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This paper consists of three chapters. In Chap. I, using a
modification of Weil’s theorem on invariant measures on groups, we
shall give another proof of non-existence of translationally quasi-
invariant measure on infinite dimensional vector spaces, which was
firstly proved by Sudakov [6]. In Chap. II, we shall prove Minlos’
theorem for nuclear spaces. The original Minlos’ theorem [10]
required more restrictions, but actually only the nuclearity condition
is necessary. In Chap. III, we shall discuss infinite dimensional
Gaussian measures, and prove that we can characterize a rotationally
invariant measure as a superposition of Gaussian ones. For this
fact, infinite dimensionality is essential. Some applications are
stated in “Introduction”.

Introduction

1. In the theory of probability and the functional analysis, we are
often confronted with a measure on an infinite dimensional,
topological vector space (especially on a function space). In case
of the product space R~ of real lines R', a way to construct a
measure was given by Kolmogorov. However, in case of a func-
tion space, we find different situations. For instance, Gaussian
measures can not be constructed in anyway on the Hilbert space.
Generally speaking, except on the dual space of a nuclear space,
a finitely additive measure defined on the family of all finite
dimensional Borel cylinders, can not always be extended to a
completely additive one (Minlos’ theorem).

Therefore, if we want to use measures in connection with
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the Hilbert space, we should consider a nuclear space L imbedded
continuously in the Hilbert space, and construct measures on its
dual space L*.

On a finite dimensional vector space, the Lebesgue measure is
characterized uniquely (modulo equivalence of absolute continuity
with each other) as a translationally quasi-invariant one. Thus a
question arises. On an infinite dimensional space also, does there
exist a measure which is analogous to the Lebesgqe measure in
some sense? The answer is negative. We can prove the non-
existence of measures quasi-invariant under all translations (Chap.
I), while if we consider only those translations which are defined
by the elements of a suitable dense subspace (for example, LCL¥),
then there exist continuously many quasi-invariant measures which
are not equivalent to each other.

However, under the condition that a measure should be
rotationally invariant, we find that the only possible one is a
superposition of Gaussian measures (§21).

By this reason, it seems that Gaussian measures will play a
leading role among infinite dimensional measures. Gaussian
measures are also translationally quasi-invariant in the above
mentioned sense. But we do not yet know whether there exists
or not any translationally quasi-invariant measure which is essen-
tially different from Gaussian ones.

One of the theories in which we need a measure on a function
space, is the theory of stochastic processes. For instance, we
consider the measure of Brownian motions (Wiener measure) on
the family of all continuous functions which start from the origin,
or in the differentiated form, Gaussian measure on the family of
derivatives of all continuous functions. In usual, we constructed
such a measure on a suitable function space case by case. But,
according to the general theory, we can construct a measure p on
the dual space L* of a nuclear space L, and if necessary, we shall
restrict it to a subspace of L*, by checking the carrier of p and
the measurability of the subspace. Practically, it seems to be
sufficient to discuss the case that L=(¥) or (D) (Schwartz’s function
spaces), so that L*=(¥") or (D).
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We hope that in the near future, we shall have systematic
treatments of infinite dimensional measures along this line.

Next in the branch of the functional analysis, using these mea-
sures we can define integrals and hence L*-spaces over a function
space. Such L*-spaces are important for the representations of
some groups.

For instance, consider the representation of the commutation
relations in quantum mechanics. For a system of particles, we
have the commutation relations between their momentum oper-
ators P; and position operators €; such that;

[Q:, P;]=ihd:;, [Qi Qi1=LF:; P;1=0.

By these relations, P; and @, are uniquely (up to unitary
equivalence) determined as the Schrodinger operators on LAR”™);

Pyigln) — —ih 22 (x)
X;

Q;:p(x) = x;p(x).

But in case of a Boson field, we have different situations.
Namely, between the operator densities which depend on a real
parameter A, the commutation relations are written symbolically as

[Q}\) PA/] = iﬁS(X—)\,'), [QA, Q)\/] = [P)\, P}\,] =0 ;
rigorously speaking, these relations are to be formulated as

[Q(p), P(Y)] = itilep, V>
[Q(e), QW)= [P(e) P(¥)]=0,

where P(@), @(@) are operators parametrized with an element of
(&).

Then, our problem is to realize such P(p) and Q(p) as
operctors on the space LA¥’) of all square integrable functionals
on (¥). Though such P(p) and ¢(p) can be regarded as the infinite
dimensional Schrodinger operators, they are realized in con-
tinuously many ways. (Segal [1], [2] Fukutome [3]). This results
from the fact that (9”) has no “Lebesgue measure” but continuously
many (¥)-quasi-invariant measures,
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In addition, an irreducible representation of P(gp) and Q(p)
corresponds to an (¥)-ergodic measure on (¥’), and hence the
irreducible decomposition of a representation corresponds to the
ergodic decomposition of a measure.

For another example, using the L*-space with respect to an
infinite dimensional Gaussian measure, we can represent the infinite
dimensional rotation group. The author will discuss it in another
paper.

5. We shall discuss the non-existence of translationally quasi-
invariant measure in Chap. I,

Minlos’ theorem in Chap. II, and

Gaussian measures and the characterization of rotationally
invariant measures in Chap. III.

Chapter 1. Quasi-invariance and ergodicity

Contents: (1) Definitions and some properties of quasi-invariance and ergodicity.
(2) Non-existence of translationally quasi-invariant Borel measure on a
locally convex infinite dimensional rector space.

8§1. Quasi-invariance and ergodicity

Let X be a set, B be a o-ring which consists of subsets of X,
u be a measure defined on B, and G be an onto and one-to-one
transformation group on X. We suppose that B is G-stable, i e,
VgeG, VEESDB ; gESD.

Definition 1.1. We define the transformed measure t,p 0f p by
the relation: v, u(E)= w(gE) for all ES®B.

Definition 1. 2.
1) We say that n is G-invariant, if t,u=up for all geG.
2) We say that p is G-quasi-invariant, if T,u<p for all g€G.

Here, u,<<u, means that p, is absolutely continuous with respect
to w,. If wu,<lp, and u,<pu,, we say that u, is equivalent with u,,
and denote this by u,~pu,.

Evidently, any G-invariaut measure is G-quasi-invariant. If p



Measures on vector spaces 5

is equivalent with a G-quasi-invariant measure p’, then p itself is
G-quasi-invariant. Therefore any o-finite and G-invariant measure
u is equivalent with a finite and G-quasi-invariant measure p’. Any
linear combination with positive coefficients of G-quasi-inv. (or G-
inv.) measures is G-quasi-inv. (or G-inv.), so that minimal measures
are worth special interest.

Definition 1.3. We say that w(=+0) is G-ergodic, if p is minimal
among G-quasi-inv. measures, i.e., the following two conditions arve
satisfied ;

1) u is G-quasi-inv., and

2) for any G-quasi-inv. measure ', the relation p' << implies
w'=0 or p'~p.

Then, a question arises: “Can any G-quasi-inv. measure be
decomposed as a sum of G-ergodic measures?” This question has
not been answered up to the present except some special cases, and
we shall not discuss this problem in detail. (c.f. Hopf: [4],
Neumann : [5])

Proposition 1.1. Let p be a G-quasi-inv. measure, and consider
the following four statements :

(1) For any G-quasi-inv. measure u’, the relation ' <p
implies u'=0 or p'~pu.

(2) For any B-measurable set E, the relation E=gE for all
g=G implies that E=¢ or E=X (modulo p-null sets).

(3) For any B-measurable function ¢(x), the relation @(x)
=o(gx) for all g=G implies that o(x)=constant for u-almost all x.

(4) For any B-measurable set E, if w(E)>O0, there exists a

sequence {g,} CG such that X= O g E (modulo p—nullsets).
=1

Then, (4) is sufficient for (1), and (1) is sufficient for (2), while (2)
and (3) are equivalent.

Proposition 1.1’. Let u be a G—quasi-inv. measure, and the space
LXX) of all p-square summable functions be separable. Then the
four statements of the previous proposition ave equivalent with each
other.



6 Yasuo Umemura

Therefore, if LY X) is separable, any of the four statements of
Prop. 1.1 can be regarded as the definition of ergodicity. (c.f.
Hopf : [4])

§2. The case of vector space

From now on, let us suppose that X is a real vector space, and
that B satisfies the following two coaditions :

a) For any EE®D and x= X, E+x belongs to B.
b) For any EE®B and real A=0, NE belongs to °B.

However, a set which consists from one point does not always
belong to B.

