if and only if there exists a

non-quasianalytic M ∈M. In such a case, we can find a non-quasianalytic weight

matrix N ⊆M such that M{≈}N and, thus, D{M}(Ω) = D{N}(Ω).

Remark 2.2. The name weight matrix is justified by the fact that for every

weight matrix M there is a countable weight matrix N ⊆M such that M[≈]N (cf.

the proof of [6, Lem. 2.5]).

§2.3. Braun–Meise–Taylor classes

By a weight function we mean a continuous increasing function ω : [0,∞)→ [0,∞)

with ω|[0,1] ≡ 0 satisfying the following properties:

(α) ω(2t) = O(ω(t)) as t→∞.

(β) ω(t) = O(t) as t→∞.

(γ) log t = o(ω(t)) as t→∞.

(δ) ϕ = ϕω : [0,∞)→ [0,∞), ϕ(t) = ω(et), is convex.

We refer to [2] for the meaning of these conditions. A weight function ω is called

non-quasianalytic if ∫ ∞

0

ω(t)

1 + t2
dt <∞

and quasianalytic otherwise. Each non-quasianalytic weight function ω satisfies

ω(t) = o(t). We also consider the following condition on a weight function ω:

(α0) ∃C > 0 ∃ t0 > 0 ∀λ ≥ 1 ∀ t ≥ t0 : ω(λt) ≤ Cλω(t).
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By [19, Thm. 6.3] (see also the proof of [18, Prop. 1.1]), a weight function ω satisfies

(α0) if and only if there is a concave weight function σ such that ω ≍ σ (meaning

that ω(t) = O(σ(t)) and σ(t) = O(ω(t))).

Let ω be a weight function. We define

ϕ∗ : [0,∞)→ [0,∞), ϕ∗(t) = sup
r≥0
{tr − ϕ(r)}.

The function ϕ∗ is increasing and convex, ϕ∗(0) = 0, (ϕ∗)∗ = ϕ, and ϕ∗(t)/t↗∞
on [0,∞).

Let ω be a weight function and let Ω ⊆ Rd be open. For h > 0 we write

Bω,h(Ω) for the Banach space consisting of all φ ∈ C∞(Ω) such that

∥φ∥Bω,h(Ω) := sup
α∈Nd

sup
x∈Ω
|φ(α)(x)| exp

(
− 1

h
ϕ∗(h|α|)

)
<∞.

We define

B(ω)(Ω) := lim←−
h→0+

Bω,h(Ω), B{ω}(Ω) := lim−→
h→∞

Bω,h(Ω),

and

E [ω](Ω) := lim←−
Θ⋐Ω

B[ω](Θ).

For ω(t) = max{t− 1, 0} the space E{ω}(Ω) coincides with A(Ω).
Given two weight functions ω and σ, we have that E [σ](Ω) ⊆ E [ω](Ω) contin-

uously if ω(t) = O(σ(t)) and E{σ}(Ω) ⊂ E(ω)(Ω) continuously if ω(t) = o(σ(t)).

Hence, E [ω](Ω) = E [σ](Ω) as locally convex spaces if ω ≍ σ and A(Ω) ⊂ E [ω](Ω)
continuously if ω(t) = o(t).

Let ω be a weight function. For K ⊂comp Rd and h > 0 we write Dω,hK

for the Banach space consisting of all φ ∈ C∞(Rd) with suppφ ⊆ K such that

∥φ∥Bω,h(Rd) <∞. We set

D(ω)
K := lim←−

h→0+

Dω,hK , D{ω}
K := lim−→

h→∞
Dω,hK .

For Ω ⊆ Rd open we define

D[ω](Ω) := lim−→
K⊂compΩ

D[ω]
K .

The space D[ω](Ω) is non-trivial if and only if ω is non-quasianalytic.

Given a weight function ω, we associate to it the weight matrix Mω =

(Mh
ω )h>0, where the weight sequence Mh

ω = (Mh
ω,p)p∈N is defined by

Mh
ω,p := exp

( 1

h
ϕ∗(hp)

)
, p ∈ N.
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We have that ω ≍ ωM for each M ∈Mω [19, Lem. 5.7]. Hence, by [11, Lem. 3.10],

ω(t) = o(t) if and only if Mω satisfies (NA). Similarly, [11, Lem. 4.1] yields that ω

is non-quasianalytic if and only if Mω is non-quasianalytic. The next two lemmas

will enable us to infer our results for the weight function case from those for the

weight matrix case.

Lemma 2.3. Let ω be a weight function.

(i) [19, Cor. 5.15] E [ω](Ω) = E [Mω](Ω) as locally convex spaces for all Ω ⊆ Rd

open.

(ii) [6, Prop. 4.5] If ω satisfies (α0) and ω(t) = o(t), there is a weight matrix M

with Mω[≈]M such that M satisfies [M.1]∗w, [M.2]′, and (NA).

For a weight function ω satisfying ω(t) = o(t) we define

ω⋆ : (0,∞)→ [0,∞), ω⋆(s) = sup
t≥0
{ω(t)− ts}.

The function ω⋆ is decreasing and convex. Given h > 0, we set hω(t) = hω(t) and

ωh(t) = ω(ht). Then

(2.1) (hω)
⋆(s) = hω⋆

( s
h

)
, (ωh)

⋆(s) = ω⋆
( s
h

)
, s > 0.

For a weight sequence M satisfying (NA) it holds that [18, proof of Lem. 5.6] (cf.

[20, Lem. 3.10])

(2.2) ω⋆M (s) ≤ ωM∗

(1
s

)
≤ ω⋆M

(s
e

)
, s > 0.

Lemma 2.4. Let ω be a weight function satisfying ω(t) = o(t).

(i) For all M ∈Mω and h > 0 there are C, k > 0 such that

(2.3) ωM∗

( 1

hs

)
≤ 1

k
ω⋆(ks) + logC, s > 0.

(ii) For all k > 0 there are M ∈Mω and C, h > 0 such that (2.3) holds.

(iii) For all M ∈Mω and h > 0 there are C, k > 0 such that

(2.4)
1

k
ω⋆(ks) ≤ ωM∗

( 1

hs

)
+ logC, s > 0.

(iv) For all k > 0 there are M ∈Mω and C, h > 0 such that (2.4) holds.

Proof. By (2.1) and (2.2), (2.3) holds if

(2.5) ωM

(et
h

)
≤ 1

k
ω(t) + logC, t ≥ 0,
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while (2.4) holds if

(2.6)
1

k
ω(t) ≤ ωM

( t
h

)
+ logC, t ≥ 0.

Since ω ≍ ωM for each M ∈Mω, condition (α) implies that for all M ∈Mω and

h > 0 there are C, k > 0 such that (2.5) and (2.6) hold. This shows (i) and (iii).

Next, note that

ωMk
ω
(t) = sup

p∈N

{
p log t− 1

k
ϕ∗(kp)

}
≤ sup

r≥0

{
r log t− 1

k
ϕ∗(kr)

}
=

1

k
ω(t)

for all k > 0. Hence, for each k > 0, we have that (2.5) actually holds with

M =Mk
ω ∈Mω, h = e, and C = 1. This shows (ii). Finally, note that

Mh
ω,p+q ≤M2h

ω,pM
2h
ω,q, p, q ∈ N,

for all h > 0. By [20, Lem. 3.12], we have

2ωM2h
ω
(t) ≤ ωMh

ω
(t), t ≥ 0,

for all h > 0. Hence,

2nωM1
ω
(t) ≤ ω

M
1/2n
ω

(t), t ≥ 0,

for all n ∈ Z+. Since ω ≍ ωM1
ω
, the latter inequality implies that for all k > 0 there

are M ∈Mω and C > 0 such that (2.6) holds with h = 1. This shows (iv).

