On Cohomology Vanishing with Polynomial Growth on Complex Manifolds with Pseudoconvex Boundary

Dedicated to Tetsuo Ueda on his seventieth birthday

by

Takeo Ohsawa

Abstract

The $\bar{\partial}$ cohomology groups with polynomial growth $H_{\mathrm{p},\mathrm{g}.}^{r,s}$ will be studied. It will be shown that, given a complex manifold M, a locally pseudoconvex bounded domain $\Omega \in M$ satisfying certain geometric boundary conditions and a holomorphic vector bundle $E \to M$, $H_{\mathrm{p},\mathrm{g}.}^{r,s}(\Omega, E) = 0$ holds for all $s \geq 1$ if E is Nakano positive and $r = \dim M$. It will also be shown that $H_{\mathrm{p},\mathrm{g}.}^{r,s}(\Omega, E) = 0$ for all r and s with $r+s > \dim M$ if, moreover, rank E = 1. By the comparison theorem due to Deligne, Maltsiniotis (Astérisque **17** (1974), 141–160) and Sasakura (Inst. Math. Sci. **17** (1981), 371–552), it follows in particular that, for any smooth projective variety X, for any ample line bundle $L \to X$ and for any effective divisor D on X such that $[D]|_{|D|} \geq 0$, the algebraic cohomology $H_{\mathrm{alg}}^{s}(X \setminus |D|, \Omega_{X}^{r}(L))$ vanishes if $r + s > \dim X$.

2020 Mathematics Subject Classification: Primary 32E40; Secondary 32T05. Keywords: Cohomology with polynomial growth, UBS domain, $L^2 \bar{\partial}$ -cohomology, vanishing theorem.

§0. Introduction

This is a continuation of the series of papers [Oh-2, Oh-3, Oh-4, Oh-5]. The motivation for [Oh-2] was to apply a method of Hörmander in [Ho, Prop. 3.4.5] to an extension problem on a compact complex manifold M with a holomorphic vector bundle $E \to M$ and an effective divisor D. To explain it more clearly, let us recall first that the original intention of [Ho] was to interpret the finiteness theorems of

Communicated by T. Mochizuki. Received July 20, 2021. Revised December 21, 2021.

T. Ohsawa: Graduate School of Mathematics, Nagoya University, 464-8602 Chikusaku, Furocho, Nagoya, Japan;

e-mail: ohsawa@math.nagoya-u.ac.jp

 $[\]textcircled{C}$ 2023 Research Institute for Mathematical Sciences, Kyoto University.

This work is licensed under a CC BY 4.0 license.

T. Ohsawa

Andreotti and Grauert [A-G] in terms of the harmonic decomposition of L^2 differential forms so that one can eventually refine the solution of the Levi problem by Oka [Ok] in a quantitative way. In view of the remarkable development after [Ho], an extension of [Ho, Prop. 3.4.5] was applied in [Oh-1] and [N-R] to establish finiteness theorems on weakly 1-complete manifolds. After a while, it came into the author's mind that it might be worthwhile extending this type of application to the situation which was studied by Ueda [Ud] and recently by Koike [Kk] in connection with dynamical systems and foliations.

