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The Monodromy Map from Differential Systems
to the Character Variety Is Generically Immersive

by

Indranil Biswas and Sorin Dumitrescu

Abstract

Let G be a connected reductive affine algebraic group defined over C and g its Lie algebra.
We consider all pairs of the form (Y,D), where Y is a complex structure on a compact
oriented C∞ surface Σ, and D is a holomorphic connection on the trivial holomorphic
principal G-bundle Y × G on Y ; these are known as g-differential systems. We study
the monodromy map from the space of g-differential systems to the character variety of
G-representations of the fundamental group of Σ. If the complex dimension of G is at
least three, and genus(Σ) ≥ 2, we show that the monodromy map is an immersion at the
generic point.
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§1. Introduction

Our aim here is to study the monodromy map, also called the Riemann–Hilbert

map, from the differential systems over compact Riemann surfaces to the character

varieties. In order to describe the framework, let us denote by Σ a given compact

connected oriented C∞ surface of genus g ≥ 2 and by G a connected reductive

affine algebraic group defined over C.
Consider a complex structure X on Σ (it gives an element in the Teichmüller

space for Σ) and a holomorphic (flat) connection ϕ on the trivial holomorphic

principal G-bundle X × G over X. Recall that ϕ is determined by an element

δ ∈ H0(X,KX) ⊗ g, where g is the (complex) Lie algebra of G and KX is the
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canonical line bundle of X. Fixing a base point x0 ∈ X, consider the corresponding

universal cover π : X̃ → X of X, and endow the trivial principal G-bundle X̃ ×G

over X̃ with the pulled back holomorphic flat connection π∗ϕ.

For any locally defined parallel section s of X × G for the connection ϕ, the

pulled back local section π∗s of X̃ × G extends to a π∗ϕ-parallel section over

the entire X̃. This extension of π∗s produces a holomorphic map X̃ → G which is

π1(X,x0)-equivariant with respect to the natural action of π1(X,x0) on X̃ through

deck transformations and the action of π1(X,x0) on G through a group homo-

morphism π1(X,x0) → G; this homomorphism π1(X,x0) → G is known as the

monodromy of the flat connection ϕ.

Although the above-mentioned monodromy homomorphism depends on the

choice of the holomorphic trivialization of the principal G-bundle, the element of

the character variety of G-representations

Ξ := Hom(π1(X), G) �G

given by it is independent of both the trivialization of the principal G-bundle

and the base point x0 (and also of the choice of s). It should be clarified that

the monodromy map is defined from the isomorphism classes of flat principal

G-bundles on X to Ξ; to define this map, the underlying holomorphic principal

G-bundle does not need to be trivial.

Recall that Ξ is a (singular) complex analytic space of dimension

2((g − 1) · dim[G,G] + g · (dimG− dim[G,G]));

see, for example, [Go], [Si, Prop. 49]. We will denote the dimension of the commu-

tator group dim[G,G] by d and dimG− dim[G,G] by c (it is the dimension of the

center of G). With this notation, the complex dimension of Ξ is 2(g − 1)d+ 2gc.

Let us adopt the notation of [CDHL] and denote by Syst the space of all

pairs (X,ϕ), where X is an element of the Teichmüller space for Σ and ϕ is a

holomorphic connection on the trivial principal G-bundle X × G over X; recall

that a holomorphic connection on a holomorphic bundle over a Riemann surface

is automatically flat. This space of all differential systems on Σ is a complex space

of dimension (g − 1)(d+ 3) + gc.

Sending a holomorphic connection to its monodromy representation, a holo-

morphic mapping

M̃on: Syst −→ Ξ

is obtained; in other words, M̃on is the restriction to Syst of the Riemann–Hilbert

map.
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Let us define the nonempty Zariski open subset Systirred of Syst consisting of

all pairs (X,ϕ) for which the connection ϕ is irreducible, meaning the monodromy

homomorphism for ϕ does not factor through any proper parabolic subgroup of G.

It is a connected complex orbifold of dimension (g−1)(d+3)+gc (see Lemma 3.1).

The image of Systirred under the above map M̃on, which sends a holomorphic

connection to the corresponding monodromy representation, lies in the Zariski

open subset

Ξirred ⊂ Ξ

defined by the irreducible homomorphisms π1(X) → G (i.e., the homomorphisms

that do not factor through some proper parabolic subgroup of G). Although the

complex space Ξirred is not smooth in general, its singularities are finite group

quotients. Let

(1.1) Mon: Systirred −→ Ξirred

be the holomorphic map between complex manifolds given by the restriction of

M̃on to Systirred ⊂ Syst.

The main result proved here is the following (see Theorem 5.3):

Theorem 1.1. If the complex dimension of G is at least three, the monodromy

map

Mon: Systirred −→ Ξirred

in (1.1) is an immersion at the generic point.

Remark 5.4 explains that the assumption dimG ≥ 3 in Theorem 1.1 is neces-

sary.

IfG = SL(2,C), then the dimensions of Systirred and Ξirred are both 6g−6, and

Theorem 1.1 implies that Mon in (1.1) is a local biholomorphism at the generic

point (see Corollary 5.8). It should be mentioned that examples constructed in

[CDHL] show that for G = SL(2,C) and Σ of genus g ≥ 3, the monodromy map

Mon is not always a local biholomorphism (over the entire Systirred).

When G = SL(2,C) and g = 2, the main result of [CDHL] says that the map

Mon in (1.1) is a local biholomorphism over the entire Systirred. An alternative

proof of this result of [CDHL] is given in Corollary 5.6. In this context it should

be mentioned that our work was greatly influenced by [CDHL].

