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Note on the density of ISE and a related diffusion

Guillaume Chapuy and Jean-François Marckert

Abstract. The integrated super-Brownian excursion (ISE) is the occupation measure of the
spatial component of the head of the Brownian snake with lifetime process the normalized
Brownian excursion. It is a random probability measure on R, and it is known to describe the
continuum limit of the distribution of labels in various models of random discrete labelled trees.
We show that fISE, its (random) density, has almost surely a derivative f 0ISE which is continuous
and .1

2
� "/-Hölder for any " > 0 but for no " < 0 (proving a conjecture of Bousquet-Mélou

and Janson). We conjecture that fISE can be represented as a second-order diffusion of the form

df 0ISE.t/ D 2
p
fISE.t/ dBt C g

�
f 0ISE.t/; fISE.t/;

Z t

�1

fISE.s/ ds

�
dt;

for some continuous function g, for t > 0, and we give a number of remarks and questions in
that direction. The proof of regularity is based on a moment estimate coming from a discrete
model of trees, while the heuristic of the diffusion comes from an analogous statement in the
discrete setting, which is a reformulation of explicit product formulas of Bousquet-Mélou and
the first author (2012).

1. Introduction

1.1. The integrated super-Brownian excursion

In this note, we are interested in a random probability measure called the integrated
super-Brownian excursion, or ISE. We give here its most intrinsic definition via the
Brownian snake. Our combinatorially inclined readers may prefer to think about it in
terms of continuum limits of random trees (for this, see Proposition 2.2 below, which
can be taken as a definition).

Recall that a Brownian snake .W; c/ D ..Ws; cs/; s 2 Œ0; 1�/ with lifetime pro-
cess c D 2e, where e is the normalized Brownian excursion, is a family of stand-
ard Brownian motions indexed by a continuum random tree with contour process c,
namely:
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• for each s 2 Œ0; 1�, the spatial component Ws is a standard Brownian motion
indexed by Œ0; cs�,

• for 0 � s � t � 1,Ws andWt coincide on Œ0; Ts;t � for Ts;t D min¹cu W s � u � tº,

• the two Brownian motions .Ws.Ts;t C u/ � Ws.Ts;t /; 0 � u � cs � T / and
.Wt .Ts;t C u/ �Wt .Ts;t /; 0 � u � ct � Ts;t / are independent.

The lifetime process 2e encodes a random tree T2e, usually called Aldous’ continuum
random tree, or CRT. The Brownian snake can be viewed as a Brownian motion
indexed by T2e. Each real number s in Œ0; 1� encodes a node in the tree, at depth 2e.s/,
and the Brownian motion Ws is the spatial component function: for t 2 Œ0; 2e.s/�,
Ws.t/ is simply the spatial position of the node of the branch from the root to the
node s, which is at depth t .

The head of the (spatial component of the) Brownian snake is the process H D
.Hs; s 2 Œ0; 1�/ of terminal points of the Brownian snake, and it is defined on Œ0; 1�
by Hs WD Ws.cs/. Conditional on c, it is a centred Gaussian process with covariance
function Cov.Hs;Ht / D min¹cu W u 2 Œs ^ t; s _ t �º for 0 � s; t � 1.

The integrated super-Brownian excursion, or ISE, is the random probability meas-
ure �ISE defined as the occupation measure of H for all continuous functions gW
R! R with compact supportZ C1

�1

g d�ISE D

Z 1

0

g.Hs/ ds:

We refer to Le Gall [17], or [14, 21] for more information on the subject.
It is known that �ISE has almost surely (a.s.) a (random) compact support: this is

a consequence of the a.s. continuity of H (see [3, 8] for the distribution of the sup-
port). Moreover, as shown by Bousquet-Mélou and Janson [5], �ISE is a.s. absolutely
continuous with respect to the Lebesgue measure and its random density has a con-
tinuous version denoted by fISE: the study of the random process fISE is the aim of
this paper.

1.2. Main contributions of this note

The main point of this note is to convey the intuition that not only �ISE has a continu-
ous density fISE, but this density has a continuous derivative f 0ISE, and we expect f 0ISE
to behave, in some sense, as a diffusion. In particular, we expect the 3D-process made
by fISE, its derivative f 0ISE, and its cumulative integral t 7!

R t
�1

fISE.s/ ds, to be
Markovian – which as far as we know has never been suggested before.

Technically, our main contributions are the following:

• We prove (Theorem 2.3 in Section 2.2) that indeed f 0ISE exists and is continuous
and even .1

2
� "/-Hölder for any " > 0. However, this is not true for any " < 0,
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and, in particular, fISE has no second derivative. This proves the main conjecture
in the paper by Bousquet-Mélou and Janson [5, Conjecture 2.3].

• We introduce a 3D-valued process, noted �, made by fISE, its derivative, and its
integral. The main message of this note is that this 3D-process opens the way to
an understanding of ISE in a Markovian way.

• We observe (Proposition 2.6 in Section 2.4) that, in the discrete model of uniform
random binary trees, whose convergence to ISE is known, the discrete analogue of
the triple process � can be represented as a Markov process, when conditioned to
its values at the two boundaries of a discrete interval. This is a direct consequence,
which seems to have been unnoticed before, of a theorem of [4].

• We prove that this discrete Markov process indeed converges to a diffusion (Pro-
position 2.7 in Section 2.5), when conditioned to its value at only one boundary
of a given interval, and properly tamed near 0.

• We conjecture (Section 2.6) that f 0ISE (more precisely, �) can be represented by
a diffusion, with or without conditioning at boundaries. We give a number of ques-
tions related to this.

We hope to stimulate efforts by researchers best acquainted with the subject, with the
hope that someone can give a rigorous meaning (or several) to this statement, and
prove it.

2. Convergence results and related questions

2.1. Discrete approach to fISE

From the discrete perspective, the ISE is the limit in distribution of several natural
random probability measures, in particular, the distribution profile of distances to
a random vertex in a random planar map [7], and most directly, of the distribution
of labels in various models of random spatial trees [2, 9, 14, 20, 21]. The model of
“spatial trees” involved are discrete branching random walks (sometimes viewed as
discrete snakes): some random values (called spatial displacements) are attached to
the edges of a discrete random tree, and the label/abscissa attached to a node u, is
obtained by summing the values on the path going from the root of the tree to u. They
are discrete analogues to the Brownian snake (indexed by the CRT).

Hence, to study ISE, a possible way consists in choosing a simple discrete model
having the Brownian snake as a limit (or simply, having a spatial occupation measure
converging to ISE).

For the purpose of this note, we will use the fact that the ISE is the weak limit of
a discrete model for which some useful formulas have been obtained [4] (additional
details are given in the proof of Proposition 2.2).
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Figure 1. Left: Two different binary trees with nD 6 vertices. The abscissa of each vertex is dis-
played next to it. These two trees have respective vertical profiles .1; 1I 3; 1/ and .I 1; 1; 2; 1; 1/.
Right: A uniformly random binary tree T of size n with n � 105; the projection of the uniform
measure of points on the horizontal axis is the measure �T .n/ – and, properly normalized, it is
a good approximation of �ISE.

Binary trees. For us, a binary tree is a rooted plane tree, in which each vertex has
a (possibly empty) left subtree and a (possibly empty) right subtree. See Figure 1.

Remark 2.1. Some authors would call these objects incomplete binary trees. Re-
placing each empty subtree by a single leaf gives a complete binary tree (a plane tree
with only vertices of arity 2 and 0).

The number of binary trees with n vertices is the n-th Catalan number,

Cat.n/ D
1

nC 1

�
2n

n

�
:

We define the abscissa [3, 4] of a vertex v as the number of right steps minus the
number of left steps on the path from the root to v. The uniform distribution on the
set Bn of binary trees with n vertices is denoted by Un. A binary tree, equipped with
the labelling of its vertices by their abscissas, gives a model of a spatial tree whose
distribution of labels, as we will see, converges after an appropriate rescaling to ISE.

The vertical profile of the tree T is the tuple

M.T / D .M`.T /.T /; : : : ;M�1.T /IM0.T /; : : : ;Mr.T /.T //;

where `D `.T /, r D r.T / are the smallest and largest abscissa (` and r stand for left
and right), respectively, and where for each integer i ,Mi .T / is the number of vertices
of T of abscissa i . For probabilistic applications, it is most natural to turn this object
into a probability measure. Introducing a suitable normalization, we thus define the
probability measure

�T .n/ WD
1

n

r.T /X
kD`.T /

Mk.T /Dirack=.2n/1=4 ;
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where Diracx is the Dirac mass at x. Note that this carries all the information of
the profile, and in fact, it is the measure �T .n/ that we will refer to as the profile
of T . In addition to M.T /, we introduce two processes �.T / WD .�i .T /; i 2 Z/

and S.T / WD .Si .T /; i 2 Z/, which can be thought of as the discrete derivative and
discrete integral of M.T /, respectively,

�i .T / DMi .T / �Mi�1.T /; Si .T / D
X
j�i

Mj .T /; i 2 Z:

Finally, we define the triple

Zi .T / D .�i .T /;Mi .T /; Si .T //; i 2 Z: (2.1)

Note that each of �.T /, M.T / and S.T / determines

Z.T / WD .�.T /;M.T /; S.T //;

and observe also that the knowledge of .�i ;Mi / is equivalent to that of .Mi�1;Mi /.
The following proposition, essentially due to Bousquet-Mélou and Janson [5],

states that �ISE is nothing but the limit in distribution of the profile of a random ele-
ment of Un.

Proposition 2.2. If Tn is picked according to Un, then �Tn
.n/ converges in di-

stribution to �ISE, for the topology of weak convergence of probability measures.
Moreover, . 1

n3=4Mn1=4x.Tn/; x 2 R/ converges in distribution to .
fISE.
x/; x 2 R/

in C0 (for 
 D 2�1=4), the space of continuous functions with 0 limit at˙1, equipped
with the topology of uniform convergence.

Moreover,

.`.Tn/; r.Tn//n�1=4
.d/
��!
n
.L;R/; (2.2)

for some non-trivial random variables .L;R/ such that, a.s., L < 0 < R (and ŒL;R�
is distributed as the a.s. finite support of .fISE.
x/; x 2 R/).

In the proposition,M.Tn/ is the continuous process which interpolates .Mk.Tn/;
k 2 Z/ linearly between integer points. The same notation will be used for all integer-
indexed processes encountered in the paper.

This result implies that fISE is almost surely continuous (which can be stated also
as follows: �ISE possesses a.s. a density gISE with respect to the Lebesgue meas-
ure on R, and the process gISE admits a continuous version fISE). These authors
also show that fISE has a derivative a.e. f 0ISE, and they conjecture that f 0ISE possesses
a continuous version, but no second derivative (see Figure 2 for a simulation of the
processes �, M , S of a large random tree, on which one can guess, among other
things, the regularity of the limiting processes).
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Figure 2. Uniform plane tree with 50 millions of vertices, spatial increments i.i.d. ˙1 with
probability 1=2. From top to bottom, representation of the process �.T /, M.T /, S.T /. Up to
a normalization, they are discrete approximations of the continuum processes f 0ISE.t/, fISE.t/,R t

�1
fISE.s/ ds.

Proof. The result concerning the convergence of . 1

n3=4Mn1=4x.Tn/; x 2 R/ is due to
Bousquet-Mélou and Janson [5, Theorem 3.1].

The first and last assertions of the proposition are byproducts of the proof of con-
vergence of the so-called discrete snakes (see [14,21]). Let us give some details. A dis-
crete snake is a sequence of trajectories associated with a branching random walk.
This later is a random structure made by two levels of randomness: first, a Galton–
Watson tree conditioned by its total population is picked (its offspring distribution has
mean 1 and satisfies some moment conditions, notably, a finite variance). Each edge e
of the tree is associated with a spatial displacement Xe , which is a centered random
variable, with a finite moment of order > 4 (the Xe are independent, and independent
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of the tree). A label `.u/ is then associated to each node u of the tree: `.u/ is the sum
of the variables Xe of each edge e on the shorter path from u to the root.

A branching random walk built on a tree with size n C 1 (having n edges) is
then encoded using two dependent processes .Cn; Rn/: the contour process Cn D
.Cn.k/; 0 � k � 2n/ encodes the tree, and the label process

Rn D .Rn.k/; 0 � k � 2n/

encodes the successive labels of nodes encountered when turning around the tree
(Rn.k/ is the label visited at time k when doing the contour process). The pair
.Cn.2n:/=n

1=2; Rn.2n:/=n
1=4/ converges in .C Œ0; 1�;R/2, the limit being the so-

called contour process of the Brownian snake (up to some additional factors depend-
ing on the Galton–Watson offspring distribution variance and the variance of Xe).
As a consequence, the analogue of (2.2) holds for branching random walks: the res-
caled pair .mink Rn.k/;maxk Rn.k//n�1=4 converges in distribution (up to some
constant factor) to the support of �ISE, which is the occupation measure of the limit
label process.

