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Abstract

We establish that the geometric action of the absolute Galois group Gal(Q/Q) on the étale
fundamental group of moduli spaces of curves induces a Galois action on its stack inertia
subgroups, and that this action is given by cyclotomy conjugacy. This result extends the
special case of inertia without étale factorisation previously established by the authors.
It is here obtained in the general case by comparing deformations of Galois actions.

Since the cyclic stack inertia corresponds to the first level of the stack stratification
of the space, this result, by analogy with the arithmetic of the Deligne–Mumford strat-
ification, opens the way to a systematic Galois study of the stack inertia through the
corresponding stratification of the moduli stack.
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§1. Introduction

Let Mg,[m] denote the moduli space of curves of genus g with m unordered marked

points endowed with its Deligne–Mumford stack structure over Q, and assume that

2g−2+m ⩾ 0. For a given geometric point x̄ : Spec(Q) → Mg,[m]⊗Q, the choice

of a Q-point s of Mg,[m], together with the choice of a path between s and x̄,

defines a geometric Galois representation

(1.1) ρs : Gal(Q/Q) → Aut[πet
1 (Mg,[m] ⊗Q, x̄)],
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whose description has been extensively studied following Grothendieck’s seminal

program [Gro97] in terms of the Deligne–Mumford stratification [Knu83] of its

stable compactification Mg,[m]; see [DM69]. This approach deals essentially with

the schematic structure ofMg,[m] by considering the Galois action on the divisorial

inertia groups of the boundary of Mg,[m] (see [Nak99, Nak97]); the arithmetic of

the stratification resulted in the development of Grothendieck–Teichmüller theory

as initiated by V. Drinfel’d and Y. Ihara (see for example [Dri90, NS00]).

Let IM be the inertia stack of Mg,[m] that classifies the automorphism of

curves, i.e. the stack whose objects over a Q-scheme S consist of pairs (x, γ)

with x ∈ Mg,[m](S) and γ ∈ AutS(x). The fibre over an algebraically closed

point x̄ : Spec(Q) → Mg,[m] gives a finite group Ix̄ = IM ×Mg,[m]
Spec(Q) called

the stack inertia group of x̄. This group is isomorphic to the automorphisms

group of the curve x̄. The fact that Ix̄ injects into πet
1 (Mg,[m] ⊗ Q, x̄), proven

in [Noo04], raises questions of the definition and the description of the global ge-

ometric Gal(Q/Q)-action of equation (1.1) on the local stack inertia groups Ix̄ of

Mg,[m].

The Gal(Q/Q)-action on cyclic stack inertia groups gained some focus initially

in genus 0 via Grothendieck–Teichmüller theory [LS97], then in higher genus with

Galois considerations [NT03], [Col12a, §3].

The main result of the present article follows [Col12b, Col12a, CM15] and

provides an answer to these questions in the case of cyclic stack inertias Ix̄; see

Theorem 4.8:

Theorem A. For any cyclic stack inertia group I = ⟨γ⟩ of Mg,[m], there exists

a geometric Galois representation ρs⃗ which induces a Gal(Q/Q)-action on I given

by χ-conjugacy, i.e. for σ ∈ Gal(Q/Q),

ρs⃗(σ) · γ = δσγ
χ(σ)δ−1

σ for δσ some étale path in M̃g,[m] ⊗Q,

where χ : Gal(Q/Q) → Ẑ∗ denotes the cyclotomic character and M̃g,[m] is a certain

partial compactification of Mg,[m].

The present approach follows that of [CM15] using irreducible components of

special loci of the form Mg,[m](G) – locus of points x ∈ Mg,[m] whose geometric

stack inertia group Ix̄ contains a subgroup isomorphic to G – which defines a stack

inertia stratification of Mg,[m]; see [Dou06]. The key ingredients are the Deligne–

Mumford compactification and the arithmetic notion of a tangential base point:

first to define a Gal(Q/Q)-action ρIs⃗ : Gal(Q/Q) → Aut(I) that is compatible with

a tangential version ρs⃗ of equation (1.1), then to extend the cyclotomy result of

[Dou06] from the case of stack inertia without étale factorisation (see Section 4.1.2

for the definition) to the general case.
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The definition of an intrinsic local Galois action on Ix̄ within πet
1 (Mg,[m]⊗Q)

for general Deligne–Mumford stacks is indeed tedious: for K denoting the field

of definition of x̄, one obtains an outer action Gal(K/K) → Out(I) modulo a

certain geometric monodromy group only ; see [LV18, Prop. 3.17]. In the case of

the cyclic inertia of Mg,[m], we bypass this difficulty by the use of Q-tangential

base points (denoted by s⃗) – obtained from formal neighbourhoods of Q-points

of Mg,[m] [IN97] (see Section 3.1.1 for a general stack definition) – and by ex-

plicit properties of deformation of G-curves [Eke95]; see Section 2.2.2. Following

a stack version of Grothendieck–Murre formalism of the tame fundamental group

[GM71] (see Section 3.1), this leads to some Gal(Q/Q)-tangential representations

ρs⃗ that induce proper stack inertia Gal(Q/Q)-actions ρIs⃗,x̄ : Gal(Q/Q) → Aut[Ix̄];

see Section 3.1.3.

The property that irreducible components of cyclic special loci are Deligne–

Mumford stacks defined over Q (see [CM15, Prop. 3.12 and Thm. 4.3]) ensures

their global Gal(Q/Q)-invariance by ρs⃗, hence the Gal(Q/Q)-stability of the con-

jugacy class of γ. While this property is sufficient to establish the cyclotomy result

for the first non-trivial cases – when G is of prime order, or the G-action is with-

out étale factorisation (see Proposition 4.3 then Corollary 4.7) – it is not for the

general Mg,[m](Z/nZ). The extension of the cyclotomy result relies first on the

construction of a specific G-deformation of a smooth curve to the boundary of

Mg,[m] (Theorem 2.6), then on the existence of Gal(Q/Q)-tangential compatible

Knudsen morphisms between Mg−1,[m]+2 and Mg,[m] (Proposition 3.12), and fi-

nally on a specialisation result for stack inertia groups; see Section 4.2.1. This

process takes the name inertial limit Galois action in Section 4.2.4.

The result of Theorem A, as well as the use of the inertial limit Galois action

in the study of the stack inertia stratification of Mg,[m], strengthens the analogy

between the arithmetic of the Deligne–Mumford stratification and of the stack

inertia stratifications, which suggests further developments along this direction;

see Section 4.2.4. Theorem A also supports a positive answer to the anabelian

Question 8.5 of [Loc12]:

If a Gal(Q/Q)-action on πet
1 (Mg,[m] ⊗ Q) is given by χ-conjugacy on a

protorsion element, is this element conjugate to a finite stack inertia one?

We refer to [Loc12] for further motivations and for the original formulation

in terms of Dehn twists in the mapping class group Γ̂g,[m] ≃ πet
1 (Mg,[m] ⊗ Q), as

well as to [Nak90, Thm. 3.4] for the divisorial analog for curves that motivates

this question.
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§2. Geometry at infinity of special loci

Let G be a finite group and Mg,[m](G) the special loci associated to G, i.e. the

Deligne–Mumford substack of Mg,[m] classifying families of smooth and proper

marked curves of genus g whose automorphisms group admits a subgroup isomor-

phic to G; see [CM15, §2]. In the case that G is cyclic, a certain type of degeneracy

of curves in Mg,[m](G) to stable curves is sought in the boundary of Mg,[m]: one of

the main results is that any smooth G-curve admits a degeneracy to an irreducible

singular curve with G-action whose normalisation is without étale factorisation

(i.e. the associated G-cover does not factorise through a non-trivial étale cover).

§2.1. Deformation of stable G-curves

For curves endowed with a G-action, the analog of the stable curves [DM69] is

given by stable G-curves [Eke95], i.e. stable curves endowed with an admissible

action, whose definition is recalled below in the case of a cyclic group – see also

[BR11, §4.1.1].