It was proved in [Oh-2] that the natural restriction map $H^0(M, \mathcal{O}(K_M \otimes E \otimes$ $[D]^{\mu})) \to H^0(|D|, \mathcal{O}_D(K_M \otimes E \otimes [D]^{\mu}))$ is surjective for sufficiently large μ if $E|_{|D|}$ is positive and [D] is semipositive, where K_M denotes the canonical bundle of M. The proof is based on the isomorphisms between the L^2 cohomology groups $H_{(2)}^{n,s}(M, E, g, he^{-\mu\varphi})$ and $H_{(2)}^{n,s}(M, E, g, he^{-(\mu+1)\varphi})$ $(s \ge 1)$, where $n = \dim M, g$ is a complete metric on M, h is a fiber metric of E and φ is a plurisubharmonic exhaustion function on $M \setminus |D|$ which is of logarithmic growth near |D|. An unconventional aspect of this extension theorem is that n is arbitrary, although the situation is quite analogous to the Bochner–Hartogs-type extension rather than that of Oka and Cartan. In this situation, it seems worthwhile generalizing the result by replacing the assumption $[D] \ge 0$ by $[D]|_{|D|} \ge 0$. We note that there are interesting cases where $[D] \not\geq 0$ but $[D]|_{|D|} \geq 0$ and that the neighborhoods of such D have been studied in detail when n = 2 and D is smooth by Ueda [Ud] and Koike [Kk]. In [Oh-3], it turned out that one can replace the condition $[D] \ge 0$ by $[D]|_{|D|} \ge 0$ by modifying Hörmander's technique in such a way that some nonplurisubharmonic function works as φ to establish $H^{n,s}_{(2)}(M, E, g, he^{-\mu\varphi}) \cong H^{n,s}_{(2)}(M, E, g, he^{-(\mu+1)\varphi})$ $(s \geq 1)$ for $\mu \gg 1$. By this refinement of Hörmander's method, a bundle-convexity theorem has been obtained in [Oh-4] for a class of locally pseudoconvex domains. An approximation theorem obtained in [Oh-3] was extended in [Oh-5] to a more restricted class of domains than in [Oh-4]. The purpose of the present article is to show in the same vein that the celebrated vanishing theorems of Akizuki-Kodaira-Nakano naturally extend to this latter class.

Namely, we consider a locally pseudoconvex bounded domain Ω in a (not necessarily compact but connected) complex manifold M and a holomorphic vector bundle $E \to M$. In what follows we assume that $\partial\Omega$ has finitely many connected components and every connected component of $\partial\Omega$ is either a C^2 -smooth real hypersurface or the support of an effective divisor. For simplicity we assume that each hypersurface component of $\partial\Omega$ separates M into two connected components, since one may take a double covering each time a nonseparating component of $\partial\Omega$ appears. In [Oh-4] we considered those Ω such that the divisorial components of $\partial\Omega$ are supported on an effective divisor whose normal bundles are semipositive. Such Ω will be called *weakly pseudoconvex domains of regular type* and we set $\partial_{\text{hyp}}\Omega := \partial\overline{\Omega}$ and $\partial_{\text{div}}\Omega := \partial\Omega \setminus \partial_{\text{hyp}}\Omega$. We shall restrict ourselves below to a smaller class of domains by imposing a condition on $\partial_{\text{hyp}}\Omega$.

A weakly pseudoconvex domain of regular type Ω will be called a *weakly* pseudoconvex domain of very regular type if $\partial_{\text{hyp}}\Omega$ is of class C^3 and the Levi form of the defining function, say ρ , of $\overline{\Omega}^{\circ}$ satisfies

$$\partial \bar{\partial} \rho \ge O(\rho^2)$$

along $\partial_{\text{hyp}}\Omega$. Here, $\partial \bar{\partial} \rho \geq O(\rho^2)$ (at a point $x \in M$) is a short expression of the condition that

$$\sum \frac{\partial^2 \rho}{\partial z_\alpha \partial \overline{z_\beta}} \xi_\alpha \overline{\xi_\beta} \ge c \rho^2 \|\xi\|^2 \quad (\xi \in \mathbb{C}^n)$$

holds for some $c \in \mathbb{R}$ around x, where c may depend on the choice of the local coordinate (z_1, \ldots, z_n) .

A weakly pseudoconvex domain of very regular type will also be called a *UBS-domain* in short, since the conditions on $\partial\Omega$ come from the works of Ueda [Ud] and Boas–Straube [B-S].

We shall prove the following.

Theorem 0.1. In the above situation, assume that Ω is a UBS domain of dimension n and E is Nakano positive. Then

$$H^{n,s}_{\mathbf{p},\mathbf{g}}(\Omega, E) = 0 \quad for \ all \ s \ge 1$$

(see Section 1 for the definition of $H^{r,s}_{p.g.}(\Omega, E)$) and

 $H^{r,s}_{\mathrm{p.g.}}(\Omega,E)=0 \quad \text{for all } r \text{ and } s \text{ with } r+s>n \text{ if } \mathrm{rank}\, E=1.$

By Deligne–Maltsiniotis–Sasakura's comparison theorem asserting the equivalence of the cohomology of polynomial growth and algebraic cohomology on quasiprojective varieties, one has the following in particular.