Just as for the authors of [CDHL], our main motivation came from a ques-

tion of E. Ghys for G = SL(2,C), relating the monodromy of sl(2,C)-differential
systems to the existence of holomorphic curves of genus g > 1 lying in compact
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quotients of SL(2,C) by lattices Γ. Such compact quotients of SL(2,C) are non-

Kähler manifolds. These non-Kähler manifolds do not admit any closed complex

hypersurface [HM]. It is known that elliptic curves do exist in some of those man-

ifolds, but the existence of holomorphic curves of genus g > 1 is still an open

question. Ghys realized that constructing an irreducible sl(2,C)-differential sys-
tem on a Riemann surface X with monodromy lying inside a cocompact lattice

Γ ⊂ SL(2,C) would provide a nontrivial holomorphic map fromX into the quotient

of SL(2,C)/Γ (in fact the two problems are equivalent). While the question asked

by Ghys is still open, the above Theorem 1.1 extends the results of [CDHL] and

leads to an enhancement of the understanding of the monodromy of the differential

systems.

The strategy of the proof of Theorem 1.1 and the organization of the paper

are as follows. We consider the monodromy map, to the character variety, defined

on the space of triples (X,EG, ϕ), with X an element of the Teichmüller space

for Σ, EG a holomorphic principal G-bundle over X and ϕ a holomorphic con-

nection on EG. In Section 2 we define a two-term complex C• over X whose first

hypercohomology gives the infinitesimal deformations of (X,EG, ϕ) (see Theorem

2.2(2)). Moreover, the kernel of the differential of the monodromy map coincides

with the image of the space of deformations of the complex structure H1(X,TX)

through a certain homomorphism βϕ from H1(X,TX) to the 1-hypercohomology

of C• (see Theorem 2.2(4)). In Section 3 we fix EG to be the holomorphically trivial

principal G-bundle over X and set ϕ to be an irreducible holomorphic connection

on it. We show that the tangent space of Systirred at (X,ϕ), which is naturally

embedded in H1(X, C•), is transverse to the kernel of the monodromy map, pro-

vided ϕ satisfies a geometric criterion described in Proposition 3.2. In Section 4

we consider the special case of G = SL(2,C) and we prove that the criterion in

Proposition 3.2 is satisfied at any point (X,ϕ) ∈ Systirred for surfaces Σ of genus

two (see Proposition 4.1); the same holds for the generic point in Systirred for sur-

faces Σ of genus three (see Lemma 4.2). The main result (Theorem 1.1) is obtained

in Section 5, where Lemma 5.1 proves that the transversality criterion is satisfied

at the generic point in Systirred. More precisely, the proof of Lemma 5.1 shows

that the transversality criterion (in Proposition 3.2) is implied by the statement

that for a nonhyperelliptic Riemann surface X, and a generic three-dimensional

subspace W ⊂ H0(X,KX), the natural homomorphism

ΘW : H0(X,KX)⊗W −→ H0(X,K2
X)

is surjective. The above statement is precisely [Gi, p. 221, Thm. 1.1], where the

proof of it is attributed to R. Lazarsfeld.



Monodromy Map from Differential Systems to Character Variety 825

§2. Infinitesimal deformations of bundles and connections

In this section we introduce several infinitesimal deformation spaces and natural

morphisms between them.

The holomorphic tangent bundle of a complex manifold Y will be denoted

by TY .

Let X be a compact connected Riemann surface. The holomorphic cotangent

bundle ofX will be denoted byKX . Let G be a connected reductive affine algebraic

group defined over C. The Lie algebra of G will be denoted by g.

Take a holomorphic principal G-bundle over X,

(2.1) p : EG −→ X.

So EG is equipped with a holomorphic action of G on the right, which is both

free and transitive on the fibers of p and, furthermore, EG/G = X. Consider the

holomorphic right action of G on the holomorphic tangent bundle TEG given by

the action of G on EG. The quotient

At(EG) := (TEG)/G

is a holomorphic vector bundle over EG/G = X; it is called the Atiyah bundle for

EG. The differential

dp : TEG −→ p∗TX

of the projection p in (2.1) is G-equivariant for the trivial action of G on the fibers

of p∗TX. The action of G on EG produces a holomorphic homomorphism from

the trivial holomorphic bundle

EG × g −→ kernel(dp)

which is an isomorphism. Therefore, we have a short exact sequence of holomorphic

vector bundles on EG,

(2.2) 0 −→ kernel(dp) = EG × g −→ At(EG)
dp−→ p∗TX −→ 0,

in which all the homomorphisms are G-equivariant. The quotient kernel(dp)/G is

the adjoint vector bundle ad(EG) = EG(g), which is the holomorphic vector bundle

over X associated to EG for the adjoint action of G on g. Taking the quotient of

the bundles in (2.2), by the actions of G, the following short exact sequence of

holomorphic vector bundles on X is obtained:

(2.3) 0 −→ ad(EG)
ι−→ At(EG)

d′p−−→ TX −→ 0

[At]; it is known as the Atiyah exact sequence for EG.
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A holomorphic connection on EG is a holomorphic homomorphism of vector

bundles

ϕ : TX −→ At(EG)

such that

(2.4) (d′p) ◦ ϕ = IdTX ,

where d′p is the projection in (2.3) (see [At]). A holomorphic connection on a

holomorphic bundle over X is automatically flat, because Ω2,0
X = 0. A holomorphic

connection ϕ on EG gives a holomorphic decomposition At(EG) = TX ⊕ ad(EG)

into a direct sum of holomorphic vector bundles. This decomposition produces a

holomorphic homomorphism

(2.5) ϕ′ : At(EG) −→ ad(EG)

such that ϕ′ ◦ ι = Idad(EG), where ι is the homomorphism in (2.3).