Definition 2.1 (Admissible action). Let G be a cyclic group acting faithfully on

a semi-stable curve C/S. For S the spectrum of an algebraically closed field, the

action of G is said to be admissible if, for every singular point P ∈ C with stabiliser

GP , the two characters of GP on the branches at P are each other’s inverse. For

S general, the action is admissible if it is so on every geometric fibre.

Denoting by Ω1
C/k the sheaf of relative Kähler differentials, the cohomolog-

ical theory that controls the G-equivariant deformation functor DefC,G is given

by the G-equivariant ExtiG(ΩC/k,OC); see [Eke95, Prop. 2.1]. It then follows from

Schlessinger’s theory [Sch06] that the equivariant deformation functor DefC,G as-

sociated to a stable G-curve is pro-representable by a complete local ring RC,G.

Theorem 2.2 ([Eke95, Props 2.1–2.2]). Let C be a stable G-curve over a field

k of characteristic 0 endowed with a G-admissible action, and let RC,G be its

universal deformation ring with residue field k and field of fraction K. Then RC,G

is formally smooth over k, and its generic point corresponds to a smooth curve

over K.

Following [Tuf93], there is no obstruction to infinitesimal lifting; one also

obtains a local–global principle for a tame G-covering:

0 → H1
G(C,ΘC) → Ext1G(Ω

1
C/k,OC) →

⊕
I

Ext1G(Ω̂C/k,Pi
, ÔC,Pi

) → 0,



Galois Action and Stack Inertia 735

where Θ is the tangent sheaf and the direct sum is over a set of representatives

{Pi}I of sing(C)/G. The “local” contributions are given by the deformations of

the Pi, each of them being of dimension 1.

The universal deformation ring thus identifies with

RC,G ≃ Rglo ⊗̂ k[[q1, . . . , qM ]],

where

(i) M is the number of singular points of C and ramification points of the G-cover

C → C/G,

(ii) Rglo is a formally smooth k-algebra of finite dimension,

by [BR11, eq. (40)]. Denoting by g′ the genus of C/G, one recovers that

dim(RC,G) = 3g′ − 3 + b, with b the degree of the branch point divisor.

In the G-stable compactification Mg,[m](G) of Mg,[m](G), the choice of some

deformation parameters q = {q1, . . . , q3g′−3+b} of RC,G provides a formal neigh-

bourhood Spec k[[q]] → Mg,[m](G) of the G-stable curve C.

§2.2. The case of G-curves without étale factorisation

In the following, denote by G a cyclic group of order n ∈ N and fix a generator γ

of G. A degeneration result is established for G-covers in terms of their associated

branch data kr by building a specific stable marked G-curve and controlling the

branching data through G-equivariant deformation. The process relies on a rigid-

ification of Hurwitz data, the γ-type, first applied to the case of unmarked, then

to marked curves.

2.2.1. Let C/k be a G-curve over a field k containing nth roots of unity. Then

C → C/G is étale locally given by an equation of the form

yn =
∏
I

(x− αi)
ki ,

and the order of the stabiliser group of αi is given by n/ gcd(n, ki). For a given

G-cover C → C/G, let us denote by k = (k1, . . . , kν) ∈ (Z/nZ)ν the associated

Hurwitz data, and write ord(ki) = n/ gcd(n, ki). The γ-type of a point of C gives

a way to recover the Hurwitz data from local information.

Definition 2.3 (γ-type). Let k be an algebraically closed field of characteristic

0, let G be a cyclic group of order n, γ ∈ G be a generator, and ζ ∈ k denote a

primitive nth root of unity. Let C/k be a complete smooth curve endowed with a

G-action and P ∈ C be a closed point with non-trivial stabiliser under the action

of G.
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The γ-type of P , denoted typeγ(P ), is the set of all ζ ∈ k such that, for a

uniformising parameter u of C at P one has

γℓ(u) = ζℓu mod u2 for all ℓ ∈ Z such that γℓ(P ) = P .

The γ-type of a point is independent of the choice of the uniformising param-

eter u. The following lemma gives a link between the local γ-type and the Hurwitz

data of the cover C → C/G, and is used in the next section to build a stable

G-curve by gluing two points of inverse γ-types.

Lemma 2.4. Let C/k be a complete smooth curve endowed with a G-action, and

denote by {Pi}I the ramification points of C → C/G with Hurwitz data k = {ki}I .
There exists a ζ ∈ k such that for all i ∈ I one has ζ

ji
n

ord(ki) ∈ typeγ(Pi), where

ji denotes the inverse of ki
ord(ki)

n modulo ord(ki).

Note that for a ∈ Z/nZ, the element a ord(a)
n is well defined in Z/ ord(a)Z.

Proof of Lemma 2.4. By Kummer theory, the morphism π : C → C/G is given

over the étale locus by an equation of the form yn = f(x) and the action of G is

given by γ(y) = ζy. Let w be a uniformising parameter at π(Pi) in C/G so that

up to an nth power, yn = wkit – where t is an invertible element.

Writing a decomposition an+ kiji =
n

ord ki
, the element

u = y
ji

n
ord ki wa

is a uniformising parameter of C at Pi and we have

γ(u) = γ(y)
ji

n
ord ki wa

= ζ
ji

n
ord ki y

ji
n

ord ki wa,

γ(u) = ζ
ji

n
ord ki u,

hence the result on the γ-type of Pi.

Remark 2.5. Once a generator γ of G and a primitive nth root ζ are fixed, the

Hurwitz data k are read locally through the action of G on the tangent space of

the ramification points. It is then possible to compute the genus of C/G using the

Riemann–Hurwitz formula.

2.2.2. The degeneration ofG-equivariant curves to the boundary ofMg is studied,

first in the case of unmarked curves.
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Theorem 2.6. Let g, g′ ≥ 1 be integers, G = Z/nZ, k = (k1, . . . , kν) ∈ (Z/nZ)ν

satisfying

2g − 2 = n(2g′ − 2) +
∑
i

(ord(ki)− 1)
n

ord(ki)
,(2.1) ∑

i

ki = 0.(2.2)

For all ℓ ∈ (Z/nZ)∗ there exists a singular curve Cℓ/k of genus g endowed with a

G-admissible action, with Cℓ/G of genus g′, and such that

(i) the normalisation of Cℓ is of genus g − 1 and its quotient by G has Hurwitz

data (k1, . . . , kν , ℓ,−ℓ) ∈ (Z/nZ)ν+2;

(ii) the generic G-equivariant deformation of Cℓ is smooth and has k for Hurwitz

data.

The construction below also illustrates the control of the Hurwitz data along

G-equivariant deformations.

Proof of Theorem 2.6. Let E0/k be a smooth curve of genus g′ − 1 over an alge-

braically closed field k, and let (k, ℓ,−ℓ) ∈ (Z/nZ)ν+2. By [CM15, Prop. 3.7], there

exists a G-equivariant cover E1 → E0 with Hurwitz data (k, ℓ,−ℓ). Moreover, E1

is of genus g − 1 since

n(2(g′ − 1)− 2) +
∑
i

(ord(ki)− 1)
n

ord(ki)
+ 2(n− 1) = 2g − 4

= 2(g − 1)− 2.

Let {P1, . . . , Pν} denote the ramification points with Hurwitz data {k1, . . . , kν}
and {P ′

1, P
′
2} the points with data {ℓ,−ℓ}.

Following Lemma 2.4, since P ′
1 and P ′

2 are totally ramified by assumption,

there exists ζ ∈ k such that

(2.3) ζ ∈ typeγ(P
′
1) and ζ−1 ∈ typeγ(P

′
2).

Let Cℓ be the curve obtained from E1 by gluing P ′
1 and P ′

2 as a point P ′ as

in Figure 1. As ℓ is prime to n, the points P ′
1 and P ′

2 are both fixed under G so

that the curve Cℓ is endowed with a G-action. Moreover, this action is admissible

thanks to equation (2.3), and it satisfies property (i) of the theorem since E1 is

the normalisation of Cℓ.

By Theorem 2.2, there exists a G-curve C over a complete local ring R of

residue field k, with special fibre Cℓ and a generic fibre that is smooth of genus g.