§3. Ultradifferentiable classes via almost harmonic functions

Let Ω ⊆ Rd be open and let φ0, φ1 : Ω → C. The Cauchy–Kovalevski theorem

implies that φ0, φ1 ∈ A(Ω) if and only if for all Θ ⋐ Ω there exist V ⊆ Rd+1 open

with V ∩Rd = Θ and Φ ∈ H(V ) such that Φ|Θ = φ0|Θ and ∂yΦ|Θ = φ1|Θ. The goal

of this section is to characterize the classes E [M](Ω) and D[M](Ω) in a similar way

by almost harmonic functions. Namely, we shall show the following two results.

Theorem 3.1. Let M be a weight matrix satisfying [M.1]∗w, [M.2]′, and (NA).

Let Ω ⊆ Rd be open and let φ0, φ1 : Ω→ C. Then φ0, φ1 ∈ E [M](Ω) if and only if

for all Θ ⋐ Ω and for all M ∈M, h > 0 (for some M ∈M, h > 0) the following

holds: for some/all V ⊆ Rd+1 open with V ∩Rd = Θ there exists Φ ∈ C2(V ) such

that Φ|Θ = φ0|Θ, ∂yΦ|Θ = φ1|Θ, and

sup
(x,y)∈V

|∆Φ(x, y)|eωM∗ ( 1
h|y| ) <∞.

Theorem 3.2. Let M be a non-quasianalytic weight matrix satisfying [M.1]∗w and

[M.2]′. Let Ω ⊆ Rd be open and let V ⊆ Rd+1 be open such that V ∩ Rd = Ω. Let
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φ0, φ1 : Ω → C. Then φ0, φ1 ∈ D[M](Ω) if and only if for all M ∈ M, h > 0 (for

some M ∈ M, h > 0) there exists Φ ∈ C2
c (V ) such that Φ|Ω = φ0, ∂yΦ|Ω = φ1,

and

sup
(x,y)∈V

|∆Φ(x, y)|eωM∗ ( 1
h|y| ) <∞.

The proofs of Theorems 3.1 and 3.2 are divided into several intermediate

results.

Proposition 3.3. Let M , N , and Q be three weight sequences satisfying (NA).

Suppose that Q satisfies (M.1)∗ and

(3.1) Mp+2 ≤ C0H
p
0Qp, Qp+2 ≤ C1H

p
1Np, p ∈ N,

for some C0, H0, C1, H1 > 0. Then there is A > 0 such that for all Θ ⊆ Rd

open and h > 0 the following holds: for all φ0, φ1 ∈ BM,h(Θ) there exists Φ =

Φ(φ0, φ1) ∈ C2(Θ× R) such that

(i) Φ|Θ = φ0 and ∂yΦ|Θ = φ1;

(ii) |||Φ||| := sup(x,y)∈Θ×R |∆Φ(x, y)|eωN∗ ( 1
Ah|y| ) <∞.

Moreover, there is C > 0 such that for all φ0, φ1 ∈ BM,h(Θ),

max
{
|||Φ(φ0, φ1)|||,maxα∈Nd+1;|α|≤1 ∥∂αΦ(φ0, φ1)∥L∞(Θ×R)

}
≤ C max

j=0,1
{∥φj∥BM,h(Θ)}.(3.2)

For φ0, φ1 ∈ B{p!}(Θ) the series (cf. [10, p. 330])

(3.3) Φ0(x, y) =

∞∑
p=0

y2p

(2p)!
(−∆)pφ0(x), Φ1(x, y) =

∞∑
p=0

y2p+1

(2p+ 1)!
(−∆)pφ1(x),

are absolutely convergent in some open subset V of Rd+1 with V ∩ Rd = Θ and

Φ = Φ0+Φ1 is a harmonic function on V such that Φ|Θ = φ0 and ∂yΦ|Θ = φ1. The

idea of the proof of Proposition 3.3 is to suitably modify the series in (3.3). This

approach is inspired by Petzsche’s construction of almost analytic extensions by

means of modified Taylor series [17, Prop. 2.2]. Furthermore, in our estimates we

follow the same technique as in [6, Prop. 3.12], which is essentially due to Dyn’kin

[3, 4].
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Proof of Proposition 3.3. Pick χ ∈ D(R) such that suppχ ⊆ [−2, 2] and χ ≡ 1 on

[−1, 1]. Set µ = 2
√
2dH0. Let j = 0, 1. For φ ∈ BM,h(Θ) we define

Φj(x, y) = Φj(φ)(x, y)

=

∞∑
p=0

y2p+j

(2p+ j)!
(−∆)pφ(x)χ(µhq∗2p+jy), (x, y) ∈ Θ× R.(3.4)

Since q∗p ↗ ∞, the above series is finite on Θ × {y ∈ R | |y| ≥ ε} for each ε > 0.

Hence, Φj ∈ C∞(Θ× (R\{0})). Set A = 2
√
2dH0H1 = µH1. We claim that

lim sup
y→0

sup
x∈Θ
|∆Φj(x, y)|eωN∗ ( 1

Ah|y| ) <∞,(3.5)

lim
y→0

∂αxΦj(x, y) = δj,0∂
αφ(x) uniformly for x ∈ Θ, α ∈ Nd, |α| ≤ 2,(3.6)

lim
y→0

∂y∂
α
xΦj(x, y) = δj,1∂

αφ(x) uniformly for x ∈ Θ, α ∈ Nd, |α| ≤ 1,(3.7)

where δj,k denotes the Kronecker delta. These properties imply that

(3.8) Φ(φ0, φ1) = Φ0(φ0) + Φ1(φ1), φ0, φ1 ∈ BM,h(Θ),

belongs to C2(Θ×R) and satisfies (i) and (ii). We now prove the above claims. In

the rest of the proof, C will denote a positive constant that is independent of φ

but may vary from place to place. We introduce the auxiliary function

Γ(t) = min
{
p ∈ N | q∗p+1 ≥ 1

t

}
, 0 < t ≤ 1

q∗1
.

Fix 0 < t ≤ 1/q∗1 . Then p ≤ Γ(t) if and only if tq∗p < 1 for all p ∈ Z+. Hence,

the function p 7→ tpQ∗
p is decreasing for p ≤ Γ(t) and increasing for p ≥ Γ(t).

Consequently, tΓ(t)Q∗
Γ(t) = e−ωQ∗ ( 1

t ). We start by showing (3.5). Note that ∆Φj =

S1 + S2 + S3, where

S1(x, y) =

∞∑
p=0

y2p+j

(2p+ j)!
(−∆)p+1φ(x)(χ(µhq∗2p+2+jy)− χ(µhq∗2p+jy)),

S2(x, y) = 2

∞∑
p=1−j

y2p+j−1

(2p+ j − 1)!
(−∆)pφ(x)µhq∗2p+jχ

′(µhq∗2p+jy),

S3(x, y) =

∞∑
p=0

y2p+j

(2p+ j)!
(−∆)pφ(x)(µhq∗2p+j)

2χ′′(µhq∗2p+jy).
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For all (x, y) ∈ Θ× (R\{0}) with |y| small enough, we have

|S1(x, y)| ≤
∑

Γ(µh|y|)−2<2p+j
≤Γ(µh|y|/2)

|y|2p+j

(2p+ j)!
|∆p+1φ(x)| |χ(µhq∗2p+2+jy)− χ(µhq∗2p+jy)|

≤ C∥φ∥BM,h(Θ)

∑
Γ(µh|y|)−2<2p+j

≤Γ(µh|y|/2)

|y|2p+j

(2p+ j)!
(
√
dh)2p+2M2p+2

≤ C∥φ∥BM,h(Θ)

∑
Γ(µh|y|)−2<2p+j

≤Γ(µh|y|/2)

1

2p
(µh|y|/2)2p+jQ∗

2p+j

≤ C∥φ∥BM,h(Θ)(µh|y|/2)Γ(µh|y|)−2Q∗
Γ(µh|y|)

≤ C∥φ∥BM,h(Θ)(µh|y|)−2e−ωQ∗ ( 1
µh|y| )

≤ C∥φ∥BM,h(Θ)e
−ωN∗ ( 1

Ah|y| ).