Corollary 0.1. For any n-dimensional smooth projective variety X, for any Nakano positive vector bundle $E \to X$ and for any effective divisor D on X such that $[D]|_{|D|} \ge 0$, the algebraic cohomology group $H^s_{alg}(X \setminus |D|, \Omega^n_X(E))$ vanishes for $s \ge 1$, where Ω^r_X denotes the sheaf of holomorphic r-forms. If moreover rank E = 1, $H^s_{alg}(X \setminus |D|, \Omega^r_X(E)) = 0$ for r + s > n.

Here, by $[D]|_{|D|} \ge 0$ we mean that the line bundle [D] admits a fiber metric whose curvature form is semipositive when it is restricted to the Zariski tangent

spaces of |D| (and no further semipositivity is assumed on the finite neighborhoods of |D|).

We note that an analogous vanishing for $H^s(X, \Omega_X^r(\log D) \otimes L)$ was proved by Norimatsu [Nr] by combining Akizuki–Nakano's vanishing theorem and Deligne's filtration of $\Omega_X^r(\log D)$ in [D-1] by assuming that D is a divisor of simple normal crossings. Recently, a vanishing theorem for $H^s(X, \Omega_X^r(\log D))$ was obtained by Liu, Wan and Yang [L-W-Y] by combining a vanishing for H_{alg} with [D-2] while the Norimatsu vanishing for $H^s(X, \Omega_X^r(\log D) \otimes L)$ was extended by Liu, Rao and Wan [L-R-W] by the standard L^2 method. In contrast to these beautiful results, the assumption $[D]|_{|D|} \ge 0$ in Corollary 0.1 cannot be removed because H_{alg}^1 are infinite-dimensional if $X \setminus |D| \cong \mathbb{P}^2 \setminus \{x\}$ $(x \in \mathbb{P}^2)$ and rank E > 0.

§1. Cohomology with polynomial growth

After recalling the basic notation, $\bar{\partial}$ cohomology groups with polynomial growth will be defined.

Let M be a connected complex manifold equipped with a Hermitian metric gand let $E \to M$ be a holomorphic Hermitian vector bundle with a C^{∞} fiber metric h. For any continuous function $\varphi \colon M \to \mathbb{R}$, we denote by $L_{(2)}^{r,s}(M, E, g, he^{-\varphi})$ the set of square integrable E-valued (r, s)-forms with respect to $(g, he^{-\varphi})$. For simplicity we shall often abbreviate $L_{(2)}^{r,s}(M, E, g, he^{-\varphi})$ as $L_{(2),\varphi}^{r,s}(M, E)$. By $C^{r,s}(M, E)$ we denote the set of C^{∞} (r, s)-forms on M with values in E and by

$$\bar{\partial} \colon C^{r,s}(M,E) \to C^{r,s+1}(M,E)$$

the complex exterior derivative of type (0, 1). We put

$$C_0^{r,s}(M,E) = \left\{ u \in C^{r,s}(M,E); \operatorname{supp} u \Subset M \right\}$$

and denote also by $\bar{\partial}$ the maximal closed extension of $\bar{\partial}|_{C_0^{r,s}(M,E)}$ as a linear operator from $L_{(2),\varphi}^{r,s}(M,E)$ to $L_{(2),\varphi}^{r,s+1}(M,E)$. Namely, the domain of the operator $\bar{\partial}: L_{(2),\varphi}^{r,s}(M,E) \to L_{(2),\varphi}^{r,s+1}(M,E)$ is defined as

$$\left\{ u \in L^{r,s}_{(2),\varphi}(M,E); \bar{\partial}u \in L^{r,s+1}_{(2),\varphi}(M,E) \right\},\$$

where $\bar{\partial}u$ is defined in the sense of distributions.

