
Publ. RIMS Kyoto Univ. 59 (2023), 687–729
DOI 10.4171/PRIMS/59-4-1

Trace- and Improved Data-Processing Inequalities
for von Neumann Algebras

by
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Abstract

We prove a version of the data-processing inequality for the relative entropy for gen-
eral von Neumann algebras with an explicit lower bound involving the measured rela-
tive entropy. The inequality, which generalizes previous work by Sutter et al. on finite-
dimensional density matrices, yields a bound for how well a quantum state can be recov-
ered after it has been passed through a channel. Some natural applications of our results
are in quantum field theory where the von Neumann algebras are known to be of type
III. Along the way we generalize various multi-trace inequalities to general von Neumann
algebras.
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§1. Introduction

The relative entropy S(ρ|σ) = Tr(ρ ln ρ − ρ lnσ) is an important operationally

defined measure for the distinguishability of two statistical operators ρ, σ. A fun-

damental property of S is that

(1) S(ρ|σ)− S(T (ρ)|T (σ)) ≥ 0

for a quantum channel T , i.e. a completely positive linear trace preserving map.

(In the body of the paper, we use the slightly different notation T̃ for the action of

a channel on a density matrix (Schrödinger picture), while T denotes the dual ac-

tion (Heisenberg picture) of the channel on the observables.) The above difference
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represents the loss of distinguishability between σ, ρ if these are passed through

the channel T .

An important general question that can be abstracted from concrete settings

such as quantum communication or quantum error correction is to what extent

the action of a quantum channel can be reversed, i.e. to what extent it may be

possible to recover ρ from T (ρ). It was understood a long time ago by Petz that

the question of recoverability is intimately linked to the case of saturation of the

data-processing inequality (DPI) (1); see e.g. [32]. As was understood by [18] – and

has subsequently been generalized in various ways by [29, 39, 18, 9, 12, 25, 40, 46]

– explicit lower bounds in the DPI or related information-theoretic inequalities

can provide information on how well a channel may be reversed if the inequality

is, e.g., nearly saturated.

Very interesting results in this direction have been obtained by Sutter et

al. [39] and Junge at al. [29]. Both results consider an explicit recovery channel,

and show that the recovered state is close to the original state ρ in a suitable

information-theoretic measure, provided the difference in the DPI is also small.

The recovery channel ασ,T is called “explicit” because it is given by a concrete

expression involving only the reference state σ and T (not the state ρ that is to

be recovered), and always perfectly recovers σ, i.e. ασ,T (T (σ)) = σ. In fact, it is

closely related – though not precisely equal – to the channel originally proposed

by Petz [34, 35, 37, 32].

The above-mentioned works (other than [34, 35, 37, 32]) establish their results

only for very special von Neumann algebras – for example [39] considers a finite-

dimensional type I algebra (finite-dimensional Hilbert space), whereas [29] deals

with possibly infinite-dimensional type I algebras. While this is well motivated by

applications in quantum computing, there are cases of interest when the algebras

are not of this type. A notable example is quantum-field-theoretic applications re-

lated to the “quantum null energy condition” (see e.g. [14]) where the algebras are

of type III [11, 20]. With this application in mind we proved in [17] a generaliza-

tion of [29] in the case when the channel T corresponds to an inclusion of general

von Neumann algebras. This result has been generalized to arbitrary 2-positive

channels T in [16], where the following improved DPI has been demonstrated:

(2) S(ρ|σ)− S(T (ρ)|T (σ)) ≥ 1− s

s

∫
R
dt β0(t)Ds(α

t
σ,T (T (ρ))|ρ).

Here, s ∈ [1/2, 1) and Ds are the so-called “sandwiched Rényi entropies” [31, 48],

which for s = 1/2 become the negative log squared fidelity. The term β0(t) dt is a
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certain explicit probability density and αtη,T is an explicit 1-parameter family of

recovery channels that is a disintegration of αη,T in the sense
∫
dt β0(t)α

t
η,T = αη,T .

Using the convexity of Ds and Jensen’s inequality, the bound implies

(3) S(ρ|σ)− S(T (ρ)|T (σ)) ≥ 1− s

s
Ds(ασ,T (T (ρ))|ρ).

A qualitatively similar result has been proved for general von Neumann algebras

by Junge and LaRacuente [28].1 In their result, the sandwiched Rényi entropies

are now replaced by some other information-theoretic quantity with an operational

meaning. Both [16, 28] lead to the same inequality for s = 1/2. For type I algebras

and s = 1/2, (2) is the result by [29], but the relation for general s is unclear to

the author. We also mention recent results by Gao and Wilde [19] of a roughly

similar flavor but different emphasis, which apply to von Neumann algebras with

a trace though not type III.

In the present paper, we provide a generalization of [39] to arbitrary (sigma-

finite) von Neumann algebras. This version of the improved DPI is qualitatively

similar to (3). The definition of the recovery channel is in fact identical to that

in (3), but we have yet another information-theoretic quantity on the right-hand

side, namely (Theorem 2)

(4) S(ρ|σ)− S(T (ρ)|T (σ)) ≥ Smeas(ασ,T (T (ρ))|ρ).

Here, Smeas is the “measured relative entropy”, defined as the maximum possible

value of the relative entropy restricted to a commutative von Neumann subalgebra.

We show below (Proposition 1) that for s = 1/2, this inequality is sharper than

(3) – though not in general the inequality (2) with the integral outside – for all

ρ, σ. A conceptual advantage of (4) over both (2) and (3) is that it is saturated

in the commutative case, as noted already by [39]. So in this respect (4) is sharp

unlike its predecessors.

Our proof technique is similar in several respects to that in [39] and related

antecedents such as [29] in that we also use interpolation arguments for Lp-norms.

However, there are also some key differences requiring technical modifications: for

instance, the operators ln ρ or lnσ no longer exist for general von Neumann alge-

bras or the use of ordinary Lp (Schatten)-norms is prohibited since a general von

Neumann algebra does not have a trace. As in our previous papers [17, 16] – re-

ferred to as papers I, II – our solution to the first problem is to work entirely with

1After a preprint of the present paper was released, the authors of [28] posted a substantially
changed, new version of their original preprint. Their new version contained results similar to
ours, such as trace inequalities and Theorem 2. We emphasize that their methods and results
use rather different techniques and were found independently from ours.
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Araki’s relative modular operator, the log of which can roughly be viewed as a

difference between ln ρ and lnσ. Likewise, as in [17, 16], our solution to the second

problem is to work with the Araki–Masuda non-commutative Lp-norms [8] which

are very closely related to the sandwiched relative Rényi entropies.2 For these

norms, we require a complex interpolation theory, see Lemma 1, which general-

izes a result in [17]. This result is then applied to a specially constructed analytic

family of vectors and combined with certain cutoff techniques for appropriately

extended domains of analyticity in a similar way to [17]. However, in [17, 16], such

cutoff techniques were needed to control the limit of the Araki–Masuda norms as

p→ 2, whereas in the present paper, it is the limit p→ ∞ which is relevant. The

regularization is necessary here to apply the powerful technique of bounded per-

turbations of normal states of a von Neumann algebra, and a (somewhat modified)

version of the Lie–Trotter product formula for von Neumann algebras [4]. These

ideas go beyond [17, 16] and also yield various new “trace” inequalities for von

Neumann algebras which could be of independent interest.

This paper is organized as follows. In Section 2 we review some prerequisite

notions from the theory of von Neumann algebras. In Section 3 we establish an

interpolation theorem for the Araki–Masuda Lp-norms, which we apply in Sec-

tion 4 to obtain generalizations of various known multi-trace inequalities to von

Neumann algebras. In Section 5 we establish our main result, Theorem 2. The

definition of the Lp-norm and a summary of some of its properties relevant for

this paper is relegated to the appendix.

§2. Von Neumann algebras and modular theory

Let A =Mn(C). The fundamental representation of this algebra is on Cn, but one
can also work in the “standard” Hilbert space (H ≃Mn(C) ≃ Cn ⊗Cn). Vectors
|ζ⟩ in H are thus identified with matrices ζ ∈Mn(C). The space H ≃Mn(C) is
both a left and right module for A,

(5) l(a)|ζ⟩ = |aζ⟩, r(b)|ζ⟩ = |ζb⟩,

and the inner product on H is the Hilbert–Schmidt inner product ⟨ζ1|ζ2⟩ =

Tr(ζ∗1 ζ2). A mixed state, represented by a density matrix ω, gives rise to a lin-

ear functional on A by

(6) ω(a) = Tr(ωa),

2[28] use a somewhat different approach to Lp-norms to circumvent the absence of a tracial
state in the general von Neumann algebra setting. Their approach appears to us less natural for
the purposes of this paper.
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where the functional and the state are denoted by the same symbol. These linear

functionals are alternatively characterized by the properties ω(a∗a) ≥ 0, ω(1) = 1.

A (σ-finite) von Neumann algebra in standard form M is an ultra-weakly

closed linear subspace of the bounded operators on a Hilbert space H such that

the following properties hold, and are assumed throughout this paper: M should

contain 1, be closed under products and the ∗-operation, and it should have a

cyclic and separating vector |ψ⟩ ∈ H . Cyclic and separating means that M|ψ⟩
is dense in H and m|ψ⟩ = 0 implies m = 0. In the matrix example, ψ should

therefore be invertible. The set of ultra-weakly continuous positive normalized

linear functionals (thus satisfying ω(a∗a) ≥ 0, ω(1) = 1) is called S (M). For a

detailed account of von Neumann algebras see [41, 42, 43].

Associated with a von Neumann algebra in standard form3 is a convex cone

P♮
M ⊂ H , called the “natural cone” and sometimes also denoted P

1/4
M (see

appendix item (4) for further explanation of this notation), and an anti-linear

involution J , called “modular conjugation” leaving this cone elementwise invariant.

A possible choice of this non-unique “natural cone” for A = Mn(C) is the subset

of positive semi-definite matrices in H , and in this case, J |ζ⟩ = |ζ∗⟩. A general

property of J , which is easily verified in this example, is that JMJ = M′, the

latter meaning the commutant of M on H .

Going back to the case of a general von Neumann algebra M in standard

form acting on H , and given vectors |ψ⟩, |η⟩, |ζ⟩ ∈ P♮
M and m ∈ M, one de-

fines following Araki [5] a conjugate linear operator Sη,ψ with domain D(Sη,ψ) =

M|ψ⟩ ⊕ (1− πM′
(ψ))H by

(7) Sη,ψ
(
m|ψ⟩+ (1− πM′

(ψ))|ζ⟩
)
= πM(ψ)m∗|η⟩;

see also [8, App. C] for many more details. Here, πM(ψ) ∈ M is the orthogonal

projection onto the closure of the subspace M′|ψ⟩ and πM′
(ψ) ∈ M′ that onto the

closure of M|ψ⟩. The definition is consistent because mπM(ψ) = 0 if m|ψ⟩ = 0.

One shows that Sη,ψ is a closable operator and denotes the closure by S̄η,ψ. By

standard results in operator theory, such an operator has a polar decomposition,

which for |ψ⟩, |η⟩ ∈ P♮
M is given by the first equality in

(8) S̄η,ψ = J∆
1/2
η,ψ, S̄∗

η,ψS̄η,ψ = ∆η,ψ.

One calls the self-adjoint, non-negative operator ∆
1/2
η,ψ (with domain D(S̄η,ψ))

the (square root of the) “relative modular operator”. Its support is s(∆η,ψ) =

3More precisely, standard form is actually defined by the combined structure (M,H ,P♮
M, J),

which can be recovered if we have a cyclic and separating vector.
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πM(η)πM′
(ψ) and complex powers ∆z

η,ψ are understood as 0 on the orthogo-

nal complement of this support. The term ∆η,ψ depends on |η⟩ only through its

associated state functional ωη, defined as in

(9) ωη(m) = ⟨η|mη⟩ ∀m ∈ M.

The modular conjugation and relative modular operators of A =Mn(C) with the

above choice of natural cone are

(10) J |ζ⟩ = |ζ∗⟩, ∆η,ψ = l(ωη)r(ω
−1
ψ ),

where we invert the density matrix ωψ on the range of πM(ψ), which in the case

at hand is the orthogonal projector onto the complement of the null space of ωψ.

For a general von Neumann algebra, every positive linear functional ω ∈
S (M) corresponds to one and only one vector |ξω⟩ in the natural cone P♮

M such

that ω(a) = ⟨ξω|aξω⟩. Vice versa, any vector |ψ⟩ (in the natural cone or not) gives

rise to a linear functional as in (9). For A =Mn(C), this linear functional is identi-
fied with the density matrix ωψ = ψψ∗ and the natural cone vectors correspond to

the unique positive square root of the corresponding density matrix, now thought

of as pure states in the standard Hilbert space. So the vector representative of

a density matrix ω in the natural cone is |ξω⟩ = |ω1/2⟩. An important fact used

implicitly in several places below is that if two linear functionals are close in norm,

then the vectors in the natural cone are as well, and vice versa:

(11) ∥ξψ − ξη∥2 ≤ ∥ωη − ωξ∥ ≤ ∥ψ + η∥ ∥ψ − η∥,

where the norm of a linear functional is ∥ω∥ = sup{|ω(m)| : m ∈ M, ∥m∥ = 1}.
In the case A = Mn(C), the latter norm is ∥ω∥ = Tr |ω|, so the first inequality

in the above relation expresses the Powers–Størmer inequality between the trace

norm and the Hilbert–Schmidt norm.

Let us finish this briefest of introductions to von Neumann algebras by sum-

marizing (again) some of our notation.

Notation and conventions. Calligraphic letters A,M, . . . denote von Neumann

algebras, always assumed σ-finite, i.e. they are assumed to have a normal faithful

state. Calligraphic letters H ,K , . . . denote complex Hilbert spaces, and S (M)

denotes the set of all ultra-weakly continuous, positive, normalized linear function-

als on M (“states”), which are in one-to-one correspondence with density matrices

if A =Mn(C). Then M+ is the subset of all non-negative self-adjoint operators in

M, and Ms.a. the subset of all self-adjoint elements of the von Neumann algebra

M. We use the physicist’s “ket”-notation |ψ⟩ for vectors in a Hilbert space. The
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scalar product is written as

(12) (|ψ⟩, |ψ′⟩)H =: ⟨ψ|ψ′⟩

and is anti-linear in the first entry. The norm of a vector is written simply as

∥|ψ⟩∥ =: ∥ψ∥. The action of a linear operator T on a ket is sometimes written

as T |ϕ⟩ = |Tϕ⟩. In this spirit, the norm of a bounded linear operator T on H is

written as ∥T∥ = sup|ψ⟩ : ∥ψ∥=1 ∥Tψ∥.

