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Abstract

In this paper we consider an affine hyperbolic curve X over a p-adic local field K obtained
from an elliptic curve E by removing a K-rational point given by the origin O. We
introduce the maximal geometrically pro-p quotient ΠX of the étale fundamental group
πét
1 (X) of the hyperbolic curve X and analyse the problem of determining the reduction

type of the elliptic curve E from the topological group ΠX . As our main result we give
a group-theoretic construction of the reduction type of E from the group ΠX under the
assumption that p ≥ 5 and that E has a nontrivial K-rational p-torsion point.
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§1. Introduction

Let E be an elliptic curve over a p-adic local field K and consider a hyperbolic

curve X obtained from E by removing a K-rational point given by the origin O

of E. Let ΠX be the maximal geometrically pro-p étale fundamental group of the

hyperbolic curve X. Fix an algebraic closure Kalg of K. Then we have a short

exact sequence of topological groups

1→ ∆X → ΠX → Gal(Kalg/K)→ 1,

where Gal(Kalg/K) is the absolute Galois group of K and ∆X is defined as the

maximal pro-p quotient of the geometric fundamental group π1(XKalg).

In this paper we consider the following problem: Given the topological group

ΠX , is it possible to determine the reduction type of the elliptic curve E over K?

The result we prove here is the following theorem.
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Theorem 1.1. Assume that p ≥ 5 and that E has a nontrivial K-rational p-

torsion point. Then the reduction type of E over K can be determined group the-

oretically from the topological group ΠX .

We will see that even when the above assumptions are not satisfied we may

recover the reduction type in some special cases. In fact, we will prove a slightly

stronger theorem, where the assumption on the existence of a p-torsion point is

replaced by assuming that ΠX is equipped with certain additional data.

Theorem 1.2. Assume that p ≥ 5. Then the reduction type of E over K can be

determined group theoretically from the topological group ΠX equipped with one

discrete section.

We briefly explain the notion of a “discrete section” used in the above state-

ment. First, it is well known that the subgroup ∆X ⊂ ΠX can be characterized

group theoretically; therefore we may also construct the quotient

ΠX ↠ ΠX/∆X .

Clearly, the quotient ΠX/∆X is isomorphic to the Galois group Gal(Kalg/K).

Then the set of discrete sections is a certain subset of the set of all sections of

the above surjection coming from cotangent vectors at the cusp of X; for a more

precise definition, see Section 7.

The problem considered in this paper is motivated by the results of [H], where

it is proved that for a proper hyperbolic curve X one can determine, from data

of the fundamental group ΠX , whether the curve X has good ordinary reduction,

i.e., the curve X has good reduction and the reduction of the Jacobian J(X) of X

is an ordinary abelian variety. Thus, the main result of this paper strengthens [H]

in the case of punctured elliptic curves.

Before continuing, let us explain the reason why recovering the reduction

type in the absolute setting (i.e., from the group ΠX) is more difficult than in the

relative case (i.e., from the surjection ΠX ↠ Gal(Kalg/K)). It is easy to see that

in the relative case one can recover the representation

ι : Gal(Kalg/K)→ GL(Tp(E))

on the p-adic Tate module Tp(E) of E. Thus the elliptic curve E has good reduction

if and only if the representation ι is crystalline. On the other hand, even though

in the absolute case one can still construct a representation

ι0 : ΠX/∆X → GL(Tp(E)),
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it is not clear how to choose group theoretically an isomorphism between ΠX/∆X

and the absolute Galois group ofK. Any two choices of such an isomorphism would

differ by an automorphism of the group Gal(Kalg/K); however, this automorphism

may not preserve the category of crystalline representations. Indeed, it is known

that there exists an automorphism α of the group Gal(Kalg/K) and a Hodge–Tate

representation

j : Gal(Kalg/K)→ GL(V )

such that j ◦ α is not a Hodge–Tate representation. Therefore, the method of

considering the p-adic representation GL(Tp(E)) that may be used in the relative

case is not applicable in the absolute case. Nevertheless, in the following we will

use certain results from p-adic Hodge theory which will not be affected by the

group of automorphisms of the absolute Galois group of K and are purely group

theoretic.

Let us briefly summarize the content of this paper. In Sections 3 and 4 we

recall some classical results from p-adic Hodge theory concerning p-adic Tate mod-

ules which are then applied in Section 5 to reduce the proof of Theorem 1.2 to

the case of an elliptic curve with good supersingular reduction. The rest of the

paper uses methods of (mono)-anabelian geometry. In Section 6 we briefly discuss

Kummer classes of functions and their group-theoretic evaluation at points. This

construction is applied in Section 8, where we consider cohomology classes of cer-

tain rational functions on the elliptic curve E. In Section 7 we introduce the notions

of discrete and integral sections, then in Section 10 we discuss their anabelian con-

structions. The crucial method we use there is based on a group-theoretic version

of the operation

O(X)∗ ∋ f 7→ v(f(P )) ∈ Q,

namely evaluating a rational function at a point P and applying the p-adic valu-

ation. This will be applied to compute local heights of torsion points, following a

pro-p variant of a method described in [P]. The most important step of this con-

struction consists of determining a certain isomorphism of Galois modules which

we call the rigidity isomorphism; this task is achieved in Section 9. Finally, after

these preparations, in Section 11 we give the proof of the main theorem.

§2. Notation

For a fieldK we writeKalg for a fixed algebraic closure ofK. WhenK is a complete

discrete valuation field of characteristic zero we write GK = Gal(Kalg/K) for the

absolute Galois group of K and IK ⊂ GK for the inertia subgroup.

In this paper by a local field we always mean a p-adic local field i.e., a finite

extension of Qp. For a local field K we have a discrete valuation vK : K∗ → Z
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normalized by vK(πK) = 1, where πK is a uniformizer of K. We denote by k

the residue field of K. On the algebraic closure Kalg we also have a valuation

v : (Kalg)∗ → Q normalized by requiring v(p) = 1. Thus vK(x) = ev(x) for every

x ∈ K∗, where e is the absolute ramification degree of K. We also write UK ⊂
O∗

K ⊂ OK for the group of principal units, the group of units and the valuation

ring, respectively.

For a local field K we denote by K̂∗ the inverse limit

K̂∗ = lim←−
n∈N

K∗/(K∗)p
n

.

Note that in this limit we consider only powers of p. By Kummer theory we have

K∗/(K∗)p
n ∼= H1(GK , µpn);

here µpn ⊂ Kalg is the group of pnth roots of unity. Therefore, by taking the

inverse limit over all natural numbers n, we obtain an isomorphism

K̂∗ ∼= H1(GK ,Zp(1)).

The kernel of the natural homomorphism of groups K∗ → K̂∗ is equal to the

subgroup of roots of unity of order prime to p contained in K, which we denote

by µ̸=p
K . For every local field L we define the quotient

L×µ = L×/µ̸=p
L .

We have a natural isomorphism UL
∼= O∗

L/µ
̸=p
L , as well as injections

UL ↪→ L×µ ↪→ L̂∗

When X is a scheme over K and L/K is a field extension, we write XL for the

scheme over L obtained as a base change of X. For a curve X over K we write ∆X

for the maximal pro-p quotient of the geometric fundamental group π1(XKalg).

Then the maximal geometrically pro-p fundamental group ΠX of X is defined

as the quotient of the fundamental group π1(X) by the kernel of the surjection

π1(XKalg) ↠ ∆X . Thus, we have a commutative diagram

1 π1(XKalg) π1(X) GK 1

1 ∆X ΠX GK 1.

Throughout the paper, an elliptic curve will be denoted by E and its origin by O.
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§3. Application of p-adic Hodge theory

In this section we recall a few facts from the theory of p-adic representations that

we will use later. Let V be a finite-dimensional vector space over Qp equipped

with a linear continuous GK-action. We will simply say that V is a representation

of GK . Let Qp(1) be the one-dimensional representation given by the cyclotomic

character. For every integer n ∈ Z we will denote by V (n) the nth Tate twist of

the representation V . We write Bcris, Bst and BdR for the crystalline, semistable

and de Rham period rings. For a GK-representation V , we denote

DdR(V ) = (V ⊗Qp BdR)
GK .

The ring BdR is equipped with a decreasing filtration Bi
dR for i ∈ Z, which induces

a decreasing filtration DdR(V )i on the vector space DdR(V ). Moreover, if the

representation V is de Rham then the dimension of the i-graded subquotient

DdR(V )i/Di+1
dR (V )

is equal to the multiplicity of the weight i in the Hodge–Tate decomposition of V .

For an elliptic curve E over a p-adic local field K, we write Tp(E) for the (p-

adic) Tate module and Vp(E) = Tp(E)⊗Zp
Qp for the induced GK-representation.

The fundamental result which we are going to use is the following theorem con-

necting the reduction of E/K and the p-adic representation Vp(E) (see [CI] for

the good reduction case and [B] for the semistable case).

Theorem 3.1. Let E be an elliptic curve over a p-adic local field K. Then E

has good reduction over K if and only if the representation Vp(E) is crystalline.

Moreover, when p > 2, then E has semiabelian reduction over K if and only if the

p-adic representation Vp(E) is semistable.

We also recall, following [BK], the definition of crystalline and semistable

cohomology classes. Let V be a finite-dimensional p-adic representation of GK .

The cohomology group H1(GK , V ) is a finite-dimensional Qp-vector space. For a

ring of periods B, we consider the kernel of the natural map

H1(GK , V )→ H1(GK , V ⊗Qp B).

When B = Bcris, cohomology classes lying in the kernel of the above map are

called crystalline and the kernel is denoted by H1
f (GK , V ). When B = Bst, the

kernel is denoted byH1
st(GK , V ) and a class lying in this kernel is called semistable.

Consider now a cohomology class α ∈ H1(GK , V ) and let

1→ V →W → Qp → 1
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be the extension of representations corresponding to α, via the identification

H1(GK , V ) = Ext1Qp[GK ](Qp, V ).

Suppose now that the representation V is crystalline (semistable). Then the rep-

resentation W is crystalline (semistable) if and only if the cohomology class α is

crystalline (semistable).

Lemma 3.2. Let V be a two-dimensional p-adic representation fitting in the fol-

lowing exact sequence of GK-modules:

1→ Qp(1)→ V → Qp → 1.

Then the representation V is semistable.