In our particular case, the spatial displacements are not i.i.d. but correspond to the
following branching random walk: the offspring distribution is p0 D 1=4, p1 D 1=2,
p2 D 1=4. It has mean 1 and variance �2 D 1=2. In the case where a node u has
a unique child v, the spatial displacement associated with the edge .u; v/ is C1
or �1 with probability 1=2, if there are two children, the spatial displacement is
.�1;C1/, that is, �1 for the left child, C1 for the right one. However, one sees that
in the two children case, if one replaces the spatial displacement by .�1;C1/ with
probability 1=2 and .C1; �1/ with probability 1=2, one preserves the distribution
of .minRn;maxRn/ (and much more than that), since this amounts to exchanging
the left and right subtrees with probability 1=2, independently at each internal nodes
(which preserves the law of this kind of trees): this trick is used in [19], for the case
of binary trees. This modified model falls into those allowed in [14,21] (which allows
dependence between the displacements of siblings, as long as they are centered), and
can also be seen as globally centered snake (in the sense of [20]). This concludes
the proof.

To be complete, we mention that another proof of the tightness of .Ln; Rn/ can
be obtained by observing that our model of binary trees corresponds to the set of
internal nodes of standard complete binary trees. For this model, the results of [19]
imply also the convergence of .Ln; Rn/ after rescaling to the range of the label pro-
cess of the Brownian snake, from which the wanted result follows. Moreover, for the
interested reader, we point out that Devroye and Janson [9] obtained analogues of
Proposition 2.2 for general models of discrete snakes under the hypothesis that the
spatial increments along edges are independent (which is not the case here).
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2.2. Tightness and regularity

Let Tn be a random binary tree taken under distribution Un. For k 2 Z, we set
M n
k
DMk.Tn/, `n D `.Tn/, rn D r.Tn/, �n D �.Tn/, and let Sn D S.Tn/ be the

discrete derivative and integral of this process. We introduce the three-dimensional
process �n D .�n.t/; t 2 R/ defined by

�n.t/ WD
� 1

n1=2
�n
n1=4t

;
1

n3=4
M n
n1=4t

;
1

n
Sn
n1=4t

�
t2R

;

where we recall that our notation uses implicitly the linear interpolation between
integer values of n1=4t . The choice of normalization for the three coordinates will
become clear below.

Theorem 2.3. The sequence of processes .�n/ is tight in C0.R/2 � C0;1.R/, where
C0.R/ is the space of continuous functions with limit 0 at ˙1 and C0;1 the space
of continuous function with limit 0 in �1 and 1 in C1 (equipped with the topology
of uniform convergence). Moreover, we have the convergence

�n ! �;

where

�.t/ WD

�

2f 0ISE.
 t/; 
fISE.
 t/;

Z t

�1


fISE.
s/ ds

�
;

where f 0ISE is a continuous function, which is the derivative of fISE, (the convergence
holds in distribution, for the topology of uniform convergence, and 
 D 2�1=4).

For any " > 0, the function f 0ISE is a.s. .1
2
� "/-Hölder continuous. However, for

any " > 0, the function f 0ISE is a.s. .1
2
C "/-Hölder continuous almost nowhere inside

the support of fISE. In particular, f 0ISE is a.s. differentiable almost nowhere inside the
support of fISE.

The fact that fISE has a.s. a continuous derivative, but no second derivative, was
conjectured in [5, Conjecture 2.3]. Note also that the theorem shows that f 0ISE van-
ishes at the boundary of the support of fISE (since it is continuous).

Remark 2.4 (About the topology of convergence). We know from Proposition 2.2
that the sequence .`.Tn/; r.Tn//n�1=4 is tight. On the other hand, the random pro-
cess �n is constant (equal to .0; 0; 0/) on the interval .�1; n�1=4`.Tn/� and this
process is also constant (equal to .0; 0; 1/) on the interval Œn�1=4.r.Tn/C 2/;C1/.
Thanks to these simple observations, the tightness of the sequence �n in C0.R/2 �
C0;1.R/ will easily follow if we can verify that, for every K > 0, the sequence
.�n.t//�K�t�K is tight in C.Œ�K;K�; R3/. To get the latter tightness property, we
will rely on a moment criterion (cf. Lemma 3.1 below).
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2.3. A translated version of the integrated super-Brownian excursion on RC

The fact that the CRT is invariant under uniform rerooting (see [1]) has various con-
sequences. The rerooting of a CRT with contour process c D 2e at position r 2 Œ0; 1�,
is defined thanks to its contour process

c.r/.x/ D c.x C r mod 1/C c.r/

� 2min¹c.u/ W u 2 Œr ^ .x C r mod 1/; .r _ .x C r mod 1/�º;

which gives the distance of the node encoded by x C r to the node encoded by r
in the tree with contour process c. The rerooted snake is obtained by rerooting the
underlying tree at the new root, by setting 0 as its new spatial position, and by keep-
ing the spatial variation along branches. The head of the obtained Brownian snake
satisfies

.H .r/.x/; x 2 Œ0; 1�/ D .H.x C r mod 1/ �H.r/; x 2 Œ0; 1�/;

and
H .r/ .d/

D H:

Since for a uniform variable u 2 Œ0; 1�, independent fromH , the distribution ofH.u/
is given by the occupation measure of H (which is �ISE), one has

�ISE
.d/
D �ISE.: �X/;

where X has distribution �ISE (to be clear, the translation value X is taken under the
random measure �ISE that it translates). These considerations allow one to understand
that if one takes L D min Support.�ISE/, then

�C WD �ISE.: � L/

is a random measure on Œ0;C1/ which can be used to describe �ISE:

�ISE
.d/
D �CISE.: � Y /;

where, again, Y is taken under the random measure �CISE. Let us call �CISE the trans-
lated version of �ISE, and denote by

�C.t/ D

�

2f CISE

0.
 t/; 
f CISE.
 t/;

Z t

�1


f CISE.
s/ ds

�
the corresponding encoding processes. The process �C is, in nature, a bit simpler
than � since “it starts” at a deterministic abscissa, when � has a bilateral random sup-
port.
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2.4. A companion process and a discrete diffusion

Bousquet-Mélou and the first author [4] have given a complete description of the law
of the vertical profile M.Tn/ under Un.

Proposition 2.5 ([4, Theorem 1]). Let ` 2 Z�, r 2 ZC, mi 2 ¹1; 2; : : : º for any
i 2 J`; rK and

rX
iD`

mi D n and m`�1 D mrC1 D 0:

We have

#¹T 2 Bn WM.T / D .m`; : : : ; m�1Im0; : : : ; mr/º

D
m0
�
m�1Cm1

m0�1

�
m`mr

Y
`�i�r
i¤0

�
mi�1 CmiC1 � 1

mi � 1

�
; (2.3)

where
�
a
b

�
D 0 if b > a.

Of course, for Tn taken under Un, P .M.Tn/ D .m`; : : : ; m�1Im0; : : : ; mr// is
proportional to the right-hand side of (2.3). Rewrite this right-hand side a bit differ-
ently using that

P
mi D n. For a normalizing sequence .˛n; n � 0/, we have

P .M.Tn/ D .m`; : : : ; m�1Im0; : : : ; mr//

D
m0

m1Cm�1

m1Cm�1�m0C1

˛nm`mr2m`Cmr

Y
`�i�r

�
mi�1CmiC1�1

mi�1

�
2mi�1CmiC1

: (2.4)

We now arrive at the main idea at the origin of this note: the product in the formula
of the law of M.Tn/ will lead us to observe that the process M.T / can be (roughly)
represented with the help of a Markov chain M ?.

However, because the i -th factor of the product depends on the numbers miC1
andmi�1, to obtain a Markov chain representation we need to consider a three-dimen-
sional process: this is the reason for the introduction (in (2.1)) of the process Z.T /.
Moreover, this Markovian representation will hold only if we condition on the values
of Z.T / at the two boundaries of an interval. We prove below that the companion
process M ? (or rather Z?) possesses a diffusive limit: this will give the intuition that
it should be also the case for fISE (but this will not prove it, because of the difficulty
of obtaining the same statement under a double conditioning).

In order to parse (2.4), recall that for any fixed positive k, the distribution de-
fined by

pk.nC k/ D

�
k � 1C n

k � 1

�
2�n�k; n � 0;
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is the negative binomial distribution BNEG.k/; this distribution is that of the sum
of k i.i.d. geometric 1=2 random variables g.j / (with support ¹1; 2; : : : ; º, and then,
mean 2):

pk.nC k/ D P
� kX
jD1

g.j / D nC k

�
D P

� kX
jD1

.g.j / � 2/ D n � k

�
:

Each factor in the product in the right-hand side of (2.4) can thus be reinterpreted:�
.mi�1 CmiC1 �mi /Cmi � 1

mi � 1

�
2�mi�1�miC1

D P
� miX
jD1

.g.j / � 2/ D ıiC1 � ıi

�
; (2.5)

where ıi D mi � mi�1. Hence, if the prefactors in (2.4) were not there, then con-
ditionally on .Mk; k � i/, the increment �iC1 D MiC1 �Mi would have the same
distribution as�i C

PMi

kD1
.g.k/� 2/, and the process .Zj /would be a simple Markov

chain (and .Sj / would be a Markov chain of order 3).
To shed more light, we introduce the companion process, a time homogeneous

Markov chain .Z?
k
;k � 0/D ..�?

k
;M ?

k
;S?
k
/;k � 0/ taking its values in Z3 as follows:

conditionally on .�?i ;M
?
i ; S

?
i / D .ıi ; mi ; si /,8̂̂̂̂

<̂̂
ˆ̂̂̂:
�?iC1 D ıi C

jmi jX
kD1

.g.k/ � 2/;

M ?
iC1 D mi C�

?
iC1;

S?iC1 D si CM
?
iC1:

(2.6)

Moreover, ifM �
k
� 0, then the processZ? is stopped at time k (meaning thatZ?

kCt
D

Z?
k

for all t � 0). Of course, to fully specify the process, we should specify a starting
time and value – and we will when needed.

The companion process Z? and the tree-related process Z.Tn/ are related as
follows.

Proposition 2.6. The distribution of the companion processZ? coincides withZ.Tn/
on intervals which do not straddle 0, when one fixes boundary conditions at the two
extremities of the interval: Formally, take Tn under Un. Fix integers 0 < k1 < k2

(or k1 < k2 < 0) and .ı1; m1; s1/, .ı2; m2; s2/ in Z � Z>0 � Z. Then the laws of the
vectors .Z?j ; k1 � j � k2/ and .Zj .Tn/; k1 � j � k2/ conditioned to take the value
.ıi ; mi ; si / at ki for i D 1; 2, are equal.

Observe that since m2 > 0, this condition implies that under the conditional dis-
tribution, the second component of Z? stays positive on Œk1; k2�.
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Proof. Take an element Œz0j D .d
0
j ;m

0
j ; s
0
j /; k1 � j � k2� such that for all k1 < j < k2,

m0j > 0,m0j D m
0
j�1 C d

0
j , s0j D s

0
j�1 Cm

0
j (so that .s0j / is increasing), and moreover

at the boundary z0
kj
D .ıj ;mj ; sj / for j 2 ¹1; 2º. Using (2.5), it is immediate to check

that P.Z?j D z0j ; k1 � j � k2 j Z
?
k1
D z0

k1
; Z?

k2
D z0

k2
/ and P.Zj .Tn/ D z0j ; k1 �

j� k2 j Zk1
.Tn/ D z0k1

; Zk2
.Tn/ D z0k2

/ are proportional, and then, are equal.

Notice that the prefactor in (2.4) says something about the root position (the pos-
ition of “0” in the interval Œ`; r�), as well as a kind of cost of the extremal values
.M`; Mr/. For simplicity, we have chosen in Proposition 2.6 to consider only inter-
vals avoiding zero. This allows one to work with nicer formulas. Section 2.3, in which
the translated version �C is introduced, suggests that the root position is not important,
and can be thought to be close to the left support.

Note also that the rerooting invariance of the continuum model (Section 2.3 again)
is not exactly present in discrete binary trees.

Finally, note that the prefactor in (2.4) and the global condition of positivity
ofM.Tn/ on J`; rK make the global study of (2.4) quite difficult; with intervals avoid-
ing zero, we avoid (part of) these difficulties.

