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Quantum Dilogarithm Identities Arising from the
Product Formula for the Universal R-Matrix of

Quantum Affine Algebras

by
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Abstract

In Dimofte, Gukov, and Soibelman (Lett. Math. Phys. 95 (2011), 1–25), four quantum
dilogarithm identities containing infinitely many factors are proposed as wall-crossing
formulas for the refined BPS invariant. We give an algebraic proof of these identities
using the formula for the universal R-matrix of the quantum affine algebra developed by
Ito (Hiroshima Math. J. 40 (2010), 133–183), which yields various product presentations
of the universal R-matrix by choosing various convex orders on an affine root system. By
the uniqueness of the universal R-matrix and appropriate degeneration, we can construct
various quantum dilogarithm identities, including the ones proposed in Dimofte, Gukov,
and Soibelman (Lett. Math. Phys. 95 (2011), 1–25), which turn out to correspond to
convex orders of multiple row type.
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§1. Introduction

Dimofte, Gukov, and Soibelman proposed four remarkable identities with respect

to quantum dilogarithm functions as the wall-crossing formulas for the refined BPS

invariants, which they proposed in the study of type II string theory [2]. In [2],

it is observed that the refined BPS invariants have very similar wall-crossing be-

havior to that of motivic Donaldson–Thomas invariants introduced by Kontsevich

and Soibelman [10], and it is conjectured that the two invariants coincide under

appropriate identification of variables.
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Let q, x1, x2 be indeterminate, satisfying the relations qx1 = x1q, qx2 = x2q,

x1x2 = q2x2x1, and let

(1.1) E(x) :=
∞∏
k=0

1

1 + q2k+1x
, Um,n := E(q−mnxm1 x

n
2 ).

Then the identities they found are written as follows [3] (note that the parameter

q in this paper corresponds to q1/2 in [3]):

U2,−1U0,1 = U0,1U2,1U4,1 × · · ·
× E(−qx21)−1E(−q−1x21)−1

× · · · ×U6,−1U4,−1U2,−1,(1.2)

U1,−1U1,0U0,1 = U0,1U1,1U2,1U3,1 × · · ·
×U2

1,0E(−qx21)−1E(−q−1x21)−1

× · · · ×U3,−1U2,−1U1,−1,(1.3)

U2
1,−1U

2
0,1 = U2

0,1U
2
1,1U

2
2,1U

2
3,1 × · · ·

×U4
1,0E(−qx21)−1E(−q−1x21)−1

× · · · ×U2
3,−1U

2
2,−1U

2
1,−1,(1.4)

U1,−2U
4
0,1 = U4

0,1U1,2U
4
1,1U3,2U

4
2,1 × · · ·

×U6
1,0E(−qx21)−1E(−q−1x21)−1

× · · · ×U4
2,−1U3,−2U

4
1,−1U1,−2.(1.5)

The function E(x) is called the quantum dilogarithm since

(1.6) E(x) = exp(Li2,q2(−qx)), Li2,q(x) :=

∞∑
n=1

xn

n(1− qn)

and (1− q)Li2,q(x) degenerates to the classical dilogarithm as q → 1.

These identities, however, are derived by physical insight, and mathematically

rigorous proofs for them have not been given. In this paper we develop an algebraic

construction of these identities, which eventually yields mathematical proofs of

them as equalities of skew formal power series.

Kashaev and Nakanishi [9] established a systematic construction of quantum

dilogarithm identities from periods of quantum cluster algebras. Their identities,

however, involve only finitely many factors, while the four identities (1.2), (1.3),

(1.4), (1.5) contain infinite products. Thus, these identities belong to an essentially

new class of quantum dilogarithm identities.

On the other hand, K. Ito constructed the product formulas for the (quasi-)

universal R-matrix of quantum affine algebras, which correspond to convex orders
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on an affine root system [6]. In the formulas, the factors corresponding to real roots

are q-exponential functions, which are in fact written as expq(x) = E((q− q−1)x).
The resemblance between the wall-crossing formulas and product formulas for the

universal R-matrix implies the existence of a connection between wall-crossing

formulas and quantum groups.

By this observation we develop a systematic construction of quantum diloga-

rithm identities containing an infinite product, using the product formula for the

universal R-matrix. As a result, we show that all four identities that Dimofte et

al. found can be derived algebraically by our method. In Section 2 we review the

general construction of convex orders on affine root systems, the concrete con-

struction of PBW-type bases for the positive part U+
q of quantum affine algebra

Uq(g) using convex order, and the explicit product formula for the quasi-universal

R-matrix of Uq(g).

In Section 4 we show how to construct quantum dilogarithm identities using

the quasi-universal R-matrix Θ of Uq(g). By virtue of the uniqueness of Θ, we can

equate all the product presentations of Θ associated with convex orders. Thus,

we have infinite product identities whose parts corresponding to real roots are q-

exponential functions of root vectors. Next we construct a continuous projection

of the completed quantum double algebra U+
q ⊗̂U−q , which contains Θ, onto skew

formal power series algebra DQ associated with an affine Dynkin quiver Q. By

this projection, some root vectors vanish and thus their q-exponentials become 1

in the image. If one chooses an appropriate convex order and Dynkin quiver Q,

one can make infinitely many root vectors not vanish for the convex order, while

only finitely many root vectors do not vanish in the image for the reversed convex

order. Eventually one can obtain various quantum dilogarithm identities of the

form “finite product = infinite product”.

To obtain concrete identities, we have to compute the root vectors explicitly

to determine whether they vanish by the projection. In Section 3 we show that

every root vector can be written as a “q-commutator monomial”, which is a fi-

nite application of a q-bracket on the Chevalley generators. We also developed

a combinatorial algorithm for the computation of root vectors, which enables us

to obtain concrete presentations of root vectors as q-commutator monomials. The

computation is done as manipulations of binary trees.

We found appropriate convex orders and Dynkin quivers which produce iden-

tical identities to (1.2)–(1.5), which will be explicitly presented in Section 5. It

is remarkable that the factor of Θ corresponding to imaginary roots becomes a

q-exponential function by the projection, despite the factor itself not being a q-

exponential function. We also note that the convex orders corresponding to (1.3),

(1.4), and (1.5) are of multiple row type, which was newly found by Ito [4].
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§2. Product formula for the universal R-matrix

of quantum affine algebras

First we summarize Ito’s works [4, 6], which provide explicit product presentations

of the (quasi-) universal R-matrix of quantum affine algebras.

§2.1. Quantum algebra Uq(g)

To begin with, we recall the quantum enveloping algebra Uq(g) corresponding to

a symmetrizable Kac–Moody algebra g of rank ℓ+ 1, where q is an indeterminate

(thus we work on the generic case). We use the following notation, as in [8]:

ei, fi ∈ g : Chevalley generators,

h ⊂ g : Cartan subalgebra,

α̌i ∈ h : simple coroots,

αi ∈ h∗ : simple roots,

si ∈ End(h∗) : simple reflections (i = 0, 1, . . . , ℓ),

∆ ⊂ h∗ : set of all roots,

W := ⟨s0, s1, . . . , sℓ⟩ : Weyl group,

∆+ ⊂ ∆: set of all positive roots,

∆− ⊂ ∆: set of all negative roots,

∆re ⊂ ∆: set of all real roots,

∆im := ∆ \∆re : set of all imaginary roots.

We also use the symbol R± := R ∩∆± for every R ⊂ ∆.

Definition 2.1. The quantum enveloping algebra Uq(g) is the associative Q(q)-

algebra defined by following generators and relations:

generators : Ei, Fi,Kλ (i = 0, 1, . . . , ℓ; λ ∈ P ),(2.1)

relations : KλKµ = Kλ+µ, K0 = 1,(2.2)

KλEiK
−1
λ = q(λ,αi)Ei, KλFiK

−1
λ = q−(λ,αi)Fi,(2.3)

[Ei, Fj ] = δij
Ki −K−1i

qi − q−1i

(i = 0, 1, . . . , ℓ; λ, µ ∈ P ),(2.4)

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

E
1−aij−k
i EjE

k
i = 0,(2.5)

1−aij∑
k=0

(−1)k
[
1− aij
k

]
qi

F
1−aij−k
i FjF

k
i = 0 (i ̸= j),(2.6)
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where (·, ·) is the invariant bilinear form on h∗,

P :=
{
λ ∈ h∗ | ⟨α̌i, λ⟩ ∈ Z (∀ i = 0, 1, . . . , ℓ)

}
is the weight lattice, and let

aij :=
2(αi, αj)

(αi, αi)
∈ Z, qi := q

1
2 (αi,αi),

[n]q :=
qn − q−n

q − q−1
, [n]q! := [1]q[2]q . . . [nq],

[
n

k

]
q

:=
[n]q!

[k]q![n− k]q!
∈ Z[q, q−1].

It is well known that Uq(g) becomes a Hopf algebra with the following coal-

gebra structure (Uq(g),∆, ε) and antipode S:

∆(Ei) := Ei ⊗ 1 +Ki ⊗ Ei, ∆(Fi) := Fi ⊗K−1i + 1⊗ Fi,

∆(Kλ) := Kλ ⊗Kλ, ε(Ei) := 0, ε(Fi) := 0, ε(Kλ) := 1,

S(Ei) := −K−1i Ei, S(Fi) := −FiKi, S(Kλ) := K−1λ .

The terms ∆: Uq(g)→ Uq(g)⊗Uq(g) and ε : Uq(g)→ Q(q) are uniquely extended

as algebra homomorphisms, and S : Uq(g) → Uq(g) is also extended as an anti-

automorphism.

Several subalgebras of Uq(g) generated by standard generators are defined as

usual:

U+
q := ⟨E0, E1, . . . , Eℓ⟩, U0

q := ⟨Kλ | λ ∈ P ⟩, U−q := ⟨F0, F1, . . . , Fℓ⟩.

Then we have a triangular decomposition of Uq(g) [11, Cor. 3.2.5].

(2.7) U−q ⊗ U0
q ⊗ U+

q
∼= Uq(g), x⊗ y ⊗ z 7→ xyz.

Let Uµ := {x ∈ Uq(g) | KλxK
−1
λ = q(λ,µ)x (∀λ ∈ P )} be the weight space of

weight µ ∈ P . For convenience, let Vµ := V ∩ Uµ for every subspace V ⊂ Uq(g).

Then we also have the weight space decomposition

(2.8) Uq(g) =
⊕
µ∈Q

Uµ

(
Q :=

⊕ℓ
i=0 Zαi ⊂ P : root lattice

)
,

and Uq(g) becomes a Q-graded algebra. Using this gradation, we introduce a q-

bracket [·, ·]q, which is defined on each weight space as

(2.9) [x, y]q := xy − q(µ,ν)yx (µ, ν ∈ Q; x ∈ Uµ, y ∈ Uν).

§2.2. Convex orders on affine root systems

Next we introduce the definition and classification of convex orders on the set of

positive roots [4]. We also prepare some notation on affine root systems.
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Definition 2.2 ([6, Def. 3.3]). A total order ≤ on a set of positive roots B ⊂ ∆+

is called convex if it satisfies the following two conditions:

(1) For any pair of positive real roots β, γ ∈ B∩∆re
+ satisfying β < γ and β+γ ∈ B,

the order relation β < β + γ < γ holds.

(2) If β ∈ B, γ ∈ ∆+ \B, and β + γ ∈ B, then β < β + γ.

Example 2.3. Set g = ŝl2. Then the following order on ∆+ is convex:

δ − α1 < 2δ − α1 < 3δ − α1 < · · ·
< δ < 2δ < 3δ

< · · · < 2δ + α1 < δ + α1 < α1.(2.10)

Here, δ := α0 + α1 is null root.

When g is of untwisted affine type, convex orders on ∆+ have been classified

by Ito [4]. To describe convex orders in general, we have to introduce numerous

symbols on affine root systems. In the rest of this section, we restrict g to be an

untwisted affine Lie algebra of type X
(1)
ℓ , where X is one of A, B, C, D, E, F ,

G and ℓ is a positive integer. We assign indices 0, 1, . . . , ℓ for each vertex of the

Dynkin diagram corresponding to g as in [7], so that the full subdiagram without

the vertex 0 is of finite Xℓ type.

First, let I̊ := {1, 2, . . . , ℓ} be the set of indices other than 0, and g̊ ⊂ g be the

Lie subalgebra generated by {ei, fi, α̌i | i ∈ I̊}. Then g̊ is isomorphic to the simple

Lie algebra of type Xℓ due to our assignment of indices, and h̊ :=
⊕

i∈I̊ Cα̌i ⊂ h

is a Cartan subalgebra of g̊. Let ∆̊ ⊂ h̊∗ be the set of all roots of g̊, and W̊ = ⟨si |
i ∈ I̊⟩ ⊂W be the finite Weyl group.

Associated to each J ⊂ I̊, we introduce several symbols below [4]:

Π̊J :=
{
αj | j ∈ J

}
⊂ h∗, W̊J := ⟨sj | j ∈ J⟩ ⊂ W̊ ,

W̊ J :=
{
w ∈ W̊ | w(αj) ∈ ∆̊+ (∀ j ∈ J)

}
,

∆̊J := W̊J(Π̊J), ∆̊J := ∆̊ \ ∆̊J , ∆̊J
± := ∆̊J ∩ ∆̊±,

∆J(w,±) :=
{
mδ + ε | m ∈ Z≥0, ε ∈ w∆̊J

±
}
∩∆+ (w ∈ W̊ ),

∆J(w,±) :=
{
mδ + ε | m ∈ Z≥0, ε ∈ w∆̊J±

}
∩∆+ (w ∈ W̊ ),

where δ ∈ ∆im
+ is the null root. For every symbol XJ (resp. XJ), we omit the

subscript (resp. superscript) J and write X := XJ (resp. X := XJ) when J = I̊

(resp. J = ∅). Notice that X∅ = XI̊ = X for every symbol introduced above.

Since every proper full subdiagram of the affine Dynkin diagram is a finite

direct sum of diagrams of finite type [8], so is the root subsystem ∆̊J . Thus we
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have the partition J =
∐

c∈C Jc, where C is the set of connected components of

the Dynkin diagram of ∆̊J and Jc ⊂ J is the set of vertices belonging to the

connected component c ∈ C. Each component ∆̊Jc
is an irreducible root system

of finite type, so that there exists a unique highest root θJc ∈ ∆̊Jc+.

Moreover, several symbols are defined for each connected component Jc:

ΠJc
:= Π̊Jc

⨿ {δ − θJc
}, ΠJ :=

∐
c∈C

ΠJc
,

SJ :=
{
sα | α ∈ ΠJ

}
, WJ := ⟨SJ⟩ ⊂W,

∆re
J :=WJ(ΠJ), ∆J := ∆re

J ⨿∆im.

Furthermore, we associate each y ∈ WJ with a set of positive roots ΦJ(y) :=

y∆J− ∩∆J+. Also we set

∇(J, u, y) := ∆J(u,−)⨿ uΦJ(y)

for each u ∈ W̊ J . These infinite sets of positive real roots ∇(J, u, y) have the

biconvex property and play a crucial role in the classification of convex orders [4].

We also need to introduce a decomposition of elements of the Weyl group

defined by the next lemma.

Lemma 2.4. For every w ∈ W , there exists a unique decomposition w = wJwJ ,

where wJ ∈W J , wJ ∈ W̊J .

