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Trace- and Improved Data-Processing Inequalities
for von Neumann Algebras

by

Stefan HOLLANDS

Abstract

We prove a version of the data-processing inequality for the relative entropy for gen-
eral von Neumann algebras with an explicit lower bound involving the measured rela-
tive entropy. The inequality, which generalizes previous work by Sutter et al. on finite-
dimensional density matrices, yields a bound for how well a quantum state can be recov-
ered after it has been passed through a channel. Some natural applications of our results
are in quantum field theory where the von Neumann algebras are known to be of type
III. Along the way we generalize various multi-trace inequalities to general von Neumann
algebras.
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§1. Introduction

The relative entropy S(ploc) = Tr(plnp — plno) is an important operationally
defined measure for the distinguishability of two statistical operators p, o. A fun-
damental property of S is that

(1) S(plo) = S(T(p)|T(e)) > 0

for a quantum channel T, i.e. a completely positive linear trace preserving map.
(In the body of the paper, we use the slightly different notation T for the action of
a channel on a density matrix (Schrodinger picture), while 7' denotes the dual ac-
tion (Heisenberg picture) of the channel on the observables.) The above difference
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represents the loss of distinguishability between o, p if these are passed through
the channel 7.

An important general question that can be abstracted from concrete settings
such as quantum communication or quantum error correction is to what extent
the action of a quantum channel can be reversed, i.e. to what extent it may be
possible to recover p from T'(p). It was understood a long time ago by Petz that
the question of recoverability is intimately linked to the case of saturation of the
data-processing inequality (DPI) (1); see e.g. [32]. As was understood by [18] — and
has subsequently been generalized in various ways by [29, 39, 18,9, 12, 25, 40, 46]
— explicit lower bounds in the DPI or related information-theoretic inequalities
can provide information on how well a channel may be reversed if the inequality
is, e.g., nearly saturated.

Very interesting results in this direction have been obtained by Sutter et
al. [39] and Junge at al. [29]. Both results consider an explicit recovery channel,
and show that the recovered state is close to the original state p in a suitable
information-theoretic measure, provided the difference in the DPI is also small.
The recovery channel o, 7 is called “explicit” because it is given by a concrete
expression involving only the reference state o and T' (not the state p that is to
be recovered), and always perfectly recovers o, i.e. oy r(T(0)) = 0. In fact, it is
closely related — though not precisely equal — to the channel originally proposed
by Petz [34, 35, 37, 32].

The above-mentioned works (other than [34, 35, 37, 32]) establish their results
only for very special von Neumann algebras — for example [39] considers a finite-
dimensional type I algebra (finite-dimensional Hilbert space), whereas [29] deals
with possibly infinite-dimensional type I algebras. While this is well motivated by
applications in quantum computing, there are cases of interest when the algebras
are not of this type. A notable example is quantum-field-theoretic applications re-
lated to the “quantum null energy condition” (see e.g. [14]) where the algebras are
of type III [11, 20]. With this application in mind we proved in [17] a generaliza-
tion of [29] in the case when the channel T corresponds to an inclusion of general
von Neumann algebras. This result has been generalized to arbitrary 2-positive
channels T in [16], where the following improved DPI has been demonstrated:

@ Sl = STWIT@) = [ atfoODu(abT)lo)

Here, s € [1/2,1) and Dy are the so-called “sandwiched Rényi entropies” [31, 48],
which for s = 1/2 become the negative log squared fidelity. The term Sy (¢) dt is a
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certain explicit probability density and aﬁ,,T is an explicit 1-parameter family of
recovery channels that is a disintegration of o, 1 in the sense [ d¢ Bo(t)ey, = a7
Using the convexity of Dy and Jensen’s inequality, the bound implies

3) S(plo) - S(T(p)|T(0)) > 22

Dy (aU,T(T(p)) |p)

A qualitatively similar result has been proved for general von Neumann algebras
by Junge and LaRacuente [28].! In their result, the sandwiched Rényi entropies
are now replaced by some other information-theoretic quantity with an operational
meaning. Both [16, 28] lead to the same inequality for s = 1/2. For type I algebras
and s = 1/2, (2) is the result by [29], but the relation for general s is unclear to
the author. We also mention recent results by Gao and Wilde [19] of a roughly
similar flavor but different emphasis, which apply to von Neumann algebras with
a trace though not type III.

In the present paper, we provide a generalization of [39] to arbitrary (sigma-
finite) von Neumann algebras. This version of the improved DPI is qualitatively
similar to (3). The definition of the recovery channel is in fact identical to that
in (3), but we have yet another information-theoretic quantity on the right-hand
side, namely (Theorem 2)

(4) S(plo) = S(T(p)|T(0)) = Smeas(ao,r(T(p))lp)-

Here, Sieas is the “measured relative entropy”, defined as the maximum possible
value of the relative entropy restricted to a commutative von Neumann subalgebra.
We show below (Proposition 1) that for s = 1/2, this inequality is sharper than
(3) — though not in general the inequality (2) with the integral outside — for all
p, 0. A conceptual advantage of (4) over both (2) and (3) is that it is saturated
in the commutative case, as noted already by [39]. So in this respect (4) is sharp
unlike its predecessors.

Our proof technique is similar in several respects to that in [39] and related
antecedents such as [29] in that we also use interpolation arguments for L,-norms.
However, there are also some key differences requiring technical modifications: for
instance, the operators In p or Ino no longer exist for general von Neumann alge-
bras or the use of ordinary L, (Schatten)-norms is prohibited since a general von
Neumann algebra does not have a trace. As in our previous papers [17, 16] — re-
ferred to as papers I, IT — our solution to the first problem is to work entirely with

L After a preprint of the present paper was released, the authors of [28] posted a substantially
changed, new version of their original preprint. Their new version contained results similar to
ours, such as trace inequalities and Theorem 2. We emphasize that their methods and results
use rather different techniques and were found independently from ours.
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Araki’s relative modular operator, the log of which can roughly be viewed as a
difference between In p and In o. Likewise, as in [17, 16], our solution to the second
problem is to work with the Araki-Masuda non-commutative L,-norms [8] which
are very closely related to the sandwiched relative Rényi entropies.? For these
norms, we require a complex interpolation theory, see Lemma 1, which general-
izes a result in [17]. This result is then applied to a specially constructed analytic
family of vectors and combined with certain cutoff techniques for appropriately
extended domains of analyticity in a similar way to [17]. However, in [17, 16], such
cutoff techniques were needed to control the limit of the Araki-Masuda norms as
p — 2, whereas in the present paper, it is the limit p — oo which is relevant. The
regularization is necessary here to apply the powerful technique of bounded per-
turbations of normal states of a von Neumann algebra, and a (somewhat modified)
version of the Lie-Trotter product formula for von Neumann algebras [4]. These
ideas go beyond [17, 16] and also yield various new “trace” inequalities for von
Neumann algebras which could be of independent interest.

This paper is organized as follows. In Section 2 we review some prerequisite
notions from the theory of von Neumann algebras. In Section 3 we establish an
interpolation theorem for the Araki-Masuda L,-norms, which we apply in Sec-
tion 4 to obtain generalizations of various known multi-trace inequalities to von
Neumann algebras. In Section 5 we establish our main result, Theorem 2. The
definition of the Ly-norm and a summary of some of its properties relevant for
this paper is relegated to the appendix.

§2. Von Neumann algebras and modular theory

Let A = M,,(C). The fundamental representation of this algebra is on C™, but one
can also work in the “standard” Hilbert space (¢ ~ M, (C) ~ C" ® C"). Vectors
|¢) in S are thus identified with matrices ¢ € M,,(C). The space 7 ~ M, (C) is
both a left and right module for A,

(5) la)[¢) = laC), r(b)IC) = ICb),

and the inner product on J# is the Hilbert-Schmidt inner product ((i|(2) =
Tr(¢;y¢2). A mixed state, represented by a density matrix w, gives rise to a lin-
ear functional on A by

(6) w(a) = Tr(wa),

2[28] use a somewhat different approach to Lp-norms to circumvent the absence of a tracial
state in the general von Neumann algebra setting. Their approach appears to us less natural for
the purposes of this paper.
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where the functional and the state are denoted by the same symbol. These linear
functionals are alternatively characterized by the properties w(a*a) > 0, w(1) = 1.

A (o-finite) von Neumann algebra in standard form M is an ultra-weakly
closed linear subspace of the bounded operators on a Hilbert space .77 such that
the following properties hold, and are assumed throughout this paper: M should
contain 1, be closed under products and the x-operation, and it should have a
cyclic and separating vector |¢)) € . Cyclic and separating means that M|v)
is dense in J# and m|¢) = 0 implies m = 0. In the matrix example, ¢ should
therefore be invertible. The set of ultra-weakly continuous positive normalized
linear functionals (thus satisfying w(a*a) > 0, w(1) = 1) is called .(M). For a
detailed account of von Neumann algebras see [41, 42, 43].

Associated with a von Neumann algebra in standard form? is a convex cone
,@E\A C 2, called the “natural cone” and sometimes also denoted f@}v/lzl (see
appendix item (4) for further explanation of this notation), and an anti-linear
involution J, called “modular conjugation” leaving this cone elementwise invariant.
A possible choice of this non-unique “natural cone” for A = M, (C) is the subset
of positive semi-definite matrices in J#, and in this case, J|{) = |(*). A general
property of J, which is easily verified in this example, is that JMJ = M’, the
latter meaning the commutant of M on J7.

Going back to the case of a general von Neumann algebra M in standard
form acting on 47, and given vectors |¢), |n),|¢) € 95\4 and m € M, one de-
fines following Araki [5] a conjugate linear operator S, ,, with domain 2(S,, ) =

M) & (1 — 7™M (1)) A2 by

(7) S (ml) + (1= 7 (@))[C)) = 7 (8)m*[m);

see also [8, App. C] for many more details. Here, 7™ (z)) € M is the orthogonal
projection onto the closure of the subspace M’[¢)) and 7™ (¥) € M’ that onto the
closure of M|¢). The definition is consistent because ma™ (1) = 0 if m|y) = 0.
One shows that S, is a closable operator and denotes the closure by S, .. By
standard results in operator theory, such an operator has a polar decomposition,
which for ), |n) € @E\A is given by the first equality in

1/2 ay o
(8) Sy = JAW,/W SppSnp = By

One calls the self-adjoint, non-negative operator A:I/ i (with domain Z(S, ))
the (square root of the) “relative modular operator”. Its support is s(A, ) =

3More precisely, standard form is actually defined by the combined structure (M, .77, ,@3\4, J),
which can be recovered if we have a cyclic and separating vector.
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M (n)mM (¥) and complex powers A7, are understood as 0 on the orthogo-
nal complement of this support. The term A, , depends on |n) only through its
associated state functional w,,, defined as in

9) wyp(m) = (nmn) Ym e M.

The modular conjugation and relative modular operators of A = M, (C) with the
above choice of natural cone are

(10) JIO) =1¢*),  Apay = Uwy)r(wy ),

where we invert the density matrix wy, on the range of 7 (v)), which in the case
at hand is the orthogonal projector onto the complement of the null space of wy.