§3. Interpolation of non-commutative Lp-norms

For the algebra A =Mn(C), the standard Hilbert space H ∼=Mn(C) on which A
acts by left multiplication can be equipped with various norms. We have already

mentioned that the 2-, or Hilbert–Schmidt, norm

(13) ∥ζ∥2 = (Tr ζζ∗)1/2

actually defines the Hilbert space norm on H (so the subscript “2” is generally

omitted). For p > 0, one can generalize this to

(14) ∥ζ∥p = [Tr(ζζ∗)p/2]1/p.

Given a faithful vector |ψ⟩ ∈ H with associated linear functional ωψ(a)= ⟨ψ|aψ⟩=
Tr(aωψ) (Hilbert–Schmidt inner product), one can also define the yet more general

norms

(15) ∥ζ∥p,ψ = [Tr(ζω
2/p−1
ψ ζ∗)p/2]1/p.

The faithful condition is relevant for p > 2 as it ensures that ωψ is invertible. The

generalized Lp-norms ∥ζ∥p,ψ evidently reduce to a multiple of the usual Lp-norms

if ωψ(a) = Tr(a)/n is the tracial state. A general von Neumann algebra M in

standard form need not have such a tracial state, but Araki and Masuda [8] have

shown that one can still define analogs of the above “non-commuting Lp-norms”

for p ≥ 1 by variational expressions based on relative modular operators, involving

a fixed cyclic and separating vector |ψ⟩ in the natural cone of the von Neumann

algebra M in standard form; see also [25, 26, 10]. Their basic definitions and

properties used in this article are recalled for the convenience of the reader in the

appendix. The following interpolation result for Araki–Masuda Lp-norms is one of

the main workhorses of this article.

Lemma 1. Let |ψ⟩ ∈ H be a cyclic and separating vector in the natural cone

of a von Neumann algebra M in standard form acting on H . For 0 < θ < 1/2,
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p0, p1 ∈ [1, 2] or p0, p1 ∈ [2,∞], let

(16)
1

pθ
=

1− 2θ

p0
+

2θ

p1
.

Then, if |G(z)⟩ is an H -valued function holomorphic on the strip S1/2 = {0 <
Rez < 1/2} that is bounded and weakly continuous on the closure S̄1/2 and such

that

(17) sup
t∈R

∥G(it)∥p0,ψ, sup
t∈R

∥G(1/2 + it)∥p1,ψ <∞,

then we have

ln ∥G(θ)∥pθ,ψ ≤
∫ ∞

−∞
dt
(
(1− 2θ)αθ(t) ln ∥G(it)∥p0,ψ

+ (2θ)βθ(t) ln ∥G(1/2 + it)∥p1,ψ
)
,(18)

where

(19)

αθ(t) =
sin(2πθ)

(1− 2θ)(cosh(2πt)− cos(2πθ))
,

βθ(t) =
sin(2πθ)

2θ(cosh(2πt) + cos(2πθ))
.

Remark. Regarding the statement of Lemma 1, let us further note the following:

(1) The condition that supt∈R ∥G(it)∥p0,ψ, supt∈R ∥G(1/2+it)∥p1,ψ are both finite

is redundant when p0, p1 ∈ [1, 2] because (see appendix item (8)) ∥ζ∥p,ψ ≤
∥ζ∥ ∥ωψ∥1/p−1/2 for all |ζ⟩ ∈ H , p ∈ [1, 2] (see e.g. [10, Lem. 8]), and |G(z)⟩
is already assumed to be bounded in H on S̄1/2.

(2) Bound (17) means that the integrand in (18) is bounded above, but can be

equal to −∞. Thus, the integral is definite in the Lebesgue sense, but can be

equal to −∞. In the latter case, the left-hand side of (18) is also −∞.

Proof of Lemma 1. In this proof we implicitly use the cyclic and separating prop-

erty of |ψ⟩ in order to apply the results by [8].

(1) Assume that p0, p1 ∈ [1, 2]. This part of the proof is taken from paper I

([17]) up to minor modifications and only included for convenience. Denote the

dual of a Hölder index p by p′, defined so that 1/p+ 1/p′ = 1. The article [8] has

shown that the non-commutative Lp(M, ψ)-norm of a vector |ζ⟩ ∈ H relative to

|ψ⟩ can be characterized by

(20) ∥ζ∥p,ψ = sup
{
|⟨ζ|ζ ′⟩| : |ζ ′⟩ ∈ Lp′(M, ψ), ∥ζ ′∥p′,ψ ≤ 1

}
.
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It has furthermore been shown ([8, Thm. 3]) that when ∞ > p′ ≥ 2, any vector

|ζ ′⟩ ∈ Lp′(M, ψ) has a unique generalized polar decomposition, i.e. can be written

in the form |ζ ′⟩ = u∆
1/p′

ϕ,ψ |ψ⟩, where u is a unitary or partial isometry from M
and |ϕ⟩ ∈ H . Furthermore, it has been shown that ∥ζ ′∥p′,ψ = ∥ϕ∥2/p′ . Therefore,
unless p′θ = ∞ (meaning p1 = p0 = 1), we may choose a u and a normalized |ϕ⟩,
so that

(21) ∥G(θ)∥pθ,ψ = ⟨u∆1/p′θ
ϕ,ψ ψ|G(θ)⟩+ ε,

up to an arbitrarily small error ε > 0 which we will let go to zero at the end. Here

we defined pθ as in the statement, so that

(22)
1

p′θ
=

1− 2θ

p′0
+

2θ

p′1
.

Excluding for the moment the case p1 = p0 = 1 which is treated at the end, we

can therefore define an auxiliary function f(z) by

(23) f(z) = ⟨u∆2z̄/p′1+(1−2z̄)/p′0
ϕ,ψ ψ|G(z)⟩,

noting that

(24) f(θ) = ∥G(θ)∥pθ,ψ − ε

by construction. By Tomita–Takesaki theory, f(z) is holomorphic in S1/2 and

bounded and continuous on the closure S̄1/2. For the values at the boundary of

the strip S1/2, we estimate

|f(it)| =
∣∣⟨u∆−2it(1/p′1−1/p′0)

ϕ,ψ ∆
1/p′0
ϕ,ψ ψ|G(it)⟩

∣∣
≤ ∥u∆−2it(1/p′1−1/p′0)

ϕ,ψ ∆
1/p′0
ϕ,ψ ψ∥p′0,ψ∥G(it)∥p0,ψ

≤ ∥∆−2it(1/p′1−1/p′0)
ϕ,ψ ∆

1/p′0
ϕ,ψ ψ∥p′0,ψ∥G(it)∥p0,ψ

≤ ∥ϕ∥2/p
′
0∥G(it)∥p0,ψ

≤ ∥G(it)∥p0,ψ.(25)

Here we used the version of Hölder’s inequality proved by [8], we used ∥a∗ζ∥p′0,ψ ≤
∥a∥ ∥ζ∥p′0,ψ for any a ∈ A (see [8, Lem. 4.4]), and we used

∥∆−2it(1/p′1−1/p′0)
ϕ,ψ ∆

1/p′0
ϕ,ψ ψ∥p′0,ψ ≤ ∥ϕ∥2/p

′
0 ,

which we will prove momentarily. A similar chain of inequalities also gives

(26) |f(1/2 + it)| ≤ ∥G(1/2 + it)∥p1,ψ.
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To prove the remaining claim, let |ζ ′⟩ = ∆z
ϕ,ψ|ψ⟩ and z = 1/p′0 + 2it. Then we

have, using the variational characterization by [8] of the Lp′0(M, ψ)-norm when

p′0 ≥ 2,

∥ζ ′∥p′0,ψ = sup
{
∥∆1/2−1/p′0

χ,ψ ∆z
ϕ,ψψ∥ : ∥χ∥ = 1

}
= sup

{
∥∆1/2−1/p′0−2it

χ,ψ ∆
1/p′0+2it
ϕ,ψ ψ∥ : ∥χ∥ = 1

}
= sup

{
∥∆1/2−1/p′0

χ,ψ [Dχ : Dϕ]2t∆
1/p′0
ϕ,ψ ψ∥ : ∥χ∥ = 1

}
≤ sup

{
∥∆1/2−1/p′0

χ,ψ a∆
1/p′0
ϕ,ψ ψ∥ : ∥χ∥ = 1, a ∈ M, ∥a∥ = 1

}
≤ sup

{
∥a∆1/p′0

ϕ,ψ ψ∥p′0,ψ : a ∈ M, ∥a∥ = 1
}
,(27)

with [Dχ : Dϕ]2t the Connes cocycle, which is isometric. Using [8, Lem. 4.4], we

continue this estimation as

(28) ≤ sup
a∈M,∥a∥=1

∥a∥ ∥∆1/p′0
ϕ,ψ ψ∥p′0,ψ = ∥ϕ∥2/p

′
0 ,

which gives the desired result.

To get (18), we use the Hirschman improvement of the Hadamard three lines

theorem [23].

Lemma 2. Let g(z) be holomorphic on the strip S1/2, continuous and uniformly

bounded on the closure S̄1/2. Then, for θ ∈ (0, 1/2),

(29) ln |g(θ)| ≤
∫ ∞

−∞
(βθ(t) ln |g(1/2 + it)|2θ + αθ(t) ln |g(it)|1−2θ) dt,

where αθ(t), βθ(t) are as in Lemma 1.

Applying this to g = f gives (18), with the left-hand side replaced by

∥G(θ)∥pθ,ψ − ε. Since ε > 0 can be arbitrarily small, this proves the lemma for

p0, p1 ∈ [1, 2] except for the case p0 = p1 = 1 which we had left out for special

consideration.

In that case, we first find m ∈ M such that ∥m∥ ≤ 1 and such that

(30) ∥G(θ)∥1,ψ = ⟨mψ|G(θ)⟩+ ε,

which is possible by the characterization of the L1-norm, see e.g. paper I ([17,

Lem. 3]) or [8]. Then we set f(z) = ⟨mψ|G(z)⟩, and the rest of the argument is

similar to before.
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(2) Now we assume that p0, p1 ∈ [2,∞]. Then [8] has shown that for any4

|ζ ′+⟩ ∈ L+
p′(M, ψ) := Lp′ -closure of P

1/(2p′)
M , 1 ≤ p′ ≤ 2, there is |ϕ⟩ ∈ H such

that for all |ζ⟩ ∈ Lp(M, ψ) we have

(31) ⟨ζ ′+|ζ⟩ = ⟨∆1/2
ϕ,ψψ|∆

(1/p′)−(1/2)
ϕ,ψ ζ⟩

and such that ∥ζ ′+∥p′,ψ = ∥ϕ∥2/p′ . Furthermore, by the non-commutative Hölder

inequality proven in [8], there exists up to an arbitrarily small error ε > 0 an

element |ζ ′⟩ ∈ Lp′θ (M, ψ) such that

(32) ∥G(θ)∥pθ,ψ = ⟨ζ ′|G(θ)⟩+ ε, ∥ζ ′∥p′θ,ψ = 1.

Thus, since by [8, Thm. 3] we may write |ζ ′⟩ = u|ζ ′+⟩, u ∈ M with u∗u ≤ 1 and

|ζ ′+⟩ ∈ L+
p′θ
(M, ψ), we have

∥G(θ)∥pθ,ψ − ε = ⟨∆1/2
ϕ,ψψ|∆

1/p′θ−1/2
ϕ,ψ u∗G(θ)⟩

= ⟨∆1/2
ϕ,ψψ|∆

(1−2θ)/p′0+(2θ)/p′1−1/2
ϕ,ψ u∗G(θ)⟩(33)

and ∥ϕ∥ = 1. Similarly to the previous case we now consider the function

(34) f(z) = ⟨∆1/2
ϕ,ψψ|∆

(1−2z)/p′0+(2z)/p′1−1/2
ϕ,ψ u∗G(z)⟩,

where f is holomorphic for z ∈ S1/2 and continuous and bounded on the closure

S̄1/2, as can be seen by applying the following lemma, which is a slight generaliza-

tion of [13, Lem. 2.1]:

Lemma 3. Suppose |F (z)⟩ is an H -valued function which is analytic on S1/2
and bounded and weakly continuous on the closure S̄1/2. Let α(z) = az + b,

a, b ∈ R be a linear map from S̄1/2 to itself, and A a self-adjoint positive op-

erator such that D(A1/2) is dense, and such that C0 := supt∈R ∥Aα(it)F (it)∥,
C1 := supt∈R ∥Aα(1/2+it)F (1/2 + it)∥ are both finite.

Then |Aα(z)F (z)⟩ is an analytic function of S1/2 which is bounded and weakly

continuous on the closure S̄1/2.

Proof. First let |η⟩ ∈ D(A1/2). Then z 7→ ⟨Aα(z̄)η|F (z)⟩ is analytic on S1/2 and

bounded and continuous on the closure S̄1/2 (because Aα(z)|η⟩ is strongly and

|F (z)⟩ is weakly continuous on S̄1/2). On the upper and lower boundaries of the

strip the assumptions give us |⟨Aα(−it)η|F (it)⟩| ≤ C0∥η∥ and |⟨Aα(1/2−it)η|F (1/2+
it)⟩| ≤ C1∥η∥. Therefore, by the Hadamard three lines theorem,

(35)
∣∣⟨Aα(z̄)η|F (z)⟩∣∣ ≤ C∥η∥ (z ∈ S̄1/2, |η⟩ ∈ D(A1/2), C = max(C1, C0)).