Proof. Consider the cohomology group H1(GK ,Qp(1)). By Kummer theory, it is a

Qp-vector space of dimension [K : Qp]+1. From the computation of [BK] (see the

table in Example 3.9), we know that the subspace H1
f (GK ,Qp(1)) of crystalline

cohomology classes is a Qp-vector space of dimension [K : Qp]. Moreover, the ex-

tension of Qp by Qp(1) constructed from the Tate module of a Tate curve over K

(which we will recall in the next section) is a semistable extension which is not crys-

talline (by Theorem 3.1). Therefore, the cohomology class of this extension gen-

erates a one-dimensional Qp-vector subspace of the vector space H1(GK ,Qp(1)),

consisting of semistable classes, which is not contained in H1
f (GK ,Qp(1)). Since

the subspace of crystalline classes is of codimension one, this implies that every

class is semistable.

In fact, we have a slightly stronger result.

Lemma 3.3. Let V be a two-dimensional p-adic representation of GK such that

there exist one-dimensional unramified representations V ′ and V ′′ and an exact

sequence of GK-modules

1→ V ′(1)→ V → V ′′ → 1.

Then the representation V is semistable. Moreover, if V ′ and V ′′ are not isomor-

phic then the representation V is in fact crystalline.

Proof. By tensoring with the dual of the character V ′′ we may assume that V ′′ =

Qp. Moreover, by Lemma 3.2 we may assume that the unramified character V ′ is

nontrivial. Therefore, it is enough to prove that in this case the representation V

is crystalline.

For a p-adic representation W we write hi(W ) = dimQp H
1(GK ,W ), similarly

hi
f (W ) = dimQp

H1
f (GK , V ). Recall (see [NSW, Thm. 7.3.1 and Cor. 2.7.6]) that
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the Euler characteristic of the representation W is equal to

h0(W )− h1(W ) + h2(W ) = −[K : Qp] dimQp W.

Moreover, if we denote by

W ∗ = HomQp(W,Qp)

the Qp-linear dual representation of W , then it follows from the local Tate duality

(see [NSW, Thm. 7.2.6]) that

hi(W ) = h2−i(W ∗(1)) for 0 ≤ i ≤ 2.

Since V ′ is a nontrivial unramified character, we have h0(V ′(1)) = 0 and

h2(V ′(1)) = h0((V ′)∗) = 0;

therefore h1(V ′(1)) = [K : Qp]. On the other hand, using [BK, Cor. 3.8.4], we

know that for every de Rham representation W we have the equality

h1
f (W ) = h0(W ) + dimQp

(DdR(W )/DdR(W )0).

The second term on the right-hand side of the above formula is equal to the sum of

negative Hodge–Tate weights of the representation W . In particular, it is invariant

under twisting by unramified characters. Thus, for the unramified character V ′ we

have

h1
f (V

′(1)) = h1
f (Qp(1)) = [K : Qp].

Therefore, we obtain h1
f (V

′(1)) = h1(V ′(1)), which implies that

H1
f (GK , V ′(1)) = H1(GK , V ′(1)).

Thus, every cohomology class is crystalline and V is a crystalline representation.

Remark 3.4. Clearly, one can also give a proof of Lemma 3.3 using the machinery

of (ϕ,N)-modules and a straightforward linear algebra computation.

§4. Structure of the p-adic Tate module

In this section we will recall basic properties of the p-adic Tate module of an

elliptic curve over a p-adic local field. A similar discussion would be valid in the

more general case of abelian varieties. All the results are well known; e.g., see [T].

Let E be an elliptic curve over a p-adic local field K. We assume that E

has split semiabelian reduction over K, i.e., the Néron model E of E, which is a
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smooth scheme over Spec(OK), has the special fiber Ek isomorphic to either an

elliptic curve or to a split torus. Equivalently, the special fiber of the minimal

Weierstrass model of E over OK is either an elliptic curve or a split nodal pointed

curve. In each case we are going to describe a GK-module structure of the p-adic

Tate module Tp(E).

Suppose first that E has bad reduction. Since it also has split semiabelian re-

duction we know that E is a Tate curve. Thus, there exists a unique element

q ∈ K∗ with |q| < 1 and an isomorphism E ∼= Eq; here Eq is the Tate el-

liptic curve associated to q. Hence we also have a GK-equivariant isomorphism

E(Kalg) ∼= (Kalg)∗/qZ. In particular, the group of n-torsion points is isomorphic

to the subgroup of (Kalg)∗/qZ generated by the elements

ζinq
j
n for 0 ≤ i, j ≤ n− 1,

where ζn is a primitive nth root of unity and qn is an nth root of q. The elements

ζin form a cyclic subgroup of E[n](Kalg) which is GK-invariant; hence we have a

short exact sequence of GK-modules

1→ ⟨ζn⟩ → E[n]→ E[n]/⟨ζn⟩ → 1.

Since for every σ ∈ GK we have σ(qn) = ζinqn for some natural number i, we

see that the quotient E[n]/⟨ζn⟩ has trivial GK-action. Moreover, the above short

exact sequence is compatible with the multiplication by n map E[nm] → E[m].

Therefore, by taking n = pk, for every k ≥ 1 and considering the inverse system

with morphisms given by multiplication by p, we obtain a short exact sequence

1→ lim←−
k≥1

µpk → Tp(E)→ lim←−
k≥1

Z/pkZ→ 1.

The exactness on the right follows from finiteness of groups µn. Hence, by tensoring

with Qp we see that there exists a short exact sequence of p-adic representations

of the group GK ,

(1) 1→ Qp(1)→ Vp(E)→ Qp → 1.

Next we are going to describe the good reduction case. Here we have two pos-

sibilities: either the elliptic curve E has ordinary reduction or it has supersingular

reduction. Let E be the Néron model of E. Consider the pi-torsion group scheme

E [pi], which is defined as the kernel of the homomorphism pi : E → E . It is a finite

flat group scheme of order p2i over Spec(OK). Since OK is complete (hence also

henselian), its connected component of identity E [pi]◦ naturally has an induced

structure of a group scheme. Then we have a short exact sequence of finite flat
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group schemes

1→ E [pi]◦ → E [pi]→ E [pi]ét → 1,

where the quotient E [n]ét is étale over Spec(OK). For every natural number i the

finite flat group scheme E [pi]ét has order pi (is trivial) if and only if E has ordinary

(supersingular) reduction.

By looking at Kalg-points we obtain a short exact sequence of GK-modules

1→ E [pi]◦(Kalg)→ E [pi](Kalg)→ E [pi]ét(Kalg)→ 1.

As the group E [pi]ét is finite étale, we have

E [pi]ét(Kalg) = Ek[pi](kalg),

where kalg is an algebraic closure of the residue field k of K. Hence the subgroup

E [pi]◦(Kalg) ⊂ E(Kalg) consists exactly of all pi-torsion points such that their

reduction to the special fiber Ek is equal to the origin O of the reduced elliptic

curve Ek. The above short exact sequence is compatible with the multiplication

map on elliptic curve E. Therefore, since the groups E [pi]◦(Kalg) are finite for

every i ∈ N, after taking the inverse limit we obtain a short exact sequence of

GK-modules,

1→ Tp(E)◦ → Tp(E)→ Tp(E)ét → 1.

Here we use the notation

Tp(E)◦ = lim←−
i≥1

E [pi]◦(Kalg)

and similarly

Tp(E)ét = lim←−
i≥1

E [pi]ét(Kalg).

After tensoring with Qp we have a short exact sequence of GK representations

(2) 1→ Vp(E)◦ → Vp(E)→ Vp(E)ét → 1.

Because the p-divisible group E [pi]ét is étale over Spec(OK), the action of GK on

the module Tp(E)ét is unramified.

Assume now that E has good ordinary reduction. Then both GK-modules

Tp(E)◦ and Tp(E)ét are free Zp-modules of rank one. On the other hand, it follows

from Cartier duality together with the self-duality of elliptic curves that there

exists a GK-equivariant isomorphism

Tp(E)◦ ∼= HomZp
(Tp(E)ét,Zp(1)).
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Therefore, we obtain that in the ordinary case the short exact sequence (2) is of

the form

1→ Qp(χ
−1)(1)→ Vp(E)→ Qp(χ)→ 1,

where χ is some unramified character.

Finally, assume that the elliptic curve E has good supersingular reduction.

Here, the only fact concerning the p-adic Tate module that we are going to use is

the following lemma (see also [M1, Lem. 8.1]).

Lemma 4.1. Suppose that E has good supersingular reduction. Then there are no

nontrivial IK-equivariant homomorphisms Vp(E)→ Qp.

Proof. Since the construction of a connected-to-étale exact sequence is functorial

with respect to unramified extensions of henselian local rings, after replacing K by

the completion of its maximal unramified extension we may assume that IK = GK .

Let Vp(E) → Qp be any GK-equivariant homomorphism, coming from a GK-

equivariant homomorphism Tp(E) → Zp of Zp-modules. Since the functor from

the category of p-divisible groups over Spec(K) to the category of Zp[GK ]-modules

given by the Tate module is fully faithful, we obtain a homomorphism

E[p∞]K → (Qp/Zp)K

of p-divisible groups over the field K. Now, by a theorem of Tate (see [T, Thm. 4]),

it comes from a unique homomorphism

E [p∞]OK
→ (Qp/Zp)OK

of p-divisible groups over Spec(OK). On the other hand, a homomorphism from

a connected group scheme to a constant group scheme must be trivial. Hence,

the homomorphism E[p∞]K → (Qp/Zp)K of p-divisible groups over the generic

fiber Spec(K) is trivial as well. Then it follows that the map Tp(E) → Zp is also

trivial.

§5. Potential type of reduction

In this section we are going to determine the potential type of reduction of the

elliptic curve E from the topological group ΠX , where X = E \O is a hyperbolic

curve introduced in Section 1. This means determining whether the curve E has

potentially good reduction or essentially bad reduction (i.e., has bad reduction

after every finite field extension). Recall that the elliptic curve has essentially bad

reduction if and only if after some finite field extension it is isomorphic to a Tate

curve. To obtain the desired group-theoretic description we will look at the Galois

action on the p-adic Tate module.
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Before we start, we discuss the following proposition, which we mentioned in

the introduction.

Proposition 5.1. The subgroup ∆X ⊂ ΠX may be reconstructed group theoreti-

cally from the topological group ΠX .

Proof. Consider the set S of all closed, normal subgroups H of ΠX which are

topologically finitely generated pro-p groups. This set contains the subgroup ∆X

and is partially ordered by inclusion. We claim that the group ∆X is in fact the

greatest element in the partially ordered set S, which will provide the desired

characterization. Indeed, let H be any subgroup contained in the set S. Since, for

every two subgroups H1 and H2 from the set S, their product H1H2 also belongs

to S, we may assume that ∆X ⊂ H. Consider now the image M ⊂ GK of H by

the surjection ΠX ↠ GK . The group M is also closed, normal and a topologically

finitely generated pro-p subgroup of GK . Let Ktm be the maximal tamely ramified

extension of K and let Gtm
K = Gal(Ktm/K) be the Galois group of this extension.