For a general von Neumann algebra, every positive linear functional w €
(M) corresponds to one and only one vector |£,) in the natural cone @ﬁw such
that w(a) = (£,]aé.). Vice versa, any vector |¢) (in the natural cone or not) gives
rise to a linear functional as in (9). For A = M,,(C), this linear functional is identi-
fied with the density matrix wy, = ¥1* and the natural cone vectors correspond to
the unique positive square root of the corresponding density matrix, now thought
of as pure states in the standard Hilbert space. So the vector representative of
a density matrix w in the natural cone is |£,) = |w!/?). An important fact used
implicitly in several places below is that if two linear functionals are close in norm,
then the vectors in the natural cone are as well, and vice versa:

(11) 1€ = &nll* < llwy — well < I+l ¢ —nll,

where the norm of a linear functional is ||w| = sup{|jw(m)|: m € M, ||m| = 1}.
In the case A = M, (C), the latter norm is ||w|| = Tr|w]|, so the first inequality
in the above relation expresses the Powers—Stgrmer inequality between the trace
norm and the Hilbert—Schmidt norm.

Let us finish this briefest of introductions to von Neumann algebras by sum-
marizing (again) some of our notation.

Notation and conventions. Calligraphic letters A, M, ... denote von Neumann
algebras, always assumed o-finite, i.e. they are assumed to have a normal faithful
state. Calligraphic letters 5, ¢, ... denote complex Hilbert spaces, and (M)
denotes the set of all ultra-weakly continuous, positive, normalized linear function-
als on M (“states”), which are in one-to-one correspondence with density matrices
if A= M, (C). Then M is the subset of all non-negative self-adjoint operators in
M, and Ms_,. the subset of all self-adjoint elements of the von Neumann algebra
M. We use the physicist’s “ket”-notation [¢) for vectors in a Hilbert space. The
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scalar product is written as

(12) (1), [") e =2 (¥|4")

and is anti-linear in the first entry. The norm of a vector is written simply as
[[1¥) || = ||¥]]. The action of a linear operator T on a ket is sometimes written
as T|¢) = |T'¢). In this spirit, the norm of a bounded linear operator T on ¢ is
written as || T| = supjyy. jypj=1 7%l

§3. Interpolation of non-commutative Ly,-norms

For the algebra A = M,,(C), the standard Hilbert space 7 = M,,(C) on which A
acts by left multiplication can be equipped with various norms. We have already
mentioned that the 2-, or Hilbert—Schmidt, norm

(13) €]l = (Tr¢¢H)M?

actually defines the Hilbert space norm on % (so the subscript “2” is generally
omitted). For p > 0, one can generalize this to

(14) I¢ll, = [Tr(c¢™)P/ 2.

Given a faithful vector |¢) € 4 with associated linear functional wy (a) = (¢|ay)) =
Tr(awy) (Hilbert—Schmidt inner product), one can also define the yet more general
norms

(15) IClp,w = [Tx(Cwly/ P~ ¢ )P/2M P,

The faithful condition is relevant for p > 2 as it ensures that wy, is invertible. The
generalized L,-norms ||¢||, . evidently reduce to a multiple of the usual L,-norms
if wy(a) = Tr(a)/n is the tracial state. A general von Neumann algebra M in
standard form need not have such a tracial state, but Araki and Masuda [8] have
shown that one can still define analogs of the above “non-commuting L,-norms”
for p > 1 by variational expressions based on relative modular operators, involving
a fixed cyclic and separating vector |¢) in the natural cone of the von Neumann
algebra M in standard form; see also [25, 26, 10]. Their basic definitions and
properties used in this article are recalled for the convenience of the reader in the
appendix. The following interpolation result for Araki-Masuda L,-norms is one of
the main workhorses of this article.

Lemma 1. Let [¢)) € S be a cyclic and separating vector in the natural cone
of a von Neumann algebra M in standard form acting on . For 0 < § < 1/2,
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Po,P1 € [1,2] or po,p1 € [2,00], let
1 1-20 26
= + =

’pie Po D1 -

(16)

Then, if |G(z)) is an €-valued function holomorphic on the strip Sy;; = {0 <
Rez < 1/2} that is bounded and weakly continuous on the closure Sy /o and such
that

(17) sup [|G(it) [l po,p» sup [|G(1/2 + it)]|,,p < 00,
teR teR
then we have

1 |60 < |

oo

dt ((1 = 20)ag(t) In | G(it) ]| po,y

(18) +(20)Bo(t) In [|G(1/2 + it) || p, ) »
where
B sin(270)
ap(t) = (1 — 26)(cosh(2nt) — cos(270))’
(19) sin(276)
Bo(t) = 20(cosh(2nt) + cos(270))

Remark. Regarding the statement of Lemma 1, let us further note the following:

(1) The condition that sup,cp |G (it)||po, v, SUPser |G(1/241t)||p, » are both finite
is redundant when pg,p1 € [1,2] because (see appendix item (8)) [|C|lp.y <
IC]l |wy ||H/P=1/2 for all |¢) € #, p € [1,2] (see e.g. [10, Lem. 8]), and |G(2))
is already assumed to be bounded in 57 on Sl/Q.

(2) Bound (17) means that the integrand in (18) is bounded above, but can be
equal to —oo. Thus, the integral is definite in the Lebesgue sense, but can be

equal to —oo. In the latter case, the left-hand side of (18) is also —oc.

Proof of Lemma 1. In this proof we implicitly use the cyclic and separating prop-
erty of |¢) in order to apply the results by [8].

(1) Assume that pg,p1 € [1,2]. This part of the proof is taken from paper I
([17]) up to minor modifications and only included for convenience. Denote the
dual of a Holder index p by p’, defined so that 1/p + 1/p’ = 1. The article [8] has
shown that the non-commutative L, (M, ¥)-norm of a vector |() €  relative to
|t)) can be characterized by

(20) 1< lp. = sup{I{CIC)= 16") € Lyt (M, 2), (1€ ]lprw < 13-
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It has furthermore been shown ([8, Thm. 3]) that when co > p’ > 2, any vector
I¢") € Ly (M, ) has a unique generalized polar decomposition, i.e. can be written
in the form |¢) = uAl/p |1}, where u is a unitary or partial isometry from M
and |¢p) € . Furthermore, it has been shown that ||¢’[|, ,» = [|¢]|>/?". Therefore,
unless pj = oo (meaning p; = py = 1), we may choose a u and a normalized |¢),
so that

(21) 1G(O)lpy.o = (WAL P24|G(0)) + e,

up to an arbitrarily small error € > 0 which we will let go to zero at the end. Here

we defined py as in the statement, so that
1 1-20 260

(22) - =+

Dy Do Py

Excluding for the moment the case p; = pg = 1 which is treated at the end, we
can therefore define an auxiliary function f(z) by

2z/py+(1—22)/p;,
(23) F(2) = AL P20y G2,
noting that

(24) F(0) = 1G(O)lps.v —

by construction. By Tomita-Takesaki theory, f(z) is holomorphic in §;/, and
bounded and continuous on the closure S; /2. For the values at the boundary of
the strip S; /2, we estimate

()] = w3 P AL T G(it)) |
< 2 PTGt
< AP N )| (Gt
< (11270 (|G (it) [
(25) <G (it) .-

Here we used the version of Holder’s inequality proved by [8], we used |[a*(||,; o <
llall ICllpy . for any a € A (see [8, Lem. 4.4]), and we used

24t(1 1 1
||A (1/P1=1/pp) A /Powllpo o < ||¢H2/p0

which we will prove momentarily. A similar chain of inequalities also gives

(26) [f(A/2+ )| <[|GA/2+it)|lp, -
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To prove the remaining claim, let |¢') = AZWWJ} and z = 1/p{ + 2it. Then we
have, using the variational characterization by [8] of the L, (M,1))-norm when
Po = 2,

1/2—1
1 |y = sup{|AY 2P0 A7 )l |Ix]| = 1}
_ sup{”AI/Q 1/py—2it 1/p0+2zt1/}H || _ 1}
= sup{[|AY2 7P Dy - DoAY o [1x]| = 1}
< sup{[| A2 P aA Yo gl 1] = 1, a € M, |la] =1}
(27) < SUP{HGA(Wp w‘lp(),w: a€eM, HaH = 1}7

with [Dy : D¢|a; the Connes cocycle, which is isometric. Using [8, Lem. 4.4], we
continue this estimation as

1
(28) < s al IAYT 0 = 181776,
a€EM,|lal|=1

which gives the desired result.
To get (18), we use the Hirschman improvement of the Hadamard three lines
theorem [23].

Lemma 2. Let g(z) be holomorphic on the strip Sy 5, continuous and uniformly
bounded on the closure Sy /5. Then, for 6 € (0,1/2),

(29)  Injg(0)] < /OC (Bo(t) In [g(1/2 +it)|** + cp(t) In|g(it)|' =) dt,
where ay(t), Bo(t) are as in Lemma 1.

Applying this to g = f gives (18), with the left-hand side replaced by
|G(0)|lpy,y — €. Since € > 0 can be arbitrarily small, this proves the lemma for
po,p1 € [1,2] except for the case pg = p1 = 1 which we had left out for special
consideration.

In that case, we first find m € M such that ||m|| <1 and such that

(30) GO,y = (my]|G(O)) +e,

which is possible by the characterization of the Li-norm, see e.g. paper I ([17,
Lem. 3]) or [8]. Then we set f(z) = (mw|G(z)), and the rest of the argument is
similar to before.
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(2) Now we assume that pg,p; € [2,o0]. Then [8] has shown that for any*
I¢) € L;’, (M, ) = Ly-closure of ﬁjl\//l@p )1 < p' <2, there is |¢) € S such
that for all |{) € L,(M, ) we have

(31) (CLI0) = (A2 g Al =02

and such that [|(, ||, = ||¢H2/p . Furthermore, by the non-commutative Holder
inequality proven in [8], there exists up to an arbitrarily small error ¢ > 0 an
element |(") € Ly, (M, ) such that

(32) IGO)lpo.vs = ('IGO)) + & ¢ lpyw =1

Thus, since by [8, Thm. 3] we may write |¢’) = u|¢}), u € M with v*u < 1 and
I¢) € L;}Z (M, 1)), we have

1G(O) |y — = = (A 20 AL 20 G(0))
(33) < 1/2¢|A(1 29 /Po ( )/P/1_1/2u*G(9)>
and ||¢]| = 1. Similarly to the previous case we now consider the function
(34) F(2) = (DY S| AL T CIT 2 G ),

where f is holomorphic for z € S;/5 and continuous and bounded on the closure
Sy /2, as can be seen by applying the following lemma, which is a slight generaliza-
tion of [13, Lem. 2.1]:

Lemma 3. Suppose |F(z)) is an A -valued function which is analytic on Sy,
and bounded and weakly continuous on the closure Sl/g. Let a(z) = az + b,
a,b € R be a linear map from Sl/g to itself, and A a self-adjoint positive op-
erator such that P(AY?) is dense, and such that Cy = sup,cg ||A*F(it)|,
Oy = supep |[A“/2H F(1/2 + it)|| are both finite.