By definition of WJ , each w ∈ WJ can be written as a finite product of

elements in SJ . An expression w = t1t2 . . . tm (ti ∈ SJ) is called reduced if the

numberm is smallest among all the expressions of w as a finite product of elements

in SJ , and the smallest number m is called the length of w. Let ℓJ(w) denote the

length of w. An infinite sequence of elements u1, u2, . . . in SJ is called an infinite

reduced word when ℓJ(u1u2 . . . um) = m for all positive integers m. The set of

all infinite reduced words is denoted by W ∞
J , and the kth factor of s ∈ W ∞

J is

denoted by s(k) ∈ SJ . We also use a function on positive integers ϕs : Z≥1 → ∆J ,

defined by ϕs(k) := s(1)s(2) . . . s(k − 1)(βk), where βk ∈ ΠJ is the positive root

corresponding to s(k) = sβk
∈ SJ . Note that

ΦJ

(
s(1)s(2) . . . s(k)

)
=

{
ϕs(1), ϕs(2), . . . , ϕs(k)

}
(k ∈ Z≥1).

We associate each s ∈ W ∞
J with a infinite set of positive roots

ΦJ(s) :=
{
ϕs(k) | k ∈ Z≥1

}
.
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Now we can state the general description of convex orders. To begin with, we

pick an element w ∈ W̊ . Then we have the decomposition

(2.11) ∆+ = ∆(w,−)⨿∆im
+ ⨿∆(w,+).

Note that ∆(w,+) = ∆(ww◦,−) with the longest element w◦ ∈ W̊ , since w◦
reverses the sign of every root in ∆̊. Thus, the set of positive real roots consists

of two sets of the form ∆(w,−). We will construct convex orders on ∆(w,−) and
connect them to construct the whole order.

Convex orders on ∆(w,−) are constructed by the following procedure:

(1) Select a positive integer n and a filtration of indices I̊ = J0 ⫌ J1 ⫌ J2 ⫌ · · · ⫌
Jn = ∅.

(2) Select elements y1 ∈ WJ1
, y2 ∈ WJ2

, . . . , yn ∈ WJn
and infinite reduced words

s0 ∈ W ∞
J0
, s1 ∈ W ∞

J1
, . . . , sn−1 ∈ W ∞

Jn−1
satisfying the conditions

∅ = ∇(J0, wJ0 , 1W ) ⫋ ∇(J1, wJ1 , y1)

⫋ · · · ⫋ ∇(Jn, wJn , yn) = ∆(w,−),(2.12)

∇(Ji, wJi , yi) = ∇(Ji−1, wJi−1 , yi−1)

×⨿wJi−1yi−1ΦJi−1(si−1) (i = 1, 2, . . . , n).(2.13)

(3) Then every root α ∈ ∆(w,−) can be uniquely written as

(2.14) α = wJk−1yk−1ϕsk−1
(p) (1 ≤ k ≤ n, p ∈ Z≥1).

Using this expression we define a total order ≤ on ∆(w,−) by

wJk−1yk−1(ϕsk−1
(p)) ≤ wJl−1yl−1(ϕsl−1

(q))

def⇔ (k < l) or (k = l, p ≤ q) (k, l, p, q ∈ Z≥1; k, l ≤ n).(2.15)

Then ≤ is well ordered and its ordinal number is nω, so that this well-ordered

≤ is called n-low type.

Using this procedure, we construct two convex orders ≤−, ≤+ on ∆(w,−),
∆(w,+) = ∆(ww◦,−) respectively. The parameters used in the procedure can be

chosen independently between ≤− and ≤+. We also set a total order ≤0 on ∆im
+

arbitrarily. Then we define a total order ≤ on the whole ∆+ as follows:

α ∈ ∆(w,−), β ∈ ∆im
+ , γ ∈ ∆(w,+)⇒ α < β < γ;

α ≤ α′ def⇔ α ≤− α′ (α, α′ ∈ ∆(w,−)); β ≤ β′ def⇔ β ≤0 β
′ (β, β′ ∈ ∆im

+ );

γ ≤ γ′ def⇔ γ′ ≤+ γ (γ, γ′ ∈ ∆(w,+)).

Notice that ≤+ needs to be reversed, and therefore the whole ≤ is not well ordered.
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Theorem 2.5 ([4, Thm. 7.9, Cor. 7.10]). The total order ≤ on ∆+ constructed

above is convex, and any convex order on ∆+ can be constructed by the above

procedure.

§2.3. Convex bases of U+
q constructed by convex orders

When g is of finite type, it is known that U+
q has canonical bases, which can be

described concretely by using the braid group action on Uq(g) and correspond to

each reduced expression of the longest element w◦ of the Weyl group W [11]. In

the affine-type case, however, a couple of difficulties arise in constructing a basis

of U+
q due to the absence of a longest element ofW and the existence of imaginary

roots. These problems are solved by constructing certain elements corresponding

to imaginary roots, using the extended braid group action on Uq(g), which is

proposed by Beck [1]. Then Ito generalized this construction to general convex

orders [6]. In this subsection we summarize the construction of PBW-type bases

of U+
q from convex orders. We first introduce the notion of a convex basis, which

is a PBW-type basis with a convexity property.

Definition 2.6. Let U be a Q(q)-algebra, Λ ⊂ U be a subset, and ≤ be a total

order on Λ. For every subset Σ ⊂ Λ, the set of increasing monomials consisting of

the elements in Σ is denoted by

E<(Σ) :=
{
Eλ1Eλ2 . . . Eλm | Eλk

∈ Σ, Eλ1 ≤ Eλ2 ≤ · · · ≤ Eλm

}
⊂ U.

We call a subset I ⊂ Λ an interval if I = Λ, or I coincides with one of (x, ∗), [x, ∗),
(∗, y), (∗, y], (x, y), [x, y), (x, y], or [x, y] for some x, y ∈ Λ, where (x, ∗) := {λ ∈
Λ | x < λ}, [x, y) := {λ ∈ Λ | x ≤ λ < y}, and so on.

The term E<(Λ) is called a convex basis of U if it has following properties:

(1) E<(Λ) is a basis of U as Q(q)-linear space.

(2) For every interval I ⊂ Λ with respect to a given order ≤, let UI denote the

Q(q)-subalgebra of U generated by I. Then E<(I) is a basis of UI as a Q(q)-

linear space.

It is known that one can construct convex bases for a quantum algebra Uq(g)

by using the braid group action on Uq(g), which is given explicitly by the following

fundamental result.
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Theorem 2.7 ([11, Chaps 37, 39]). There exists a unique Q(q)-algebra automor-

phism Ti ∈ AutUq(g) (i = 0, 1, . . . , ℓ) satisfying

Ti(Ei) = −FiKi, Ti(Fi) = −K−1i Ei, Ti(Kλ) = Ksi(λ) (λ ∈ P ),(2.16)

Ti(Ej) =
1

[−aij ]qi !

−aij∑
k=0

(−1)kq−ki

[
−aij
k

]
qi

E
−aij−k
i EjE

k
i ,(2.17)

Ti(Fj) =
1

[−aij ]qi !

−aij∑
k=0

(−1)kqki
[
−aij
k

]
qi

F k
i FjF

−aij−k
i (j ̸= i).(2.18)

Moreover, the automorphisms Ti satisfy the braid relation

(2.19)

m(i,j)︷ ︸︸ ︷
TiTjTi . . . =

m(i,j)︷ ︸︸ ︷
TjTiTj . . . (i ̸= j, m(i, j) ̸=∞),

where m(i, j) ∈ Z≥1 ∪ {∞} is the order of sisj in the Weyl group.

Recall that the braid group B associated with the Weyl group W is defined

by generators Ti and relation (2.19). It is well known that B has the following

property with respect to reduced expressions in W .

Proposition 2.8. Let w = si1si2 . . . siq = sj1sj2 . . . sjq be two reduced expressions

of w ∈W . Then Ti1Ti2 . . . Tiq = Tj1Tj2 . . . Tjq ∈ B. Therefore a map

(2.20)
f : W → B;
f(w) := Ti1Ti2 . . . Tiq−1

(Eiq ) ∈ B (w = si1si2 . . . siq : reduced)

is well defined and a section of canonical surjection π : B →W ; Ti 7→ si.

Thus we can define the action of w ∈ W on Uq(g) by Tw := Tf(w), where Tb
denotes the action of b ∈ B on Uq(g).

When g is of finite type, set Xq := Ti1Ti2 . . . Tiq−1(Eiq ) (q = 1, 2, . . . , N),

where w◦ = si1si2 . . . siN is a reduced expression of the longest element. Then it

is known that increasing monomials Xk1
1 Xk2

2 . . . XkN

N constitute a convex basis of

U+
q . The term Xq has weight βq := si1si2 . . . siq−1

(αiq ) and is called a root vector

associated to the root βq. Root vectors depend on the reduced expression of w◦.

The reduced expression of w◦ = si1si2 . . . siN induces a convex order β1 <

β2 < · · · < βN . This is because if αik + siksik+1
. . . sil−1

(αil) = sik . . . sim−1
(αim)

and suppose that l < m, then applying sim−1sim−2 . . . sik to both sides yields αim ∈
∆−, which is absurd. Thus the given order has the convexity property. Conversely,

let w ∈W and β1 < β2 < · · · < βk be a convex order on Φ(w) := w∆−∩∆+. Then

β1 must be a simple root αi1 . To see this, we suppose that β1 is not simple. Then β1
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can be written as the sum of two positive roots, and at least one of them belongs

to Φ(w) due to the biconvexity of Φ(w). This contradicts the minimality of β1, and

now we conclude β1 = αi1 . Since the action of W preserves the addition of roots,

si1(β2) < si1(β3) < · · · < si1(βN ) is a convex order on Φ(si1w). By induction on

the length of w, we can construct a reduced expression of w from a given convex

order. Therefore, each convex order on ∆+ generates a reduced expression of w◦.

These correspondences between convex orders and reduced expressions of w◦ are

clearly inverses of each other; the correspondences are one-to-one.

Using the correspondences above, we want to construct bases for U+
q from

convex orders on ∆+. To extend the construction for the affine case, we have to deal

with several problems, such as the definition of root vectors when a given convex

order has multiple lows, the existence of imaginary roots, which are unreachable

from simple roots by only using the braid group action. These problems have

already been solved by Beck [1] and Ito [6].

Before introducing their construction, we need to extend the affine Weyl group

properly. We now return to consider the case when g is an untwisted affine Lie

algebra of type X
(1)
ℓ . The linear map tλ ∈ End h∗, called the translation by λ ∈ h̊∗,

is defined by

(2.21) tλ(µ) := µ+ (µ, δ)λ−
{1

2
(λ, λ)(µ, δ) + (µ, λ)

}
δ (µ ∈ h∗),

where δ ∈ ∆im
+ is the null root. Let T := {tν(α̌) | α̌ ∈

ˇ̊
Q} be the group of transla-

tions, where ν : h → h∗ is the canonical isometry and
ˇ̊
Q ⊂ h is the coroot lattice.

Then it is well known that W = W̊ ⋉ T [8]. Note that in general T does not

contain the translation tεi by fundamental coweight εi ∈ h̊∗, which is character-

ized by (εi, αj) = δij for i, j = 1, . . . , ℓ. We extend the affine Weyl group W by

appending the translations tεi . Let Ŵ denote the subgroup of GL(h′∗) generated

by W and tεi |h′∗ (i ∈ I̊), where h′∗ :=
⊕ℓ

i=0 Cαi ⊂ h∗. In fact, the extended Weyl

group Ŵ coincides with a semidirect product of W and a subgroup of the Dynkin

automorphism group.

Proposition 2.9 ([7], [6, Prop. 2.1]). Let I̊∗ := {j ∈ I̊ | (εj , θI̊) = 1} and ρI̊j :=

tεjw◦jw◦ for each j ∈ I̊∗, where w◦, w◦j are the longest elements of W̊ , W̊I̊\{j} re-

spectively. Then there exists an automorphism ρ of the Dynkin diagram of type X
(1)
ℓ

such that ρI̊j(αi) = αρ(i) for all i = 0, 1, . . . , ℓ. The correspondence j 7→ ρ is one-

to-one. Moreover, Ω := {ρI̊j | j ∈ I̊∗} ⨿ {idh′∗} forms a subgroup of GL(h′∗), and

(2.22) Ŵ = Ω⋉W,

where ρI̊j ∈ Ω acts on W by ρI̊j .si := sρ(i).
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We define the length of w ∈ Ŵ by

(2.23) ℓ(w) := ℓ(u) = ℓI̊(u),

where we use the decomposition w = ρu (ρ ∈ Ω, u ∈ W ) given by (2.22). Recall

that W = WI̊ . We can also consider reduced expressions of w ∈ Ŵ . Namely, we

call an expression w = t1t2 . . . tm ∈ Ŵ , ti ∈ S ⨿ Ω reduced if the sequence of

integers ℓ(t1), ℓ(t1t2), . . . , ℓ(w) is increasing. Thus every element of Ω has length

0, and reduced expressions of w ∈ Ŵ may have a different number of factors, but

the number of factors which belong to S must coincide with the length of w.

The Dynkin automorphism ρ acts on the subalgebra U ′q(g) := ⟨Ei, Fi,K
±1
αi
⟩ ⊂

Uq(g) as an algebra automorphism by permuting indices: Ei 7→ Eρ(i), Fi 7→ Fρ(i),

Kαi
7→ Kαρ(i)

. Thus we have an action of the extended braid group B̂ := Ω⋉ B on

U ′q(g) by extending the braid group action of Theorem 2.7. Proposition 2.8 also

holds for Ŵ and B̂, and therefore every w ∈ Ŵ has an action Tw on U ′q(g).

We will define the root vectors associated to real roots by lifting the expres-

sion (2.14) to the quantum algebra Uq(g), in which process simple reflection si is

replaced by Ti and simple root αi is replaced by Ei. In this lifting process, we

also have to specify appropriate alternatives for δ − θJc
∈ ΠJc

and sδ−θJc
∈ SJc

,

where Jc ⊂ I̊ is a connected subdiagram. The simple root vector Eδ−θJc
is in fact

uniquely determined due to the following lemma.

Lemma 2.10 ([6, Lem. 5.1]). Let ε ∈ ∆̊+ and suppose that s := si1si2 . . . sim is

a reduced expression in W satisfying δ − ε = si1si2 . . . sim−1(αim) and Φ(s) ⊂
∆(1,−). Such an s exists and

(2.24) Eδ−ε := Ti1Ti2 . . . Tim−1
(Eim) ∈ U+

q

is independent of the choice of s.

The appropriate alternative for sδ−θJc
is given in a somewhat technical man-

ner.

Definition 2.11 ([6, Def. 3.4]). First we fix an index jc ∈ Jc satisfying (εjc , θJc)=

1 for every nonempty connected subdiagram Jc ⊂ I̊. Then we define a map ·̂ : SJ →
Ŵ by

(2.25) ŝj := sj (j ∈ J), ŝδ−θJc
:= (tεjc )

Jcsjc(tεjc )
Jc ,

where jc ∈ I̊ is the unique index which satisfies w◦(αjc
) = −αjc . We also define

the extended map ·̂ : WJ → Ŵ simply by ŵ := t̂1t̂2 . . . t̂m when w = t1t2 . . . tm is

a reduced expression in WJ .
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Now we can describe the construction of root vectors for the affine case.