For Pi ∈ Cℓ a ramification point, let γi be a generator of StabG(Pi) and ζ ∈ k
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Figure 1: Curve Cℓ obtained by gluing P ′
1 and P ′

2.

a primitive nth root of unity as given by Lemma 2.4. The action of γi on the

completion of local ring ÔCℓ,Pi
≃ k[[ui]] is given by γ(ui) = ζjiui up to a change

of parameter ui. Moreover, there exists a lifting P̃i of Pi such that the action of

G on C is given in a formal neighbourhood of P̃i by the same formula on the ring

R[[ui]], up to another change of parameter ui. Following Remark 2.5, the Hurwitz

data of the generic fibre of C/R is then k as it can be read on ui through the

γ-type. Finally, a vanishing cycle computation proves that no ramification point

of the generic fibre of C/R specialises to P ′, so that Cℓ satisfies property (ii).

The theorem above is still valid with the assumption k = ∅, so that a smooth

curve with G-action of étale type can be built, which specialises to Cℓ with only

one singular point and whose normalisation has no étale factorisation.

2.2.3. In the case of curves with m marked points, i.e. endowed with a horizontal

G-equivariant Cartier divisor D of degree m, the Hurwitz data k is replaced by

the branch data kr: the branch data of a curve C ∈ Mg,[m](G) is the equivalence

class of couples kr = (k, r), where k is a Hurwitz data and r = (r1, . . . , rn) is an

n-tuple given by

ri = #
{
y ∈ D/G, the branching data at y is equal to i mod n

}
,

modulo the diagonal Aut(G)-action whose role is to forget the choice of an nth

root of unity – see [CM15, Def. 3.9].

Let m′ denote the degree of the divisor D/G. In addition to equations (2.1)

and (2.2), we assume that the branch data also satisfies

m =
∑
i

ri gcd(i, n),(2.4)

m′ =
∑
i

ri.(2.5)

We now state our G-deformation result in its complete form.
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Corollary 2.7. For any generic point η ∈ Mg,[m](G), whose corresponding curve

satisfies the branch data relations above, there exists a specialisation z ∈ Mg,[m](G)

of η such that the normalisation of the curve corresponding to z has genus g − 1

and is without étale factorisation.

Proof. This is a direct consequence of the description of the set of irreducible

components of Mg,[m](G) by the set of the branch data kr as given in [CM15],

and of Theorem 2.6: for a given kr, one constructs explicitly a G-equivariant

marked curve as in the proof above.

For an algebraic definition of kr (resp. k) for families of curves in terms of

étale cohomology and for examples see [CM15, §3.2 (resp. §3.1)]. This reference

also contains a discussion about the non-canonicity of k and kr relative to the

choice of a generator γ of G and a primitive nth root of unity ζ ∈ µn.

This G-deformation result is completed in Section 4.2.3 at the level of auto-

morphism groups of curves. This is then a key ingredient to reduce the Gal(Q/Q)-

action by cyclotomy to the case of stack inertia without étale factorisation.

§3. Galois action at infinity

Generalising [Zoo01] and [Nak99], we give the definition of Galois actions at in-

finity attached to a normal crossing divisor of a generic Deligne–Mumford alge-

braic stack, and then discuss their compatibility through Knudsen morphisms. We

clarify this result in the case of Mg,[m], leading to non-canonical comparisons of

Gal(Q/Q)-representations of the fundamental groups of Mg−1,[m]+2 and Mg,[m].

§3.1. Tangential base points

Adapting [Zoo01] to the case of a non-geometric base point, we define a tangential

base point for a Deligne–Mumford algebraic stack M in terms of the tame fun-

damental group of M along a normal crossing divisor, which is adapted from the

case of the scheme in [GM71]: for a normal crossing divisor D → M, the category

RevD(M) of tamely ramified covers of M along D is defined via the scheme cate-

gory RevD×MX(X) by pull-back along a presentation X → M – see [Zoo01, §3].

In RevD(M), morphisms of between covers are defined up to 2-morphisms, as in

the diagram

U1

''

77��

��

U2

��

M.
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While based on Zoonekynd’s approach for geometric tangential points, the present

one is here developed for rational base points and as such implies the definition of

a Galois action.

3.1.1. Let k be a field of characteristic zero and M a Deligne–Mumford algebraic

k-stack. A point x ∈ M(Spec k) is said to have a Nisnevich neighbourhood if there

exist an étale morphism f : V → M with V a scheme, and a point v ∈ f−1(x)

with residue field k. For a point x having a Nisnevich neighbourhood, we define

the local ring at x in M, denoted by Oh
M,x, as

Oh
M,x = lim−→

(v,V )

OV,v,

where the limit is taken over the couples (v, V ) as above, and Oh
M,x is the Henseli-

sation Oh
V,v for any Nisnevich neighbourhood. Note that for a stack M over k and

a smooth point x, the completion of Oh
M,x can be identified with k[[t1, . . . , tn]] via

the choice of a system of parameters t1, . . . , tn ∈ Oh
M,x.

Let M be a k-stack, x ∈ M(Spec k) a smooth point which is supposed to

have a Nisnevich neighbourhood and t = {t1, . . . , tn} be a system of parameters

of Oh
M,x. We define the Puiseux ring of M at x with respect to t as the ring

Õt
M,x = lim−→

ℓ∈N×

(
Ôh

M,x ⊗̂k k̄
)
[t
1/ℓ
1 , . . . , t1/ℓn ].

Remark 3.1. In the case of a geometric point x, the local ring Oh
M,x in the

construction of the Puiseux ring above is replaced by the strict Henselisation

Osh
M,x which exists without condition – see [LMB00, Rem. 6.2.1].

The following gives a class of points with Nisnevich neighbourhood, which

includes the schematic points of M.

Proposition 3.2. Let M be a Deligne–Mumford k-algebraic stack and consider

x ∈ M(Spec k). If Autk(x) is a constant group scheme, then x admits a Nisnevich

neighbourhood.

Proof. Consider the functor F : (k−Art) → Set defined on the Artinian k-algebras

by the isomorphism classes of objects of M which are deformations of points whose

images are equal to that of x in M. As Autk(x) is a constant group-scheme and

the diagonal of M is unramified, the functor F is actually a sheaf for the étale

topology on (k−Art). Then [LMB00, Thm. 10.10] gives an étale presentation with

a k-point above x, thus a Nisnevich neighbourhood of x.
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Consider a normal crossing divisor D on M whose support contains x, and let

tD = {t1, . . . , tn} be a system of parameters of M at x such that D is given in an

étale neighbourhood of x by t1 · · · tm = 0. A k-rational tangential base point on

M \ D at x is then defined as a fibre functor in terms of the Puiseux ring :

Definition 3.3. Let M be a Deligne–Mumford k-stack, x be a smooth k-point of

M having a Nisnevich neighbourhood, and D be a normal crossing divisor on M,

with tD a system of parameters of D at x. The k-rational tangential base point

associated to s⃗ = (x, tD) is defined as the functor

F tD
x : RevD(M) → Set,

Y 7→ HomFrac(M)(Frac Y,Frac(ÕtD
M,x)),

where Frac denotes the ring of fraction.

Unlike the classical Grothendieck–Murre theory, the base point is here sup-

posed to belong to the normal crossing divisor. Following [Zoo01, §3] to which we

refer for details, one obtains the following theorem:

Theorem 3.4. Let M be a Deligne–Mumford k-stack, x be a smooth k-point of

M having a Nisnevich neighbourhood, D be a normal crossing divisor on M, and

tD a system of parameters of D at x. Then the tangential base point functor F tD
x

is a fibre functor.

The proof follows essentially that of [Zoo01, Thm. 3.7]: the functor is isomor-

phic to a functor defined by a geometric point x′ ∈ M, which by the theory of the

étale fundamental group is then a fibre functor on the Galois category RevD(M).

Here x′ is given by the generic point of Frac(ÕtD
M,x), which is an algebraic closure

of Frac(Oh
M,x) by the Puiseux theorem, since char(k) = 0.

In particular, this defines the arithmetic tame fundamental group based at a

k-rational tangential base point πD
1 (M; tD, x) = Aut(F tD

x ) as the automorphism

group of the tangential fibre functor.