4The cone P
1/(2p′)
M is defined as the closure of ∆

1/(2p′)
ψ M+|ψ⟩ and its properties are discussed

in [8].
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Since D(A1/2) is a core for Aα(z̄), we conclude that |F (z)⟩ ∈ D(Aα(z)), and more-

over ∥Aα(z)F (z)∥ ≤ C on S̄1/2. The analyticity of the function z 7→ ⟨Aα(z̄)η|F (z)⟩
when |η⟩ ∈ D(A1/2) implies that Aα(z)|F (z)⟩ is analytic in S1/2 as follows. For

arbitrary |χ⟩, z0 ∈ S1/2 we first have for sufficiently small r > 0,∣∣∣∣⟨χ|Aα(z0)F (z0)⟩ − 1

2πi

∫
∂Br(z0)

dz (z − z0)
−1⟨χ|Aα(z)F (z)⟩

∣∣∣∣
≤ 2C∥χ− η∥,(36)

where we have written |χ⟩ = |η⟩ + (|χ⟩ − |η⟩) for some |η⟩ ∈ D(A1/2) and used

the analyticity of ⟨η|Aα(z)F (z)⟩ and ∥Aα(z)F (z)∥ ≤ C on S1/2 to obtain the upper

bound. Then, since D(A1/2) is dense, ∥χ − η∥ can be made arbitrarily small,

hence showing that ⟨χ|Aα(z)F (z)⟩ fulfills Cauchy’s integral formula, and is thus

analytic on S1/2. Thus, Aα(z)|F (z)⟩ is weakly analytic, hence strongly analytic (by

an application of the Banach–Steinhaus principle) on S1/2.
To prove continuity of ⟨χ|Aα(z)F (z)⟩ on S̄1/2 (only continuity at the boundary

is in question), let z0 ∈ ∂S1/2, and let |χ⟩ ∈ H . For fixed ε > 0, we first pick

|η⟩ ∈ D(A1/2) such that ∥η − χ∥ < ε, and then

lim sup
z→z0

∣∣⟨χ|Aα(z)F (z)⟩ − ⟨χ|Aα(z0)F (z0)⟩
∣∣

≤ 2C∥η − χ∥+ lim
z→z0

∣∣⟨η|Aα(z)F (z)⟩ − ⟨η|Aα(z0)F (z0)⟩
∣∣

≤ 2Cε,(37)

using that we already know that ⟨η|Aα(z)F (z)⟩ is continuous on S̄1/2. Hence, the

limit must vanish as ε > 0 was arbitrary.

We apply this lemma to |χ⟩ = ∆
1/2
ϕ,ψ|ψ⟩ = J |ϕ⟩ ∈ H , α(z) = (1 − 2z)/p′0 +

(2z)/p′1 − 1/2 = 1/2− (1− 2z)/p0 − (2z)/p1, A = ∆ϕ,ψ, |F (z)⟩ = u∗|G(z)⟩. Then
we can estimate the boundary values as in ∥Aα(it)F (it)∥ ≤ ∥G(it)∥p0,ψ =: C0 and

∥Aα(1/2+it)F (1/2+ it)∥ ≤ ∥G(1/2+ it)∥p1,ψ =: C1 by a similar calculation to (38).

This implies that the conditions of Lemma 3 are met, hence f(z) is an analytic

function of z ∈ S1/2 which is continuous and bounded on the closure S̄1/2.
For the lower boundary value we next calculate

|f(it)| =
∣∣⟨∆1/2

ϕ,ψψ|∆
−2it(1/p′0−1/p′1)
ϕ,ψ ∆

1/p′0−1/2
ϕ,ψ u∗G(it)⟩

∣∣
≤ ∥∆1/2

ϕ,ψψ∥ ∥∆
1/p′0−1/2
ϕ,ψ u∗G(it)∥

= ∥ϕ∥ ∥∆1/2−1/p0
ϕ,ψ u∗G(it)∥

≤ sup
{
∥∆1/2−1/p0

χ,ψ u∗G(it)∥ : ∥χ∥ = 1
}

= ∥u∗G(it)∥p0,ψ ≤ ∥u∗∥ ∥G(it)∥p0,ψ = ∥G(it)∥p0,ψ,(38)
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using in the last line the variational characterization of the Lp-norms and [8, Lem.

4.4]. A similar chain of inequalities also gives |f(1/2 + it)| ≤ ∥G(1/2 + it)∥p1,ψ.
Claim (18) with the left-hand side replaced by ∥G(θ)∥pθ,ψ − ε then follows from

Hirschman’s improvement as in the previous case (1). Since ε > 0 can be arbitrarily

small, the claim of the lemma follows.

We would now like to remove the cyclic and separating (i.e. faithful) condition

on the state vector |ψ⟩ used for the definition of the Lp-norms. For σ-finite M,

there exists some cyclic and separating vector |η⟩ for M and we put

(39) ωψε = (1− ε)ωψ + εωη

so that |ψε⟩ ∈ P♮
M is now faithful for M and M′, hence cyclic and separating.

Thus, Lemma 1 holds for |ψε⟩ and the obvious idea is to prove the analog of

Lemma 1 for |ψ⟩ from this by taking the limit ε→ 0 in some way.

A lemma that we use to control this limit is the following.

Lemma 4. Let ωψ, ωη, ωψn , ωηn ∈ S (M) be such that limn ∥ωψ − ωψn∥ = 0,

limn ∥ωη − ωηn∥ = 0 and such that ωηn ≤ Cωη, ωψ ≤ Cωψn for some C <∞ and

all n. Then

(40) lim
n

∥(∆α/2
η,ψ −∆

α/2
ηn,ψn

)ζ∥ = 0

for any α ∈ (0, 1), |ζ⟩ ∈ s(∆η,ψ)H ∩ D(∆
α/2
η,ψ ) (where |ψ⟩, |ψn⟩ are taken in the

natural cone).

Proof. In this proof, we use the shorthands ∆ = ∆η,ψ, ∆n = ∆ηn,ψn and use that

|ψ⟩, |ψn⟩ are in the natural cone implicitly when referring to known properties of

the modular operators. Combining the domination conditions ωηn ≤ Cωη, ωψ ≤
Cωψn with the definition of the modular operators and their standard properties

gives by the same argument as in the proof of Lemma 9 in the appendix that

s(∆)∆α
ns(∆) ≤ C2α∆α, α ∈ [0, 1] on D(∆α/2) and in fact s(∆): D(∆α/2) →

D(∆
α/2
n ). In particular, vectors in the domain of a power ∆α/2 intersected with

s(∆)H are always in the domain of the corresponding power ∆
α/2
n

We begin by defining |ζN ⟩ = E∆([0, N ])|ζ⟩ in terms of the spectral decompo-

sition E∆ of the non-negative self-adjoint operator ∆, and then we write

(41) ∥(∆α/2 −∆α/2
n )ζ∥ ≤ ∥(∆α/2 −∆α/2

n )ζN∥+ 2Cα∥∆α/2(ζ − ζN )∥,

using the triangle inequality and the aforementioned fact that s(∆)∆α
ns(∆) ≤

C2α∆α on D(∆α/2) and that both |ζ⟩, |ζN ⟩ are in the range of s(∆). By choosing

N sufficiently large, we can then achieve that the last term on the right-hand side
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of (41) is < ε for all n, so

(42) ∥(∆α/2 −∆α/2
n )ζ∥ ≤ ∥(∆α/2 −∆α/2

n )ζN∥+ ε

for all n.

To deal with the powers in the statement of the lemma, we employ the stan-

dard formula

(43) Xα =
sin(πα)

π

∫ ∞

0

dλλα[λ−1 − (λ+X)−1]

for α ∈ (0, 1), X ≥ 0, which holds on the domain of Xα. So we can use (43)

on the first term on the right-hand side of (42) with X = ∆1/2 and = ∆
1/2
n on

|ζN ⟩ ∈ s(∆)H ∩ D(∆α/2), giving us that

∥(∆α/2 −∆α/2
n )ζN∥

≤ c

∫ ∞

0

dλλα−1
∥∥[(1 + λ∆−1/2)−1 − (1 + λ∆−1/2

n )−1]ζN
∥∥.(44)

Here, and in the rest of this proof, we denote by c any constant depending possibly

on α, C, N , but not n. We split the integration domain into three parts: (0, δ),

(δ, L), (L,∞).

(i) Range (0, δ): In this range, we use∫ δ

0

dλλα−1
∥∥[(1 + λ∆−1/2)−1 − (1 + λ∆−1/2

n )−1]ζN
∥∥

=

∫ δ

0

dλλα
∥∥[(λ+∆1/2)−1 − (λ+∆1/2

n )−1]ζN
∥∥

≤
∫ δ

0

dλλα
{
∥(λ+∆1/2)−1ζN∥+ ∥(λ+∆1/2

n )−1ζN∥
}

≤ 2∥ζN∥
∫ δ

0

dλλα−1 ≤ c∥ζN∥δα(45)

using that ∆,∆n ≥ 0.

(ii) Range (δ, L): By [7, Lem. 4.1],

(46)
∥∥[(λ+∆1/2)−1 − (λ+∆1/2

n )−1]ζN
∥∥→ 0 as n→ ∞

uniformly for λ in the compact set [δ, L].

(iii) Range (L,∞): Recall that the domination assumption gives s(∆)∆ns(∆) ≤
C2∆. The function f : R+ ∋ x 7→ (λ + x−1/2)−2 is bounded and opera-

tor monotone by a standard characterization of such functions (see e.g. [21]),
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thus f(s(∆)∆ns(∆)) ≤ f(C2∆). Then [33, Thm. C] furthermore gives

f(s(∆)∆ns(∆)) ≥ s(∆)f(∆n)s(∆), hence for |ζ⟩ ∈ s(∆)H , we get

∥(1 + λ∆−1/2
n )−1ζN∥ = ⟨ζN |(1 + λ∆−1/2

n )−2ζN ⟩1/2

≤ ⟨ζN |(1 + λC−1∆−1/2)−2ζN ⟩1/2.(47)

Since C ≥ 1, we also have trivially

∥(1 + λ∆−1/2)−1ζN∥ = ⟨ζN |(1 + λ∆−1/2)−2ζN ⟩1/2

≤ ⟨ζN |(1 + λC−1∆−1/2)−2ζN ⟩1/2.(48)

Using these inequalities under the integral (44) gives∫ ∞

L

dλλα−1
∥∥[(1 + λ∆−1/2)−1 − (1 + λ∆−1/2

n )−1]ζN
∥∥

≤
∫ ∞

L

dλλα−1
{
∥(1 + λ∆−1/2)−1ζN∥+ ∥(1 + λ∆−1/2

n )−1ζN∥
}

≤ 2

∫ ∞

L

dλλα−1⟨ζN |(1 + λC−1∆−1/2)−2ζN ⟩1/2

≤ 2CN1/2∥ζN∥
∫ ∞

L

dλλα−2 ≤ c∥ζN∥Lα−1.(49)

Now for our given N , we first choose δ, L so small/large that the contributions

to (44) from (i), (iii), cf. (45), (49), are < ε each (independently of n) and then

n so large that the contribution (ii) from (δ, L) is < ε. Then ∥(∆α/2 −∆
α/2
n )ζ∥ is

< 4ε by (i), (ii), (iii), and (42), and the proof is complete.

The next lemma is a consequence of Lemma 4.

Lemma 5. Let ε ∈ (0, 1), p ∈ [1,∞), |ψ⟩ ∈ P♮
M, |η⟩ ∈ H , and let |ψε⟩ ∈ P♮

M be

the unique vector such that ωψε = (1−ε)ωψ+εωη. Then limε→0+ ∥ζ∥p,ψε = ∥ζ∥p,ψ
for |ζ⟩ ∈ πM′

(ψ)H ∩ Lp(M, ψ) when p ∈ [2,∞) and |ζ⟩ ∈ H when p ∈ [1, 2).

Remark. As the referee has pointed out to us, the lemma follows alternatively

from the general (lower semi-) continuity properties of the Lp-norms; see item (10)

in the appendix and references therein. However, the proof of these goes through a

relatively non-trivial identification of the Araki–Masuda Lp-norms with Lp-norms

defined in a different framework; see [26, 27, 22]. We therefore think that it is still

useful to have a direct proof.
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Proof of Lemma 5. Case p ∈ (2,∞). In combination with ωψ ≤ (1 − ε)−1ωψε ,

Lemma 9 gives

(50) lim sup
ε→0

∥ζ∥p,ψε ≤ ∥ζ∥p,ψ.

We need to get a similar relation for lim inf. Let δ > 0 be small but fixed. We can

pick a unit vector |ϕ⟩ such that ∥ζ∥ψ,p ≤ ∥∆(1/2)−(1/p)
ϕ,ψ ζ∥+ δ/2 by the variational

definition of the Lp-norm. The condition that |ζ⟩ ∈ Lp(M, ψ) means in particular

that s(∆ϕ,ψ)|ζ⟩ ∈ D(∆
(1/2)−(1/p)
ϕ,ψ ). We also note that ∥ψε − ψ∥2 ≤ ∥ωψε − ωψ∥ ≤

2ε→ 0, implying that the conditions of Lemma 4 are met under the replacements

|ψn⟩ → |ψε⟩, |ηn⟩ → |ϕ⟩, |ζ⟩ → s(∆ϕ,ψ)|ζ⟩, (α/2) → (1/2) − (1/p) (using that

p ∈ (2,∞)). Lemma 4 and the triangle inequality therefore show that there is an

ε > 0 such that

∥ζ∥p,ψ ≤ ∥∆(1/2)−(1/p)
ϕ,ψ ζ∥+ δ/2

≤ ∥∆(1/2)−(1/p)
ϕ,ψε

ζ∥+ ∥(∆(1/2)−(1/p)
ϕ,ψ −∆

(1/2)−(1/p)
ϕ,ψε

)ζ∥+ δ/2

= ∥∆(1/2)−(1/p)
ϕ,ψε

ζ∥+ ∥(∆(1/2)−(1/p)
ϕ,ψ −∆

(1/2)−(1/p)
ϕ,ψε

)s(∆ϕ,ψ)ζ∥+ δ/2

≤ ∥ζ∥p,ψε + δ/2 + δ/2,(51)

meaning that

(52) lim inf
ε→0

∥ζ∥p,ψε ≥ ∥ζ∥p,ψ.

The proof of Lemma 5 is complete by (50), (52).