Definition 2.12 ([6, Thm. 8.4]). Suppose that ≤ is a convex order on ∆+. Let

α = wJk−1yk−1ϕsk−1
(p) be expression (2.14) of a positive real root α determined

by ≤. Then the root vector E≤,α ∈ Uα associated to α is defined by

(2.26) E≤,α :=



TwJk−1Tŷk−1
T ̂sk−1(1)

T ̂sk−1(2)

. . . T ̂sk−1(p−1)
(Esk−1(p)) (α ∈ ∆(w,−)),

ΨTwJk−1Tŷk−1
T ̂sk−1(1)

T ̂sk−1(2)

. . . T ̂sk−1(p−1)
(Esk−1(p)) (α ∈ ∆(w,+)),

where Esi := Ei, and Ψ: Uq(g) → Uq(g) is the anti-automorphism of the Q(q)-

algebra defined by Ψ(Ei) := Ei, Ψ(Fi) := Fi, Ψ(Kλ) := K−1λ .

The root vectors for imaginary roots are constructed using the action of the

extended braid group, which contains a coweight lattice [1]. Since each imaginary

root has multiplicity ℓ in the affine Lie algebra g of type X
(1)
ℓ , we will construct

as many root vectors as the multiplicity. The construction is rather technical and

we proceed step by step.

First we introduce weight vectors Enδ−αi (i ∈ I̊), which are independent of

the convex order:

(2.27) Enδ−αi
:= Tn

εiT
−1
i (Ei) (n ∈ Z≥1, i ∈ I̊),

where Tεi := Ttεi ∈ AutU ′q(g) was defined via the extended braid group action

and lifting a reduced expression of tεi ∈ Ŵ to B̂ by (2.20). Then we set

(2.28) φi,n := [Enδ−αi
, Ei]q = Enδ−αi

Ei − q−2i EiEnδ−αi
(n ∈ Z≥1, i ∈ I̊).

Despite these φi,n having weight nδ ∈ ∆im
+ , the φi,n are not yet suitable for

imaginary root vectors. The genuine imaginary root vectors are constructed by

modifying φi,n through the following technical procedure. For every i ∈ I̊, let

(2.29) φi(z) := (qi − q−1i )

∞∑
n=1

φi,nz
n ∈ U+

q JzK

be the generating function of φi,n. The term U+
q JzK has a topological algebra

structure by declaring that z is central and U+
q JzK has z-adic topology. Then

imaginary root vectors Ii,n ∈ U+
q are defined as the coefficients of the function

(2.30) Ii(z) := log(1 + φi(z)) = (qi − q−1i )

∞∑
n=1

Ii,nz
n,
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where the logarithm is defined by

log(1 + x) :=

∞∑
m=1

(−1)m−1

m
xm.

It is shown that these root vectors constitute convex bases for the positive

part of the quantum affine algebra U+
q .

Theorem 2.13 ([6, Thm. 8.6]). Let ≤ be a convex order on positive roots ∆+ of

an untwisted affine root system, and let w ∈ W̊ be the parameter determined by

decomposition (2.11) of ∆+ in accordance with the given convex order ≤. Let

(2.31) Λ :=
{
E≤,α | α ∈ ∆re

+

}
⨿
{
Tw(Ii,m) | m ∈ Z≥1; i = 1, 2, . . . , ℓ

}
denote the set of root vectors constructed above, and we set the order on Λ by using

given order ≤ and

Tw(Ii,m) ≤ Tw(Ij,m′) ⇔ (m ≤ m′) or (m = m′, i ≤ j).

Then increasing monomials E<(Λ) constitute a convex basis of U+
q .

Once a convex basis of U+
q is constructed, we also obtain the one for U−q

through Chevalley involution Ω: U+
q → U−q ; Ei 7→ Fi, q 7→ q−1, which is an

anti-automorphism of a Q-algebra.

§2.4. Product formula for the quasi-universal R-matrix

The convex bases for a quantum affine algebra enable explicit construction of the

quasi-universal R-matrix. By applying Drinfeld’s quantum double construction,

Ito obtained the product formula for the quasi-universal R-matrix [6]. Since the

quasi-universal R-matrix does not lie in the algebraic tensor product Uq(g)⊗Uq(g),

we have to give an appropriate topology on Uq(g)⊗ Uq(g) and complete it.

First we set the gradation of Uq(g)⊗ Uq(g) by

(Uq ⊗ Uq)h :=
⊕

µ,ν∈Q+

ht(µ+ν)=h

(U−q U
0
q ⊗ U−q U0

q ) · U+
µ ⊗ U+

ν

⊂ Uq(g)⊗ Uq(g) (h ∈ Z≥0),(2.32)

that is, we only count the weight of positive part with respect to the triangular

decomposition (2.7). Then we set a topology which is generated by subsets of the

form

(2.33) x+

∞⊕
h=k

(Uq ⊗ Uq)h (x ∈ Uq(g), k ∈ Z≥0).
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In short, we give Uq(g)⊗ Uq(g) linear topology. Let

(2.34) Ûq ⊗̂ Ûq := proj lim
k≥0

(
Uq(g)⊗ Uq(g)

/ ∞⊕
h=k

(Uq ⊗ Uq)h

)
be the completion of Uq(g)⊗Uq(g), and U

+
q ⊗̂U−q ⊂ Ûq ⊗̂ Ûq denote the closure of

U+
q ⊗U−q . The algebra structure of Uq(g)⊗Uq(g) extends uniquely onto Ûq ⊗̂ Ûq.

Definition 2.14 ([11, Thm. 4.1.2]). Let Υ ∈ AutUq(g) be the Q-algebra auto-

morphism determined by

Υ(Ei) := Ei, Υ(Fi) := Fi, Υ(Kλ) := K−1λ , Υ(q) := q−1,

and set ∆̄ := (Υ⊗Υ) ◦∆ ◦Υ. The quasi-universal R-matrix of Uq(g) is the unique

element Θ ∈ Ûq ⊗̂ Ûq satisfying

(1) Θ · ∆̄op(u) = ∆op(u) ·Θ (∀u ∈ Uq(g)),

(2) Θ0 = 1⊗ 1,

where Θ0 ∈ (Uq ⊗ Uq)0 is the image of Θ by the canonical projection

Ûq ⊗̂ Ûq ↠ Uq(g)⊗ Uq(g)

/ ∞⊕
h=1

(Uq ⊗ Uq)h ∼= (Uq ⊗ Uq)0,

and fop(u) :=
∑
yi ⊗ xi if f(u) =

∑
xi ⊗ yi.

The uniqueness of Θ will be the core of the proofs of the identities. Finally,

we introduce the product formula for the quasi-universal R-matrix.

Theorem 2.15 ([5, 6]). Let ≤ be a convex order on ∆+ of an affine root system,

and E≤,α, Ii,n denote the root vectors constructed above. For every i, j ∈ I̊ and

positive integer n, let

(2.35) bi,j;n := sgn(aij)
n [aijn]qi
n(q−1j − qj)

, sgn(x) :=


1 x > 0,

0 x = 0,

−1 x < 0.

Let (ci,j;n)
ℓ
i,j=1 ∈ Mat(Q(q), ℓ) denote the inverse matrix of (bi,j;n)

ℓ
i,j=1.

We also set

F≤,α := Ω(E≤,α) ∈ U−α (α ∈ ∆re
+), Ji,n := Ω(Ii,n) ∈ U−nδ,

expq(x) :=

∞∑
n=0

q−
1
2n(n−1)

[n]q!
xn, qα := q

1
2 (α,α) (α ∈ ∆),
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Sn :=
∑
i,j∈I̊

cj,i;nIi,n ⊗ Jj,n ∈ U+
q ⊗ U−q ,(2.36)

Θ≤,α :=

{
expqα

{
(q−1α − qα)E≤,α ⊗ F≤,α

}
, α ∈ ∆re

+ ,

exp
{
Tw ⊗ Tw(Sn)

}
, α = nδ (n = 1, 2, . . .).

Then the quasi-universal R-matrix Θ has the product presentation

(2.37) Θ =

>∏
α∈∆+

Θ≤,α ∈ U+
q ⊗̂ U−q ,

where
∏>

α∈∆+
Xα means that if α < β, the order of multiplication is XβXα. In

short, the order of multiplication is the reverse of the given convex order.

§3. Explicit presentation of root vectors using the q-bracket

We will construct quantum dilogarithm identities by using various presentations

(2.37) of the quasi-universal R-matrix Θ, taking advantage of the uniqueness of Θ.

However, to obtain specific identities, we have to calculate root vectors explicitly,

which is described by the braid group action (Theorem 2.7). In this section we

show that in the general quantum algebra Uq(g) of the symmetrizable Kac–Moody

algebra g, the element Tw(Ei) ∈ U+
q (w ∈W ) can be written as a “q-commutator

monomial”, that is, a finite application of the q-bracket on the generators Ei. We

also construct a concrete algorithm for getting an explicit presentation of Tw(Ei)

as a q-commutator monomial, which enables us to perform direct computation.

Let g be a symmetrizable Kac–Moody algebra of rank n.

Definition 3.1. For every subset A,B ⊂ Uq(g), let

[A,B]q :=
{
[x, y]q | x ∈ A, y ∈ B

}
⊂ Uq(g).

We define subsets Pk ⊂ Uq(g) inductively by

P0 := {E1, E2, . . . , En}, Pk+1 :=

k⋃
i,j=0

[Pi, Pj ]q (k ∈ Z≥0).

We call elements of the form cM ∈ Uq(g) for some c ∈ Q(q), M ∈
⋃∞

k=0 Pk a

q-commutator monomial.

Our claim is that Tw(Ei) ∈ U+
q is q-commutator monomial for all i = 1, . . . , n

and w ∈W . To prove it, several formulas have to be prepared. First we recall

(3.1) Ti(Ej) =
1

[−aij ]qi !

−aij︷ ︸︸ ︷
[Ei, [Ei, . . . , [Ei, Ej ]q]q . . . ]q (i ̸= j),
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by definition of the braid group action, and

(3.2) Ti([x, y]q) = [Ti(x), Ti(y)]q (x, y ∈ Uq(g), i = 1, 2, . . . , n),

since the Weyl group action preserves the invariant bilinear form. The basic process

of calculation for Tw(Ej) (w ∈ W , 1 ≤ j ≤ n) is as follows: choose a reduced

expression w = si1si2 . . . sim , and expand every Tik of Tw = Ti1 . . . Tim from the

tail using (3.1) and (3.2). However, there is a problem in that Tk(Ek) = −FkKk

may appear in the process of expansion. To resolve it, we use the following formula.

Lemma 3.2. For every 1 ≤ i ̸= j ≤ n and positive integer m,

(3.3)
[(−→
adEi

)m
(Ej), Ti(Ei)

]
q
= [m]qi [1− aij −m]qi

(−→
adEi

)m−1
(Ej),

where
−→
adx(y) := [x, y]q.

Proof. By the defining relation of Uq(g),

EiKi = q−2i KiEi, EjKi = q
−aij

i KiEj ,

EiFi = FiEi +
Ki −K−1i

qi − q−1i

, EjFi = FiEj .

Thus, the commutation relations of F := Ti(Ei) = −FiKi and Ei, Ej are

EiF = q−2i FEi −
K2

i − 1

qi − q−1i

, EjF = q
−aij

i FEj .

Since the weight of F = −FiKi is −αi, we have

(3.4) [Ej , F ]q = EjF − q
−aij

i FEj = q
−aij

i FEj − q
−aij

i FEj = 0.

Now we begin the proof by induction on m. Suppose that (3.3) holds for some

positive integer m. Let

Cm := [m]qi [1− aij −m]qi , Xm :=
(−→
adEi

)m
(Ej).

Since the weight of Xm is mαi + αj , we have XmKi = q
−2m−aij

i KiXm. Then by

the induction hypothesis,

XmF = q
−2m−aij

i FXm + CmXm−1.

Using these commutation relations, we obtain the equation for the case m+ 1:

[Xm+1, F ]q = [[Ei, Xm]q, F ]q

= [EiXm − q
2m+aij

i XmEi, F ]q
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= EiXmF − q
−2(m+1)−aij

i FEiXm

− q2m+aij

i

{
XmEiF − q

−2(m+1)−aij

i FXmEi

}
= Ei

{
q
−2m−aij

i FXm + CmXm−1
}
− q−2(m+1)−aij

i FEiXm

− q2m+aij

i

{
Xm

(
q−2i FEi −

K2
i − 1

qi − q−1i

)
− q−2(m+1)−aij

i FXmEi

}
= q
−2m−aij

i

(
q−2i FEi −

K2
i − 1

qi − q−1i

)
Xm + CmEiXm−1

− q2(m+1)+aij

i FEiXm − q
2m+aij

i q−2i (q
−2m−aij

i FXm + CmXm−1)Ei

+ q
2m+aij

i Xm
K2

i − 1

qi − q−1i

+ q−2i FXmEi

= −q−2m−aij

i

K2
i − 1

qi − q−1i

Xm + CmEiXm−1

− q2(m−1)+aij

i CmXm−1Ei + q
2m+aij

i

q
2(−2m−aij)
i K2

i − 1

qi − q−1i

Xm

=
q
−2m−aij

i − q2m+aij

i

qi − q−1i

Xm + Cm[Ei, Xm−1]q

= ([−aij − 2m]qi + Cm)Xm.

Thus we obtain the recursion formula

Cm+1 = Cm + [−aij − 2m]qi (m ≥ 1).

It is easy to verify that Cm := [m]qi [1−aij−m]qi satisfies this recurrence relation.

Therefore, (3.3) holds for m+ 1.

For the case m = 1, the above calculation works if one uses (3.4) in place of

the induction hypothesis and lets C0 := 0.

Proposition 3.3. Suppose that the root subsystem spanned by αi, αj (i ̸= j) is

of finite type and w = sisjsisj . . . is a reduced expression. Then Tw(Ek) (k = i if

ℓ(w) is even, k = j otherwise) is a q-commutator monomial consisting of Ei and

Ej.

Proof. Since the length of the reduced expression of the form sisjsisj . . . is at

most 5 when we have the finite-type case, our task is just to compute Tw(Ek)

directly for all cases. Using formula (3.3), the computation is easily accomplished.

For example, when aij = aji = −1 we have

TiTj(Ei)
(3.1)
= Ti([Ej , Ei]q)

(3.2)
= [Ti(Ej), Ti(Ei)]q

(3.1)
= [[Ei, Ej ]q, Ti(Ej)]q

Lemma 3.2
= [1]qi [1− (−1)− 1]qiEj = Ej .
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Thus we have a reduction formula

(3.5) TiTj(Ei) = Ej if (aij , aji) = (−1,−1).

For the infinite-type case, we use the following formulas, which can be verified

by direct computation using (3.3):

Lemma 3.4. For indices i, j (i ̸= j) and nonnegative integers p, k, let

si,j;p :=

p︷ ︸︸ ︷
. . . sjsisjsisj ,(3.6)

V
(k)
i,j;p := Tsi,j;p

((←−
adEj

)k
(Ei)

)
(3.7)

=

p︷ ︸︸ ︷
. . . TiTjTiTj([[. . . [Ei,

k︷ ︸︸ ︷
Ej ]q, Ej ]q, . . . , Ej ]q).(3.8)

These V
(k)
i,j;p satisfy the following recurrence relations:

V
(1)
i,j;p+1 =

1

[−aji − 1]qj !

(−→
adEsi,j;p+1

)−aji−2
(V

(1)
j,i;p) (aji ≤ −2),(3.9)

V
(1)
i,j;p+2 =

1

[−aji − 1]qj !

(−→
adV

(1)
i,j;p

)−aji−3
(V

(2)
i,j;p) (aij = −1, aji ≤ −3),(3.10)

V
(2)
i,j;p+2 =

[2]qj
[−aji − 2]qj !