Then |A“Z)F(z)) is an analytic function of Sy o which is bounded and weakly
continuous on the closure Sl/g.

Proof. First let |n) € 2(AY?). Then z — (A*®)y|F(z)) is analytic on S;/, and
bounded and continuous on the closure S; /2 (because A*G)|p) is strongly and
|[F(z)) is weakly continuous on S;2). On the upper and lower boundaries of the
strip the assumptions give us [(A*(=#*)n|F(it))| < Co||n|| and [(A*/2=)p| F(1/2+
it))| < C1]|n||. Therefore, by the Hadamard three lines theorem,

(35)  [(A*FIF()] < Cllnll (2 €S1ja, [n) € 2(AY?), C = max(Ch, Co)).

4The cone 9}\4(21’,) is defined as the closure of Allj)/@p,)/\/u |1) and its properties are discussed
in [8].
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Since 2(A'/?) is a core for A**), we conclude that |F(z)) € 2(A*(*)), and more-
over ||[A**)F(z)|| < C on S1/2- The analyticity of the function z — (A*CP)p|F(2))
when |n) € 2(A'/?) implies that A*(*)|F(z)) is analytic in Sy as follows. For
arbitrary |x), zo € S1/2 we first have for sufficiently small > 0,

1
(A P(zq) — / dz (2 — 20) " (| A F(2))
T JoB,(20)

(36) <2C|Ix =l

where we have written |x) = |n) + (]x) — |n)) for some |n) € 2(AY?) and used
the analyticity of (n|A**)F(z)) and |A**) F(2)|| < C on S1/2 to obtain the upper
bound. Then, since Z2(A'/?) is dense, ||[x — 1| can be made arbitrarily small,
hence showing that (x|A“*)F(z)) fulfills Cauchy’s integral formula, and is thus
analytic on Sy /5. Thus, A*)|F(z)) is weakly analytic, hence strongly analytic (by
an application of the Banach-Steinhaus principle) on S, 5.

To prove continuity of (x|A**)F(z)) on S, 5 (only continuity at the boundary
is in question), let zo € 9S;/,, and let |x) € . For fixed ¢ > 0, we first pick
In) € 2(A'/?) such that ||n — x| < &, and then

lim sup| (x| A%V F(2)) — (x| A=0) F(z0)|

Z—r20

< 2C|ly = x|+ Jim |9 A" F(2) — (7] A0 F (z0))|
(37) < 2Ce,

using that we already know that (n|A®(*) F(z)) is continuous on S; /5. Hence, the
limit must vanish as € > 0 was arbitrary. O
We apply this lemma to |x) = 1/2|1/)> = J|p) € H, a(z) = (1 —22)/p, +
(22)/p) — 1/2 = 1/2— (1~ 22)/po — (25)/p1, A=Ay, |F(2)) = u'|G(2)). Then
we can estimate the boundary values as in ||A“) F(it)|| < ||G(it)|p.¢ =t Co and
A2 F(1/2 4it)|| < |G(1/2+it)|p,. = C1 by a similar calculation to (38).
This implies that the conditions of Lemma 3 are met, hence f(z) is an analytic
function of z € Sy which is continuous and bounded on the closure Sq /2-
For the lower boundary value we next calculate
|f(it)] = | A1/2¢|A 2it(1/py— Upl)A;{iéilmu*G(it)M
< 1Ay gl ||A””°‘”2u*0<it>|\
= ol 185w Gl
1/2—1/po, «
< sup{||A5 PG|« Ixl) = 1}

(38) = [ G(@t)llpy,w < (™[ 1G @) llpo.o = G (8)llp.05
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using in the last line the variational characterization of the L,-norms and [8, Lem.
4.4]. A similar chain of inequalities also gives |f(1/2 +it)| < ||G(1/2 + it)||p, .-
Claim (18) with the left-hand side replaced by ||G(0)||p,,y — € then follows from
Hirschman’s improvement as in the previous case (1). Since € > 0 can be arbitrarily
small, the claim of the lemma follows. O

We would now like to remove the cyclic and separating (i.e. faithful) condition
on the state vector |¢) used for the definition of the L,-norms. For o-finite M,

there exists some cyclic and separating vector |n) for M and we put
(39) wy, = (1 — )wy + ewy

so that |¢.) € @EM is now faithful for M and M/’, hence cyclic and separating.
Thus, Lemma 1 holds for |¢.) and the obvious idea is to prove the analog of
Lemma 1 for |¢) from this by taking the limit € — 0 in some way.

A lemma that we use to control this limit is the following.

Lemma 4. Let wy,wy,wy, ,wy,, € (M) be such that lim,, ||wy — wy, || = 0,
lim,, |jwy, — wy, || =0 and such that w,, < Cwy,, wy < Cwy,, for some C' < oo and
all n. Then

. a/2 a/2
(40) lim || (A7 = An2, )¢l =0

for any o € (0,1),]¢) € s(Ay4)I€ N @(A:/j) (where ), |1n) are taken in the
natural cone).

Proof. In this proof, we use the shorthands A = A, 4, A, = A, 4, and use that
|t), |1n) are in the natural cone implicitly when referring to known properties of
the modular operators. Combining the domination conditions wy, < Cuwy,, wy <
Cwy, with the definition of the modular operators and their standard properties
gives by the same argument as in the proof of Lemma 9 in the appendix that
s(A)A2s(A) < C?**A, o € [0,1] on 2(A%/?) and in fact s(A): 2(AY/?) —
@(Agﬂ). In particular, vectors in the domain of a power A®/? intersected with
$(A)SZ are always in the domain of the corresponding power Ag/ 2

We begin by defining () = Ea([0, N])|¢) in terms of the spectral decompo-
sition Ea of the non-negative self-adjoint operator A, and then we write

(41) A2 = AR)CN < A2 = AR2)Cw | + 20| A2 (¢ — Cv)l,

using the triangle inequality and the aforementioned fact that s(A)A%s(A) <
C?*A* on P(A%/?) and that both [¢), |Cx) are in the range of s(A). By choosing
N sufficiently large, we can then achieve that the last term on the right-hand side
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of (41) is < € for all n, so
(42) 1A% = A2 < 1A% = A2 n || + e

for all n.
To deal with the powers in the statement of the lemma, we employ the stan-
dard formula

sin(mar)

(43) X = /oo AN AT - (A X))

T 0

for « € (0,1), X > 0, which holds on the domain of X%. So we can use (43)
on the first term on the right-hand side of (42) with X = A'/2 and = AY? on
ICn) € 8(A) A N D(AY/?), giving us that

I(A%2 = AZZ)Cw|

(44) < c/w N[+ AATY2) 71— (14 AA; Y)Y ew .
0

Here, and in the rest of this proof, we denote by ¢ any constant depending possibly
on a, C, N, but not n. We split the integration domain into three parts: (0,4),
(6,L), (L,00).

(i) Range (0,9): In this range, we use
5
/ AL+ AATYE) T (14 AN ) N
0

1
:/O AN+ AV - (A + AL ey

4
< / AN {[(A+ AV TN+ (A + ALY 7w}
0

)
(45) < 2[¢xl / AN < e Cn 6
0

using that A, A,, > 0.
(ii) Range (0, L): By [7, Lem. 4.1],

(46) ||[()\+A1/2)’1 f()\JrA,l/z)*l]CNH —0 asn— oo

uniformly for A in the compact set [0, L].

(iii) Range (L,00): Recall that the domination assumption gives s(A)A,s(A) <
C?A. The function f: Ry > z — (A 4+ 2~Y/2)~2 is bounded and opera-
tor monotone by a standard characterization of such functions (see e.g. [21]),



IMPROVED DATA-PROCESSING INEQUALITIES 701

thus f(s(A)A,s(A)) < f(C?A). Then [33, Thm. C] furthermore gives

F(s(A)A,s(A)) > s(A)f(AR)s(A), hence for |€) € s(A)S, we get
11+ AALY2) TN = (N (T4 AAL 2 72N 2

(47) < ([T ACTIATYE) 22

Since C' > 1, we also have trivially

11+ AATY2)"1en || = (Cal (1 + AATY2)2¢y) 12
(48) < (VL +ACTIATHA) TR,

Using these inequalities under the integral (44) gives
/LOOdA)\O‘1|][(1+/\A1/2) — (AN
< [T O I AAT oy 14 ) )
<2 /LOO AANTHEN|(L+ ACTEATY2) 7212

(49) < 2ON2||(y | / AN < e x|
L

Now for our given N, we first choose d, L so small/large that the contributions
o (44) from (i), (iii), cf. (45), (49), are < € each (independently of n) and then
n so large that the contribution (i) from (6, L) is < . Then [|(A%/2 — AZ/3)¢|| is
< 4e by (i), (ii), (iii), and (42), and the proof is complete. O

The next lemma is a consequence of Lemma 4.

Lemma 5. Lete € (0,1), p € [1,00), |¢) € @E\m |n) € A, and let |1y € 325\4 be
the unique vector such that wy_ = (1 —¢)wy +ewy. Then lime o4 ||C|lp,v. = 1I<]Ip.
for [¢) € 7™M () A N Ly(M, ) when p € [2,00) and [C) € A when p € [1,2).

Remark. As the referee has pointed out to us, the lemma follows alternatively
from the general (lower semi-) continuity properties of the L,-norms; see item (10)
in the appendix and references therein. However, the proof of these goes through a
relatively non-trivial identification of the Araki-Masuda L,-norms with L,-norms
defined in a different framework; see [26, 27, 22]. We therefore think that it is still
useful to have a direct proof.
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Proof of Lemma 5. Case p € (2,00). In combination with wy < (1 — &) twy_,

Lemma 9 gives
(50) lim sup [|¢lp.p. < [I¢1lp.u-
e—0

We need to get a similar relation for liminf. Let ¢ > 0 be small but fixed. We can
pick a unit vector |¢) such that ||¢||y,p < HA(UQ (1/p)C|| + d/2 by the variational
definition of the Ly-norm. The condition that |C ) € L,(M, 1) means in particular
1/2)—(1
that s(Ag,y)[¢) € (ALY We also note that [l — ¥% < [lwy, —wyl| <
2e — 0, implying that the conditions of Lemma 4 are met under the replacements
) = 1620, [) — 16}, 10) = s(Ag)IC), (@/2) = (1/2) — (1/p) (using that
€ (2,00)). Lemma 4 and the triangle inequality therefore show that there is an
€ > 0 such that

IClpw < 1ASP=0P ) 4 5/2
< ”A(l/?)—(l/P)CH + ”(A((;ﬂ/f)—(l/m i A((;'(/[i)_(l/p))CH +4/2

¢7w5
= G020+ AL = A )s(B0.0)¢ + 62
6D <l +8/2+6/2,

meaning that

(52) tin inf /¢l > <l

The proof of Lemma 5 is complete by (50), (52).