Then we put

$$H_{(2)}^{r,s}(M, E, g, he^{-\varphi}) = \frac{\operatorname{Ker} \bar{\partial} \cap L_{(2)}^{r,s}(M, E, g, he^{-\varphi})}{\bar{\partial} (L_{(2)}^{r,s-1}(M, E, g, he^{-\varphi})) \cap L_{(2)}^{r,s}(M, E, g, he^{-\varphi})}.$$

Given a bounded domain $\Omega \Subset M$ we put

$$\delta(z) = \delta_{\Omega}(z) \coloneqq \operatorname{dist}_g(z, M \setminus \Omega) \quad (z \in \Omega)$$

Here, $\operatorname{dist}_{g}(A, B)$ denotes the distance between A and B with respect to g. Then $H^{r,s}_{\mathrm{p.g.}}(\Omega, E)$, the E-valued $\bar{\partial}$ cohomology group of Ω of type (r,s) with polynomial growth, is defined as the inductive limit of $H^{r,s}_{(2)}(\Omega, E, g, h\delta^{\mu})$ as $\mu \to \infty$. Clearly $H^{r,s}_{(2)}(\Omega, E, g, h\delta^{\mu})$ and $H^{r,s}_{\mathrm{p.g.}}(\Omega, E)$ do not depend on the choices of g and h.

The most basic fact on $H^{r,s}_{\text{p.g.}}(\Omega, E)$ is the following, which is a direct consequence of the combination of [Ho, Thm. 2.2.3] with Oka's lemma asserting the plurisubharmonicity of $\log \frac{1}{\delta_{\Omega}}$ for any pseudoconvex domain $\Omega \subset \mathbb{C}^n$, with respect to the Euclidean metric. Although [Ho, Thm. 2.2.3] is only stated when E is the trivial bundle, the proof of the general case is similar.

Theorem 1.1. For any bounded pseudoconvex domain Ω in \mathbb{C}^n and for any holomorphic Hermitian vector bundle E on a neighborhood of $\overline{\Omega}$,

$$H^{r,s}_{p,g}(\Omega, E) = 0$$
 for all $r \ge 0$ and $s \ge 1$.

Based on Theorem 1.1, combining Cauchy's estimate with the canonical equivalence between Dolbeault and Čech cohomology, one has the following.

Theorem 1.2. For any smooth projective algebraic variety X, for any algebraic vector bundle $E \to X$ and for any analytic set $D \subset X$ of codimension one, $H^{r,s}_{p,g}(X \setminus D, E)$ is canonically isomorphic to the corresponding algebraic cohomology group $H^s_{alg}(X \setminus D, \Omega^r_X(E))$ for any r and s.

We note that Theorem 1.2 is naturally extended to the equivalence between the cohomology groups $H_{p.g.}$ and H_{alg} with coefficients in coherent algebraic sheaves over quasi-projective algebraic varieties (cf. [Ss]).

§2. Vanishing of $H_{(2)}^{r,s}$

Let us recall a general vanishing theorem for those $H_{(2)}^{r,s}$ which arise in the circumstance of Theorem 0.1.

Let (E, h) be a holomorphic Hermitian vector bundle over a complex manifold M. Let Θ_h denote the curvature form of h. Recall that Θ_h is naturally identified with a Hermitian form along the fibers of $E \otimes T_M^{1,0}$, where $T_M^{1,0}$ denotes the holomorphic tangent bundle of M, and that (E, h) is said to be Nakano positive if $\Theta_h > 0$ as such a Hermitian form (cf. [N-1]). If (E, h) is Nakano positive and rank E = 1, this positivity notion is first due to Kodaira [Kd]. For the proof of Theorem 0.1 we shall apply the following generalization of Nakano's vanishing theorem (cf. [N-1]). and Akizuki–Nakano's vanishing theorem (cf. [A-N]).

Theorem 2.1 (Cf. [A-V]; see also [N-2, N-3, Kz]). Let (E, h) be a Nakano positive vector bundle over a complete Kähler manifold (M, g) of dimension n. If $\Theta_h - \operatorname{Id}_E \otimes g \geq 0$, then $H_{(2)}^{n,s}(M, E, g, h) = 0$ holds for $s \geq 1$. If rank E = 1 and $\Theta_h = g$, one has $H_{(2)}^{r,s}(M, E, g, h) = 0$ for r + s > n.