(−→
adV

(1)
i,j;p

)−aji−4
(V

(2)
i,j;p) (aij = −1, aji ≤ −4).(3.11)

Theorem 3.5. For every w ∈ W and index j satisfying w(αj) ∈ ∆+, Tw(Ej) ∈
Uq(g) is a q-commutator monomial.

Proof. The proof is by induction on ℓ(w). The case ℓ(w) = 1 is immediate by (3.1).

Suppose that there exists an integer m ≥ 2 such that Tw(Ej) is a q-commutator

monomial if w(αj) ∈ ∆+ and ℓ(w) < m. Let w ∈ W satisfy w(αj) ∈ ∆+

and ℓ(w) = m. Take a reduced expression of w and let si be its suffix. Then

i ̸= j due to the assumption. Let w{i,j} ∈ W be the shortest element satisfying

w = w{i,j} . . . sjsisjsi. Then w
{i,j}(αi), w

{i,j}(αj) ∈ ∆+ due to the minimality of

w{i,j}. By the induction hypothesis, Tw{i,j}(Ei) and Tw{i,j}(Ej) are q-commutator

monomials. Thus, using (3.2), the proof completes if . . . TjTi(Ej) turns out to be

a q-commutator monomial consisting of only Ei and Ej .

Let Fij (i ̸= j) denote the set of q-commutator monomials consisting of

only Ei and Ej . We are going to prove that if si,j;p (p ∈ Z≥1) is a reduced

expression, then Esi,j;p := . . . TjTi(Ej) ∈ Fij by induction on p. The cases when

p = 1, 2 are immediate by (3.1). When αi and αj span a finite root system, si,j;p is

reduced only for finitely many p ∈ Z≥1. Thus, when (aij , aji) = (−1,−1), (−1,−2),
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(−1,−3), (−2,−1), (−3,−1), we can verify Esi,j;p ∈ Fij by direct computation

since there exist only finitely many cases. The computation is easily accomplished

using formula (3.3). For example, when (aij , aji) = (−1,−1) and p = 3, we have

Esi,j;3 := TjTi(Ej)
(3.1)
= Tj([Ei, Ej ]q)

(3.2)
= [Tj(Ei), Tj(Ej)]q

(3.1)
= [[Ej , Ei]q, Tj(Ej)]q

Lemma 3.2
= [1]qj [1− (−1)− 1]qjEi = Ei.

When αi and αj span an infinite root system, then aijaji ≥ 4. Now we suppose

that p ≥ 2 and Esi,j;r ∈ Fij for all r ≤ p. First, Esi,j;p+1
can be written as

(3.12) Esi,j;p+1
=

1

[−aij ]qi !
(−→
adEsj,i;p

)−aij−1
(V

(1)
i,j;p−1).

Since Esj,i;p ∈ Fij , which is the induction hypothesis, we are reduced to verifying

V
(1)
i,j;p−1 ∈ Fij . When aij ≤ −2, aji ≤ −2, the fact V

(1)
i,j;1 ∈ Fij derived from

(3.3) and inductive use of formula (3.9) show V
(1)
i,j;p−1 ∈ Fij . When aij = −1,

aji ≤ −4, we can directly verify V
(1)
i,j;0, V

(1)
i,j;1, V

(2)
i,j;0, V

(2)
i,j;1 ∈ Fij using (3.3), and

the recurrence formulas (3.10), (3.11) show V
(1)
i,j;p−1, V

(2)
i,j;p−1 ∈ Fij for all p ≥ 1.

When aij ≤ −4, aji = −1, we need to continue the calculation of (3.12)

slightly. Using formula (3.3), we have

Tj([Ei, [Ei, Ej ]q]q) = [[Ej , Ei]q, Ei]q.

Thus Esi,j;p+1
can be written as

Esi,j;p+1
=

1

[−aij ]qi !
(−→
adEsj,i;p

)−aij−2
(V

(2)
j,i;p−2).

Since V
(2)
j,i;p−2 ∈ Fij due to the discussion of the case aij = −1, aji ≤ −4, we

conclude Esi,j;p+1
∈ Fij .

By the proof of Theorem 3.5, we can easily construct an algorithm for describ-

ing Tw(Ej) as a concrete q-commutator monomial once formulas for elements of

the form . . . TiTjTi(Ej) are prepared. In particular, for the simply laced case, we

have a simple graphical algorithm for the calculation of Tw(Ej), which we describe

below.

First we introduce graphical notation for the q-bracket, which is convenient

for writing down q-commutator monomials:

(3.13)
X Y

:= [X,Y ]q (X,Y ∈ Uq(g)).
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We also abbreviate Ei to i in the schematic notation. For example, the q-Serre

relation (2.5) can be written as the following binary tree:

i i i i · · · i i j

1− aij

=
(−→
adEi

)1−aij
(Ej) = 0 (i ̸= j).

Using this notation, we can describe every q-commutator monomial as a binary

tree, each node of which represents a q-bracket and each leaf of which denotes a

Chevalley generator Ei. Now we can describe the algorithm for the simply laced

case.

Proposition 3.6. Let g be a simply laced Kac–Moody algebra, w ∈W , and j be an

index satisfying w(αj) ∈ ∆+. Let w = si1si2 . . . sim be a reduced expression. Then

the binary tree constructed by the following procedure represents a q-commutator

monomial equal to Tw(Ej):

(1) In this procedure, we manipulate a binary tree, each leaf of which holds a pair of

a reduced expression sj1sj2 . . . sjk and an index p such that sj1sj2 . . . sjk(αp) ∈
∆+.

(2) At the beginning we have a binary tree consisting of only the root, whose re-

duced expression is si1si2 . . . sim and whose index is j. The procedure termi-

nates immediately when m = 0.

(3) For each leaf of the binary tree, the following manipulations are applied recur-

sively. Let sj1sj2 . . . sjk and p be the reduced expression and the index of the

leaf we are working on respectively:

(a) We are done for the leaf if k = 0.

(b) If k ≥ 1, then jk ̸= p. If ajkp = 0, then delete the factor sjk in the reduced

expression since Tjk(Ep) = Ep. Repeat this deletion until ajkp = −1.
(c) If sj1sj2 . . . sjk−1

(αp) ∈ ∆−, then there exists a number l such that

sj1sj2 . . . sjk−1
= sj1sj2 . . . sjl−1

sjl+1
. . . sjk−1

sp,

due to the exchange condition [8]. By ajkp = apjk = −1 and (3.5), we

have

Tj1Tj2 . . . Tjk−1
Tjk(Ep) = Tj1Tj2 . . . Tjl−1

Tjl+1
. . . Tjk−1

TpTjk(Ep)

= Tj1Tj2 . . . Tjl−1
Tjl+1

. . . Tjk−1
(Ejk).
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According to this calculation, replace the reduced expression with sj1sj2 . . .

sjl−1
sjl+1

. . . sjk−1
and replace the index with jk. Repeat this replacement

until sj1sj2 . . . sjk−1
(αp) ∈ ∆+.

(d) Finally, when sj1sj2 . . . sjk−1
(αp) ∈ ∆+, then ajkp = apjk = −1 by the

manipulations so far. Thus Tjk(Ep) = [Ejk , Ep]q by (3.1), and sj1sj2 . . .

sjk−1
sjk , sj1sj2 . . . sjk−1

sp are reduced. Therefore, create a new branch

at the current leaf and generate two leaves as in Figure 1, where s′ :=

sj1sj2 . . . sjk−1
and s[p] denotes the reduced expression s and index p. The

two new leaves have indexes jk, p respectively, and both reduced expres-

sions are s′.

s′sjk [p]

· · · ⇝

s′[jk] s′[p]

· · ·

Figure 1. Branching rule

(4) Repeat the above procedure until all reduced expressions in the leaves have

length 0. This algorithm terminates within a finite number of steps because

each manipulation shortens the length of the reduced expression of the target

leaf.

§4. Construction of quantum dilogarithm identities

In this section we show how to construct quantum dilogarithm identities using the

product formula (2.37) of the quasi-universal R-matrix Θ.

First we introduce certain projections of the algebra U+
q ⊗̂ U−q onto skew

formal power series algebras determined by Dynkin quivers. Through the projec-

tions, most of the elements of the form Θ≤,α ∈ U+
q ⊗̂ U−q (α ∈ ∆re

+) become the

unit of image, while several factors survive and retain their form as q-exponential

functions, which can also be seen as quantum dilogarithm functions. Moreover,

under appropriate setting of parameters, the product of factors in Θ associated

with imaginary roots can be written using quantum dilogarithm functions in the

image of the projection. Thus the image of Θ will be written as a certain product

of quantum dilogarithm functions. Choosing various convex orders, one can obtain

various product presentations of the image of Θ, which have finitely or infinitely

many factors depending on the selected order. Eventually, we can construct quan-

tum dilogarithm identities of the form “finite product = infinite product”, which

will exactly coincide with the identities proposed in [3] after a suitable change of

variables.
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§4.1. Projections of U+
q ⊗̂ U−

q onto skew formal power series algebras

Let g be symmetrizable Kac–Moody algebra of rank n and A = (aij)
n
i,j=1 be its

Cartan matrix. Let d1, d2, . . . , dn be coprime positive integers such that cij :=

diaij = djaji (1 ≤ i, j ≤ n). Then C := (cij)
n
i,j=1 is a symmetrized matrix of A.

We normalize the invariant bilinear form (·, ·) so that (αi, αj) = cij for 1 ≤ i, j ≤ n.
Choose σij ∈ {±1} for each pair of indices i < j such that aij ̸= 0, and set

(4.1) bij :=


σijcij , i < j,

0, i = j,

−σijcij, i > j.

Then the matrix B = (bij)
n
i,j=1 is a skew-symmetric matrix, and this data can be

interpreted as the Dynkin quiver which has an arrow from i to j if σij = +1. Let

{·, ·}B : Q×Q→ Z be the skew-symmetric form satisfying {αi, αj}B = bij for all

indices i, j.

Let PB be a Q(q)-algebra defined by the generators and relations below:

generators : e1, e2, . . . , en,

relations : eiej = qbijejei (i, j = 1, 2, . . . , n).

The term PB has a natural Q-graded algebra structure if each ei is supposed to

have weight αi, hence the q-bracket makes sense on PB . Each weight space of PB

is a one-dimensional subspace spanned by a monomial of the form ek1
1 e

k2
2 . . . ekn

n .

The degree of each monomial

(4.2) deg ek1
1 e

k2
2 . . . ekn

n := k1 + k2 + · · ·+ kn

coincides with the height of its weight. Let PB,m be the subspace of PB spanned

by monomials of degree m. Also note that

(4.3) [ei, ej ]q = eiej − q(αi,αj)ejei = (qbij − qcij )ejei = 0 if σij = +1.

Due to the following well-known fact, PB turns out to be a quotient of U+
q ⊂

Uq(g).

Proposition 4.1 ([11, Thm. 33.1.3]). The positive part of the quantum envelop-

ing algebra U+
q is isomorphic to the Q(q)-algebra whose generators are E1, E2, . . . ,

En and whose relation is given by the quantum Serre relation (2.5).

Proposition 4.2. There exists a unique Q-graded algebra surjection

(4.4) πB : U+
q → PB

such that πB(Ei) = ei for all i = 1, . . . , n.
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Let P+
B := PB and P−B be copies of PB but with generators ei replaced by

fi. Recall that U
−
q is isomorphic to U+

q as an algebra [11, Cor. 3.2.6]. Let π+
B :=

πB : U+
q → P+

B , π−B : U−q → P−B (π−B(Fi) := fi) be Q-graded algebra surjections

given by Proposition 4.2. Then we have an algebra surjection

(4.5) π+
B ⊗ π

−
B : U+

q ⊗ U−q ↠ P+
B ⊗ P

−
B .

We want to construct a completion of this surjection to define the image of

Θ ∈ U+
q ⊗̂ U−q . To define the completion, we give a topology on DB := P+

B ⊗ P
−
B

so that the surjection π+
B ⊗ π

−
B becomes continuous.

For every nonnegative integer m, set

(4.6) Dm :=

∞⊕
k=m

P+
B,m ⊗ P

−
B ⊂ DB ,

and define the completion of DB by

(4.7) D̂B := proj lim
m≥0

DB/Dm.

Recalling definition (2.34) of Ûq ⊗̂ Ûq, the composition of the surjection π+
B ⊗

π−B : U+
q ⊗ U−q ↠ DB and inclusion ι : DB ↪→ D̂B is continuous with respect to

the relative topology on U+
q ⊗ U−q ⊂ Ûq ⊗̂ Ûq. Hence, this map induces a unique

continuous map

(4.8) π+
B ⊗̂ π

−
B : U+

q ⊗̂ U−q → D̂B

due to the completeness of D̂B .

§4.2. Skew formal power series algebras

Let yi := (qi−q−1i )ei⊗(q−1i −qi)fi ∈ D̂B , SB ⊂ D̂B be a Q(q)-subalgebra generated

by y1, y2, . . . , yn, and ŜB ⊂ D̂B be its closure. Since the increasing monomials

em1
1 em2

2 . . . emn
n ⊗ fm

′
1

1 f
m′

2
2 . . . f

m′
n

n ∈ D̂B

form a topological basis of D̂B , the increasing monomials ym1
1 ym2

2 . . . ymn
n form a

topological basis of ŜB . Therefore, ŜB is isomorphic to the formal power series

algebra Q(q)Jy1, y2, . . . , ynK as a Q(q)-linear space. This isomorphism endows the

Q(q)-linear space Q(q)Jy1, y2, . . . , ynK with a complete topological Q(q)-algebra

structure, whose multiplication is uniquely determined by the commutation rela-

tions yiyj = q2bijyjyi.

In the same way, the skew Laurent polynomial algebra LB can be defined.

Namely, LB is a Laurent polynomial algebra Q(q)[y±11 , y±22 , . . . , y±1n ] as a Q(q)-

linear space, and multiplication in LB is uniquely defined by the commutation
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relations yiyj = q2bijyjyi. The term SB can be naturally considered as a subalgebra

of LB .

Let L be the lower triangular part of B. Since B is skew symmetric, B = L−tL.

We define a normal ordered product in LB by

(4.9) :ym: := q
tmLmym (m =

t
(m1,m2, . . . ,mn) ∈ Zn),

where ym := ym1
1 ym2

2 . . . ymn
n .

Let B′ = (b′kl)
n′

k,l=1 ∈ Mn′(Z) be another skew-symmetric matrix. We will

consider an algebra homomorphism ψR : LB → LB′ ∼= Q(q)[y′±11 , y′±12 , . . . , y′±1n′ ]

which is determined by an n′ × n-matrix R ∈Mn′,n(Z) and

(4.10) ψR(yi) := :y′Rvi :,

where vi ∈ Zn is the ith unit vector. The term ψR is well defined if and only if

it preserves the commutation relation yiyj = q2bijyjyi for all i, j = 1, 2, . . . , n; in

other words,

:y′Rvi : :y′Rvj : = q2
tviBvj :y′Rvj : :y′Rvi : (i, j = 1, 2, . . . , n).

On the other hand,

y′Rviy′Rvj = q2
t(Rvi)B

′Rvjy′Rvjy′Rvi ∈ LB′ .