Take a holomorphic connection

(2.6) ϕ : TX −→ At(EG)

on EG. Since

At(EG) = (TEG)/G,

this homomorphism ϕ produces a G-equivariant holomorphic homomorphism of

vector bundles

(2.7) ϕ̂ := p∗ϕ : p∗TX −→ TEG

over EG. Take any analytic open subset U ⊂ X. Let s be a holomorphic section

of At(EG)|U over U . Since At(EG) = (TEG)/G, we have

ŝ := p∗s ∈ H0(p−1(U), TEG)
G ⊂ H0(p−1(U), TEG).

For any holomorphic vector field t ∈ H0(U, TU), consider the Lie bracket

[ϕ̂(p∗t), ŝ] ∈ H0(p−1(U), TEG),

where ϕ̂ is the homomorphism in (2.7). This vector field [ϕ̂(p∗t), ŝ] on p−1(U) is

G-invariant, because both ŝ and ϕ̂(p∗t) are so. Therefore, [ϕ̂(p∗t), ŝ] produces a

holomorphic section of At(EG) over U ; this section of At(EG)|U will be denoted

by A(t, s). Let

(2.8) ϕ′(A(t, s)) ∈ H0(U, ad(EG))

be the section of ad(EG)|U , where ϕ′ is the projection in (2.5).
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Now, for any holomorphic function f defined on U , we have

(2.9) [ϕ̂(p∗(f · t)), ŝ] = (f ◦ p) · [ϕ̂(p∗t), ŝ]− ŝ(f ◦ p) · ϕ̂(p∗t).

Since ϕ′(ϕ̂(p∗t)) = 0, where ϕ′ is constructed in (2.5), from (2.9) it follows imme-

diately that

ϕ′(A(f · t, s)) = f · ϕ′(A(t, s));

ϕ′(A(t, s)) is defined in (2.8). Let

(2.10) Φ: At(EG) −→ ad(EG)⊗KX

be the homomorphism of sheaves defined by the equation

⟨Φ(s), t⟩ = ϕ′(A(t, s)) ∈ H0(U, ad(EG)),

where s and t are holomorphic sections, over U , of At(EG) and TX respectively,

while ⟨−,−⟩ is the contraction of KX by TX .

Remark 2.1. It should be mentioned that the map Φ in (2.10) is an additive

homomorphism and it is C-linear, but it is not OX -linear. In fact, the composition

of homomorphisms

Φ ◦ ι : ad(EG) −→ ad(EG)⊗KX ,

where ι is the inclusion map in (2.3), satisfies the Leibniz identity. This map Φ ◦ ι
is the connection on ad(EG) induced by the connection ϕ on EG.

The composition

Φ ◦ ϕ : TX −→ ad(EG)⊗KX

coincides with the curvature of the connection ϕ. Since ϕ is flat, we have

(2.11) Φ ◦ ϕ = 0.

Let C• be the two-term complex

C• : C0 := At(EG)
Φ−→ C1 := ad(EG)⊗KX ,

where Ci is at the ith position and Φ is the C-linear additive homomorphism

constructed in (2.10). Using (2.11) we have the following commutative diagram of
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homomorphisms of complexes of sheaves on X:

(2.12)

0 0y y
TX −−→ 0yϕ y

C• : C0
Φ−−→C1y= y

At(EG) −−→ 0y y
0 0.

It should be clarified that this is not a complex of complexes of sheaves – the

composition map does not vanish, because ϕ ̸= 0. Let

(2.13) H1(X,TX)
βϕ−−→ H1(X, C•)

γ−→ H1(X,At(EG))

be the homomorphisms of (hyper)cohomologies associated to the homomorphisms

in (2.12), where Hi denotes the ith hypercohomology. It should be clarified that

γ ◦ βϕ does not vanish. Indeed, the composition of γ ◦ βϕ with the homomorphism

(d′p)∗ : H
1(X,At(EG)) −→ H1(X,TX),

where d′p is the projection in (2.3), coincides with the identity map of H1(X,TX).

The following known theorem will be used (see [Ch2, Do, In, BHH]).

Theorem 2.2. The following statements hold:

(1) The infinitesimal deformations of the pair (X,EG) are parametrized by the

elements of the cohomology H1(X,At(EG)).

(2) The infinitesimal deformations of the triple (X,EG, ϕ) are parametrized by the

elements of the hypercohomology H1(X, C•).
(3) The forgetful map from the infinitesimal deformations of the triple (X,EG, ϕ)

to the infinitesimal deformations of the pair (X,EG), which forgets the con-

nection ϕ, is the homomorphism γ in (2.13).

(4) The infinitesimal isomonodromy map, from the infinitesimal deformations of

X to the infinitesimal deformations of the triple (X,EG, ϕ), coincides with the

homomorphism βϕ in (2.13).

For the proof of Theorem 2.2 the reader is referred to [Ch2, p. 1413, Prop. 4.3]

(for a proof of Theorem 2.2(1)), [Ch2, p. 1415, Prop. 4.4] (for a proof of
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Theorem 2.2(2)) and [Ch2, p. 1417, Prop. 5.1] (for a proof of Theorem 2.2(4));

see also [Ch1]. Theorem 2.2(3) is evident.