Case p € (1,2). (1) We first show limsup,_,q ||C]|p,u. < [|C]lp,e- By the properties
of the L,-norms (see appendix item (10)), we may assume without loss of generality
that |¢) is in the natural cone. Consider a unit vector |¢) in the natural cone
such that, for a given § > 0, [[([[p,y = [[A;5 ¢l — 0 and 7M(¢) > 7M(C) (here
a=1/p—1/2 € (0,1/2)). Such a vector must exist by the variational definition
of the Ly-norm; see the appendix. We set (6 > 0)

(53) Wes = we + dwe,

with |¢s) in the natural cone, implying that 7 (¢s) = 7(¢) and wy < wg,.
Standard properties of the natural cone also imply that limgs_g||¢s — ¢|| = O.
Furthermore, the following relations follow directly from the definitions of the

modular operators and their basic properties, combined with wy < (1 — &) twy,

and with the operator monotonicity of the function z2¢: A;f‘f‘p < A_Qa <(1-
6)_20‘A;’%z. So we get [|Cllpp = A", Cll — 9, for example. We can also show

() € 2(A,),.) for 6 >0and e 2 0 in the following manner: By [13, Lem. 2.1], it



IMPROVED DATA-PROCESSING INEQUALITIES 703

suffices to show that ||A_1/2 ¢|l < 00. Now, 6 1wy, > we implies that |¢) = m/|ps)
for some m’ € M’ such that ||m’|| < 6~'/2. Then

—-1/2 X _
(54) 1Al = (A, )2 G5 ] = [[(m) ]| < 6722y
We next claim that, for § > 0,
(55) lim [JAG S <l = 11457l
Assuming that this is the case, we get

(56) ICllpw = Ty 1A 7y, €l = 0 = (14 0) ™ Hmsup [[C]lp . — 0

and the claim is proven since § > 0 can be taken arbitrarily small. To demonstrate
(55), we use the integral representation (again ¢ > 0)

(67) o> a50, ()2 = 2T / XA = (A AL, )7YIC) A

which holds since |() € Z(A, ", ). The integrand is pointwise (for A > 0) non-
negative, decreasing as ¢ — 0 and in fact convergent to (¢|(A~1— ()\+A¢5 ») IO,
by an easy adaption of [6, Thm. 4.1]. (To see this, write (A + A%’%) 7TM(¢) =
JENY? ¢ A1/2 D= DEE A1/2 Dl 1xM'($)J and note that the proof of [6,
Thm. 4.1] goes through for r = :I:z)\l/2 ) This demonstrates (55).

Dye Z HC
cyclic and separating unit vector |xs) from the natural cone such that ||¢ ||p ¢E >

(2) We next show liminf._ ¢ ||(]

p.w- For given § > 0 we can find a

AL Cll — & from the variational definition of the L,-norm. By using A

(1- )2“AX 2‘2‘0, the right-hand side is greater than or equal to (1 —&)®||¢ |p,w (5

again by the variational definition. The claim is proven since (5 > 0 can be taken

arbitrarily small.

Case p € {1,2}. These cases follow from the well-known continuity properties
of the fidelity (for p = 1) (see e.g. paper I ([17, Lem. 9])) and the relationship
of the Lo-norm with the projected Hilbert space norm (for p = 2); see appendix
item (1). O

We can now prove the following theorem:

Theorem 1. The conclusion of Lemma 1 continues to hold for arbitrary vectors
|¥) in the natural cone and 6 € (0,1/2) such that ||G(8) ||y, < 00.
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Proof. Case pg,p1 € [2,00]. Take a small € > 0, a faithful normal state w,, and
define the vectors [i.) in the natural cone as in (39). Then [¢.) is cyclic and
separating for M. The condition wy, < (1—¢) 'wy_ and Lemma 9 in the appendix
give

I () G(1/2 4 it)py,p. < (L= )P VNG(L/2 + it) |y
17 ()G i) g . < (1= &) P =/ G(it)

forallt € R. It follows that the assumptions of Lemma 1 apply to the vector-valued
function 7™ (¥)|G(z)) and the vectors |1, ). This gives

(58)

(59) lim S(I)Jp In H7rM/(1/J)G(9)||p9,,¢,E < right-hand side of equation (18).
e—

The lim sup is equal to In |7 ()G (6) ||lpy.o = I [|G(8)||ps.» by Lemma 5 provided
that py € [2,00), which is the case unless p; = py = 00 (80 py = 0).

For p; = pg = 00, (59) still holds but Lemma 5 as stated does not control the
lim sup. However, we get convergence of lim._q |7 (¥)G(6)||p.. = [|G(0)||p.ss <
oo for any Hélder index 2 < p < co. By the monotonicity of the L,-norms (in
particular L,(M, 1)) D Log(M,1))) as stated in [10, Lem. 8] or appendix item (8),
this implies that

(60)

f 5 In||G(0)]|p,y» < right-hand side of equation (18) for py = p1 =

Taking the limit p — co of the expression on the left-hand side and using the limit
in appendix item (8) (also using ||G(0)|lco,y < 00), the statement of the theorem
also follows for p = co.

Case pg,p1 € [1,2]. We define [¢).) in the same manner as before and wish to
apply Lemma 1 to this vector and to the vector-valued function 7™’ (1)|G(2)).
Standard properties of the Ls-norms (see appendix item (8)) in the range ¢ € [1, 2]
give [[Cllows < N llou /9712, 50 (¢ € R)
|7 @)G(1/2 + it) |y 0. < [G(1/2+it)]| < O,

le ()G (i) [lpo.w. < NG (1) < Co,

with Cy, C7 < co. Thus we can apply Lemma 1, and this gives, with Lemma 5,

(61)

right-hand side of equation (18) )
for ¢ — e, G(2) = 7 (¥)G(2)

As the integrand on the right-hand side of (62) is bounded from above as a function

©) IGO0 < msu(

of t € R, we can apply the Fatou lemma to pull the limsup inside the integral,
and then we can use Lemma 5 again. The result follows. O
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§4. Multi-trace inequalities for von Neumann algebras

As applications of Lemma 1 we now prove various inequalities that reduce to
“multi-trace inequalities” in the case of finite type I factors. To apply this and
other results from the literature, it will be assumed in this section that wy, is
a faithful normalized state on the von Neumann algebra M in standard form,
meaning wy(m*m) = 0 implies m = 0 for all m € M. We will always take |¢))
to be the vector representative in the natural cone, which is hence cyclic and
separating. However, we mention without proof that with some extra work all
results of this section could be suitably generalized to arbitrary, non-faithful wy,
e.g. using Theorem 1 and the approximation trick used in its proof.

Corollary 1. Letay,...,a, € M4, r € (0,1], p > 2. Then

1 )
63 oinlee il < [ dtBo(n)In o}
Proof. We want to choose p; = p, pg = 00, 8 = r/2 and
(64) G(2)) = ai® - a7 |¥)

in Lemma 1. Note that |G(z)) is a holomorphic on S;/, and bounded as well as

continuous on the closure S; /2. An elementary calculation shows pp = p/r. At the

lower boundary of the strip,

(65) G (@)llpo,w = llai™ -+~ ar Wlloc,p = llai™ -+ ai[| < 1

because aﬁ” are isometries, and because we have the isometric identification of
(M, ¥) 3 alYp) — a € M proven in [8]. The term from the upper boundary

satisfies

IG(1/2+ i) lpyw = lar™ - a4y P llp,y
< T1llawll 111,
k

(66) =TT llanll 1),
k

So Lemma 1 is applicable, the term from the lower boundary does not contribute,
and we obtain the statement. O

Another corollary of a similar nature is the following:
Corollary 2 (Araki-Lieb—Thirring inequality). For r > 2, |() € S there holds

(67) ICI2. < AT Swl|4".
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Proof. A proof for this was given first by [30] (in a somewhat different setting) and
later (essentially in our setting) in [10, Thm. 12]. So the only point is to show an

v 41/1|| < oo for otherwise the statement

alternative proof. We may assume that [|A,
is trivial. Also, we may assume without loss of generality that |¢) is in the natural
cone. In Lemma 1, we take |G(z)) = TZ/2|1/1> p1=2,pg=00,0=1/r,sopy=r.
Then |G(z)) is holomorphic on S; 5 and bounded and weakly continuous on Sy /o;
see e.g. [4, Lem. 3| or apply Lemma 3.

We compute at the lower boundary of the strip,

wrt/2
Gt o = 1AL Y 2l oo,
— ||Al’l‘t/2 —Z’I‘t/2¢||oo w

(68) = [lu(rt/2)loo,p
= [lu(rt/2)|| = 1.

Here, u(t) = AztwAw% is the Connes cocycle which is an isometry from M and
we used again the isometric identification of Lo, (M, ) 3 a|p) — a € M proven
n [8]. At the upper boundary of the strip,

(69) IG(1/2 + it)l|py. = IATY 2720,y = |AT 0] < o0,

which no longer depends upon t, using that the Ly-norm is equal to the Hilbert
space norm [8] and that A”w is a unitary operator on its bupport On the left-
hand side of Lemma 1, which is applicable, we obtain In ||A ¢H, o = In||C]rp-
On the right-hand side, the term from the lower boundary does not contribute due
to In(1) = 0. Since [ dt By(t) = 1 we obtain the statement. O

Let h be a self-adjoint element of M. Following Araki [3], the non-normalized
perturbed state |1)") is defined by the absolutely convergent series

> r1/2 51 Sn_1
(70) ") :Z/O d51/0 d52~~~/0 Qs A RAL 5 AL ORI,
n=0

which can also be written as e(™2w+h)/2|4)) [4]. This technique of perturbations
has been generalized to semi-bounded — instead of bounded — operators by [15];
see also [32, Sect. 12]. The perturbations, h, that would normally be in M, ,
are in this framework generalized to so-called “extended-valued upper bounded
self-adjoint operators affiliated with M”, the space of which is called Myt. More
precisely, h € My if®

50ur conventions differ from the literature such as [15] in the sense that —h would be in
Mext as defined there.
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(i) it is an affine, upper semi-continuous map .(M) 3 o — o(h) € RU {—o0},
and
(i) the set {o(h): o € .7 (M)} is bounded from above.

For any “operator” h € My, one shows that it is consistent to make the following
definition:

Definition 1 (See [15, Thm. 3.1]). If h € Moy, the perturbed state o of a nor-
mal state o € (M) , is given by the unique extremizer of the convex variational
problem®

(71) (0, h) = sup{p(h) — S(plo): p € (M)}
provided the sup is not —oo.

The condition ¢(o,h) > —oo holds for example if h € Mg, is an ordinary
self-adjoint element of the von Neumann algebra M, and in this case the above
“thermodynamic” definition of the perturbed state is up to normalizations equiv-
alent to Araki’s “perturbative” definition (70):

(72) c(o,h) =Inll"|*, " (m) = (" [mln")/In"|1%,

wherein |n) is a vector representer of the state o; see [15, Ex. 3.3]. Furthermore,
h € Mext has the spectral decomposition [15, Prop. 2.13(B)]

(73) h:/ AEL(dN) —o0-g=h.—00-q.
Here, ¢ € M is the projector onto the subspace where h is —oo, and the spectral
measure Fj(d\) of h. takes values in the projections in (1 — ¢)M(1 — gq), so it
commutes with ¢q. The term h. is a self-adjoint operator affiliated with M such
that o(h) = o(h.) whenever o is a normal linear functional on M having support

s(0) < (1—q).