Thus ψR is well defined if and only if tvi
tRB′Rvj =

tviBvj for all i, j. This shows

the following proposition:

Proposition 4.3. Let B ∈ Mn(Z), B′ ∈ Mn′(Z) be skew-symmetric matrices,

and R be an integer-valued n′ × n-matrix. There exists a unique algebra homo-

morphism ψR : LB → LB′ satisfying ψR(yi) = :y′Rvi : (i = 1, 2, . . . , n) if and only

if

(4.11) tRB′R = B.

Moreover, ψR preserves the normal ordered product.

Proposition 4.4. Suppose that R satisfies (4.11). Then

(4.12) ψR(:y
m:) = :y′Rm: (m ∈ Zn).

Proof. We prove the proposition by induction on degm := |m1|+ |m2|+ · · ·+ |mn|.
The case degm = 1 is trivial since tviLvi = 0 for any unit vector vi. Suppose

that (4.12) holds if degm < N for some integer N ≥ 2. Let m be of degree N .
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Choose m1,m2 ∈ Zn so that m = m1 + m2 and degmk < N (k = 1, 2). Since

ym1ym2 = q2
tm1Lm2ym1+m2 , we have

:ym1+m2 : = q
t(m1+m2)L(m1+m2)ym1+m2

= q
tm2Lm1−tm1Lm2 :ym1 : :ym2 :

= q
tm2Bm1 :ym1 : :ym2 :.

Then, by the induction hypothesis,

ψR(:y
m1+m2 :) = q

tm2Bm1ψR(:y
m1 : :ym2 :)

= q
tm2Bm1 :y′Rm1 : :y′Rm2 :

= q
tm2Bm1−t(Rm2)B

′Rm1 :y′m1+m2 :

= :y′m1+m2 : (∵ (4.11)).

Thus (4.12) holds for arbitrary m of degree N .

When all the components of matrix R satisfying (4.11) are nonnegative, we

have the restricted homomorphism ψR : SB → SB′ .

Proposition 4.5. Suppose that R ∈Mn′,n(Z≥0) satisfies (4.11). The algebra ho-

momorphism ψR : SB → SB′ is continuous with respect to the relative topology in

ŜB and ŜB′ if and only if each column of R contains a nonzero component.

Proof. By the definition of ψR, it is continuous if and only if

for anyN ∈ Z≥0, there exists someM ∈ Z≥0 such thatm =
t
(m1, . . . ,mn)

∈ Zn
≥0 of total degree degm ≥M ⇒ degRm ≥ N .

Since degRm =
∑n

i=1 rimi, where ri is the sum of components in ith column of

R, this condition holds if and only if all the ri are positive.

Thus, whenR satisfies these conditions, ψR uniquely extends to the continuous

algebra homomorphism ψ̂R : ŜB → ŜB′ .

§4.3. Several formulas related to the quantum dilogarithm

To compute the image of the quasi-universal R-matrix Θ, we briefly prepare for a

couple of formulas related to the quantum dilogarithm function Li2,q(x). Let

log(1− x) := −
∞∑

n=1

xn

n
,(4.13)

Li2,q(x) :=

∞∑
n=1

xn

n(1− qn)
,(4.14)
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E(x) := exp(Li2,q2(−qx)),(4.15)

(x; q)∞ :=

∞∏
n=0

(1− qnx).(4.16)

In this paper we consider these functions just as formal power series. The function

(x; q)∞ is characterized by the recurrence relation

(4.17) (1− x)(qx; q)∞ = (x; q)∞.

Since −Li2,q(qx) + log(1− x) = −Li2,q(x), exp(−Li2,q(x)) satisfies the recur-

rence relation. Therefore,

expLi2,q(x) = (x; q)−1∞ ,(4.18)

E(x) = (−qx; q2)−1∞ ,(4.19)

which coincides with the product presentation of E(x) in the introduction. By this

presentation, E(x) is characterized by the recurrence relation

(4.20) (1 + qx)E(x) = E(q2x).

Recall that the q-exponential function was defined by

(4.21) expq(x) :=

∞∑
n=0

q−
1
2n(n−1)

[n]q!
xn.

Then it can be directly verified that expq(x) satisfies

(4.22) (1 + q(q − q−1)x) expq(x) = expq(q
2x)

and we conclude that

(4.23) expq(x) = E((q − q−1)x).

In the same way, we can also prove another presentation of (x; q)∞ [12], which

we will use in the computation of imaginary root vectors:

(4.24) exp

( ∞∑
m=1

− 1

m(1− qm)
xm

)
= (x; q)∞.

§4.4. Computation of the image of the quasi-universal R-matrix Θ

Now we suppose that g is an untwisted affine Lie algebra. We will compute π+
B ⊗̂

π−B(Θ) ∈ D̂B for various product presentations of Θ (2.37) and equate them to

obtain concrete identities.

First we remark that q-commutator monomials degenerate to ordinary mono-

mials. Let Xα, Xβ ∈ P+
B have weights α, β ∈ Q respectively. Then by definition
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of P+
B , Xα is a linear combination of monomials ei1ei2 . . . eim , where αi1 + αi2 +

· · ·+ αim = α. Hence XαXβ = q{α,β}BXβXα and we have

(4.25) [Xα, Xβ ]q := XαXβ − q(α,β)XβXα = (1− q(β,α)+{β,α}B )XαXβ .

It is convenient to introduce the bilinear form ⟨α, β⟩B := (α, β) − {α, β}B . Then
the values of the bilinear form ⟨·, ·⟩B are even integers, since

⟨αi, αj⟩B = cij − bij =

{
(1± 1)cij , i ̸= j,

2di, i = j.

Formula (4.25) shows that [Xα, Xβ ]q vanishes if and only if ⟨α, β⟩B = 0, otherwise

it is a nonzero multiple of XαXβ . Therefore, we have the following vanishing

criteria for q-commutator monomials.

Proposition 4.6. A q-commutator monomial M ∈ U+
q lies in the kernel of π+

B

if and only if there exists an application of the q-bracket [Eα, Eβ ]q in M for some

Eα, Eβ ∈ U+
q of weight α, β ∈ Q satisfying ⟨α, β⟩B = 0. If there are no such

applications of q-bracket in M , π+
B(M) ∈ P+

B is a nonzero monomial.

Recall that the root vectors for U−q were defined by F≤,α := Ω(E≤,α), where

α ∈ ∆re
+ and Ω: U+

q → U−q ; Ω(Ei) := Fi, Ω(q) := q−1 was the Chevalley involution,

which is anti-automorphism of a Q-algebra. Notice that Ω preserves the q-bracket,

except for multiple of a power of q:

(4.26) Ω([Eα, Eβ ]q) = −q−(α,β)[Fα, Fβ ]q.

Thus, the F≤,α are also q-commutator monomials, and they coincide with E≤,α
except for multiples of ±qk and replacing Ei with Fi.

There exists a unique anti-isomorphism of a Q-algebra ΩB : P+
B → P

−
B which

sends ei to fi and q to q−1. This is useful to compute π−B(F≤,α) because

(4.27) ΩB ◦ π+
B = π−B ◦ Ω.

Since there are htα − 1 occurrences of q-brackets in E≤,α for α ∈ ∆re
+ , its

image takes the form

(4.28) π+
B(E≤,α) = Cqu

( htα−1∏
i=1

(1− qki)

)
em0
0 em1

1 . . . emn
n ,

where C ∈ Q(q) is the coefficient of E≤,α as a q-commutator monomial, α =∑n
i=0miαi and u, ki ∈ Z. In the simply laced case, C = 1 because no nontrivial

scalar multiples occur in the algorithm of Section 3 (Proposition 3.6). We also note
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that each ki is a value of the bilinear form ⟨·, ·⟩B and thus an even integer. Using

ΩB , the image of F≤,α is

π−B(F≤,α) = ΩB ◦ π+
B(E≤,α)

= Ω(C)q−u
( htα−1∏

i=1

(1− q−ki)

)
fmn
n f

mn−1

n−1 . . . fm0
0 .(4.29)

Recall that the subalgebra SB ⊂ DB , which is generated by yi := (qi− q−1i )×
(q−1i − qi)ei ⊗ fi for i = 0, 1, . . . , n. The normal ordered product of the monomial

ym := ym0
0 ym1

1 . . . ymn
n (m =

t
(m0,m1, . . . ,mn) ∈ Zn+1

≥0 ) was defined as :ym: :=

q
tmLmym, where L was the lower triangular part of B.

Using this notation, in the simply laced case we have

π+
B ⊗ π

−
B((q − q

−1)(q−1−)E≤,α ⊗ F≤,α)

=

( htα−1∏
i=1

[ki
2

]2
q

)
:ym0

0 ym1
1 . . . ymn

n :.(4.30)

Recall that expq(x) = E((q− q−1)x) (4.23). Therefore, if ki = ±2 for all i, we

have a simple description of the image of Θ≤,α for a positive real root α.

Proposition 4.7. Let ∆ be a simply laced affine root system, α =
∑n

i=0miαi ∈
∆re

+ , and ≤ be a convex order. We suppose that when a presentation of E≤,α as a q-

commutator monomial is given, ⟨α, β⟩B = ±2 for each application of the q-bracket

[Xα, Xβ ]q, where α, β ∈ ∆+ and Xα ∈ U+
α , Xβ ∈ U+

β . Then

(4.31) π+
B ⊗̂ π

−
B(Θ≤,α) = E(:ym0

0 ym1
1 . . . ymn

n :).

While we have the general simple description of the images of real root vectors,

the computation of the images of imaginary root vectors requires some ingenuity.

Recall that φi,n ∈ U+
nδ were defined as

(4.32) φi,n := [Tn
εiT
−1
i (Ei), Ei]q (n ∈ Z≥1, i ∈ I̊),

and imaginary root vectors Ii,n were polynomials consisting of φi,n. Since

Tn
εiT
−1
i (Ei) can be written as a q-commutator monomial by using the algorithm

in Section 3, the φi,n themselves are q-commutator monomials. But we need to

compute Tw(Ii,n) (w ∈ W̊ ) for a general convex order, and we cannot apply the

algorithm to Tw(φi,n) when w(αi) ∈ ∆− because Tw(Ei) no longer lies in U+
q .

First we compute Ti(φi,n) using the following fact.

Proposition 4.8 ([5]). For every i, j ∈ I̊ and positive integer n,

(4.33) Tεj (φi,n) = φi,n.
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We will also use the property that for u, v ∈ Ŵ , Tuv = TuTv if ℓ(uv) =

ℓ(u) + ℓ(v).

Since tεi(αi) = −δ+αi ∈ ∆−, the length of u := tεisi in Ŵ is ℓ(u) = ℓ(tεi)−1.
Thus Tεi = TuTi and we have

(4.34) Ti(φi,n) = T−1u (φi,n) = [TiT
n−1
εi T−1i (Ei), T

−1
u (Ei)]q.

Now we can compute an arbitrary Tw(φi,n) for w ∈ W̊ . When w(αi) ∈ ∆+,

we have

(4.35) Tw(φi,n) = [TwT
n
εiT
−1
i (Ei), Tw(Ei)]q

and thus simply applying the algorithm to TwT
n−1
εi Tu(Ei) and Tw(Ei) yields an

explicit presentation of Tw(φi,n) as a q-commutator monomial.

When w(αi) ∈ ∆−, let w
′ := wsi. Then Tw = Tw′Ti and using (4.34) we have

(4.36) Tw(φi,n) = Tw′ [TiT
n−1
εi T−1i (Ei), T

−1
u (Ei)]q.

Let λ := ε1 + ε2 + · · · + εℓ ∈ h̊∗, which is a strictly dominant weight. Then

Tλ := Ttλ = Tε1Tε2 . . . Tεℓ and tλ(αi) = −δ + αi ∈ ∆− (i ∈ I̊). Thus tλ inverts

every positive root in ∆̊+, which implies that there is an expression tλ = vw◦,

where v ∈ Ŵ and w◦ ∈ W̊ is the longest element satisfying ℓ(tλ) = ℓ(v) + ℓ(w◦).

Notice that

Tw′T−1u (Ei) = TwT
−1
i T−1u (Ei) = TwT

−1
εi (Ei),

and T−1εi (Ei) = T−1λ (Ei) since Tεj (Ei) = Ei if i ̸= j. We also note that Tw◦ =

Tw◦w−1Tw for every w ∈ W̊ due to the maximality of w◦.

Recall the anti-automorphism of the Q(q)-algebra Ψ: U+
q → U+

q defined by

Ψ(Ei) := Ei. Since Ψ preserves weights, it reverses q-brackets:

(4.37) Ψ([x, y]q) = [Ψ(y),Ψ(x)]q (x, y ∈ U+
q ).

It is also easy to verify that ΨTi = T−1i Ψ for i ∈ I.
Let tλ = τv′w◦ (τ ∈ Ω, v′ ∈W ) and w◦ = w̃w. Then

TwT
−1
λ (Ei) = TwT

−1
w T−1w̃ T−1v′ T

−1
τ (Ei)

= T−1w̃ T−1v′ T
−1
τ Ψ(Ei)

= ΨT(v′w̃)−1(Eτ−1(i)).

Finally, we have

(4.38) Tw(φi,n) = [TwT
n−1
εi T−1i (Ei),ΨT(v′w̃)−1(Eτ−1(i))]q.

We can apply the algorithm to Tw̃v′(Eτ−1(i)). Since Ψ just reverses the directions

of the q-brackets, ΨTw̃v′(Eτ−1(i)) is a q-commutator monomial.
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Proposition 4.9. Tw(φi,n) is a q-commutator monomial for every w ∈ W̊ , i ∈ I̊,
and positive integer n.

§5. Examples of quantum dilogarithm identities

In this final section, we give specific convex orders and Dynkin quivers, which

eventually induce the identities proposed in [3].

Recall that the affine positive root system ∆+ is decomposed as

∆+ = ∆(w,−)⨿∆im
+ ⨿∆(w,+),

and convex orders on ∆+ consist of convex orders on each ∆(w,±) (the order

on ∆im
+ is not significant since any total order can be chosen). The convex order

on ∆(w,−) was determined by the following parameters with several restrictions

(2.12), (2.13):

(1) a positive integer n and a filtration of indices I̊ = J0 ⫌ J1 ⫌ J2 ⫌ · · · ⫌ Jn = ∅;
(2) y1 ∈WJ1

, y2 ∈WJ2
, . . . , yn ∈WJn

;

(3) infinite reduced words s0 ∈ W ∞
J0
, s1 ∈ W ∞

J1
, . . . , sn−1 ∈ W ∞

Jn−1
.

We have to specify the parameters not only for ∆(w,−), but also for ∆(w,+)

= ∆(ww◦,−) to construct the whole convex order on ∆+. In the examples below,

let ·̌ denote the parameters for ∆(w,+). For instance, w̌ = ww◦.

Fortunately, the parameters yi are all 1 in our examples below, so we omit

the value of yi in the examples. Also, the numbers of rows n are the same for both

∆(w,−) and ∆(w,+); in other words, ň := n for all the examples below.

§5.1. Type A
(1)
1

Let g = ŝl2 be an affine algebra of type A
(1)
1 . In this case, there are only two convex

orders on ∆+ except for the order on ∆im
+ , and one of them is just the reverse of

the other one. The corresponding parameters are

w := 1, n := 1;

I̊ = {1} = J0 ⫌ J1 = ∅,
s0 := (s0s1)

∞,

I̊ = {1} = J̌0 ⫌ J̌1 = ∅,
š0 := (s1s0)

∞,

where (s)∞ := sss . . . denotes infinite repetition of s. Then the corresponding

convex order ≤ turns out to coincide with (2.10).
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Next we compute the root vectors from this convex order. Since A
(1)
1 is not

simply laced, we cannot use the algorithm of Section 3. But the following formula

is sufficient to accomplish the computation:

(5.1) T1([E0, E1]q) = [E1, E0]q, T0([E1, E0]q) = [E0, E1]q.