From the well-known structure of the group Gtm
K (see [NSW, Thm. 7.5.3]), it easily

follows that the image of M by the quotient map GK ↠ Gtm
K is trivial; therefore K

must be contained in the wild inertia subgroup Gwild
K ⊂ GK . On the other hand,

the group Gwild
K is a free pro-p group of infinite rank (see [NSW, Prop. 7.5.1]);

hence it has no nontrivial closed normal subgroups which are topologically finitely

generated. Thus, the group M is trivial, hence H = ∆X .

Therefore, from the topological group ΠX we may recover the short exact

sequence

1→ ∆X → ΠX → ΠX/∆X → 1,

as well as the representation

ΠX/∆X ↷ ∆ab
X ⊗Zp

Qp,

which is isomorphic to the representation GK ↷ Vp(E). In the rest of the paper

we will abuse the notation and simply write GK = ΠX/∆X . This will not lead to

confusion as long as we use only those properties of the group GK that are group

theoretic, hence preserved by its group of automorphisms (see the discussion in

Section 1). Similarly, we will identify the vector space ∆ab
X ⊗Zp Qp with Vp(E).

Proposition 5.2. The potential type of reduction of the elliptic curve E (i.e.,

potentially good or essentially bad) may be recovered group theoretically from the

topological group ΠX .

Proof. Recall that there exists a constant C > 0 such that for every elliptic curve

E over K there exists a finite field extension L/K over which E acquires split
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semiabelian reduction and, moreover, the degree [L : K] is bounded by C (which

does not depend on the elliptic curve E). Indeed, if E has essentially bad reduction

then E becomes isomorphic to a Tate curve over a quadratic extension of K (see

[Si2, Chap. V, Thm. 5.3]). On the other hand, if E has potentially good reduction

then it follows from [SeTa, §2, Cor. 2] that E has good reduction over the field

K(E[m]), where m ≥ 3 and m is not divisible by p. This proves the existence of a

constant C.

For a natural number d ≥ 1, it is known that every local field K has only

finitely many field extensions L/K inside Kalg such that [L : K] ≤ d. Define F to

be the compositum field of all finite field extensions L/K contained in Kalg such

that [L : K] ≤ C, where C is the constant introduced in the previous paragraph.

Then F/K is a finite extension, hence F is also a local field. By construction,

every elliptic curve over K has split semiabelian reduction over F . Moreover, the

corresponding open subgroup GF ⊂ GK is clearly group theoretic. Therefore, by

restricting to the subgroup GF we may and do assume that the elliptic curve E

has split semiabelian reduction over K.

We claim that E has bad reduction if and only if there exists a GK-equivariant

surjection Vp(E) ↠ Qp. Indeed, if E has bad reduction then sequence (2) provides

us with such a homomorphism. On the other hand, suppose that E has good

reduction and let ϕ be a GK-equivariant homomorphism ϕ : Vp(E) → Qp. We

are going to prove that every such homomorphism is trivial. If the reduction is

supersingular then we saw in Lemma 4.1 that the homomorphism ϕmust be trivial.

Suppose now that the reduction is ordinary. Then, as we saw in Section 4, there

exists a short exact sequence

1→ Qp(χ
−1)(1)→ Vp(E)→ Qp(χ)→ 1

of GK-modules, where χ is an unramified character. After restricting to the inertia

subgroup IK ⊂ GK we have a short exact sequence

1→ Qp(1)→ Vp(E)→ Qp → 1

of IK-modules. Since the restriction of p-adic cyclotomic character to the inertia

subgroup is nontrivial, every homomorphism Vp(E) → Qp must be trivial on the

submodule Qp(χ
−1)(1); hence it factorizes through the quotient Qp(χ). Thus, ϕ is

trivial if and only if the character χ is nontrivial. Since Qp(χ) is isomorphic to the

Tate module of the reduced curve Ek, we see that this action must be nontrivial,

otherwise it would imply the existence of infinitely many p-power torsion points

defined over the finite field k, which is absurd.
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Proposition 5.3. Assume that the elliptic curve E has potentially good reduction.

Then, from the topological group ΠX , we may determine whether the potential

reduction of E is supersingular or ordinary.

Proof. As in the proof of Proposition 5.2, we may extend the base field and assume

that the elliptic curve E has good reduction. Then we observe that the reduction is

ordinary if and only if there exists a surjective homomorphism Tp(E) ↠ Zp of IK-

modules. Indeed, if the reduction is ordinary then it follows from the description of

the p-adic Tate module of E. On the other hand, if the reduction is supersingular we

have seen that every homomorphism to the trivial one-dimensional representation

must be trivial.

Proposition 5.4. Assume that E has potentially good ordinary reduction. Then

we may determine from the topological group ΠX whether the elliptic curve E has

good reduction over the field K.

Proof. We claim that E has good reduction over K if and only if there exists a

short exact sequence of GK-modules

(3) 1→W ∗(1)→ Vp(E)→W → 1,

where W is a one-dimensional unramified representation such that W⊗2 is non-

trivial. First, let us observe that this condition is necessary. As we saw in Section 4,

if E has good ordinary reduction over K then there exists a short exact sequence

of GK-modules

1→ Qp(χ
−1)(1)→ Vp(E)→ Qp(χ)→ 1,

where χ is an unramified character. Moreover, the character χ does not have a

finite order, as follows from the argument that we used at the end of the proof

of Proposition 5.2. Thus the condition is necessary. We now prove that it is also

sufficient. Suppose that we have a sequence of representations as in (3). Since by

assumption W and W ∗ are not isomorphic, we may use Lemma 3.3 to obtain that

the p-adic representation Vp(E) is crystalline. Therefore, by Theorem 3.1, this

implies that the elliptic curve E has good reduction over K.

Remark 5.5. The proof of Proposition 5.4 was suggested by the referee; it re-

placed a less elementary argument which had been given by the author.

Summarizing, by looking at the Tate module of E, we were able to determine

group theoretically the potential reduction type of E. Moreover, in the case when

the curve E does have potentially good ordinary reduction, we were able to detect

whether E has good reduction over K. Therefore, we are reduced to recovering
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the reduction type of E under the assumption that E has potentially good super-

singular reduction. This is in fact the main case of Theorem 1.2 and resolving it

will occupy the rest of the paper.

§6. Kummer classes of functions

In this section we briefly recall a construction of anabelian Kummer classes of

certain regular functions on a hyperbolic curve. For more details, see [M3, §2].

Let X be a hyperbolic curve over a p-adic local field K with the smooth

compactification X of positive genus. We write O for the sheaf of regular functions

on X. We assume that all cusps of X, i.e., points on the boundary X \X, are K-

rational. Define

MX = HomZp
(H2(∆X ,Zp),Zp),

which is a Zp-module of rank one, equipped with a natural isomorphism

α1 : MX
∼= Zp(1)

coming from the Poincaré duality. Then there exists a group-theoretic construction

of an exact sequence

(4) 1→ H1(GK ,MX)→ H1(ΠX ,MX)→
⊕

x∈cusps

Zp.

We briefly recall how this construction proceeds. First, we need to construct group

theoretically a certain isomorphism ϱ : MX
∼= Ix, where Ix is an inertia group of

a cusp x. Assuming we have constructed ϱ, consider the inflation exact sequence

with coefficients in MX :

1→ H1(GK ,MX)→ H1(ΠX ,MX)→ H1(∆X ,MX)GK .

Write I ⊂ ∆ab
X for the subgroup generated by inertia groups Ix of cusps; thus we

have a surjection
⊕

x∈cusps Ix ↠ I. Then one computes that

H1(∆X ,MX)GK = HomGK
(∆ab

X ,MX) ↪→ Hom(I,MX).

Thus, using the surjection
⊕

x∈cusps Ix ↠ I together with the isomorphism ϱ we

obtain

Hom(I,MX) ↪→ Hom

( ⊕
x∈cusps

Ix,MX

)
∼=

⊕
x∈cusps

Zp,

hence also the sequence (4). We now recall the construction of the isomorphism

ϱ. Let x be a fixed cusp; without loss of generality we may assume that x is K-

rational. Let U = X \ {x} be an open subscheme of X obtained by removing the
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point x from X; thus we have a surjection ∆U ↠ ∆X . Consider now the maximal

centrally cuspidal subquotient

∆U ↠ Q ↠ ∆X ,

i.e., the maximal subquotient Q of ∆U ↠ ∆X in which inertia groups Ix are

central. Hence we have a central extension

1→ Ix → Q→ ∆X → 1.

Consider the coboundary map from the inflation exact sequence in group coho-

mology associated to the above short exact sequence with coefficients in Ix:

Hom(Ix, Ix) = H1(Ix, Ix)
∆X → H2(∆X , IIxx ) = H2(∆X , Ix).

By definition of MX , we have canonical isomorphisms

Hom(MX , Ix) ∼= Hom(MX ,Zp)⊗ Ix ∼= H2(∆X ,Zp)⊗ Ix ∼= H2(∆X , Ix).

Therefore, by composition we obtain a natural and group-theoretic homomorphism

Hom(Ix, Ix)→ Hom(MX , Ix).

Finally, the desired isomorphism ϱ : MX
∼= Ix is constructed as the image of the

identity map on Ix.

The exact sequence (4) is closely related to the usual divisor map. More

precisely, we have a Kummer map

O(X)∗ → H1(ΠX ,MX),

and a commutative diagram

K∗ O(X)∗
⊕

x∈cusps Z

H1(GK ,MX) H1(ΠX ,MX)
⊕

x∈cusps Zp,

div

where the map div is the divisor map. Moreover, the kernel of the left vertical map

is equal to the subgroup of roots of unity in K∗ of order prime to p.

From the topological group GK one can functorially construct a GK-module,

denoted by Zp(GK), as follows. First, let (Gab
K )tor be the torsion subgroup of the

abelianization Gab
K and consider the colimit

µ(GK) = lim−→
L/K

(Gab
L )tor,
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indexed by all finite extensions L/K with transition maps given by the transfer.

Finally, write µn(GK) for the n-torsion subgroup of µ(GK) and define

Zp(GK) = lim←−
i∈N

µpi(GK).