Corollary 3 (Generalized Golden-Thompson inequality). Forh; € Mext, ||¢] =
1 there holds

<m>hﬂ¢ﬁ*m2s/w%wm{
R

k
I e<1/2+z't>hj¢‘
j=1

1
I e(l/z—it)th }
j=k

Remark. By (73) and standard theorems for self-adjoint operators (e.g. [38, Thm.
VIIL7(b)]), the functions ¢ — [T, e(1/2+hi ) (any ordering of the factors) are

65(p|o) is the relative entropy defined in (92).
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strongly continuous, and they are also bounded uniformly in ¢ € R in norm due to
the semi-bounded nature of h; expressed in (73). Thus the integral in (74) is well
defined and definite (but could be —c0) in the Lebesgue sense.

Proof of Corollary 3. Case I. First we assume each h; € M, , , i.e. it is bounded.
We let

(75) (G(2)) = A Pesh o ehofy),

This family of vectors is analytic on S;/, and uniformly bounded and weakly
continuous on the closure, for instance using Lemma 3. In Lemma 1, we would
like to use this with p; = 2, pg = 00, § = 1/n, n € 2N, so pp = n. At the lower
boundary of S, /5, we get

(76) G (it)lloow = Il (€™ - ™) 1)) oo,p = [l (e - )| = 1,

where we used the isometric identification of Lo (M, %) 3 alyp) — a € M proven in
[8], and where gl’j) = AdAf;Zf is the modular automorphism. At the upper boundary
of Sy /2, we get

(77) 1G(1/2 4 it) || 2. = ||A11/4e(1/2+it)h1 .. ,6(1/2+it)hkw”7

using this time that the Lo-norm is equal to the Hilbert space norm as proven in
[8]. By an application of the Hadamard three lines theorem (84), the right-hand
side is uniformly bounded in .

Thus, the assumptions of Lemma 1 are met. Only the term from the upper
boundary makes a contribution in the integral, so we have

In [|A/ ey,

(78) < / At By (1) In A HeC/2 01/ 2,
R

Now we consider the left-hand side of this inequality, putting a,, = e/ .../,
By [8, Thm. 3(4)] and [24, Lem. 1], there exists |¢,) € S such that

(79) AY" Y = AYCVanlw),  lgall? = 1A PV any|2 .
It follows that

(80) |6n) = JAY2 ) = J(AY PP, AL G2 )
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by a straightforward repeated application of [8, Lem. 7.7(2)]; for the details see
e.g. [24, Lem. 1]. Combining (78), (79), (80), we arrive at

In H(Aj/(?n)ehl/n . ehk/nAqlp/@n))n/zw”z
(81) < / dt Bl/n(t) In ||A11/4e(1/2+”)h1 . '6(1/2+it)hkw”2.
R

We now take the limit n — oo on the left-hand side. Araki’s version of the
Lie-Trotter formula (suitably generalized to k operators hq,..., Ak, using that
ehi/m . ete/m =1 4 n=Y(hy +- - + hy) + O(n=2) where ||O(n™2)|| < Cn=2 for all
n > 0), see [4, Rems 1 and 2], establishes that

S—lim(A}/(zn)ehl/” . ehk/nAllp/(Qn))n/Q‘lm _ |"/}h1+m+hk>

n
(82) — e(lnA,¢+h,1+"~+hk)/2|w>,

so we get
(83) In ||,(/Jh1+"'+hk ||2 < / dt Bo(t) In ||A11/4e(1/2+it)h1 .. .6(1/2+it)hk¢||2.
R

On the integrand we finally use the following well-known application of the Hada-
mard three lines theorem (0 < a < 1/2, m € M),

(84) 1Agmap || < [|AY #ma| > map |72 = [fm |2 ]| =2

using that z — In|[[AZmy| is subharmonic on Sy /5. Using this with a = 1/4,
m = e(1/2+it)hi . o(1/24i)hk gives the statement of the corollary.

Case II. The proof can be generalized to the case when h; € Mey by reducing to
case I via an approximation argument: elements k € My, can be approximated by
bounded self-adjoint elements k, € Ms.,. by introducing a cutoff in the spectral
decomposition (73), as in

(85) o = / NER(dN) —n - g;
in fact one shows that [1)*») — |*) strongly (see [15, Prop. 3.15]). We perform
this cutoff for every h; obtaining an hj .

Since the desired inequality holds for h;, by case I, the proof is completed
by the fact that e(1/2+ihin _ o(1/2+i)h; a5 n 5 o0 strongly pointwise in
t € R (and even uniformly in ¢ on finite intervals of R by (73), (85) and stan-
dard results such as [38, p.314, Exs 20, 21]) and Fatou’s lemma, noting that
t— —In| T, e(1/2+ihimep|| (any ordering of the factors) is continuous in ¢t € R
and bounded below uniformly in n. O
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Examples. The following examples are illustrative:

(1) In the previous corollary we take k = 1, hy = h. Then the norm in the
integrand no longer depends upon ¢ and we can use that [ dt 8y(t) = 1 to get

(86) [ < [le" 2y,

as shown previously by [4].

(2) Finite-dimensional type I algebras. Let A = M,,(C). We will work in the
standard Hilbert space (4 ~ M, (C) ~ C"® (C™)*) and identify state functionals
such as wy, with density matrices via wy(a) = Tr(awy). Vectors |¢) in JZ are thus
identified with matrices ¢ € M,,(C). We have already mentioned that the L, (A, 1)-
norms can be computed using the expression [10] (][, = Tr((wi/p_lc*)pm,
where |() € S is identified with a matrix ¢ € M,,(C) as described. Let a; be non-
negative matrices. The multi-matrix inequality in Corollary 1 then reads, when
wy is the normalized tracial state wy(a) = Tr(a)/n,

(87) InTr|af - a|P/" < /Rdt Brj2(t)InTr|aray™ - ap T ak P,

which generalizes the Araki-Lieb—Thirring inequality (corresponding to k = 2).
This was derived previously in [47, 39], so our result can be seen as a generalization
of these results to arbitrary von Neumann algebras. Corollary 2 is another gener-
alization of this inequality which gives nothing new in the present case. Corollary
3 gives the following inequality. Under the above identification of vectors |¢)) € S
and matrices, the perturbed vector is

(83) o) = |2

(assuming [¢) to be in the natural cone, i.e. self-adjoint and non-negative), and
then choosing |¢p = 1,,/4/n) as the vector representing the tracial state on A, we
have

In Tr el tthe

(89) < / dt Bo(t) InTr |e(1/2)h1 e(1/2+it)ha | (1/24it)hy—1,(1/2)hy, |27
R

for any hermitian matrices h;. This reduces to the Golden—Thompson inequality
for k = 2,

(90) TreMthz < Tr(eMeh?2),

using that the trace in the integrand no longer depends on ¢ and [ d¢ y(t) = 1. For
an arbitrary number of matrices this is due to [39], who also explain the relation
with Lieb’s triple matrix inequality (corresponding to the case k = 3).



IMPROVED DATA-PROCESSING INEQUALITIES 711

8§5. Improved DPI and recovery channels
§5.1. Relative entropy and measured relative entropy

For the von Neumann algebra A = M,,(C), the relative entropy between two states
(density matrices) wy, wy, is defined by

(91) S(wywy) = Tr(wy Inwy — wy Inwy).

This may be expressed in terms of the logarithm of the relative modular operator
in (10), and this observation is the basis for Araki’s approach [5, 6, 7] to relative
entropy for general von Neumann algebras. The main technical difference in the
general case is that the individual terms in the above expression, such as the von
Neumann entropy — Tr(wy Inw, ), are usually infinite. Thus, from a mathematical
viewpoint, the relative but not the absolute entropy is the primary concept.

Let (M, J, 2" , 7€) be a von Neumann algebra in standard form acting on a
Hilbert space ., with natural cone QE\A and modular conjugation J, and let w,,
wy be normal state functionals with vector representatives |¢), |n) in the natural
cone. According to [5, 6, 7], if 7™ (n) > 7M (1)), the relative entropy may be defined
in terms of them by’

(92) S(wylwy) = — lim

)
a—0t

(Y|A7 ) — 1
«

otherwise it is by definition infinite. Araki’s definition of S(wy|wy,) is independent
of the choice of natural cone t@ﬁw and it still satisfies the DPI (1) ([45]) along with
many other properties; see e.g. [32]. For generalizations of S in various directions
in the setting of von Neumann algebras, see e.g. [22].

For t € R, the Connes cocycle [Dt) : D)y is the isometric operator from M

satisfying

(93) [D3 : D] _ym™ () = Afﬁ,wA;ﬁz-

In terms of the Connes cocycle, the relative entropy (92) may also be defined as
.d

(94) Swylwn) = —iwy([Dn: DYle)li=o-

The derivative exists whenever S(wy|w,) < oo [32, Thm. 5.7].
Later we will use the following variational expression for the relative entropy
[36, Thm. 9]:

(95) S(wylwn) = , Sup {wy (h) —Inn"|*},

s.a.

"The limit exists under this condition but may be equal to +oco.
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with My .. is the set of self-adjoint elements of M. A related variational quantity
is the “measured relative entropy” Speas, defined as (see, e.g. [32, Prop. 7.13])

(96) Smeas(Wylwn) = sup {wy(h) —In e/ 2n)1%}.

s.a.

From the Golden-Thompson inequality (86) we find
(97) Smeas(ww|wn) < S(ww|w7l)'

The measured relative entropy Speas can also be written in terms of the classical
relative entropy S(u|v) (Kullback—Leibler divergence) of two probability measures:

(98) S(ulv) = /d,u lnj—/:

as follows. Let a € Mg ,. be a self-adjoint element of M. Then it has a spectral
decomposition

(99) o= / NORCES

with an M-valued projection measure E,(d)\). Given |¢),|n) € S, we get Borel
measures dfy o = (P|Eq(dN\)), and likewise for |n). Physically, these correspond
to the probability distributions for measurement outcomes of a in the states |¢)
resp. |n). The relative entropy between these measures is defined (but can be
+00) if supp fty,q C SUPP fiyp,q, Wherein djiy, o/dfy. means the Radon-Nikodym
derivative between the measures. We may perform the maximization in (96) over
f(h) with® f € L°(R;R) and h € Mg, because f(h) € Ms.,.. Maximizing first
for fixed h over f and using (= equation (95) in the commutative case)

(100) sup{[ fdu—In [ef dv: f € L®(R;R)} = S(u|v),
we can write the measured relative entropy in the following way:

Smeas(Wy|wn)
= sup{S(ty,nltnn): b € Msa }
(101) = Sup{S’(wwdwmc): C C Ma commutative von Neumann subalgebra}.