The translation ¢,: X<x—x+y&X is an onto and one-to-one
transformation on X. If Y is a subspace of X, {f,|y=X} forms a
group, which we identify with Y. So, following the previous section,
we can define Y-invariance, Y-quasi-invariance, and Y-ergedicity
for measures on X.

Let X’ be the algebraic dual space of X and R be a subspace
of X’. For any ¥R and real «, consider the subset of X;

E,:= {zreX|Ex)>a} .

Let B, be the smallest o-ring which contains all E, ;.
Evidently, B, satisfies the conditions a) and b) of this section.

Now, suppose that a triplet {X, B, u} is given and that BB ,.
If we restrict x on Bg, we get a measure ug(=u|Bg). Though ug
is a measure on X, it can also be regarded as a measure on the
factor space X/R+t. Namely, let pr be the natural homomorphism
of X onto X/R+, and put

B = {E(CX/RY)| pp(E)EBg} ,

then defining g by Zr(E)=ugxl@pr(E)), we can see easily that ug
is a measure on By. If p is G-quasi-inv., ug is also G-quasi-inv.
Moreover under the condition: “x—y<=RL implies gx—gye R+ for
all g&G” G can be regarded as a transformation gronp on X/R-‘.
Then, G-quasi-invariance of p implies that of 7.

(Note : In case of the translation group (G=7Y), this condition
is fulfilled.)
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§3. A condition for absolute continuity

In this section, we shall give a sufficient condition for absolute
continuity of measures defined on ¥, supposing that R is weakly
separable.

Proposition 3.1. Suppose that {R,} is an increasing sequence of
finite dimensional subspaces of R such that \ | R, is weakly dense in R.

Then, for any finite measure u defined on By and for EcSBy, we have
ve>0,9n, 9E, &8, ; W(ESE,)<E (1)
Here, © means the symmetric difference.

Proof. Let 2 be the family of all £ which satisfy the con-
dition (1). Evidently, 2 is a o-ring, and E, ;= {x|£(x)>a} belongs
to U for any £€R and real a. So, ADB,. (q.e.d.)

Proposition 3.1’. Let LA X) be the space of all p—square sum-
mable functions defined on X, and {R,} be of the same meaning in
Prop. 3.1. Denoting p|By, by p, (instead of ug,), we can see easily

that L} (X) is a closed subspace of LX), and that C/ L2 (X) is dense
in LY X).

Proof. This proposition is merely another expression of Prop.
3.1. as a statement on the L*-space.

Corollary. Suppose that a triplet {X, Br, u} is given. If R
is weakly separable, then LX) is also separable, so that the four
statements in Prop. 1. 1 about ergodicity are equivalent with each other.

Proposition 3.2. Suppose that R is weakly sefarable, and that
two finite measures p and u' are given on By,. For absolute continuity
of u’ with respect to p, it is necessary and sufficient that (using the
notation of {R,} in Prop. 3.1) the following two conditions are
Julfilled :

a) n; pn=u,.

b) putting Z'“"”

in LYX).

(2)=pn(x), {Vpux)} forms a Cauchy sequence

”n
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Proof of Sufficiency. Since LJ(X) is complete, the Cauchy
sequeince {Vp,(x)} has a limit g(x). Now, for any E=®B,, and
n=m, we have

w(E)= SEdufa(x) = SEPn(x)dﬂ‘n(x) = SEpn(x)du(x)

= <Co/oms Cov/pn> oy <Coty Comn=| 800" ().

(Here, Cz(x) means the indicator function of the set E.) So, if we
define n” as dp”=|g(x)!?du, then p/(E)=p"(E) for VEc\ ) Byg,.

4

From this, we get u’=u” on By in virtue of Prop. 3.1.

Proof of Necessity. Evidently, the condition a) is necessary.
Putting V %(x) =g(x), we shall show that V/p,(x) —g(x) in LYX).
w

At first, we decompose g(x) orthogonally with respect to L7 (X)
(=M,) i.e..

gx)=gP(x)+g2(x)  where gPeM, gPeMt

It is easy to see that g(x)=0 and g®(x)=0. Since Prop. 3.1’
assures g’ —g and gi” —0 respectively in LXX), if we prove the
inequality ;

Vs IVee =g h=11g2 |l (2)
then it is evident that \/p,—g in Li(X).

Proof of the Inequality (2) Let /i(x) be any B,,-measurable
and bounded function, then

Sh(x)dm’.(x) = _\k(x)pn(x)dn(x) =N/ Pus N P du (3)
Since A(x) is also Br-measurable, we have

[ 1) it = (e dn @) = (e e)pduta)

=<hg, gou=1<hg, g+ &7 u
=<hgy s giout+<hg?, & 0u, (4)

because g M, and g¥= M. Comparing (3) with (4), we can
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conclude that if A(x)=0, then <k\/p,, \/pnou=<{hgL, gD, so that
Vox)=g®(x)  for p-almost all . (5)

Again from (3) and (4), letting A(x)=1, we get

[ oum—(g@@F} duia) — 11252 12 (6),
but the inequalities (5) and g’(x)=0 enable us to estimate as

pn(%)—(&7(®)) = (Vpn — 82NV pn + 83°)Z(VPw — &2°) 5

so that the equality (6) induces the inequality : |[\/p, —g® 2= |gP|2
which we have wanted to prove. (q.e.d.)

§4. Uniqueness of X-quasi-invariant measure.

Proposition 4.1. Suppose that a o-ring B of subsets of X
satisfies the following condition :

(x,y) = x+y is a B-measurable mapping,
i.e. for any E€®B, {(x, y)|x+y=E}sBxB,

Then, any two measures u,, w, which are o-finite and X-quasi-inv.
on B are equivalent with each other.

Proof. Without loss of generality, we can suppose that both
w, and p, are finite. For any E<®, we calculate the following
double integral :

1= Catxr9)dux)dul ).

Since I=SM1(E— Yy y)= S,uZ(E—x)dm(x) from Fubini’s theo-

rem, keeping the X-quasi-invariance of u, and p, in mind, we can
see that p,(E)=0 implies /=0 and thus p,(E)=0. (q.e.d.)

Corollary. Suppose that B satisfies the condition in Prop. 4.1
and that a measure u defined on B is o—finite and X-quasi-inv.
Then u is quasi-inv. also with respect to homotheties. Namely, defining
the expanded measure T u by the relation: “v, W(E)=u(\E) for all
Ee®B”, we have tu~u for any x>0,
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Proof. Since , u is X—quasi-inv., Prop. 4.1 assures that 7, u~pu.

It is well known that if X is finite dimensional, the condition
in Prop. 4.1 is fulfilled for the family of all Borel sets. Even in
case of infinite dimension, this condition is fulfilled for B, provided
that R is a finite dimensional subspace of X’, because By can be
identified with B, as seen in §2.

For n-dimensional vector space R", we know that the Lebesgue
measure is R*-invariant. Hence any o-finite and R”"-quasi-invariant
measure p is equivalent with the Lebesgue measure. Namely, it is
written as du=f(x)dx, where dx means the Lebesgue measure and
f(x) is a Baire function such as 0<f(x)< oo for almost all x. From
this we get

dryp(,y — _ f(x+y)
T =pln 0= T8

Hence the following proposition ;

Propoesition 4.2. If R is a finite dimensional subspace of X',
then for amy o-finite and X-quasi-invariant measure u on By the

density function M(x): p( s x) is B X Bp—measurable as a function

of two variables.

§5. Measurability of density function

Proposition 5.1. If R(CX’) is weakly separable and if a mesure
w on By is finite and X-quasi-invariant, the density function g;_y’f(x)
=p(3, x) is Bp X Br-measurable as a function of two variables lzwith
a suitable modification on a pX u~null set).

Proof. The density function p(y, x) is necessarily Br-measur-
able as a function of x for any fixed y. Let {R,} be of the same

meaning in Prop. 3.1, then by Prop. 3.2, putting ‘_‘;L’ﬁﬁ(x): on( 3, %),

n

{Vp. x)} converges to Vp(y, x) in LX) for any fixed y.
As seen in Prop. 4.2, each Vp,(, x) is Bz xBr-measurable.
Moreover we can see easily that

Nn, m(y) = H \/pn(y’ x)—' \/Pm(y’ x)”l-’-(x)ézvm ’
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thus they are uniformly bounded as functions of y. Hence
Lebesgue’s theorem is applicable and it shows us that {v/p,(y, x)}
forms a Cauchy sequence in L.%.(Xx X) as functions of two vari-
ables. Let g(y, x) be the limit function of this Cauchy sequence.
Then, a suitable subsequence of {\/p,(¥, #)} converges to g(y, x)
for u X u~almost all (y, x). From this, we see that g(y, x)=Vp(, %)
and hence p(y, x)=(g(y, x))* for uXx u—almost all (y, x). (q.e.d.)