We note that Theorem 2.1 was applied in [N-2, N-3, Kz] to show the vanishing of ordinary $\bar{\partial}$ cohomology groups on weakly 1-complete manifolds. For related materials see also [Kb].

§3. Proof of Theorem 0.1

Let Ω be a weakly pseudoconvex domain of very regular type in a complex manifold M and let (E, h) be a Hermitian holomorphic vector bundle over M whose curvature form Θ_h is Nakano positive. Since each component of $\partial\Omega$ is either a C^2 real hypersurface or a divisor, there exist a function $\psi: M \to [0, \infty)$ of class C^2 with $\psi^{-1}(0) = \partial\Omega$ and a positive number A such that $-\partial\bar{\partial}\log\psi + A\Theta_{\det h} > 0$ holds on Ω , where $\partial\bar{\partial}\rho$ for a real-valued C^2 function ρ is identified with the complex Hessian by an abuse of notation.

For such a function ψ , one may take $|s|^2$ on a neighborhood of $\partial_{\text{div}}\Omega$ for a canonical section s of [D], for any effective divisor D supported on $\partial_{\text{div}}\Omega$, and take ρ^2 on a neighborhood of $\partial_{\text{hyp}}\Omega$ for a C^2 defining function ρ of $\partial_{\text{hyp}}\Omega$.

We note that the UBS condition imposes a condition on ρ somewhat stronger than that $\partial \bar{\partial} \rho$ is semipositive along $\partial_{\text{hyp}} \Omega$, which was required in [B-S] to study the $\bar{\partial}$ -Neumann problem.

Accordingly one has more than $-\partial \bar{\partial} \log \psi + A\Theta_{\det h} > 0$ if Ω is UBS, as follows.

First of all, it is easy to see that ψ can be chosen for any UBS domain Ω in such a way that, given any $\varepsilon > 0$, one can find a neighborhood U of $\partial_{\text{div}}\Omega$ such that

$$-\partial\bar{\partial}\log\psi + \varepsilon\Theta_{\det h} > 0$$

holds on $U \setminus \partial \Omega$. Moreover, we are allowed to modify the metric $-\partial \bar{\partial} \log \psi + \varepsilon \Theta_{\det h}$ near $\partial_{\operatorname{div}} \Omega$ by adding a term $\partial \bar{\partial}_{\operatorname{log}(-\log \psi)}^{-1}$ so that it becomes complete near $\partial_{\operatorname{div}} \Omega$. This can be verified by a straightforward computation.

Furthermore, for any $\varepsilon > 0$, one can also find a neighborhood $V \supset \partial_{\text{hyp}}\Omega$ such that $-\partial \bar{\partial} \log \psi + \varepsilon \Theta_{\det h}$ is a metric on $V \cap \Omega$ which is complete near $\partial_{\text{hyp}}\Omega$. This follows immediately from the following lemma.

Lemma 3.1. Let Ω be a UBS domain in a Hermitian manifold (M, g) and let $\rho: M \to \mathbb{R}$ be a C^3 function satisfying $\overline{\Omega}^\circ = \{z; \rho(z) < 0\}$ and $d\rho|_{\partial_{hyp}\Omega} \neq 0$. Then,

for any $\varepsilon > 0$, there exists a neighborhood $U \supset \partial_{\text{hyp}}\Omega$ such that $-\rho^{-1}\partial\bar{\partial}\rho + \varepsilon(g + \rho^{-2}\partial\rho\bar{\partial}\rho) > 0$ holds on $U \cap \Omega$.

Proof. For simplicity we assume that dim M = 2, since the proof is similar for the general case. Let $x \in \partial_{\text{hyp}}\Omega$ and let (z, w) be a local coordinate around x such that the Taylor expansion of ρ at x is given by

$$\rho = \operatorname{Re} w + \rho_2 + \rho_3 + o(3),$$

where ρ_k are homogeneous polynomials in $(z, w, \overline{z}, \overline{w})$ of degree k. By the assumption that Ω is UBS, $\partial \overline{\partial} \rho_2 \geq 0$.