Case p ∈ (1, 2). (1) We first show lim supε→0 ∥ζ∥p,ψε ≤ ∥ζ∥p,ψ. By the properties

of the Lp-norms (see appendix item (10)), we may assume without loss of generality

that |ζ⟩ is in the natural cone. Consider a unit vector |ϕ⟩ in the natural cone

such that, for a given δ > 0, ∥ζ∥p,ψ ≥ ∥∆−α
ϕ,ψζ∥ − δ and πM(ϕ) ≥ πM(ζ) (here

α = 1/p − 1/2 ∈ (0, 1/2)). Such a vector must exist by the variational definition

of the Lp-norm; see the appendix. We set (δ ≥ 0)

(53) ωϕδ = ωϕ + δωζ ,

with |ϕδ⟩ in the natural cone, implying that πM(ϕδ) = πM(ϕ) and ωϕ ≤ ωϕδ .

Standard properties of the natural cone also imply that limδ→0 ∥ϕδ − ϕ∥ = 0.

Furthermore, the following relations follow directly from the definitions of the

modular operators and their basic properties, combined with ωψ ≤ (1 − ε)−1ωψε
and with the operator monotonicity of the function x2α: ∆−2α

ϕδ,ψ
≤ ∆−2α

ϕ,ψ ≤ (1 −
ε)−2α∆−2α

ϕ,ψε
. So we get ∥ζ∥p,ψ ≥ ∥∆−α

ϕδ,ψ
ζ∥ − δ, for example. We can also show

|ζ⟩ ∈ D(∆−α
ϕδ,ψε

) for δ > 0 and ε ≥ 0 in the following manner: By [13, Lem. 2.1], it
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suffices to show that ∥∆−1/2
ϕδ,ψε

ζ∥ <∞. Now, δ−1ωϕδ ≥ ωζ implies that |ζ⟩ = m′|ϕδ⟩
for some m′ ∈ M′ such that ∥m′∥ ≤ δ−1/2. Then

(54) ∥∆−1/2
ϕδ,ψε

ζ∥ = ∥(∆′
ψε,ϕδ

)1/2m′ϕδ∥ = ∥(m′)∗ψε∥ ≤ δ−1/2∥ψε∥.

We next claim that, for δ > 0,

(55) lim
ε→0

∥∆−α
ϕδ,ψε

ζ∥ = ∥∆−α
ϕδ,ψ

ζ∥.

Assuming that this is the case, we get

(56) ∥ζ∥p,ψ ≥ lim
ε→0

∥∆−α
ϕδ,ψε

ζ∥ − δ ≥ (1 + δ)−α lim sup
ε→0

∥ζ∥p,ψε − δ

and the claim is proven since δ > 0 can be taken arbitrarily small. To demonstrate

(55), we use the integral representation (again δ > 0)

(57) ∞ > ∥∆−α
ϕδ,ψε

ζ∥2 =
sin(2πα)

π

∫ ∞

0+
λ2α⟨ζ|[λ−1 − (λ+∆−1

ϕδ,ψε
)−1]|ζ⟩dλ,

which holds since |ζ⟩ ∈ D(∆−α
ϕδ,ψε

). The integrand is pointwise (for λ > 0) non-

negative, decreasing as ε→ 0 and in fact convergent to ⟨ζ|(λ−1−(λ+∆−1
ϕδ,ψ

)−1)|ζ⟩,
by an easy adaption of [6, Thm. 4.1]. (To see this, write (λ+∆−1

ϕδ,ψε
)−1πM(ϕ) =

J(iλ1/2 + ∆
1/2
ψε,ϕδ

)−1(−iλ1/2 + ∆
1/2
ψε,ϕδ

)−1πM′
(ϕ)J and note that the proof of [6,

Thm. 4.1] goes through for r = ±iλ1/2.) This demonstrates (55).

(2) We next show lim infε→0 ∥ζ∥p,ψε ≥ ∥ζ∥p,ψ. For given δ > 0 we can find a

cyclic and separating unit vector |χδ⟩ from the natural cone such that ∥ζ∥p,ψε ≥
∥∆−α

χδ,ψε
ζ∥ − δ from the variational definition of the Lp-norm. By using ∆−2α

χδ,ψε
≥

(1− ε)2α∆−2α
χδ,ψ

, the right-hand side is greater than or equal to (1− ε)α∥ζ∥p,ψ − δ,

again by the variational definition. The claim is proven since δ > 0 can be taken

arbitrarily small.

Case p ∈ {1, 2}. These cases follow from the well-known continuity properties

of the fidelity (for p = 1) (see e.g. paper I ([17, Lem. 9])) and the relationship

of the L2-norm with the projected Hilbert space norm (for p = 2); see appendix

item (1).

We can now prove the following theorem:

Theorem 1. The conclusion of Lemma 1 continues to hold for arbitrary vectors

|ψ⟩ in the natural cone and θ ∈ (0, 1/2) such that ∥G(θ)∥pθ,ψ <∞.
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Proof. Case p0, p1 ∈ [2,∞]. Take a small ε > 0, a faithful normal state ωη, and

define the vectors |ψε⟩ in the natural cone as in (39). Then |ψε⟩ is cyclic and

separating for M. The condition ωψ ≤ (1−ε)−1ωψε and Lemma 9 in the appendix

give

(58)
∥πM′

(ψ)G(1/2 + it)∥p1,ψε ≤ (1− ε)(1/p1)−(1/2)∥G(1/2 + it)∥p1,ψ,

∥πM′
(ψ)G(it)∥p0,ψε ≤ (1− ε)(1/p0)−(1/2)∥G(it)∥p0,ψ

for all t ∈ R. It follows that the assumptions of Lemma 1 apply to the vector-valued

function πM′
(ψ)|G(z)⟩ and the vectors |ψε⟩. This gives

(59) lim sup
ε→0

ln ∥πM′
(ψ)G(θ)∥pθ,ψε ≤ right-hand side of equation (18).

The lim sup is equal to ln ∥πM′
(ψ)G(θ)∥pθ,ψ = ln ∥G(θ)∥pθ,ψ by Lemma 5 provided

that pθ ∈ [2,∞), which is the case unless p1 = p0 = ∞ (so pθ = ∞).

For p1 = p0 = ∞, (59) still holds but Lemma 5 as stated does not control the

lim sup. However, we get convergence of limε→0 ∥πM′
(ψ)G(θ)∥p,ψε = ∥G(θ)∥p,ψ <

∞ for any Hölder index 2 ≤ p < ∞. By the monotonicity of the Lp-norms (in

particular Lp(M, ψ) ⊃ L∞(M, ψ)) as stated in [10, Lem. 8] or appendix item (8),

this implies that

(60)
p

p− 2
ln ∥G(θ)∥p,ψ ≤ right-hand side of equation (18) for p0 = p1 = ∞.

Taking the limit p→ ∞ of the expression on the left-hand side and using the limit

in appendix item (8) (also using ∥G(θ)∥∞,ψ < ∞), the statement of the theorem

also follows for p = ∞.

Case p0, p1 ∈ [1, 2]. We define |ψε⟩ in the same manner as before and wish to

apply Lemma 1 to this vector and to the vector-valued function πM′
(ψ)|G(z)⟩.

Standard properties of the Lq-norms (see appendix item (8)) in the range q ∈ [1, 2]

give ∥ζ∥q,ψ ≤ ∥ζ∥ ∥ωψ∥1/q−1/2, so (t ∈ R)

(61)
∥πM′

(ψ)G(1/2 + it)∥p1,ψε ≤ ∥G(1/2 + it)∥ < C1,

∥πM′
(ψ)G(it)∥p0,ψε ≤ ∥G(it)∥ < C0,

with C0, C1 <∞. Thus we can apply Lemma 1, and this gives, with Lemma 5,

(62) ln ∥G(θ)∥pθ,ψ ≤ lim sup
ε→0

(
right-hand side of equation (18)

for ψ → ψε, G(z) → πM′
(ψ)G(z)

)
.

As the integrand on the right-hand side of (62) is bounded from above as a function

of t ∈ R, we can apply the Fatou lemma to pull the lim sup inside the integral,

and then we can use Lemma 5 again. The result follows.



Improved Data-Processing Inequalities 705

§4. Multi-trace inequalities for von Neumann algebras

As applications of Lemma 1 we now prove various inequalities that reduce to

“multi-trace inequalities” in the case of finite type I factors. To apply this and

other results from the literature, it will be assumed in this section that ωψ is

a faithful normalized state on the von Neumann algebra M in standard form,

meaning ωψ(m
∗m) = 0 implies m = 0 for all m ∈ M. We will always take |ψ⟩

to be the vector representative in the natural cone, which is hence cyclic and

separating. However, we mention without proof that with some extra work all

results of this section could be suitably generalized to arbitrary, non-faithful ωψ,

e.g. using Theorem 1 and the approximation trick used in its proof.

Corollary 1. Let a1, . . . , an ∈ M+, r ∈ (0, 1], p ≥ 2. Then

(63)
1

r
ln ∥ar1 · · · arnψ∥p/r,ψ ≤

∫
R
dt βr/2(t) ln ∥a1+it1 · · · a1+itn ψ∥p,ψ.

Proof. We want to choose p1 = p, p0 = ∞, θ = r/2 and

(64) |G(z)⟩ = a2z1 · · · a2zn |ψ⟩

in Lemma 1. Note that |G(z)⟩ is a holomorphic on S1/2 and bounded as well as

continuous on the closure S̄1/2. An elementary calculation shows pθ = p/r. At the

lower boundary of the strip,

(65) ∥G(it)∥p0,ψ = ∥a2it1 · · · a2itn ψ∥∞,ψ = ∥a2it1 · · · a2itn ∥ ≤ 1

because a2itk are isometries, and because we have the isometric identification of

L∞(M, ψ) ∋ a|ψ⟩ 7→ a ∈ M proven in [8]. The term from the upper boundary

satisfies

∥G(1/2 + it)∥p1,ψ = ∥a1+it1 · · · a1+itn ψ∥p,ψ
≤
∏
k

∥ak∥ ∥ψ∥p,ψ

=
∏
k

∥ak∥ ∥ψ∥2/p.(66)

So Lemma 1 is applicable, the term from the lower boundary does not contribute,

and we obtain the statement.

Another corollary of a similar nature is the following:

Corollary 2 (Araki–Lieb–Thirring inequality). For r ≥ 2, |ζ⟩ ∈ H there holds

(67) ∥ζ∥2r,ψ ≤ ∥∆r/4
ζ,ψψ∥

4/r.
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Proof. A proof for this was given first by [30] (in a somewhat different setting) and

later (essentially in our setting) in [10, Thm. 12]. So the only point is to show an

alternative proof. We may assume that ∥∆r/4
ζ,ψψ∥ <∞ for otherwise the statement

is trivial. Also, we may assume without loss of generality that |ζ⟩ is in the natural

cone. In Lemma 1, we take |G(z)⟩ = ∆
rz/2
ζ,ψ |ψ⟩, p1 = 2, p0 = ∞, θ = 1/r, so pθ = r.

Then |G(z)⟩ is holomorphic on S1/2 and bounded and weakly continuous on S̄1/2;
see e.g. [4, Lem. 3] or apply Lemma 3.

We compute at the lower boundary of the strip,

∥G(it)∥p0,ψ = ∥∆irt/2
ζ,ψ ψ∥∞,ψ

= ∥∆irt/2
ζ,ψ ∆

−irt/2
ψ,ψ ψ∥∞,ψ

= ∥u(rt/2)ψ∥∞,ψ(68)

= ∥u(rt/2)∥ = 1.

Here, u(t) = ∆it
ζ,ψ∆

−it
ψ,ψ is the Connes cocycle which is an isometry from M and

we used again the isometric identification of L∞(M, ψ) ∋ a|ψ⟩ 7→ a ∈ M proven

in [8]. At the upper boundary of the strip,

(69) ∥G(1/2 + it)∥p1,ψ = ∥∆irt/2+r/4
ζ,ψ ψ∥2,ψ = ∥∆r/4

ζ,ψψ∥ <∞,

which no longer depends upon t, using that the L2-norm is equal to the Hilbert

space norm [8] and that ∆it
ζ,ψ is a unitary operator on its support. On the left-

hand side of Lemma 1, which is applicable, we obtain ln ∥∆1/2
ζ,ψψ∥r,ψ = ln ∥ζ∥r,ψ.

On the right-hand side, the term from the lower boundary does not contribute due

to ln(1) = 0. Since
∫
dt βθ(t) = 1 we obtain the statement.

Let h be a self-adjoint element of M. Following Araki [3], the non-normalized

perturbed state |ψh⟩ is defined by the absolutely convergent series

(70) |ψh⟩ =
∞∑
n=0

∫ 1/2

0

ds1

∫ s1

0

ds2 · · ·
∫ sn−1

0

dsn∆
sn
ψ h∆

sn−1−sn
ψ h · · ·∆s1−s2

ψ h|ψ⟩,

which can also be written as e(ln∆ψ+h)/2|ψ⟩ [4]. This technique of perturbations

has been generalized to semi-bounded – instead of bounded – operators by [15];

see also [32, Sect. 12]. The perturbations, h, that would normally be in Ms.a.,

are in this framework generalized to so-called “extended-valued upper bounded

self-adjoint operators affiliated with M”, the space of which is called Mext. More

precisely, h ∈ Mext if
5

5Our conventions differ from the literature such as [15] in the sense that −h would be in
Mext as defined there.
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(i) it is an affine, upper semi-continuous map S (M) ∋ σ 7→ σ(h) ∈ R ∪ {−∞},
and

(ii) the set {σ(h) : σ ∈ S (M)} is bounded from above.

For any “operator” h ∈ Mext, one shows that it is consistent to make the following

definition:

Definition 1 (See [15, Thm. 3.1]). If h ∈ Mext, the perturbed state σh of a nor-

mal state σ ∈ S (M) , is given by the unique extremizer of the convex variational

problem6

(71) c(σ, h) = sup
{
ρ(h)− S(ρ|σ) : ρ ∈ S (M)

}
provided the sup is not −∞.