From the construction we obtain a natural isomorphism α2 : Zp(1) ∼= Zp(GK) of

GK-modules induced by the reciprocity map from local class field theory. It is easy

to see that the inclusion of any open subgroup GL ↪→ GK induces an isomorphism

Zp(GL) ∼= Zp(GK). Moreover, from the data of the topological group GK , there

exists a group-theoretic construction of a canonical map

(5) H1(GK ,Zp(GK)) ↠ Zp

which makes the following diagram commutative:

H1(GK ,Zp(1)) K̂∗ K∗

H1(GK ,Zp(GK)) Zp Z.
≃

≃

We also note here that the subset Z ⊂ Zp, as well as the element 1 ∈ Zp of the

quotient (5), have a purely group-theoretic characterization.

Definition 6.1. The isomorphism Ξ : MX
∼= Zp(GK) obtained as a composition

α2 ◦ α1 will be called the rigidity isomorphism.

The isomorphism Ξ will play an important role in what follows. Observe that

it is not clear from the construction if Ξ can be constructed group theoretically

since its definition uses the module Zp(1), which is not group theoretic. We will

see in Section 9 that such a construction exists when the compactification X of X

is an elliptic curve with potentially good supersingular reduction. Note that the

set Isom(MX ,Zp(GK)) of isomorphisms of GK-modules is naturally a Z∗
p-torsor;

hence any isomorphism β in this set is equal to λΞ for some λ ∈ Z∗
p (using additive

notation).

We define the valuation map

vK : H1(GK ,MX) ∼= H1(GK ,Zp(GK)) ↠ Zp,

where the first map is induced by Ξ and the second map is the canonical surjec-

tion (5). Here we use the same notation as for the valuation map vK : K∗ ↠ Z;
we will see shortly that it does not lead to confusion. We also have the normalized

version

(6) v : H1(GK ,MX)
vK−−→ Zp

17→e(K)−1

−−−−−−−→ Qp
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obtained as a composition of vK and a map of Zp-modules Zp → Qp sending 1

to the inverse of the absolute ramification degree e(K) of K. The map v does not

depend on K, in the sense that it is compatible with restriction to open subgroups

GL ↪→ GK .

Next we come to evaluating functions at points. Let s : GK → ΠX be a section

of the surjection ΠX ↠ GK coming from a K-rational point P of the curve X. We

define the map

valP,K : H1(ΠX ,MX)
s∗−→ H1(GK ,MX)

vK−−→ Zp,

as well as its normalized version

valP : H1(ΠX ,MX)
s∗−→ H1(GK ,MX)

v−→ Qp.

Here the map s∗ is a restriction morphism determined by the section s. Then we

have vK(f(P )) = valP,K(f) and v(f(P )) = valP (f); in other words the following

diagram is commutative:

O(X)∗ Z

H1(ΠX ,MX) Zp,

f 7→vK(f(P ))

valP,K

which justifies the abuse of notation for vK and v.

It will be convenient to introduce slightly more general evaluation maps. Let

β : MX
∼= Zp(GK) be an isomorphism ofGK-modules, say β = λΞ for some λ ∈ Z∗

p.

We define a map

vK,β : H
1(GK ,MX) ∼= H1(GK ,Zp(GK)) ↠ Zp,

where the first isomorphism is induced by β and the second map is again the

homomorphism (5). Thus we have an equality vK,β = λvK . Similarly, for a section

s : GK → ΠX coming from a rational point P we denote

valP,β : H
1(ΠX ,MX)

s∗−→ H1(GK ,MX)
vK,β−−−→ Zp,

thus we also have valP,β = λ valP,K . Clearly, the collection of all maps vK,β and

valP,β , where β goes through all GK-equivariant isomorphisms MX
∼= Zp(GK), is

group theoretic.

As we have observed, the construction of the map valP is not a priori group

theoretic since it uses the rigidity isomorphism Ξ, which in turn relies on the

scheme-theoretic module Zp(1). Moreover, it follows from the above discussion

that determining the trivialization Ξ of the torsor IsomGK
(MX ,Zp(GK)) would

allow group-theoretic construction of the values vK(f(P )).
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§7. Cuspidal sections

In this section we introduce the definition of a discrete section associated to a

cusp of a hyperbolic curve and its relation to the integral model of the curve. This

notion has already been considered in [M2].

We first consider the following elementary situation arising in group theory.

Let G be a group, A be an abelian group and suppose that we have a short exact

sequence of groups

1→ A→ Π
p−→ G→ 1.

The group Π acts by conjugation on A and determines a left action Π →
Aut(A) descending to an action G → Aut(A). Therefore, the abelian group A

is naturally a left G-module. Denote by Sec(Π, G) the set of all sections of the

surjection Π ↠ G. This set has a natural left action of the group A given by

conjugation. Let S (Π, G) be the quotient of the set of sections by this action.

Finally, denote by C the subset of all cohomology classes in H1(Π, A) such that

their image under the restriction map

H1(Π, A)→ H1(A,A) = Hom(A,A)

is equal to the identity homomorphism. The following lemma is well known.

Lemma 7.1. There is a natural bijection of sets C ≃ S (Π, G) given explicitly as

follows:

� If [aπ] ∈ C ⊂ H1(Π, A) is a cohomology class, then we define the corresponding

section s : G→ Π by the formula s(g) = (aπ)
−1π, where π ∈ Π is any element

such that p(π) = g.

� If s : G → Π is a section of the surjection Π ↠ G, then we define the corre-

sponding cocycle aπ by the formula aπ = πs(p(π−1)).

Proof. We include the proof for the convenience of the reader. Let s be a section

and for every π ∈ Π we define aπ ∈ A by the formula π = aπs(p(π)). By definition,

we have

aππ′s(p(ππ′)) = ππ′ = aπs(p(π))aπ′s(p(π′)).

Since p and s are homomorphisms we obtain

aππ′s(p(π)) = aπs(p(π))aπ′ ;

thus aππ′ = aπa
π
π′ and π 7→ aπ is a cocycle. It is obvious that aπ = π for all π ∈ A;

thus the restriction to A is the identity map. For α ∈ A, consider the conjugated
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section s′ = sα with the corresponding cocycle bπ. We compute

π = bπs
′(p(π)) = bπαs(p(π))α

−1 = bπa
−1
π απα−1;

therefore απα−1 = bπa
−1
π , and hence the equality of classes [aπ] = [bπ].

Now let [aπ] be a cohomology class in H1(Π, A) defined by a cocycle π 7→ aπ
such that its restriction to A is the identity map. Define the section s : G→ Π as

s(g) = a−1
π π, where π is a lift of g to Π. It is well defined since if π′ is another lift

of g then we have π′ = απ for some α ∈ A; hence

a−1
π′ π

′ = a−1
π α−1απ = a−1

π π.

We need to check that s is a group homomorphism. Fix g, g′ ∈ G with lifts π and

π′, respectively; then we have

s(gg′) = a−1
ππ′ππ

′ = πa−1
π′ π

−1a−1
π ππ′ = πa−1

π′ π
−1s(g)π′.

Hence, using that π−1s(g) ∈ A, after rearranging we obtain s(g)s(g′).

Moreover, let bπ be a cocycle cohomologous to aπ; thus we may write bπ =

aπα
πα−1 for some α ∈ A. Let s′ be the section obtained from the cocycle bπ; then

we compute

s′(g) = α(α−1)πa−1
π π = απα−1π−1s(g) = αs(g)α−1.

Therefore, s′ is a conjugate of s. It is now easy to check that both maps constructed

above are inverses of each other.

After this preliminary discussion, we recall the local structure of a fundamen-

tal group at cusps. Let X be an affine hyperbolic curve over a local field K and

let X be the smooth compactification of X. Therefore, we have a surjection of

geometrically pro-p fundamental groups ΠX ↠ ΠX as well as a surjection of pro-p

fundamental groups ∆X ↠ ∆X .

Let x be a K-rational cusp of the hyperbolic curve X. We fix a decomposition

group D ⊂ ΠX of x and denote by I = D ∩∆X its inertia group. Then we have a

short exact sequence

1→ I → D → GK → 1.

The group I is canonically isomorphic to Zp(1) as a GK-module. We recall the

definition of a cuspidal section.

Definition 7.2. We say that a section s of the surjection ΠX ↠ GK is cuspidal

at x if its image lies in some decomposition group of the cusp x, i.e., if s comes

(up to conjugation) from the section of the surjection D ↠ GK .
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Therefore, the set of conjugacy classes of cuspidal sections at the cusp x

is a torsor over the group H1(GK , I) ∼= K̂∗. Moreover, by Lemma 7.1, we may

identify this torsor with a set of cohomology classes in H1(D, I) whose restriction

to H1(I, I) is the identity.

Let OX,x be the local ring at the point x with the maximal ideal mx. Define

Kx to be the fraction field of the completion of OX,x with respect to mx-adic

topology

Kx = Frac(ÔX,x).

The field Kx is noncanonically isomorphic to the field K((T )) of Laurent series with

coefficients in K. Let Gx be the absolute Galois group of the field Kx (defined with

respect to some algebraic closure Kalg
x which we may assume to satisfy Kalg ⊂

Kalg
x ). Then we have the induced surjection Gx ↠ GK . Define ∆x to be the kernel

of this surjection; hence we have a short exact sequence of groups

1→ ∆x → Gx → GK → 1.

The group ∆x may be identified with the absolute Galois group of the tensor

product Fx = Kx ⊗K Kalg and is noncanonically isomorphic as a GK-module to

the group Ẑ(1). The decomposition group D may be identified with the quotient

of the absolute Galois group Gx such that the induced quotient ∆x ↠ I is equal

to the maximal pro-p quotient, i.e., we have a commutative diagram

1 ∆x Gx GK 1

1 I D GK 1.

The quotient Gx ↠ D corresponds to the Galois group of the field extension

Lx/Kx, where Lx is the maximal pro-p extension of the field Fx. Therefore, sections

of the surjection D ↠ GK may be identified with field subextensions Kx ⊂ M ⊂
Lx satisfying Gal(Lx/M) ∼= GK .

Extensions of this form can be constructed as follows. Let t ∈ mx \m2
x, choose

a compatible system {t1/pi} of p-power roots of t and define the field

Mt =
⋃
i≥1

Kx(t
1/pi

).

One checks that the fieldMt satisfies Gal(Lx/Mt) ∼= GK ; hence it defines a cuspidal

section st : GK → D. Moreover, different choices of a compatible system of roots

of t correspond to conjugating the section st by the elements of the group I.