The Atiyah exact sequence in (2.3) produces a long exact sequence of coho-

mologies

H1(X, ad(EG))
ι∗−→ H1(X,At(EG))

(d′p)∗−−−−→ H1(X,TX) −→ 0.

We note that the infinitesimal deformations of EG (keeping the Riemann surface

X fixed) are parametrized by H1(X, ad(EG)) (see [Do]), and the above homomor-

phism ι∗ coincides with the natural homomorphism of infinitesimal deformations.

The above projection (d′p)∗ is the forgetful map that sends the infinitesimal de-

formations of the pair (X,EG) to the infinitesimal deformations of X that forgets

the principal G-bundle.

§3. Infinitesimal deformations of connections on the trivial bundle

Recall the moduli space of differential systems Syst and its subset of irreducible

differential systems Systirred, both defined in Section 1.

In this section we realize the tangent space to (X,ϕ) ∈ Systirred as a sub-

space embedded in H1(X, C•), the space of infinitesimal deformations of triples

(X,EG, ϕ) (see below), and we prove a criterion for transversality to the kernel of

the monodromy map (Proposition 3.2).

Let Y be a compact connected Riemann surface, and let ψ be a holomorphic

connection on the holomorphically trivial principal G-bundle Y ×G→ Y over Y .

Let

(3.1) T (Y, ψ)

denote the infinitesimal deformations of the pair (Y, ψ) (keeping the underlying

holomorphic principal G-bundle as the trivial principal G-bundle on the moving

Riemann surface).

Henceforth, we assume that genus(X) = g ≥ 2.

Let ZG ⊂ G be the center of G. As before, d := dim[G,G] and c := dimZG.

Lemma 3.1. The moduli space Systirred in Section 1 is a connected (smooth)

complex orbifold. The complex dimension of Syst is (g − 1)(d+ 3) + gc.

Proof. Let Tg denote the Teichmüller space for genus g Riemann surfaces. We

have a universal family of genus g Riemann surfaces

φ : Cg −→ Tg.
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Let Ωφ → Cg be the relative holomorphic cotangent bundle for the projection φ.

Consider the direct image

W := φ∗Ωφ −→ Tg.

So W is a holomorphic vector bundle over Tg whose fiber over any given Riemann

surface Y ∈ Tg is H0(Y,KY ). Now define the holomorphic vector bundle W(G)

over Tg,

W(G) := W ⊗C g.

The adjoint action of the group G on g and the trivial action of G on W together

produce an action of G on W(G). Note that this action of G on W factors through

the quotient G/ZG of G. Let

Ŵ(G) ⊂ W(G)

be the open subset consisting of all points (Y, θ) ∈ W(G), where Y ∈ Tg and

θ ∈ W(G)Y = H0(Y,KY )⊗ g,

such that θ is not contained in H0(Y,KY )⊗ p for some parabolic subgroup p ⊊ g.

For any (Y, θ) ∈ Ŵ(G), consider the holomorphic connection DY
0 +θ, where DY

0 is

the trivial connection on the trivial holomorphic principal G-bundle Y ×G→ Y .

Let

Ψθ : π1(Y, y0) −→ G

be the monodromy representation for this flat connection DY
0 + θ. The definition

of Ŵ(G) ensures that Ψθ(π1(Y, y0)) is not contained in some proper parabolic

subgroup of G.

The action of G/ZG on W(G) evidently preserves Ŵ(G). For any

(Y, θ) ∈ Ŵ(G),

the isotropy subgroup of (Y, θ), for the action of G/ZG on W(G), is

N(Ψθ(π1(Y, y0))
′)/Ψθ(π1(Y, y0))

′,

where Ψθ(π1(Y, y0))
′ is the image of Ψθ(π1(Y, y0)) in G/ZG and

N(Ψθ(π1(Y, y0))
′) ⊂ G/ZG

is its normalizer. From the definition of Ŵ(G) it follows that this isotropy subgroup

is finite.

For any Riemann surface Y ∈ Tg, the space of all holomorphic connections

on the trivial holomorphic principal G-bundle Y × G → Y is an affine space

for the vector space W(G)Y , where W(G)Y is the fiber of W(G) over the point Y
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(see (3.5)); note that ad(Y ×G) = Y ×g. Consequently, we have a biholomorphism

from the quotient space Ŵ(G)/G,

η : Ŵ(G)/G
∼−→ Systirred

that sends any θ ∈ Ŵ(G)Y , Y ∈ Tg, to the holomorphic connection DY
0 + θ,

where DY
0 as before is the trivial connection on the trivial holomorphic princi-

pal G-bundle Y × G → Y ; note that DY
0 does not depend on the choice of the

holomorphic trivialization of the principal G-bundle (see the paragraph following

(3.2)). Also, this map evidently factors through the quotient Ŵ(G)/G. In view of

the biholomorphism η we conclude that Systirred is a connected complex orbifold.

The complex dimension of Systirred is (g−1)(d+3)+gc, because the complex

dimension of the total space of W(G) is 3(g− 1)+ dg+ gc, and hence the complex

dimension of the total space of Ŵ(G) is (g − 1)(d+ 3) + gc.

Now take EG in (2.1) to be the holomorphically trivial principal G-bundle

X × G on X. As in (2.6), take a holomorphic connection ϕ on EG = X × G.

Since the infinitesimal deformations of the triple (X,EG, ϕ) are parametrized by

H1(X, C•) (see Theorem 2.2(2)), we have a natural homomorphism

T (X,ϕ) −→ H1(X, C•),

where T (X,ϕ) is defined in (3.1). Let

(3.2) S(X,ϕ) ⊆ H1(X, C•)

be the image of this homomorphism from T (X,ϕ).