The condition c(σ, h) > −∞ holds for example if h ∈ Ms.a. is an ordinary

self-adjoint element of the von Neumann algebra M, and in this case the above

“thermodynamic” definition of the perturbed state is up to normalizations equiv-

alent to Araki’s “perturbative” definition (70):

(72) c(σ, h) = ln ∥ηh∥2, σh(m) = ⟨ηh|m|ηh⟩/∥ηh∥2,

wherein |η⟩ is a vector representer of the state σ; see [15, Ex. 3.3]. Furthermore,

h ∈ Mext has the spectral decomposition [15, Prop. 2.13(B)]

(73) h =

∫ c

−∞
λEh(dλ)−∞ · q ≡ hc −∞ · q.

Here, q ∈ M is the projector onto the subspace where h is −∞, and the spectral

measure Eh(dλ) of hc takes values in the projections in (1 − q)M(1 − q), so it

commutes with q. The term hc is a self-adjoint operator affiliated with M such

that σ(h) = σ(hc) whenever σ is a normal linear functional on M having support

s(σ) ≤ (1− q).

Corollary 3 (Generalized Golden–Thompson inequality). For hi ∈ Mext, ∥ψ∥ =

1 there holds

(74) ln ∥ψh1+···+hk∥2 ≤
∫
R
dt β0(t) ln

{∥∥∥∥ k∏
j=1

e(1/2+it)hjψ

∥∥∥∥∥∥∥∥ 1∏
j=k

e(1/2−it)hjψ

∥∥∥∥}.
Remark. By (73) and standard theorems for self-adjoint operators (e.g. [38, Thm.

VIII.7(b)]), the functions t 7→
∏
j e

(1/2+it)hj |ψ⟩ (any ordering of the factors) are

6S(ρ|σ) is the relative entropy defined in (92).
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strongly continuous, and they are also bounded uniformly in t ∈ R in norm due to

the semi-bounded nature of hj expressed in (73). Thus the integral in (74) is well

defined and definite (but could be −∞) in the Lebesgue sense.

Proof of Corollary 3. Case I. First we assume each hj ∈ Ms.a., i.e. it is bounded.

We let

(75) |G(z)⟩ = ∆
z/2
ψ ezh1 · · · ezhk |ψ⟩.

This family of vectors is analytic on S1/2 and uniformly bounded and weakly

continuous on the closure, for instance using Lemma 3. In Lemma 1, we would

like to use this with p1 = 2, p0 = ∞, θ = 1/n, n ∈ 2N, so pθ = n. At the lower

boundary of S1/2, we get

(76) ∥G(it)∥∞,ψ = ∥ςtψ(eith1 · · · eithk)|ψ⟩∥∞,ψ = ∥ςtψ(eith1 · · · eithk)∥ = 1,

where we used the isometric identification of L∞(M, ψ) ∋ a|ψ⟩ 7→ a ∈ M proven in

[8], and where ςtψ = Ad∆it
ψ is the modular automorphism. At the upper boundary

of S1/2, we get

(77) ∥G(1/2 + it)∥2,ψ = ∥∆1/4
ψ e(1/2+it)h1 · · · e(1/2+it)hkψ∥,

using this time that the L2-norm is equal to the Hilbert space norm as proven in

[8]. By an application of the Hadamard three lines theorem (84), the right-hand

side is uniformly bounded in t.

Thus, the assumptions of Lemma 1 are met. Only the term from the upper

boundary makes a contribution in the integral, so we have

ln ∥∆1/(2n)
ψ eh1/n · · · ehk/nψ∥nn,ψ

≤
∫
R
dt β1/n(t) ln ∥∆

1/4
ψ e(1/2+it)h1 · · · e(1/2+it)hkψ∥2.(78)

Now we consider the left-hand side of this inequality, putting an = eh1/n · · · ehk/n.
By [8, Thm. 3(4)] and [24, Lem. 1], there exists |ϕn⟩ ∈ H such that

(79) ∆
1/n
ϕn,ψ

|ψ⟩ = ∆
1/(2n)
ψ an|ψ⟩, ∥ϕn∥2 = ∥∆1/(2n)

ψ anψ∥nn,ψ.

It follows that

(80) |ϕn⟩ = J∆
1/2
ϕn,ψ

|ψ⟩ = J(∆
1/(2n)
ψ an∆

1/(2n)
ψ )n/2|ψ⟩



Improved Data-Processing Inequalities 709

by a straightforward repeated application of [8, Lem. 7.7(2)]; for the details see

e.g. [24, Lem. 1]. Combining (78), (79), (80), we arrive at

ln ∥(∆1/(2n)
ψ eh1/n · · · ehk/n∆1/(2n)

ψ )n/2ψ∥2

≤
∫
R
dt β1/n(t) ln ∥∆

1/4
ψ e(1/2+it)h1 · · · e(1/2+it)hkψ∥2.(81)

We now take the limit n → ∞ on the left-hand side. Araki’s version of the

Lie–Trotter formula (suitably generalized to k operators h1, . . . , hk, using that

eh1/n · · · ehk/n = 1+ n−1(h1 + · · ·+ hk) +O(n−2) where ∥O(n−2)∥ ≤ Cn−2 for all

n > 0), see [4, Rems 1 and 2], establishes that

s-lim
n

(∆
1/(2n)
ψ eh1/n · · · ehk/n∆1/(2n)

ψ )n/2|ψ⟩ = |ψh1+···+hk⟩

= e(ln∆ψ+h1+···+hk)/2|ψ⟩,(82)

so we get

(83) ln ∥ψh1+···+hk∥2 ≤
∫
R
dt β0(t) ln ∥∆1/4

ψ e(1/2+it)h1 · · · e(1/2+it)hkψ∥2.

On the integrand we finally use the following well-known application of the Hada-

mard three lines theorem (0 ≤ α < 1/2, m ∈ M),

(84) ∥∆α
ψmψ∥ ≤ ∥∆1/2

ψ mψ∥2α∥mψ∥1−2α = ∥m∗ψ∥2α∥mψ∥1−2α

using that z 7→ ln ∥∆z
ψmψ∥ is subharmonic on S1/2. Using this with α = 1/4,

m = e(1/2+it)h1 · · · e(1/2+it)hk gives the statement of the corollary.

Case II. The proof can be generalized to the case when hj ∈ Mext by reducing to

case I via an approximation argument: elements k ∈ Mext can be approximated by

bounded self-adjoint elements kn ∈ Ms.a. by introducing a cutoff in the spectral

decomposition (73), as in

(85) kn =

∫ c

−n
λEk(dλ)− n · q;

in fact one shows that |ψkn⟩ → |ψk⟩ strongly (see [15, Prop. 3.15]). We perform

this cutoff for every hj obtaining an hj,n.

Since the desired inequality holds for hj,n by case I, the proof is completed

by the fact that e(1/2+it)hj,n → e(1/2+it)hj as n → ∞ strongly pointwise in

t ∈ R (and even uniformly in t on finite intervals of R by (73), (85) and stan-

dard results such as [38, p. 314, Exs 20, 21]) and Fatou’s lemma, noting that

t 7→ − ln ∥
∏
j e

(1/2+it)hj,nψ∥ (any ordering of the factors) is continuous in t ∈ R
and bounded below uniformly in n.
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Examples. The following examples are illustrative:

(1) In the previous corollary we take k = 1, h1 = h. Then the norm in the

integrand no longer depends upon t and we can use that
∫
dt β0(t) = 1 to get

(86) ∥ψh∥ ≤ ∥eh/2ψ∥,

as shown previously by [4].

(2) Finite-dimensional type I algebras. Let A = Mn(C). We will work in the

standard Hilbert space (H ≃Mn(C) ≃ Cn⊗ (Cn)∗) and identify state functionals

such as ωψ with density matrices via ωψ(a) = Tr(aωψ). Vectors |ζ⟩ in H are thus

identified with matrices ζ ∈Mn(C). We have already mentioned that the Lp(A, ψ)-
norms can be computed using the expression [10] ∥ζ∥pp,ψ = Tr(ζω

2/p−1
ψ ζ∗)p/2,

where |ζ⟩ ∈ H is identified with a matrix ζ ∈Mn(C) as described. Let ai be non-
negative matrices. The multi-matrix inequality in Corollary 1 then reads, when

ωψ is the normalized tracial state ωψ(a) = Tr(a)/n,

(87) lnTr |ar1 · · · ark|p/r ≤
∫
R
dt βr/2(t) lnTr |a1a1+it2 · · · a1+itk−1 ak|

p,

which generalizes the Araki–Lieb–Thirring inequality (corresponding to k = 2).

This was derived previously in [47, 39], so our result can be seen as a generalization

of these results to arbitrary von Neumann algebras. Corollary 2 is another gener-

alization of this inequality which gives nothing new in the present case. Corollary

3 gives the following inequality. Under the above identification of vectors |ψ⟩ ∈ H

and matrices, the perturbed vector is

(88) |ψh⟩ = |elnψ+h/2⟩

(assuming |ψ⟩ to be in the natural cone, i.e. self-adjoint and non-negative), and

then choosing |ψ = 1n/
√
n⟩ as the vector representing the tracial state on A, we

have

lnTr eh1+···+hk

≤
∫
R
dt β0(t) lnTr |e(1/2)h1e(1/2+it)h2 · · · e(1/2+it)hk−1e(1/2)hk |2,(89)

for any hermitian matrices hi. This reduces to the Golden–Thompson inequality

for k = 2,

(90) Tr eh1+h2 ≤ Tr(eh1eh2),

using that the trace in the integrand no longer depends on t and
∫
dt β0(t) = 1. For

an arbitrary number of matrices this is due to [39], who also explain the relation

with Lieb’s triple matrix inequality (corresponding to the case k = 3).
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§5. Improved DPI and recovery channels

§5.1. Relative entropy and measured relative entropy

For the von Neumann algebra A =Mn(C), the relative entropy between two states

(density matrices) ωψ, ωη is defined by

(91) S(ωψ|ωη) = Tr(ωψ lnωψ − ωψ lnωη).

This may be expressed in terms of the logarithm of the relative modular operator

in (10), and this observation is the basis for Araki’s approach [5, 6, 7] to relative

entropy for general von Neumann algebras. The main technical difference in the

general case is that the individual terms in the above expression, such as the von

Neumann entropy −Tr(ωψ lnωψ), are usually infinite. Thus, from a mathematical

viewpoint, the relative but not the absolute entropy is the primary concept.

Let (M, J,P♮
M,H ) be a von Neumann algebra in standard form acting on a

Hilbert space H , with natural cone P♮
M and modular conjugation J , and let ωψ,

ωη be normal state functionals with vector representatives |ψ⟩, |η⟩ in the natural

cone. According to [5, 6, 7], if πM(η) ≥ πM(ψ), the relative entropy may be defined

in terms of them by7

(92) S(ωψ|ωη) = − lim
α→0+

⟨ψ|∆α
η,ψψ⟩ − 1

α
,

otherwise it is by definition infinite. Araki’s definition of S(ωψ|ωη) is independent
of the choice of natural cone P♮

M and it still satisfies the DPI (1) ([45]) along with

many other properties; see e.g. [32]. For generalizations of S in various directions

in the setting of von Neumann algebras, see e.g. [22].

For t ∈ R, the Connes cocycle [Dψ : Dη]t is the isometric operator from M
satisfying

(93) [Dψ : Dη]−tπ
M′

(ψ) = ∆it
ψ,ψ∆

−it
η,ψ.

In terms of the Connes cocycle, the relative entropy (92) may also be defined as

(94) S(ωψ|ωη) = −i d
dt
ωψ([Dη : Dψ]t)|t=0.

The derivative exists whenever S(ωψ|ωη) <∞ [32, Thm. 5.7].

Later we will use the following variational expression for the relative entropy

[36, Thm. 9]:

(95) S(ωψ|ωη) = sup
h∈Ms.a.

{ωψ(h)− ln ∥ηh∥2},

7The limit exists under this condition but may be equal to +∞.



712 S. Hollands

with Ms.a. is the set of self-adjoint elements of M. A related variational quantity

is the “measured relative entropy” Smeas, defined as (see, e.g. [32, Prop. 7.13])

(96) Smeas(ωψ|ωη) = sup
h∈Ms.a.

{ωψ(h)− ln ∥eh/2η∥2}.

From the Golden–Thompson inequality (86) we find

(97) Smeas(ωψ|ωη) ≤ S(ωψ|ωη).

The measured relative entropy Smeas can also be written in terms of the classical

relative entropy S(µ|ν) (Kullback–Leibler divergence) of two probability measures:

(98) S(µ|ν) =
∫

dµ ln
dµ

dν

as follows. Let a ∈ Ms.a. be a self-adjoint element of M. Then it has a spectral

decomposition

(99) a =

∫
λEa(dλ)

with an M-valued projection measure Ea(dλ). Given |ψ⟩, |η⟩ ∈ H , we get Borel

measures dµψ,a = ⟨ψ|Ea(dλ)ψ⟩, and likewise for |η⟩. Physically, these correspond

to the probability distributions for measurement outcomes of a in the states |ψ⟩
resp. |η⟩. The relative entropy between these measures is defined (but can be

+∞) if suppµη,a ⊂ suppµψ,a, wherein dµψ,a/dµη,a means the Radon–Nikodym

derivative between the measures. We may perform the maximization in (96) over

f(h) with8 f ∈ L∞(R;R) and h ∈ Ms.a. because f(h) ∈ Ms.a.. Maximizing first

for fixed h over f and using (= equation (95) in the commutative case)

(100) sup
{∫

f dµ− ln
∫
ef dν : f ∈ L∞(R;R)

}
= S(µ|ν),

we can write the measured relative entropy in the following way:

Smeas(ωψ|ωη)
= sup

{
S(µψ,h|µη,h) : h ∈ Ms.a.

}
= sup

{
S(ωψ|C |ωη|C) : C ⊂ Ma commutative von Neumann subalgebra

}
.(101)

This motivates the name “measured relative entropy”. The second equality holds

by [32, Prop. 7.13].

8More precisely, the space L∞ is defined relative to the measure µh,ψ relative to some faith-
ful normal state ψ ∈ S (M). Depending on the nature of this measure, “L∞” means either
ℓ∞({1, . . . , n}), ℓ∞(N), or L∞(R), or a combination thereof, wherein the counting measure is
understood in the first two cases, whereas the Lebesgue measure is understood in the last case.
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For later, we would like to know the relationship between Smeas and the fi-

delity, F . According to [44, 1, 2], the fidelity between two states ωη, ωψ ∈ S (M)

on a von Neumann algebra M in standard form may be defined as

(102) F (ωψ|ωη) = sup
{
|⟨η|u′ψ⟩| : u′ ∈ M′, ∥u′∥ = 1

}
.