2.5. Convergence to a diffusion for the companion process attached at the left
boundary

In view of (2.6), and since the law of
Pjmi j

kD1
.g.k/ � 2/ of centred i.i.d. variables should

be well approximated by the centred normal distribution with variance j2mi j. It can be
expected that Z? (started at time 0) will converge in distribution, after an appropriate
rescaling, to a process ��t D .ı

�
t ; m

�
t ; s
�
t / that is solution to the stochastic differential

equation (SDE)

ı?t D ı0C

Z t

0

p
2m?x dW.x/; m?t Dm0C

Z t

0

ı?x dx; s?t D s0C

Z t

0

m?xdx; (2.7)

whereW.t/ is a standard Brownian motion. Note that the dynamics of the process can
be encapsulated in the unique SDE

d..m�t /
0/ D

p
2m�t dWt ; (2.8)

which is some “order-2” diffusion (note that the s-coordinate plays no direct role in
the dynamics).

Since x 7!
p
x is not Lipschitz (at 0) and M ? is stopped when it becomes negat-

ive, however, some precautions will be needed.

A stopped version of the companion process. The process Z? is well defined for
any initial distribution with support in Z3, however, we are only interested in its beha-
viour when M ? � 0 (we will condition on that event). Moreover, the convergence
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result we are about to state needs for the diffusion coefficient to be positive: we choose
to stop Z? when a certain level K > 0 is hit by M ?. For K > 0 fixed, denote

TK D inf¹t > 0 WM ?
t < Kº:

We define P�K the distribution of the Markov chain NZŒK� obtained from Z? as fol-
lows:

NZ
ŒK�
t D Z?t^TK

:

The process Z? D .Z?
k
; k � 0/ is time homogeneous. To describe its limit, let us fix

a constant T > 0, and set for all k � 0, n � 1,

tnk D kn
�1=4; Nn D min¹k W tnk > T º D bT n

1=4
c C 1:

Set �n;? D .ın;?; mn;?; sn;?/ as the càdlàg process, constant on Œtn
k
; tn
kC1

/, and satis-
fying

�n;?.tnk / D

264n�1=2�?kn�3=4M ?
k

n�1S?
k

375 :
The process .�n;?.tn

k
/; k � 0/ is a Markov chain.

As usual, denote by D.Œ0; T �;R3/ the set of càdlàg functions defined on Œ0; T �
taking their values in R3, equipped with the Skorokhod topology. We write x�n for the
stopped version.

Theorem 2.7. Let .ı0;m0; s0/ 2 R � .0;C1/ �R, T > 0 fixed, and .ın0 ;m
n
0; s

n
0 / be

a sequence in Z3 such that mn0 > 0. If

zn0 WD
� ın0
n1=2

;
mn0
n3=4

;
sn0
n

�
! z0 WD .ı0; m0; s0/;

then for any 0 < " < m0, there are a Brownian motion .W.t/; t � 0/ and a random
process �?.:/ non-anticipative with respect toW.:/ so that, under P�"n3=4 , .x�n/ start-
ing at the initial position zn0 , converges in distribution in D.Œ0; T �;R3/ to �?, the
unique solution of the stochastic differential equation

�?.t/ D �.0/C

Z t

0

f .�?.s/; s/ ds C

Z t

0

�.�?.s/; s/ dW.s/; (2.9)

where �?.0/ D z0, stopped when its second entry hits " and

f

0B@
264dm
s

375 ; t
1CA D

264 0d
m

375 ; �

0B@
264dm
s

375 ; t
1CA D

264
p
2jmj

0

0

375 :
This means that, before being stopped when m?t D ", �?.t/ D .ı?t ; m

?
t ; s

?
t / satis-

fies (2.7).
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Notice that (2.9) is the integral form of (2.8).
Unfortunately, we are not able to prove a “local-limit” statement that would be the

analogue of Theorem 2.7 when the processes are conditioned by their value on the two
boundaries of an interval of the form Œt1; t2�. Moreover, since the process fISE vanishes
at the boundary of its support (since it is a.s. continuous on R), the approximation
given by Theorem 2.7 is not sufficient to describe entirely the process �C (since "> 0).

If we could overcome these difficulties, we would obtain by Proposition 2.6 that
the process � (defined in Theorem 2.3) behaves as a diffusion, at least on any compact
sub-interval of its support.

We hope that experts of diffusion approximations could be able to bridge these
gaps. In the next section, we ask explicit questions in this direction.

2.6. Some questions and conjectures

2.6.1. Questions on the integrated super-Brownian excursion. Maybe the most
direct question that follows from the previous discussion is to know whether one can
add a dt term to (2.8) to obtain an SDE that would completely describe the process �.
It is more natural to formulate it for the translated process �C (defined in Section 2.3)
to avoid dealing with the bias at zero.

Conjecture 2.8. There is a continuous function g such that the following stochastic
differential equation holds, for t > 0:

d
�
f CISE

0.t/
�
D 2

q
f CISE.t/dBt C g

�
f CISE

0.t/; f CISE.t/;

Z t

�1

f CISE.s/ ds

�
dt: (2.10)

The conjecture implies a similar equation for the unshifted process � on .0;C1/.
The law on .�1; 0/ should be more complex since each trajectory has to be biased
by the value fISE.0/ (see the rerooting property in Section 2.3). It is natural to expect
a similar SDE in which the function g depends on a fourth parameter t . Notice that
the factor 2 in (2.10) is different from the constant

p
2 in (2.9) and in (2.8), since there

is a change of time t 7! 
 t between them (see, e.g., Jacod [13], for more information
on the change of time techniques in SDE).

Proving that conjecture would be very interesting, especially if the function g
can be expressed explicitly. A possible approach to this question would be to try to
re-sum the product formulas of [4] to obtain, at the discrete level, the explicit mul-
tivariate generating functions encoding the conditional transition probabilities for the
process �n. While we believe that it may be approachable while staying in the realm
of algebraic functions (recall that a function is algebraic if it is a solution of a non-zero
polynomial equation whose variables are the function itself and its parameters), the
subsequent analytic combinatorics in several variables required might lead to consid-
erable technical difficulties. We hope that a direct approach from the continuum could
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lead to better solutions. In any case, this suggests that the function g in Conjecture 2.8
could be algebraic and even quite explicit.

Another natural goal would be to try to prove the missing “local limit” version of
Theorem 2.7.

Conjecture 2.9 (Two-sided version of Theorem 2.7). For i D 0; 1, let .ıi ; mi ; si / 2
R � .0;C1/ � Œ0; 1�, and let .ıni ; m

n
i ; s

n
i / be a sequence in Z3 such that mni > 0.

Assume

zni WD
� ıni
n1=2

;
mni
n3=4

;
sni
n

�
! zi WD .ıi ; mi ; si / for i 2 ¹0; 1º:

Let 0 < " < s1, and consider the process �?.t/ as in Theorem 2.7, stopped when m?

hits ", and started at z0 for t D 0. Then, the discrete process P�"n3=4 , .x�n/ started
at time 0 at position zn0 and conditioned to take value zn1 at time t1, converges in
distribution in D.Œ0; t1�;R3/ to �?, started at position .ı0; m0; s0/ conditioned by
�?.t1/ D z1.

In the last sentence, notice that we can condition the process �? by its terminal
value �?t1 on Œ0; t1�, on the support of this variable – and this characterizes (by disin-
tegration), up to a negligible set, the conditional distribution given the ending point.
It can be shown (personal communication of Nicolas Fournier), that the law of m?t1 is
absolutely continuous with respect to the Lebesgue measure on any compact subset
of .0;C1/.

The last conjecture seems to be related to “continuity” properties of the law of the
process �n;� on an interval Œk1; k2� and conditioned to its right boundary, according
to the value on that right boundary. Although it seems difficult to obtain such a result
in the general framework of approximating discrete Markov processes by diffusions,
it might be doable for this particular case.

From the viewpoint of the convergence of �n, and given Proposition 2.6, it would
be even better to establish the following.

Conjecture 2.10. Conjecture 2.9 also holds with " D 0.

Note that formula (2.3) is reminiscent of the closed formula for the distribution
of “horizontal profile” that one may find for rooted plane trees, or rooted Cayley
trees, taken under the uniform distribution on the corresponding sets of trees with n
vertices. The horizontal profile, in general, just called “profile” in the literature, is the
sequence .zi ; i � 0/ of the number of vertices at successive levels in the tree. If h is
a positive integer, the number of rooted plane tree having zi > 0 vertices at level i ,
for 1 � i � h is given by

Qh�1
iD0

�
ziCziC1�1

zi�1

�
, where z0 D 1: indeed, .c1; : : : ; czi

/ the
number of children of the zi individuals at level i forms a composition of ziC1 (this is
well known, see, e.g., [4] again). The horizontal profile in these trees converges after
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space and time normalization to the local time of the Brownian excursion, which is
the solution of a stochastic differential equation, as proven by Pitman [23] (see also
Drmota and Gittenberger [10]). As a starting point to approach the questions above,
one might try to reprove this differential equation directly from the discrete product
formula, via a diffusion approximation and conditioning of the natural companion
Markov process.

2.6.2. Family of distributions subject to boundary conditions. Finally, this dis-
cussion raises several questions about the characterization of a random continuum
process by its law on proper compact subintervals of the support. Assume for the sake
of the discussion that a one-dimensional process X has a continuous version on Œ0; 1�.
Consider the family of distributions subject to boundary conditions (FDBC) of X ,
which is the data of all the laws

L.ŒX.t/; t 2 Œt1; t2�� j X.t1/ D x1; X.t2/ D x2/

for all 0 < t1 < t2 < 1 (observe that 0 and 1 are excluded) and all .x1; x2/ in the
support of .X.t1/; X.t2//. We observe that, in general, the FDBC is not sufficient to
characterize the distribution of X . For example, the Brownian motion and the stand-
ard Brownian bridge have the same FDBC. Even the knowledge of the FDBC and
the knowledge of the boundary distribution (for example, X.0/ D X.1/ D 0) is not
sufficient to characterize X . For example, if

X .p/ D �Ber.p/eC .1 � Ber.p//e;

where e is a normalized Brownian excursion, and Ber.p/ is an independent Bernoulli
random variable with parameter p, then X .p/0 D X

.p/
1 D 0 for all p, the X .p/ have

the same FDBC for all p 2 .0; 1/, but the law of X .p/ clearly depends on p.
What can be shown to be sufficient to determine the distribution of X is, in addi-

tion to X.0/ D X.1/ D 0 and of the knowledge of the FDBC, the continuity1 of
the map

.t1; t2; x1; x2/ 7! L.ŒX.t/; t 2 Œt1; t2�� j X.t1/ D x1; X.t2/ D x2/

in .0; 1; 0; 0/.
The weakness of the FDBC to characterize the distribution of processes implies

that the convergence of the FDBC is also a much too coarse tool to entail convergence
in distribution. That being said, of course, such a convergence still carries an important
amount of information, and proving it in the case studied in this paper (Conjecture 2.9
or Conjecture 2.10) would be very interesting.

1A notion of continuity which is sufficient here, is the convergence of finite-dimensional
distributions under L.ŒX.t/; t 2 Œt1; t2�� j X.t1/ D x1; X.t2/ D x2/ when .t1; t2; x1; x2/ !

.0; 1; 0; 0/.
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3. Proof of Theorem 2.3

In this section, we prove Theorem 2.3. First note that by the results in [5] (see Pro-
position 2.2), the tightness of the sequence of processes .n�3=4M n

n1=4t
/t2R in C0.R/

equipped with the topology of uniform convergence and its convergence to 
fISE.
:/

are known. So to prove tightness of .�n/, it suffices to prove the tightness of its first
component, namely, the sequence of processes .n�1=2�n

n1=4t
/t2R: more precisely, it

suffices to prove the tightness of its restriction to C.Œ�K; K�/ for any K > 0, as
explained in Remark 2.4. Moreover, assuming this is done, pick any sub-sequential
limit g of that process (in distribution) and a probability space on which this con-
vergence is realized almost surely, then it follows from the discrete identity M n

k
DP

j�k �
n
j that, almost surely, we have

R t
�1

g.s/ ds D 
fISE.
 t/. Therefore, g.t/ D
.
fISE.
 t//

0 which shows that the convergence holds without taking subsequences –
and that the limit is, as claimed, the derivative of t 7! 
fISE.
 t/.

Therefore, we only have to prove the tightness of .n�1=2�n
n1=4:

/ on compact
intervals. For this, we will rest on the well-known moment criterion of Kolmogorov
(see [15, Theorem 2.23]), whose main point is to prove the following lemma. The
value p D 4 would be sufficient to obtain tightness as a continuous process but some
results of the paper, including the control of the Hölder regularity of the limit, require
arbitrary values of p.

Lemma 3.1. Let p � 1 be an integer. Let a < b 2Z such that j b�a
n1=4 j � 1. Assume that

an�1=4 and bn�1=4 belong to Œ�K;K� for some K > 0. Then, for any integer p � 1,
one has ˇ̌̌

E
h��n

b
��na
p
n

�piˇ̌̌
� Cp

�b � a
n1=4

�dp=2e
(3.1)

for some constant Cp depending only on p and K.