The trivial holomorphic principal G-bundle EG = X ×G has a unique holo-

morphic connection whose monodromy is the trivial representation. Once we fix

an isomorphism of EG with X ×G, the trivial holomorphic connection on X ×G

induces a holomorphic connection on EG using the chosen isomorphism. However,

this induced connection on EG does not depend on the choice of the trivialization

of EG; this unique connection on EG will be called the trivial connection. The

monodromy of the trivial connection is evidently trivial.

Using the trivial connection on EG, we have a canonical holomorphic decom-

position

(3.3) At(EG) = ad(EG)⊕ TX.

Using (3.3), the holomorphic connections on EG are identified with holomorphic

homomorphisms from TX to ad(EG). More precisely, to any holomorphic homo-

morphism

(3.4) ρ : TX −→ ad(EG)
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we assign the corresponding homomorphism

(3.5) ρ̂ : TX −→ ad(EG)⊕ TX = At(EG), v 7−→ (ρ(v), v);

clearly ρ̂ satisfies the equation in (2.4). Note that the decomposition in (3.3) is

used in the construction of ρ̂ in (3.5).

Proposition 3.2. Let ϕ be a holomorphic connection on EG = X ×G such that

the homomorphism ρ in (3.4) corresponding to ϕ satisfies the following condition:

the homomorphism of first cohomologies corresponding to ρ, namely the homomor-

phism

ρ∗ : H
1(X,TX) −→ H1(X, ad(EG)),

is injective. Then

H1(X, C•) ⊃ S(X,ϕ) ∩ βϕ(H1(X,TX)) = 0,

where S(X,ϕ) is the subspace constructed in (3.2) and βϕ is the homomorphism

in (2.13).

Proof. Let

q : At(EG) = ad(EG)⊕ TX −→ TX

be the projection constructed using the decomposition in (3.3). Note that q coin-

cides with the projection d′p in (2.3); indeed, this follows from the construction of

the decomposition in (3.3). Let

(3.6) q∗ : H
1(X,At(EG)) = H1(X, ad(EG))⊕H1(X,TX) −→ H1(X,TX)

be the homomorphism of first cohomologies induced by q. From the equation

q ◦ ϕ = IdTX

(see (2.4)), it can be deduced that

(3.7) q∗ ◦ γ ◦ βϕ = IdH1(X,TX),

where βϕ, γ are the homomorphisms in (2.13) and q∗ is constructed in (3.6). To

prove (3.7), just note that γ◦βϕ coincides with the homomorphism of cohomologies

induced by the homomorphism ϕ.

Consider the two subspaces

(3.8) γ(S(X,ϕ)), γ(βϕ(H1(X,TX))) ⊂ H1(X,At(EG))

of H1(X,At(EG)), where βϕ, γ are the homomorphisms in (2.13). From (3.7) it

follows immediately that the homomorphism γ ◦ βϕ is injective.
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Consequently, to prove the proposition it suffices to show that

(3.9) γ(S(X,ϕ)) ∩ (γ(βϕ(H
1(X,TX)))) = 0,

where γ(S(X,ϕ)) and γ(βϕ(H1(X,TX))) are the subspaces in (3.8). At this point

it might be helpful to have a look at Remark 3.3.

The isomonodromic deformation of the trivial connection on EG → X is

evidently the trivial connection on the trivial principal G-bundle over the moving

Riemann surface. Since the decomposition in (3.3) is given by the trivial connection

on EG, from Theorem 2.2(4) and Theorem 2.2(3) it follows that the subspace

γ(S(X,ϕ)) ⊂ H1(X,At(EG))

coincides with the natural subspace

H1(X,TX) ⊂ H1(X, ad(EG))⊕H1(X,TX)

= H1(X, ad(EG)⊕ TX) = H1(X,At(EG))(3.10)

corresponding to the decomposition in (3.3) (given by the trivial connection);

the subspace H1(X,TX) ⊂ H1(X, ad(EG))⊕H1(X,TX) in (3.10) consists of all

(0, v) with v ∈ H1(X,TX). The above statement follows from the fact that for the

isomonodromic deformation of the trivial connection on EG → X, the underlying

principal G-bundle remains trivial (recall that the isomonodromic deformation of

the trivial connection on EG → X is the trivial connection on the trivial principal

G-bundle over the moving Riemann surface).

Therefore, using the construction of the homomorphism ρ̂ from ρ (see (3.5) –

note that ϕ = ρ̂ by the definition of ρ given in the statement of the proposition)

it follows that the given condition – that

ρ∗ : H
1(X,TX) −→ H1(X, ad(EG))

is injective – implies that (3.9) holds. As observed before, (3.9) completes the proof

of the proposition.

Remark 3.3. Since Proposition 3.2 is the key tool here, we would make some

clarifying comments on the proof of it. Let A, B be finite-dimensional vector

spaces and

H : A −→ B

a linear map. Let S1, S2 be subspaces of A such that the homomorphism

H|S2
: S2 −→ B



834 I. Biswas and S. Dumitrescu

is injective (in other words, S2 ∩ kernel(H) = 0). Now, if H(S1)∩H(S2) = 0, then

it is straightforward to check that S1 ∩S2 = 0. In the proof of Proposition 3.2, set

A = H1(X, C•), B = H1(X,At(EG)), S1 = S(X,ϕ),
S2 = βϕ(H

1(X,TX)), H = γ.