Likewise, for all (x, y) ∈ Θ× (R\{0}) with |y| small enough, one gets

|S2(x, y)| ≤ C
∑

Γ(µh|y|)<2p+j
≤Γ(µh|y|/2)

|y|2p+j−1

(2p+ j − 1)!
|∆pφ(x)|q∗2p+j |χ′(µhq∗2p+jy)|

≤ C∥φ∥BM,h(Θ)

∑
Γ(µh|y|)<2p+j
≤Γ(µh|y|/2)

|y|2p+j−2

(2p+ j − 2)!
(
√
dh)2pM2p

≤ C∥φ∥BM,h(Θ)

∑
Γ(µh|y|)<2p+j
≤Γ(µh|y|/2)

1

2p
(µh|y|/2)2p+j−2Q∗

2p+j−2

≤ C∥φ∥BM,h(Θ)(µh|y|/2)Γ(µh|y|)−2Q∗
Γ(µh|y|)

≤ C∥φ∥BM,h(Θ)e
−ωN∗ ( 1

Ah|y| )

and

|S3(x, y)| ≤ C
∑

Γ(µh|y|)<2p+j
≤Γ(µh|y|/2)

|y|2p+j

(2p+ j)!
|∆pφ(x)|(q∗2p+j)2|χ′′(µhq∗2p+jy)|

≤ C∥φ∥BM,h(Θ)

∑
Γ(µh|y|)<2p+j
≤Γ(µh|y|/2)

|y|2p+j−2

(2p+ j − 2)!
(
√
dh)2pM2p

≤ C∥φ∥BM,h(Θ)e
−ωN∗ ( 1

Ah|y| ).
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Next we show (3.6) and (3.7). We only treat the case j = 0 as the case j = 1 is

similar. Let α ∈ Nd, |α| ≤ 2, be arbitrary. For all (x, y) ∈ Θ×R\{0} with |y| small

enough it holds that

|∂αxΦ0(x, y)− ∂αφ(x)| ≤
∑

1≤p≤Γ(µh|y|/2)/2

|y|2p

(2p)!
|∆p∂αφ(x)| |χ(µhq∗2py)|

≤ C∥φ∥BM,h(Θ)

∑
1≤p≤Γ(µh|y|/2)/2

|y|2p

(2p)!
(
√
dh)2pM2p+2

≤ C∥φ∥BM,h(Θ)

∑
1≤p≤Γ(µh|y|/2)/2

1

2p
(µh|y|/2)2pQ∗

2p

≤ |y|2C∥φ∥BM,h(Θ).

Similarly, for all α ∈ Nd, |α| ≤ 1, and (x, y) ∈ Θ × R with |y| small enough, we

have

|∂y∂αxΦ0(x, y)| ≤
∑

1≤p≤Γ(µh|y|/2)/2

(
|y|2p−1

(2p− 1)!
|∆p∂αφ(x)| |χ(µhq∗2py)|

+
|y|2p

(2p)!
|∆p∂αφ(x)|µhq∗2p|χ′(µhq∗2py)|

)
≤ C∥φ∥BM,h(Θ)

∑
1≤p≤Γ(µh|y|/2)/2

|y|2p−1

(2p− 1)!
(
√
dh)2pM2p+1

≤ C∥φ∥BM,h(Θ)

∑
1≤p≤Γ(µh|y|/2)/2

1

2p
(µh|y|/2)2p−1Q∗

2p−1

≤ |y|C∥φ∥BM,h(Θ).

Finally, (3.2) follows from an inspection of the estimates in the proofs of (3.5)–

(3.7).

Proposition 3.4. Let M , N , and Q be three non-quasianalytic weight sequences

satisfying (3.1). Suppose that Q satisfies (M.1)∗. There is A > 0 such that for all

K ⊂comp Rd and ε, h > 0 the following holds: for all φ0, φ1 ∈ DM,h
K there exists

Φ = Φ(φ0, φ1) ∈ C2(Rd+1) with suppΦ ⊆ K × [−ε, ε] such that

(i) Φ|Θ = φ0 and ∂yΦ|Θ = φ1;

(ii) |||Φ||| = sup(x,y)∈Rd+1 |∆Φ(x, y)|eωN∗ ( 1
Ah|y| ) <∞.
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Moreover, there is C > 0 such that for all φ0, φ1 ∈ DM,h
K ,

max
{
|||Φ(φ0, φ1)|||,maxα∈Nd+1;|α|≤1 ∥∂αΦ(φ0, φ1)∥L∞(Rd+1)

}
≤ C max

j=0,1

{
∥φj∥BM,h(Rd)

}
.

Proof. Choose ψ ∈ D(R) such that suppψ ⊆ [−ε, ε] and ψ ≡ 1 on a neighborhood

of 0. Let Φ = Φ(φ0, φ1) be the function from Proposition 3.3 but call it Φ̃ instead of

Φ. Set Φ(x, y) = ψ(y)Φ̃(x, y). The definition of Φ̃ (see (3.4) and (3.8)) implies that

suppΦ ⊆ K × [−ε, ε]. Since Φ̃ satisfies the conditions of Proposition for Ω = Rd,
Φ satisfies all requirements.

Proposition 3.5. Let M be a weight sequence satisfying (NA). There is A > 0

such that for all V ⊆ Rd+1 open and h > 0 the following holds: Let Φ ∈ C2(V ) be

such that

(3.9) sup
(x,y)∈V

|∆Φ(x, y)|eωM∗ ( 1
h|y| ) <∞.

Then both Φ|Θ and ∂yΦ|Θ belong to BM,Ah(Θ) for all Θ ⋐ V ∩ Rd.

We need some preparation for the proof of Proposition 3.5. Consider the

following fundamental solution of the Laplacian:

E(x, y) =
1

2π
log |(x, y)|, (x, y) ∈ R2\{0},

and for d > 1,

E(x, y) =
−1

(d− 1)cd+1|(x, y)|d−1
, (x, y) ∈ Rd+1\{0},

where cd+1 denotes the area of the unit sphere in Rd+1. The Poisson kernel is given

by

P (x, y) = ∂yE(x, y) =
y

cd+1|(x, y)|d+1
, (x, y) ∈ Rd+1\{0}.

We need the following bounds for the derivatives of E and P .

Lemma 3.6.

(i) There are C,H > 0 such that

|∂nxE(x, y)| ≤ CHnn! max{1, | log |(x, y)| |}
|(x, y)|n

, n ∈ N, (x, y) ∈ R2\{0},

and for d > 1,

|∂αxE(x, y)| ≤ CH |α||α|!
|(x, y)||α|+d−1

, α ∈ Nd, (x, y) ∈ Rd+1\{0}.
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(ii) There are C,H > 0 such that

|∂αxP (x, y)| ≤
CH |α||α|!
|(x, y)||α|+d

, α ∈ Nd, (x, y) ∈ Rd+1\{0}.