§6. Construction of X-invariant measure

In general, we can not say whether a given G-quasi-inv. mea-
sure u has or has not an equivalent G-inv. measure. But if G=X
and if p is a o-finite measure on B, where R is weakly separable,
the answer is positive.

Proposition 6.1. If R(CX’) is weakly separable, then By
satisfies the condition in Prop. 4.1, namely the mapping: (x, y)—>x+y
is a B-measurable mapping.

Proof. In case of a finite dimensional R, we have seen in §4
that this proposition is true. For an infinite dimensional R, we can
prove it in a similar way as in the proof of Prop. 3.1.

Proposition 6.2. For a triplet {X, B, u}, assume the following
three conditions :

1) (x,y)—>x+y is a B-measurable mapping,

2) p is o—finite and X-quasi-invariant,

3) the density function p(y, x) is B X B-measurable (with a modi-
fication on @ wX u-null set).

Then, we can construct an X-invariant, o-finite measure u, which
is equivalent with u.

Proof. The density function p(y, x) satisfies the functional
equation ;
p(y+2, x) = p(y, x-+2)p(2, x)
(for all y, ze X and for p-almost all x)

Except on a uX u-null set, p(y, x) is equal to B x B-measurable
function p(y, x), hence
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p(y+2z, x)=p(y, x+2)5(z, x) (for pX p X p-almost all (z, y, x)),
and 0<p(y, x)< oo (for ux u-almost all (y, x)).
Therefore, there exists x,= X such that

b(y+2, %)=y, %,+2)p(2, x,) (for pXpu-almost all (y, 2)),
0<b(y, x,)< o0 (for p-almost all y).

Then p(y—=x,, %)= f(») is B-measurable, 0< f(y)<co for p-—

almost all y, and p(y, 2)= ]:% :—)z) for u X u-almost all (y, 2).

Put 7(1*)0’#( ¥) as duy), then u, is o-finite and p~pu,. More-
y

over, for p—almost all y.

ulE+9)= = | dr, ()

~1——d,u 1
=+ f(2) = f(x+9)
= 1 f(x+y)d _ _l_d _ .
ey o ) = |, ) = ).

Thus u, is invariant under p—almost all translations. From this
we see that u, is X-invariant as shown below. Put

Y= {yEX!'Ty:Ufo: lLo} ’

then i) Y forms an additive group, and ii) 2Z&®B; w(Z)=0 and
X=YUZ. Assume that Y=X, then x=X; (Y+x)NY=¢, hence
Y+xCZ so that YCZ—x, and X=(Z—x)UZ. Thus, since p is X-
quasi-inv., u(X) must be zero which is a contradiction. (q.e.d.)

8§7. Non-existence of X-quasi-invariant measure

As last, we have reached the main theorem of this chapter.

Theorem. On a locally convex, infinite dimensional, topological
vector space X, there does not exist any Borel measure which is o—finite
and X-quasi-invariant.

This theorem was proved by Sudakov, (c.f. Sudakov: [6]) but
here we shall prove it in connexion with Weil’s theorem.

For a locally convex, infinite dimensional, topological vector
space X, its topological dual space X™* is also infinite dimensional.
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And with respect to Borel measure, any linear continuous function
on X is measurable. So that, the following proposition is sufficient
for the theorem.

Proposition 7.1. There exist no triplet {X, B ,u} such that;
1) u is o-finite and X-quasi-invariant,
ii) BB, for some infinite dimensional subspace R of X'.

Proof. Assuming the existence of such a triplet, we shall show
a contradiction occurs.

R contains a subspace R, which is algebraically countable
dimensional. Evidently B;5%B, . Putting u|Bg =p,, u, is an X-
quasi-inv. measure defined on By, thus Prop. 5.1, 6.1, and 6.2
assure the existence of a measure p, which is o-finite, X-invariant
and o~y ON %Rl.

As seen in §2, p, can be identified with a measure 7, on the
factor space X/Ri{. Then X/Ri{ is infinite dimensional, and 7, is
X/Ri-invariant.

From a general theory on topological vector spaces, we know
that any locally precompact topological vector space is finite dimen-
sional. So that we can reach a wanted contradiction, if X/Ri
becomes locally precompact with some topology. In order to con-
struct such a topology, we use Weil’'s theorem. (c.f.: Weil [7]).
At first, we formulate it for an additive group.

Proposition 7.2. (Weil’s theorem) Let X be an additive group
and suppose that a triplet {X,B, u} satisfies the following conditions.

i) p is o—finite and X-invariant,

i) (x, y)—=x—y is a B-measurable mapping,

iii) {0} =3,

iv) x+0=9FEc®B, 0<u(E)<oo; u((E+x)SE)>0.
Then, with some topology, X becomes a locally precompact topological
group.

Though we omit the proof here, we shall mention how to con-

struct such a topology (Weil topology). Define a family N of
subsets of X by:
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N={N, | EEDB, 0< w(E) < o0, 0<E<2u(E)}
where N, = {z€X|w(x+E)SE)<E}.

Then, choosing N as a base of the system of neighbourhoods of 0,
we define Weil topology. With respect to this topology, (%, y)—x—y
is continuous, and some precompact sets belong to N. Putting
A={E—E|E€®B, 0<u(E)<o}, A becomes another base of the
system of neighbourhoods of 0 in Weil topology.

This Weil’s theorem is kept valid for vector spaces with a few
modifications.

Proposition 7. 2. Let X be a real vector space and suppose that
a triplet {X, B, u} satisfies the following conditions,
1) u is o-finite and X-invariant,
i) (x, y)—x+y is B-measurable,
i) x-—>1x is B-measurable for real \=+0,
iii) {0} =%,
iv) x+0=7FE=B,0< w(E)< 0; Ze>0,"A=1, u((E+21x)OE)>¢€.

Then, using N,  of the previous proposition, if we define as
M, g= \J AN, g and M= {M, 3}, then M becomes a base of the system
0<X<1

of nez'g;zbourhoods of 0 in some topology which is compatible with
algebraical structure of X and makes X locally precompact.

Proof. We can see easily that M defines a topology which is
weaker than Weil topology. We call this topology as M-topology.
It fulfills the axiom of separation in virtue of the stronger con-
dition iv).

The continuity of addition of two vectors with respect to M-
top. can be checked easily. Thus we should prove only the con-
tinuity of scalar multiplications, for which the following three
conditions are sufficient. (c.f. Bourbaki; “Espaces vectoriels to-
pologiques” page 7)

a) MeM=V|\ <1; \McCM.
b) YMeM; M is absorbing, namely \ / AM=X,
0<A

c) MeM= "\>0,M'eM; \M>M’,
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a) is evident from the definition of M, r and the symmetricity of
NE, E-

At next, we can show b) is satisfied even for N. Suppose that
NeN and \JAN=+X. From the equivalence of N and A4, we have

o<A
BB, 0<w(E)<oo; E-ECN. Thus xGEO\J)\XN implies (E+ax)N
(E+2\x)=¢ for A==/, Being w(E)>0, this is a contradiction against
the o—finiteness of .
c) is proved also using the equivalence of N and 4, and the fact
that w(E)>0=u(AE)>0.

Finally, we shall show that X is locally precompact with respect
to M-topology. From Weil’'s theorem, some N(=N) is precompact
with respect to Weil top., hence also with respect to M-top. Thus
M= OS\,\jng is precompact with respect to M-top., for it is a con-

tinuous image of [0, 1]xN. It shows us the local precompactness
of X. (q.e.d.)

We shall return to the proof of Prop. 7.1. Since R(CR) is
algebraically countable dimensional, the triplet {X/Rf{, %Rl, o}
evidently fulfills the conditions i)~iv) of Prop. 7.2. Thus X/R{
becomes a locally precompact vector space with some topology.
This contradicts against the infinite dimensionality of X/R{, so that

Prop. 7.1, hence the main theorem also, has been proved.

Chapter II. Minlos’ theorem

Contents: Let y(&) be a positive definite function defined on a real topological vector
space L. In order that there exists corresponding meastre # on the dual
space L*, the continuity of y(&) is

a) recessary, if L is metrizable,
b) sufficient, if L is nuclear.

88. Measure —Characteristic function

Let L be a real topological vector space, and L* be its dual
space. Following § 2, we can define the o-ring B, of subsets of L*,
regarding L as a subspace of L**, Then, for any §L, £x) is a
B, -measurable function.
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For a finite measure p on B,;, we define the characteristic
function X(&) of u as follows :

X(®) = [exp (i) du(x) (1)

Proposition 8.1. Properties of the characteristic function.
1) X(&) is positive definite on L ; namely for any finite set {a;}
of complex numbers, and for any finite subset {£;} of L,

;aiajx(fi—fi)go (2)

2) X(0)=u(L*)
3) If a sequence {£,} converges to O weakly, then X(E,) converges
to w(L*). Namely, X(E) is weakly sequentially continuous.