The above condition that H(S1) ∩ H(S2) = 0 coincides with (3.9). The above

statement that S1∩S2 = 0 actually coincides with the statement of Proposition 3.2.

§4. Some examples with G = SL(2,C)

This section focuses on the case G = SL(2,C). In this case we prove that the

criterion in Proposition 3.2 is satisfied at any point (X,ϕ) ∈ Systirred for g = 2

(see Proposition 4.1) and at the generic point in Systirred for g = 3 (see Lemma

4.2).

Proposition 4.1. Let X be a compact connected Riemann surface of genus two.

Set G = SL(2,C). Let ϕ be an irreducible holomorphic connection on the trivial

holomorphic principal G-bundle EG = X×G→ X. Then the homomorphism ρ as

in (3.4) corresponding to ϕ satisfies the following condition: the homomorphism of

cohomologies corresponding to ρ, namely the homomorphism

ρ∗ : H
1(X,TX) −→ H1(X, ad(EG)),

is injective.

Proof. Fix a holomorphic trivialization of EG. Then the adjoint vector bundle

ad(EG) is the trivial holomorphic vector bundle X×sl(2,C) over X, where sl(2,C)
is the Lie algebra consisting of 2 × 2 complex matrices of trace zero. So ρ as in

(3.4) corresponding to ϕ,

ρ : TX −→ ad(EG) = X × sl(2,C),

sends any v ∈ TxX to(
x,

(
ω1(x)(v) ω2(x)(v)

ω3(x)(v)−ω1(x)(v)

))
∈ X × sl(2,C),

where ωj ∈ H0(X,KX), 1 ≤ j ≤ 3.

Let

(4.1) V ⊂ H0(X,KX)
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be the linear span of {ω1, ω2, ω3}. The given condition that the connection ϕ is

irreducible implies that dimV > 1. Indeed, if we assume by contradiction that

dimV ≤ 1, then

ρ =

(
ω1 ω2

ω3 −ω1

)
= ω ⊗B,

where ω ∈ H0(X,KX) and B ∈ sl(2,C) is a fixed element. Since the standard

action on C2 of B is reducible, the connection ϕ is reducible: a contradiction. So

we have dimV > 1, and, since dimH0(X,KX) = 2, we conclude that

(4.2) V = H0(X,KX).

Let

(4.3) Θ: H1(X,TX)⊗H0(X,KX) −→ H1(X,TX ⊗KX) = H1(X,OX)

be the natural homomorphism. For any C-linear map

(4.4) h : sl(2,C) −→ C,

let

(4.5) h̃∗ : H
1(X,TX) −→ H1(X,OX)

be the homomorphism induced by the composition

TX
ρ−→ ad(EG) = OX ×C sl(2,C) Id⊗h−−−→ OX .

For any

µ ∈ kernel(ρ∗) ⊂ H1(X,TX),

we evidently have

(4.6) h̃∗(µ) = 0,

because h̃∗ = (Id⊗h)∗ ◦ρ∗, where (Id⊗h)∗ is the homomorphism of cohomologies

induced by Id⊗ h.

From (4.6) it follows that Θ(µ⊗ V ) = 0 for all µ ∈ kernel(ρ∗), where Θ is the

homomorphism in (4.3) and V is the subspace in (4.1). Now, since V = H0(X,KX)

(see (4.2)), we conclude that

(4.7) Θ(µ⊗ ω) = 0

for all µ ∈ kernel(ρ∗) and ω ∈ H0(X,KX).

To complete the proof of the proposition we need to show that there is

no nonzero cohomology class µ ∈ H1(X,TX) that satisfies (4.7) for all ω ∈
H0(X,KX).
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Using Serre duality, it suffices to prove that the tensor product homomorphism

(4.8) Θ′ : H0(X,KX)⊗H0(X,KX) −→ H0(X,K2
X)

is surjective; note that Θ′ is given by the dual of Θ.

It is known that for a genus two Riemann surface X, the homomorphism Θ′

in (4.8) is indeed surjective. To be somewhat self-contained, we give the outline of

an argument for it. Consider the short exact sequence of sheaves on X ×X,

(4.9) 0 → (p∗1KX)⊗ (p∗2KX)⊗OX×X(−∆) → (p∗1KX)⊗ (p∗2KX) → i∗K
2
X → 0,

where pj is the projection of X × X to the jth factor for j = 1, 2, and i is the

inclusion map of the diagonal ∆ ⊂ X ×X. Using the short exact sequence

0 −→ (p∗2KX)⊗OX×X(−∆) −→ p∗2KX −→ i∗KX −→ 0,

we have

p1∗((p
∗
2KX)⊗OX×X(−∆)) =

(∧2
(p1∗p

∗
2KX)

)
⊗ (p1∗(i∗KX))∗ = TX;

this is because the homomorphism p1∗p
∗
2KX → p1∗(i∗KX) is surjective as KX is

base-point free. Therefore, the projection formula gives that

p1∗((p
∗
1KX)⊗ (p∗2KX)⊗OX×X(−∆)) = OX .

Hence we have

(4.10) H0(X ×X, (p∗1KX)⊗ (p∗2KX)⊗OX×X(−∆)) = H0(X,OX).

Consider the long exact sequence of cohomologies for the short exact sequence of

sheaves in (4.9),

0 −→ H0(X ×X, (p∗1KX)⊗ (p∗2KX)⊗OX×X(−∆))

−→ H0(X ×X, (p∗1KX)⊗ (p∗2KX)) = H0(X,KX)⊗2 Θ′

−→ H0(X,K2
X),(4.11)

where Θ′ is the homomorphism in (4.8). Since

dimH0(X,KX)⊗2 = 4 = dimH0(X,K2
X) + 1,

from (4.10) and (4.11) it follows that Θ′ is surjective.