This motivates the name “measured relative entropy”. The second equality holds
by [32, Prop. 7.13].

8More precisely, the space L™ is defined relative to the measure Ih,y relative to some faith-
ful normal state ¢ € .#(M). Depending on the nature of this measure, “L°°” means either
£°({1,...,n}), £°(N), or L°°(R), or a combination thereof, wherein the counting measure is
understood in the first two cases, whereas the Lebesgue measure is understood in the last case.
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For later, we would like to know the relationship between Speas and the fi-
delity, F. According to [44, 1, 2], the fidelity between two states w),wy € (M)
on a von Neumann algebra M in standard form may be defined as

(102) F(wylwy) = sup{|(nlu'y)|: v" € M', [[/[ = 1}.

It is related to the Lq-norm relative to M’ by F'(wy|wy) = ||9|1,4,M7; see e.g. paper
I ([17, Lem. 3(1)]). We make the following claim:

Proposition 1. If w, € /(M) is a faithful state on the von Neumann algebra
M, then Smeas(Wy|wy) > —In Fwy|w,)?.

Proof. We may assume that |n) is in the natural cone 9}\4» hence cyclic and
separating. Consider in Li(M’ 1) the polar decomposition |[¢,) = u'[¢)) into a
u' € M’ such that w*u' = 7™M’ (1) < 1 and |¢1) € LT (M, n) N = @}V/ﬁ, see
[8, Thm. 3]. By definition, the cone 9}\,/1% is the closure of A%UZ " In) (in the
topology of ), which equals the closure of M |n), since JA;,l/Qa’|n> =a'|n) for
a e M, Jn) =|n), and JM’'J = M. Thus, there exists a sequence {a,} C M4

such that lim,, a,|n) = «/|¢) in the topology of 7, so
(103) lim(nlann) = (nu') € Ry.

Let E,, (d\) be the spectral decomposition of a,, and dug, v = (Y|E,, (dN)¥),
dpta, n = (N|Ea, (dX)n). Applying [10, Thm. 13 and Lem. 9] to the commutative
case gives

Y

Smeas(Wy|wn) > S(tay, ylla, n) = =2 F(pa, vlta, n)
Apt, 4\ 1/2
(104) = —21n/(d7¢) Afta,

Hanm

(where the Radon—Nikodym derivative is defined since |n) is faithful). As function-
als on M, we have wy, = wyry because u/*u’ = 7™’ () and v/ commutes with M.
Let C,, = {a,}"” be the commutative von Neumann subalgebra of M generated by
ayn. It can be identified canonically with L>°(R,df,,, ) via the spectral theorem.
Denoting by || f||1 the norm of a linear functional f: L (R, dy,,q,) — C, then if
f is the restriction of some normal functional w on M to C,,, we obviously have
171l < |lwl||. Therefore, we have

lttyp.an = Hannanllt = llwyle, — Wannle,

< lwy — Wany

= ku'w - Wann”
(105) < [u'y + ann]| [u"y — ann),
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using (11) in the last step. Since lim,, a,|n) = u'|[¢)) in the topology of 52, we
thus get limy, ||ty a,, — Hann,a. ||t = 0. By paper I ([17, Lem. 11]) applied to the
commutative von Neumann algebra C,,, we thereby get

1/2
(106)  |F(tpan inan) = Flhanman i)l < ipan = tannanllt/> = 0.

By definition,

d/’cannaan ()\) 1/2 _
(107) (m) =\ for \ S R"r?

hence using (106) in the lim,, of (104) gives

Y

Smeas(w¢|w77) —2In hm/ )\dl},n’a"

— _9lnlim / M| Ea, (dN))

= —2Inlim(n|a,n)

—2In(n|u'y))
—21n [(nfuy)].

The right-hand side is by definition > — In F(wy|w,)? as ||u/|| = 1, ' € M’, which
concludes the proof. O

(108)

Remark. The unknown referee has pointed out the following alternative proof. By
[10, Thm. 13 and Lem. 9], Smeas(wy|wy) > —2In Fineas(wy|wy), where Fiyeas is the
measured version of the fidelity defined analogously to Speas by restricting to all
possible commutative subalgebras. But it has also been shown that Fineas(wy|wy) =
F(wy|wy); see [22, eqn. (5.26)].

§5.2. Petz recovery map

We now recall the definition of the Petz map in the case of general von Neumann
algebras, discussed in more detail in [32, Sect. 8]. Let T': B — A be a normal (ultra-
weakly continuous) *-preserving linear map between two von Neumann algebras
A, B in standard form acting on Hilbert spaces ¢, ¢ . If

ZZ] [Z SD (:Zi) S0 V|G €, T(lg) = 14,

and for all a,b,c,d € B, then T is called 2-positive and unital. In the matrix

(109)  ({al(cl) T(

inequality, we mean T applied to each matrix element. By duality between A and
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S (A), T: B— A gives a corresponding map T': .%(A) — .Z(B) by w s T(w) ==
woT. For finite-dimensional von Neumann algebras A, B, where state functionals
are identified with density matrices through w(a) = Tr(wa), we can think of T as
the linear operator on density matrices defined by

(110) TrwT(b) = Tt T(w)b Vb € B.

This operator T is 2-positive and trace preserving. The quantum DPI [45] states
that

(111) S(wplun) = S(wy 0 Tlwy o T),

where the right-hand side could also be written as S (T(ww)\f (wn)).

We recall the definition of the Petz map. Let |n4) be a cyclic and separating
vector in the natural cone of a von Neumann algebra A in standard form. Then
the “KMS” scalar product on A is defined as

(112) (a1,a2)y = (nalai A} *azna).

Let w,, be the faithful normal state functional on A associated with |4). Then its
pull-back wy,, o T to B, which is also assumed to be faithful (for simplicity), has a
cyclic and separating vector representative |np) € £ in the natural cone. So

(113) wp(a) = (alana), wyoT(b) = (nslbns).

The terms |n4) resp. |ng) give KMS scalar products for A resp. B, which we can
use to define the adjoint 77 : A — B (depending on the choices of these vectors)
of the normal, unital, and 2-positive T: B — A, which is again normal, unital,
and 2-positive; see [32, Prop. 8.3]. For finite-dimensional matrix algebras, Tt cor-
responds dually to the linear operator T+ acting on density matrices p for B given
by

(114) T (p) = o}A/QT(Ugl/ongl/Q)U;/Q,

wherein o 4 is the density matrix of |n4) and o = T(0.4) for |ng). The rotated
Petz map, which we call afLT: A — B, is defined by conjugating this with the
respective modular flows, i.e.

to_ ot + .t
(115) Qp =S, 8° T 0, 4

where ¢/ , = AdAY , is the modular flow for A, [n4) etc. For finite-dimensional
matrix algebras, ath gives by duality a linear operator df,’T acting on density
matrices p for B, which is

. 1/2—i —1/2+it _—1/2—it\ _1/2+i
(116) ozf,)T(p) :UA/ tT(O'B / +tp05 / t)aA/ et
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The following is an equivalent definition of the rotated Petz map:

Definition 2. Let T: B — A be a unital, normal, and 2-positive linear map and
wy a normal state on A with w,, w, o T faithful. Then the rotated Petz map
o, 7+ A — B is defined implicitly by the identity

(117 (sl Tl (@1s) = (T(EnAl AN, ana)
forallae A, be B.

Closely related to the Petz map is the linear map [33, 35] V: & — H#
associated with T" and a vector |¢p4) in the natural cone of A. Let wy be the
associated state functional on A, wy 0T its pull-back to B with vector representative
|¢) in the natural cone of B. If |¢5) is separating (hence cyclic), Vy; is defined by”

(118) Vyblys) =T (0)[¢4) (b€ B).

It follows from Kadison’s property T(a*a) > T(a*)T(a) (which is a consequence
of (109)) that Vi, is a contraction ||V | < 1; see e.g. [33, proof of Thm. 4].
As in paper IT ([16]), we introduce a vector-valued function

(119) 2 |Ty(z)) = ZA,wAva;;,wsww (z € Sl/g),

the existence and properties of which are established in paper II ([16, Lems 3,
4]). In particular, |I'y(2)) is holomorphic inside the strip S; /o and bounded in the
closure S; /2 in norm by 1. The relation to the Petz map is as follows (paper II,
[16, Lem. 2]):

(120) (Ty(1/2 +idt)|aly(1/2 +it)) <wyoTo ath(a) teR, ae Ay
§5.3. Improved DPI

Our main theorem is the following:

Theorem 2. Let T: B — A be a 2-positive, unital (in the sense of (109)) linear
map between two von Neumann algebras, and let wy, wy, be normal states on A,
with wy,wy o T faithful. Then

(121) S(wylwy) = S(wy 0 T|wy 0 T) > Smeas(wy|wy o T o ary),

9n the general case, one can define [33] instead

Vi (Bls) + 10)) = T(®)[a) (b€ B, =8 (9)|¢) = 0).
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with the recovery channel

(122) ar, = /R dt Bo(t)a,,.

When both S(wy|wy), S(wy © T|wy, 0 T') = +00, we agree that the left-hand side of
(121) should be considered as +oc.

Remark. The following points may help the reader appreciate the scope of The-
orem 2:

(1) The theorem should generalize to non-faithful states by applying appropriate
support projections in a similar way to paper I ([17, Lem. 1]).

(2) For finite-dimensional type I von Neumann algebras, i.e. matrices, our result
is due to [39]. The recovery channel is given explicitly by (116) in this case
as an operator on density matrices, where o4, og are the density matrices
corresponding to wy, wy, o T respectively.

(3) By Proposition 1, our bound implies that given in our previous paper II ([16,
Thm. 2]) for the fidelity; in fact it is stronger in many cases. However, it is
not stronger than the version of the theorem in paper II ([16, Thm. 1]) with
the integral outside.

(I) Proof of Theorem 2 under a majorization condition. First we consider
the special case where there exists oo > ¢ > 1 such that

(123) c_lwn < wy < cwy.

Since wy, is faithful, it follows that so is wy. We choose the vector representatives
), |¥) (alternatively called |n.4), |¢.4), depending on the context, to make their
relation to the algebra A clear) for w,, wy in the natural cone, which are then
cyclic and separating. Note that (123) implies ¢ 'w, 0T <wyoT < cw,oT as T
is positive. Again, since w,, o T" is faithful, it follows that so is wy o 7. We choose
the vector representatives |ng), |) for w, o T, wy o T in the natural cone, which
are then cyclic and separating.

By [32, Thm. 12.11] (due to Araki), there exists an h = h* € A such that
lwa) = [n%)/IIn%]l with ||h]| < Ine, and vice versa. As is well known, this fur-
thermore implies that the Connes cocycle [Dn4 : D 4] is holomorphic in the
two-sided strip {z € C: |Re(z)| < 1/2}, weakly continuous and bounded in norm
(by c®e(*)) on the closure of this strip (see e.g. paper II [16, Lem. 5]), and similar
statements hold for [Dng : DYgl;..