Proof. We only show (ii) as (i) can be treated similarly. We will use the following

property of harmonic functions (cf. [5, p. 29, Thm. 7]): there are C,H > 0 such

that for all w ∈ Rd+1 and r > 0,

|∂βU(w)| ≤ CH |β||β|!
r|β|

∥U∥L∞(B(w,r)), β ∈ Nd+1,

for all functions U that are harmonic in a neighborhood of B̄(w, r). Fix (x, y) ∈
Rd+1\{0} and α ∈ Nd. By applying the above inequality to w = (x, y), r =

|(x, y)|/2, β = (α, 0), and U = P , we obtain

|∂αxP (x, y)| ≤
C(2H)|α||α|!
|(x, y)||α|

∥P∥L∞(B((x,y),|(x,y)|/2)).

The result now follows from the inequality

∥P∥L∞(B((x,y),|(x,y)|/2)) ≤
2d

cd+1|(x, y)|d
.

Proof of Proposition 3.5. We only show the statement for ∂yΦ as the one for Φ

can be shown similarly. Set V ∩ Rd = Ω and φ = ∂yΦ|Ω. Fix an arbitrary x0 ∈ Ω

and choose r > 0 such that Bd+1(x0, r) ⋐ V . Note that

Φ(x, y) =

∫
Bd+1(x0,r)

E(x−ξ, y−η)∆Φ(ξ, η) dξ dη+U(x, y), (x, y) ∈ Bd+1(x0, r),

for some U ∈ H(Bd+1(x0, r)). Hence,

φ(x) = −
∫
Bd+1(x0,r)

P (x− ξ, η)∆Φ(ξ, η) dξ dη + ∂yU(x, 0), x ∈ Bd(x0, r).

Since U ∈H(Bd+1(x0, r)), we have ∂yU|Bd(x0,r) ∈ A(Bd(x0, r)) ⊂ E(M)(Bd(x0, r)).

Set

ψ(x) = −
∫
Bd+1(x0,r)

P (x− ξ, η)∆Φ(ξ, η) dξ dη, x ∈ Bd(x0, r).

Lemma 3.6(ii) and (3.9) yield that ψ ∈ C∞(Bd(x0, r)) with

∂αψ(x) = −
∫
Bd+1(x0,r)

∂αxP (x− ξ, η)∆Φ(ξ, η) dξ dη, α ∈ Nd,
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and that there are C,H > 0 such that

|∂αψ(x)| ≤ CH |α||α|!
∫
Bd+1(x0,r)

e−ωM∗ ( 1
h|η| )

(|x− ξ|2 + η2)(|α|+d)/2
dξ dη

≤ C(Hh)|α|M|α|

∫
Bd+1(x0,r)

1

(|x− ξ|2 + η2)d/2
dξ dη

≤ C(Hh)|α|M|α|

∫
Bd+1(0,2r)

1

|(ξ, η)|d
dξ dη

for all α ∈ Nd and x ∈ Bd(x0, r). Since x0 was arbitrary, this proves the result.

Proofs of Theorems 3.1 and 3.2. By Lemma 2.1, we may assume that each M ∈
M satisfies (M.1)∗. Hence, the direct implication in Theorem 3.1 (Theorem 3.2,

respectively) follows from Proposition 3.3 (Proposition 3.4, respectively), while the

reverse ones follow from Proposition 3.5.

Theorem 3.1 particularly applies to E [M ](Ω), where M is a weight sequence

satisfying (M.2)′, (M.1)∗w, and (NA). Similarly, Theorem 3.2 applies to D[M ](Ω),

where M is a non-quasianalytic weight sequence satisfying (M.2)′ and (M.1)∗w.

Furthermore, our results yield characterizations of E [ω](Ω) and D[ω](Ω) by almost

harmonic functions as well:

Corollary 3.7. Let ω be a weight function satisfying (α0) and ω(t) = o(t). Let

Ω ⊆ Rd be open and let φ0, φ1 : Ω → C. Then φ0, φ1 ∈ E [ω](Ω) if and only if for

all Θ ⋐ Ω and for all h > 0 (for some h > 0) the following holds: for some/all

V ⊂ Rd+1 open with V ∩ Rd = Θ there exists Φ ∈ C2(V ) such that Φ|Θ = φ0|Θ,

∂yΦ|Θ = φ1|Θ, and

sup
(x,y)∈V

|∆Φ(x, y)|e 1
hω

⋆(h|y|) <∞.

Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 3.1.

Corollary 3.8. Let ω be a non-quasianalytic weight function satisfying (α0). Let

Ω ⊆ Rd be open and let V ⊆ Rd+1 be open such that V ∩Rd = Ω. Let φ0, φ1 : Ω→
C. Then φ0, φ1 ∈ D[ω](Ω) if and only if for all h > 0 (for some h > 0) there exists

Φ ∈ C2
c (V ) such that Φ|Ω = φ0, ∂yΦ|Ω = φ1, and

sup
(x,y)∈V

|∆Φ(x, y)|e 1
hω

⋆(h|y|) <∞.

Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 3.2.
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§4. Boundary values of harmonic functions

§4.1. Analytic functionals via harmonic functions

Given Ω ⊆ Rd open, we denote by A′(Ω) the dual of A(Ω). Since the space of

entire functions is dense in A(Ω), we may view A′(Ω) as a subspace of A′(Rd). A
compact set K in Rd is said to be a carrier of f ∈ A′(Rd) if f ∈ A′(Ω) for all

Ω ⊆ Rd open with K ⊂comp Ω. We denote by A′(K) the space consisting of all

f ∈ A′(Rd) such that K is a carrier of f . The space A′(K) may be characterized in

terms of harmonic functions, as we now proceed to explain. We follow Hörmander’s

exposition [10, Sect. 9.1] (see also [12, 13, 22]).

Let K ⊂comp Rd. The Poisson transform of f ∈ A′(K) is defined as

P [f ](x, y) := ⟨f(ξ), P (x− ξ, y)⟩, (x, y) ∈ Rd+1\K.

Recall that H−(Rd+1\K) stands for the space of harmonic functions in Rd+1\K
that are odd with respect to y. We denote by H0,−(Rd+1\K) the space consisting

of all F ∈ H−(Rd+1\K) such that F (x, y)→ 0 as (x, y)→∞.

Theorem 4.1. Let K ⊂comp Rd.

(i) [10, Prop. 9.1.3] Let f ∈ A′(K). Then P [f ] ∈ H0,−(Rd+1\K) and

⟨f, ∂yΦ|Rd⟩ = −
∫
Rd+1

P [f ](x, y)∆(ρΦ)(x, y) dxdy

for all Φ∈H(Rd+1) and ρ∈D(Rd+1) such that ρ ≡ 1 on an Rd+1-neighborhood

of K.

(ii) [10, Prop. 9.1.5] Let F ∈ H−(Rd+1\K). Then there exists a unique f ∈ A′(K)

such that

⟨f, ∂yΦ|Rd⟩ = −
∫
Rd+1

F (x, y)∆(ρΦ)(x, y) dxdy

for all Φ∈H(Rd+1) and ρ∈D(Rd+1) such that ρ ≡ 1 on an Rd+1-neighborhood

of K. Moreover, there is U ∈ H(Rd+1) such that F = P [f ] + U .