Lemma 4.2. Let X be a compact connected Riemann surface of genus three which

is not hyperelliptic. Set G = SL(2,C). Then there is a nonempty Zariski open

subset U of the space of all holomorphic connections on the trivial holomorphic

principal G-bundle EG = X×G→ X such that for any ϕ ∈ U , the homomorphism
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ρ in (3.4) corresponding to ϕ satisfies the following condition: the homomorphism

of cohomologies corresponding to ρ, namely the homomorphism

ρ∗ : H
1(X,TX) −→ H1(X, ad(EG)),

is injective.

Proof. As in the proof of Proposition 4.1, fixing a holomorphic trivialization of

EG identifies ad(EG) with the trivial holomorphic vector bundle X × sl(2,C) over
X. Let {ωj}3j=1 be a basis of H0(X,KX) (recall that H0(X,KX) has dimension

three). Define the homomorphism ρ,

ρ : TX −→ ad(EG) = X × sl(2,C),

that sends any v ∈ TxX to(
x,

(
ω1(x)(v) ω2(x)(v)

ω3(x)(v)−ω1(x)(v)

))
∈ X × sl(2,C).

As in (4.3), let

Θ: H1(X,TX)⊗H0(X,KX) −→ H1(X,OX)

be the natural homomorphism. For any h as in (4.4), the homomorphism h̃∗ as in

(4.5) vanishes. Therefore, from the above construction of ρ it follows immediately

that every

µ ∈ kernel(ρ∗) ⊂ H1(X,TX)

satisfies the equation

(4.12) Θ(µ⊗ ω) = 0

for all ω ∈ H0(X,KX); recall that {ωj}3j=1 is a basis of H0(X,KX).

We will show that there is no nonzero cohomology class µ ∈ H1(X,TX) that

satisfies (4.12) for all ω ∈ H0(X,KX).

Using Serre duality, it suffices to prove that the tensor product homomorphism

Θ′ : H0(X,KX)⊗H0(X,KX) −→ H0(X,K2
X)

is surjective. Now, Max Noether’s theorem says that the homomorphism Θ′ is

surjective because X is not hyperelliptic [ACGH, p. 117]. Hence kernel(ρ∗) = 0.

The condition on a homomorphism ρ : TX → ad(EG) that

ρ∗ : H
1(X,TX) −→ H1(X, ad(EG))

is injective, is Zariski open (in the space of all holomorphic homomorphisms). This

completes the proof of the lemma.
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§5. Holomorphic connections on the trivial bundle

In this section we prove the main result of the article (Theorem 5.3) and deduce

several consequences (Corollaries 5.6 and 5.8). Corollary 5.6 is the main result in

[CDHL]. Corollary 5.8 answers positively a question of B. Deroin.

As before, G is a connected reductive affine algebraic group defined over C.
In this section we further assume that dimG ≥ 3. As before, the Lie algebra of G

will be denoted by g.

As before, X is a compact connected Riemann surface of genus g, with g ≥ 2.

Given an element

δ ∈ H0(X,KX)⊗ g,

we have an OX -linear homomorphism

(5.1) M(δ) : TX −→ OX ⊗C g

that sends any v ∈ TxX to the contraction ⟨δ(x), v⟩ ∈ g. Let

(5.2) M(δ)∗ : H
1(X,TX) −→ H1(X,OX ⊗C g) = H1(X,OX)⊗C g

be the homomorphism of first cohomologies induced by the homomorphism M(δ)

in (5.1).

Notice that the homomorphism M(δ) in (5.1) is similar to ρ in (3.4).

Lemma 5.1. Let X be a compact connected Riemann surface of genus g ≥ 2 such

that one of the following two conditions holds:

(1) X is nonhyperelliptic;

(2) g = 2.

Then there is a nonempty Zariski open subset U ⊂ H0(X,KX) ⊗ g such that for

every δ ∈ U , the homomorphism M(δ)∗ constructed in (5.2) is injective.

Proof. First assume that X is nonhyperelliptic. Under this assumption, [Gi, p. 221,

Thm. 1.1] says that for a generic three-dimensional subspace W ⊂ H0(X,KX),

the natural homomorphism

ΘW : H0(X,KX)⊗W −→ H0(X,K2
X)

is surjective; in [Gi], the proof of this theorem is attributed to R. Lazarsfeld (see

the sentence in [Gi] just after Theorem 1.1). The dual homomorphism for it,

Θ∗
W : H1(X,TX) −→ H1(X,OX)⊗W ∗,

obtained using Serre duality, is injective if ΘW is surjective.
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Take any W as above such that Θ∗
W is injective. Set

δ ∈ H0(X,KX)⊗ g

to be such that the image of the homomorphism g∗ → H0(X,KX) corresponding

to δ contains W ; note that the given condition that dimG ≥ 3 ensures that

such a δ exists. Then, from the injectivity of Θ∗
W , it follows immediately that the

homomorphism M(δ)∗ constructed in (5.2) is injective.

Since the condition on δ ∈ H0(X,KX)⊗ g that M(δ)∗ is injective is actually

Zariski open (in H0(X,KX) ⊗ g), the proof of the lemma is complete under the

assumption that X is nonhyperelliptic.

Next assume that g = 2. This case is actually covered in the proof of Propo-

sition 4.1. More precisely, the proof of Proposition 4.1 shows that as long as δ is

not of the form ω ⊗ B, where B ∈ g and ω ∈ H0(X,KX) are fixed elements, the

homomorphism M(δ)∗ is injective.