Therefore, the conjugacy class of the section st does not depend on this choice.
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Let Ux be the multiplicative group 1 + m̂x, where m̂x is the maximal ideal

mxÔX,x of the local ring ÔX,x. We easily see that the group Ux is divisible. Thus,

for any two uniformizers satisfying t ≡ t′ mod m̂2
x, we have Mt = Mt′ for some

choice of compatible systems of roots. This implies that sections st and st′ are in

the same conjugacy class. Therefore, the conjugacy class of a section st depends

only on the cotangent vector t̄ ∈ m̂x/m̂
2
x. We denote by

T∨
K = m̂x/m̂

2
x = mx/m

2
x

the cotangent space at the point x. For a nonzero vector ω belonging to the (one-

dimensional) K-vector space T∨
K , we define the conjugacy class of cuspidal sections

sω as a conjugacy class of a section st, where t is a lift of ω to the maximal ideal

mx. Thus, we obtain a well-defined map of sets

T∨
K \ {0} →

{
conjugacy classes of sections of D ↠ GK

}
.

Definition 7.3. We say that a cuspidal section s : GK → D is discrete if its

conjugacy class is equal to a conjugacy class of a section sω for some nonzero

cotangent vector ω in T∨
K .

The set of all sections of the surjection D ↠ GK is a torsor over the group

H1(GK , I) ∼= H1(GK ,Zp(1)) ∼= K̂∗.

Moreover, the set of nonzero differentials ω ∈ T∨
K is clearly a K∗-torsor. One easily

observes that these torsor structures are compatible with the natural map K∗ →
K̂∗; in other words, for every a ∈ K∗ and ω ∈ T∨

K we have asω = saω. Indeed,

the description of the torsor structure of cuspidal sections is given as follows. Let

a be an element of K̂∗ which defines a sequence of elements ai ∈ K∗/(K∗)p
i

satisfying aj = ai mod (K∗)p
i

for j ≥ i. Moreover, let t be a uniformizer with the

corresponding section st. Then consider the field extension

La =
⋃
i≥1

Kx(bit
1/pi

),

where bp
i

i = ai. By construction, this field extension defines the section ast; hence

the compatibility follows. In particular, the set of discrete sections is naturally a

K∗µ-torsor.

Suppose now that the hyperbolic curve X has stable reduction over K (see

[K] for a definition of a stable curve), and denote by X the stable model of X

over OK . Then the cotangent space T∨
K , which is of dimension one over K, has

a canonical OK-submodule T∨
OK

of rank one determined by the stable model X .
Thus, the set of generators of this OK-submodule is an O∗

K-torsor.
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Definition 7.4. Assume that the curve X has stable reduction over K . We say

that a cuspidal section s : GK → D is integral if it is equal to a discrete section

sω for a cotangent vector ω contained in the O∗
K-torsor of generators of the OK-

module T∨
OK

. Similarly, we say that a uniformizer or a differential is integral if the

corresponding section is integral.

The set of integral sections is a UK-torsor whose extension along the group

homomorphism UK ↪→ K∗µ may be identified with the K∗µ-torsor of discrete

sections.

For a cuspidal section s we may consider its restriction to an open subgroup

GL ⊂ GK which determines a cuspidal section sL at the unique lift of the cusp x

to the curve XL. It is easy to see that if the section s is discrete then its restriction

sL is discrete as well. However, it may happen that a nondiscrete section s becomes

discrete after some field extension. On the other hand, we observe that the notion

of an integral section is invariant under base change.

Lemma 7.5. Assume that the curve X has stable reduction over OK . Then the

section s is integral if and only if the section sL is integral.

Proof. When s is an integral section then the section sL is integral as well. Indeed,

it follows immediately from the compatibility of stable models with base change.

Suppose now that the section sL is integral. Choose any integral section s′ of

D ↠ GK and let s′L be its restriction to GL, which is also integral. Then we have

s = as′ for some a ∈ K̂∗, as well as sL = bs′L for some b ∈ UL, since both sections

sL and s′L are integral. Therefore, by restricting the first equality to GL we obtain

a = b. On the other hand, it is easy to check that UL ∩ K̂∗ = UK ; therefore a

belongs to UK . It implies that s is an integral section.

In the following we will need to compare the cohomology class associated to

a cuspidal section with a certain Kummer class. First, fix a cotangent vector ω in

T∨
K and let sω be a discrete cuspidal section associated to ω. Using the bijection

from Lemma 7.1 we obtain a cohomology class α in H1(D, I) determined by the

section sω. On the other hand, using the differential ω we may construct another

cohomology class in the following way. Choose a regular function f on U , where

U is an open subscheme of X, with simple zero at the cusp x and inducing the

cotangent vector ω. Hence we obtain the Kummer class ηf ∈ H1(ΠU ,Zp(1)) of the

function f . Consider now the composition

H1(ΠU ,Zp(1))→ H1(D,Zp(1)) ∼= H1(D, I),
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where the first map is the restriction and the second comes from the natural

isomorphism Zp(1) ∼= I. Let β be the image in H1(D, I) of the Kummer class ηf
by this composition.

Lemma 7.6. Using notation from the above discussion, the cohomology classes α

and β are equal.

Proof. This follows immediately from the construction. Indeed, let t be a uni-

formizing element lifting the cotangent vector ω. Then the restriction of the Kum-

mer class of f to the cohomology group H1(D,Zp(1)) is equal to the cohomology

class associated to the projective limit of cocycles

D ∋ π 7→ π(t1/p
n

)

t1/pn ∈ µpn .

On the other hand, let s be a cuspidal section determined by the cotangent vector

ω. Then, by definition, the cohomology class in H1(D, I) associated to s is repre-

sented by the cocycle π 7→ aπ, where aπ satisfies the equality π = aπs(p(π)). Here,

p denotes the projection p : D ↠ G. Recall that the section s was constructed using

a certain quotient of the absolute Galois group of the field Mt =
⋃

i≥1 Kx(t
1/pi

)

for some choice of a compatible system of roots of t. In particular, by replacing s

by some conjugate section, we may assume that the image of s acts trivially on

the field Mt. Therefore, we obtain the equality

π(t1/p
n

)

t1/pn =
aπ(t

1/pn

)

t1/pn .

Moreover, by the construction of the natural isomorphism I ∼= Zp(1) we see that

the element on the right-hand side of the above equality corresponds to the image

of aπ in the quotient I/pnI. Therefore, by taking the inverse limit we obtain that

the cohomology class of β is represented by the cocycle π 7→ aπ; hence it is equal

to the class determined by α.

§8. Cohomology classes of standard functions

To analyse the case of potentially good reduction we will need to introduce coho-

mology classes of certain special functions.

Let E be an elliptic curve over a p-adic local field K with p > 2 and X be the

hyperbolic curve E \ {O}. Choose a minimal Weierstrass equation of E over K,

(7) y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6;
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thus coefficients ai belong to the valuation ringOK . We fix the minimal Weierstrass

equation (7) and when we refer to the function x it is always understood to be the

chosen coordinate function. It will be useful to introduce the following definition.

Definition 8.1. Let P be a nonzeroK-rational point on E. We say that a rational

function f on E is a standard function associated to P if it has a double pole at

the origin O and is regular on X with a zero at P ; equivalently f is of the form

f = λ(x − x(P )) for some λ ∈ K∗. Moreover, we say that the function f is an

integral standard function if λ is a p-adic unit.

For a fixed point P the set of standard functions at P is a K∗-torsor; similarly

the set of integral standard functions is an O∗
K-torsor. For a finite field extension

L/K we may also consider the L∗-torsor of standard functions at P on the curve

EL, and it is clear that a standard function on E remains standard on EL. Thus

we may speak unambiguously of a standard function at P , without mentioning the

base field. However, this is not true for integral standard functions since the base

change of a minimal Weierstrass model may no longer be minimal over a larger

field. On the other hand, if we assume that E has good reduction over K, then we

see that integral standard functions remain integral after finite field extension.

For a natural number n we denote byXn the open subscheme of E obtained by

removing all pn-torsion points and by Kn = K(E[pn]) the field extension obtained

by adding coordinates of all pn-torsion points. We recall that by applying the

elliptic cuspidalization (see [M2]), one can reconstruct group theoretically from the

topological group ΠX the ∆X -outer surjection ΠXn ↠ ΠX corresponding to the

open immersion Xn ↪→ X (up to a choice of K-rational cusp of Xn corresponding

to the origin of E). Furthermore, by considering automorphisms of the group ΠXn

over ΠX , one can also reconstruct a group structure on the set of cusps of Xn

corresponding to the group structure of the set of pn-torsion points of E.

Next, for every finite field extension L/K, we write ΠXn,L for the preimage of

GL under the surjection ΠXn
↠ GK , i.e., the corresponding fundamental group of

the base changed curve (Xn)L. Then, for every finite field extension L/K contain-

ing Kn, we may apply Kummer theory to construct group theoretically the exact

sequence

(8) 1→ H1(GL,MX)→ H1(ΠXn,L,MX)→
⊕

x∈cusps

Zp.

Here, the set of cusps is equal to the group of pn-torsion points; we denote the

rightmost map by α 7→ (ord(α)x)x. The morphism ord(·)x : H1(ΠXn
,MX) → Zp

at a cusp x is a profinite analogue of the usual notion of the order of zero (or pole)

of a rational function. In particular, if α is a cohomology class of a nonzero rational
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function f on X, then ord(f)x is an integer equal to the order of f at x. Moreover,

the map ord(·)x is compatible with base field extensions. Suppose now that α

is a cohomology class in H1(ΠXn,L,MX) such that ord(α)x lies in the submodule

Z ⊂ Zp. Then we say that α is regular at x (has pole at x) if ord(α)x is nonnegative

(negative) with corresponding order equal to the absolute value of ord(α)x.

For a fixed nonzero pn-torsion point P , we consider a subset of the group

H1(ΠXn,L,MX) consisting of all classes which have a double pole at the cuspO and

single zeros at points P and −P . This set is a torsor over the group H1(GL,MX) ∼=
L̂∗ and contains Kummer classes of standard functions at P . Elements in this set

may be written as functions of the form λ(x− x(P )), where λ ∈ L̂∗. Cohomology

classes contained in this L̂∗-torsor will be called profinite standard functions (at

P ). Classes corresponding to the images of standard functions under the Kummer

map will also be called standard classes; they form an L∗µ-torsor. Similarly, when

E has stable reduction over L, then classes corresponding to the images of integral

standard functions will be called integral ; they form a UL-torsor.

Observe that the notion of a profinite standard function is group theoretic.

Indeed, since the group structure on the set of cusps (i.e., pn-torsion points of

E) can be reconstructed, for a cusp P it is possible to define the cusp −P group

theoretically. Then the torsor of profinite standard functions is obtained from the

sequence (8) as the preimage of an appropriate divisor. On the other hand, observe

that it is not clear a priori whether the subset of standard classes is group theoretic.