3.1.2. Consider the absolute Galois group Gal(k̄/k) of k, as well as the canonical

projection πD
1 (M; tD, x)

can−−→ Gal(k̄/k) given by the corresponding restriction of

the isomorphism Frac(ÕtD
M,x)

∼→ Frac(ÕtD
M,x). Denoting by πD⊗k̄

1 (M ⊗ k̄; tD⊗k̄, x)

the kernel of can, we obtain the following proposition:

Proposition 3.5. Let M be a k-algebraic stack. The choice of a k-rational tan-

gential base point s⃗ = (x, tD) of M defines a Gal(k̄/k)-action

ρs⃗ : Gal(k̄/k) −→ Aut[πD⊗k̄
1 (M⊗ k̄; tD⊗k̄, x)]

which is given by conjugacy and is called a tangential Gal(k̄/k)-representation.
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This follows directly and formally from the construction: the action of Gal(k̄/k)

on Ôh
M,x ⊗̂ k̄ via the second component defines first a splitting ιs⃗ : Gal(k̄/k) →

πD
1 (M; tD, x) of can, then a Gal(k̄/k)-action on πD⊗k̄

1 (M⊗ k̄; tD⊗k̄, x). The latter

is group theoretically given by conjugacy

(3.1) ρs⃗(σ) : h → ιs⃗(σ) · h · ιs⃗(σ)−1, h ∈ πD⊗k̄
1 (M⊗ k̄; tD⊗k̄, x),

with ιs⃗(σ) ∈ πD
1 (M; tD, x) the lift of σ ∈ Gal(k̄/k) via s⃗ = (x, tD).

Remark 3.6. Consider the context of Section 3.2.1 of the moduliQ-stack of stable

curves Mg,[m], where s⃗ is defined via a maximally degenerated curve x supported

in a singular locus divisor D. Grothendieck–Murre theory as in [IN97] identifies the

generators of πet
1 (Mg,[m] ⊗k Q, ∗) as Tate generators of Ẑ(1)s in πD⊗Q

1 (Mg,[m] ⊗
Q; tD⊗Q, x), which allows the explicit computation of the corresponding tangential

Gal(Q/Q)-representation ρs⃗. For M0,[m], the splitting of equation (3.1) defined by

the tangential base point b⃗ of [Nak97], gives, for example,

(3.2) ρ⃗b(σ)(σi) = fσ(yi, σ
2
i )

−1 · σχσ

i · fσ(yi, σ2
i ) with yi = σi−1 . . . σ1σ1 . . . σi−1,

where σi are the classical generators of πet
1 (M0,[m] ⊗Q, ∗).

A tangential base point is functorial through base change over k, while it is not

for general k-stack morphisms. Indeed, there are some extra data and assumptions

required to define a stack morphism between tangential base points. Consider a rep-

resentable morphism f : N → M between Deligne–Mumford k-stacks, D a normal

crossing divisor on M, and x ∈ D(Spec k), with y ∈ f−1(x) a k-rational point, and

suppose that x and y are both smooth and admit a Nisnevich neighbourhood.

Following [Zoo01, Lem. 2.9] there is an identification

HomFrac(M)(Frac Y,Frac(ÕtD
M,x)) = HomM(Spec ÕtD

M,x, Y ),

so that it is possible to define a tangential base point in terms of rings instead

of fields. Suppose moreover that there are two systems of parameters tf∗D =

{t′1, . . . , t′n} and tD = {t1, . . . , tℓ} respectively of f∗D at y and of D at x such that

the induced morphism fh : Oh
M,x → Oh

N,y sends t′j to tj or 0. Then the Gal(k̄/k)-

equivariant natural transformation of functors

Ff : F
tD
x → F

tf∗D
y

is obtained using the Gal(k̄/k)-equivariant morphism

f̃ : ÕtD
M,x → Õtf∗D

N,y .

In the two important cases of unramified and smooth morphisms, an extension

property guarantees the following nearly “functorial” result.
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Proposition 3.7. Let f : N → M be a morphism of Deligne–Mumford k-stacks,

D be a normal crossing divisor on M such that f∗D is a normal crossing divisor

on N, and let x ∈ D(Spec k) and y ∈ f−1(x) be k-rational points such that both x

and y are smooth and have Nisnevich neighbourhoods.

If f is either smooth or unramified, then there exist regular systems of param-

eters tf∗D and tD of f∗D at y and D at x, and a Galois equivariant morphism

πf∗D
1 (N; tf∗D, y) → πD

1 (M; tD, x).

Proof. Following the discussion above, it is sufficient to establish that there exist

two systems of parameters tD for D at x and tf∗D for f∗D at y such that f induces

a morphism fh : Oh
M,x → Oh

N,y that sends an element of tD to an element of tf∗D

or 0.

If f is unramified, the morphism f# : Ôh
M,x → Ôh

N,y is a surjection. Consider

t1, . . . , tn a system of parameters of D in Ôh
M,x. As f∗D is a divisor by assumption,

it is possible to extract from f#(t1), . . . , f
#(tn) a system of generators of Ôh

N,y,

because f# is formally unramified and induces an injection on tangent spaces.

If f is smooth, then the morphism f# is injective and a system of parameters

t1, . . . , tn for D in Ôh
M,x can be completed into a system of parameters t1, . . . , tn′

of Ôh
N,y by picking up vectors in the tangent space.

The lack of functoriality comes from the fact that there is no obvious choice

of parameters, which has the important consequence below.

Remark 3.8. A k-rational change of parameters tD to t′D – or infinitesimal ho-

motopic transformation – leads to two k-homotopically equivalent k-rational base

points F tD
x ≃ F

t′D
x , but not to equivalent Gal(k̄/k)-actions on the fundamental

groups: the action on Puiseux series makes some Kummer character appear from

the Nth roots of the involved rational coefficients.

3.1.3. Let us fix a Galois representation defined by the choice of a k-tangential

base point s⃗ = (x, tD) on M as in Proposition 3.5:

ρs⃗ : Gal(k̄/k) → Aut[πD⊗k̄
1 (M⊗ k̄; s⃗)].

We now provide some additional assumptions under which this tangential Galois

action ρs⃗ induces a Gal(k̄/k)-action ρIs⃗,z̄ on the stack inertia group Iz̄.

Consider a geometric point w : Spec(k̄) → M and let IM,w = Spec(k̄)w×IM
denote its stack inertia group of 2-transformations, with IM = M×M×MM denot-

ing the inertia stack of M. Since γ ∈ Iw = IM,w induces a transformation of the

fibre functor Fw, this defines a morphism ωw : Iw → π1(M⊗ k̄, w) that we assume
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is injective in the rest of this section – see also Remark 4.4. The group Iw is also

called the group of hidden paths of the étale fundamental group; cf. [Noo04, §4].

Let z̄ : SpecK → M be a geometric point, let K denote its field of definition,

and choose an injection k̄ ⊂ K. As any σ ∈ Gal(k̄/k) can be extended to a k-

automorphism σ̃ of K, fix one such σ̃ and define σ̃(z̄) by base change.

Let us furthermore fix an étale path z̄ ⇝ x (resp. σ̃(z̄)⇝ x) from z̄ (resp.

σ̃(z̄)) to s⃗ = (x, tD), which defines a morphism

ϕz̄⇝x : π1(M, z̄) −→ πD
1 (M; s⃗) (resp. ϕσ̃(z̄)⇝x : π1(M, σ̃(z̄)) −→ πD

1 (M; s⃗)),

and all together, thanks to the compatibility between σ and σ̃, induce a diagram

(3.3)

Iz̄ Iσ̃(z̄)

π1(M⊗ k̄, z̄) π1(M⊗ k̄, σ̃(z̄))

πD⊗k̄
1 (M⊗ k̄; s⃗) πD⊗k̄

1 (M⊗ k̄; s⃗),

ωz̄

τ 7→σ̃−1τσ̃

ωσ̃(z̄)

ϕz̄⇝x

∼
σ

ϕ−1
σ̃(z̄)⇝x

where the bottom line is the action by conjugacy defined by the tangential

Gal(k̄/k)-action ρs⃗ on πD⊗k̄
1 (M ⊗ k̄, z̄) of equation (3.1). This diagram is a pri-

ori commutative up to conjugacy by a hidden path ε from z̄ to σ̃(z̄), i.e. a 2-

transformation

Spec(K)

z̄
))

σ̃(z̄)

55�� ε M .