By (94), we thereby conclude that S(wy|wy),S(wy o Twy, o T) < oo, and
near z = 0, we have an absolutely convergent (in the operator norm) power series
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expansion
(124) [Dns : D)z —1+szl,

with bounded operators k; € B such that |k| < C'. We set

(125) ko= (D - Dl € Ava.

Using [32, Thm. 5.7] and the definition of the relative entropy in terms of the
Connes cocycle (94),

Sa(wy |wyr) = Salwylwy) — wy (k)

= Sa(wylwn) — <¢A‘%T([D?73 : Dl/JB]t)l/JA>‘t:
(126) = Sa(wylwn) — Sp(wylwy),

which is one side of the inequality that we would like to prove. The variational
expression (95) then gives

(127) Sa(wylwy) — Sp(wy|wy) = S {wy(h) —In|n* "2},

s.a.

where we used |(7*)") = [n*+"); see [32, Thm. 12.10]. To get the desired DPI we

will establish an upper bound on In [|[n*+"||2.

We want to use Lemma 1 with (here |T'y(2)) is as in (119))
(128) |G(2)) = "0y (),

with the cyclic and separating vector [¢), and with pg = oo, p1 = 2, 6 = 1/n, where

n € 4N and h = h* € A. We have the representation |I'y(2)) = AF  , T([Dng :

Dy i) |¢5), and T([Dnp : D] —i2)[1bs) is holomorphic on S, /5, and bounded
and weakly continuous on S; s2- Then applying Lemma 3 twice proves that the
same is true for |T'y(2)) and for |G(z)).

At the lower boundary of S;/, we have, with up(t) == [Dnp : Dygl; € B,
ua(t) = [Dna: DYali € A the unitary Connes cocycles,

G lpow = Nl AL, v, Vi 8l o
= [le"™ ALy T (s (1) Plloous
= [l [T (up (t)ua(=)¥ | 0,0
5(t))]ua(=1)]

(u

(u

= [y [T (us@®)]l

(129) = 1T (us@)] < lus®)] = 1,

_ ||€zth t[
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where we used [|s}[a]|| = [|a]| for all a € A (since ¢} = AdAY ), |T(D)|| < [b]| for
all b € B (since T is 2-positive and unital'®), and the isometric identification of
Loo(A, %) 2 alyp) — a € A proven in [8]. At the upper boundary of S/, we have

(130) IG(1/2 + it)py v = "Ly (1/2 + i) |

using the isometric identification of Lo (A, ) and S proven in [8]. We have already
argued that the right-hand side is uniformly bounded in ¢.

Thus, we can apply Lemma 1, and since pg = n and In [|G(it)|| p,,» < 0 as just
shown, we get from this lemma that

In ||le"/ Ty (1/n)|2 ., S/Rdtﬁl/n(t)lnllG(l/Q+it)||;2;1,w
:/dtﬁl/n(t)ln||eh/2fw(l/2+it)\|2
R
<t [ dt By ()T o(1/2 4 i)
R

(131) < ln/ dt By /n(t)wy o T o af]’T(eh),
R

using (120) in the fourth line, Jensen’s inequality in the third (noting that
/2T, (1/2 + it)||? is uniformly bounded in ¢ € R), and (130) in the second.
Taking the limsup,, _, .., we get, using the definition of the recovery channel ar ),

(132) limsupIn [|e"/" Ty (1/n)||2 ,, < wy o T 0 oy r(eh).
This is our first main intermediate result. The next lemmas give an expression for
the lim sup:

1/n 1/n
Lemma 6. We have ||eh/”F¢(1/n)||Z)w = ||(eh/"An’/wanAn{weh/”)"/‘leQ, where
(133) an = T([Dns : DYl _in)T([Dns : DYs]_im)" € Ay
Lemma 7. We have lim,, H(eh/”AifganA;{geh/")”/‘lw||2 = [|n*t2.

Combining the two lemmas with equations (127), (132) gives the statement
of the theorem:

Sa(wylwn) — Sp(wy|wy) > sup {wy(h) —Inwy oT o amT(eh)}

s.a.

(134) = Smeas (ww‘wib oTo aT:")’

using the variational definition (96) of Speas in the last step.

¥Indeed, we have [|T(b)||> = |T(b)T(b)*|| = [T(®)T(6*)|| < [IT(0b*)|| < ||bb*|| = [|b]|* using
the properties of the norm, the x-preserving property of 7', Kadison’s inequality, and the unital
property of T
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Proof of Lemma 7. Since (124) is an absolutely convergent power series in the
operator norm, it follows from (125) that a,, = 1+ 2n"'k + O(n?), where O(n®)
denotes a family of operators such that [|[O(n®)| < en® for all n > 0. Since h is
bounded, we also have /™ =14 n~'h + O(n~2). Replacing n — 2n to simplify
some expressions we trivially get

(135) M CMANED gy AVEW /G — AVE L LY 402,

where X,,, Y,, are finite sums of terms of the form onfﬁwml e xlAZ”wxl, wherein
>.s;=1/n,s; >0 and ||z;|| < ¢ uniformly in n. Then X, is given explicitly by
(136) X, = %hA}%/n 1A1/nh+ A1/(2n k_Al/(Qn).

By [5, proof of Thm. 3.1], the functions

(137) F(z) =z A7 2o :CjAwamj+1\w>, z € S{/2

defined for given z; € A are analytic in the domain 81/2 ={(21,...,2)) €CI: 0 <
Re(zi), > Re(z;) < 1/2} and strongly continuous on the closure. Subharmonic
analysis as in [5, proof of Thm. 3.1] or [8] furthermore gives the bound

(138) @I <] el vz €8s

This bound, and the elementary formula

(139) (A+tB)N Zt] > A™OB ... AMi-1 BA™
mo+-+mj=N—j
m; ENg
show that the difference

n 1/(2n 1/(2n n)\n
G} = (M CMA D ag, A My 2 )

n/2
(140) -y 3 AT X AT X, AT )
j mo+---+mj=n/2—j
m;E€Ng

is bounded in norm by

(141)  IGall < (a7 (Al + 1K) +n72e)™2 = (L +n7 (|[A]] + |[&]1)"/?
for some ¢ < oo, hence it tends to zero in norm as n — oco. Now setting
142 lewg) =T 30 AR AT XA ),

n,Y
mo+-4mj=n/2—j
m]‘GNo



IMPROVED DATA-PROCESSING INEQUALITIES 721

the strong continuity of the functions F' and the usual definition of the Riemann
integral imply

|¢]> = hTILIl |¢n,j>

1/2 Sj—1
_ / dso - - / ds; A5 (h+ k) A (h + k)
0 0

(143) S AT (R R)A ),

and the usual perturbation theory by bounded operators as in [3, Prop. 16] or [5]
gives 227 |¢;) = el BavThTR/2]y) Hence,

(144) 1im(eh/(2")A;{f”)aznA;{;Z")eh/@"))"/2|w> = eI Bnuthtk)/2) )

n

strongly, as was argued more carefully in [4, proof of Lem. 5]. We have
e By ythtk)/2 |y — (B w2 ht2'R) /2|4 (here p' = 74 () € A’). Also, us-
ing [32, Thm. 12.6], we have InA, ,, + p'h 4+ p'k = In A nte , and this gives
[nhtky = Jnhtk) = e Anp+thtk)/2)4)) by relative modular theory. This com-

pletes the proof. O
Proof of Lemma 6. From the definitions,

M0y (1/n)) = M/ mANT L VAT AL o)

nNAa, YA nB,YB
(145) = M/mAVT (D - DYs)—ipn)ldba),

using the definition of the Connes cocycle and the fact that [Dng : D]/ € B
under our assumption (123); see paper II ([16, proof of Lem. 4]). In the following,
let b = e"/", a = T([Dng : DYg]_i/n) € A and [1ha) = |), [na) = |n) etc., so
ey (1/n)ll7 g = 194, a7 .

By the results of [8] (which hold in the present context since wy, is faithful), the

vector bA;{$a|¢> € L,(A,v) has a polar decomposition bA:h/lZaW) = uA;{:;pW%

where |\bAi]7/$a1/}||z7¢ = ||¢n||* and where u € A is a partial isometry. To get an
expression for |¢,), we use the formalism of “script” .Z,-spaces of [8, notation 7.6]:
as a vector space, £, (A,), p > 1 consists of all formal linear combinations of
formal expressions of the form

(146) A= xlAawa e anZ:,¢$n+1»

wherein Re(z;) > 0, >, Re(z;) <1—1/p, z; € A, (; € A, the formal adjoint of
which is defined to be

(147) A* = x;*l_HAg:’d)xZ . xﬁA? »T1-

1,
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The notation £ ,(A,1) is reserved for formal elements A such that, in ad-
dition to all other conditions, ), Re(z;) = 1 — 1/p. It is then clear that
oA ) L5 o (M, ) = L7 (M, 1)) as formal products where 1/7" = 1/p" +1/¢'
with 1/p’ = 1 —1/p as usual. By [8, Lem. 7.3], if 1 < p < 2, any element A €
Zy(A,9) can be viewed as an element of L,/ (A, 1) in the sense that |¢)) € Z(A)
and A1) € Ly (A, v)."" Furthermore, by [8, Lem. 7.7(2)], if A1, Ay € £ (A, )
correspond to the same element under this identification, then so do A}, A3 or
A1B, A3B or BAy, BAy if B € £7,(A,%) (as long as 1/p" +1/¢" < 1/2, for
example).
We now start with the trivial statement that uAl/nw = bAl/na in the sense
that these elements of £, ;(A, ¢) are identified with the same element of L, (A, ).
Then repeated application of [8, Lem. 7.7(2)] and the definition of adjoint gives

(148) uAi{:fwu* = bA:]/LLaa*A;{gb* n 2 (n—2),0(A ).

Successively forming n/4 products of this equality and applying [8, Lem. 7.7(2)]
in each step, we find that

(149) uly? s = (ALY laa* A6 i Ly o(A ),

meaning that both sides are equal as elements of S = Lo(A, 1) after we apply
them to |¢). Thus,

1/n E 1/n *\1N 1/2
(150) (|64, Faa” AT I = udy? )P = lluTud,]” = (64l
using modular theory in the penultimate step. Therefore,
1/n * A Ll/Myx\n 1/n
(151) 1A, faa A 50 ) |2 = b favll .
and the proof of the lemma is complete. O

(ITI) Proof of Theorem 2 in the general case. We will now remove the ma-
jorization condition (123). This condition has been used in an essential way in most
of the arguments so far. For example, without it, the operator k in (125) is un-
bounded and thus not an element of A. For unbounded operators the Araki—Trotter
product formula and the L,-techniques are not available in the form in which we
used them and it seems non-trivial to extend them to an unbounded framework.
We will therefore proceed in a different way and define a regularization of wy
such that the majorization condition (123) holds and such that, at the same time,
the desired entropy inequality can be obtained in a limit wherein the regulator
is removed. However, it is clear that this regularization must be carefully chosen

M fact, AWl < l2n I TEZ (il 1GIF0),
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because the relative entropy is not continuous but only lower semi-continuous. By
itself the latter is insufficient for our purposes since the desired inequality (121)
has both signs of the relative entropy.