By the definition of root vectors and the chosen order, one can verify

E≤,(2n+1)δ−α1
= (T0T1)

n(E0)

=
1

[2]2nq

((←−
ad[E0, E1]q

)2n
(E0)

)
,(5.2)

E≤,(2n+2)δ−α1
= (T0T1)

nE0(E1)

=
1

[2]2n+1
q

((←−
ad[E0, E1]q

)2n+1
(E0)

)
,(5.3)

E≤,2nδ+α1 = Ψ(T1T0)
n(E1)

=
1

[2]2nq

((−→
ad[E0, E1]q

)2n
(E1)

)
,(5.4)

E≤,(2n+1)δ+α1
= Ψ(T1T0)

nT1(E0)

=
1

[2]2n+1
q

((−→
ad[E0, E1]q

)2n+1
(E1)

)
,(5.5)

for all n = 0, 1, 2, . . ..

Using the reduced expression tε1 = ρs1, where ρ ∈ Ω is the transposition of 0

and 1, one can show that for any positive integer m,

(5.6)
φ1,m = [(TρT1)

m−1(E0), E1]q = [E≤,mδ−α1
, E1]q,

T1(φ1,m) = Tρ−1(φ1,m) = [ΨE≤,(m−1)δ+α1
, E0]q.

We set the projection of Section 4.1 by σ01 := +1. Then the corresponding

skew-symmetric matrix is B =
(
0 −2
2 0

)
, and the matrix presentation of the bilin-

ear form ⟨·, ·⟩B is (⟨αi, αj⟩B)1i,j=0 =
(

2 0
−4 2

)
. Since ⟨α0, α1⟩B = 0, the projection

π+
B : U+

q → P+
B annihilates [E0, E1]q. Thus all the root vectors vanish in P+

B ex-

cept for simple root vectors E≤,αi
= Ei (i = 0, 1). Therefore, the image of the

quasi-universal R-matrix Θ is

(5.7) π+
B ⊗̂ π

−
B(Θ) = E(y1)E(y0) ∈ D̂B .

Beware that the order of the product is the reverse of the given convex order

(2.37).

Now we consider the reversed order ≤′, which is in fact obtained by just swap-

ping ∆(w,−) for ∆(w,+). The corresponding parameters are also just swapping
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every parameter · for ·̌. Thus E≤′,α = ΨE≤,α for every real root α ∈ ∆re
+ . One can

verify that all the real root vectors for ≤′ satisfy the condition of Proposition 4.7

and thus do not vanish.

Since w̌ = s1, T1(I1,m) (m ≥ 1) are used as imaginary root vectors. Using

(5.6) we have

(5.8) π+
B(T1φ1,m) = [m+ 1]q(q − q−1)2m−1(e0e1)m.

Let D := (q − q−1)2e0e1. Then the image of the generating function T1φ1(z) ∈
U+
q JzK is

(5.9) π+
B(T1(1 + φ1(z))) =

∞∑
m=0

[m+ 1]q(Dz)
m =

1

(1− qDz)(1− q−1Dz)
,

where π+
B : U+

q JzK→ P+
B JzK is defined degreewise. Recall that I1(z) = (q − q−1)×∑∞

m=1 I1,mz
m := log(1 + φ1(z)). Since log(1 + x) = −

∑∞
m=1(−1)mxm/m (4.13),

(5.10) π+
B(T1I1(z)) =

∞∑
m=1

qm + q−m

m
Dmzm

and therefore

(5.11) π+
B(I1,m) =

qm + q−m

m(q − q−1)
Dm.

Now we compute the image of S′m := T1 ⊗ T1(Sm) (2.36). By definition, b1,1;m =

[2m]q/(m(q−1 − q)) and c1,1;m = b−11,1;m. Thus

Sm = c1,1;mI1,m ⊗ J1,m =
m(q−1 − q)

[2m]q
I1,m ⊗ ΩI1,m ∈ U+

q ⊗ U−q .

Let D′ := ΩB(D) = (q−1 − q)2f1f0. By virtue of (4.27) and ΩTi = TiΩ (i =

0, 1, . . . , ℓ), we can compute as follows:

π+
B ⊗ π

−
B(S

′
m) =

m(q−1 − q)
[2m]q

qm + q−m

m(q − q−1)
qm + q−m

m(q−1 − q)
Dm ⊗D′m

=
1

m

qm + q−m

qm − q−m
(D ⊗D′)m = −q

m(qm + q−m)

m(1− q2m)
(D ⊗D′)m.

By (4.24), we obtain the image of Θim :=
∏∞

m=1 Θmδ:

π+
B ⊗̂ π

−
B(Θim) = E(−qD ⊗D′)−1E(−q−1D ⊗D′)−1

= E(−q:y0y1:)−1E(−q−1:y0y1:)−1.(5.12)
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Finally, we have

π+
B ⊗̂ π

−
B(Θ) = E(:y0:)E(:y20y1:)E(:y30y21 :)× · · ·

× E(−q:y0y1:)−1E(−q−1:y0y1:)−1

× · · · × E(:y20y31 :)E(:y0y21 :)E(:y1:).

Comparing with (5.7), we eventually obtain the following quantum dilogarithm

identity, which was first found by Terasaki [12].

Theorem 5.1 ([12]). Let y0, y1 be indeterminate. Then the following identity

holds in the skew formal power series algebra Ŝ1 := Q(q)Jy0, y1K with commutation

relation y0y1 = q−4y1y0:

E(:y1:)E(:y0:) = E(:y0:)E(:y20y1:)E(:y30y21 :)× · · ·
× E(−q:y0y1:)−1E(−q−1:y0y1:)−1

× · · · × E(:y20y31 :)E(:y0y21 :)E(:y1:),(5.13)

where :ym0
0 ym1

1 : = q2m0m1ym0
0 ym1

1 .

Let B′ =
(

0 1
−1 0

)
and Ŝ := ŜB′ ∼= Q(q)Jx1, x2K. Then x1x2 = q2x2x1, which

coincides with the commutation relation in the introduction. If we set R := ( 0 2
1 3 ),

R satisfies tRB′R = B. Thus by Propositions 4.3 and 4.5, there exists a unique

continuous algebra homomorphism ψ̂1 : Ŝ1 → Ŝ satisfying

(5.14) ψ̂1(y0) = x2, ψ̂1(y1) = :x21x
3
2: = q−6x21x

3
2.

Let L := LB′ ∼= Q(q)[x±11 , x±12 ]. Since S :=
(

1 0
−2 1

)
satisfies tSB′S = B′, we

have the algebra automorphism ψS ∈ AutL. The term ψS transforms variables

x1, x2 as ψS(x1) = :x1x
−2
2 : = q2x1x

−2
2 , ψS(x2) = x2.

Applying ψ̂1 on (5.13) and transforming the variables x1, x2 by ψS , we obtain

(1.2) in Q(q)Jx1

x2
2
, x2K. Recall that ψ̂1 and ψS preserve the normal ordered product

(Proposition 4.4).

Corollary 5.2. Identity (1.2) holds in Q(q)Jx1

x2
2
, x2K.

Remark. We will call a group homomorphism Z : Q→ C a central charge. When

Z is injective and Z(∆+) lies in the (closure of) the upper half-plane H := {z ∈
C | Im z ≥ 0},

(5.15) α ≤Z β
def⇔ argZ(α) ≤ argZ(β) (α, β ∈ ∆re

+)

defines a convex order on positive real roots, where we choose the principal value

of the argument so that 0 ≤ arg z < 2π.
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Setting Z(α0) := 1, Z(α1) := 1 +
√
−1 yields the convex order (2.10). Notice

that ≤Z yields only the convex order of a single row, because every root is of the

form mδ + α (m ∈ Z, α ∈ ∆̊ ∪ {0}) and thus Z(∆) lies in a finite number of lines

parallel to Z(δ).

§5.2. Type A
(1)
2

Let g = ŝl3 be an affine algebra of type A
(1)
2 . We choose a convex order by setting

w := s1, n := 2;

I̊ = {1, 2} = J0 ⫌ J1 := {1} ⫌ J2 = ∅,
s0 := (s0s1s2)

∞, s1 := (s1sδ−α1
)∞,

I̊ = J̌0 ⫌ J̌1 := {2} ⫌ J̌2 = ∅,
š0 := (s2s1s0)

∞, š1 := (sδ−α2
s2)
∞.

Then the corresponding convex order ≤ is

δ − α1 − α2 < δ − α2 < 2δ − α1 − α2 < 2δ − α2 < · · ·
< α1 < δ + α1 < 2δ + α1 < 3δ + α1 < · · ·
< δ < 2δ < 3δ < 4δ

< · · · < 3δ − α1 < 2δ − α1 < δ − α1

< · · · < δ + α1 + α2 < δ + α2 < α1 + α2 < α2,

where the null root δ = α0 + α1 + α2.

Using the algorithm of Proposition 3.6 and notation (3.13), real root vectors

in the first row of ∆(w,−) are computed as

(5.16) E≤,mδ−α1−α2
= 0 1 0 2 1 0 2 · · · 1 0 2 1 0 2

m− 1

,

(5.17) E≤,mδ−α2
= 0 1 0 2 1 0 2 · · · 1 0 2 1 0 2 1

m− 1

(m ≥ 1).

This can be directly proven by induction on m, noting that

(5.18) T0T1T2([E0, E2]q) = E1, T0T1T2(E1) = [E0, E2]q,

and T0T1T2([E0, E1]q) = E≤,3δ−α1−α2 , which means that applying T0T1T2 on

[E0, E1]q adds three branches from the right.
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The computation of real root vectors in the second row requires more prepa-

ration. First we have to compute Eδ−α1
of (2.24). Since Φ(s0s2) = {α0, α0 +

α2} ⊂ ∆(1,−), we have Eδ−α1
= T0(E2) = [E0, E2]q. Next we need to compute

ŝδ−α1 ∈ Ŵ , which is an appropriate extension of sδ−α1 ∈WJ1 . By definition (2.25),

ŝδ−α1
= tJ1

ε1 s1t
J1
ε1 . To compute this, we require a reduced expression of tε1 ∈ Ŵ .

Let ρ ∈ Ω denote the Dynkin automorphism which acts on the indices as ρ(0) = 1,

ρ(1) = 2, ρ(2) = 0. Then

(5.19) tε1 = ρs2s1, tε2 = ρ2s1s2 ∈ Ŵ ⊂ GL(h′
∗
)

are reduced expressions. Note that the length of w ∈ Ŵ defined by (2.23) coincides

with the number of positive roots α ∈ ∆+ such that w(α) ∈ ∆−. More generally,

we have the following proposition:

Proposition 5.3. Let g = ŝlℓ+1 be an affine algebra of type A
(1)
ℓ . We set the

indices 0, 1, . . . , ℓ so that aii+1 ̸= 0 for i = 0, 1, . . . , ℓ− 1. Let ρ ∈ Ω be the Dynkin

automorphism which acts on indices as ρ(i) = i + 1 (0 ≤ i ≤ ℓ − 1), ρ(ℓ) = 0.

Then

(5.20) tεi = (ρ−1s1s2 . . . si)
ℓ+1−i (i = 1, 2, . . . , ℓ)

are reduced expressions in Ŵ .

Proof. First we have to check the equality. It is enough to compare the action of

both sides on simple roots since Ŵ ⊂ GL(h′∗). Moreover, since every element of

Ŵ fixes the null root δ = α0 + α1 + · · · + αℓ, it is enough to check the action on

αj for j = 1, 2, . . . , ℓ. On the one hand, tεi(αj) = αj − δijδ. On the other hand, let

Ri := ρ−1s1s2 . . . si. When ℓ = 1, R1(α1) = ρ−1(−α1) = −α0 = α1 − δ and hence

(5.20) holds. Next we assume ℓ ≥ 2. Recall that for 1 ≤ i, j ≤ ℓ,

(5.21) si(αj) =


αj , |i− j| > 1,

αi + αj , j = i± 1,

−αi, j = i,

in the root system of type Aℓ. By direct calculation we have

(5.22) Ri(αj) =


αj , 1 ≤ j ≤ i− 1,

−δ + αi + αi+1 + · · ·+ αℓ, j = i,

δ − αi+1 − αi+2 − · · · − αℓ, j = i+ 1,

αj−1, j > i+ 1.

When 1 ≤ j < i, it is clear that Rℓ+1−i
i (αj) = αj .
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When j = i, the case i = ℓ is the above formula. When i < ℓ, notice that

Ri(αi + αi+1) = αi. Using this inductively,

Rℓ+1−i
i (αi) = Rℓ−i

i (−δ + αi + αi+1 + · · ·+ αℓ)

= Rℓ−i−1
i (−δ + αi + αi+1 + · · ·+ αℓ−1)

· · ·
= Ri(−δ + αi + αi+1) = −δ + αi

and thus Rℓ+1−i
i (αi) = −δ + αi.

When j = i+ 1, notice that R2
i (αi+1) = αℓ. Thus

Rℓ+1−i
i (αi+1) = Rℓ−i−1

i (αℓ) = αi+1.

When j > i+ 1, Rℓ+1−i
i (αj) = Rℓ−j+2

i (αi+1) = Rℓ−j
i (αℓ) = αj .

By the above calculation, we conclude that tεi = Rℓ+1−i
i .

To verify that Rℓ+1−i
i is a reduced expression, it is enough to show that the

length of tεi ∈ Ŵ is i(ℓ + 1 − i). The length of tεi coincides with the number of

positive roots which tεi sends to negative roots. Recall that

(5.23) ∆̊ =
{
±(αi + αi+1 + · · ·+ αj) | 1 ≤ i ≤ j ≤ ℓ

}
in a finite root system of type Aℓ. The term tεi translates the roots containing

±αi by ∓δ. Thus, if α = mδ + ε ∈ ∆+ (m ∈ Z≥0, ε ∈ ∆̊) satisfies tεi(α) ∈ ∆−,

then m = 0 and ε must be a positive root containing αi. Such an ε takes the form

αj +αj+1+ · · ·+αk (j ≤ i ≤ k), and the number of such (j, k) is i(ℓ− i+1). This

shows that the length of tεi is i(ℓ+ 1− i).

By Proposition 5.3, tJ1
ε1 = (ρ−1s1ρ

−1s1)
J1 = (ρs2s1)

J1 = ρs2 and we have

(5.24) ŝδ−α1
= ρs2s1ρs2.

Now we can compute real root vectors in the second row. Since wJ1 = sJ1
1 = 1

and Eδ−α1
= T0(E1) = TρT2(E1),

E≤,mδ+α1
=

{
(T1Tŝδ−α1

)m/2(E1), m: even,

(T1Tŝδ−α1
)(m−1)/2T1(Eδ−α1

), m: odd,

= (T1TρT2)
m(E1) (m ≥ 0).

Observing that T1TρT2(E0) = E0 and T1TρT2([E1, E2]q) = [E1, E2]q, we have

(5.25) E≤,mδ+α1 = 1 0 1 2 0 1 2 · · · 0 1 2 0 1 2
m

(m ≥ 0).



806 M. Sugawara

Similarly, root vectors for real roots in ∆(w,+) = ∆(s2s1,−) are computed

as follows. Comparing s0 = (s0s1s2)
∞ and š0 = (s2s1s0)

∞, E≤,mδ+α2
and

E≤,mδ+α1+α2
are obtained by swapping all the indexes 0 for 2 in E≤,mδ−α1−α2

,

E≤,mδ−α2 and applying Ψ, which just reverses all the directions of the q-bracket.