Let us further assume that K is linearly disjoint from k̄ over k. In this case,

z̄ is then stable under Gal(k̄/k) so that we can choose ϕσ̃(z̄)⇝x = ϕz̄⇝x for all

σ ∈ Gal(k̄/k), and diagram (3.3) becomes strictly commutative, i.e. without any

hidden path conjugacy by ε : z̄ ⇒ σ(z̄). It has the following consequences:

(1) Since ρs⃗ sends the image ωz̄(Iz̄) into itself in the first line of diagram (3.3), the

tangential Gal(k̄/k)-action ρs⃗ defines a Gal(k̄/k)-stack inertia Galois action

(3.4) ρIs⃗,z̄ : Gal(k̄/k) −→ Aut[Iz̄]

that is defined by ρIs⃗,z̄(σ) = ϕ−1
z̄⇝x ◦ ρs⃗ ◦ ϕz̄⇝x.

(2) It follows from the assumption on K that π : Gal(K/K)↠ Gal(K ⊗k k̄/K) ≃
Gal(k̄/k). The action ρIs⃗,z̄ is thus induced by the canonical local Gal(K/K)-
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action ρIz̄, via the commutative diagram

(3.5) Gal(K/K)
ρI
z̄ //

π
����

Aut[Iz̄]

Gal(k̄/k)
ρI
s⃗,z̄
// Aut[Iz̄].

Proposition 3.9. Let us fix a k-rational tangential base point s⃗ of M, a K-point

z : Spec(K) → M of M, a geometric point z̄ : Spec(K) → M above z, and an

étale path ϕz̄⇝x from z̄ to s⃗. Suppose that K is linearly disjoint from k̄ over k.

Then the tangential Galois representation ρs⃗ : Gal(k̄/k) → Aut[πD⊗k̄
1 (M ⊗

k̄; s⃗)] defined by s⃗ defines a Gal(k̄/k)-action ρIs⃗,z̄ on the stack inertia Iz̄ → π1(M⊗
k̄, z̄). This action coincides furthermore with the action ρIz̄ of Gal(K/K) on Iz̄
that is given by conjugacy.

Proof. This follows from the discussion above. Since K is linearly disjoint from

k̄, the k̄-image of z̄ : Spec(K) → M is stable under the Gal(k̄/k)-action. The

tangential Gal(k̄/k)-action ρs⃗ on π1(M⊗k̄, z̄) then sends the image Iz̄ into itself as

given by equation (3.4), and so induces an action ρIs⃗,z̄ of Gal(k̄/k) on Iz̄ according

to the commutativity of the diagram (3.3).

This proves furthermore that ρIz̄ and ρIs⃗,z̄, seen as an action of Gal(K/K)

through the surjection Gal(K/K) → Gal(k̄/k), define the same action on Iz̄.

Remark 3.10. The following are of general arithmetic interest:

(i) In the case where M = Mg,[m] and IM,w = ⟨γ⟩ is cyclic, one shows that K

above can be taken as the field of moduli-definition of the generic point of an

irreducible component of the special loci Mg,[m](γ) – see [CM15, Lem. 5.2

and Cor. 4.2].

(ii) The action ρIs⃗,z̄ of equation (3.4) depends on the choice of the étale path

ϕz̄⇝x between z̄ and s⃗. See Remark 4.9(iii) for the example (M, s⃗, z) =

(M0,[4], 0⃗1, 1/2), and [LS97] which, via r = ϕ0⃗1⇝1/2, relates the Gal(Q/Q)-

action on the 2-torsion of M0,[4] to the étale path fσ of equation (3.2).

(iii) Consider a given tangential morphism f : N → M as in Proposition 3.7 –

i.e. a point y ∈ N(SpecK) with image x ∈ M(SpecK) with all the compat-

ible data. The compatible Gal(k̄/k)-representations in πf∗D
1 (N; tf∗D, y) and

πD
1 (M; tD, x) then induce compatible Gal(k̄/k)-actions ρIs⃗,x̄ and ρIs⃗ ′,ȳ on the

respective inertia groups Ix and Iy by the commutativity of diagram (3.3).

Proposition 3.9 and the compatibility through the Knudsen morphism are

applied in various situations to the moduli spaces of curves in Section 4.
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§3.2. Tangential Galois action and clutching morphisms

The tools built in the previous section are now applied to describe more explicitly

the tangential Gal(Q/Q)-action in the case of the Deligne–Mumford Q-stack of the

moduli space of stable curves Mg,[m] and their link through Knudsen morphisms.

Since the case of the stack inertia groups requires an additional specific result, it

is dealt with in Sections 4.1.1 and 4.1.2.

3.2.1. The first step is the choice of a tangential base point in Mg,[m]. Let

x ∈ Mg,[m](SpecQ) be a maximally degenerated Q-curve defined as a graph of P1

such that marked points and singular points are rational, so that x has only ratio-

nal automorphisms. Then by Proposition 3.2, x ∈ Mg,[m](Q) admits a Nisnevich

neighbourhood.

Examples of such curves are given by [IN97, Figs (ii)n, (iii)
′
k,n] and are repro-

duced in Figure 2 for g ⩾ 1. Let us denote them by XA and XB .

(a) Curve XA – type g = 1, n ⩾ 1 (b) Curve XB – type g ⩾ 2, n ⩾ 1

Figure 2: Maximally degenerated curves of type (g, n)

Remark 3.11. The present construction in Section 3.1.1 is complementary to the

original approach of [IN97] by tangential base point on Mg,m, where a maximally

degenerated curve X is defined by a P1
0,1,∞-diagram and a canonical choice of a set

of coordinates q of the universal deformation ring Odef
X of X is fixed. This corre-

sponds exactly to the choice of a system of parameters which led to Definition 3.3.

3.2.2. Let us consider Knudsen’s clutching morphism between moduli spaces of

stable curves,

Mg−1,m+2 −→ Mg,m

that is defined by gluing the last two marked points as in [Knu83, §3]. Let us denote

by Mg−1,[m]+2 the quotient of Mg−1,m+2 under the action of the permutation

group Sm on the m marked points {1, . . . ,m}. The quotient of the clutching

morphism by this action defines a morphism

β : Mg−1,[m]+2 −→ Mg,[m].
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Let Sg,m = Mg,[m]\Mg,[m], and let E be the closure of Sg,m\Im(β) in Mg,[m].

Then E is a normal crossing divisor inMg,[m] and β∗(E) is a normal crossing divisor

in Mg−1,[m]+2 that is equal to Sg−1,m+2 = Mg−1,[m]+2 \Mg−1,[m]+2. Similarly to

[Nak96, §(3.5)], one defines a partial compactification M̃g,[m] = Mg,[m] \ E whose

locus of singular curves is exactly the image through β of the locus of smooth

curves. Note that β sends a maximally degenerated stable curve of Sg−1,m+2 to a

maximally degenerated stable curve of higher arithmetic genus in E . In particular,

the partial normalisation X ′
A (resp. X ′

B) of XA (resp. XB) at the singular point

PA (resp. PB), see Figure 2, pointed at the preimages of PA (resp. PB), is a curve

supported in β∗(E) ⊂ Sg−1,m+2 ⊂ Mg−1,[m]+2 that is sent to XA (resp. XB) by β.

In the rest of the paper, we consider some tangential base point s⃗ = (x, tE)

on M̃g,[m] (resp. s⃗ ′ = (x′, tβ∗(E)) on Mg−1,[m]+2) with x ∈ {XA, XB} (resp.

x′ ∈ {X ′
A, X

′
B} given by β-compatibility). We denote the associated fundamen-

tal group πE
1 (Mg,[m]; s⃗) of Theorem 3.4 by π1(M̃g,[m]; s⃗), and in the same way

π
β∗(E)
1 (Mg−1,[m]+2; s⃗

′) is denoted π1(Mg−1,[m]+2; s⃗
′). Their geometric variants

are denoted accordingly.