The constant 1 in the upper-bound
ˇ̌
n�1=4.b � a/

ˇ̌
� 1 plays no special role in the

proof of the lemma nor in its application (any positive constant would work).

3.1. Proof of Lemma 3.1

Let us first sketch the method, which is relatively straightforward even if it takes space
to write: we will expand the p-th power, interpret the quantities obtained as counting
(with signs) trees with p marked vertices, and proceed with generating functions.
We will compute these generating functions combining a skeleton decomposition
(whose origin in the context of labelled trees might be traced back to [6]) with ana-
lytic combinatorics via Hankel contours. The main point of the proof is that, after the
proper analysis is done and sign cancellations analysed carefully, we can identify the
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dominating configurations as the ones in which the p marked vertices are grouped
together “in bp

2
c pairs”, which in fine is the explanation for the ratio between expo-

nents p and p
2

in (3.1). This appearance of pairs in the analysis is in some sense the
combinatorial incarnation of the Gaussian nature of the underlying continuum pro-
cess, see also Section 3.3. Let us now proceed with the proof.

For the rest of Section 3.1, we fix integers a; b 2 Z with a < b, and n; p � 1.
We set q WD b � a and write q D �n1=4. We assume that j b�a

n1=4 j � 1, so that

n�1=4 � j�j � 1:

We fix an arbitrary constant K > 0 and assume that an�1=4, bn�1=4 belong to the
interval Œ�K;K�. Throughout Section 3, the notation Cp will denote a positive con-
stant that may vary from line to line but depends only on p and K, and not on a,
b, n, q, �.

First, it will be convenient in the proof to avoid the case when the marked vertices
are equal to the root. To do this, we define a modified version of the process in which
the root (of label 0) does not contribute to the profile. Namely, using the Kronecker
symbol ı, we define

zM n
i WDM

n
i � ıi;0;

z�ni WD
zM n
i �

zM n
i�1:

We first observe that to prove Lemma 3.1, it is enough to prove it for the modified
process, i.e., to prove that one has2

ˇ̌̌
E
h� z�n

b
� z�na
p
n

�piˇ̌̌
� Cp

�b � a
n1=4

�dp=2e
: (3.2)

Indeed, (3.1) clearly holds if one replaces the process .�ni / by .ıi;0 � ıi�1;0/, so for
even p, and assuming that (3.1) holds for .z�ni /, it holds for the process .�ni / which
is the sum of both by the Minkowski inequality. For odd p, one can write, expanding
the p-th power,ˇ̌̌

E
h��n

b
��na
p
n

�piˇ̌̌
�

pX
jD0

�
p

j

�ˇ̌̌
E
h� z�n

b
� z�na
p
n

�j iˇ̌̌� 4
p
n

�p�j
;

which assuming (3.2) for all j � p implies (3.1). Thus, in order to prove Lemma 3.1,
we will only need to prove (3.2).

2Since we use it here for the first time, recall our convention that the constant Cp may vary
from line to line, but depends only on p and on the interval Œ�K; K� to which an�1=4 and
bn1�=4 are constrained.
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Since the Catalan numbers satisfy Cat.n/ D ‚.4nn�3=2/, we need to show thatˇ̌̌
Cat.n/ � E

h�
z�nbC1 �

z�naC1

�piˇ̌̌
� Cp4

nnp=2�3=2�dp=2e (3.3)

for some constant Cp . Note that compared to (3.2), we have incremented a and b by
one, which will be convenient for notation.

3.1.1. Marked trees, skeletons. Since z�n
bC1
� z�naC1D

zM n
bC1
� zM n

b
� zM n

aC1C
zM n
a ,

we can write

EŒ.z�nbC1 � z�
n
aC1/

p� D
X

"1;:::;"p2¹0;1º

"0
1
;:::;"0p2¹0;1º

.�1/
P
"iC

P
"0

iE

� pY
iD1

zM n
aCq"iC"

0
i

�
:

Therefore,

Cat.n/ � EŒ.z�nbC1 � z�
n
aC1/

p�

D

X
"1;:::;"p2¹0;1º

"0
1
;:::;"0p2¹0;1º

.�1/
P
"iC

P
"0

iTn.aC q"i C "
0
i ; i D 1; : : : ; p/; (3.4)

where Tn.i1; : : : ; ip/ denotes the number of binary trees of size n having p (numbered,
possibly repeated) distinguished non-root3 vertices, of respective abscissa i1; : : : ; ip .

We will evaluate sum (3.4) by grouping trees with p marked vertices according to
their skeleton and their scheme, which we now define.

Definition 3.2 (Skeleton, scheme, Figure 3). Let T be a rooted binary tree with root �,
with p marked vertices v1; : : : ; vp distinct from �, numbered and possibly repeated.

Let V be the set formed by the vertices v1; : : : ; vp; � together with all their pair-
wise highest common ancestors. The skeleton S of T is the rooted binary tree on the
vertex set V obtained from T by iteratively removing all vertices which are leaves
but are not in V , until no such leaf remains, and then replacing each path of vertices
of degree 2 joining two points of V (but containing no other vertex of V ) by a single
edge. We preserve the left/right order of edges outgoing from vertices of V , so S has
a structure of binary tree.

Let f1; : : : ; fk be the leaves (vertices without children) of S , and let g1; : : : ; g`
be the non-root vertices of S which are either unary or binary (1 or 2 children), where
both lists are without repetition, and k � 1, `� 0. In both cases, vertices are numbered
in the natural depth-first order of the tree. We have (without repetition)

V D ¹f1; : : : ; fk; g1; : : : ; g`; �º:

3Note that we are using the modified processes zM , z�, which is why we require the marked
vertices not to be the root.
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T

v1 D v6

v3 D v5

v2

v4

root S

1, 6

3, 5 2

f3f2

f1 4
g3

g2

g1

root

Figure 3. Left: A binary tree T with six marked vertices. Right: Its skeleton S . To help visu-
alize which vertices of T are present in S , we represented them with colours. The decorations
1; 2; : : : ; 6 indicating the position of the vertices vi are in red.

Finally, the skeleton carries one additional information: for each vertex v of S , we
record the subset of ¹1; : : : ; pº formed by the values i such that vi D v. One can
think of this data as a function Œ1; p� ! V n ¹�º, or as the fact that vertices of S
carry p numbered decorations, where a vertex can be decorated zero or several times
(decorations are represented in red in Figure 3). Note that a vertex fi necessarily
carries a decoration and the same is true for a unary vertex gi , but a binary vertex gi
can be decorated or not. Note also that the root cannot be decorated.

The labelled skeleton of the marked tree T is the pair yS D .S; x/, where S is the
skeleton and x D .x1; : : : ; x`/ is the sequence of abscissas x1; : : : ; x` of g1; : : : ; g`
in T .

The scheme of T is the pair zS D .S; �/, where S is the skeleton of T and � D
.�.1/; : : : ; �.`// 2 ¹0; 1; 2; 3; 4; 5º`, where for each i 2 Œ`�, we have xi 2 I�.i/, where
I0 [ I1 [ I2 [ I3 [ I4 [ I5 is the following partition of Z:

Z D .1; a � 1� [ Œb C 2;1/„ ƒ‚ …
I0

[ ŒaC 2; b � 1�„ ƒ‚ …
I1

[ ¹aº„ƒ‚…
I2

[ ¹aC 1º„ ƒ‚ …
I3

[ ¹bº„ƒ‚…
I4

[¹b C 1º„ ƒ‚ …
I5

: (3.5)

The number of non-root internal vertices whose abscissa belongs to I0, I1, or
¹a; aC 1; b; b C 1º will play a key role in what follows. Let

n0 D j�
�1.¹0º/j; n1 D j�

�1.¹1º/j; n2 D j�
�1.¹2; 3; 4; 5º/j:

Note that the scheme zS can be inferred from the labelled skeleton yS . We say that yS
is compatible with zS if trees of the labelled skeleton yS have scheme zS .
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Remark 3.3. There are finitely many binary trees having at most p leaves and unary
vertices. Moreover, there is a finite number of ways to distribute the decorations
1; : : : ; p among the vertices of S . So there is a finite number of skeletons – and
a finite number of schemes.

In sum (3.4), we will group the configurations having the same labelled skeleton,
and we will evaluate (upper bound) their contribution separately.

3.1.2. Branches and their generating function. Fix a labelled skeleton yS D .S; x/,
and use the notation of Definition 3.2. We will explain how to construct all trees with
labelled skeleton yS by substituting edges with branches. A branch is just a rooted
binary tree with a marked leaf, considered up to additive translation of all abscissas.
The increment of the branch is the abscissa of its marked leaf (when the root is set
to zero). The abscissas of vertices appearing along the path from the root to the mark
leaf form a walk on Z with steps˙1.

Now, for each edge e of S , let ˛e 2 V be the mother vertex of e in S , and let ˇe
be the other endpoint of e. Let x.˛e/, x.ˇe/ be their abscissa in the labelled skeleton
(for the moment, the second one is defined only if ˇe is not a leaf, since the labelled
skeleton, by definition, does not record the abscissas of its leaves). Let re be equal
toC1, �1 if e is leaning right or left from ˛e , respectively.

All the marked trees contributing to (3.4) have p marked vertices (possibly re-
peated) whose abscissa is among ¹a; aC 1; b; b C 1º. Among these trees, the trees T
having a labelled skeleton yS can be obtained in a unique way by the following pro-
cedure (Figure 4):

• For each leaf f of S , choose its abscissa x.f / among a, a C 1, b, b C 1. Note
that after this step the abscissas of all vertices of T are now defined.

• For each edge e of S , let x�e WD x.˛e/C re and xCe WD x.ˇe/. Replace the edge e
by a branch Te of increment xCe � x

�
e , whose root and marked leaf are linked to ˛e

and identified with ˇe , respectively.

• Attach a rooted binary tree Ge to each ˇe which is a leaf of S .

• Use the decorations in ¹1; : : : ; pº of the vertices of S to recover the p marked
vertices of T .

In order to evaluate expression (3.4), we consider its generating function, in a new
variable t ,X

n�1

X
"1;:::;"p2¹0;1º

"0
1
;:::;"0p2¹0;1º

.�1/
P
"iC

P
"0

iTn.aC q"i C "
0
i ; i D 1; : : : ; p/t

n: (3.6)

Note that the coefficient of tn in (3.6) is precisely (3.4). Let F yS .t/ be the contribution
of the set of marked trees T having a given labelled skeleton yS to the generating
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ˇe

˛e

e

Te x.˛e/

Ge

x.˛e/C re D x
�
e

x.ˇe/ D x
C
e

Figure 4. Replacing an edge e of the labelled skeleton by a branch Te . On this example, e is
a left-leaning edge (re D �1), and the increment of the branch to be substituted is x.ˇe/ �

.x.˛e/ � 1/ D 2.

function (3.6). This generating function can be evaluated by computing separately the
contribution of each edge of yS , as we now show. In all generating functions below,
the variable t will mark the number of vertices of the underlying trees.

To start with, using classical last-passage decompositions, the generating function
of branches of increment i is found4 to be

Hi .t/ D BU
ji j;

where the series U � U.t/ is defined by the system of equations8̂<̂
:
T D t .1C T /2;

U D y.1C U 2/;

y D t .1C T /;

and

B D .1 � 4y/�1=2 D
1C U 2

1 � U 2
:

4Proof: The series T .t/ is clearly the generating function of binary trees by the number of
vertices. Similarly, the series U.y/ is the generating function of Dyck paths extended by an
extra up step, and the series B.y/D

P
n�0

�
2n

n

�
y2n is the generating function of Dyck bridges

(˙1 path going from 0 to 0). By decomposing a walk ending at i � 0 at the last passage at each
integer j 2 Œ0; i �, we decompose it into a bridge followed by i translated Dyck paths separated
by single up steps, which shows that the series BU i is the generating function of ˙1 walks
ending at i (note that the walk can be empty, which is not a problem for us).