We put

$$\partial \bar{\partial} \rho_2 = a dz d\bar{z} + b dz d\bar{w} + \bar{b} dw d\bar{z} + c dw d\bar{w}.$$

Then $a \ge 0, c \ge 0$ and $ac - |b|^2 \ge 0$. If a > 0, it is easy to see that, for any $\varepsilon > 0$ one can find a neighborhood $V \ni x$ such that $-\rho^{-1}\partial\bar{\partial}\rho + \varepsilon(g + \rho^{-2}\partial\rho\bar{\partial}\rho) > 0$ holds on $V \cap \Omega$.

Let us assume that a = 0. Then it follows from $\partial \bar{\partial} \rho(0,0) \ge 0$ that b = 0 and $c \ge 0$. Therefore, in this case, by letting

$$\partial \bar{\partial} \rho = A dz d\bar{z} + B dz d\bar{w} + \bar{B} dw d\bar{z} + C dw d\bar{w} \quad (\bar{A} = A, \bar{C} = C),$$

one sees that $A_z(0,0) = 0$ and $A_w(0,0) = 0$ should hold, since otherwise a contradiction with the assumption $\partial \bar{\partial} \rho \ge O(\rho^2)$ would arise.

Hence, for any $\varepsilon > 0$ one can find a neighborhood $V \ni x$ such that $-\rho^{-1}\partial\bar{\partial}\rho + \varepsilon(g + \rho^{-2}\partial\rho\bar{\partial}\rho) > 0$ holds on $V \cap \Omega$ along the inner normal of $\partial_{\text{hyp}}\Omega$ at x in the coordinate neighborhood. Clearly, the choice of V can be made uniformly in x. Hence, by the compactness of $\partial_{\text{hyp}}\Omega$ we have the desired conclusion.

Combining Lemma 3.1 with the preceding argument, we obtain the following, which is crucial for the L^2 estimate needed for the proof of Theorem 0.1.

Lemma 3.2. If Ω is a UBS domain, one can choose the above ψ in such a way that for any $\varepsilon > 0$ there exists a neighborhood $U \supset \partial \Omega$ such that

$$\mathrm{Id}_E \otimes \partial \bar{\partial} \Big(-\log \psi + \frac{\varepsilon}{\log (-\log \psi)} \Big) + \varepsilon \Theta_h > 0$$

holds on $U \cap \Omega$.

Proof of Theorem 0.1. Let ψ be as in Lemma 3.2. Then there exists an increasing sequence $(m_{\mu}) \in \mathbb{R}^{\mathbb{N}}$ such that

$$\mathrm{Id}_E \otimes \partial \bar{\partial} \Big(-\mu \log \psi + \frac{1}{\log \left(-\log \psi \right)} \Big) + \Theta_h > 0$$

holds on $\{x \in \Omega; \psi(x) \le e^{-m_{\mu}}\}$. We may assume that ψ is C^{∞} on Ω .

Therefore, one can find positive numbers a and C and an increasing sequence of C^{∞} convex increasing functions $\lambda_{\mu} \colon \mathbb{R} \to \mathbb{R}$ ($\mu \in \mathbb{N}$) such that $\lambda_{\mu}(t) = 0$ if $t < m_1, \lambda'_{\mu}(t) = \mu$ if $t > m_{\mu+1}, \lambda_{\mu}(t) = \lambda_{\mu+1}(t)$ if $t < m_{\mu+1}$ and

$$\mathrm{Id}_E \otimes \left(\partial \bar{\partial} \left(\lambda_{\mu}(-\log \psi) + \frac{a}{\log\left(-\log \psi + C\right)}\right)\right) + \Theta_h > 0$$

on Ω .