It will be convenient to introduce a certain colimit of cohomology groups

which contains Kummer classes of all standard functions associated to p-power

torsion points. Recall that for each pair of natural numbers m ≥ n, elliptic cuspi-

dalization also constructs the ∆Xn -outer surjection ΠXm ↠ ΠXn coming from the

open immersion Xm ↪→ Xn. Therefore, we may construct group theoretically the

inflation map

H1(ΠXn
,MX) ↪→ H1(ΠXm

,MX),

which is injective. Also, for a finite field extension L/K, the restriction map

H1(ΠXn
,MX) ↪→ H1(ΠXn,L,MX)

is injective. With respect to these injections, we introduce the colimit

S(X) = lim−→
L/K

lim−→
n∈N

H1(ΠXn,L,MX)

over all natural numbers n and finite extensions L/K. It follows from the con-

struction that the group S(X) contains all Kummer classes of rational functions

on EKalg which are standard at a nonzero p-power torsion point.
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Let P and Q be two nonzero p-power torsion points and let f = a(x− x(P ))

and g = b(x−x(Q)), for some a, b ∈ (Kalg)∗, be two standard functions associated

to points P and Q, respectively. We say that f and g are equivalent if the element

ab−1 ∈ (Kalg)∗ is a root of unity. We easily see that this notion does not depend

on the choice of minimal Weierstrass equation and, indeed, it is an equivalence

relation. Moreover, observe that for P ̸= ±Q, the functions f and g are equivalent

if and only if f(Q)g(P )−1 is a torsion element in the group (Kalg)∗.

We can make a similar construction at the level of cohomology classes. Let

L/K be a finite field extension and let f = a(x− x(P )) and g = b(x− x(Q)), for

some a, b ∈ L̂∗, be two profinite standard functions associated to P and Q. We

say that the classes f and g are equivalent if the element ab−1 ∈ L̂∗ is torsion.

Observe that two standard functions are equivalent if and only if their Kummer

classes are equivalent. Indeed, it follows from the fact that for every local field L

the kernel of the map L∗ → L̂∗ is contained in the group of roots of unity. The

next lemma shows this notion of equivalence is group theoretic.

Lemma 8.2. From the topological group ΠX we may construct, group theoreti-

cally, equivalence classes of profinite standard functions, considered as cohomology

classes inside the colimit S(X).

Proof. Pick any two torsion points P and Q as above and two profinite stan-

dard functions f, g ∈ S(X) associated to these two points. We need to determine

whether they are equivalent. We may assume that P ̸= ±Q. Fix some finite field

extension L such that P and Q become L-rational and a natural number m such

that they are both pm-torsion. By further extending L we may also assume that

f and g belong to H1(ΠXm,L,MX); thus f = a(x−x(P )) and g = b(x−x(Q)) for

some a, b ∈ L̂∗. Fix two sections sP , sQ of the map ΠXm,L ↠ GL corresponding

to points P and Q, respectively.

Consider now the evaluation maps

H1(ΠXm,L,MX)
s∗P−−→ H1(GL,MX)

and

H1(ΠXm,L,MX)
s∗Q−−→ H1(GL,MX),

obtained by pulling back along sections sP and sQ. By evaluating the classes f

and g at points Q and P we obtain two elements s∗P (g) and s∗Q(f) of the group

H1(GL,MX) ∼= L̂∗. Then it is enough to observe that f is equivalent to g if and

only if the element s∗P (g)s
∗
Q(f)

−1 is torsion in the group H1(GL,MX).
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§9. Determination of the rigidity isomorphism

In this section (apart from Corollary 9.7) we assume that the elliptic curve E has

good supersingular reduction over K. We are going to use the theory developed

in Sections 6 and 8 to give a group-theoretic construction of two closely related

objects: (1) the rigidity isomorphism Ξ defined in Section 6; (2) various torsors of

Kummer classes of integral standard functions at p-power torsion points.

Let P ∈ E(Kalg) be a torsion point of p-power order. Since the p-divisible

group associated to the elliptic curve Ek is connected, it has no nontrivial field-

valued points; hence the image of P under the reduction map

E(Kalg) = E(OKalg)→ Ek(kalg)

is trivial. In other words, using equation (7), if P is represented in homogeneous

coordinates by

[XP : YP : ZP ],

where XP , YP and ZP are integral and are not all contained in the maximal ideal

of OK , then we have v(XP ) > 0 and v(ZP ) > 0, while v(YP ) = 0. Therefore, going

back to inhomogeneous coordinates P = (x(P ), y(P )), one obtains v(y(P )) < 0.

Moreover, by comparing absolute values in equation (7), we also obtain v(x(P )) <

0; in fact v(x(P )) = −2h(P ) and v(y(P )) = −3h(P ), where h is the local Néron–

Tate height function. Therefore, it follows from the transformation formula for the

Weierstrass equation that the value v(x(P )) is in fact independent of the choice

of a minimal Weierstrass equation.

We are going to use a result from [Si] (originally due to Cassels), which bounds

the value v(x(P )) from below. The formulation we will need is the following lemma.

Lemma 9.1. Let P = (x(P ), y(P )) be a torsion point on the elliptic curve (7)

of the exact order pn, for some natural number n. Then we have the following

inequality

0 > v(x(P )) ≥ − 2

pn − pn−1
.

Proof. We have already seen that the first inequality holds. The second one is

just a reformulation of [Si, Chap. VII, Thm. 3.4], once we compare our notation.

Let L = K(E[pn]) be the field extension obtained by adding coordinates of all

torsion points of E of order pn. Let π be the uniformizing element of L and let

e = e(L/Qp) be the absolute ramification degree of the field L. Then by [Si,

Chap. VII, Thm. 3.4] we have π2rx(P ) ∈ OL, where

r =
⌊ e

pn − pn−1

⌋
.
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Since v(π) = 1/e, it is equivalent to 2r/e+ v(x(P )) ≥ 0. On the other hand,

2r

e
≤ 2e

e(pn − pn−1)
=

2

pn − pn−1
,

which is exactly the statement of the lemma.

We immediately obtain the following corollary.

Corollary 9.2. Let E be an elliptic curve with good supersingular reduction and

let x be a rational function from the minimal Weierstrass equation (7). For each

natural number n, let Pn be a torsion point on the elliptic curve E of exact order

pn. Then v(x(Pn)) < 0 for all n, and moreover we have

lim
n→∞

v(x(Pn)) = 0.

Let us show how Corollary 9.2 may be applied to the problem of constructing

the rigidity isomorphism Ξ. Recall that the set of GK-equivariant isomorphisms

MX
∼= Zp(GK) is a Z∗

p-torsor with a canonical trivialization Ξ. Define Q∗
(p) to be

the intersection Q∗ ∩ Z∗
p, i.e., a subgroup of Q∗ consisting of all rational numbers

a/b, where a, b are nonzero, relatively prime and such that ab is not divisible by p.

As a first approximation to a group-theoretic construction of Ξ, we construct a

reduction of this Z∗
p-torsor to a Q∗

(p)-torsor.

Lemma 9.3. The Q∗
(p)-orbit of the rigidity isomorphism Ξ may be reconstructed

group theoretically from the topological group ΠX .

Proof. Let n be a sufficiently large natural number, which we will specify later.

Pick a torsion point Pn of exact order pn and denote by Kn = K(E[pn]) the field

extension obtained by adjoining coordinates of all pn-torsion points. We also choose

another nontrivial pn-torsion point Q such that Q ̸= ±Pn and let sQ : GKn
→

ΠXn
be a cuspidal section at Q. Finally, choose any GK-equivariant isomorphism

β : MX
∼= Zp(GK); it induces the valuation map valQ,β : H

1(ΠXn ,MX) → Qp, as

constructed in Section 6.

Consider now the set Sn of profinite standard functions f associated to the

point Pn which satisfy the equality valQ,β(f) = 0 after restriction to GKn
. Recall

that the kernel of the valuation map vβ : H
1(GKn

,MX) → Qp does not depend

on the choice of isomorphism β; thus the set Sn is also independent of the choice

of isomorphism β. Moreover, every profinite function f in Sn is in fact standard;

more precisely, f = u(x − x(Pn)) with some element u ∈ L∗µ satisfying v(u) =

−v(x(Q)− x(Pn)). We choose one function from Sn and call it fn.

We introduce the subset An ⊂ Qp consisting of all valuations valR,β(fn),

where R runs through the set of all nontrivial pn-torsion points different from ±Pn.
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Because the function fn is standard, the set An is contained in a one-dimensional

Q-vector subspace Qλ ⊂ Qp, where λ ∈ Z∗
p is such that β = λΞ. Moreover, it

follows from Corollary 9.2 that for n large enough the set An is not a singleton;

therefore, it generates Qλ as a Q-vector space. Finally we observe that an iso-

morphism β belongs to the Q∗
(p)-orbit of the rigidity isomorphism Ξ if and only if

the subspace Qλ is equal to the natural Q-vector subspace Q ⊂ Qp generated by

1 ∈ Qp (which is group theoretic, as we mentioned in Section 6).

Recall that in Section 8 we also defined (in the case of stable reduction) the

torsor of integral standard functions at a nonzero torsion point. Since the elliptic

curve E has good reduction, the construction of this torsor is compatible with

finite field extensions. The next proposition says this torsor can also be constructed

group theoretically. Here the proof relies crucially on Corollary 9.2.

Proposition 9.4. Assume that the elliptic curve E has good supersingular reduc-

tion and fix a nonzero torsion point P of p-power order. Then, for a sufficiently

large finite field extension L/K the UL-torsor of integral standard functions at

P can be reconstructed group theoretically from the topological group ΠX and a

decomposition group DP ⊂ ΠX of P , as a subset of the group S(X).

Proof. Let β : MX
∼= Zp(GK) be an isomorphism of GK-modules belonging to a

Q∗
(p)-orbit of Ξ; by Lemma 9.3 this condition is group theoretic. Thus we have

β = λΞ for some λ ∈ Q∗
(p) and the valuation map vβ determined by β satisfies

vβ = λv.

For every nontrivial p-power torsion point R we choose a profinite standard

function fR ∈ S(X) associated to the point R. Using Lemma 8.2, we may assume

that all functions fR lie in the same equivalence class. Moreover, we may also

assume that for every R as above and for every nontrivial p-power torsion point

Q satisfying Q ̸= ±R, we have that valQ(fR) ∈ Q ⊂ Qp. Observe that the last

condition is group theoretic since it is equivalent to valQ,β(fR) ∈ Q by the choice

of β.