Our regularization combines a trick invented in paper I ([17]) with the con-
vexity of the relative entropy. As in paper I ([17]), we consider a function f(t),
t € R with the following properties:

(A) The Fourier transform of f,

oo

(152) f(p) = / I f(t) dr,

— 00
exists as a real-valued and non-negative Schwarz-space function. This implies
that the original function f is Schwarz and has finite L; (R)-norm, || f|l; < oo.

(B) f(t) has an analytic continuation to the upper complex half-plane such that
the Li (R)-norm of the shifted function has || f(- +i0)||;1 < oo for 0 < 6 < oco.

Such functions certainly exist (e.g. Gaussians). We also let fp(t) = Pf(¢tP) for
our regulator P > 0, and we define a regulated version of |¢) by

_ Fendy0)l0)
| r(n &y )0

As shown in paper I ([17]), some key properties of the regulated vectors are

(153) [vbp)

(P1) wy,p < cpwy for some cp > 0 which may diverge as P — oo,
(P2) s-limp_,o [thp) = |th) (strong convergence),
(P3) =2In([[fll1/[flloc) +limsupp_, oo S(¢pln) < S(In),

where the first item gives at least “half” of the domination condition (123), the
second states in which sense |¢p) approximates |¢), and the third gives us an
upper semi-continuity property of the relative entropy opposite to the usual lower
semi-continuity property which holds for generic approximations. We define, for
small € > 0,

(154) o(a) = (nlan), ppe(a) = (1 —e)(Yplap) +(nlan).
Thus, by (P1), the relative majorization condition (123) holds, e.g. with ¢ =
max(cp,e~1), between pp. and o. By (P2), limp_ o lime 0 [|p — ppel = 0. In

(P3), we choose a function f such that ||f||1/]fllcc = 1 (which must be Gaus-
sian). The well-known convexity of the relative entropy gives, together with the

definition of pp. that (pp = (Yp| - ¢¥p))

(155)  S(ppe

0) < (1= £)S(pplo) +=S(olo) = (1 )S(pplo).
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Combining this with (P3), we get

(156) lim sup limsup S(pp.|o) < S(p|o).

P—oo e—0
The norm convergence limp lim, ppoT = poT by (P2) also gives, in combination

with the usual lower semi-continuity of the relative entropy ([7, Thm. 3.7(2)]) that

(157) hmlnfhmlnfS(ppsoT\aoT) > S(poT|ooT).

P—oo

Now we combine equations (156), (157) with part (I) of the proof applied to the
states pp and o, which obey the relative majorization condition. If S(poT'|ooT) <
00, the difference S(p|o) — S(poT|o oT) is meaningful (possibly = oo) and we get
from (156) and (157) that

(158)  S(plo) —S(poT|ooT) > limsup limsup Smeas(PPelppe 0T 0 ar,5).

P—oo e—0

If S(poT|ooT) = oo and hence S(p|o) = oo, the statement of the theorem is
vacuous and there is nothing to prove. The proof of part (IT) is then finished by
proving lower semi-continuity for the measured relative entropy:

Lemma 8. If puy,, vy, u,v € L (A) are such that lim,, p, = p and lim, v, = v in
the norm sense, then Smeas(t|v) < liminf, Smeas(tn|Vn)-

Proof. This is a straightforward consequence of the variational definition (96) of
Smeas, choosing a near optimal h. O

Appendix A. Araki-Masuda L,-spaces [8, 10, 26, 27, 22]

The weighted L,-spaces that we use in this paper were defined by [8] relative to
a fixed vector |¢p) € 4 in the natural cone of a standard representation of a von
Neumann algebra M. For p > 2, the space L,(M, 1) is defined as

(159)  Ly(M. %) = {I) € Niyyerr ALY TP [i¢llpay < 00}

Here, the norm is

(160) I¢lpw = sup 1AL~

For 1 < p < 2, L,(M,) is defined as the completion of J# with respect to the
norm

(161) I¢llpp = mE{IASLDEP | o) = 1, 7M(g) > 7M(O)).
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In [8], it is assumed for most results that |¢) is cyclic and separating. When using
such results in the main text, we will be in that situation. An equivalent approach
replacing the relative modular operator by the Connes spatial derivative and con-
taining also several new results is laid out some detail in [10]. A different approach
to L,-norms is taken in [26, 27, 22]. However, these definitions are eventually
shown to be equivalent to those used by [8, 10]; see [26, Thm. 3.3] and [27, Prop.
2.4 and Thm. 3.1]. Thus, we may use the results on L,-norms in their setting in
our setting too; see e.g. item (10) below.

For the convenience of the reader, we list here some of the properties of L,-
norms that we refer to in the main text:

(1) From the definition, we have [|¢]2.4 = [|7™ (¥)¢]|, so for cyclic and separating
vectors [¢) we have Lq(J,1)) = .

(2) (8, Thm. 4]) The map M > m +— m|y) € Loo(M, 1)) is an isomorphism of
Banach spaces (for cyclic and separating vectors |1); in the general case one
can see from the definitions that ||my|| ey = [|[7M (¥)maM(¥)])).

(3) From the definitions, L,(M, ) D S for p € [1,2] and L,(M,) C S for
p € [2,00] (for cyclic and separating vectors [¢)).

(4) (8, Thm. 3]) Any [{) € L,(M, 1) has the unique polar decomposition u|(.),
where u is a partial isometry of M satisfying uu* = 7™ (¢), where |(,) €
L} (M,1)), and where

Ly(M, ) N 2,7 for p € [2, 00),

162) Ly (M) =
(162) » (M, ) {Lp(./\/h 1) — closure of «@/1\4(21)) for p € [1,2].

Here, |¢) is assumed cyclic and separating and &, = closure of A$M+|¢>
for aw € [0,1/2].

(5) ([8, Thm. 3]) If |) € L,(M,) there exists a unique w, € (M) such
that [¢) = A7 [y) if p € [2,00) and (C[¢") = (A} 2w|ALP VD¢ for all
I¢"y € Ly (M, ), 1/p+1/p' = 1if p € [1,2]. For this state, |lwe||*/? = ||¢[[p.0
(for cyclic and separating vectors [1))).

(6) ([8, Thm. 1]) Let p’ be the dual Hélder index of p € (1,00), 1/p+1/p' = 1.
Then Cllpas = sup{I(CICH: ¢l < 1, 1) € Lyr(M, 1) N 2} for [€) €
€ N L,(M, 1) (for cyclic and separating vectors |¢)).

(7) (See Lemma 9.) Let wy, < wy,, and let |¢1), |¢2) be the representers in
the natural cone. For p € [2,00] and [¢) € 7™ (¢1) N Ly(M, 1), we have
I€llpw> < W€llp,u - For p e [1,2) and [¢) € A, we have [|C[lp,p, > [[Cllp,y:-

(8) ([10, Lems 8, 9] and [26, Prop. 3.8]) The function p — (p/2—1)""In||C[? , is
continuous and monotonically increasing for p € [1,2) U (2, oo]. In particular
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for oo > p > ¢ > 2, we have L,(M, ) C Ly(M, ), while for 2> ¢ >p>1,
we have Ly(M, ) C Ly(M, ). If ||(|loo,y < 00, we have limy, o0 [|C|lp,y =
1¢|loo,w, and in fact

(163) (€112, = mf{A > 0: we < Awy }.

Furthermore, ||¢]p.4 < |[C]] lwy||/?~/2 for all |) € 2, p € [1,2]; see e.g. [10,
Lem. 8].

(9) (See e.g. paper I ([17, Lem. 3]).) There holds Fa (w(|wy,) = [|Clloc,i» where
Fyy is Uhlmann’s fidelity relative to M’ (1) in the natural cone).

(10) ([22, Thm. 3.16(3)] and [26, Prop. 3.10]) For p € [1,2] the map (wy,,w¢) —
[CII7 ,; is continuous and for p € (2,00] the map (wy,w) = [IC]|?,, is lower
semi-continuous in the norm topology. Here, it is used implicitly that the
L,-norms with respect to M are invariant when sending |¢) — v|¢) = |(")
provided e.g. v € M, v'v = 7M((), vv* = 7M({’), meaning that they
only depend on wé, the state functional induced on M’. Furthermore, it is
understood that Wip — |¢) is the map that associates the unique vector
representative in the natural cone with a state functional on M’.

Lemma 9. Let wy, < wy,, and let 1), |12) be the representers in the natural
cone. Forp € [2,00] and |¢) € 7™ (¢p1) N L, (M, 101), we have |||lp.ps < I1<]p.w, -
Forp € [1,2) and |() € I, we have'? HCHPJLQ > [|Clp, s -

Remark. As the referee has pointed out to us, this lemma can also be seen from
[26, Prop. 3.9] and [22, Thm. 3.16(7)].

Proof of Lemma 9. In this proof, we use the shorthands A; = Ay y,, 1 = 1,2
and use that |1¢1), |¢2) are in the natural cone implicitly when referring to known
properties of the modular operators.

Case p € [2,00]. Our assumption implies ||(||p,4, < co. Combining the dom-
ination condition wy, < wy, with the definition of the modular operators and
their standard properties (see e.g. [8, Thm. C.1]) gives s(A1)Aqzs(A;) < Ay for
example in the quadratic form sense on the domain @(Ai/ 2), where s(Ap) =
M ((b)ﬂM/(’l/Jl) is the support. Then s(A;) is a projection mapping @(Ai/z) —
@(A%ﬂ), and [32, Lem. 5.2 gives, for v € [0,1], that s(A1)AJs(A;) < A7,
at first on @(A}/Q). If |¢) € @(A'fﬂ) for some v € [0,1], then approximat-
ing it with |(n) € Ea,([0,N])|¢) using the spectral measure Ea, of A, we
can easily see that s(A1)AJs(A;) < A7 also holds on @(A’{/Q) and in fact
s(Aq): @(AY/z) — @(A;/Q). In particular, vectors in the domain of a power A'IY/Q,

12This case is not actually used in the body of the paper.
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v € [0, 1] intersected with s(A1)5# are always in the domain of the corresponding
power AJ/?.

By the variational definition of the L,-norm, there is for any € > 0 a unit
vector |¢) such that |¢) € 2(AY/2"/7) (because of [[¢]ly.s, < oo and (165), |¢) is

in the intersection of domains (4 ¢ @(Ayi;l/p)) and such that

1/2—1
(164) A2 2 1IClps — €.

On the other hand, using 7™ (v1)[¢) = |¢),
1Ayl = 1Ay, e @) ()|

1/2—1
= [|AY 2P s(Dg )l

1/2—1
< |lay e
(165) <1

Combining (165) and (164) the claim follows since € > 0 can be arbitrarily small.

Case p € [1,2). The proof is rather similar to the previous case and follows
again from the definition of the modular operators and their standard properties
(see e.g. [8, Thm. C.1]), and the variational definition of the L,-norms. So we leave
it to the reader. O
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