Corollary 4.2. Let K ⊂comp Rd and let V be an open Rd+1-neighborhood of K

that is symmetric with respect to y. For each F ∈ H−(V \K) there is a unique

f ∈ A′(K) such that

(4.1) ⟨f, ∂yΦ|Rd⟩ = −
∫
Rd+1

F (x, y)∆(ρΦ)(x, y) dx dy

for all Φ ∈ H(Rd+1) and ρ ∈ D(V ) such that ρ ≡ 1 on an Rd+1-neighborhood of

K. Moreover, there is U ∈ H(V ) such that F = P [f ] + U .
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Proof. Since V \K = (Rd+1\K) ∩ V , the Mittag-Leffler theorem for harmonic

functions [12, Thm. 2.4] implies that there are F1 ∈ H−(Rd+1\K) and F2 ∈ H−(V )

such that F = F1−F2 on V \K. The result therefore follows from Theorem 4.1(ii)

(applied to F1).

Remark 4.3. Let K ⊂comp Rd and let V be an open Rd+1-neighborhood of K

that is symmetric with respect to y. Let F ∈ H−(V \K) and consider the associated

f ∈ A′(K) from Corollary 4.2. By Green’s theorem (cf. the proof of Proposition

4.4 below), we have

⟨f, ∂yΦ|Rd⟩ = −
∫
Rd+1

F (x, y)∆(ρΦ)(x, y) dx dy

= lim
y→0+

∫
Rd

(F (x, y)− F (x,−y))ρ(x, 0)∂yΦ(x, 0) dx

for all Φ ∈ H(Rd+1) and ρ ∈ D(V ) even with respect to y such that ρ ≡ 1 on an

Rd+1-neighborhood of K. Hence, f may be interpreted as the boundary value of

F in A′(K) and we write f = bv(F ).

§4.2. Spaces of ultradistributions

Let M be a weight matrix satisfying [M.2]′ and (NA). Given Ω ⊆ Rd open, we

denote by E ′[M](Ω) the strong dual of E [M](Ω). We have once again that the space

of entire functions is dense in E [M](Ω) (cf. [9, Prop. 3.2]); we therefore obtain that

E ′[M](Ω) may be viewed as a subspace of A′(Rd). A compact set K in Rd is said

to be an [M]-carrier of f ∈ E ′[M](Rd) if f ∈ E ′[M](Ω) for all Ω ⊆ Rd open with

K ⊂comp Ω. We denote by E ′[M](K) the space consisting of all f ∈ E ′[M](Rd) such
that K is an [M]-carrier of f . We have the following canonical isomorphism of

vector spaces:

E ′[M](K) ∼= lim←−
K⊂compΩ

E ′[M](Ω).

We endow E ′[M](K) with the projective limit topology induced by this isomor-

phism.

Suppose that M is non-quasianalytic. Given Ω ⊆ Rd open, we denote by

D′[M](Ω) the strong dual of D[M](Ω).

§4.3. Boundary values of harmonic functions in E ′[M](K)

LetM be a weight sequence satisfying (NA). Let V ⊆ Rd+1 be open and symmetric

with respect to y and let S ⊆ V ∩Rd be closed in V . For h > 0 we writeHM,h
∞,−(V \S)

for the Banach space consisting of all F ∈ H−(V \S) such that

∥F∥HM,h
∞,−(V \S) := sup

(x,y)∈V \S
|F (x, y)|e−ωM∗ ( 1

hdS(x,y)
)
<∞,
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where dS(x, y) denotes the distance from (x, y) to S. We set

H(M)
∞,−(V \S) := lim−→

h→0+

HM,h
∞,−(V \S), H{M}

∞,−(V \S) := lim←−
h→∞

HM,h
∞,−(V \S).

Next, let M be a weight matrix satisfying (NA). Let K ⊂comp Rd and let V be

an open Rd+1-neighborhood of K that is symmetric with respect to y. Choose a

sequence (Vn)n∈N of relatively compact open sets in Rd+1 that are symmetric with

respect to y such that K ⊂comp Vn, Vn ⋐ Vn+1, and V =
⋃
n∈N Vn, and a sequence

(Kn)n∈N of compact sets in Rd such that K ⊂comp intKn, Kn+1 ⊂comp intKn,

Kn ⊂comp Vn, and K =
⋂
n∈NKn. We define

H(M)
− (V \K) := lim←−

n∈N
lim−→
M∈M

H(M)
∞,−(Vn\Kn),

H{M}
− (V \K) := lim←−

n∈N
lim←−
M∈M

H{M}
∞,−(Vn\Kn).

This definition is independent of the chosen sequences (Vn)n∈N and (Kn)n∈N.

For two weight matrices M and N with M[≈]N we have that H[M]
− (V \K) =

H[N]
− (V \K) as locally convex spaces.

Let K ⊂comp Rd and let V be an open Rd+1-neighborhood of K that is

symmetric with respect to y. Recall from Remark 4.3 that we employ the notation

f = bv(F ) for the analytic functional corresponding to a harmonic function F ∈
H−(V \K) via the relation (4.1). We now show that the elements of H[M]

− (V \K)

have boundary values in E ′[M](K).

Proposition 4.4. Let M be a weight matrix satisfying [M.1]∗w, [M.2]′, and (NA).

Let K ⊂comp Rd and let V be an open Rd+1-neighborhood of K that is symmetric

with respect to y. For each F ∈ H[M]
− (V \K) we have that bv(F ) ∈ E ′[M](K) and

this quasianalytic functional may be represented as follows: for all Ω ⊆ V ∩ Rd

open with K ⊂comp Ω it holds that

⟨bv(F ), φ⟩ = lim
y→0+

∫
Rd

(F (x, y)− F (x,−y))χ(x)φ(x) dx, φ ∈ E [M](Ω),

where χ ∈ D(Ω) is such that χ ≡ 1 on a neighborhood of K.

Moreover, the boundary value mapping

bv : H[M]
− (V \K)→ E ′[M](K)

is continuous.

As stated in the introduction, we shall show Proposition 4.4 by combining

Green’s theorem with our description of ultradifferentiable functions by almost



676 A. Debrouwere and J. Vindas

harmonic functions (Proposition 3.3). This method is suggested by (4.1) (see Re-

mark 4.3).

Proof of Proposition 4.4. We only consider the Beurling case as the Roumieu case

can be treated similarly. By Lemma 2.1, we may assume that eachM ∈M satisfies

(M.1)∗.

Fix an arbitrary open subset Ω ⊆ V ∩ Rd with K ⊂comp Ω and let χ ∈ D(Ω)
be such that χ ≡ 1 on a neighborhood of K. Choose Θ ⋐ Ω with piecewise smooth

boundary such that suppχ ⊂comp Θ. Let r > 0 be such that Θ× (−r, r) ⋐ V . Pick

L ⊂comp Θ such that K ⊂comp intL and χ ≡ 1 on a neighborhood of L. It suffices

to show that for all N ∈M and k > 0 there is M ∈M such that

(4.2) bvΩ : HN,k∞,−(Θ× (−r, r)\L)→ E ′(M)(Ω),

where

⟨bvΩ(F ), φ⟩ = lim
y→0+

∫
Rd

(F (x, y)− F (x,−y))χ(x)φ(x) dx

= 2 lim
y→0+

∫
Rd

F (x, y)χ(x)φ(x) dx, φ ∈ E(M)(Ω),

is well defined and continuous. Choose Q,M ∈ M such that (3.1) holds. For

φ ∈ E(M)(Ω) consider the function Φ = Φ(0, φ|Θ) ∈ C2(Θ × R) from Proposition

3.3 with h = k/A. Let ε > 0 be such that Θ × (−r − ε, r + ε) ⋐ V . For F ∈
HN,k∞,−(Θ × (−r, r)\L) and 0 < y < ε, we set Fy(x, η) = F (x, η + y). Then Fy is

harmonic in a neighborhood of Θ × [0, r]. Choose ρ ∈ D(Θ × (−r, r)) such that

ρ ≡ 1 on an Rd+1-neighborhood of L and ρ|Rd = χ. By applying Green’s theorem

to the pair (Fy, ρΦ) on the region Θ× (0, r), we obtain∫
Rd

F (x, y)χ(x)φ(x) dx = −
∫
Θ×(0,r)