It is related to the L1-norm relative toM′ by F (ωψ|ωη) = ∥η∥1,ψ,M′ ; see e.g. paper

I ([17, Lem. 3(1)]). We make the following claim:

Proposition 1. If ωη ∈ S (M) is a faithful state on the von Neumann algebra

M, then Smeas(ωψ|ωη) ≥ − lnF (ωψ|ωη)2.

Proof. We may assume that |η⟩ is in the natural cone P♯
M, hence cyclic and

separating. Consider in L1(M′, η) the polar decomposition |ψ+⟩ = u′|ψ⟩ into a

u′ ∈ M′ such that u′∗u′ = πM′
(ψ) ≤ 1 and |ψ+⟩ ∈ L+

1 (M′, η) ∩ H = P
1/2
M′ ; see

[8, Thm. 3]. By definition, the cone P
1/2
M′ is the closure of ∆

′1/2
η M′

+|η⟩ (in the

topology of H ), which equals the closure of M+|η⟩, since J∆′1/2
η a′|η⟩ = a′|η⟩ for

a′ ∈ M′
+, J |η⟩ = |η⟩, and JM′J = M. Thus, there exists a sequence {an} ⊂ M+

such that limn an|η⟩ = u′|ψ⟩ in the topology of H , so

(103) lim
n
⟨η|anη⟩ = ⟨η|u′ψ⟩ ∈ R+.

Let Ean(dλ) be the spectral decomposition of an and dµan,ψ = ⟨ψ|Ean(dλ)ψ⟩,
dµan,η = ⟨η|Ean(dλ)η⟩. Applying [10, Thm. 13 and Lem. 9] to the commutative

case gives

Smeas(ωψ|ωη) ≥ S(µan,ψ|µan,η) ≥ −2 lnF (µan,ψ|µan,η)

= −2 ln

∫ (dµan,ψ
dµan,η

)1/2
dµan,η(104)

(where the Radon–Nikodym derivative is defined since |η⟩ is faithful). As function-

als on M, we have ωψ = ωu′ψ because u′∗u′ = πM′
(ψ) and u′ commutes with M.

Let Cn = {an}′′ be the commutative von Neumann subalgebra of M generated by

an. It can be identified canonically with L∞(R,dµan,η) via the spectral theorem.

Denoting by ∥f∥1 the norm of a linear functional f : L∞(R,dµη,an) → C, then if

f is the restriction of some normal functional ω on M to Cn, we obviously have

∥f∥1 ≤ ∥ω∥. Therefore, we have

∥µψ,an − µanη,an∥1 = ∥ωψ|Cn − ωanη|Cn∥
≤ ∥ωψ − ωanη∥
= ∥ωu′ψ − ωanη∥
≤ ∥u′ψ + anη∥ ∥u′ψ − anη∥,(105)
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using (11) in the last step. Since limn an|η⟩ = u′|ψ⟩ in the topology of H , we

thus get limn ∥µψ,an − µanη,an∥1 = 0. By paper I ([17, Lem. 11]) applied to the

commutative von Neumann algebra Cn, we thereby get

(106) |F (µψ,an |µη,an)− F (µanη,an |µη,an)| ≤ ∥µψ,an − µanη,an∥
1/2
1 → 0.

By definition,

(107)
(dµanη,an(λ)

dµη,an(λ)

)1/2
= λ for λ ∈ R+,

hence using (106) in the limn of (104) gives

Smeas(ωψ|ωη) ≥ −2 ln lim
n

∫
λ dµη,an

= −2 ln lim
n

∫
λ⟨η|Ean(dλ)η⟩

= −2 ln lim
n
⟨η|anη⟩

= −2 ln⟨η|u′ψ⟩
= −2 ln |⟨η|u′ψ⟩|.(108)

The right-hand side is by definition ≥ − lnF (ωψ|ωη)2 as ∥u′∥ = 1, u′ ∈ M′, which

concludes the proof.

Remark. The unknown referee has pointed out the following alternative proof. By

[10, Thm. 13 and Lem. 9], Smeas(ωψ|ωη) ≥ −2 lnFmeas(ωψ|ωη), where Fmeas is the

measured version of the fidelity defined analogously to Smeas by restricting to all

possible commutative subalgebras. But it has also been shown that Fmeas(ωψ|ωη) =
F (ωψ|ωη); see [22, eqn. (5.26)].

§5.2. Petz recovery map

We now recall the definition of the Petz map in the case of general von Neumann

algebras, discussed in more detail in [32, Sect. 8]. Let T : B → A be a normal (ultra-

weakly continuous) ∗-preserving linear map between two von Neumann algebras

A, B in standard form acting on Hilbert spaces H , K . If

(109)
(
⟨ζ1| ⟨ζ2|

)
T

([
a b

c d

][
a∗ c∗

b∗ d∗

])(
|ζ1⟩
|ζ2⟩

)
≥ 0 ∀ |ζi⟩ ∈ H , T (1B) = 1A,

and for all a, b, c, d ∈ B, then T is called 2-positive and unital. In the matrix

inequality, we mean T applied to each matrix element. By duality between A and
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S (A), T : B → A gives a corresponding map T̃ : S (A) → S (B) by ω 7→ T̃ (ω) :=

ω ◦T . For finite-dimensional von Neumann algebras A, B, where state functionals

are identified with density matrices through ω(a) = Tr(ωa), we can think of T̃ as

the linear operator on density matrices defined by

(110) TrωT (b) = Tr T̃ (ω)b ∀ b ∈ B.

This operator T̃ is 2-positive and trace preserving. The quantum DPI [45] states

that

(111) S(ωψ|ωη) ≥ S(ωψ ◦ T |ωη ◦ T ),

where the right-hand side could also be written as S(T̃ (ωψ)|T̃ (ωη)).
We recall the definition of the Petz map. Let |ηA⟩ be a cyclic and separating

vector in the natural cone of a von Neumann algebra A in standard form. Then

the “KMS” scalar product on A is defined as

(112) ⟨a1, a2⟩η = ⟨ηA|a∗1∆1/2
η a2ηA⟩.

Let ωη be the faithful normal state functional on A associated with |ηA⟩. Then its

pull-back ωη ◦ T to B, which is also assumed to be faithful (for simplicity), has a

cyclic and separating vector representative |ηB⟩ ∈ K in the natural cone. So

(113) ωη(a) = ⟨ηA|aηA⟩, ωη ◦ T (b) = ⟨ηB|bηB⟩.

The terms |ηA⟩ resp. |ηB⟩ give KMS scalar products for A resp. B, which we can

use to define the adjoint T+ : A → B (depending on the choices of these vectors)

of the normal, unital, and 2-positive T : B → A, which is again normal, unital,

and 2-positive; see [32, Prop. 8.3]. For finite-dimensional matrix algebras, T+ cor-

responds dually to the linear operator T̃+ acting on density matrices ρ for B given

by

(114) T̃+(ρ) = σ
1/2
A T

(
σ
−1/2
B ρσ

−1/2
B

)
σ
1/2
A ,

wherein σA is the density matrix of |ηA⟩ and σB = T̃ (σA) for |ηB⟩. The rotated

Petz map, which we call αtη,T : A → B, is defined by conjugating this with the

respective modular flows, i.e.

(115) αtη,T = ςtη,B ◦ T+ ◦ ς−tη,A,

where ςtη,A = Ad∆it
η,A is the modular flow for A, |ηA⟩ etc. For finite-dimensional

matrix algebras, αtη,T gives by duality a linear operator α̃tη,T acting on density

matrices ρ for B, which is

(116) α̃tη,T (ρ) = σ
1/2−it
A T

(
σ
−1/2+it
B ρσ

−1/2−it
B

)
σ
1/2+it
A .
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The following is an equivalent definition of the rotated Petz map:

Definition 2. Let T : B → A be a unital, normal, and 2-positive linear map and

ωη a normal state on A with ωη, ωη ◦ T faithful. Then the rotated Petz map

αtη,T : A → B is defined implicitly by the identity

(117) ⟨bηB|JB∆it
ηBα

t
η,T (a)ηB⟩ = ⟨T (b)ηA|JA∆it

ηAaηA⟩

for all a ∈ A, b ∈ B.

Closely related to the Petz map is the linear map [33, 35] Vψ : K → H

associated with T and a vector |ψA⟩ in the natural cone of A. Let ωψ be the

associated state functional onA, ωψ◦T its pull-back to B with vector representative

|ψB⟩ in the natural cone of B. If |ψB⟩ is separating (hence cyclic), Vψ is defined by9

(118) Vψb|ψB⟩ := T (b)|ψA⟩ (b ∈ B).

It follows from Kadison’s property T (a∗a) ≥ T (a∗)T (a) (which is a consequence

of (109)) that Vψ is a contraction ∥Vψ∥ ≤ 1; see e.g. [33, proof of Thm. 4].

As in paper II ([16]), we introduce a vector-valued function

(119) z 7→ |Γψ(z)⟩ := ∆z
ηA,ψA

Vψ∆
−z
ηB,ψB

|ψB⟩ (z ∈ S̄1/2),

the existence and properties of which are established in paper II ([16, Lems 3,

4]). In particular, |Γψ(z)⟩ is holomorphic inside the strip S1/2 and bounded in the

closure S̄1/2 in norm by 1. The relation to the Petz map is as follows (paper II,

[16, Lem. 2]):

(120) ⟨Γψ(1/2 + it)|aΓψ(1/2 + it)⟩ ≤ ωψ ◦ T ◦ αtη,T (a) t ∈ R, a ∈ A+.

§5.3. Improved DPI

Our main theorem is the following:

Theorem 2. Let T : B → A be a 2-positive, unital (in the sense of (109)) linear

map between two von Neumann algebras, and let ωψ, ωη be normal states on A,

with ωη, ωη ◦ T faithful. Then

(121) S(ωψ|ωη)− S(ωψ ◦ T |ωη ◦ T ) ≥ Smeas(ωψ|ωψ ◦ T ◦ αT,η),

9In the general case, one can define [33] instead

Vψ(b|ψB⟩+ |ζ⟩) := T (b)|ψA⟩ (b ∈ B, πB′
(ψ)|ζ⟩ = 0).
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with the recovery channel

(122) αT,η ≡
∫
R
dt β0(t)α

t
T,η.

When both S(ωψ|ωη), S(ωψ ◦ T |ωη ◦ T ) = +∞, we agree that the left-hand side of

(121) should be considered as +∞.

Remark. The following points may help the reader appreciate the scope of The-

orem 2:

(1) The theorem should generalize to non-faithful states by applying appropriate

support projections in a similar way to paper I ([17, Lem. 1]).

(2) For finite-dimensional type I von Neumann algebras, i.e. matrices, our result

is due to [39]. The recovery channel is given explicitly by (116) in this case

as an operator on density matrices, where σA, σB are the density matrices

corresponding to ωη, ωη ◦ T respectively.

(3) By Proposition 1, our bound implies that given in our previous paper II ([16,

Thm. 2]) for the fidelity; in fact it is stronger in many cases. However, it is

not stronger than the version of the theorem in paper II ([16, Thm. 1]) with

the integral outside.

(I) Proof of Theorem 2 under a majorization condition. First we consider

the special case where there exists ∞ > c ≥ 1 such that

(123) c−1ωη ≤ ωψ ≤ cωη.

Since ωη is faithful, it follows that so is ωψ. We choose the vector representatives

|η⟩, |ψ⟩ (alternatively called |ηA⟩, |ψA⟩, depending on the context, to make their

relation to the algebra A clear) for ωη, ωψ in the natural cone, which are then

cyclic and separating. Note that (123) implies c−1ωη ◦ T ≤ ωψ ◦ T ≤ cωη ◦ T as T

is positive. Again, since ωη ◦ T is faithful, it follows that so is ωψ ◦ T . We choose

the vector representatives |ηB⟩, |ψB⟩ for ωη ◦ T , ωψ ◦ T in the natural cone, which

are then cyclic and separating.

By [32, Thm. 12.11] (due to Araki), there exists an h = h∗ ∈ A such that

|ψA⟩ = |ηhA⟩/∥ηhA∥ with ∥h∥ ≤ ln c, and vice versa. As is well known, this fur-

thermore implies that the Connes cocycle [DηA : DψA]iz is holomorphic in the

two-sided strip {z ∈ C : |Re(z)| < 1/2}, weakly continuous and bounded in norm

(by cRe(z)) on the closure of this strip (see e.g. paper II [16, Lem. 5]), and similar

statements hold for [DηB : DψB]iz.

By (94), we thereby conclude that S(ωψ|ωη), S(ωψ ◦ T |ωη ◦ T ) < ∞, and

near z = 0, we have an absolutely convergent (in the operator norm) power series
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expansion

(124) [DηB : DψB]iz = 1 +

∞∑
l=1

zlkl,

with bounded operators kl ∈ B such that ∥kl∥ ≤ Cl. We set

(125) k :=
d

i dt
T ([DηB : DψB]t)|t=0 ∈ As.a..

Using [32, Thm. 5.7] and the definition of the relative entropy in terms of the

Connes cocycle (94),

SA(ωψ|ωηk) = SA(ωψ|ωη)− ωψ(k)

= SA(ωψ|ωη)−
〈
ψA

∣∣∣ d

idt
T ([DηB : DψB]t)ψA

〉∣∣∣
t=0

= SA(ωψ|ωη)− SB(ωψ|ωη),(126)

which is one side of the inequality that we would like to prove. The variational

expression (95) then gives

(127) SA(ωψ|ωη)− SB(ωψ|ωη) = sup
h∈As.a.