Proof. 1) The left hand side of (2) can be written as

SlZa,-exp (iEi(x))|2du(x), so that =0.
2) is evident. 3) is proved by virtue of Lebesgue’s theorem.

Corollary. If L is metrizable, X(E) is strongly continuous.

Proof. Since X(§) is weakly sequentially cont., it must be
strongly sequentially cont. However, on a metrizable space, any
sequentially continuous function is continuous.

§9. Characteristic function — Measure

From now on, we suppose that X(£) has been given, and try to
construct the corresponding measure pu.

Problem A. Suppose that a jfunction X(&) on a real to-
pological vector space L satisfies the following conditions :

a) X(¥) is positive definite on L,

b) X(0)=1,

c) X(&) is continuous.
Then, on the dual space L*, does there exist uniquely a measure p
whose characteristic function is X(€)?

In the case that L is finite dimensional, Problem A was solved
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affirmatively by the classical Bochner’s theorem. If L is infinite
dimensional, for a finite dimensional subspace R of L, the restriction
of X(£) on R is evidently fulfills the conditions a)~c) (but positive
definite on R instead on L). So, the classical Bochner’s theorem
assures that there exists a triplet {L*, Bg, wr} such that X(&)|R
becomes the characteristic function of ug.

Proposition 9.1. 1) Let R, R’ be two finite dimensional sub-
spaces of L, then, up|BrNBr=pug| B NBpr.

2) For any R, ug(L*)=1.

3) For any £>0, there exists a neighbourhood U of 0 in L such
that

EeU = p({reX | 6] 21} <€,

Here {£} means the one-dimensional subspace of L which is gemnerated

from E.

Proof. 1), 2), and 3) can be proved respectively from the uni-
queness part of the classical Bochner’s theorem, from X(0)=1, and
from the continuity of X(&).

From Prop. 9.1 we get the following proposition.

Proposition 9.2. If a function X(€) on L satisfies the condi-
tions a)~c) of Problem A, it becomes the characteristic function of
a finitely additive measure p on ,=\J) B, and the following con-

RCL
ditions are satisfied.
(1) For any fixed R, p is completely additive on By,
(i) wL™=1,
(iil) v&e>0, U (meighbourhood of 0 in L)
telU = p(lE)|=D)<e.
At next, we consider the converse.
Proposition 9.3. Suppose that on the finite-ring ;.= \J B,
RCL

a finitely additive measure n is given and satisfies the conditions

(i) ~(@il) of the previous proposition. If we define X(£) by

X(®) = [ exp (e du(x)
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it fulfills the conditions a)~c) of Problem A.

Proof is easy.
Thus, Problem A is equivalent with the following Problem B.

Problem B. Can we extend uniquely a finitely additive mea-
sure uw on K, to a completely additive measure on B, under the

conditions (i)~(iii) of Prop. 9.27

Problem A follows the formulation by Bochner, while Problem
B follows the formulation by Minlos.

Proposition 9.4. Uniqueness part of Problem B is answered

always affirmatively.

Proof. Suppose that p can be extended to two completely
additive measures p, and px, on B,. Let A be the family of all
sets E which satisfy u,(E)=u,(E). Evidently 2 forms a o-ring and
ADR,, hence ADYB,, because B, is the smallest o-ring which

includes the finite-ring &;. (q.e.d.)
§10. Conditions for extendability

Next, we shall discuss the extendability part of Problem B.

Proposition 10. 1. In order that a finitely additive finite measure
w defined on a finite-ring & can be extended to a completely additive
measure on B (=the smallest o-ring which contains &), it is necessary
and sufficient that ;

A,eR, A2A,2--24,2-
lim u(A,)+0 = N\A,*¢.

Proof is omitted here, for this is a general theorem in measure
theory.

Proposition 10.2. In order that Prob. B is solved affirmatively,
the following condition is sufficient.
ve>0, IC  (weakly compact set in L¥*)
VAE®,, ANC=¢ = u(A)<E.
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Proof. Suppose that A,e8,, A,24,2---2A4,2-- and lim x(4,)
=2a>0. For any finite dimensional subspace R of L, x|®, is com-
pletely additive from the condition (i), and it can be identified with
a measure on the factor space L*/R*. Since any Borel measure
on a finite dimensional vector space is topologically regular (i.e.

w(A)= sup u(F) for any Borel set A), we can choose such a
FcA
F:closed

sequence {F,} of weakly closed cylinder sets that satisfies :

F.ef,, F2F,2.--2F,2--
Vp: F,2A, and lim u(F,)=a>0.

Thus, we should show only that )\ F,=¢.

If the condition of Prop. 10.2 is fulfilled, there exists a weakly
compact set C such that

vAefR,, ANC=¢ = ulA)<a.

So that w(F,)=«a implies F,NC=¢. Since any decreasing sequence
of non-empty compact sets has non-empty intersection, we get
/}(F,,HC):HS, hence [;\F,,:.Eq’). (q.e.d.)

Let U be a neighbourhood of 0 in L and define the polar set
Uof U by the relation: U= {xEL*’ |E(x)]| <1 for YE€ U}.

FL;om the general theory of topological vector spaces, we know
that U is weakly compact. Thus, from Prop. 10.2, we get:

Proposition 10.2’. In order that Problem B is solved affirma-
tively, the following condition is sufficient.

ve>0, U (neighbourhood of 0 in L)
VAER,, ANU=¢ = p(A)<e.

We have not yet taken into account of the contiuuity of g
(namely, the condition (iii) of Prop. 9.2). Here, we shall discuss
the relation between the condition (iii) and Prop. 10.2’".

Proposition 10.3. In order that Problem B is solved affirma-
tively, the following condition is sufficient. (Later, we shall quote it
as the condition (SC)).
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(8C): (&) : increasing function which is defined for positive
small numbers and lim n(€)=0,
£>+0

VU : (neighbourhood of 0 in L),
AV : (convex, symmetric neighbourhood of 0 in L),
VR : (finite dimensional subspace of L);

If w(lEx)|=1)<é for YE€UNR, then
p((VNR)?)=1—n(€).
Proof. The condition (iii) of Prop. 9.2 assures that

ve>0, ¥U (neighbourhood of 0 in L)
w(|E(x)| =1)<e for VEeU.
Thus, if the condition (SC) is fulfilled,
7V (convex, symmetric neighbourhood of 0 in L), YVRCL;
p((VAR)?)=1—7(E) .
Therefore, in order to show that the sufficient condition of
Prop. 10.2’ is fulfilled, we should only show
VAE®B,, ANV=¢ = AN(VAR) =6. (3)
(Since (3) implies p(A)<1—u(VNR)°)<1—(1—=(8))=n(€) and we can
choose 7(€) arbitrarily small by taking & sufficiently small.)

Proof of (3). We shall prove the contraposition of (3).

Suppose that AN(VNR)°=+¢. If x€A and x=(VNR)°, then
[E(x)| =1 for any ¥=VNR. Since V is convex and symmetric,
Hahn-Banach’s theorem shows us that;

e L*; |E(x)| =<1 for VEEV
and E&(x)=E&(x") for VEESR.

Evidently x' V. On the other hand, x—x'=R+ and x=A imply
that x’€ A (€B;). Hence, ANV so that ANV=+¢. (q.e.d.)

811. Definition and some properties of nuclear spaces

(For details, c.f. Grothendieck : [8], and Mityagin: [9]).
Though there are many diferent definitions of the nuclearity,
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we adopt the following one, for it seems intuitional to the author.

Let L be an infinite dimensional, locally convex vector space,
and let U be the system of convex and symmetric neighbourhoods
of 0 in L.

Definition 11.1. L is said to be nuclear, if it satisfies;
vUel, IVell, Vu (positive integer),
9E, (n—-dimensional subspace of L); VCE,,—!—% U.
Proposition 11.1. The following two conditions are equivalent,

a) \,>0, VU, IVEl, ¥n, E,; VCE,+ L
nto

b) vA>0, YUEW, 7Vell, Va, 9E,; VCE,+ L U,
n

U,

Proof is omitted.

Definition 11.1. L is said to be nuclear, if it satisfies a) or b)
of Prop. 11.1.

(Note : Especially, in Def. 11.1, we have taken A =1.)

Proposition 11. 2. An infinite dimensional, locally convex vector
space L is nuclear, if and only if it satisfies the following condition :

viely, Ve,
Ax,=L*, ¥E,eL for i=1,2,-, such that
S ixmly|&ly<co and for VEEL, [E— X x(BEly — 0.