F (x, η + y)∆(ρΦ)(x, η) dxdη

for all 0 < y < ε. Let J ⊂comp Θ × (−r, r) be such that L ⊂comp int J and ρ ≡ 1

on J . Property (ii) of Proposition 3.3 implies that

lim
y→0+

∫
Θ×(0,r)∩J

F (x, η + y)∆(ρΦ)(x, η) dx dη =

∫
Θ×(0,r)∩J

F (x, η)∆Φ(x, η) dx dη

and ∣∣∣∣∫
Θ×(0,r)∩J

F (x, η)∆Φ(x, η) dx dη

∣∣∣∣ ≤ |Θ× (0, r) ∩ J | ∥F∥ |||Φ|||,
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where ∥F∥ = ∥F∥HN,k
∞,−(Θ×(−r,r)\L) and |||Φ||| = sup(x,η)∈Θ×R |∆Φ(x, η)|eωN∗ ( 1

k|η| ).

Since F is continuous on a neighborhood of Θ× [0, r]\J , we have

lim
y→0+

∫
Θ×(0,r)\J

F (x, η+y)∆(ρΦ)(x, η) dxdη =

∫
Θ×(0,r)\J

F (x, η)∆(ρΦ)(x, η) dxdη

and, if δ > 0 is such that dL(x, y) ≥ δ for all (x, y) ∈ Θ× (0, r)\J , then∣∣∣∣∫
Θ×(0,r)\J

F (x, η)∆(ρΦ)(x, η) dxdη

∣∣∣∣
≤ eωN∗ ( 1

kδ )|Θ× (0, r)\J | ∥F∥ ∥∆(ρΦ)∥L∞(Θ×R).

Note that there is C > 0 (independent of φ) such that

∥∆(ρΦ)∥L∞(Θ×R) ≤ Cmax
{
|||Φ|||,maxα∈Nd+1;|α|≤1 ∥∂αΦ∥L∞(Θ×R)

}
.

Hence,

⟨bvΩ(F ), φ⟩ = −2
∫
Θ×(0,r)

F (x, η)∆(ρΦ)(x, η) dxdη, φ ∈ E(M)(Ω),

and there is C > 0 such that

|⟨bvΩ(F ), φ⟩| ≤ C∥F∥max
{
|||Φ(0, φ|Θ)|||,maxα∈Nd+1;|α|≤1 ∥∂αΦ(0, φ|Θ)∥L∞(Θ×R)

}
for all F ∈ HN,k∞,−(Θ × (−r, r)\L) and φ ∈ E(M)(Ω). Therefore, (3.2) implies that

the mapping in (4.2) is well defined and continuous.

Our next goal is to study the Poisson transform of elements of E ′[M](K). To

this end, we need to introduce some additional spaces of harmonic functions. LetM

be a weight sequence satisfying (NA). Let K ⊂comp Rd. Recall that H0,−(Rd+1\K)

stands for the space of harmonic functions on Rd+1\K that are odd with respect

to y and vanish at infinity. For h > 0 we write HM,h
∞,0,−(Rd+1\K) for the Banach

space consisting of all F ∈ H0,−(Rd+1\K) such that ∥F∥HM,h
∞,−(Rd+1\K) < ∞. We

set

H(M)
∞,0,−(R

d+1\K) := lim−→
h→0+

HM,h
∞,0,−(R

d+1\K),

H{M}
∞,0,−(R

d+1\K) := lim←−
h→∞

HM,h
∞,0,−(R

d+1\K).

Next, let M be a weight matrix satisfying (NA). Let K ⊂comp Rd. Choose a

sequence (Kn)n∈N of compact sets in Rd such that K ⊂comp intKn, Kn+1 ⊂comp
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intKn and K =
⋂
n∈NKn. We define

H(M)
0,− (Rd+1\K) := lim←−

n∈N
lim−→
M∈M

H(M)
∞,0,−(R

d+1\Kn),

H{M}
0,− (Rd+1\K) := lim←−

n∈N
lim←−
M∈M

H{M}
∞,0,−(R

d+1\Kn).

This definition is independent of the chosen sequence (Kn)n∈N.

Proposition 4.5. Let M be a weight matrix satisfying [M.2]′ and (NA). Let

K ⊂comp Rd. Then the Poisson transform

P [ · ] : E ′[M](K)→ H[M]
0,−(R

d+1\K)

is well defined and continuous.

Proof. We only consider the Beurling case as the Roumieu case is similar. It suffices

to show that for all Ω ⋐ Rd with K ⊂comp Ω and all M ∈M, there is N ∈M such

that

P [ · ] : E ′(M)(Ω)→ H(N)
∞,0,−(R

d+1\Ω)
is well defined and continuous. Choose N ∈M such that

Np+d ≤ C0H
p
0Mp, p ∈ N,

for some C0, H0 > 0. By Theorem 4.1(i), we have that P [f ] ∈ H0,−(Rd+1\Ω) for

all f ∈ E ′(M)(Ω) ⊂ A′(Ω). Since E ′(M)(Ω) is bornological, it is enough to show

that for every bounded set B ⊂ E ′(M)(Ω) the set {P [f ] | f ∈ B} is contained

and bounded in H(N)
∞,0,−(Rd+1\Ω). By the Banach–Steinhaus theorem, there are

C1, h > 0 and Θ ⋐ Ω such that

|⟨f, φ⟩| ≤ C1∥φ∥BM,h(Θ), φ ∈ E(M)(Ω),

for all f ∈ B. Lemma 3.6(ii) therefore implies that for all (x, y) ∈ Rd+1\Ω,

|P [f ](x, y)| = |⟨f(ξ), P (x− ξ, y)⟩|

≤ C1 sup
ξ∈Θ

sup
α∈Nd

|∂αξ P (x− ξ, y)|
h|α|M|α|

≤ CC1 sup
ξ∈Θ

sup
α∈Nd

H |α||α|!
h|α|M|α|(|x− ξ|2 + y2)(|α|+d)/2

≤ CC0C1(h/HH0)
d sup
α∈Nd

(HH0)
|α|+d(|α|+ d)!

(hdΩ(x, y))
|α|+dN|α|+d

≤ CC0C1(h/HH0)
de
ωN∗ (

HH0
hd

Ω
(x,y)

)

for all f ∈ B.
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We are ready to prove the main result of this article.

Theorem 4.6. Let M be a weight matrix satisfying [M.1]∗w, [M.2]′, and (NA).

Let K ⊂comp Rd.

(i) Let V be an open Rd+1-neighborhood of K that is symmetric with respect to y.

Then the sequence

0 −→ H−(V ) −→ H[M]
− (V \K)

bv−→ E ′[M](K) −→ 0

is exact. Moreover, the boundary value mapping is continuous and it has the

Poisson transform

P [ · ] : E ′[M](K)→ H[M]
− (V \K)

as a continuous linear right inverse.

(ii) The boundary value mapping

bv : H[M]
0,−(R

d+1\K)→ E ′[M](K)

is a topological isomorphism whose inverse is given by the Poisson transform

P [ · ] : E ′[M](K)→ H[M]
0,−(R

d+1\K).