Corollary 5.2. Let X be a compact connected Riemann surface of genus g ≥ 2

such that one of the following two conditions holds:

(1) X is nonhyperelliptic;

(2) g = 2.

Then, for the generic holomorphic connection ϕ on the holomorphically trivial

principal G-bundle EG = X ×G→ X,

H1(X, C•) ⊃ S(X,ϕ) ∩ βϕ(H1(X,TX)) = 0,

where S(X,ϕ) is the subspace constructed in (3.2) and βϕ is the homomorphism

in (2.13).

Proof. This follows from the combination of Proposition 3.2 and Lemma 5.1.

For any holomorphic connection ϕ on a holomorphic principal G-bundle EG

(it need not be trivial) on X, consider the monodromy representation for ϕ. Let

L(ϕ) be the C-local system on X for the flat connection on ad(EG) induced by ϕ.

The infinitesimal deformations of the monodromy representation are parametrized

by the elements of H1(X,L(ϕ)) [Go]. The differential of the monodromy map is a

homomorphism

(5.3) H(ϕ) : H1(X, C•) −→ H1(X,L(ϕ))

(see Theorem 2.2(2)).
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Theorem 5.3. Let X be a compact connected Riemann surface of genus g ≥ 2

such that one of the following two conditions holds:

(1) X is nonhyperelliptic;

(2) g = 2.

Then, for the generic holomorphic connection ϕ on the holomorphically trivial

principal G-bundle EG = X ×G→ X, the restriction of the homomorphism H(ϕ)

in (5.3) to the subspace S(X,ϕ) ⊂ H1(X, C•) in (3.2) is injective.

Proof. From Theorem 2.2(4) we know that the kernel of the homomorphism H(ϕ)

is the image of the homomorphism βϕ in (2.13). In view of this, the theorem is an

immediate consequence of Corollary 5.2.

Remark 5.4. The assumption in Theorem 1.1 that dimCG ≥ 3 is essential. Oth-

erwise (i.e., if dimCG ≤ 2), the map Mon in Theorem 1.1 fails to be an immersion

for dimensional reasons. To illustrate this, set G to be the two-dimensional affine

algebraic torus C∗ × C∗. Then

dimC Ξirred = 4g,

and from Lemma 3.1 we know that

dimC Systirred = 5g − 3.

Therefore, in this case, the map Mon in Theorem 1.1 is nowhere an immersion.

Remark 5.5. The map H(ϕ) in (5.3) is a homomorphism of tangent spaces. So

the generic injectivity statement in Theorem 5.3 is unrelated to whether the points

of the moduli spaces, to which the tangent spaces are associated, are genuinely

orbifold points or not. On the other hand, the injectivity statement in Theorem 5.3

is only for the generic point. Therefore, Theorem 5.3 does not say whether the

injectivity statement holds at an orbifold point or not.

The following result was first proved in [CDHL]:

Corollary 5.6. Let X be a compact connected Riemann surface of genus two.

Set G = SL(2,C). Let ϕ be an irreducible holomorphic connection on the trivial

holomorphic principal G-bundle EG = X × G → X. Then the restriction of the

homomorphism H(ϕ) in (5.3) to the subspace S(X,ϕ) in (3.2) is an isomorphism

between S(X,ϕ) and H1(X,L(ϕ)).

Proof. Since kernel(H(ϕ)) = βϕ(H
1(X,TX)) (see Theorem 2.2(4)), it follows from

the combination of Propositions 4.1 and 3.2 that the restriction of H(ϕ) to S(X,ϕ)
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is injective. Since the complex dimensions agree, i.e.,

dimS(X,ϕ) = 6 = dimH1(X,L(ϕ)),

injectivity implies isomorphism.

Remark 5.7. Regarding Remark 5.5, we note that Corollary 5.6 holds for every

point (X,ϕ) ∈ Systirred (under the assumptions that g = 2 and G = SL(2,C)). In
particular, Corollary 5.6 holds for the orbifold points of Systirred.

For Riemann surfaces of higher genus we have the following:

Corollary 5.8. Let X be a compact connected Riemann surface of genus g ≥ 3

which is not hyperelliptic. Set G = SL(2,C).
Then, for the generic holomorphic connection ϕ on the holomorphically trivial

principal G-bundle EG = X ×G→ X, the restriction of the homomorphism H(ϕ)

in (5.3) to the subspace S(X,ϕ) ⊂ H1(X, C•) is an isomorphism between S(X,ϕ)
and H1(X,L(ϕ)).

Proof. This follows directly from the injectivity statement obtained in Theorem

5.3. Indeed, here the complex dimensions agree:

dimS(X,ϕ) = 6g − 6 = dimH1(X,L(ϕ)).

On the other hand, Theorem 5.3 says that for the generic holomorphic connection

ϕ on the holomorphically trivial principal G-bundle EG = X × G → X, the re-

striction of the homomorphism H(ϕ) in (5.3) to the subspace S(X,ϕ) ⊂ H1(X, C•)
is injective. Hence this restriction of the homomorphism H(ϕ) is an isomorphism

between S(X,ϕ) and H1(X,L(ϕ)).

In [CDHL] the following question was asked: Is there a compact Riemann

surface X, and a holomorphic connection D on O⊕2
X , such that D is irreducible

and the image of the monodromy homomorphism for D is contained in SL(2,R)
[CDHL, p. 161]? Such pairs (X,D) were constructed in [BDH].
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