Here, we put l’g‘(UEirAlf {x>0‘%§eU} and |x|{, = 2111[,) | x(&)].

Proof is omitted.

Proposition 11.3. The topology of a nuclear space L can be
defined by a family of Hilbertian semi-norms, and L is separable
with respect to each of these semi-norms.

Proof. In Prop. 11.2, without loss of generality we can assume
that |x;|4 = |&;|y for all . Then,

D xlylElv=2 Iml¢=2&15 (= M*: put)<eo.
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For &, neL, the bilinear form <&, n)y= Zj] x;(E) x;(n) satisfies the

properties of an inner product except the condition: “<§, £>y=0=
£=0”. Hence |& ilH:V glxi(g)z is a Hilbertian semi-norm. Evi-
dently, —

IENE= 3 (Ep Il 7y = MPIEL,

| - I =
while (£1yS 37150 |6l v = 1@ 3 16 5=MIE .

Thus we get ]%Jsluénsn,{ngv.

This is sufficient for Prop. 11.3, since we can define ||£||; for
any Uell.

Proposition 11. 4. Suppose that the topology of an infinite dimen-
sional vector space L is defined by a family of Hilbertian semi-norms
and L is separable with respect to each of these semi-norms. Then
for the nuclearity of L, the following condition is necessary and
sufficient.

Vi llg (Hilbertian semi-norm),

ay (neighbourhood of 0 in L),

TLEY  (complete orthonormal system in ||+||g),

9q,>0 such that ia§<oo;

=1

Ve {fEL i g 3 Ei>125(§1}

a;
(Namely, V is contained in an ellipsoid with square summable
principal axis in ||-||—semi-norm.)
Proof is omitted.

Proposition 11.5. A wnuclear space L is necessarily a Montel
space (i.e. any bounded subset of L is totally bounded).

Proof. Let B be a bounded subset of L. It is sufficient to show ;
VU (neighbourhood of O in L),
Ty (positive integer), el (1=1,2,-,n)
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BC \='71(0+gi).

Since L is nuclear, there exists a neighbourhood V of O that
is totally bounded with respect to the semi-norm |-|,. Namely,

v\ >0, T/, 9gleL; VC \_j OU+E).

On the other hand, B being a bounded set, we have ABC V for some

A>0. Hence, BC\/(UT—E> (@.e.d)

Example. Schwartz’s function spaces (¥) and (D) are nuclear.
In (¥), for instance, consider a neighbourhood U of 0;
U={E®) | 1E¢)| <1 for VieR™}.

Then, choose V as;

= {e0 [Max (101, FED] -, 2O, 1212 0y ) <1
for VteR"‘}.
It is evident that:
) €OV > EDI= T for [t=Vi.
(i) £, w0V, s<t>=n(to>

<1 for jt—g=L
2n

Thus, if we cover the ball B= {t} [t]| =+/n} with a family of small

balls B, with radius 511_1 and center f,, then E(t,)=»(t;) for Vj im-

plies that £(f)—n(t)e + U.
n
Let 1=> a;f) be a decomposition of unity such that
Car. (a;)cB;. Then, V can be approximated within lU by linear
n

combinations of a;(f). Since the number of the small balls B; is of
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the order of n”"2<él—>- =2"n""", {a;(t)} generates a 2”»*"*-dimen-
7

sional subspace of (¥). Thus, V can be approximated within lU
n

by a 2"n*"/’-dimensional subspace, hence within 2% U by a k-
dimensional subspace. This is just our definition of the nuclearity.
Even if we consider a more complicated (i.e. dependent on
derivatives of higher-crders) neighbourhood as U, we can construct
the corresponding V in a similar way. Thus, (¢¥) is nuclear.
Also the nuclearity of (D) can be proved in a similar way.

§12. Minlos’ theorem (Bochner’s theorem)

Theorem A (Bochner’'s theorem)
In case that L is nuclear, Problem A in §9 is solved affir-
matively.

Theorem B (Minlos’ theorem)
In case that L is nuclear. Problem B in 89 is solved affir-
matively.

Proof. Two thecrems being equivalent as mentioned in §9,
here we shall prove Minlos’ theorem. In order to check the con-
dition (SC) of Prop. 10.3, we shall use the following fundamental
lemma.

Fundamental lemma. Lef RV be an N-dimensional vector space
and RN be its dual space. Namely,

RN = {x=(x,,, xy) | x;; veal} ,
R,N: {E = (51 3" EN) { E,; 7’€al} dﬂd E(x) = égixi .

Let S be the unit ball in RY, and F be an ellipsoid in R'V.

S={reR¥| 2 xi<1}, F={fR™
=1

N
2 biE=1}.
k=1

Then, for any (probability) Borel measure u on RY, the following
condition a) implies the condition b).
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a) EEF = u({x|Ex)=1})<e.
b) w(S)=1—v(e+D) where D:i:;bz.

Here v,=6.4 is an absolute constant which does not depend on N.

Proof of this lemma will be given in the next section.

From this lemma, we can show that the condition (SC) is ful-
filled in case that L is nuclear. Let L be nuclear, and |||l be a
continuous Hilbertian semi-norm on L. From Prop. 11.4,

2V (neighbourhood of 0 in L),

Z{e;}  (complete orthonormal system of L in ||-||g),

Z{a;} (sequence of positive numbers),

such that 2(13 (=D,; put)<oco;

oo 2
veleeL | n € <il=w.
=1 q;
Without loss of generality, for any given £€>0, we can assume that
D,<¢.
Let R be a finite dimensional subspace of L. Putting
U={¢eL|l/Ellz=1}, UNR is the unit ball in R. On the other

hand, VNRC WNR, and WNR is an ellipsoid in R. So that there
exists a complete orthonormal system {&;} of R (in ||-||g), such that;

wnR={ecr |3 & <),

where N is the dimersion of R, and i bi<D,<E&.

i=1

Put @1@1:&, and regard &; as the coordinates of £. Then,

2

UNR= {geR]éb???él},

N _
while WNR={tcR|> &<1}.
Let R’ be the dual space of R. It is isomorphic with L*/R*L,
so we identify them. Evidently, (WNR)°c(VNR)° and
N

(WNR)Y = {zeR’'| 21 #2=1},
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where %; is the canonical coordinates of E;.

Let u be a finitely additive measure which satisfies the con-
ditions (i)~(iii) of Prop. 9.2. Then, u|B; is a measure on
L*/R+=R’. Suppose that u(|&(x)| =1)<é for YE€ UNR, then from
the fundamental lemma, we get

pl{x | 2 =11 = w(WNR)°)
=>1—v(e+D)=1—2v,¢6.

This shows us that condition (SC) of Prop. 10.3 is fulfilled by
choosing 7(&)=2v,&. (q.e.d.)

Thus we have solved Problem B affirmatively under the con-
dition that L is nuclear. Conversely, this condition is necessary in
the following sense.

Proposition 12.1. In the case that the topology of a locally
convex vector space L is defined by a family of countable Hilbertian
norms, if L is not nuclear, a suitable Gaussian measure can not be ex-
tended to a completely additive ome.

Proof is omitted. (c.f. Minlos: [10])

§13. Proof of fundamental lemma

Let RY be an N-dimensional vector space, and p be a pro-
bability Borel measure on R¥, which satisfies the condition a) in
the fundamental lemma.

Let m be another Borel measure on R’Y, which satisfies the
following conditions :

i) m(R'N)=1,

ii) rotationally invariant, i.e. for any rotation # of R'¥,

m(E)=muE),

i) ggﬁdm(g)zl for Vi.
Consider the product measure pXm on R¥ XR’YN, and calculate
the double integral;

I= S du(x)dm(E) .

£HZ1
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Putting ;

F={feR™| 3 BB},

<€ if geF
<1 if E&F.

I<em(F)+1—m(F) <&+ (1—m(F)).

[t = s |emz1p {

gonz1

27

(4)

(5)

On the other hand, since m is rotationally invariant,

| am@ = | ame).

£=1 £,Z1/17

N
The right hand side is an increasing function of IxI:\/ > x%, S0
k=1

that

v

0 for

E@S);fim(s) { = S dm(§) for

where S is the unit ball in RY.

xS,

x&S,

Thus, we get;
1= | dm@)x (1 w(S) . (6)
£ =1
Comparing (5) with (6), it is easily seen that
1- )=+ 1-mE)| [ am@]" (7)

£=1

At next, we shall estimate m(F). From (4), we get

N L=
St

0 for teF

1 =1 for E¢F,

so that considering the condition iii),
N 3o N
1-m(F)= | 3 etgtam(®) - 3 b2

Thus, (7) becomes ;
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1-uS)se+D)| [ am@]". (8)

£21
Finally, we shall prove that we can choose suitable measures

my on R’N such that S dmy(E) is independent from the dimension N.