3.2.3. Recall that by Artin–Mazur étale homotopy type theory applied to the

Q-stack Mg,[m] as in [Oda97], the étale fundamental group associated to a geo-

metric point x̄ : Spec(Q) → Mg,[m] yields an arithmetic–geometric (short) exact

sequence:

(3.6) 1 → πet
1 (Mg,[m] ⊗Q, x̄) → πet

1 (Mg,[m], x̄) → Gal(Q/Q) → 1,

and a rational point s : SpecQ → Mg,[m] induces a geometric Galois representa-

tion ρs as in equation (1.1). For E , M̃g,[m], and s⃗ = (x, tE) aQ-tangential base point

as in Section 3.2.2, Proposition 3.5 yields a tangential Gal(Q/Q)-representation

(3.7) ρs⃗ : Gal(Q/Q) → Aut[π1(M̃g,[m] ⊗Q; s⃗ )],

where π1(M̃g,[m]⊗Q; s⃗ ) denotes πE⊗Q
1 (Mg,[m]⊗Q; s⃗ ). As recalled in Remark 3.6,

the tangential Gal(Q/Q)-representation gives a splitting of equation (3.6) by com-

puting ρs explicitly on some geometric generators of πet
1 (Mg,[m] ⊗Q, x̄).

With the notation of Section 3.2.2, since β is unramified by [Knu83, Cor. 3.9],

we construct some β-compatible tangential Gal(Q/Q)-representations:

Proposition 3.12. There exists a choice of Q-tangential base points s⃗ and s⃗ ′

of type XA or XB, respectively on M̃g,[m] and on Mg−1,[m]+2 which induces a

morphism

π1(Mg−1,[m]+2 ⊗Q; s⃗ ′) −→ π1(M̃g,[m] ⊗Q; s⃗ )

and is Gal(Q/Q)-equivariant with respect to ρs⃗ and ρs⃗′ .
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Proof. Let us first consider the case of ordered marked points Mg,m. As the mor-

phism Mg−1,m+2 → Mg,m is unramified by [Knu83, Cor. 3.9], Proposition 3.7

ensures the existence of Q-tangential base points based at curves of types XA and

XB that are compatible with β. Since a tangential representation is defined by

the Gal(Q/Q)-action on the parameters tE and on the Q-coefficients of s⃗, the re-

sult follows directly from [Knu83, Cor. 3.9] applied to the arithmetic fundamental

groups π1(Mg−1,m+2; s⃗
′) and π1(M̃g,m; s⃗ ).

For the unordered case, we consider the cartesian diagram

Mg−1,m+2
//

π1

��

Mg,m

π2

��

Mg−1,[m]+2
//Mg,[m],

where vertical morphisms are étale surjective since the marked points are supposed

distinct. By the descent property, to be unramified is local at the source for the

étale topology, thus the bottom morphism is unramified and the result follows

from the unordered case and the same arguments.

We insist on the fact that Knudsen morphisms do not lead to canonical

Gal(Q/Q)-actions – see Remark 3.8. The comparison of Gal(Q/Q)-action by

change of parameters illustrates the non-Gal(Q/Q) invariance of analytic con-

tinuation, and is indeed the core of the arithmetic geometry of moduli spaces of

curves, as illustrated by the role of Deligne’s droit chemin p from 0⃗1 to 1⃗0 in M0,4

as in [Iha91].

Remark 3.13. As a special case and as another general application of Proposition

3.7, we signal the following:

(i) The above construction of β-compatible Gal(Q/Q)-representations is the alge-

braic generalisation of the topological approach of [Col12a] where a mapping

class group morphism Γ2
0,[m] → Γ1,[m] is defined to deal with the étale-type

inertia in genus 1.

(ii) The Knudsen clutching morphisms

βg1,g2 : Mg1,m1 ×Mg2,m2 −→ Mg,m,

being closed immersions, the approach above readily applies to the study of

various βg1,g2 -compatible Gal(Q/Q)-representations.
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§4. Galois action on inertia

This section presents the main result of this paper: the description of the

Gal(Q/Q)-action on the cyclic stack inertia of Mg,[m] defined by a tangential

Gal(Q/Q)-representation. First, the approach using irreducible components of spe-

cial loci initiated in [CM15] is recalled, and is shown to provide a favourable context

for applying Section 3. The behaviour of the inertia Galois action under speciali-

sation is then established and used to prove the main theorem as a result of the

previous sections.

§4.1. Special loci and inertia groups

Let w be a geometric point of Mg,[m] and G < Iw its stack inertia group. We

consider the special loci Mg,[m](G) associated to G, i.e. the loci of curves of Mg,[m]

that admit a G-action – see [CM15, §2.1]. By the residual finiteness property of the

orbifold fundamental group of Mg,[m](C)an, the morphism of Section 3.1.3 turns

into an embedding ωw : Iw ↪→ π1(Mg,[m] ⊗Q, w) – see also Remark 4.4.

Let ρs : Gal(Q/Q) → Aut[π1(M̃g,[m] ⊗Q; s⃗)] be a Galois tangential represen-

tation defined by a Q-tangential base point s⃗ with support in the compactification

Mg,[m] as in Section 3.2.3. In the case that w is stable under Gal(Q/Q), this de-

fines a stack inertia Gal(Q/Q)-action ρIs⃗ on Iw (cf. equation (3.4)), that we further

describe when G = ⟨γ⟩ is cyclic.

4.1.1. The study of the action ρIs⃗ is linked to the action of Gal(Q/Q) on the set of

irreducible components of Mg,[m](G)⊗Q (cf. [CM15, §2.2]), so it is fundamental to

first have a good description of it. One then proves that the irreducible components

of Mg,[m](γ) are geometrically irreducible (see [CM15, Cor. 3.12 and Thm. 4.3]):

denoting by kr the algebraic branch data of Section 2.2.3, it is shown that such an

irreducible component is of the form Mg,[m],kr(γ), composed of curves with given

kr data; see [CM15].

Furthermore, one obtains the following lemma:

Lemma 4.1 ([CM15, Lem. 5.2]). Let Z be an irreducible component of Mg,[m](γ),

and let m ≫ 0 so that Mg,m is representable. Then the residue field K = κ(ζ) of

a generic point ζ of Mg,m ×Mg,[m]
Z provides a point

z : SpecK → Mg,m ×Mg,[m]
Z → Z → Mg,[m](γ)

of Mg,[m],kr(γ) such that K is linearly disjoint from Q over Q.

Let G < I be the generic stack inertia group of an irreducible component of

the special loci Mg,[m](G). Lemma 4.1 gives a K-point z of the component whose
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geometric inertia Iz̄ contains G, and it follows from Proposition 3.9 that there

exists a stack inertia Galois action

(4.1) ρIs⃗,z̄ : Gal(Q/Q) −→ Aut[Iz̄]

which is defined by conjugacy and is induced by the local Gal(K/K)-action ρIz̄
on Iz̄.

The definition of ρIs⃗,z̄ relies indeed on many choices, such as fixing an algebraic

closure of K or choosing a specialisation morphism ϕz̄⇝s⃗ from z̄ to the boundary of

Mg,[m]. This results in the identification of ρIz̄ to the stack inertia Gal(Q/Q)-action

ρIs⃗,z̄ of equation (3.4), which is induced by the given tangential Gal(Q/Q)-action

ρs⃗ – see the discussion above Proposition 3.9.

Remark 4.2. When the irreducible component admits a dense open subset with

trivial automorphism group, the field K of Lemma 4.1 can be chosen to be the

residue field of the generic point of the component. In the case that G = ⟨γ⟩ is

cyclic, see also Remark 3.10(i).

4.1.2. For a general curve C ∈ Mg,[m](G), recall that the associated G-cover

C → C/G factorises as below with the properties

(i) the group H < G is generated by the stabilisers of ramification points of the

G-cover C → C/G;

C

��

""

C/H

}}

C/G;

(ii) the cover C/H → C/G is étale.