Now pick a sequence of p-power torsion points Pi, for i ≥ 1, such that the

point Pi is of exact order pi; in particular, the exact orders of these points go to

infinity as i→∞. To ease the notation, we write fj = fPj
. Finally, for every pair

of distinct natural numbers i, j we consider the absolute value

vi,j = valPi
(fj) ∈ Q.

Then, by Lemma 9.3, the double sequence (vi,j)i,j of rational numbers can be

reconstructed group theoretically up to multiplication by a rational number, since

vβ = λv for λ ∈ Q∗
(p).
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Observe that for a fixed i the sequence (vi,j)j becomes constant for sufficiently

large j. Indeed, if we denote fj = uj(x−x(Pj)), then the valuation v(uj) does not

depend on j since, by construction, the functions fj are in the same equivalence

class. Denote this constant value by a = v(uj). Thus, from Corollary 9.2 we see

that for sufficiently large index j we have

vi,j = v(uj(x(Pi)− x(Pj))) = v(uj) + v(x(Pi)− x(Pj)) = a+ v(x(Pi)).

Therefore, for a fixed i, the sequence (vi,j)j is eventually constant; we write vi =

vi,j for all j ≫ 0.

We claim that the sequence vi of rational numbers converges to zero if and

only if every function fj is an integral standard function associated to the point

Pj . Indeed, we have seen that vi = a+v(x(Pi)); thus, again using Corollary 9.2, we

obtain that the sequence vi converges to a. Since a = v(uj) for every j, the result is

clear. Finally, observe that this statement provides a desired group-theoretic char-

acterization since the convergence property vi → 0 is invariant by multiplication

by a nonzero rational number λ.

Remark 9.5. Observe that in the proof of Proposition 9.4 we also determined

the set of absolute values v(x(P )) of all nontrivial p-power torsion points up

to multiplication by some rational number λ. Indeed, using notation from the

proof, when functions fj are in fact all integral standard functions then we have

vi = v(x(Pi)). Therefore, for every two nontrivial p-power torsion points P , Q, the

quotient h(P )/h(Q) = v(x(P ))/v(x(Q)) ∈ Q can be determined group theoreti-

cally. Here h(P ) is the Néron–Tate local height function of the point P .

We are now going to eliminate the Q∗
(p)-indeterminacy in Lemma 9.3, i.e., to

give a group-theoretic construction of the rigidity isomorphism Ξ. For this, we first

need to recall a few facts concerning the height of p-torsion points of an elliptic

curve with a good supersingular reduction. Here we follow [Se, Sects 1.10 and 1.11].

Let E be an elliptic curve over K and assume that it has good supersingular

reduction over K. Thus, the p-divisible group E [p∞] determined by E is con-

nected and one-dimensional, and thus determines a formal group law F (X,Y ) ∈
OKJX,Y K, which is a power series of the form

F (X,Y ) = X + Y +
∑
i,j≥2

ci,jX
iY j .

Let [p](X) be a power series in OKJXK corresponding to multiplication by p; more

precisely, we define recursively [1](X) = X and [n+1](X) = F ([n]X,X) for n ≥ 1.
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Then we have

[p](X) =
∑
i≥1

aiX
i

for some ai ∈ OK with a1 = p. Moreover, since we assume that E has supersingular

reduction (i.e., the formal group F (X,Y ) is of height 2), we have ai ∈ mK for all

i < p2 and ap2 is a p-adic unit. With the standard coordinates on the xy-plane,

we consider the set of points (i, vK(ai)) for all 1 ≤ i ≤ p2, which determines the

(truncated) Newton polygon of the series [p](X). By [Se], it has the shape displayed

in Figure 1.

0

P0

P1

P2

p2

e

e1

1 p

Figure 1.

Here, e is equal to the absolute ramification degree of K. When the point P1

lies on the line P0P2, the Newton polygon consists of only one segment |P0P2| with
slope δ0 = e/(p2 − 1). Otherwise, it consists of two segments |P0P1| and |P1P2|
with corresponding slopes

(9) δ1 =
e− e1
p− 1

and δ2 =
e1

p2 − p
.

It is known that the slopes of the Newton polygon are equal to p-adic valuations

of roots of the power series [p](X). Moreover (see [Se, Sect. 1.11, Case (2)]), these

valuations are equal to the heights of the corresponding p-torsion points of E.

Corollary 9.6. The heights of p-torsion points of the elliptic curve E can be

determined group theoretically from the topological group ΠX .

Proof. We saw in Remark 9.5 that the set of quotients h(P )/h(Q), for nontrivial

p-torsion points P and Q, can be determined group theoretically. Then we have

two cases:
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Case 1: For all nontrivial p-torsion points P and Q we have h(P )/h(Q) = 1.

This implies that the Newton polygon consists of only one segment.

Therefore, its unique slope, as well as the height of every p-torsion point,

is equal to δ0 = e/(p2 − 1).

Case 2: There exist two p-torsion points P and Q such that h(P )/h(Q) ̸= 1.

In this case the Newton polygon consists of two segments and their

slopes are given by (9). Thus, the heights of torsion points in E[p] \ {O}
attain exactly two values δ1 and δ2. For i = 1, 2 we write Ai ⊂ E[p] \ {O}
for the subset of points with height equal to δi. Since the number of

roots of the power series [p](T ) with valuation δi is equal to the length

of the projection of an appropriate segment to the OX-axis, we have

#A1 = p − 1 and #A2 = p2 − p. Observe that both sets A1 and A2 can

be defined group theoretically. Indeed, the set A2 is the unique subset A

of the set of nontrivial p-torsion points that are of cardinality p2 − p and

are such that h(P )/h(Q) = 1 for all P , Q belonging to A (also observe

that p2 − p > p− 1).

Now choose two points Q1 and Q2 such that Qi belongs to Ai for i = 1, 2.

Then we have

h(Q1)/h(Q2) = δ1/δ2 =
p(e− e1)

e1
;

thus, knowing the quotient h(Q1)/h(Q2) we may determine the value of e1, which

in turn determines both values δ1 and δ2.

Then we immediately obtain the following corollary, which applies to the more

general case of elliptic curves with potentially good supersingular reduction.

Corollary 9.7. Assume that the elliptic curve E has potentially good supersingu-

lar reduction. Then the rigidity isomorphism Ξ can be constructed group theoreti-

cally from the topological group ΠX .

Proof. Since the rigidity isomorphism is invariant under finite field extensions, we

may and do assume that E has good supersingular reduction over K. This can be

done group theoretically, as we saw at the beginning of the proof of Proposition 5.2.

Next, choose an isomorphism β : MX
∼= Zp(GK) of GK-modules belonging to Q∗

(p)-

orbit of Ξ; this can also be done group theoretically by Lemma 9.3. Thus we have

β = λΞ for some λ ∈ Q∗
(p), hence also vβ = λv. Therefore, we need to find a

group-theoretic characterization of the equality λ = 1.

Using the proof of Proposition 9.4 (see also Remark 9.5), we may construct

the set of values vβ(x(P )) = λv(x(P )) for all p-torsion points P . On the other
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hand, from Corollary 9.6 we may determine the set of values v(x(P )) for all p-

torsion points. Clearly, by using Corollary 9.2, these two sets are equal if and only

if λ = 1, which finishes the proof.

§10. Construction of sections

In this section we assume that the elliptic curve E has potentially good super-

singular reduction. We will use Corollary 9.7 to obtain various results concerning

construction of torsors of discrete and integral sections.

Lemma 10.1. Suppose that we are given one discrete section of the surjection

ΠX ↠ GK . Then the K∗µ-torsor of all discrete sections of the surjection ΠX ↠
GK can be constructed group theoretically.

Proof. Let s0 : GK → ΠX be the given discrete section. It defines a splitting of

the short exact sequence

(10) 1→ I → D → GK → 1.

The set of splittings of (10) is a torsor over the group H1(GK , I). Recall that

we have a natural isomorphism I ∼= MX , as well as the rigidity isomorphism

MX
∼= Zp(GK). Thus, by applying their composition to cohomology groups, we

obtain a map

(11) H1(GK , I) ∼= H1(GK ,Zp(GK)) ↠ Zp

which, thanks to Corollary 9.7, can be constructed group theoretically. Therefore,

we may define a subgroupK(GK , I)∗µ ofH1(GK , I) as a preimage of Z ⊂ Zp under

the map (11). Note that this subgroup corresponds exactly to the subgroup K∗µ of

H1(GK ,Zp(1)) embedded via the Kummer map through the natural isomorphism

I ∼= Zp(1). Then the orbit of s0 under the action of the group K(GK , I)∗µ is equal

to the set of all discrete sections.

In other words, it is enough to construct one discrete section to obtain all of

them. We are going to show a group-theoretic construction of a discrete section

under the assumption that there exists a nontrivial p-torsion point on E which is

K-rational.

Lemma 10.2. Suppose that there exists a K-rational nontrivial p-torsion point

P of E. Fix such a point P . Then the K∗µ-torsor of standard functions at the

point P can be constructed group theoretically from the topological group ΠX and

a decomposition group DP ⊂ ΠX of P .
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Proof. We already know that the torsor of profinite standard functions, i.e., func-

tions f of the form f = λ(x − x(P )) for λ ∈ K̂∗, can be constructed group

theoretically. Thus we need to find a condition to characterize those functions for

which λ belongs to K∗µ.

Let Q be a nontrivial pn-torsion point for n sufficiently large. Since v(x(P ))

is negative and v(x(Q)) → 0 as n → ∞, we have v(x(Q) − x(P )) = v(x(P )).

Recall from Section 6 that there are maps v : H1(GK ,MX) ↠ Qp as well as

valQ : H1(ΠX ,MX) ↠ Qp which, thanks to Corollary 9.7, are group theoretic.

Observe that the map valQ may also be considered as a map defined on the coho-

mology group H1(ΠX1
,MX). Thus, by applying it to the function f we obtain

valQ(f) = v(λ) + v(x(Q)− x(P )) = v(λ) + v(x(P )).

Since v(x(P )) belongs to v(K∗) ⊂ Qp, we see that v(λ) belongs to v(K∗) if and

only if valQ(f) belongs to v(K∗). As the last condition is group theoretic, it means

that we can determine functions f for which v(λ) ∈ v(K∗), which is equivalent to

λ ∈ K∗µ.

Proposition 10.3. Suppose that there exists a K-rational nontrivial p-torsion

point P of E. Then the K∗µ-torsor of discrete sections at the cusp O may be

constructed group theoretically from the topological group ΠX .