£;=1

Put
dmN(E) = (27‘L’)_N/2 exp (_I%V_)dg ,

then this measure m, fulfills the conditions i)~iii) of this section,
and moreover it is the product of one-dimensional Gaussian mea-
sures. Thus,

g dmy(g) = —— S exp <_§2—%> dg, .

So, we have proved the condition b) in the fundamental lemma ;

1—u(S)=ve+D) (9)

where

\/27:[8 exp< g)d&]_l'——.&zt. (q.e.d.)

§14. Kolmogorov’s theorem

We can get Kolmogorov’s theorem as a corollary of Minlos’
theorem, as shown below.
Let L be the direct sum of real lines, i.e.

L= {E: (51, & :)

It is the union of R"={(&,, & ,,&,, 0,0,---)} . Defining a topology
on L by the family of semi-norms |[|£|l,= Max (|&;|/a;), where

E,ERY, In; izn = £;=0}.

a=(a,, a,,) is any positive sequence, L becomes a nuclear space.
Suppose that X(£) is a positive definite function on L. Since

the matrix ;
x(0) X(E) X(E+m)

X (&) X(0) X(7)
CX(E+n) X(m) x(0)
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is positive definite, we have |X(£-+7)—X(7)| <v/2X(0) v/ |X(&)—X(0)].
Using this inequality, we can show that if X(¥) is continuous on
each R”, it is continuous necessarily in the topology of L.

The dual space of L is the direct product of real lines, i.e.

L*= {x=(x,, %,,) ' x,ER}.

Then, R*=~R™ can be regarded as a factor space of L*. Let B,
be the whole of the inverse images of Borel sets in R”. Then,
from Minlos’ theorem we get;

Theorem (Kolmogorov)
In case of the direct product of real lines R*= 1R}, any finitely
=1

additive probability measure u which is completely additive on each
B,, can be extended to a completely additive measure on V.., the
smallest o-ring which includes all B,

Chapter III. Gaussian measures

Contents: (1) Definition of Gaussian measures on the dual space L* of a nuclear
space L.
(2) Proof of their L-ergodicity, O-erodicity and O-invariance.
(3) Characterization of an O-invariant measure as a superposition of
Gaussian measures.

§15. Characteristic function on a factor space

Proposition 15.1. Let L be a nuclear space, and M be a closed
subspace, then the factor space L/M is also nuclear.

Proof. Let ¢ be the natural homomorphism from L onto L/M.
For any neighbourhoed U of 0 in L/M, its inverse image ¢ '(U) is
a neighbourhood of 0 in L. Since L is nuclear, there exists a
neighbourhood V of 0 such that:

Yn, 9E, (n-dimensional subspace of L)

VCE,,+%¢‘1((7).
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Operating @ on both hand side, we get (])(V)C¢(E,,)+lﬁ.
n

Evidently, o(V)=V is a neighbourhocd of 0 in L/M, and the
dimension of @(F,) is at most #. (g.e.d.)

Proposition 15.2. Let X(§) be a positive definite and continuous
Sfunction on a nuclear space L. Suppose that for a closed subspace
M of L, X(§) is M-invariant, i.e.

vEEL, VEeM; X(E+E) =X(E).

Then, the corresponding measure p on L* can be identified with a
measure on ML (CL¥).

Proof. Since X(¢) can be regarded as a positive definite and
continuous function on L/M, Minlos’ theorem enables us to construct
the corresponding measure x’ on (L/M)*=M"L as well as p on L*.
Then, the two triplets {L* ¥B,, u} and {M*, B, NM*, p'} are
equivalent in the followirg sense ;

w(E)=uw (ENML) for YE&B,. (q.e.d.)

Now, let ||-||z be a continuous Hilbertian semi-norm on a
nuclear space L, and suppose that X(£) is positive definite and con-
tinuous with respect to the semi-norm |[|-||z. Then, putting
M={teL ’ [I£]lz=0}, X(§) is M-invariant, so that the corresponding
measure p can be regarded as a measure on M-<L,

On the other hand, the semi-norm |j-||; becomes a Hilbertian
norm on L/M. Let $ be the completion of L/M in the norm ||+||g.
Since the factor space L/M (with the factor topology of L) can be
imbedded continuously into 9, we get ©*C(L/M)*~M~*. Identi-
fying © with % we can regard as L/MZ M-,

Proposition 15.3. Let L be complete and nuclear, and M be a
subspace mentioned above. By the natural imbedding, LM is mapped
into M+ densely

Proof. Denoting the isomorphism of  onto $F with +, it is
sufficient to show that if a linear continuous function on L* vanishes
on y(L/M), it must vanish also on M+,



Measures on vector spaces 31

From Mackey-Arens’ theorem [117, if L is complete and nuclear,
we have L**=L. Hence, we should only show that for £=L,

vReL/M, £(@) =0 = Vxe M+, £x)=0.

However, from the definition of +», we have £(\r(7))=<7, En. So
that, £(\r(7))=0 for Y= L/M implies that ||£||z=0, hence E=M.
Thus, for any xe M+, £(x)=0.

Example. In case that L=(%), letting ||-||g be the ordinary L*-
norm, evidently M= {0}. Thus, by the natural imbedding, (¥) is
mapped into (¢’) densely.

From the next section on, in order to avoid the complicated
situations, we shall assume that ||.||; is a continuous Hilbertian
norm on a nuclear space L. Even for the case where [|-||y is a
semi-norm, the results in the following sections are kept valid,
replacing L and L* by L/M and (L/M)*= M+, respectively.

816. L-quasi-invariance and O-quasi-invariance

Let ||-!|z be a continuous Hilbertian norm on a complete nuclear
space L. As seen in the previous section, we can imbed L into L*
densely, i.e. LCH=9*cCL*, Then, for any ¥L, we can define
the translation #; on L* as follows; #;: xL¥—>x+E=L*.

Whole of these translations {#;} forms a group, which we shall
identify with L. Then, by Definitions 1.2 and 1.3 of §1, we can
define the concept of L-invariance, L-quasi-invariance, and L-
ergodicity for measures on L*.

As we have proved in Chapter I, any Borel measure on L* is
not L*-quasi-inv. Therefore, we shall content ourselves with L-
quasi-invariant measures, and later as an example of such measures,
we shall consider about Gaussian measures.

For any x=L*, we define the translated measure r,u of the
given measure p. Then;

1) L-quasi-invariance of p implies that of 7, u,

2) L-ergodicity of u implies that of =, u.

On the other hand, non-existence of L*-quasi-inv. measure
shows us that
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Ixel*; poor .

Thus, if an L-quasi-inv. (or L-ergodic) measure p is given, we
can construct another L-quasi-inv. (or L-ergcdic) measure 7, by a
suitable translation.

Definition 16.1. Let ||-||; be a continuous Hilbertian norm on a
nuclear space L, and let © be the completion of L with respect to
the norm ||-||5.

An unitary operator u on 9 is called a rotation of L, if it satisfies;

1) u maps L onto L,

2) u is homeomorphic on L.

Whole of rotations of L forms a group, which we call the rotation
group of L and denote it with Og(L).

For any u=0y4(L), its adjoint operator #* becomes a homeomor-
phic transformation on L*. Thus, identifying «* with «™', (i.e.
identifying # with #*), Ogx(L) can be regarded as a transforma-
tion group on L*.

Then, by Definitions 1.2 and 1.3 of §1, the concept of Oy (L)-
invariance, etc. can be defined for measures on L*. But, for
simplicity of notations, unless any confusion is expected, we shall
write O instead of Oy (L). Hence, we shall write O-inv., O-quasi-inv.,
or O-ergcdic instead of Ogy(L)-invariant, etc.

Proposition 16.1. Lef u be a finite measure on the dual space
L* of a nuclear space L. u is O-invariant if and only if the corre-
sponding characteristic function X(€) depends only on ||E||y.

Proof. Sufficiency : Suppose that X(£) is a function of ||&]|y
and put X(E&)=¢(|€l|7). For any u=Oy4(L), let X,(£) be the char-
acteristic function of 7,u, then

%,(8) = | exp [i(@)1d(r, w)®) = | exp [igw )] du(x)

= | exp Line(e)1 @) = x@p)
— (|| uE|12) = pUIE]I%) = X(E) .

Since a measure on L* is determined uniquely from the character-
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istic function on L, this equality implies that 7, u=pu.
Necessity : Suppose that x is O-invariant. For any u#=Oy(L),
we have X(uE)=X,(E)=X(E). So that, it is sufficient to show that;

Elg= 17l = *u€O0u(L); 7= ut.