{
ωψ(h)− ln ∥ηk+h∥2

}
,

where we used |(ηk)h⟩ = |ηk+h⟩; see [32, Thm. 12.10]. To get the desired DPI we

will establish an upper bound on ln ∥ηk+h∥2.
We want to use Lemma 1 with (here |Γψ(z)⟩ is as in (119))

(128) |G(z)⟩ = ezh|Γψ(z)⟩,

with the cyclic and separating vector |ψ⟩, and with p0 = ∞, p1 = 2, θ = 1/n, where

n ∈ 4N and h = h∗ ∈ A. We have the representation |Γψ(z)⟩ = ∆z
ηA,ψA

T ([DηB :

DψB]−iz)|ψB⟩, and T ([DηB : DψB]−iz)|ψB⟩ is holomorphic on S1/2, and bounded

and weakly continuous on S̄1/2. Then applying Lemma 3 twice proves that the

same is true for |Γψ(z)⟩ and for |G(z)⟩.
At the lower boundary of S1/2 we have, with uB(t) := [DηB : DψB]t ∈ B,

uA(t) := [DηA : DψA]t ∈ A the unitary Connes cocycles,

∥G(it)∥p0,ψ = ∥eith∆it
ηA,ψA

Vψ∆
−it
ηB,ψB

ψB∥∞,ψ

= ∥eith∆it
ηA,ψA

T (uB(t))ψ∥∞,ψ

= ∥eithςtη[T (uB(t))]uA(−t)ψ∥∞,ψ

= ∥eithςtη[T (uB(t))]uA(−t)∥
= ∥ςtη[T (uB(t))]∥
= ∥T (uB(t))∥ ≤ ∥uB(t)∥ = 1,(129)
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where we used ∥ςtη[a]∥ = ∥a∥ for all a ∈ A (since ςtη = Ad∆it
ηA), ∥T (b)∥ ≤ ∥b∥ for

all b ∈ B (since T is 2-positive and unital10), and the isometric identification of

L∞(A, ψ) ∋ a|ψ⟩ 7→ a ∈ A proven in [8]. At the upper boundary of S1/2 we have

(130) ∥G(1/2 + it)∥p1,ψ = ∥eh/2Γψ(1/2 + it)∥

using the isometric identification of L2(A, ψ) and H proven in [8]. We have already

argued that the right-hand side is uniformly bounded in t.

Thus, we can apply Lemma 1, and since pθ = n and ln ∥G(it)∥p0,ψ ≤ 0 as just

shown, we get from this lemma that

ln ∥eh/nΓψ(1/n)∥nn,ψ ≤
∫
R
dt β1/n(t) ln ∥G(1/2 + it)∥2p1,ψ

=

∫
R
dt β1/n(t) ln ∥eh/2Γψ(1/2 + it)∥2

≤ ln

∫
R
dt β1/n(t)∥eh/2Γψ(1/2 + it)∥2

≤ ln

∫
R
dt β1/n(t)ωψ ◦ T ◦ αtη,T (eh),(131)

using (120) in the fourth line, Jensen’s inequality in the third (noting that

∥eh/2Γψ(1/2 + it)∥2 is uniformly bounded in t ∈ R), and (130) in the second.

Taking the lim supn→∞, we get, using the definition of the recovery channel αT,η,

(132) lim sup
n

ln ∥eh/nΓψ(1/n)∥nn,ψ ≤ ωψ ◦ T ◦ αη,T (eh).

This is our first main intermediate result. The next lemmas give an expression for

the lim sup:

Lemma 6. We have ∥eh/nΓψ(1/n)∥nn,ψ = ∥(eh/n∆1/n
η,ψan∆

1/n
η,ψ e

h/n)n/4ψ∥2, where

(133) an = T ([DηB : DψB]−i/n)T ([DηB : DψB]−i/n)
∗ ∈ A+.

Lemma 7. We have limn ∥(eh/n∆1/n
η,ψan∆

1/n
η,ψ e

h/n)n/4ψ∥2 = ∥ηk+h∥2.

Combining the two lemmas with equations (127), (132) gives the statement

of the theorem:

SA(ωψ|ωη)− SB(ωψ|ωη) ≥ sup
h∈As.a.

{ωψ(h)− lnωψ ◦ T ◦ αη,T (eh)}

= Smeas(ωψ|ωψ ◦ T ◦ αT,η),(134)

using the variational definition (96) of Smeas in the last step.

10Indeed, we have ∥T (b)∥2 = ∥T (b)T (b)∗∥ = ∥T (b)T (b∗)∥ ≤ ∥T (bb∗)∥ ≤ ∥bb∗∥ = ∥b∥2 using
the properties of the norm, the ∗-preserving property of T , Kadison’s inequality, and the unital
property of T .
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Proof of Lemma 7. Since (124) is an absolutely convergent power series in the

operator norm, it follows from (125) that an = 1+2n−1k+O(n−2), where O(nα)

denotes a family of operators such that ∥O(nα)∥ ≤ cnα for all n > 0. Since h is

bounded, we also have eh/n = 1 + n−1h+ O(n−2). Replacing n → 2n to simplify

some expressions we trivially get

(135) eh/(2n)∆
1/(2n)
η,ψ a2n∆

1/(2n)
η,ψ eh/(2n) = ∆

1/n
η,ψ + n−1Xn + n−2Yn,

where Xn, Yn are finite sums of terms of the form x0∆
s1
η,ψx1 · · ·xl∆

sl
η,ψxl, wherein∑

sj = 1/n, sj ≥ 0 and ∥xj∥ ≤ c uniformly in n. Then Xn is given explicitly by

(136) Xn = 1
2h∆

1/n
η,ψ + 1

2∆
1/n
η,ψh+∆

1/(2n)
η,ψ k∆

1/(2n)
η,ψ .

By [5, proof of Thm. 3.1], the functions

(137) F (z) := x1∆
z1
η,ψx2 · · ·xj∆

zj
η,ψxj+1|ψ⟩, z ∈ S̄j1/2

defined for given xj ∈ A are analytic in the domain Sj1/2 := {(z1, . . . , zj) ∈ Cj : 0 <
Re(zi),

∑
Re(zi) < 1/2} and strongly continuous on the closure. Subharmonic

analysis as in [5, proof of Thm. 3.1] or [8] furthermore gives the bound

(138) ∥F (z)∥ ≤
∏
i

∥xi∥ ∀ z ∈ S̄j1/2.

This bound, and the elementary formula

(139) (A+ tB)N =

N∑
j=0

tj
∑

m0+···+mj=N−j
mj∈N0

Am0B · · ·Amj−1BAmj ,

show that the difference

|ζn⟩ = (eh/(2n)∆
1/(2n)
η,ψ a2n∆

1/(2n)
η,ψ eh/(2n))n/2|ψ⟩

−
n/2∑
j=0

n−j
∑

m0+···+mj=n/2−j
mj∈N0

∆
m0/n
η,ψ Xn · · ·∆

mj−1/n
η,ψ Xn∆

mj/n
η,ψ |ψ⟩(140)

is bounded in norm by

(141) ∥ζn∥ ≤ (1 + n−1(∥h∥+ ∥k∥) + n−2c)n/2 − (1 + n−1(∥h∥+ ∥k∥))n/2

for some c <∞, hence it tends to zero in norm as n→ ∞. Now setting

(142) |ϕn,j⟩ = n−j
∑

m0+···+mj=n/2−j
mj∈N0

∆
m0/n
η,ψ Xn · · ·∆

mj−1/n
η,ψ Xn∆

mj/n
η,ψ |ψ⟩,
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the strong continuity of the functions F and the usual definition of the Riemann

integral imply

|ϕj⟩ := lim
n

|ϕn,j⟩

=

∫ 1/2

0

ds0 · · ·
∫ sj−1

0

dsj ∆
s0−s1
η,ψ (h+ k)∆s1−s2

η,ψ (h+ k)

· · ·∆sj−1−sj
η,ψ (h+ k)∆

sj
η,ψ|ψ⟩,(143)

and the usual perturbation theory by bounded operators as in [3, Prop. 16] or [5]

gives
∑∞
j=0 |ϕj⟩ = e(ln∆η,ψ+h+k)/2|ψ⟩. Hence,

(144) lim
n
(eh/(2n)∆

1/(2n)
η,ψ a2n∆

1/(2n)
η,ψ eh/(2n))n/2|ψ⟩ = e(ln∆η,ψ+h+k)/2|ψ⟩

strongly, as was argued more carefully in [4, proof of Lem. 5]. We have

e(ln∆η,ψ+h+k)/2|ψ⟩ = e(ln∆η,ψ+p
′h+p′k)/2|ψ⟩ (here p′ = πA′

(ψ) ∈ A′). Also, us-

ing [32, Thm. 12.6], we have ln∆η,ψ + p′h + p′k = ln∆ηh+k,ψ, and this gives

|ηh+k⟩ = J |ηh+k⟩ = e(ln∆η,ψ+h+k)/2|ψ⟩ by relative modular theory. This com-

pletes the proof.

Proof of Lemma 6. From the definitions,

eh/n|Γψ(1/n)⟩ = eh/n∆
1/n
ηA,ψA

Vψ∆
−1/n
ηB,ψB

∆
1/n
ψB

|ψB⟩

= eh/n∆
1/n
ηA,ψA

T ([DηB : DψB]−i/n)|ψA⟩,(145)

using the definition of the Connes cocycle and the fact that [DηB : DψB]−i/n ∈ B
under our assumption (123); see paper II ([16, proof of Lem. 4]). In the following,

let b = eh/n, a = T ([DηB : DψB]−i/n) ∈ A and |ψA⟩ = |ψ⟩, |ηA⟩ = |η⟩ etc., so

∥eh/nΓψ(1/n)∥nn,ψ = ∥b∆1/n
η,ψaψ∥nn,ψ.

By the results of [8] (which hold in the present context since ωψ is faithful), the

vector b∆
1/n
η,ψa|ψ⟩ ∈ Ln(A, ψ) has a polar decomposition b∆

1/n
η,ψa|ψ⟩ = u∆

1/n
ϕn,ψ

|ψ⟩,
where ∥b∆1/n

η,ψaψ∥nn,ψ = ∥ϕn∥2 and where u ∈ A is a partial isometry. To get an

expression for |ϕn⟩, we use the formalism of “script” Lp-spaces of [8, notation 7.6]:

as a vector space, L ∗
p (A, ψ), p ≥ 1 consists of all formal linear combinations of

formal expressions of the form

(146) A = x1∆
z1
ζ1,ψ

x2 · · ·xn∆zn
ζn,ψ

xn+1,

wherein Re(zi) ≥ 0,
∑
iRe(zi) ≤ 1 − 1/p, xi ∈ A, ζi ∈ H , the formal adjoint of

which is defined to be

(147) A∗ = x∗n+1∆
z̄n
ζn,ψ

x∗n · · ·x∗2∆
z̄1
ζ1,ψ

x∗1.
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The notation L ∗
p,0(A, ψ) is reserved for formal elements A such that, in ad-

dition to all other conditions,
∑
iRe(zi) = 1 − 1/p. It is then clear that

L ∗
p,0(A, ψ)L ∗

q,0(M, ψ) = L ∗
r,0(M, ψ) as formal products where 1/r′ = 1/p′ + 1/q′

with 1/p′ = 1 − 1/p as usual. By [8, Lem. 7.3], if 1 ≤ p ≤ 2, any element A ∈
L ∗
p (A, ψ) can be viewed as an element of Lp′(A, ψ) in the sense that |ψ⟩ ∈ D(A)

and A|ψ⟩ ∈ Lp′(A, ψ).11 Furthermore, by [8, Lem. 7.7(2)], if A1, A2 ∈ L ∗
p,0(A, ψ)

correspond to the same element under this identification, then so do A∗
1, A

∗
2 or

A1B, A2B or BA1, BA2 if B ∈ L ∗
q,0(A, ψ) (as long as 1/p′ + 1/q′ ≤ 1/2, for

example).

We now start with the trivial statement that u∆
1/n
ϕn,ψ

= b∆
1/n
η,ψa in the sense

that these elements of L ∗
n′,0(A, ψ) are identified with the same element of Ln(A, ψ).

Then repeated application of [8, Lem. 7.7(2)] and the definition of adjoint gives

(148) u∆
2/n
ϕn,ψ

u∗ = b∆
1/n
η,ψaa

∗∆
1/n
η,ψ b

∗ in L ∗
n/(n−2),0(A, ψ).

Successively forming n/4 products of this equality and applying [8, Lem. 7.7(2)]

in each step, we find that

(149) u∆
1/2
ϕn,ψ

u∗ = (b∆
1/n
η,ψaa

∗∆
1/n
η,ψ b

∗)n/4 in L ∗
2,0(A, ψ),

meaning that both sides are equal as elements of H = L2(A, ψ) after we apply

them to |ψ⟩. Thus,

(150) ∥(b∆1/n
η,ψaa

∗∆
1/n
η,ψ b

∗)n/4ψ∥2 = ∥u∆1/2
ϕn,ψ

u∗ψ∥2 = ∥uJuϕn∥2 = ∥ϕn∥2

using modular theory in the penultimate step. Therefore,

(151) ∥(b∆1/n
η,ψaa

∗∆
1/n
η,ψ b

∗)n/4ψ∥2 = ∥b∆1/n
η,ψaψ∥

n
n,ψ,

and the proof of the lemma is complete.

(II) Proof of Theorem 2 in the general case. We will now remove the ma-

jorization condition (123). This condition has been used in an essential way in most

of the arguments so far. For example, without it, the operator k in (125) is un-

bounded and thus not an element ofA. For unbounded operators the Araki–Trotter

product formula and the Lp-techniques are not available in the form in which we

used them and it seems non-trivial to extend them to an unbounded framework.

We will therefore proceed in a different way and define a regularization of ωψ
such that the majorization condition (123) holds and such that, at the same time,

the desired entropy inequality can be obtained in a limit wherein the regulator

is removed. However, it is clear that this regularization must be carefully chosen

11In fact, ∥Aψ∥p′,ψ ≤ ∥xn+1∥
∏n
i=1(∥xi∥ ∥ζi∥Re(zi)).
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because the relative entropy is not continuous but only lower semi-continuous. By

itself the latter is insufficient for our purposes since the desired inequality (121)

has both signs of the relative entropy.

Our regularization combines a trick invented in paper I ([17]) with the con-

vexity of the relative entropy. As in paper I ([17]), we consider a function f(t),

t ∈ R with the following properties:

(A) The Fourier transform of f ,

(152) f̃(p) =

∫ ∞

−∞
e−itpf(t) dt,

exists as a real-valued and non-negative Schwarz-space function. This implies

that the original function f is Schwarz and has finite L1(R)-norm, ∥f∥1 <∞.