This walk can be interpreted as a left/right path going from the root to a marked leaf of
abscissa i . Finally, the relation y D t .1 C T / means that a (non-empty) binary tree is to be
substituted at each step of that path.
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The critical point of this system is readily found to be equal to t D tc WD 1
4

, corres-
ponding to U D Uc WD 1. More precisely, the algebraic series B.t/ and U.t/ have
a unique singularity of minimal modulus at tc , close to which they admit the Puiseux
expansions

U D 1 � c.1 � 4t/1=4 CO..1 � 4t/1=2/;

B D c0.1 � 4t/�1=4 CO.1/;
(3.7)

with constants c; c0 > 0 that we do not need to make explicit. In particular, there exists
a neighbourhood V of 1

4
in C n .1

4
;1/ on which jU.t/j has a unique maximum (equal

to 1) at t D 1
4

.
We can now compute the generating function F yS .t/. We have

F yS .t/ D " yS � t
`T k �

Y
e2E.S/

We.t/; (3.8)

where E.S/ is the set of edges of the skeleton, and We.t/ is the generating function
of the branches that can be substituted at edge e, discussed below. Here the factors T k

and t` account respectively for the trees Ge to be inserted at each leaf ˇe , and for the
internal vertices of S . The sign " yS 2 ¹˙1º is the contribution to the sign in (3.4) of
the decorated vertices which are one of the internal vertices g1; : : : ; g` of the skel-
eton.5

The function We depends on the case considered

• “Internal” edge: ˇe is not a leaf of S . Then the only constraint on the branch is its
increment, which has to equal xCe � x

�
e , therefore

We D HxCe �x�e
D BU jx

C
e �x

�
e j: (3.9)

• “External” edge: ˇe is a leaf of S . We distinguish the following two cases:

– ˇe carries a unique decoration. If this is the case, in trees of scheme S , ˇe cor-
responds to a unique marked vertex vi , and it has to be counted, in (3.4), with
a sign that depends on the value of x.ˇe/ in ¹a; aC 1; b; b C 1º.
Summing over these four possible values, we get the contribution

We D
X

";"02¹0;1º

.�1/"C"
0

BU jaCq"C"
0�x�e j: (3.10)

5Namely, for each i from 1 to p, if the i -th decoration in S is carried by the vertex gj of the
label xj , then necessarily xj 2 ¹a; aC 1; b; b C 1º, and the multiplicative contribution of this
index j to " yS is C1 if xj 2 ¹a; b C 1º and �1 otherwise. This sign will play no role in what
follows, as we will only estimate the modulus of F yS .t/.
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To evaluate this expression, we need to get rid of absolute values. This re-
quires knowing the relative position of x WD x�e with numbers a, a C 1, b,
b C 1. Sum (3.10) is immediately computed in each case:

x � a; We D B.1 � U/U
a�x.1 � U q/;

x 2 ŒaC 1; b�; We D B.U � 1/.U
b�x
C U x�a�1/; (3.11)

x � b C 1; We D B.1 � U/U
x�.bC1/.1 � U q/:

Note that the information to determine cases in (3.11) is present in the labelled
skeleton (and, in fact, it is present in the scheme, via the coordinate �).

– ˇe carries h decorations with h � 2. We call the edge e frozen. If this is the
case, in trees of scheme S , ˇe corresponds to h coinciding marked vertices vi ,
all contributing to the same sign. We thus get

We D
X

";"02¹0;1º

..�1/"C"
0

/hBU jaCq"C"
0�x�e j:

In this case, we will only need to use the modulus upper bound

jWej �
X

x2¹a;aC1;b;bC1º

jBjjU jjx�x
�
e j: (3.12)

Note that we could be more precise when h is odd, but we will not need this.

3.1.3. Hankel contours. For a scheme zS D .S; �/, we form the generating function

F zS D
X
ySD.S;x/

F yS ;

where the sum is taken over all the labelled skeletons yS D .S;x/which are compatible
with zS .

The contribution of trees of scheme zS to (3.4) is given by the coefficient

Œtn�F zS .t/ D
1

2�i

I
	n

dt

tnC1
F zS .t/; (3.13)

where 	n is the contour displayed in Figure 5, left, which follows a circle or radius r
except close to the positive real axis, where it follows a small detour to the left of
the singularity 1

4
at distance 1

n
. Here r > 1

4
is chosen so that U.t/ and B.t/ have no

other singularity than 1
4

inside the circle of radius r . We split the contour 	n into
the “circle part” Cn which is a portion of the circle of radius r , and the “Hankel
part” Hn. We choose r close enough to 1

4
, so that Hn is entirely contained in the

neighbourhood V previously chosen, and such that U.t/ < 1 for all t 2 	n (this is
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	n D Cn [Hn

0

r

Cn

Hn
V

1
n1

4

H D H� [HC

�i

i

0 log2 n n.r � 1
4
/

H� HC

Figure 5. Contours of integration. Left: t -plane. Right: � -plane.

possible since by Pringsheim’s theorem, we have jU.t/j < 1 on the circle of radius 1
4

from which V is removed. By compactness and continuity, we can thus increase the
radius a little bit and keep this inequality).

We note that jB.1�U/j is bounded independently of n on Cn, and since jU j � 1,
we have jU kj � 1 for any k D k.n/ � 0. Hence, putting together (3.8), (3.9), (3.11),
and (3.12), we obtain that for t 2 Cn,

jF yS .t/j � Cp � jBj
mintCm1 � jU j

P
e2Fint[F0[F1

jx
C
e �x

�
e j � j1 � U qjm0 ; (3.14)

where

• Fint is the set of internal edges e of S , F0 is the set of non-frozen external edges
such that x�e 62 ŒaC 1; b�, and F1 is the set of frozen external edges;

• mint D jFintj and m0 D jF0j, m1 D jF1j;

• for e 2 F0, we define xCe to be equal to a or to b C 1 if x�e < a or x�e > b C 1,
respectively;

• for e 2 F1, we fix arbitrarily xCe 2 ¹a; aC 1; b; bC 1º that minimizes jxCe � x
�
e j.

It is important to note that all these notions are well defined from the scheme zS (in par-
ticular, F0 is well defined as we know the position of internal vertices in partition (3.5)
from the component � of the scheme). Note also that for e 2 F0 [F1, we have defined
the value xCe , which was undefined in zS , so x�e , xCe are now defined for all edges e.
We insist that, since we have already performed signed summations, we have lost the
precise interpretation as combinatorial objects of the quantities we consider, and xCe is
not necessarily the value of the abscissa of the corresponding vertex in the underlying
trees we were originally counting. Instead, the definition of xCe should be understood
as a convention made to be compatible6 with the exponent of the series U in (3.11)
and (3.12).

6In particular, we want the quantitiesU a�x andU x�.bC1/ in the first and last line of (3.11)
to match the corresponding factor U jx

C
e �x�e j in (3.14).
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We will now sum estimate (3.14) over7 all choices of abscissas x1; : : : ; x` in Z of
the internal vertices of S which are compatible with the scheme zS .

In order to construct such a sequence x1; : : : ; x`, we first choose a non-decreasing
sequence

y1 � � � � � y`C1;

which in fine will be the reordering of the sequence 0; x1; : : : ; x`.
To construct a valid sequence yi , we first choose which of the numbers yi are

equal to zero (at least one is), and we choose which remaining indices will belong to
the sets I0; : : : ; I5. There are at most Cp such choices. We then choose the values of
each of the n1 numbers inside I1 D .aC 2; b � 1/: we have at most qn1 choices.

Finally, we choose the n0 remaining values, assuming n0 � 1 (if n0 D 0, there is
no choice to make at this step).

We call yi1 � � � � � yin0C1
these n0 numbers together with 0, and we set N WD

yin0C1
� yi1 . For N fixed, there are at most Cp.N C 1/n0�1 choices for these num-

bers. Moreover, applying the triangle inequality for edge increments along the path
between internal vertices of labels yin0C1

and yi1 in S , we observe thatX
e2Fint

jxCe � x
�
e j � N:

It remains to shuffle the sequence y1; : : : ; y0; : : : ; y`C1 (one zero removed) to get
the sequence x1 : : : ; x`. The number of shuffles is at most Cp .

From (3.14), we thus deduce (recall that jU j � 1 for t 2 Cn) that, for t 2 Cn,

jF zS .t/j � Cp � jBj
mintCm1 � j1 � U qjm0 � qn1

X
N�0

.N C 1/n0�1jU jN

� CpjBj
mintCm1 � j1 � U qjm0 � �n1nn1=4

1

.1 � jU j/n0

� CpjBj
mintCm1Cn0 � j1 � U qjm0 � �n1nn1=4 (3.15)

if n0 � 1, and in fact the same bound holds if n0 D 0 since the sum overN in the first
line is not present in that case. Note that we have used that jB.1 � U/j is bounded
away from 0 uniformly on the contour.

With this estimate in hand, we can now estimate integral (3.13). We start with the
contribution of the Hankel part Hn. We perform the change of variable

t D
1

4

�
1C

�

n

�
;

7Since we only work up to a constant multiplicative factor here, we will evaluate this sum
approximately. An exact computation can be done following the lines of [6] but requires much
heavier notation – and this is ultimately not needed here.
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where � now lives on the classical Hankel contour H represented in Figure 5, right.
We furthermore split H into H� and HC, consisting of the parts for which Re.�/ �
log2 n or Re.�/ > log2 n, respectively.8

We first look at the contribution of H�. We have from (3.7), expressed in the �
variable,

1 � U D c
�
��

n

�1=4
CO

�s log2 n
n

�
;

B D c0
�
��

n

��1=4
CO.1/;

1

tnC1
D 4nC1e��.1CO.log2 n=n//

(3.16)

and, recalling that q D �n1=4 with � � 1,

U q D exp
�
�c�

�
.��/1=4 CO

� logn
n1=4

���
; (3.17)

where all big O are uniform in all parameters. Moreover, since Re..��/1=4/ � 0 and
c; � > 0, we have9

j1 � U qj D jec�..��/
1=4CO..logn/=n1=4//

� 1j

� c�j� j1=4
�
1CO

� logn
n1=4

��
D O.�j� j1=4/: (3.18)

We thus get from (3.15) that for � 2 H� we have

jF zS j � Cpn
.mintCm1Cn0Cn1/=4�n1Cm0 j� j.m0�mint�n0�m1/=4:

It follows that the contribution of H� to (3.13) is bounded, in modulus, by

Cpn
.mintCm1Cn0Cn1/=4�n1Cm0

I
H�

.n�1jd� j/4ne�Re.�/
j� jCp

� Cp4
nn.mintCm1Cn0Cn1�4/=4�n1Cm0 ; (3.19)

since the remaining function of � is integrable thanks to the exponential factor.
We now consider the contribution of the remaining contours. Note that for � 2HC

or for t 2 Cn, because of the factor t�n�1, the integrand of the corresponding contour
integral is dominated by 4n times a superpolynomial factor (exp.��.log2 n// in the

8The contours we use and the way to split them are classical, see, e.g., the proof of the
transfer theorems in [11].

9If Re.x/ � 0, then jex � 1j D jex � e0j D j
R

Œ0;x�
etdt j � jxj.
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first case and .4r/�n in the second. Therefore, the contribution of these contours is
more than polynomially smaller than the one of H�, and then estimate (3.19) is valid
for the whole contribution. We thus obtain

jŒtn�F zS j � Cp4
nn.mintCm1Cn0Cn1�4/=4�n1Cm0 : (3.20)

An additional work is needed in the case .p;m0/ D .1; 0/, since this bound is not
sufficient in the case for our purpose. In this case, the scheme is made by a unique leaf
attached to the root, and moreover we have 0 2 Œa; b C 1� since the unique external
edge is non-frozen and does not contribute to m0. By (3.11), if 0 2 Œa C 1; b�, the
generating function is equal to

F zS .t/ D B.U � 1/.U
b
C U�a�1/

D .1CO.j�1=4j//.2CO.�j� j1=4// D 2CO.j�1=4j/; (3.21)

where we used (3.18) and the fact that jaj; jbj DO.q/ in this case. Therefore, we have
in this case

jŒtn�F zS j � Cp4
nn�5=4 when .p;m0/ D .1; 0/: (3.22)

Note that (3.20) would only give an upper bound ofO.4nn�1/ in this case. The reason
for the improvement is that the leading term “2” in (3.21) does not contribute to the
asymptotics of coefficients. Bound (3.22) is also true if 0 2 ¹a; b C 1º as is easily
checked going back to (3.11) once more.

This ends the complex-analytic part of the proof.

3.1.4. Exponent counting and dominant configurations. Recall that at this stage
we are still working with a fixed scheme zS D .S; �/, carrying p decorations.

Definition 3.4. In the case when p is even, we say that the scheme zS is dominant
if it is a binary tree with no unary vertex except from the root, having k D p leaves
(i.e., p external edges) in which the external edges are attached by pairs to p

2
internal

vertices, such that these p
2

vertices have abscissa in I1 D ŒaC 2; b � 1�.

See Figure 6 for a pictorial view of a dominant scheme. Note the that informa-
tion that the abscissa of an internal vertex is or is not in I1 can be inferred from the
component � of the scheme, so this definition makes sense.