Proof. (i) The boundary value mapping and the Poisson transform are well defined

and continuous by Propositions 4.4 and 4.5, respectively. Theorem 4.1(i) and Re-

mark 4.3 yield that P is a right inverse of bv. Finally, the equality ker bv = H−(V )

follows from Corollary 4.2 and Remark 4.3.

(ii) This follows from part (i), Proposition 4.5, and Liouville’s theorem for

harmonic functions.

Theorem 4.6 particularly applies to E ′[M ](K), where M is a weight sequence

satisfying (M.2)′, (M.1)∗w, and (NA). Finally, we give two representations of

E ′[ω](K) by boundary values of harmonic functions. Let ω be a weight function

satisfying ω(t) = o(t). Let V ⊆ Rd+1 be open and symmetric with respect to y

and let S ⊆ V ∩Rd be closed in V . For h > 0 we write Hω,h∞,−(V \S) for the Banach
space consisting of all F ∈ H−(V \S) such that

∥F∥Hω,h
∞,−(V \S) := sup

(x,y)∈V \S
|F (x, y)|e− 1

hω
⋆(hdS(x,y)) <∞.

We set

H(ω)
∞,−(V \S) := lim−→

h→0+

Hω,h∞,−(V \S), H{ω}
∞,−(V \S) := lim←−

h→∞
Hω,h∞,−(V \S).
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Let K ⊂comp Rd and let V be an open Rd+1-neighborhood of K that is symmetric

with respect to y. The spaces H[ω]
− (V \K) and H[ω]

0,−(Rd+1\K) are defined in the

natural way.

Corollary 4.7. Let ω be a weight function satisfying (α0) and ω(t) = o(t). Let

K ⊂comp Rd.

(i) Let V be an open Rd+1-neighborhood of K that is symmetric with respect to y.

Then the sequence

0 −→ H−(V ) −→ H[ω]
− (V \K)

bv−→ E ′[ω](K) −→ 0

is exact. Moreover, the boundary value mapping is continuous and it has the

Poisson transform

P [ · ] : E ′[ω](K)→ H[ω]
− (V \K)

as a continuous linear right inverse.

(ii) The boundary value mapping

bv : H[ω]
0,−(R

d+1\K)→ E ′[ω](K)

is a topological isomorphism whose inverse is given by the Poisson transform

P [ · ] : E ′[ω](K)→ H[ω]
0,−(R

d+1\K).

Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 4.6.

§4.4. Application: The support theorem for quasianalytic functionals

A fundamental result in the theory of analytic functionals states that each f ∈
A′(Rd) has a unique minimal carrier, called the support of f and denoted by

suppA′ f . Martineau [15] (see also [16]) showed this by using cohomological prop-

erties of the sheaf of germs of analytic functions.

Theorem 4.1 may be used to give a simpler proof of the existence of suppA′ f

(cf. [10, Thm. 9.1.6]). In fact, by Theorem 4.1, a compact set K in Rd is a carrier

of f if and only if its Poisson transform P [f ] can be continued as a harmonic

function to Rd+1\K. Hence, suppA′ f is given by the compact set K ⊂ Rd with

the property that Rd+1\K is the largest open set in Rd+1 on which P [f ] has a

harmonic extension and, in particular, this notion is well defined.

The existence of a unique minimal carrier can also be established for quasi-

analytic functionals, but the only known treatment in the literature, due to

Hörmander [9], turns out to be much harder. However, in view of Theorem 4.6, we

can now repeat the simple reasoning involving the harmonic continuation of the

Poisson transform to directly infer the ensuing support theorem for E ′[M](Rd).
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Theorem 4.8. Let M be a weight matrix satisfying [M.1]∗w, [M.2]′, and (NA).

For each f ∈ E ′[M](Rd) there exists a smallest compact set K ⊂ Rd such that

f ∈ E ′[M](K); in fact, K = suppA′ f .

It should be noted that Theorem 4.8 contains the corresponding support the-

orem for E ′[ω](Rd), where ω is a weight function satisfying (α0) and ω(t) = o(t),

which was earlier obtained by Heinrich and Meise in [8] via the method from [9]

(without the assumption (α0)). We end this subsection with two remarks.

Remark 4.9. Hörmander [9] showed the support theorem for E ′{M}(Rd), where
M is a weight sequence satisfying (M.2)′ and (NA). His technique can be adapted

to show that Theorem 4.8 is still valid if one removes the hypothesis [M.1]∗w from

its statement. We omit details since it is out of the scope of this article.

Remark 4.10. Suppose that M is a non-quasianalytic weight matrix. The as-

signment Ω 7→ D′[M](Ω) is a soft sheaf on Rd. For K ⊂comp Rd the space {f ∈
D′[M](Rd) | supp f ⊆ K} is canonically isomorphic to E ′[M](K). Hence, there ex-

ists a unique minimal [M]-carrier for each f ∈ E ′[M](Rd), which is well known to

coincide with suppA′ f (cf. [11, Lem. 7.4]), a fact that also follows from Theorem

4.13 below.

§4.5. Boundary values of harmonic functions in D′[M](Ω)

LetM be a non-quasianalytic weight matrix. Let Ω ⊆ Rd be open and let V ⊆ Rd+1

be open and symmetric with respect to y such that V ∩Rd = Ω. Choose a sequence

(Vn)n∈N of relatively compact open sets in Rd+1 that are symmetric with respect

to y such that Vn ⋐ Vn+1 and V =
⋃
n∈N Vn. Set Ωn = Vn ∩ Rd. We define

H(M)
− (V \Ω) := lim←−

n∈N
lim−→
M∈M

H(M)
∞,−(Vn\Ωn),

H{M}
− (V \Ω) := lim←−

n∈N
lim←−
M∈M

H{M}
∞,−(Vn\Ωn).

This definition is independent of the chosen sequence (Vn)n∈N. For two weight

matrices M and N with M[≈]N we have that H[M]
− (V \Ω) = H[N]

− (V \Ω) as locally
convex spaces.

We now show that the elements of H[M]
− (V \Ω) have boundary values in

D′[M](Ω).

Proposition 4.11. Let M be a non-quasianalytic weight matrix satisfying [M.1]∗w
and [M.2]′. Let Ω ⊆ Rd be open and let V ⊆ Rd+1 be open and symmetric with
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respect to y such that V ∩ Rd = Ω. For F ∈ H[M]
− (V \Ω) we set

⟨bv(F ), φ⟩ := lim
y→0+

∫
Rd

(F (x, y)− F (x,−y))φ(x) dx, φ ∈ D[M](Ω).

Then bv(F ) belongs to D′[M](Ω). Moreover, the boundary value mapping

bv : H[M]
− (V \Ω)→ D′[M](Ω)

is continuous.

Proof. This can be shown in a similar way to Proposition 4.4 but by using Propo-

sition 3.4 instead of Proposition 3.3.

Next we show an ultradistributional version of the Schwarz reflection principle.

Proposition 4.12. Let M be a non-quasianalytic weight matrix satisfying [M.2]′.

Let Ω ⊆ Rd be open and let V ⊆ Rd+1 be open and symmetric with respect to y

such that V ∩ Rd = Ω. Let F ∈ H−(V \Ω) be such that

lim
y→0+

∫
Rd

(F (x, y)− F (x,−y))φ(x) dx = 0, φ ∈ D[M](Ω).

Then F extends to a harmonic function on V .