Hence, for every $\mu \in \mathbb{N}$ one can find positive numbers ε_{μ} and δ_{μ} such that

$$g_{\varepsilon_{\mu},\delta_{\mu}} \coloneqq \varepsilon_{\mu} \partial \bar{\partial} \Big(\lambda_{\mu} (-\log \psi) + \frac{a}{\log (-\log \psi + C)} \Big) + \delta_{\mu} \Theta_{\det \mu}$$

is a complete Kähler metric on Ω satisfying

$$\mathrm{Id}_E \otimes \left(\partial \bar{\partial} \left(\lambda_{\mu}(-\log \psi) + \frac{a}{\log \left(-\log \psi + C\right)}\right)\right) + \Theta_h > \mathrm{Id}_E \otimes g_{\varepsilon_{\mu}, \delta_{\mu}}.$$

Therefore, by Theorem 2.1 we obtain

$$H^{n,s}_{(2)}(\Omega, E, g_{\varepsilon_{\mu},\delta_{\mu}}, h\psi^{\mu}) \ (\cong H^{n,s}_{(2)}(\Omega, E, g_{\varepsilon_{\mu},\delta_{\mu}}, he^{-\lambda_{\mu}(-\log\psi)})) = 0 \quad \text{for } s \ge 1,$$

since $\frac{1}{\log(-\log\psi+C)}$ is bounded.

Now let $\mu \in \mathbb{N}$ and let v be any representative of an element of $H_{(2)}^{n,s}(\Omega, E, \Theta_{\det h,h\delta^{\mu}})$ $(s \geq 1)$. Then it is clear that one can find $\nu \geq \mu$ such that $v \in L_{(2)}^{n,s}(\Omega, E, g_{\varepsilon_{\nu},\delta_{\nu}}, h\psi^{\nu})$, so that by the above vanishing of $H_{(2)}^{n,s}(\Omega, E, g_{\varepsilon_{\nu},\delta_{\nu}}, h\psi^{\nu})$, $\bar{\partial}u = v$ holds for some $u \in L_{(2)}^{n,s-1}(\Omega, E, g_{\varepsilon_{\nu},\delta_{\nu}}, h\psi^{\nu})$. Since

$$L_{(2)}^{r,s}(\Omega, E, g_{\varepsilon_{\nu},\delta_{\nu}}, h\psi^{\nu}) \subset \bigcup_{\kappa=1}^{\infty} L_{(2)}^{r,s}(\Omega, E, \Theta_{\det h}, h\delta^{\kappa}),$$

it follows that v represents zero in $H^{n,s}_{p.g.}(\Omega, E)$.

Similarly one has $H_{p.g.}^{r,s}(\Omega, E) = 0$ if rank E = 1 and r + s > n.

Remark 3.1. If a complex manifold M is mapped onto a Stein space V by a holomorphic map f and (E, h) is a Nakano positive Hermitian holomorphic vector bundle over M, Theorem 0.1 can be generalized to a vanishing theorem on a locally pseudoconvex domain $\Omega \subset M$ such that $\partial\Omega$ consists of real hypersurfaces and divisors in such a way that the restriction of f to them is proper, where the UBS condition is imposed similarly to the case of bounded domains. As a corollary, one has the corresponding vanishing for the direct images of relatively algebraic sheaves. In the case that Ω is a smooth family over V with respect to f equipped with a divisor D for which $f|_D$ is proper, it may be an interesting question to extend the theorems in [L-R-W] and [L-W-Y] to this situation.

766

Acknowledgements

The author thanks to Shigeru Takeuchi, Shin-ichi Matsumura and Tadasi Ashikaga for making useful comments. In particular, Matsumura brought [L-R-W] to the author's attention. Last but not least, many thanks to the referee for the valuable criticism.