To bound the right-hand side of (3.20), we will prove the following lemma. Note
that we do not assume that p is even in the first part. Recall moreover that we have
assumed that n�1=4 � � � 1. Note also that we exclude the case .p; m0/ D .1; 0/,
which we already addressed separately in (3.22).
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S

ŒaC2; b�1� ŒaC2; b�1�

ŒaC2; b�1�

P

a a

a
� small

Figure 6. Left: A scheme with p D 6 leaves which dominates at first order the calculation of
the moment EŒ.�a ��b/

p�, after Lemma 3.1 (the external edges, in red, are grouped in pairs
and attached to vertices with abscissa in Œa C 2; b � 1�). Right: Calculations show that when
� D .b � a/n�1=4 goes to 0C, the first-order contribution tends, up to identifiable factors, to
the contribution that the “internal” scheme P (in fat black) would give to the computation of
the moment EŒ.Ma/

p=2�, at the first order. This observation leads to Proposition 3.7.

Lemma 3.5. For any scheme zS , in notation above, if .p;m0/ ¤ .1; 0/, we have

n.mintCm1Cn0Cn1�4/=4�n1Cm0 � np=2�3=2�dp=2e: (3.23)

Moreover, in the case of p even, if zS is not dominant, we have

n.mintCm1Cn0Cn1�4/=4�n1Cm0 � np=2�3=2�dp=2e �max.n�1=8��1=2; �/: (3.24)

Proof. Since n � 1 and � � 1, to maximize the wanted quantity we have, roughly
speaking, to look for the largest possible value ofmint Cm1 C n0 C n1 and the smal-
lest possible value of n1Cm0. But since these two quantities are not independent, we
cannot optimize them individually, and we have to consider both factors in the left-
hand side of (3.23) simultaneously. Moreover, in order to do this, we need to introduce
other parameters of interest which will have a negative or positive influence on each
quantity.

We write ` D `un C `bin, where `un and `bin are the numbers of non-root internal
vertices of S with 1 and 2 children, respectively. Since S has k leaves, we have k D
1 C `bin C � , where � is equal to one if the root is binary in the scheme, and zero
otherwise. Let ı D p � k, which is non-negative since all leaves are decorated at least
once.

We have, noting that ` D mint D n0 C n1 C n2 and that ` D `un C k � 1 � � D

p C `un � � � ı � 1,

mintCm1 C n0 C n1 � 4 D 2`Cm1 � n2 � 4

D 2p � 6C 2`unCm1 � 2� � 2ı � n2

� 2p � 6C `un � ı � 2� � n2;
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where for the inequality we used that `un � ı C m1 � 0 (or equivalently, that `un C

k C m1 � p, which holds since by construction leaves and non-root unary vertices
are necessarily decorated at least once, but the m1 leaves incident to frozen edges are
decorated at least once more). Hence

n.mintCm1Cn0Cn1�4/=4 � np=2�3=2n.`un�n2/=4n��=2n�ı=4: (3.25)

Now, write n2 D ne
2 C n

i
2, where ne

2 and ni
2 are respectively, among the vertices of

the scheme contributing to n2, the vertices which are attached to at least one external
edge, and the ones which are not attached to an external edge. Write furthermore
ne2 D n

e;un
2 C n

e;bin
2 , separating the contribution to ne2 of unary and binary vertices

of S .
The number of external edges of S is equal to the number of leaves k, so there are

k �m0 �m1 external edges which are not frozen and are such that x�e 2 ŒaC 1; b�.
For these edges, one necessarily has x.˛e/ 2 Œa; bC 1�, and therefore their attachment
vertex contributes to the quantity n1 C n2. Moreover, each internal vertex can be
attached to at most two external edges, which implies that10

k �m0 �m1 � 2n1 C 2n
e;bin
2 C n

e;un
2 C 2�; (3.26)

hence

k �m1 � 2n
e;bin
2 � n

e;un
2 � 2� � m0 C 2n1 � 2.m0 C n1/; (3.27)

and

n1 Cm0 �
k

2
�
m1

2
� n

e;bin
2 �

n
e;un
2

2
C
�

2
� �; (3.28)

where � is equal to 1 if k C ne;un
2 Cm1 is odd and to zero otherwise. Therefore,

�n1Cm0 � �k=2�m1=2�n
e;bin
2
�n

e;un
2
=2C�=2��

D �p=2�ı=2�m1=2�n
e;bin
2
�n

e;un
2
=2C�=2��

� �p=2C�=2n.ıCm1/=8C.n
e;bin
2
Cn

e;un
2
=2/=4C�=4.n�1=4��1/ƒ; (3.29)

where ƒ WD ıCm1

2
C n

e;bin
2 C

n
e;un
2

2
C � . From (3.25) and (3.29), we get

n.mintCm1Cn0Cn1�4/=4�n1Cm0

� np=2�3=2�p=2C�=2n.m1�ı/=8n..`un�n2Cn
e;bin
2
Cn

e;un
2
/=2/=4.n�1=4��1/ƒ: (3.30)

10One has to be careful with (3.26) if the scheme is formed by a unique leaf attached to
the root. If p > 1 (which implies m1 D 1) or if p D 1 and m0 D 1, the left-hand side is 0,
so the inequality is true. Only the case .p; m0/ D .1; 0/ remains, but this case is excluded by
hypothesis.
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(Note that we used n��=2n�=4 D n��=4 � 1). Now we have `un � n
i
2 C n

e;un
2 . Indeed,

a non-root unary vertex of the scheme is necessarily decorated, so it only appears with
a label in ¹a; aC 1; b; b C 1º so it contributes to n2.

It follows that

`un � n2 C n
e;bin
2 C

n
e;un
2

2
� ni

2 C n
e;un
2 � n2 C n

e;bin
2 C

n
e;un
2

2
D
n

e;un
2

2
:

Therefore, (3.30) and the fact that n�1=4��1 � 1 implies

n.mintCm1Cn0Cn1�4/=4�n1Cm0 � np=2�3=2�p=2��=2n.n
e;un
2
Cm1�ı/=8: (3.31)

Note that ��=2 � 1 and that ne;un
2 Cm1 � ı, since vertices counted by ne;un

2 are unary,
hence decorated.

Therefore, if p is even, we have the wanted inequality. If p is odd, then either
k C n

e;un
2 C m1 is odd, in which case pC�

2
D d

p
2
e, and we also have the wanted

inequality, or k C ne;un
2 Cm1 is even. But this implies k C ne;un

2 Cm1 ¤ p, and since
kC n

e;un
2 Cm1�p (by counting decorated vertices), this implies kC ne;un

2 Cm1<p,
hence ı > ne;un

2 Cm1. Therefore, we have

n.n
e;un
2
Cm1�ı/=8 � n�1=8 � �1=2

(using again ��1 � n1=4), and the wanted bound (3.23) holds in all cases.
The statement about non-dominant schemes for even p follows by studying the

equality case in the inequalities used along the proof. More precisely, assume p even.
To obtain (3.31), we have neglected a factor of .n�1=4��1/ƒ, so if ƒ � 1

2
, we can

strengthen the right-hand side of (3.31) by a factor of n�1=8��1=2, therefore at the
end of the analysis, (3.24) will hold (from the first coordinate of the maximum). So
we can assume ƒ < 1

2
, or equivalently ƒ D 0. This implies that ı D m1 D � D

n
e;bin
2 D n

e;un
2 D 0. Since ı D 0, we have k D p and all decorated vertices are leaves.

Now, if m0 > 0, the second equality in (3.27) is not tight; therefore, we have k �
2.m0 C n1/� 1 and (3.28) becomesm0 C n1 � k

2
C 1 which is an improvement of 1

over (3.28) (note that here we use that k D p is even and that ne;un
2 D m1 D � D 0).

Thus in this case, we can improve the right-hand side of (3.29) by a factor of �, and
following the rest of the proof, (3.24) will hold (from the second coordinate of the
maximum). So we can assume that m0 D 0. For the same reason, we can assume
that (3.26) is tight, for otherwise the same improvement over (3.28) will lead to an
extra factor� in the end. But (3.26) being tight precisely says that all the kD pD 2n1
leaves are attached in pairs to internal vertices contributing to n1, hence the scheme zS
is dominant.

We get from the first inequality of the last lemma and from (3.20) that jŒtn�F zS j �
Cp4

nnp=2�3=2�dp=2e. Note that by (3.22), this bound is also true in the case .p;m0/D
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.1; 0/, since n�5=4 � n�1�. Since quantity (3.4) is the sum of Œtn�F zS over the finite
set all schemes zS , we have finally obtained (3.3). This ends the proof of Lemma 3.1.

3.2. Tightness and Hölder continuity

To end the proof of tightness, by the Kolmogorov continuity theorem [15, Theo-
rem 2.23], it is enough to apply Lemma 3.1 with p D 4 and to prove that the sequence
.n�1=2�n0/n is tight.

The tightness of .n�1=2�n0/n can be proved by estimating the second moment
using a simpler variant of the scheme-based techniques we just developed, how-
ever we give a quicker proof, communicated to us by a referee, that deduces it from
Lemma 3.1.

Lemma 3.6. The sequence of real random variables .n�1=2�n0/n is tight.

Proof. For a D 0 and 1 � b � n1=4, the case p D 2 of Lemma 3.1 together with the
Cauchy–Schwarz inequality implies that

E.j�nb ��
n
0j/ �

p
C2
p
n:

Using the telescopic sum

�n
bn1=4c

C � � � C�n1 DM
n
bn1=4c

�M n
0 ;

we obtain from the triangle inequality that

E.jM n
bn1=4c

�M n
0 � n

1=4�n0j/ �
p
C2n

3=4;

so the sequence n�3=4.M n
bn1=4c

�M n
0 / � n

�1=2�n0 is tight. Since it is known [3] that
n�3=4M n

bn1=4c
and n�3=4M n

0 are tight, we are done.

This concludes the proof of tightness (and convergence) in Theorem 2.3. The fact
that the limiting process is .1

2
� "/-Hölder for any " > 0, follows from Lemma 3.1

at all even values of p � 2, together with Kolmogorov continuity theorem (see [15,
Theorem 2.23]).

Therefore, the only thing remaining to prove in Theorem 2.3 is the lack of .1
2
C "/-

Hölder continuity.

3.3. Non-Hölder continuity and other consequences of the proof

Now that our estimate of (3.4) is complete, we can go back and estimate precisely
the first order asymptotic contribution. This leads to the following proposition, whose
second part completes the proof of Theorem 2.3.
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Proposition 3.7. Fix ˛ 2 R. We have the convergence in distribution

f 0ISE.˛ C �/ � f
0

ISE.˛/
p
�

.d/
���!

�
>
!0

2
p
fISE.˛/N ; (3.32)

where N is a standard centred and reduced Gaussian random variable independ-
ent of fISE. Consequently, the function f 0ISE is, almost surely, differentiable almost
nowhere inside its support – and in fact, it is not .1

2
C "/-Hölder-continuous, for

any " > 0.

Note that (3.32) can be seen as a (weak) discrete version of the heuristic

dfISE.t/
0
� 2

p
fISE.t/dBt

(with, informally speaking, dt � � and dBt � �1=2N ).

Proof of Proposition 3.7. We will prove convergence in law by proving convergence
of moments, and we will first work at the discrete level. We fix some K > j˛j and let
as before a; b 2 Z with an�1=4; bn�1=4 2 Œ�K;K�, q D .b � a/ and �D qn�1=4. As
before, we assume � � 1, and we furthermore assume that b � aC 3, i.e., q � 3. We
will study the limit of (3.4).

First consider the case of p even, say pD 2r . We start by studying the contribution
of dominant schemes. Let zS be a dominant scheme, obtained as follows: start with
a binary tree P with r leaves and attach a pair of dangling external edges to each leaf.
Moreover, the leaves of P (internal vertices of S to which external edges are attached)
need to have abscissa in ŒaC 2; b � 1� (Figure 6).

Let yS D .S; x/ be a labelled skeleton compatible with zS . Call z1; : : : ; z2r�1 2 Z

the labels of the vertices of P (which are precisely the internal vertices of S ), with
zr ; : : : ; z2r�1 2 ŒaC 2; b � 1� being the labels of the leaves of P .