For any § n<L, let R be the two-dimensional subspace of L
which is generated from {& »}. If [|E|lz=I|7llg, E is mapped to 7
by a suitable rotation u#, of R. However, since R is finite dimen-
sional, ur can be extended to a rotation # of L, i.e. to an unitary
operator on © which is homeomorphic on L. Thus, Tu=04,(L);
ut=7n. (q.e.d.)

Note: The way how to extend u; to «;

Decompose © orthogonally into the sum of R and R+ (=or-
thogonal complement of R in 9), then putting

{uR on R
identity on R*,
u# becomes a rotation of L.
Finally, we remark that if L is separable, Corollary of Prop.
3.1’ assures the equivalence of four statements in Prop. 1.1.

Therefore, we can define L-ergodicity (or O-ergodicity) by any of
these four statements.

§17. Definition of Gaussian measures

Definition 17.1. Let |||l be a continuous Hilbertian norm on a
nuclear space L. It is easily seen that the following X(E) is con-
tinuous and positive definite on L.

x(©) = exp (~C1EIE) (>0 (1)

The corresponding measure on L* is called a Gaussian measure
with variance ¢’. (From now on, we denote it with u.).

Proposition 17.1. Let R, be an n-dimensional subspace of L,
and {&,, &, ,++, E,} be a complete orthonormal system of R, (in ||-i|g).
Then, for x< L*, putting £,(x)=x®, we have the following expression
Of tre, Ry=toc|Bry-
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A, g, (%) = (T/%_”-C«)"exp [— 2; él f(kﬂ]dj(l)dx(z)...dx(n) . (2)

(This expression depends only on the dimension # of R,, namely
it is same for all #-dimensional subspace R, and for all choices of
the base {£,}.)

Proof. For éeR,, writing it as §= f:a,ag,a (@,: real), we have
E=1
X(£) = exp (——;« )3 af) ,  hence we have:
k=1

1
2¢2

X(E) = (ﬁ)ns exp [z kii}l AT — kE:]l x“ﬂz]d”x .

(Here, d”"x means dx®dz®-.-dx™)

n
However, since > a,x*®=E(x), we have the expression (2) from
=1

the one-to-one correspondence between characteristic functions and
measures. (q.e.d.)

(Note) : Since L is nuclear, it is separable with respect to the
norm ||-||gz. (c.f. Prop. 11.3). So that the expressicn (2) allows
us to write formally ;

i) = lim [

oo

>" exp <_ 1 Z x(k)Z) dx(l)dx@),_,df(”)]

n
2¢° ¥=1

\/2rc
(Here, consider a complete orthonormal system {&,} of L in [-||n
and put x®=£,(x)).

In this sense, u. is the limit measure of finite dimensional
Gaussian measures (letting the dimension #—oo).

§18. Proof of L-ergedicity
Proposition 18.1. Gaussian measure u, is L-quasi-invariant.
Proof. It is sufficient to show that;

VEEL; Tee™ Mc « (3)

Let X:(n) (neL) be the characteristic function of 7:u., namely ;

X () = | exp im0 ] dren)(x)
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Let K, be the two-dimensional subspace of L which is generated
from {% 7} and let {&,, £} be a complete orthonormal system (in
+|lg) of R,. Then

X:(n) = | exp [m(x)J—%“C—’”( %) e, 2 (%) (4)

However, from (2) we have

d(repe, v)
dlu‘c, Ry

2

1
(1) = exp [ e 3 {0+ Eoy— 51

r=1

-t
»

= exp [— 2k ER +§<’”2)] . (5)

2¢% =1

Remember that EP=g,(¢)=<%, E,>p, then it is evident that E=EPg,

+E¢,.

Hence, Ei]i f(k)zz(k): Zj‘; E(k)fk(x)zg(x), and P2 gtk)z: ”E”;I
Sutfs—tituting thke—se into (5), we get

d(TE ;‘*Lc, R2)
dll‘c, Ry

1
() = exp| — g @)+ €1

This does not depend on » any more. Substituting it into (4), we
have ;

X:(r) = | exp Lin(@)] exp | — L @6 + 181 |ah @) for vneD)

Since the characteristic function determines the corresponding
measure uniquely, we have ;
d(TE:U'c) (x) = exp [_ 2 ] . (6 )
From this, it is evident that:
TE McS/’“c . ( 7 )

du.
Since (7) holds for any #=L, we have also;

T_ep. ke hence  p TTrp.. (7)

Comparing (7) with (7’), we have obtained ;

Tee ™~ B - (3)
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Proposition 18.2. For Gaussian measure u,, the four statements
in Prop. 1.1 are equivalent with each other, so that we can use any
of them as the definition of ergodicity.

Proof. In case that L is weakly separable, we have already
proved this prop. in Corollary of Prop. 3.1".

However, since the characteristic function of Gaussian measure
is continuous with respect to |||y, we can prove in a similar way
as in Prop. 3. 1, that the separability of L with respect to any Hilber-
tian norm is sufficient for the equivalence of the four statements.

On the other hand, a nuclear space L is always separable in
this meaning (Prop. 11.3). (q.e.d.)

Proposition 18.3. Gaussian measure u, is L-ergodic.

Proof. We shall check the statement (3) in Prop. 1.1. Namely,
we shall show that for any B,-measurable function ¢(x);

veeL; o(x) = p(x+£) = @(x) = constant for u.-almost all x.

Without loss of generality, we can assume that @(x) is bounded.
Since L is separable with respect to any continuous Hilbertian
norm, we can show in a similar way as in Prop. 3.1/, that;

4R, : finite dimenssional subspace of L;
\J L;, (L*) is dense in L2 (L¥).

bec, n

Br,. We assume that R SR,CR,S--).

(Here, pe n=p.

For simplicity, we shall write M, instead of LZ ,(L*). De-
compose @(x)e L] (L*) orthogonally into the form;

(%) = pi(x) + @2 (%) , (8)

where o’(x)eM,, and ¢¥(x)= M; (=orthogonal complement of
M, in L; (L*)). The sequence {M,} is monotonic increasing as well
as {R,}, hence;

@(x) = lim pP(x) in L?p (L¥). (9)

On the other hand, from (8) we get;

P(E+8) = P (X +E) + (2 + ) . 8
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It is easily seen that if @(x) is bounded, then @’(x) and P (x) are
also bounded, and for any (=L, p’(x+E)eM,.
Now, if we could find the relation ;

VEER,; pP(x+EEMy, (10)

we would know, from the uniqueness of orthogonal decomposition,
that the condition YE€L; o(x)=@(x+£) implies :

VEER,; ¢i’(x) =@ (x+E).

However, " (x) can be regarded as a function on the factor
space L*¥/R;:, which is isomorphic with R and hence (imbedding
R, into L¥*) with R,. So that,

P’ (x+8) =@i’(x)  for VEER,

implies that @S°(x)=constant for p.-almost all x.

Then, from (9) we see that @(x) is the limit function of con-
stant functions, thus @(x) itself must be constant. Therefore, the
proposition has been proved except the relation (10).

Proof of (10). It is sufficient to show ;

Vir(x)e M, and bounded, VEER,,;
(X +E), Y(x)u,=0. (11)

However,

[0+ ¥ i = {2 I a0 ) (1) duo),

e

and from (6) we know that;

1

2¢?

Au.

exp [ o1 @) - 11112

so that for any £€R,,
va-pitdmem,.
7

From this and ¢*(x)eM;, we obtain the equality (11). (q.e.d.)
(Note): As seen in this proof, for L-ergodicity of a measure wx
it is essentially important that
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teR, = 4 (e,
du

§19. Proof of O-ergodicity
Proposition 19.1. Gaussian measure w, is O-invariant.

Proof. Prop. 16.1 assures the O-invariance of Gaussian mea-
sure, because the characteristic function depends only on |[&|[y; as
given in (1) of §17.

Proposition 19. 2. Gaussian measure u, is O-ergodic.

Proof. As seen in Prop. 18. 2 the four statements in Prop. 1.1
are equivalent with each cther, so that we shall check the statement
(3) in Prop. 1.1. Namely, we shall show that for any bounded
B, -measurable function @(x) on L¥*;

VusO0y4(L); (%) = p(ux) = @(x) = constant for u,-almost all x.