References

- [A-N] Y. Akizuki and S. Nakano, Note on Kodaira–Spencer's proof of Lefschetz theorems, Proc. Japan Acad. 30 (1954), 266–272. Zbl 0059.14701 MR 66694
- [A-G] A. Andreotti and H. Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259. Zbl 0106.05501 MR 150342
- [A-V] A. Andreotti and E. Vesentini, Sopra un teorema di Kodaira, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 15 (1961), 283–309. Zbl 0108.16604 MR 141140
- [B-S] H. P. Boas and E. J. Straube, Sobolev estimates for the ∂-Neumann operator on domains in Cⁿ admitting a defining function that is plurisubharmonic on the boundary, Math. Z. 206 (1991), 81–88. Zbl 0696.32008 MR 1086815
- [D-1] P. Deligne, Théorème de Lefschetz et critères de dégénérescence de suites spectrales, Inst. Hautes Études Sci. Publ. Math. (1968), no. 35, 259–278. Zbl 0159.22501 MR 244265
- [D-2] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971), 5–57. Zbl 0219.14007 MR 498551
- [Ho] L. Hörmander, L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta Math. 113 (1965), 89–152. Zbl 0158.11002 MR 179443
- [Kz] H. Kazama, Approximation theorem and application to Nakano's vanishing theorem for weakly 1-complete manifolds, Mem. Fac. Sci. Kyushu Univ. Ser. A 27 (1973), 221–240. Zbl 0276.32019 MR 430334
- [Kb] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan 15, Princeton University Press, Princeton, NJ, 1987. Zbl 0708.53002 MR 909698
- [Kd] K. Kodaira, On a differential-geometric method in the theory of analytic stacks, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 1268–1273. Zbl 0053.11701 MR 666693
- [Kk] T. Koike, Linearization of transition functions of a semi-positive line bundle along a certain submanifold, Ann. Inst. Fourier (Grenoble) 71 (2021), 2237–2271. Zbl 1495.32054 MR 4398260
- [L-R-W] K. Liu, S. Rao and X. Wan, Geometry of logarithmic forms and deformations of complex structures, J. Algebraic Geom. 28 (2019), 773–815. Zbl 1429.32040 MR 3994313
- [L-W-Y] K. Liu, X. Wan and X. Yang, Logarithmic vanishing theorems for effective q-ample divisors, Sci. China Math. 62 (2019), 2331–2334. Zbl 1430.32006 MR 4028277
- [N-1] S. Nakano, On complex analytic vector bundles, J. Math. Soc. Japan 7 (1955), 1–12. Zbl 0068.34403 MR 73263
- [N-2] S. Nakano, Vanishing theorems for weakly 1-complete manifolds, in Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya Book Store, Tokyo, 1973, 169–179. Zbl 0272.14005 MR 367313
- [N-3] S. Nakano, Vanishing theorems for weakly 1-complete manifolds. II, Publ. Res. Inst. Math. Sci. 10 (1974/75), 101–110. Zbl 0298.32019 MR 382735

T. Ohsawa

- [N-R] S. Nakano and T.-S. Rhai, Vector bundle version of Ohsawa's finiteness theorems, Math. Japon. 24 (1979/80), 657–664. Zbl 0434.32025 MR 565553
- [Nr] Y. Norimatsu, Kodaira vanishing theorem and Chern classes for ∂-manifolds, Proc. Japan Acad. Ser. A Math. Sci. 54 (1978), 107–108. Zbl 0433.32013 MR 494655
- [Oh-1] T. Ohsawa, Finiteness theorems on weakly 1-complete manifolds, Publ. Res. Inst. Math. Sci. 15 (1979), 853–870. Zbl 0434.32014 MR 566085
- [Oh-2] T. Ohsawa, A remark on Hörmander's isomorphism, in Complex analysis and geometry, Springer Proceedings in Mathematics & Statistics 144, Springer, Tokyo, 2015, 273–280. Zbl 1329.32004 MR 3446763
- [Oh-3] T. Ohsawa, Variants of Hörmander's theorem on q-convex manifolds by a technique of infinitely many weights, Abh. Math. Semin. Univ. Hambg. 91 (2021), 81–99. Zbl 1482.32010 MR 4308854
- [Oh-4] T. Ohsawa, $L^2 \bar{\partial}$ -cohomology with weights and bundle convexity of certain locally pseudoconvex domains, to appear in Kyoto J. Math.
- [Oh-5] T. Ohsawa, On weakly pseudoconvex domains of regular type an approximation theorem, Preprint.
- [Ok] K. Oka, Sur les fonctions analytiques de plusieurs variables. IX. Domaines finis sans point critique intérieur, Jpn. J. Math. 23 (1953), 97–155. Zbl 0053.24302 MR 71089
- [Ss] N. Sasakura, Cohomology with polynomial growth and completion theory, Publ. Res. Inst. Math. Sci. 17 (1981), 371–552. Zbl 0561.32005 MR 642649
- [Ud] T. Ueda, On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ. 22 (1982/83), 583–607. Zbl 0519.32019 MR 685520