By (3.8), (3.9) and (3.11), the generating function corresponding to the labelled
skeleton yS in the computation of (3.4) is given by

F yS .t/ D t
2r�1T 2rB jE.P/jU

P
e2E.P / jx

�
e �x

C
e j

�

2r�1Y
iDr

B2.1 � U/2
Y

"2¹˙1º

.U b�.ziC"/ C U .ziC"/�a�1/;

where we separated the contribution of internal and external edges (E.P / denotes the
set of edges of P , i.e., internal edges of S ), and where the product over " accounts for
the two left/right leaning edges emanating for each leaf of P . Note that for � 2 H�,
we have B.1 � U/ D 1C o.1/ and11 if zi 2 ŒaC 2; b � 1�, then

U b�.ziC"/ C U .ziC"/�a�1 D 2CO.�j� j1=4/

11The term o.1/ is relative to n going to infinity.
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as in (3.17), with � D .a � b/n�1=4 as before. These estimates hold uniformly in
� 2 H�, in the zi , in �, and in K. Moreover, let e be an external edge of P , we have
xCe 2 ŒaC 2; b � 1� and

U jx
�
e �x

C
e j D U jx

�
e �aj.1CO.�j� j1=4//;

again uniformly in all parameters. We deduce that, again uniformly,

F yS .t/ D 4
r.1CO.�j� j1=4/C o.1//t2r�1T 2rB jE.P/jU

P
e2E.P / jz

�
e �z

C
e j;

where the integers z�e , zCe are defined as x�e , xCe , but starting from the labelling
z1; : : : ; zr�1; a; a; : : : ; a (in other words, we fix the leaves of P to abscissa a, but
keep the abscissas of internal vertices). Using that t and T go respectively to 1

4
and 1

when � 2 H�, we can also write

F yS .t/ D .1C o.1/CO.�j� j
1=4//t r�1T rB jE.P/jU

P
e2E.P / jz

�
e �z

C
e j: (3.33)

Since all big O and little o are uniform, and since as before contributions of the
contour integrals outside of � 2 H� can be neglected in (3.13), we conclude that

Œtn�F yS D Œt
n�t r�1T rB jE.P/jU

P
e2E.P / jz

�
e �z

C
e j CR; (3.34)

where R is the contribution coming from the terms o.1/ and O.�j� j1=4/ in (3.33), to
be addressed later. Now, the quantity t r�1T rB jE.P/jU

P
e2E.P / jz

�
e �z

C
e j is easily rec-

ognized, by (3.9) and reasoning similarly as in Section 3.1.2, as the generating func-
tion of binary trees with r marked vertices with skeleton P , where marked vertices
have all abscissas a, and such that the internal vertices of P have labels z1; : : : ; zr�1.

Since all estimates are uniform, we can now sum the first term of (3.34) over
z1; : : : ; z2r�1 and over all binary trees P . We deduce that the total contribution of
dominant schemes to this term is equal to

.2r � 1/ŠŠ2r.1C o.1//.q � 2/rT �n .a; a; : : : ; a„ ƒ‚ …
r times

/; (3.35)

where T �n .i1; : : : ; ir/ is the contribution to the number Tn.i1; : : : ; ir/ of marked trees
whose r marked vertices are in generic position (i.e., their skeleton is a binary tree
with r leaves). To obtain this expression, we have summed first over zr ; : : : ; z2r�1 2
Œa C 2; b � 1� giving the factor .q � 2/r (note that these variables do not appear
in (3.34)), while the sum over P and over its internal labels z1; : : : ; zr�1 accounts for
the possible relative positions of the r marked vertices of label a and of the abscissas
of the internal vertices of their skeleton, in a configuration counted by T �n .a;a; : : : ; a/.
Note also the combinatorial factor .2r � 1/ŠŠ2r D .2r/Š

rŠ
which is the ratio between

the possible numberings of the 2r leaves of S and the r leaves of P . Now, it is
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easily seen using again the same scheme techniques that we have (uniformly in K)
T �n .a; a; : : : ; a/ � Tn.a; a; : : : ; a/, therefore quantity (3.35) is equal to

.2r � 1/ŠŠ2r.1C o.1//.q � 2/rTn.a; a; : : : ; a„ ƒ‚ …
r times

/: (3.36)

Moreover, one has (using again the same techniques or just observing that from [3]
EM r

an
�3r=4 > 0) that Tn.a; a; : : : ; a/ D �.4nn3r=4�3=2/, therefore, recalling that

an�1=4, bn�1=4 are in Œ�K;K�, expression (3.36) is equal to �.4nnr�3=2x�r/, where
x� D �.1 � 2

q
/. Since we assume q � 3, we have x� D ‚.�/ uniformly, so the last

quantity is also �.4nnr�3=2�r/.
Equipped with this lower bound, we can now take into account the contribution of

the remaining terms and schemes, and show that they are subdominant. First, the con-
tribution of the term R in (3.34), summed over the abscissas of vertices of P , can be
estimated in the same way we estimated (3.19). It follows that the contribution of the
term R in (3.34) to Œtn�F yS is .o.1/CO.�// times (3.36). Moreover, by Lemma 3.5,
the contribution of any non-dominant scheme to (3.4) is at most

4nnr�3=2�r �O.�C n�1=8��1=2/;

therefore it is at most O.�C n�1=8��1=2/ times (3.36). Putting everything together,
we can now take into account the contribution of all schemes (dominant or not)
to (3.4), and we finally obtain that

Cat.n/EŒ.z�naC1 � z�
n
bC1/

2r � D .2r � 1/ŠŠ2r.1CO.�C n�1=8��1=2/

C o.1//nr=4x�rTn.a; : : : ; a/:

Equivalently,

E
h� z�naC1 � z�nbC1

p
n

�2ri
D .2r � 1/ŠŠx�rE

h�2M n
a

n3=4

�ri
� .1CO.�C n�1=8��1=2/C o.1//: (3.37)

Taking the limit n!1 on both sides with a D b˛n1=4c and b D b.˛ C �/n1=4c
(� > 0 fixed), we obtain (noting that x�! �)


4rEŒ.f 0ISE.
.˛C�// � f
0

ISE.
˛//
2r � D .2r � 1/ŠŠ�rEŒ
 r.2fISE.
˛//

r �.1CO.�//

D �r
 rEŒ.2fISE.
˛//
rN 2r �.1CO.�//I

the change of variables 
˛ D z̨, 
� D z� provides (taking into account 
4r D 2�r )

EŒ.f 0ISE.z̨ C z�/ � f
0

ISE.z̨//
2r � D .2r � 1/ŠŠz�rEŒ.4fISE.z̨//

r �.1CO.�//

D z�rEŒ.4fISE.z̨//
rN 2r �.1CO.�//;
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where N is a standard Gaussian random variable independent of fISE. To deduce the
first equality, we have used the convergence in law of Theorem 2.3, together with the
fact that, by Lemma 3.1, the moments appearing on both sides of (3.37) are bounded
independently of n for any r > 0 – these two facts imply the convergence of moments.
This further implies

E
h�f 0ISE.˛ C �/ � f

0
ISE.˛/

p
�

�pi �!0
�! EŒ.4fISE.˛//

p=2N p�: (3.38)

Now consider the case of p odd. By the proof of Lemma 3.1 (equation (3.2)), we
directly have ˇ̌̌

E
h� z�naC1 � z�nbC1

p
n

�piˇ̌̌
� Cp�

p=2C1=2:

Using the convergence of moments justified above, we deduce by taking the limit
n!1, ˇ̌̌

E
h�f 0ISE.˛ C �/ � f

0
ISE.˛/

p
�

�piˇ̌̌
� Cp

p
�;

and we deduce by taking the limit �! 0 that (3.38) also holds for odd p (in that case,
the right-hand side is null, since the Gaussian variable has null odd moments). This
implies the convergence in distribution (3.32) (note that moments of fISE.˛/ do not
grow too fast, see, e.g., [3]).

Now take ˛ D 0, since fISE.0/ > 0 almost surely, this implies that f 0ISE is, almost
surely, not differentiable at 0. By rerooting invariance, this implies that f 0ISE is, almost
surely, differentiable almost nowhere inside of its support. The statement about non-
hölderianity is obtained in the same way.

Remark 3.8. It is possible, at the cost of heavier notation but with the same tools
and without new significant difficulty, to enrich the counting techniques developed
throughout Section 3 to estimate joint moments of the form

E

� AY
iD1

.�nai
��nbi

/ri .�nai
/si .M n

ai
/ti
�

(3.39)

for integer numbers ai , bi and ri ; si ; ti � 0. To do this, one only has to consider more
general schemes in which the marked vertices can be of three types (corresponding
to the three types of factors in (3.39)). The generating function We corresponding
to each type of edges can be computed as before. At the asymptotic level, the same
phenomenon will appear, and the dominating contributions are the ones in which for
each i 2 ŒA�, the ri vertices of the first type share their attachment points in pairs.
When furthermore ai � bi D �in1=4 with �i small, each attachment vertex plays the
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same role as a vertex of label ai up to easily identified factors. In this way, one can
prove for even ri ,

E

� AY
iD1

��nai
��n

bi
p
�in

�ri��nai

n3=8

�si�M n
ai

n3=4

�ti�

D E

� AY
iD1

�s2M n
ai

n3=4
Ni

�ri��nai

n3=8

�si�M n
ai

n3=4

�ti�
� .1C o.1/CO.max.��1i /n

�1=4
Cmax.�i ///;

when ai ; bi D O.n1=4/ with bi � ai D �in1=4 � 3, and where the Ni are standard
independent Gaussian random variables (centered, and having variance 1), independ-
ent of everything else. If one ri is odd, the left-hand side is an O.max.�1=2i //.

It follows, by taking the limit when n goes to infinity, that the convergence of
Proposition 3.7 can be strengthened as follows. For any ˛1; : : : ; ˛A, we have the con-
vergence in law of the vectorsh�

f 0ISE.˛i /; fISE.˛i /;
f 0ISE.˛i C �i / � f

0
ISE.˛i /

p
�i

�
; 1 � i � A

i
.d/

�������!
�i!0

C;8i
Œ.f 0ISE.˛i /; fISE.˛i /; 2

p
fISE.˛i /Ni ; 1 � i � A/�;

where in the right-hand side, the Ni are i.i.d. N .0; 1/ Gaussian random variables,
independent of Œ.f 0ISE.˛i /; fISE.˛i /; 1 � i � A/�. Setting up all the notation for a for-
mal proof would go beyond the intent of this note, and we hope that more direct
diffusion approximation techniques might give another approach to such results.

4. Proof of the diffusion approximation

In this section, we prove Theorem 2.7. We rely on the main theorem in Kushner [16],
and we keep the notation of this reference: we warn the reader that without that paper
in hand, this section should be difficult to understand, and the notation should seem
a bit strange, since they are designed to treat more general processes.

We mainly work with �n;? D .ın;?;mn;?; sn;?/ and use the stopped version (when
mn;? D ") only when needed. We denote by Bn

k
the � -algebra generated by the

.�
n;?
i ; i � k/ (which includes .�?0 ; M

?
0 ; S

?
0 /). We denote by EBn

k
the conditional

expectation with respect to Bn
k

.
For all i , set dtni D n

�1=4 (this is the homogeneous time increment). We have

EBn
k
.�
n;?
kC1
� �

n;?
k
/ D fn.�

n;?
k
; tnk / dt

n
k ;

CovBn
k
.�
n;?
kC1
� �

n;?
k
/ D �nk .�

n;?
k
; tnk / �

n
k
T.�

n;?
k
; tnk / dt

n
k ;

(4.1)
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where T denotes the transpose, with

fn

0B@
264dm
s

375 ; t
1CA D

264 0d
m

375 ; �n

0B@
264dm
s

375 ; t
1CA Dp2jmj

264 1

n�1=4

n�1=2

375
(they are homogeneous, so that fn as well as �n do not depend on t ).

The functions f and � have been defined in Theorem 2.7; for any n, set

nfn D f and .�n � �/

0B@
264dm
s

375 ; t
1CA Dp2jmj

264 0

n�1=4

n�1=2

375 : (4.2)

Formula (4.1) comes from the following simple facts:

VarBn
k
.�?kC1 ��

?
k/ D 2jM

?
k j;

VarBn
k
.M ?

kC1 �M
?
k / D VarBn

k
.�?kC1/ D VarBn

k
.�?kC1 ��

?
k/ D 2jM

?
k j;

VarBn
k
.S?kC1 � S

?
k / D VarBn

k
.M ?

kC1/ D VarBn
k
.M ?

kC1�M
?
k /D 2jM

?
k j;

CovBn
k
.M ?

kC1�M
?
k ; �

?
kC1��

?
k/ D CovBn

k
.�?kC1; �

?
kC1/ D 2jM

?
k j;

CovBn
k
.S?kC1�S

?
k ; �

?
kC1��

?
k/ D CovBn

k
.M ?

kC1; �
?
kC1 ��

?
k/ D 2jM

?
k j;

CovBn
k
.S?kC1�S

?
k ;M

?
kC1�M

?
k / D CovBn

k
.M ?

kC1;M
?
kC1 �M

?
k / D 2jM

?
k jI

indeed, the variance of the geometric random variables involved is 2; we use also that
if Y is F -measurable, CovF .X;Z/D CovF .X � Y;Z/D CovF .X � Y;Z � Y /. The
(non-rescaled) covariance matrix of Z?

kC1
�Z?

k
is then

2jM ?
k j

2641 1 1

1 1 1

1 1 1

375 D 2jM ?
k j

26411
1

375�1 1 1
�
;

so that if one writes �n;?
k
.i/ for the i -th entry of �n;?

k
, the covariance matrix is

ABn
k
D 2jM ?

k j

�
1

n.iCjC2/=4

�
1�i;j�3

D
2jM ?

k
j

n3=4

�
1

n.iCj�2/=4

�
1�i;j�3

dtnk :

We can now prove the diffusion approximation.