Proof. Recall that we have a surjection ΠX1
↠ ΠX corresponding to the open

immersion X1 ↪→ X, which can be constructed group theoretically. Moreover,

choosing an appropriate decomposition group of the cusp O, it is enough to con-

struct the torsor of discrete sections of the surjection ΠX1 ↠ GK .

Let f be a standard function at the point P , considered as a cohomology

class inside the group H1(ΠX1 ,MX). Let DP and IP be decomposition and inertia

groups of P ; thus we have a short exact sequence

1→ IP → DP → GK → 1.

By applying the restriction map and the natural isomorphism IP ∼= MX , we obtain

a map

c : H1(ΠX1
,MX)→ H1(DP , IP ).

Consider now the element c(f) ∈ H1(DP , IP ). In the exact sequence

1→ H1(GK , IP )→ H1(DP , IP )→ Hom(IP , IP )

the restriction of c(f) to the group Hom(IP , IP ) is the identity map; this follows

from the fact that f has a simple zero at P . Therefore, by Lemma 7.1 we obtain a
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section sP of the surjection DP ↠ GK . Moreover, by construction the section sP
is in fact a discrete section (at the cusp P ).

To obtain a discrete section at the cusp O, we may simply apply the same

reasoning as above, switching the roles of points O and P (they are both K-

rational). Alternatively, we may choose a geometric automorphism ρ : ΠX1
∼= ΠX1

which maps a decomposition group of the cusp P onto a decomposition group of

O. We briefly describe how to construct such an automorphism ρ. Consider the

Galois étale cover Y → X obtained as a pullback along the immersion X ↪→ E

of the multiplication by p map [p] : E → E on the elliptic curve E. Then ΠY is a

normal open subgroup of ΠX and the conjugation action of ΠX on ΠY determines

the Galois group of the cover Y → X. Finally, using the elliptic cuspidalization

we transport these geometric automorphisms of ΠY to geometric automorphisms

of ΠX1 . Clearly, they act transitively on the set of cusps of X1; thus we may

choose one of them as ρ. Then, since the automorphism ρ comes from a geometric

automorphism ofX1, it preserves sets of discrete sections. Therefore, by composing

sP with ρ we obtain a discrete section at the cusp O.

Lemma 10.4. Suppose that we are given the set of all discrete sections of the

surjection ΠX ↠ GK . Then, for every open subgroup GL ⊂ GK , corresponding to

a finite field extension L/K, we may reconstruct the set of all discrete sections of

the surjection ΠXL
↠ GL.

Proof. By Lemma 10.1 it is enough to construct one discrete section of the sur-

jection ΠXL
↠ GL. This is easy since the restriction of a discrete section of the

surjection ΠX ↠ GK to an open subgroup is also discrete.

Recall from Section 7 that, when the elliptic curve E has good reduction

over K, we have defined a UK-torsor of integral sections which is compatible with

finite field extensions. Moreover, by extending this torsor along the homomorphism

UK → K∗µ we obtain the K∗µ-torsor of discrete sections.

Proposition 10.5. Assume that E has good supersingular reduction. Suppose that

we are given the set of all discrete sections of the surjection ΠX ↠ GK . Then we

may reconstruct group theoretically the UK-torsor of integral sections.

Proof. Observe that by using Lemma 7.5 together with Lemma 10.4 we may pass

to a finite field extension and assume that p-torsion points of E are K-rational. Let

P be a nontrivial p-torsion point. From Proposition 9.4 we obtain a construction of

the UK-torsor of an integral standard function at P , as a subset of the cohomology

group H1(ΠX1
,MX).



878 W. Porowski

Let ω ∈ T∨
O,K be an integral cotangent vector at the cusp O. We write

KO = Frac(OX,O) for the fraction field of the local ring of X at O and F for

the completion of the field KO. Thus F ∼= K((T )) noncanonically and we have

the valuation map vF : F ∗ ↠ Z; denote by RO and mO the corresponding discrete

valuation ring and its maximal ideal.

Observe that there exists a lift t of ω to the field F such that for every

integral standard function f associated to P we have f−1 = rt2 (equality in the

field F ) for some r ∈ O∗
K . Indeed, recall that integral functions f are of the form

f = u(x− x(P )), where u belongs to O∗
K . Since our fixed Weierstrass equation is

minimal, we know that the function z = x/y determines an integral uniformizer

at the cusp O. Moreover, in the field F we have the equality

x = 1/z2 + higher-order terms.

Thus, we obtain

f−1 = u−1(x− x(P ))−1 = u−1z2(1 + higher-order terms) = u−1(zs)2

for some s ∈ 1 +mO. Hence we may take t = zs.

Fix a decomposition group D of the cusp O; hence we have a short exact

sequence

1→ I → D → GK → 1.

Consider inverses f−1 of the Kummer classes of integral standard functions f

associated to the point P . We restrict these classes to the decomposition group

D. Denote this set of classes by B; it is a UK-torsor contained in the cohomology

group H1(D,MX). Applying the canonical isomorphism MX
∼= I we may treat B

as a UK-torsor contained in the cohomology group H1(D, I). Thus the torsor B

is determined by (local) Kummer classes of functions ut2, where u ∈ O∗
K and t is

an integral uniformizer. By assumption, we are given the set of discrete sections

of the surjection ΠX ↠ GK ; thus by applying Lemma 7.1 we obtain a K∗µ-torsor

of cohomology classes in H1(D, I) corresponding to discrete sections; let us call

these classes discrete as well.

Let A be a subset of H1(D, I) consisting of all discrete classes α in H1(D, I)

such that 2α ∈ B, here we use the additive notation for cohomology classes. From

the short exact sequence

1→ H1(GK , I)→ H1(D, I)→ Hom(I, I)→ 1

we deduce that A is determined by Kummer classes of functions ut for all u ∈
UK . Here we use the fact that if x ∈ K̂∗ satisfies x2 ∈ UK then also x ∈ UK .
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By construction, for every α ∈ A, its restriction to H1(I, I) = Hom(I, I) is the

identity. Therefore, using Lemma 7.1 together with Lemma 7.6, the UK-torsor A

determines the torsor of integral sections.

§11. Criterion in the supersingular case

In this section we are going to give the proof of Theorem 1.2. Recall that E is an

elliptic curve over K and X = E \ {O}.

Proposition 11.1. Assume that E has potentially good supersingular reduction.

Then, from the topological group ΠX equipped with one discrete section, we may

determine whether the absolute value of the minimal discriminant vK(∆) of E/K

is divisible by 12.

Proof. Choose a decomposition group DK ⊂ ΠX of the unique cusp of X; hence

we have a short exact sequence

1→ I → DK → GK → 1.

Let L/K be a finite field extension such that E has good reduction over L; we

have seen that such an L may be chosen group theoretically. By pulling back the

above short exact sequence along the inclusion GL ↪→ GK we obtain the restricted

sequence

1→ I → DL → GL → 1.

By Proposition 10.5, applied to the fundamental group ΠXL
, we may reconstruct

the UL-torsor of integral sections sL of the surjection DL → GL. Consider now

the diagram

(12)

DL GL

DK GK .

sL

sK

We are going to prove that the value vK(∆) is divisible by 12 if and only if there

exists an integral section sL which extends to a discrete section sK : GK → DK

of the surjection DK ↠ GK as in diagram (12). This group-theoretic description

will finish the proof.
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Let T∨
L = T∨

K ⊗ L be the cotangent L-vector space of the unique cusp on XL

and let S ⊂ T∨
L be the O∗

L-torsor of integral differentials. We have the diagram

(13)

S T∨
L

S ∩ T∨
K T∨

K .

We claim that there exists an integral section sL which extends to a discrete section

over GK as in diagram (12) if and only if the intersection S ∩ T∨
K is nonempty.

Indeed, choose any integral section sL of the surjection DL ↠ GL corresponding

to a cotangent vector ωL ∈ T∨
L . Moreover, choose any discrete section s of the

surjection DK ↠ GK corresponding to a cotangent vector ωK ∈ T∨
K . Then the

section sL extends to a section of the surjection DK ↠ GK if and only if there

exists an element a ∈ K∗µ such that the restriction of as to GL is equal to sL.

Using the correspondence between discrete sections and cotangent vectors we see

that this equality of restrictions is equivalent to the equality aωK = bωL for some

a ∈ K∗ and b ∈ O∗
L. This finishes the proof of the claim.

Now let x and y be some fixed coordinates of a minimal Weierstrass equation

over K; similarly let x′ and y′ be coordinates of a minimal Weierstrass equation

over L. Then we have

x = u2x′ + r, y = u3y′ + u2sx′ + t

for some u ∈ L∗ and r, s, t ∈ L. Let ωK ∈ T∨
K be the cotangent vector determined

by the rational function x/y; similarly let ωL ∈ T∨
L be the cotangent vector deter-

mined by x′/y′. We easily check that u−1ωL = ωK , as elements of T∨
L . Moreover,

if ∆ and ∆′ denote the discriminants of the corresponding minimal Weierstrass

equations, then we know that u12∆′ = ∆. Therefore we obtain v(u12) = v(∆),

since ∆′ is a unit.

Assume now that the intersection S ∩ T∨
K is nonempty. Then we have the

equality aωK = bωL, for some a ∈ K∗ and b ∈ O∗
L. Thus, we obtain aωK = buωK ,

which implies that a = bu; hence, comparing valuations we have v(a) = v(u).

Therefore we finally compute that v(∆) = 12v(a) for some a ∈ K, which proves

that 12 divides vK(∆).

On the other hand, if we assume this divisibility, it is easy to run the argument

backwards and see that we obtain the existence of a ∈ K and b ∈ O∗
L as before,

which proves that S ∩ T∨
K is nonempty.

Finally, as a corollary we obtain the proof of the main result of this paper.
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Proof of Theorems 1.1 and 1.2. In view of Proposition 10.3 we see that it is enough

to prove Theorem 1.2. As we saw in Section 5, when the elliptic curve E does not

have a potentially good supersingular reduction, then in fact we may determine

the reduction type of E by analysing the p-adic Tate module of E; moreover, in

this case the proof is valid for every residue characteristic p and does not need

additional data consisting of the set of discrete sections.

When E has potentially good supersingular reduction, we have shown in

Proposition 11.1 that we can determine group theoretically whether the p-adic

absolute value vK(∆) of the minimal discriminant ∆ over K is divisible by 12. On

the other hand, it is known that, for an elliptic curve over K with potentially good

reduction, we have the estimate

vK(∆) < 12 + 12vK(2) + 6vK(3).

In particular, if p ≥ 5, then vK(E) < 12. Therefore, in this case, having good

reduction is equivalent to the divisibility condition we have obtained and this

finishes the proof.
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