When H = G, the action of G on C is said to be without étale factorisation.

In this case, the stack inertia Gal(Q/Q)-action of equation (4.1) is given by the

proposition below, which also plays a key role in the final proof of the general case.

Proposition 4.3. Let G = ⟨γ⟩, and let η : SpecK → Mg,[m](G) be a morphism

with value into a field K linearly disjoint from Q. If the curve η is without étale

factorisation, then the Gal(Q/Q)-action ρIs⃗ on G < Iη̄ is given by cyclotomy i.e.

for σ ∈ Gal(Q/Q) and γ ∈ G we have σ · γ = γχ(σ).

The proposition is actually [CM15, Thm. 5.4] to which we refer for details. The

idea of the proof goes as follows: Let C : SpecK → Mg,[m],kr(G) be a morphism
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as in Lemma 4.1, and suppose that the action of G on the curve C is without étale

factorisation. Since the stabilisers of a ramification point are generating subgroups

of the stack inertia group, the branch cycle argument implies that the Gal(Q/Q)-

action is given by cyclotomy on a generator γ of the inertia group.

The following section establishes a similar result for tangential Gal(Q/Q)-

action ρs⃗ on the fundamental group for curves with possible étale factorisation

using the Gal(Q/Q)-compatibility of the Knudsen morphism of Section 3.2.3.

§4.2. Inertial limit Galois action and cyclotomy

We describe the tangential Gal(Q/Q)-action ρs⃗ on cyclic stack inertia, first for

curves without étale factorisation, then in the general case. Note that the results

of the first section readily extend to any Deligne–Mumford stack.

4.2.1. Let M̃g,[m] be the partial compactification of Section 3.2.2. We establish

the behaviour under specialisation of the stack inertia groups within πet
1 (M̃g,[m]).

More precisely, the goal of this section is to compare different Galois actions on

the étale fundamental group based on different points or tangential points.

Let s⃗ be a tangential base point of M̃g,[m], η ∈ M̃g,[m] be a point above the

generic point of s⃗, and z ∈ Mg,[m],kr(G) be a specialisation of η. More precisely, let

R be a valuation ring with algebraically closed fraction field K and residue field k,

endowed with a morphism T : SpecR → Mg,[m](G) which sends the generic point

of SpecR onto the image of the generic point of s⃗ – thus defining two geometric

points η̄ and z̄. Also let η̄ ⇝ s⃗ be an étale path from η̄ to s⃗ as given by a change

of base point in M̃g,[m]. Since étale coverings are proper morphisms, the choice of

T defines an étale path η̄ ⇝ z̄ from η̄ to z̄, and one obtains the diagram

(4.2)

Iz̄ Iη̄

π1(M̃g,[m], z̄) π1(M̃g,[m], η̄),

π1(M̃g,[m]; s⃗)

ωz̄ ωη̄

ϕ−1
η̄⇝z̄

ϕz̄

ϕη̄⇝s⃗

with ϕz̄ = ϕη̄⇝s⃗ ◦ ϕ−1
η̄⇝z̄.

Remark 4.4. The injectivity of ωz̄ : Iz̄ ↪→ π1(M̃g,[m], z̄) follows from [Noo04,

Thm. 6.2], where the Deligne–Mumford stack M̃g,[m] is uniformisable as a global

algebraic space quotient by a finite group, as given for example via Looijenga level

structures – see [Loo94] and [Bog14, Thm. 3.10] for its generalisation to Mg,[m].
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The following lemma is an analog of Grothendieck’s specialisation theorem

for the fundamental group in the case of stack inertia groups.

Lemma 4.5. Let η and z be two points in M̃g,[m] such that z is a specialisation

of η. Let R be a valuation ring and T ∈ M̃g,[m](SpecR) whose generic fibre is a

geometric point η̄ above η and whose special fibre is a geometric point z̄ above z.

Then the choice of T induces an étale path η̄ ⇝ z̄ which sends the stack inertia Iη̄
into Iz̄:

(4.3)

Aut(Cη̄) = Iη̄ π1(M̃g,[m], η̄)

Aut(Cz̄) = Iz̄ π1(M̃g,[m], z̄).

ϕ ϕη̄⇝z̄

Proof. Since étale coverings are proper morphisms, the choice of T defines an étale

path η̄ ⇝ z̄ from η̄ to z̄ by using the valuative criterion for properness. This choice

is by definition compatible with specialisation.

Consider the curves Cη̄ and Cz̄ with their respective automorphism groups

Aut(Cη̄) and Aut(Cz̄). The stable reduction process induces a morphism between

automorphism groups ϕ : Aut(Cη̄) → Aut(Cz̄), where ϕ is injective thanks to the

non-ramification of the diagonal of Mg,[m]. The lemma follows from the commu-

tativity of diagram (4.3).

This result should be read in relation with Theorem 2.6 on the generic G-

deformation of a smooth curve to the boundary of Mg,[m]. Notice that the sub-

groups ϕz̄(Iz̄) and ϕη̄⇝z̄(Iη̄) can be seen as subgroups of π1(M̃g,[m]; s⃗).

4.2.2.When the Gal(Q/Q)-action ρIs⃗ on the stack inertia group of the generic point

Iη̄ is given by cyclotomy, one obtains the following description of the tangential

Gal(Q/Q)-action ρs⃗ on π1(M̃g,[m] ⊗ Q; s⃗ ) on the stack inertia group Iz̄ of the

specialisation@

Lemma 4.6. Let ρs⃗ be given a tangential Gal(Q/Q)-action as before. Let η be

the generic point of an irreducible component of the special loci Mg,[m](G), and

z a specialisation of η in M̃g,[m]. If ρs⃗ induces a Gal(Q/Q)-action ρIs⃗ on G < Iη̄
that is given by cyclotomy, then there exists for σ ∈ Gal(Q/Q) an étale path δσ of

π1(M̃g,[m] ⊗Q; s⃗ ) such that for any γ ∈ G < Iz̄,

ρs⃗(σ) · γ = δσ · γχ(σ) · δ−1
σ .

In the following, we say that such a tangential Gal(Q/Q)-action on a stack

inertia element is given by χ-conjugacy.
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Proof of Lemma 4.6. Let τ be an element of Iη̄ and write

γ = ϕη̄⇝z̄ ◦ τ ◦ ϕ−1
η̄⇝z̄.

For σ ∈ Gal(Q/Q), the discussion above and the compatibility of ρIs⃗,z̄ and ρs⃗ of

Proposition 3.9 give

ρs⃗(σ) · γ = ρs⃗(σ)(ϕη̄⇝z̄) · ρs⃗(σ)(τ) · ρs⃗(σ)(ϕ−1
η̄⇝z̄)

= δσ · γχ(σ) · δ−1
σ ,

where δσ = ρs⃗(σ)(ϕη̄⇝z̄) ◦ ϕ−1
η̄⇝z̄ is an étale path in π1(M̃g,[m] ⊗Q; s⃗ ).

For curves without étale factorisation, the lemma above and Proposition 4.3

give, in particular, the following corollary:

Corollary 4.7. Let s⃗ be a tangential base point of M̃g,[m], denote by ρs⃗ the tan-

gential Gal(Q/Q)-representation induced by s⃗, and let G = ⟨γ⟩ be a cyclic stack

inertia group of M̃g,[m]. If G satisfies the non-étale factorisation property, then ρs⃗
induces a Gal(Q/Q)-action on G given by χ-conjugacy.

4.2.3. We now establish the main result of the article, which follows from all the

results collected in the previous sections: the compatibility of some local, stack

inertia, and tangential Galois actions (resp. ρIz̄, ρIs⃗,z̄, and ρs⃗ in Section 3.1.3),

the specific action by cyclotomy conjugacy of Section 4.2.2, the Galois-invariant

tangential morphisms of Section 3.2.3, and the generic degeneracy of G-covers of

Section 2.2.2.

Theorem 4.8. Let I = ⟨γ⟩ be a cyclic stack inertia group of Mg,[m]. Then the

tangential Gal(Q/Q)-actions on π1(M̃g,[m]⊗Q, s⃗ ) are given by χ-conjugacy on I:

ρs⃗(σ) · γ = δσγ
χ(σ)δ−1

σ ,

where δσ is an étale path of π1(M̃g,[m] ⊗Q, s⃗ ).