Proof. Let Θ ⋐ Ω be arbitrary and choose r > 0 such that Θ × (−r, r) ⋐ V . It

suffices to show that F extends to a harmonic function on Θ × (−r, r). Since ∆

is elliptic, it is enough to show that there is F̃ ∈ D′[M](Θ × (−r, r)) such that

F̃|Θ×(−r,r)\Θ = F and ∆F̃ = 0 in D′[M](Θ× (−r, r)). To this end, we use the same

technique as in [14, Satz 1.2]. Let ε > 0 be such that Θ× (−r− ε, r+ ε) ⋐ V . For

0 < η < ε we define F̃+
η , F̃

−
η ∈ D′[M](Θ× (−r, r)) via

⟨F̃+
η , φ⟩ :=

∫ r

0

∫
Θ

F (x, y + η)φ(x, y) dxdy, φ ∈ D[M](Θ× (−r, r)),

and

⟨F̃−
η , φ⟩ :=

∫ 0

−r

∫
Θ

F (x, y − η)φ(x, y) dxdy, φ ∈ D[M](Θ× (−r, r)).

We claim that (F̃±
η )0<η<ε is a Cauchy net in D′[M](Θ× (−r, r)). Before we prove

the claim, let us show how it entails the result. Since D′[M](Θ×(−r, r)) is complete,

there exist F̃± ∈ D′[M](Θ× (−r, r)) such that limη→0+ F̃
±
η = F̃±. Set F̃ = F̃+ +

F̃− ∈ D′[M](Θ × (−r, r)). It is clear that F̃|Θ×(−r,r)\Θ = F . We now show that

∆F̃ = 0 in D′[M](Θ × (−r, r)). Let φ ∈ D[M](Θ × (−r, r)) be arbitrary. Green’s

theorem (cf. the proof of Proposition 4.4) and the fact that F is odd imply that
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for all φ ∈ D[M](Θ× (−r, r)),

⟨∆F̃ , φ⟩ = lim
η→0+

∫ r

0

∫
Θ

F (x, y + η)∆φ(x, y) dxdy

+

∫ 0

−r

∫
Θ

F (x, y − η)∆φ(x, y) dxdy

= − lim
η→0+

∫
Θ

(F (x, η)− F (x,−η))∂yφ(x, 0) dx = 0.

We now show the claim. We only consider (F̃+
η )0<η<ε as (F̃

−
η )0<η<ε can be treated

similarly. We have

lim
y→0+

∫
Rd

∂2yF (x, y)φ(x) dx = − lim
y→0+

∫
Rd

∆xF (x, y)φ(x) dx

= − lim
y→0+

∫
Rd

F (x, y)∆xφ(x) dx = 0

for all φ ∈ D[M](Ω). Using the mean-value theorem, we obtain that

lim
y→0+

∫
Rd

∂yF (x, y)φ(x) dx

exists and is finite for all φ ∈ D[M](Ω). Hence, the set {∂yF ( · , y) | 0 < y < r+ε} is
bounded in D′[M](Θ). Let B be an arbitrary bounded subset of D[M](Θ× (−r, r)).
Then B′ = {φ( · , y) | 0 < y < r} is bounded in D[M](Θ). For all 0 < η, η′ < ε it

holds that

sup
φ∈B
|⟨F̃+

η − F̃+
η′ , φ⟩| = sup

φ∈B

∣∣∣∣∫ r

0

∫
Θ

F (x, y + η)− F (x, y + η′)φ(x, y) dxdy

∣∣∣∣
= sup
φ∈B

∣∣∣∣∫ η

η′

∫ r

0

∫
Θ

∂yF (x, y + λ)φ(x, y) dx dy dλ

∣∣∣∣
≤ r|η − η′| sup

ψ∈B′
sup

0<y<r+ε

∣∣∣∣∫
Θ

∂yF (x, y)ψ(x) dx

∣∣∣∣.
This proves the claim.

We can now give the representation of D′[M](Ω) by boundary values of har-

monic functions.

Theorem 4.13. Let M be a non-quasianalytic weight matrix satisfying [M.1]∗w
and [M.2]′. Let Ω ⊆ Rd be open and let V ⊆ Rd+1 be open and symmetric with

respect to y such that V ∩ Rd = Ω. Then the sequence

(4.3) 0 −→ H−(V ) −→ H[M]
− (V \Ω) bv−→ D′[M](Ω) −→ 0

is exact and the boundary value mapping is a topological homomorphism.
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Proof. The boundary value mapping is well defined and continuous by Proposition

4.11, while Proposition 4.12 yields that ker bv = H−(V ). Next we show that the

boundary value mapping is surjective. To this end, we shall use some basic facts

about the derived projective limit functor (see the book [24] for more information).

Choose a sequence (Vn)n∈N of relatively compact open sets in Rd+1 such that

Vn ⋐ Vn+1, Vn+2\V n has no connected component that is relatively compact in

Vn+2 and V =
⋃
n∈N Vn. Set Ωn = Vn ∩ Rd. We need to show that the mapping

bv : H[M]
− (V \Ω) = Proj(H[M]

− (Vn\Ωn))n∈N → D′[M](Ω) = Proj(D′[M](Ωn))n∈N

is surjective. Consider the following spectrum of short exact sequences:

0 // H−(V1) // H[M]
− (V1\Ω1)

bv // D′[M](Ω1)

0 // H−(V2) //

OO

H[M]
− (V2\Ω2)

bv //

OO

D′[M](Ω2).

OO

...

OO

...

OO

...

OO

The Runge approximation theorem for harmonic functions in [12, Thm. 2.3] (see

also [10, Thm. 4.4.5]) and [24, Thm. 3.2.1] yields that Proj1(H−(Vn))n∈N = 0.

By [24, Prop. 3.1.8], it therefore suffices to show that for each f ∈ D′[M](Ωn+1)

there is F ∈ H[M]
− (Vn\Ωn) such that bv(F ) = f|Ωn

. Choose χ ∈ D[M](Ωn+1)

such that χ ≡ 1 on Ωn. Then χf ∈ E ′[M](Ωn+1). Set F = P [χf ]. Theorem 4.6

implies that F ∈ H[M]
− (Rd+1\Ωn+1) ⊆ H[M]

− (Vn\Ωn) and bv(F ) = f|Ωn
. Finally,

the boundary value mapping is a topological homomorphism by De Wilde’s open

mapping theorem.

Remark 4.14. Theorem 4.13 particularly applies to D′[M ](Ω), whereM is a non-

quasianalytic weight sequence satisfying (M.2)′ and (M.1)∗w. For weight sequences

satisfying the more restrictive assumptions (M.2) and (M.3) [11], this result also

follows from the work of Komatsu [12]. He had to assume these stronger conditions

because he employed the parametrix method.

Finally, we can also represent D′[ω](Ω) via boundary values of harmonic func-

tions. Let ω be a non-quasianalytic weight function. Let Ω ⊆ Rd be open and let

V ⊆ Rd+1 be open and symmetric with respect to y such that V ∩ Rd = Ω. The

space H[ω]
− (V \Ω) is defined in the natural way.

Corollary 4.15. Let ω be a non-quasianalytic weight function satisfying (α0). Let

Ω ⊆ Rd be open and let V ⊆ Rd+1 be open and symmetric with respect to y such
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that V ∩ Rd = Ω. Then the sequence

0 −→ H−(V ) −→ H[ω]
− (V \Ω) bv−→ D′[ω](Ω) −→ 0

is exact and the boundary value mapping is a topological homomorphism.

Proof. This follows from Lemmas 2.3 and 2.4 and Theorem 4.13.
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