(B) f(t) has an analytic continuation to the upper complex half-plane such that

the L1(R)-norm of the shifted function has ∥f(·+ iθ)∥1 <∞ for 0 < θ <∞.

Such functions certainly exist (e.g. Gaussians). We also let fP (t) = Pf(tP ) for

our regulator P > 0, and we define a regulated version of |ψ⟩ by

(153) |ψP ⟩ =
f̃P (ln∆η,ψ)|ψ⟩
∥f̃P (ln∆η,ψ)ψ∥

.

As shown in paper I ([17]), some key properties of the regulated vectors are

(P1) ωψP ≤ cPωη for some cP > 0 which may diverge as P → ∞,

(P2) s-limP→∞ |ψP ⟩ = |ψ⟩ (strong convergence),

(P3) −2 ln(∥f∥1/∥f̃∥∞) + lim supP→∞ S(ψP |η) ≤ S(ψ|η),

where the first item gives at least “half” of the domination condition (123), the

second states in which sense |ψP ⟩ approximates |ψ⟩, and the third gives us an

upper semi-continuity property of the relative entropy opposite to the usual lower

semi-continuity property which holds for generic approximations. We define, for

small ε > 0,

(154) σ(a) = ⟨η|aη⟩, ρP,ε(a) = (1− ε)⟨ψP |aψP ⟩+ ε⟨η|aη⟩.

Thus, by (P1), the relative majorization condition (123) holds, e.g. with c =

max(cP , ε
−1), between ρP,ε and σ. By (P2), limP→∞ limε→0 ∥ρ − ρP,ε∥ = 0. In

(P3), we choose a function f such that ∥f∥1/∥f̃∥∞ = 1 (which must be Gaus-

sian). The well-known convexity of the relative entropy gives, together with the

definition of ρP,ε that (ρP = ⟨ψP | · ψP ⟩)

(155) S(ρP,ε|σ) ≤ (1− ε)S(ρP |σ) + εS(σ|σ) = (1− ε)S(ρP |σ).
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Combining this with (P3), we get

(156) lim sup
P→∞

lim sup
ε→0

S(ρP,ε|σ) ≤ S(ρ|σ).

The norm convergence limP limε ρP,ε ◦T = ρ◦T by (P2) also gives, in combination

with the usual lower semi-continuity of the relative entropy ([7, Thm. 3.7(2)]) that

(157) lim inf
P→∞

lim inf
ε→0

S(ρP,ε ◦ T |σ ◦ T ) ≥ S(ρ ◦ T |σ ◦ T ).

Now we combine equations (156), (157) with part (I) of the proof applied to the

states ρP,ε and σ, which obey the relative majorization condition. If S(ρ◦T |σ◦T ) <
∞, the difference S(ρ|σ)−S(ρ ◦T |σ ◦T ) is meaningful (possibly = ∞) and we get

from (156) and (157) that

(158) S(ρ|σ)− S(ρ ◦ T |σ ◦ T ) ≥ lim sup
P→∞

lim sup
ε→0

Smeas(ρP,ε|ρP,ε ◦ T ◦ αT,σ).

If S(ρ ◦ T |σ ◦ T ) = ∞ and hence S(ρ|σ) = ∞, the statement of the theorem is

vacuous and there is nothing to prove. The proof of part (II) is then finished by

proving lower semi-continuity for the measured relative entropy:

Lemma 8. If µn, νn, µ, ν ∈ S (A) are such that limn µn = µ and limn νn = ν in

the norm sense, then Smeas(µ|ν) ≤ lim infn Smeas(µn|νn).

Proof. This is a straightforward consequence of the variational definition (96) of

Smeas, choosing a near optimal h.

Appendix A. Araki–Masuda Lp-spaces [8, 10, 26, 27, 22]

The weighted Lp-spaces that we use in this paper were defined by [8] relative to

a fixed vector |ψ⟩ ∈ H in the natural cone of a standard representation of a von

Neumann algebra M. For p ≥ 2, the space Lp(M, ψ) is defined as

(159) Lp(M, ψ) =
{
|ζ⟩ ∈

⋂
|ϕ⟩∈H D(∆

(1/2)−(1/p)
ϕ,ψ ), ∥ζ∥p,ψ <∞

}
.

Here, the norm is

(160) ∥ζ∥p,ψ = sup
∥ϕ∥=1

∥∆(1/2)−(1/p)
ϕ,ψ ζ∥.

For 1 ≤ p < 2, Lp(M, ψ) is defined as the completion of H with respect to the

norm

(161) ∥ζ∥p,ψ = inf
{
∥∆(1/2)−(1/p)

ϕ,ψ ζ∥ : ∥ϕ∥ = 1, πM(ϕ) ≥ πM(ζ)
}
.
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In [8], it is assumed for most results that |ψ⟩ is cyclic and separating. When using

such results in the main text, we will be in that situation. An equivalent approach

replacing the relative modular operator by the Connes spatial derivative and con-

taining also several new results is laid out some detail in [10]. A different approach

to Lp-norms is taken in [26, 27, 22]. However, these definitions are eventually

shown to be equivalent to those used by [8, 10]; see [26, Thm. 3.3] and [27, Prop.

2.4 and Thm. 3.1]. Thus, we may use the results on Lp-norms in their setting in

our setting too; see e.g. item (10) below.

For the convenience of the reader, we list here some of the properties of Lp-

norms that we refer to in the main text:

(1) From the definition, we have ∥ζ∥2,ψ = ∥πM′
(ψ)ζ∥, so for cyclic and separating

vectors |ψ⟩ we have L2(H , ψ) = H .

(2) ([8, Thm. 4]) The map M ∋ m 7→ m|ψ⟩ ∈ L∞(M, ψ) is an isomorphism of

Banach spaces (for cyclic and separating vectors |ψ⟩; in the general case one

can see from the definitions that ∥mψ∥∞,ψ = ∥πM(ψ)mπM(ψ)∥).
(3) From the definitions, Lp(M, ψ) ⊃ H for p ∈ [1, 2] and Lp(M, ψ) ⊂ H for

p ∈ [2,∞] (for cyclic and separating vectors |ψ⟩).
(4) ([8, Thm. 3]) Any |ζ⟩ ∈ Lp(M, ψ) has the unique polar decomposition u|ζ+⟩,

where u is a partial isometry of M satisfying uu∗ = πM(ζ), where |ζ+⟩ ∈
L+
p (M, ψ), and where

(162) L+
p (M, ψ) =

{
Lp(M, ψ) ∩ P

1/(2p)
M for p ∈ [2,∞],

Lp(M, ψ)− closure of P
1/(2p)
M for p ∈ [1, 2].

Here, |ψ⟩ is assumed cyclic and separating and Pα
M = closure of ∆α

ψM+|ψ⟩
for α ∈ [0, 1/2].

(5) ([8, Thm. 3]) If |ζ⟩ ∈ Lp(M, ψ) there exists a unique ωϕ ∈ S (M) such

that |ζ⟩ = ∆
1/p
ϕ,ψ|ψ⟩ if p ∈ [2,∞) and ⟨ζ|ζ ′⟩ = ⟨∆1/2

ϕ,ψψ|∆
(1/p)−(1/2)
ϕ,ψ ζ ′⟩ for all

|ζ ′⟩ ∈ Lp′(M, ψ), 1/p+1/p′ = 1 if p ∈ [1, 2]. For this state, ∥ωϕ∥1/p = ∥ζ∥p,ψ
(for cyclic and separating vectors |ψ⟩).

(6) ([8, Thm. 1]) Let p′ be the dual Hölder index of p ∈ (1,∞), 1/p+ 1/p′ = 1.

Then ∥ζ∥p,ψ = sup{|⟨ζ|ζ ′⟩| : ∥ζ ′∥p′,ψ ≤ 1, |ζ ′⟩ ∈ Lp′(M, ψ) ∩ H } for |ζ⟩ ∈
H ∩ Lp(M, ψ) (for cyclic and separating vectors |ψ⟩).

(7) (See Lemma 9.) Let ωψ1 ≤ ωψ2 , and let |ψ1⟩, |ψ2⟩ be the representers in

the natural cone. For p ∈ [2,∞] and |ζ⟩ ∈ πM′
(ψ1) ∩ Lp(M, ψ1), we have

∥ζ∥p,ψ2 ≤ ∥ζ∥p,ψ1 . For p ∈ [1, 2) and |ζ⟩ ∈ H , we have ∥ζ∥p,ψ2 ≥ ∥ζ∥p,ψ1 .

(8) ([10, Lems 8, 9] and [26, Prop. 3.8]) The function p 7→ (p/2−1)−1 ln ∥ζ∥pp,ψ is

continuous and monotonically increasing for p ∈ [1, 2) ∪ (2,∞]. In particular
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for ∞ ≥ p > q > 2, we have Lp(M, ψ) ⊂ Lq(M, ψ), while for 2 > q > p ≥ 1,

we have Lq(M, ψ) ⊂ Lp(M, ψ). If ∥ζ∥∞,ψ < ∞, we have limp→∞ ∥ζ∥p,ψ =

∥ζ∥∞,ψ, and in fact

(163) ∥ζ∥2∞,ψ = inf
{
λ > 0: ωζ ≤ λωψ

}
.

Furthermore, ∥ζ∥p,ψ ≤ ∥ζ∥ ∥ωψ∥1/p−1/2 for all |ζ⟩ ∈ H , p ∈ [1, 2]; see e.g. [10,

Lem. 8].

(9) (See e.g. paper I ([17, Lem. 3]).) There holds FM′(ω′
ζ |ω′

ψ) = ∥ζ∥∞,ψ, where

FM′ is Uhlmann’s fidelity relative to M′ (|ψ⟩ in the natural cone).

(10) ([22, Thm. 3.16(3)] and [26, Prop. 3.10]) For p ∈ [1, 2] the map (ω′
ψ, ω

′
ζ) 7→

∥ζ∥pp,ψ is continuous and for p ∈ (2,∞] the map (ω′
ψ, ω

′
ζ) 7→ ∥ζ∥pp,ψ is lower

semi-continuous in the norm topology. Here, it is used implicitly that the

Lp-norms with respect to M are invariant when sending |ζ⟩ → v|ζ⟩ = |ζ ′⟩
provided e.g. v ∈ M, v∗v = πM(ζ), vv∗ = πM(ζ ′), meaning that they

only depend on ω′
ζ , the state functional induced on M′. Furthermore, it is

understood that ω′
ψ 7→ |ψ⟩ is the map that associates the unique vector

representative in the natural cone with a state functional on M′.

Lemma 9. Let ωψ1
≤ ωψ2

, and let |ψ1⟩, |ψ2⟩ be the representers in the natural

cone. For p ∈ [2,∞] and |ζ⟩ ∈ πM′
(ψ1)H ∩Lp(M, ψ1), we have ∥ζ∥p,ψ2

≤ ∥ζ∥p,ψ1
.

For p ∈ [1, 2) and |ζ⟩ ∈ H , we have12 ∥ζ∥p,ψ2 ≥ ∥ζ∥p,ψ1 .

Remark. As the referee has pointed out to us, this lemma can also be seen from

[26, Prop. 3.9] and [22, Thm. 3.16(7)].

Proof of Lemma 9. In this proof, we use the shorthands ∆i = ∆ϕ,ψi , i = 1, 2

and use that |ψ1⟩, |ψ2⟩ are in the natural cone implicitly when referring to known

properties of the modular operators.

Case p ∈ [2,∞]. Our assumption implies ∥ζ∥p,ψ1
<∞. Combining the dom-

ination condition ωψ1
≤ ωψ2

with the definition of the modular operators and

their standard properties (see e.g. [8, Thm. C.1]) gives s(∆1)∆2s(∆1) ≤ ∆1 for

example in the quadratic form sense on the domain D(∆
1/2
1 ), where s(∆1) =

πM(ϕ)πM′
(ψ1) is the support. Then s(∆1) is a projection mapping D(∆

1/2
1 ) →

D(∆
1/2
2 ), and [32, Lem. 5.2] gives, for γ ∈ [0, 1], that s(∆1)∆

γ
2s(∆1) ≤ ∆γ

1 ,

at first on D(∆
1/2
1 ). If |ζ⟩ ∈ D(∆

γ/2
1 ) for some γ ∈ [0, 1], then approximat-

ing it with |ζN ⟩ ∈ E∆1
([0, N ])|ζ⟩ using the spectral measure E∆1

of ∆1, we

can easily see that s(∆1)∆
γ
2s(∆1) ≤ ∆γ

1 also holds on D(∆
γ/2
1 ) and in fact

s(∆1) : D(∆
γ/2
1 ) → D(∆

γ/2
2 ). In particular, vectors in the domain of a power ∆

γ/2
1 ,

12This case is not actually used in the body of the paper.
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γ ∈ [0, 1] intersected with s(∆1)H are always in the domain of the corresponding

power ∆
γ/2
2 .

By the variational definition of the Lp-norm, there is for any ε > 0 a unit

vector |ϕ⟩ such that |ζ⟩ ∈ D(∆
1/2−1/p
ϕ,ψ2

) (because of ∥ζ∥p,ψ1 < ∞ and (165), |ζ⟩ is
in the intersection of domains

⋂
|ϕ⟩∈H D(∆

1/2−1/p
ϕ,ψ2

)) and such that

(164) ∥∆1/2−1/p
ϕ,ψ2

ζ∥ ≥ ∥ζ∥p,ψ2 − ε.

On the other hand, using πM′
(ψ1)|ζ⟩ = |ζ⟩,

∥∆1/2−1/p
ϕ,ψ2

ζ∥ = ∥∆1/2−1/p
ϕ,ψ2

πM(ϕ)πM′
(ψ1)ζ∥

= ∥∆1/2−1/p
ϕ,ψ2

s(∆ϕ,ψ1
)ζ∥

≤ ∥∆1/2−1/p
ϕ,ψ1

ζ∥

≤ ∥ζ∥p,ψ1
.(165)

Combining (165) and (164) the claim follows since ε > 0 can be arbitrarily small.

Case p ∈ [1, 2). The proof is rather similar to the previous case and follows

again from the definition of the modular operators and their standard properties

(see e.g. [8, Thm. C.1]), and the variational definition of the Lp-norms. So we leave

it to the reader.
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