As a result,

(5.26) E≤,mδ+α2
= 0 2 1 0 2 1 · · · 0 2 1 0 2 1 2

m

,

(5.27) E≤,mδ+α1+α2
= 1 0 2 1 0 2 1 · · · 0 2 1 0 2 1 2

m

(m ≥ 0).

Since w̌J̌1 = s2s1 and š1 = (sδ−α2
s2)
∞, root vectors for mδ − α1 are defined as

(5.28) E≤,mδ−α1 =

{
ΨT2T1(Tŝδ−α2

T2)
(m−1)/2(Eδ−α2

), m: odd,

ΨT2T1(Tŝδ−α2
T2)

(m−2)/2Tŝδ−α2
, (E2) m: even

(m ≥ 1),

where Eδ−α2 = T0(E1). By Proposition 5.3, tJ̌1
ε2 = (ρ−1s1s2)

J̌1 = ρ2s1 and thus

ŝδ−α2
:= tJ̌1

ε2 s2t
J̌1
ε2 = ρ2s1s2ρ

2s1. Rewriting Eδ−α2
= T0(E1) = Tρ2T1(E2),

(5.29) E≤,mδ−α1
= ΨT2T1(Tρ2T1T2)

m−1Tρ2T1(E2) (m ≥ 1).

Moreover, one can deform this presentation to the form Ψ(Tu)
mTv(Ei) by realizing

T−1ε1 (E2)=E2. Since T
−1
ε1 =T−11 T−12 T−1ρ , we can replace E2 with T

−1
1 T−12 T−1ρ (E2).

In the extended braid group B̂,

Tρ2T1T
−1
ε1 = T−11 Tρ,

Tρ2T1T2 · T−11 Tρ = T−11 Tρ · Tρ2T0T1,

where we used T−11 Tρ2 = Tρ2T−12 and T1T2T
−1
1 = T−12 T1T2. Therefore, we have

T2T1(Tρ2T1T2)
m−1Tρ2T1(E2) = T2Tρ(Tρ2T0T1)

m−1(E2).

Finally, rewriting E2 = T−1ρ (E0) yields

T2Tρ(Tρ2T0T1)
m−1(E2) = T2Tρ(Tρ2T0T1)

m−1T−1ρ (E0)

= T2(Tρ2T1T2)
m−1(E0)

= (T2Tρ2T1)
m−1T2(E0).

As a result, we obtain

(5.30) E≤,mδ−α1
= Ψ(T2Tρ2T1)

m−1T2(E0) (m ≥ 1).
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The advantage of this presentation is that inductive computation becomes

easy. In fact,

(5.31) T2Tρ2T1T2(E0) =
2 0 2 1 0

and thus applying T2Tρ2T1 to [E2, E0]q adds two branches from the right. By virtue

of [E2, E1]q and E0 being invariant by T2Tρ2T1, finally we have

(5.32) E≤,mδ−α1
= 0 1 2 0 1 2 · · · 0 1 2 0 1 2 0 2

m− 1

(m ≥ 1).

Next we compute imaginary root vectors. Since w = s1, T1(Ii,m) (i = 1, 2,

m ∈ Z≥1) are used as imaginary root vectors. We use (4.34) to compute T1(φ1,m).

Since tε1 = ρs2s1 = us1, u = ρs2. Thus

T1(φ1,m) = [T1(TρT2T1)
m−1T−11 (E1), T

−1
u (E1)]q

= [(T1TρT2)
m−1(E1),ΨT2T

−1
ρ (E1)]q.

Since T1TρT2(E1) =
1 0 1 2 and T1TρT2 fixes E0 and [E1, E2]q,

(5.33) T1(φ1,m) = 1 0 1 2 0 1 2 · · · 0 1 2 0 1 2 0 2
m− 1

(m ≥ 1).

The computation of T1(φ2,m) is easier. By definition,

T1(φ2,m) = [T1T
m
ε2 T

−1
2 (E2), T1(E2)]q,

and in the computation of E≤,mδ−α1
we have already computed

T1T
m
ε2 T

−1
2 (E2) = Tρ(Tρ2T0T1)

m−1(E2) = (Tρ2T1T2)
m−1(E0) = Tm−1

ε2 (E0).

Since Tρ2T1T2(E0) =
0 1 0 2 and Tε2 fixes E1 and [E0, E2]q,

(5.34) T1(φ2,m) = 0 1 0 2 1 0 2 · · · 1 0 2 1 0 2 1 2
m− 1

(m ≥ 1).

We also require Tw̌(φi,m) = T2T1(φi,m) for the reversed order ≤′. Fortunately,
in this case we can simply apply T2 on every leaf of the presentation of T1(φ1,m).
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As a result,

(5.35) T2T1(φ1,m) = 2 1 2 0 1 2 0 1 · · · 2 0 1 2 0 1 0
m− 1

,

(5.36) T2T1(φ2,m) = 2 0 2 1 0 2 1 0 · · · 2 1 0 2 1 0 1
m− 1

(m ≥ 1).

Set the projection π+
B : U+

q → P+
B of Section 4.1 by σ01 := +1, σ02 := +1,

σ12 := +1. Then corresponding skew-symmetric matrix is

B =

0−1−1
1 0 −1
1 1 0

 ,

which corresponds to the Dynkin quiver

0

1
��

2
��
// .

The matrix presentation of the bilinear form ⟨·, ·⟩B is

(⟨αi, αj⟩B)2i,j=0 =

 2 0 0

−2 2 0

−2−2 2

 .

Thus [E0, E1]q, [E0, E2]q, and [E1, E2]q lie in the kernel of π+
B . Examining the

computed presentations of root vectors above, all the root vectors except for simple

root vectors vanish by π+
B . Therefore, the image of the quasi-universal R-matrix

Θ is

(5.37) π+
B ⊗̂ π

−
B(Θ) = E(y2)E(y1)E(y0) ∈ D̂B .

Now we reverse the given order. Recall that the real root vectors for the

reversed order ≤′ are obtained by just reversing all the direction of the q-bracket.

Then one can verify that the real root vectors in the first row, namely, E≤′,mδ−α1
=

Ψ(E≤,mδ−α1), E≤′,mδ−α1−α2 = Ψ(E≤,mδ−α1−α2) (m ≥ 1) satisfy the condition of

Proposition 4.7.

However, by contrast, real root vectors in the second row behave differ-

ently. The term E≤′,δ−α1
= Ψ(E≤,δ−α1

) = [E2, E0]q does not vanish by π+
B since
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⟨α2, α0⟩B = −2 ̸= 0 and satisfies the condition of Proposition 4.7. In the same way

E≤′,α1
= E1 does not vanish. But E≤′,mδ−α1

and E≤′,(m−1)δ+α1
vanish for m > 1

because ⟨α0 + α2, α1 + α2⟩B = ⟨α0, α1⟩B = 0. Thus, the real root vectors in the

second row vanish except for E≤′,δ−α1 and E≤′,α1 .

Next we have to compute the images of imaginary root vectors T2T1(Ii,m).

Using (4.25) and the presentations (5.35), (5.36), we have

π+
BT2T1(φ1,m) = (1− q−2)3m−2(1− q−2(m+1))e2e1(e2e0e1)

m−1e0

= (q − q−1)3m−1[m+ 1]q(e0e1e2)
m,

π+
BT2T1(φ2,m) =

{
(q − q−1)e0e2, m = 1,

0, m > 1,

since ⟨α2 + α0, α2 + α1⟩B = 0. The second equality is due to the following cal-

culation. Recall that the commutation relations in P+
B become e1e0 = qe0e1,

e2e0 = qe0e2, e2e1 = qe1e2. Thus

e2e1(e2e0e1)
m−1e0 = qe1e2(q

2e0e1e2)
m−1e0 = q4m−1(e0e1e2)

m (m ≥ 1).

Let D := (q − q−1)3e0e1e2. Then by definition of the generating function

φi(z) ∈ U+
q JzK,

π+
B(T2T1φ1(z)) =

∞∑
m=1

[m+ 1]qD
mzm =

1

(1− qDz)(1− q−1Dz)
∈ P+

B JzK,

π+
B(T2T1φ2(z)) = Dz.

Thus, the images of imaginary root vectors are

π+
B(T2T1I1,m) =

qm + q−m

m(q − q−1)
Dm,(5.38)

π+
B(T2T1I2,m) =

(−1)m−1

m(q − q−1)
Dm (m ≥ 1).(5.39)

Finally, we compute the image of S′m := (T2T1⊗T2T1)(Sm) (m ≥ 1) in (2.36).

By definition,[
b1,1;m b1,2;m
b2,1;m b2,2;m

]
=

1

m(q−1 − q)

[
[2m]q (−1)m−1[m]q

(−1)m−1[m]q [2m]q

]
,[

c1,1;m c1,2;m
c2,1;m c2,2;m

]
=

m(q−1 − q)
[2m]2q − [m]2q

[
[2m]q (−1)m[m]q

(−1)m[m]q [2m]q

]
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and thus Sm is written down as

Sm =
m(q−1 − q)
[2m]2q − [m]2q

{
[2m]q(I1,m ⊗ J1,m + I2,m ⊗ J2,m)

+ (−1)m[m]q(I1,m ⊗ J2,m + I2,m ⊗ J1,m)
}
.(5.40)

Let D′ := ΩB(D) = (q−1 − q)2f2f1f0. Then

π−B(T2T1J1,m) =
qm + q−m

m(q−1 − q)
D′m,(5.41)

π−B(T2T1J2,m) =
(−1)m−1

m(q−1 − q)
D′m (m ≥ 1).(5.42)

Therefore the image of S′m is computed as

(π+
B ⊗ π

−
B)(S

′
m)

=
m(q−1 − q)
[2m]2q − [m]2q

{
[2m]q

(
− (qm − q−m)2

m2(q − q−1)2
− 1

m2(q − q−1)2
)
Dm ⊗D′m

+ (−1)m[m]q · 2
(−1)m(qm + q−m)

m2(q − q−1)2
Dm ⊗D′m

}
=

m(q−1 − q)
[2m]2q − [m]2q

· −[2m]q(1 + (qm + q−m)2) + 2[m]q(q
m + q−m)

m2(q − q−1)2
(D ⊗D′)m

=
[2m]q(q

2m + 3 + q−2m)− 2[m]q(q
m + q−m)

([2m]2q − [m]2q) ·m(q − q−1)
(D ⊗D′)m

=
1

m

(q2m − q−2m)(q2m + 3 + q−2m)− 2(qm − q−m)(qm + q−m)

(q2m − q−2m)2 − (qm − q−m)2
(D ⊗D′)m

=
1

m

(qm − q−m)(qm + q−m)(q2m + 1 + q−2m)

(qm − q−m)2(q2m + 1 + q−2m)
(D ⊗D′)m

= − 1

m

qm(qm + q−m)

1− q2m
(D ⊗D′)m.

This result coincides with the case of type A
(1)
1 . Therefore,

π+
B ⊗̂ π

−
B(Θim) = E(−qD ⊗D′)−1E(−q−1D ⊗D′)−1

= E(−q:y0y1y2:)−1E(−q−1:y0y1y2:)−1.(5.43)

Comparing (5.37), finally we attain the following identity.

Theorem 5.4. Let y0, y1, y2 be indeterminate with commutation relations y0y1 =

q−2y1y0, y0y2 = q−2y2y0, y1y2 = q−2y2y1. Then the following identity holds in the
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skew formal power series algebra Ŝ2 := Q(q)Jy0, y1, y2K:

E(:y2:)E(:y1:)E(:y0:) =
{ →∏

m≥0

E(:ym+1
0 ym1 y

m
2 :)E(:ym+1

0 ym+1
1 ym2 :)

}
E(:y0y2:)

× E(−q:y0y1y2:)−1E(−q−1:y0y1y2:)−1

× E(:y1:)
{ ←∏

m≥0

E(:ym0 y
m+1
1 ym+1

2 :)E(:ym0 ym1 y
m+1
2 :)

}
,(5.44)

where
∏→

m≥0 am := a0a1a2 . . . ,
∏←

m≥0 am := . . . a2a1a0, and the normal ordered

product is :ym0
0 ym1

1 ym2
2 : = qm0m1+m0m2+m1m2ym0

0 ym1
1 ym2

2 .

Set R := ( 0 1 1
1 2 1 ). Then the condition of Proposition 4.3 holds for B′ =

(
0 1
−1 0

)
.

Thus we have a continuous algebra homomorphism ψ̂2 : Ŝ2 → Ŝ which satisfies

(5.45) ψ̂2(y0) = x2, ψ̂2(y1) = :x1x
2
2:, ψ̂2(y2) = :x1x2:.

Applying ψ̂2 on (5.44) and transforming variables using ψS , we obtain (1.3). This

proves that identity (1.3) holds in Q(q)Jx1

x2
2
, x2K.

Remark. To derive (1.3), the convex order of multiple rows is mandatory because

the factor U2
1,0 in the middle cannot appear by only using convex orders of a single

row. We also note that convex orders of multiple rows never appear in the form

≤Z determined by the central charge Z (5.15).

§5.3. Type A
(1)
3

Let g = ŝl4 be an affine algebra of type A
(1)
3 . We set a convex order by

w := s2s1s3, n := 3;

I̊ = J0 ⫌ J1 := {1, 3} ⫌ J2 := {3} ⫌ J3 = ∅,
s0 := (s0s2s1s3s2s0s3s1)

∞, s1 := (s1sδ−α1
)∞, s2 := (s3sδ−α3

)∞,

w̌ = ww◦ = s1s3s2;

I̊ = J̌0 ⫌ J̌1 := {1, 3} ⫌ J̌2 := {1} ⫌ J̌3 = ∅,
š0 := (s1s3s2s0s3s1s0s2)

∞, š1 := (sδ−α3s3)
∞, š2 := (sδ−α1s1)

∞.

Then the corresponding convex order ≤ is

δ − α1 − α2 − α3 < α2 < δ − α3 < δ − α1

< 2δ − α1 − α2 − α3 < δ + α2 < 2δ − α3 < 2δ − α1

· · ·
< α1 + α2 < δ + α1 + α2 < 2δ + α1 + α2 < 3δ + α1 + α2 < · · ·
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< α2 + α3 < δ + α2 + α3 < 2δ + α2 + α3 < 3δ + α2 + α3 < · · ·
< δ < 2δ < 3δ < 4δ < · · ·
< 3δ − α2 − α3 < 2δ − α2 − α3 < δ − α2 − α3 < · · ·
< 3δ − α1 − α2 < 2δ − α1 − α2 < δ − α1 − α2

· · ·
< 2δ − α2 < δ + α1 + α2 + α3 < δ + α3 < δ + α1

< δ − α2 < α1 + α2 + α3 < α3 < α1,

where the null root δ = α0 + α1 + α2 + α3.

Set

(5.46) B :=


0−1 0−1
1 0 1 0

0−1 0−1
1 0 1 0


with corresponding quiver

0

1 2

3

��

//

oo

OO

 .

The matrix presentation of the bilinear form ⟨·, ·⟩B is

(⟨αi, αj⟩B)3i,j=0 =


2 0 0 0

−2 2−2 0
0 0 2 0

−2 0−2 2

 .