Recall that such a tangential Gal(Q/Q)-representation can be explicitly given

by a curve of type XA (g ⩾ 1) or XB (g ⩾ 2) of Figure 2, that the tangential

Gal(Q/Q)-action ρs⃗ on I is defined via a stack inertia Galois action ρIs⃗,z̄ as in

equation (4.1), and that one can work with generic points if up to conjugacy.

Proof of Theorem 4.8. Let η be the generic point of an irreducible component

Mg,[m],kr(γ) of the special loci Mg,[m](γ), so that I < Iη̄. The case where η has

no étale factorisation is dealt with by Corollary 4.7. Since the automorphisms of

curves of genus 0 are without étale factorisation, it can be assumed that g ⩾ 1.
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Let z ∈ M̃g,[m](γ) be a specialisation of η as given by Corollary 2.7 and

consider β−1(z) – the preimage by the Knudsen morphism β as in Section 3.2.2 –

which belongs to an irreducible component Mg−1,[m]+2,kr′(γ) ⊂ Mg−1,[m]+2(γ) of

generic point η′. One obtains furthermore a specialisation ξ = β(η′) ∈ M̃g,[m](γ) of

η whose normalisation has genus g−1 and a ⟨γ⟩-action without étale factorisation,

and such that Iη̄ < Iξ̄ by the property of injectivity under the specialisation of

Lemma 4.5.

Following Proposition 3.12, let us consider two tangential Gal(Q/Q)-actions

ρs⃗ on π1(M̃g,[m] ⊗ Q; s⃗ ) and ρs⃗ ′ on π1(Mg−1,[m]+2 ⊗ Q; s⃗ ′) that are compatible

with the Knudsen morphism

π1(Mg−1,[m]+2 ⊗Q, s⃗ ′)
β−→ π1(M̃g,[m] ⊗Q, s⃗ ).

Considering the two étale paths η ⇝ s⃗ and η′ ⇝ s⃗ ′ that are defined by special-

isation of the curves z ∈ M̃g,[m] and β−1(z) ∈ Mg−1,[m]+2, the actions ρs⃗ and

ρs⃗ ′ then define by Proposition 3.9 and Lemma 4.1 two Gal(Q/Q)-actions on the

generic stack inertia groups Iη̄ and Iη̄′ that respectively are ρIs⃗ = ϕ−1
η⇝s⃗ ◦ ρs⃗ ◦ϕη⇝s⃗

and ρIs⃗ ′ = ϕ−1
η⇝s⃗ ′ ◦ ρs⃗ ′ ◦ ϕη⇝s⃗ ′ .

Since curves of Mg−1,[m]+2,kr′(γ) satisfy the without étale factorisation prop-

erty, the action ρIs⃗ ′ on I ≲ Iη̄′ is given by χ-conjugacy by Corollary 4.7 and via

η̄′ ⇝ s⃗ ′. Denote by x and x′ the respective supports of s⃗ and s⃗ ′. From the β-

compatibility of the Gal(Q/Q)-actions ρIs⃗,x̄ and ρIs⃗ ′,x̄′ – i.e. β ◦ ρIs⃗ ′,x̄′ = ρIs⃗,x̄ (see

Remark 3.10(iii)) – and finally from

ρIs⃗ = (ϕ−1
η̄⇝s⃗ ◦ ϕξ̄⇝s⃗) ◦ ρIs⃗,ξ̄ ◦ (ϕ

−1
η̄⇝s⃗ ◦ ϕξ̄⇝s⃗)

−1

– where the χ-conjugacy action of ρIs⃗,x̄ has been similarly transported to ρI
s⃗,ξ̄

–

it follows that the generic action ρIs⃗ is given by χ-conjugacy, first on Iξ̄, then on

I < Iη̄ < Iξ̄.

For a general γ ∈ Iz̄, one deduces the same result for ρs⃗ after conjugacy by a

factor δσ = ρs⃗(σ)(ϕη̄⇝z̄)◦ϕ−1
η̄⇝z̄ as in Lemma 4.6, and this concludes the proof.

Remark 4.9. The following make precise the role of the conjugacy factors with

respect to the compactification:

(i) For any point x ∈ Mg,[m] and x̄ a geometric point above x, we have a

Galois-equivariant commutative diagram

Ix̄ π1(Mg,[m], x̄)

Ix̄ π1(M̃g,[m], x̄).
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In particular, a Galois action given by χ-conjugacy on the bottom row in-

duces a χ-conjugacy on the top row. This statement is still true for a tan-

gential action by using an étale path π1(M̃g,[m], x̄) → π1(M̃g,[m]; s⃗ ).

(ii) The proof above refines the compatibility under the Knudsen morphism β of

the Galois actions ρIs⃗,z̄ and ρIs⃗′,z̄′ in terms of the various conjugacy factors.

(iii) In M0,4 ≃ P1 \ {0, 1,∞}, the droit chemin p from the tangential base point

0⃗1 = SpecQ[[t]] to 1⃗0 = SpecQ[[−t]] – see [Iha91] – admits a factorisation

by the path r from 0⃗1 to 1/2 ∈ M0,4. The Gal(Q/Q)-action on p gives a

factor fσ while r gives a factor gσ – see [LS97]. Since the point 1/2 ∈ M0,4

represents a point in M0,[4] with (reduced) cyclic inertia Z/2Z, the factor gσ
plays the role of the conjugacy factor in the stack inertia Gal(Q/Q)-action.

4.2.4. By analogy with the Deligne–Mumford stratification, the results and meth-

ods of this article encourage further studies of the arithmetic of the stack inertia

stratification (see [Dou06] for a description), either by describing the Galois action

for higher non-cyclic stack inertia strata, or by describing the conjugacy factors

δσ in the χ-conjugacy action of Theorem 4.8.

For the Deligne–Mumford stratification, Grothendieck–Murre theory implies

that the tangential Gal(Q/Q)-action on πet
1 (Mg,[m]⊗Q) is given by χ-conjugacy on

the divisorial inertia groups ID,D ∈ ∂Mg,[m], while the stratification by topological

type (g,m) – given by the Knudsen morphisms – reduces the description of these

actions to the 4 strata of modular dimension 1 and 2 only. A finer description

of the conjugacy factor is obtained by comparing Gal(Q/Q)-actions on different

topological strata via Knudsen clutching morphisms; see for example [Nak96] in

the case of the clutching Mg1,m1 ×Mg2,m2 → Mg1+g2,m1+m2−2.

The stack inertia stratification is given by the decreasing dimensional locus

Mg,[m](Gi) ⊂ Mg,[m](Gi−1), where Gi > Gi+1 and G0 = {Id}; see [LMB00,

Thm. 11.5]. We show that the cyclic stack inertia stratification is given by the

branch data kr of Section 2.2.3, thus the corresponding strata Mg,[m],kr(Z/nZ);
in Section 4.2.3, we compare two stack inertia Gal(Q/Q)-actions

ρIs⃗,x̄ : Gal(Q/Q) → Aut[Ix̄] and ρIs⃗ ′,ȳ : Gal(Q/Q) → Aut[Iȳ]

on the automorphism groups Ix̄ ≃ Iȳ of curves x ∈ Mg,[m],kr(Z/nZ) and y ∈
Mg−1,[m]+2,kr′(Z/nZ) of stack strata of different types – i.e. with distinct Z/nZ-
invariants (genus of the quotients g′x ̸= g′y, and branch data kr ̸= kr′). This process

deserves the name of inertial limit Galois action. Developing a combinatorial de-

scription of the geometry of the cyclic stack inertia stratification should lead to a
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finer description of these inertial limit Galois actions, for example by comparing

the conjugacy factors of the prime and general cyclic strata.

In another direction, and following a long, geometric Galois action tradition,

this χ-conjugacy Galois action also motivates the search for new stack inertia

Gal(Q/Q)-equations in higher genus – see [NT03] and [Sch06] in genus 0.
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