Proof of Theorem 2.7. In Kushner [16], there are 7 conditions to check, called there
(1) and (A1) to (A6).

Let us introduce the good set

GS."; C / D Œ�C;C � �
h "
2
; C
i
� Œ0; C �
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for some C > m0 > ". The drift and diffusion functions f and � are bounded and
Lipschitz on GS."; C /, and this will give a sufficient condition for the existence and
uniqueness of a solution of SDE (2.9) (see condition (A6) below).

It suffices to check that the processes �n;? and �? satisfy the 7 Kushner constraints
(on GS."; C /, and that they do so, for all C > 0).

Condition (1). First, we have

Nn�1X
kD0

jfn.�
n;?
k
; tnk / � f .�

n;?
k
; tnk /j

2dtnk D 0;

(by (4.2)) when �.n/;? stays in GS."; C /. Second,

�n.�
n;?
k
; tnk / � �.�

n;?
k
; tnk / D 2

q
j�
n;?
k
.2/j

264 0

n�1=4

n�1=2

375 :
We then need to prove that E.

PNn�1
kD0

k�n.�
n;?
k
; tn
k
/ � �.�

n;?
k
; tn
k
/k2/dtn

k
! 0 which

is equivalent to �Nn�1X
kD0

E.2jM ?
k jn
�3=4/n�1=4

�
n�1=4 ! 0:

Now, on GS."; C /, jM ?
k
j � Cn3=4, so the result follows immediately.

Condition (A1). max0�k�Nn�1 dt
n
k
D n�1=4 ! 0 when n!C1.

Condition (A2). f and � are indeed continuous and bounded on GS."; C /, and fn
and �n are uniformly bounded on GS."; C /.

Condition (A3). This condition concerns the convergence of the initial distribution
of �n;?.0/ (which is one of the hypotheses of Theorem 2.7).

Condition (A4). Set

Bn WD E
�Nn�1X
kD0

k�
n;?
kC1
� �

n;?
k
� fn.�

n;?
k
; tnk /dt

n
k k
2C˛

�
:

In fact, only the first entry of the vector �n;?
kC1
� �

n;?
k
� fn.�

n;?
k
; tn
k
/dtn

k
is not zero:

One has, since jM ?
k
j � Cn3=4,

Bn D

Nn�1X
kD0

E.jWjM?
k
jn
�1=2
j
1C˛=2/ � n1=4 max

0�m�Cn3=4
E.jWjmjn�1=2j1C˛=2/

D n1=4 max
0�m�Cn3=4

E.jWjmjj1C˛=2/n�1=2�˛=4:



G. Chapuy and J.-F. Marckert 40

We need to prove that for a well-chosen ˛ > 0, Bn ! 0. Now, since the increments
ofW have all finite moments, by Marcinkiewicz–Zygmund inequality (see, e.g., [12])

E.jWjnjj1C˛=2/ � B.2Cn3=4/.1=2C˛=4/;

where the 2 comes from the variance of g.k/ � 1, and B is a positive function of ˛.
It suffices then to take ˛ such that

1

4
C

�3
4

��1
2
C
˛

4

�
�
1

2
�
˛

4
D
1

8
�
˛

16
< 0

and any ˛ > 2 does the job.

Condition (A5). Since
dtn

kC1

dtn
k

D 1, this condition is satisfied.

Condition (A6). Here, f .�; �/ is Lipschitz as well as � on GS."; C /, except at its
boundary. These conditions are sufficient to entail the existence and uniqueness of the
solution of SDE (2.9), started at z0 (see [22, Theorem 5.2.1]), stopped when m? D ".
Notice that the value "

2
in the second component in GS."; C / is taken smaller than ",

which is the point at which we stop m?n and m?. The value " being at the interior of
Œ "
2
;C �, one sees that the domain on which one can extend the existence of the solution

of the SDE is sufficient to entail the convergence of the stopped version of �n;? to the
stopped version of �?.
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will be interested in these questions. The authors are very grateful to the referees who
pointed out various inaccuracies in the first version of this manuscript (and who, in
addition, suggested various ways to correct them).

Funding. Guillaume Chapuy acknowledges funding from the grant ANR-19-CE48-
0011 “COMBINÉ”, and Jean-François Marckert from the grant ANR-20-CE48-0018.



Note on the density of ISE and a related diffusion 41

References

[1] D. Aldous, The continuum random tree. II: An overview. In Stochastic analysis (Durham,
1990), pp. 23–70, London Math. Soc. Lecture Note Ser. 167, Cambridge University Press,
Cambridge, 1991 Zbl 0791.60008 MR 1166406

[2] D. Aldous, Tree-based models for random distribution of mass. J. Stat. Phys. 73 (1993),
no. 3–4, 625–641 Zbl 1102.60318 MR 1251658

[3] M. Bousquet-Mélou, Limit laws for embedded trees: Applications to the integrated super-
Brownian excursion. Random Structures Algorithms 29 (2006), no. 4, 475–523
Zbl 1107.60302 MR 2268233

[4] M. Bousquet-Mélou and G. Chapuy, The vertical profile of embedded trees. Electron. J.
Combin. 19 (2012), no. 3, article no. 46 Zbl 1253.05081 MR 2988868

[5] M. Bousquet-Mélou and S. Janson, The density of the ISE and local limit laws for embed-
ded trees. Ann. Appl. Probab. 16 (2006), no. 3, 1597–1632 Zbl 1132.60009
MR 2260075

[6] G. Chapuy, M. Marcus, and G. Schaeffer, A bijection for rooted maps on orientable sur-
faces. SIAM J. Discrete Math. 23 (2009), no. 3, 1587–1611 Zbl 1207.05087
MR 2563085

[7] P. Chassaing and G. Schaeffer, Random planar lattices and integrated superBrownian
excursion. Probab. Theory Related Fields 128 (2004), no. 2, 161–212 Zbl 1041.60008
MR 2031225

[8] J.-F. Delmas, Computation of moments for the length of the one dimensional ISE support.
Electron. J. Probab. 8 (2003), article no. 17 Zbl 1064.60169 MR 2041818

[9] L. Devroye and S. Janson, Distances between pairs of vertices and vertical profile in con-
ditioned Galton–Watson trees. Random Structures Algorithms 38 (2011), no. 4, 381–395
Zbl 1223.05049 MR 2829308

[10] M. Drmota and B. Gittenberger, On the profile of random trees. Random Structures
Algorithms 10 (1997), no. 4, 421–451 Zbl 0882.60084 MR 1608230

[11] P. Flajolet and R. Sedgewick, Analytic combinatorics. Cambridge University Press, Cam-
bridge, 2009 Zbl 1165.05001 MR 2483235

[12] R. Ibragimov and Sh. Sharakhmetov, Analogues of Khintchine, Marcinkiewicz–Zygmund
and Rosenthal inequalities for symmetric statistics. Scand. J. Stat. 26 (1999), no. 4, 621–
633 Zbl 0944.60031 MR 1734266

[13] J. Jacod, Calcul stochastique et problèmes de martingales. Lecture Notes in Math. 714,
Springer, Berlin, 1979 Zbl 0414.60053 MR 542115

[14] S. Janson and J.-F. Marckert, Convergence of discrete snakes. J. Theoret. Probab. 18
(2005), no. 3, 615–647 Zbl 1084.60049 MR 2167644

[15] O. Kallenberg, Foundations of modern probability. Probab. Appl., Springer, New York,
1997 Zbl 0892.60001 MR 1464694

[16] H. J. Kushner, On the weak convergence of interpolated Markov chains to a diffusion.
Ann. Probab. 2 (1974), 40–50 Zbl 0285.60064 MR 362428

[17] J.-F. Le Gall, Random trees and applications. Probab. Surv. 2 (2005), 245–311
Zbl 1189.60161 MR 2203728

https://doi.org/10.1017/CBO9780511662980.003
https://zbmath.org/?q=an:0791.60008
https://mathscinet.ams.org/mathscinet-getitem?mr=1166406
https://doi.org/10.1007/BF01054343
https://zbmath.org/?q=an:1102.60318
https://mathscinet.ams.org/mathscinet-getitem?mr=1251658
https://doi.org/10.1002/rsa.20136
https://doi.org/10.1002/rsa.20136
https://zbmath.org/?q=an:1107.60302
https://mathscinet.ams.org/mathscinet-getitem?mr=2268233
https://doi.org/10.37236/2150
https://zbmath.org/?q=an:1253.05081
https://mathscinet.ams.org/mathscinet-getitem?mr=2988868
https://doi.org/10.1214/105051606000000213
https://doi.org/10.1214/105051606000000213
https://zbmath.org/?q=an:1132.60009
https://mathscinet.ams.org/mathscinet-getitem?mr=2260075
https://doi.org/10.1137/080720097
https://doi.org/10.1137/080720097
https://zbmath.org/?q=an:1207.05087
https://mathscinet.ams.org/mathscinet-getitem?mr=2563085
https://doi.org/10.1007/s00440-003-0297-8
https://doi.org/10.1007/s00440-003-0297-8
https://zbmath.org/?q=an:1041.60008
https://mathscinet.ams.org/mathscinet-getitem?mr=2031225
https://doi.org/10.1214/EJP.v8-161
https://zbmath.org/?q=an:1064.60169
https://mathscinet.ams.org/mathscinet-getitem?mr=2041818
https://doi.org/10.1002/rsa.20319
https://doi.org/10.1002/rsa.20319
https://zbmath.org/?q=an:1223.05049
https://mathscinet.ams.org/mathscinet-getitem?mr=2829308
https://doi.org/10.1002/(SICI)1098-2418(199707)10:4<421::AID-RSA2>3.0.CO;2-W
https://zbmath.org/?q=an:0882.60084
https://mathscinet.ams.org/mathscinet-getitem?mr=1608230
https://doi.org/10.1017/CBO9780511801655
https://zbmath.org/?q=an:1165.05001
https://mathscinet.ams.org/mathscinet-getitem?mr=2483235
https://doi.org/10.1111/1467-9469.00172
https://doi.org/10.1111/1467-9469.00172
https://zbmath.org/?q=an:0944.60031
https://mathscinet.ams.org/mathscinet-getitem?mr=1734266
https://doi.org/10.1007/BFb0064907
https://zbmath.org/?q=an:0414.60053
https://mathscinet.ams.org/mathscinet-getitem?mr=542115
https://doi.org/10.1007/s10959-005-7252-9
https://zbmath.org/?q=an:1084.60049
https://mathscinet.ams.org/mathscinet-getitem?mr=2167644
https://zbmath.org/?q=an:0892.60001
https://mathscinet.ams.org/mathscinet-getitem?mr=1464694
https://doi.org/10.1214/aop/1176996750
https://zbmath.org/?q=an:0285.60064
https://mathscinet.ams.org/mathscinet-getitem?mr=362428
https://doi.org/10.1214/154957805100000140
https://zbmath.org/?q=an:1189.60161
https://mathscinet.ams.org/mathscinet-getitem?mr=2203728


G. Chapuy and J.-F. Marckert 42

[18] J.-F. Le Gall, The Markov property of local times of Brownian motion indexed by the
Brownian tree. 2023, arXiv:2211.08041

[19] J.-F. Marckert, The rotation correspondence is asymptotically a dilatation. Random Struc-
tures Algorithms 24 (2004), no. 2, 118–132 Zbl 1034.05016 MR 2035871

[20] J.-F. Marckert, The lineage process in Galton–Watson trees and globally centered discrete
snakes. Ann. Appl. Probab. 18 (2008), no. 1, 209–244 Zbl 1140.60042 MR 2380897

[21] J.-F. Marckert and A. Mokkadem, States spaces of the snake and its tour—convergence of
the discrete snake. J. Theoret. Probab. 16 (2003), no. 4, 1015–1046 Zbl 1044.60083
MR 2033196

[22] B. Øksendal, Stochastic differential equations. An introduction with applications. 6th edn.,
Universitext, Springer, Berlin, 2003 Zbl 1025.60026 MR 2001996

[23] J. Pitman, The SDE solved by local times of a Brownian excursion or bridge derived from
the height profile of a random tree or forest. Ann. Probab. 27 (1999), no. 1, 261–283
Zbl 0954.60060 MR 1681110

Communicated by Adrian Tanasă
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