In the same way as in the examples so far, one can verify that all the root vec-

tors except for simple root vectors vanish by the projection π+
B . On the other

hand, real root vectors for the reversed order ≤′, namely, E≤′,mδ+α for α =

±α1,±α2,±α3,±(α1 + α2 + α3) (m ≥ 0 if α ∈ ∆+, m ≥ 1 if α ∈ ∆−) do

not vanish by π+
B and satisfy the condition of Proposition 4.7. The real root vec-

tors in the second and third rows E≤′,mδ+α1+α2
, E≤′,mδ+α2+α3

, E≤′,(m+1)δ−α1−α2
,

E≤′,(m+1)δ−α2−α3
vanish if and only if m > 0, and satisfy the condition of Propo-

sition 4.7 when m = 0. This behavior in the second and third rows resembles that

of the case of type A
(1)
2 .

Although the computation of imaginary root vectors also has resemblance

to the previous examples and in fact we will obtain an identical presentation of

π+
B ⊗̂ π

−
B(Θim), the process of computation is far from obvious. After a somewhat

lengthy computation (we used T−1ε2 (Ei) = Ei for i = 1, 3 in the process), one will

obtain

Tw̌(φ1,m) = [(T1TρT3T2)
m−1T1(E0), [E3, E2]q]q,

Tw̌(φ2,m) = [(T1T3T2Tρ2T2)
m−1T3T1(E2), E0]q,
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Tw̌(φ3,m) = [(T3Tρ3T1T2)
m−1T3(E0), [E1, E2]q]q (m ≥ 1),

π+
BTw̌(φ1,m) = π+

BTw̌(φ3,m) =

{
(q − q−1)e0e2e1e3, m = 1,

0, m > 1,

π+
BTw̌(φ2,m) = (q − q−1)4m−1[m+ 1]q(e0e2e1e3)

m (m ≥ 1).

Thus the images of the imaginary root vectors are

π+
BTw̌(I1,m) = π+

BTw̌(I3,m) =
(−1)m−1

m(q − q−1)
Dm,

π+
BTw̌(I2,m) =

qm + q−m

m(q − q−1)
Dm (m ≥ 1),

where D := (q − q−1)4e0e2e1e3.
Our last task is to compute the image of S′m := (Tw̌ ⊗ Tw̌)(Sm) (m ≥ 1).

Definition (2.35) reads

(bi,j;m)3i,j=1 =
1

m(q−1 − q)

 M2 (−1)m−1M1 0

(−1)m−1M1 M2 (−1)m−1M1

0 (−1)m−1M1 M2

 ,
(ci,j;m)3i,j=1 =

m(q−1 − q)
M3

2 − 2M2
1M2

 M2
2 −M2

1 (−1)mM1M2 M2
1

(−1)mM1M2 M2
2 (−1)mM1M2

M2
1 (−1)mM1M2 M2

2 −M2
1

 ,
where Mk := [km]q for k = 1, 2. Thus the image of S′m is computed as

(π+
B ⊗ π

−
B)(S

′
m) =

m(q−1 − q)
[2m]3q − 2[2m]q[m]2q

×
(
2([2m]2q − [m]2q)

1

m(q − q−1)m(q−1 − q)

+ 4(−1)m[2m]q[m]q
(−1)m−1(qm + q−m)

m(q − q−1)m(q−1 − q)

+ 2[m]2q
1

m(q − q−1)m(q−1 − q)

+ [2m]2q
(qm + q−m)2

m(q − q−1)m(q−1 − q)

)
×Dm ⊗D′m

= − 1

m

qm(qm + q−m)

1− q2m
(D ⊗D′)m,
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where D′ := ΩB(D). This is identical to the previous examples and we conclude

that π+
B ⊗̂ π

−
B(Θim) = E(−qD⊗D′)−1E(−q−1D⊗D′)−1. As a result, we have the

following theorem:

Theorem 5.5. The following identity holds in the skew formal power series alge-

bra Ŝ3 := ŜB ∼= Q(q)Jy0, y1, y2, y3K:

E(:y1:)E(:y3:)E(:y2:)E(:y0:) =
{ →∏

m≥0

Xm

}
E(:y1y2:)E(:y2y3:)

× E(−q:y0y1y2y3:)−1E(−q−1:y0y1y2y3:)−1

× E(:y0y1:)E(:y0y3:)
{ ←∏

m≥0

Ym

}
,(5.47)

where

Xm = E(:ym+1
0 ym1 y

m
2 y

m
3 :)E(:ym0 ym1 y

m+1
2 ym3 :)

× E(:ym+1
0 ym+1

1 ym+1
2 ym3 :)E(:ym+1

0 ym1 y
m+1
2 ym+1

3 :),

Ym = E(:ym+1
0 ym+1

1 ym2 y
m+1
3 :)E(:ym0 y

m+1
1 ym+1

2 ym+1
3 :)

× E(:ym0 ym1 ym2 y
m+1
3 :)E(:ym0 y

m+1
1 ym2 y

m
3 :).

Set R := ( 0 1 0 1
1 1 1 1 ). Then the condition of Proposition 4.3 holds for the same

B′. Thus we have a continuous algebra homomorphism ψ̂3 : Ŝ3 → Ŝ which satisfies

(5.48) ψ̂3(y0) = ψ̂3(y2) = x2, ψ̂3(y1) = ψ̂3(y3) = :x1x2:.

Applying ψ̂3 on (5.47) and transforming x1, x2 by ψS yields (1.4). This proves the

identity (1.4).

§5.4. Type D
(1)
4

Let g = ŝo8 be an affine algebra of type D
(1)
4 . Let

(5.49) B :=


0 0−1 0 0
0 0−1 0 0
1 1 0 1 1

0 0−1 0 0
0 0−1 0 0


with corresponding quiver

0

1 4

3

2
��

??

��

__

 .

Using the assignment of indices in the Dynkin quiver above, we set a convex order

by

w := s1s3s4s2s1s3s4, n := 4;

I̊ = J0 ⫌ J1 := {1, 3, 4} ⫌ J2 := {3, 4} ⫌ J3 := {4} ⫌ J4 = ∅,
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s0 := (s0s1s3s4s2)
∞, s1 := (s1sδ−α1

)∞,

s2 := (s3sδ−α3
)∞, s3 := (s4sδ−α4

)∞,

w̌ = ww◦ = s2s1s3s4s2;

I̊ = J̌0 ⫌ J̌1 := {1, 3, 4} ⫌ J̌2 := {3, 4} ⫌ J̌3 := {3} ⫌ J̌4 = ∅,
š0 := (s2s1s3s4s0)

∞, š1 := (sδ−α1
s1)
∞,

š2 := (sδ−α3s3)
∞, š3 := (sδ−α4s4)

∞.

Then the corresponding convex order ≤ is

δ − α1 − 2α2 − α3 − α4 < α1 < α3 < α4

< δ − α2 < α1 + α2 + α3 + α4 < δ − α1 − α2

< δ − α2 − α3 < δ − α2 − α4 < 2δ − α2

< 2δ − α1 − 2α2 − α3 − α4 < δ + α1 < δ + α3 < δ + α4

< 3δ − α2 < δ + α1 + α2 + α3 + α4 < 2δ − α1 − α2

< 2δ − α2 − α3 < 2δ − α2 − α4 < 4δ − α2

· · ·
< α2 + α3 + α4 < δ + α2 + α3 + α4 < 2δ + α2 + α3 + α4 < · · ·
< α1 + α2 + α4 < δ + α1 + α2 + α4 < 2δ + α1 + α2 + α4 < · · ·
< α1 + α2 + α3 < δ + α1 + α2 + α3 < 2δ + α1 + α2 + α3 < · · ·
< δ < 2δ < 3δ < 4δ < · · ·
< 3δ − α1 − α2 − α3 < 2δ − α1 − α2 − α3 < δ − α1 − α2 − α3 < · · ·
< 3δ − α1 − α2 − α4 < 2δ − α1 − α2 − α4 < δ − α1 − α2 − α4 < · · ·
< 3δ − α2 − α3 − α4 < 2δ − α2 − α3 − α4 < δ − α2 − α3 − α4

· · ·
< δ + α1 + 2α2 + α3 + α4 < 2δ − α4 < 2δ − α3 < 2δ − α1

< 3δ + α2 < 2δ − α1 − α2 − α3 − α4 < δ + α2 + α4

< δ + α2 + α3 < δ + α1 + α2 < 2δ + α2

< α1 + 2α2 + α3 + α4 < δ − α4 < δ − α3 < δ − α1

< δ + α2 < δ − α1 − α2 − α3 − α4 < α2 + α4

< α2 + α3 < α1 + α2 < α2,

where the null root δ = α0 + α1 + 2α2 + α3 + α4.

To compute root vectors, reduced expressions of the fundamental translations

tεi ∈ Ŵ (i = 1, 2, 3, 4) are required. Let τ := ( 0 1 2 3 4
1 0 2 4 3 ), τ

′ := ( 0 1 2 3 4
3 4 2 0 1 ) be Dynkin
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automorphisms. In the same way as the proof of Proposition 5.3, one can verify

that

(5.50)
tε1 = τs1s2s3s4s2s1, tε2 = s0s2s3s4s2s1s2s3s4s2,

tε3 = τ ′s3s2s1s4s2s3, tε4 = ττ ′s4s2s1s3s2s4

are reduced expressions in Ŵ . Using these formulas, one can compute all the root

vectors and verify that all of them except for simple root vectors vanish by π+
B .

For the reversed order ≤′, real root vectors in the first row satisfy the condition

of Proposition 4.7. On the other hand, real root vectors in the second, third, and

fourth rows, namely,

E≤′,mδ+α1+α2+α3
, E≤′,mδ+α1+α2+α4

, E≤′,mδ+α2+α3+α4
,

E≤′,(m+1)δ−α1−α2−α3
, E≤′,(m+1)δ−α1−α2−α4

, E≤′,(m+1)δ−α2−α3−α4

vanish for m > 0, and satisfy the condition of Proposition 4.7 when m = 0.

The images of Tw̌(φi,m) are computed as

(5.51)

π+
BTw̌(φ1,m) = π+

BTw̌(φ3,m) = π+
BTw̌(φ4,m)

=

{
q(q − q−1)5e0e1e3e4e22, m = 1,

0, m > 1,

π+
BTw̌(φ2,m) = qm(q − q−1)6m−1[m+ 1]q(e0e1e3e4e

2
2)

m.

Note that eiej = ejei and e2ei = qeie2 in P+
B for i, j = 0, 1, 3, 4. Thus,

(5.52)

π+
BTw̌(Ii,m) =

(−1)m−1

m(q − q−1)
(qD)m (i = 0, 1, 3, 4),

π+
BTw̌(I2,m) =

qm + q−m

m(q − q−1)
(qD)m (m ≥ 1),

where D := (q − q−1)6e0e1e3e4e22 and D′ := ΩB(D). Definition (2.35) reads

(5.53)

bi,j;m =
1

m(q−1 − q)
×


s, i = j,

t, i ̸= j; 2 ∈ {i, j},
0, i ̸= j; i, j ̸= 2,

ci,j;m =
m(q−1 − q)
s2(s2 − 3t2)

×


s3, i = j = 2,

s(s2 − 2t2), i = j ̸= 2,

−s2t, i ̸= j; 2 ∈ {i, j},
st2, i ̸= j; i, j ̸= 2,
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where s := [2m]q and t := (−1)m−1[m]q. Finally, the image of S′m := (Tw̌⊗Tw̌)(Sm)

is computed as

(π+
B ⊗ π

−
B)(S

′
m) =

m(q−1 − q)
s2(s2 − 3t2)

1

m(q − q−1)m(q−1 − q)
×
[
{3 · s(s2 − 2t2) + 6 · st2} · (−1)m−1 · (−1)m−1

+ 6 · (−s2t) · (−1)m−1 · (qm + q−m)

+ (qm + q−m)2s3
]

× (qD)m ⊗ (q−1D′)m

=
1

m(q − q−1)s2(s2 − 3t2)
· (q2m − 1 + q−2m)s3 ·Dm ⊗D′m

= − 1

m

qm(qm + q−m)

1− q2m
(D ⊗D′)m.

Therefore, surprisingly, the image of S′m is identical to that in the examples of

type A
(1)
ℓ , and we have π+

B ⊗̂ π
−
B(Θim) = E(−qD ⊗D′)−1E(−q−1D ⊗D′)−1. As a

result, we have the following theorem:

Theorem 5.6. The following identity holds in the skew formal power series alge-

bra Ŝ4 := ŜB ∼= Q(q)Jy0, y1, y2, y3, y4K:

E(:y2:)E(:y4:)E(:y3:)E(:y1:)E(:y0:)

=

{ →∏
m≥0

Xm

}
E(:y2y3y4:)E(:y1y2y4:)E(:y1y2y3:)

× E(−q:y0y1y22y3y4:)−1E(−q−1:y0y1y22y3y4:)−1

× E(:y0y2y4:)E(:y0y2y3:)E(:y0y1y2:)
{ ←∏

m≥0

Ym

}
,(5.54)

where

Xm = E(:ym+1
0 ym1 y

2m
2 ym3 y

m
4 :)E(:ym0 y

m+1
1 y2m2 ym3 y

m
4 :)

× E(:ym0 ym1 y2m2 ym+1
3 ym4 :)E(:ym0 ym1 y2m2 ym3 y

m+1
4 :)

× E(:y2m+1
0 y2m+1

1 y4m+1
2 y2m+1

3 y2m+1
4 :)E(:ym0 y

m+1
1 y2m+1

2 ym+1
3 ym+1

4 :)

× E(:ym+1
0 ym1 y

2m+1
2 ym+1

3 ym+1
4 :)E(:ym+1

0 ym+1
1 y2m+1

2 ym3 y
m+1
4 :)

× E(:ym+1
0 ym+1

1 y2m+1
2 ym+1

3 ym4 :)E(:y2m+2
0 y2m+2

1 y4m+3
2 y2m+2

3 y2m+2
4 :),
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Ym = E(:ym0 y
m+1
1 y2m+2

2 ym+1
3 ym+1

4 :)E(:ym+1
0 ym+1

1 y2m+2
2 ym+1

3 ym4 :)

× E(:ym+1
0 ym+1

1 y2m+2
2 ym3 y

m+1
4 :)E(:ym0 y

m+1
1 y2m+2

2 ym+1
3 ym+1

4 :)

× E(:y2m+1
0 y2m+1

1 y4m+3
2 y2m+1

3 y2m+1
4 :)E(:ym+1

0 ym1 y
2m+1
2 ym3 y

m
4 :)

× E(:ym0 ym1 y
2m+1
2 ym3 y

m+1
4 :)E(:ym0 ym1 y

2m+1
2 ym+1

3 ym4 :)

× E(:ym0 y
m+1
1 y2m+1

2 ym3 y
m
4 :)E(:y2m0 y2m1 y4m+1

2 y2m3 y2m4 :).

Set R := ( 0 0 1 0 0
1 1 2 1 1 ). Then the condition of Proposition 4.3 holds. Thus we

have the continuous algebra homomorphism ψ̂4 : Ŝ4 → Ŝ which satisfies

(5.55) ψ̂4(y0) = ψ̂4(y1) = ψ̂4(y3) = ψ̂4(y4) = x2, ψ̂4(y2) = :x1x
2
2:.

Applying ψ4 on (5.54) and transforming variables using ψS yields (1.5). This proves

the identity (1.5).

Main Theorem 5.7. The four identities (1.2), (1.3), (1.4), (1.5) hold in the skew

formal power series algebra Q(q)Jx1

x2
2
, x2K.
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