We shall follow just the same way in the proof of Prop. 18.3,
until we reach the equalities /8) and (9). Instead of (8), we get

pux) = pP(ux) + o (ux) ,
but in general o (ux)&M,,.
Now, suppose that o(x)=¢@(ux) in Lj (L*), then
PP (x)+ @i (%) = @ (ux) + i (ux) ,
thus we have;
1 ) — i () 1, = [ @1 (%) — 93 @) 11, =211 92 (%) [, »  (12)

where the last inequality comes from the O-invariance of the mea-

sure u,.
Remembering the note after the proof of Prop. 16.1, we can

easily show that;
TueO0yx(L); R, lu'R, (in D).
(We extend a rotation of a 2zn-dimensional subspace R,, which con-

tains K,, to a rotation of L). For this #, we shall calculate the
left hand side of (12). Then,
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2 @)= @12, = {192 @)= o2 ()| e (4)
—2{19 @1 dn @) —2Re [ W) g D dpe() . (13)

From Prop. 17.1, the measure pu,,g,, is the direct product of
Ue Ry @0d pe 4 1g,, SO that;

[ @@ due ) = [ o @i () x |G @dp)
— 1 [pr @ du 1.
Substituting this into (13), we have
o @) = W11z, = 2] [ 16 @1 *diete)= | [ @ @)17].
Thus, the inequality (12) is equivalent with;
[1o0 @ 1 tdu @)~ 1m.7 =200 @11,
where m, = S<p§}’ x)dp.(x).

Letting #-—>oc0, since hm PP (x)=p(x) and hm P (x)=0 in
L (L%),

we have [le@) 2 du. - mi*<0,
where m= S p(x)dp.(x).
Therefore, S |p(x)—m|*dp. () <0,

but this means that @(x)=m for p.-almost all x. Thus @(x) is a
constant function (modulo p.-null set). (q.e.d.)

§20. Singularity with each other

In this section, we shall show that u.¢u. for c+¢’. For this
purpose, we could use the criterion of Prop. 3.2. But more strongly,
we shall construct concretely a set A that fulfills ux.(4)=0 but
u./(A)=1. Such A can be constructed in some different ways.
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Proposition 20.1. Let |i-||; be a continuous Hilbertian norm on
a nuclear space L, and {£,} be a complete orthonormal system of L
in ||-lig-
Define the function f(x) on L* as follows;

_ T &)
Fx)= h;fn NI (14)

Then, putting A.=f '(c)={x=L¥|f(x)=c}, we have p.(A,)=1.
(Evidently, AL NAy=¢ if c=c).

(Note) : It is easily seen that f(x) is B, ,~measurable and that
for VxeL* and VE=L; f(x+&)=f(x). Since u, is L-ergodic, this
shows that f(x) is constant for u.almost all x. We must prove
that this constant is just c.

Proof. For k=2 and >0, put;

Es= {xEL* ‘ _&(x){ ga} .
v2logk

From the equality (2) of §17, we have

1 (k2

~ x -
— exp| ——— |dx®. 15
\/chgmmﬁ Xp[ 2c2] * (15)

We shall estimate this integral. It is easily seen that for
V' <e,

p(E$) =2

18>0, VEP >a\/2Tog k ;
(B2 (B2 (B (B2
TR ex [_x ]§ ex [_x ]g—-’f_—.—_ex [_x ],
priexp| =55 Pl 2e 1= av210g 8 Pl 20

so that integrating each of them, we get;

22 2 c
& T p-w?/ic/2 @ [l —— YY) ¥4
M/n kT =wEDEN 2 log bR T

Thus, we have the following relations ;

a>c > 31 u (BH< oo (16)

a<c = 3 p(Ef)=oo . (16)
r=2
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In case of (16), we know u,(lim E)=0. Since f(x)>a implies
k

x<lim E%, we have pc({x[f(x)>a})=0, thus letting a—c+0,
k

ue({x | F(®)>c})=0. (17)

On the other hand, in case of (16’), putting ;

Bg={ L*¥|VE>n, &) },
el Vhzm o <o
we see that
ue(BS) = I (1—po(ED) =0.
Since f(x)<«a implies x= B?% for some #, we have u,({x l fx)<a})
=0, thus letting a—c—0,
pe({x| F(®)<H=0. a7

From (17) and (17’), it is evident that u.({x ! f(x)=c})=1, i.e.
f(x)=c for u,almost all x. (q.e.d.)
For another example, the following set A, also fulfills x.(A4,)=1.

Proposition 20.2. Let {£,} be of the same meaning in the pre-
vious proposition, then we have ;

lim <l i (& (x))z) = ¢ for u.—almost all x.
#-p oo n k=1
(Namely, putting
4.~ {zerr|im (L B @@r) =<},
nyoo \ P k=1
we have n,(A,)=1. Evidently, A.NAs=¢ if c=+c'.)

Proof. (Omitted). It can be proved by Kolmogorov’s strong law
of large numbers.

§ 21. Characterization of O-invariant measures

Two fundamental questions about ergodic decomposition of
measures are: (1) to find concretely all ergodic measures, and (2)
to decompose any given quasi-invariant measure into a sum of
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ergodic measures. Though in general they are difficult to answer,
in case of O-invariant measures the affirmative answers can be get
rather easily.

Proposition 21.1. Let ||-|ly be a continuous Hilbertian norm on
a nuclear space L. On the dual space L* any O-invariant measure
(except the Dirac measure) can be expressed as a superposition of
Gaussian measures.
Namely, a finite measure p on L* is O-invariant if and only if
it can be expressed as;
VAEB,; w(A)= | ne(A)dm(c)+ad(A). (18)

(0, =)
where a=0 and m(c) is a finite measure on the half-line (0, o).
8(A) means the Dirac measure on the origin of L%, i.e.

1 if 04,

8(A):{o if 0cA.

Proof of sufficiency. Since both u,(A) and §(A) are O-invariant,
any measure p in the form of (18) is evidently O-invariant.
For the proof of necessity, we need some lemmas.

Definition 21.1. A real function o(t) defined on the closed half-
line [0, o), is called completely monotonic if it satisfies;
(—1" a2t = 3 (~ 4} ) plha+ 520
for #=0,1,2,.-,7£=0, Va=0.

Lemma (Bernstein’s theorem.) Let o(f) be completely monotonic
on [0, o) and right continuous at t=0. Then, there exists a finite
measure m(s) on [0, o) such that ;

o(t) = S exp (—st)dm(s) for Vi=O0.

(i.e. @(t) is the Laplace transform of a finite measure.)

For the proof of this Lemma, for instance, c.f. D.V. Widder :
“Laplace Transform”.
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Now, we shall resume the proof of mecessity of Prop. 21.1.
Let x be an O-invariant finite measure on L*, then from Prop. 16.1
the corresponding characteristic function X(¢) depends only on ||&||x-
Namely, there exists a function @(¢) defined on [0, ) such that
X(E)=p(||Ell7). Since X(§) is continuous in ||-||z, ¢(f) is right con-
tinuous at {=0. For a while, we assume the complete monotonicity
of o(t), which we shall prove later.

Then, from Bernstein’s theorem, there exists a finite measure
m(s) on [0, o) such that X(§)= S exp (—s||&]|%) dm(s). Putting

(0c =)

s= -, we change the integral variable from s to ¢, then the mea-

CZ
2
sure 7(s) is transformed to a finite measure m(c) on [0, =), and
we get;

x© = | exp(~< i) dmee) (19)

(0, =)

Remember that exp <—~%2H§H§,> and 1 (for Y£) is the character-

istic function of u, and & respectively. Since the characteristic
function determines the measure uniquely, (19) is equivalent with;

vAEB,; wd) = | n(Adme)+as(4), (18)

(0¢ =)
where a=m({0}).
Thus, only remained to prove is the fact that ¢(f) is com-
pletely monotonic.

Proposition 21.2. Let @(||€|lf) be a function on a nuclear space
L dependent only on ||E||lg. Lf @(/|E|lf) is positive definite on L, then
@(t) is necessarily completely monotonic.

We divide the proof into two parts.

Proposition 21.3. Let ¢(||E|l}) be a positive definite function
on a nuclear space L, then,

a) @()=0 for V=0,

b) ALp(ElD=p(ElL+a)— (&%) is negative definite on L.
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Remark. For the validity of Prop. 21.3, it is essential that L
is infinite dimensional.

Proof of Prop. 21. 2 using Prop. 21.3. If o(l|£]%) is positive
definite on L, applying Prop. 21.3 b), we see that for "n, Va=0;
(—1D)"APp(||€|i}) is a positive definite function on L. Then, Prop.
21. 3 a) shows us that (—1)"A% (| £]|%) is positive for any ||&||y, «, n.
Thus, @(¢) is completely monotonic. (q.e.d.)

Proof of Prop. 21.3. a) For any given /=0 and positive
integer #, since L is infinite dimensional, there exist &, &,,--,£,€L
such that;

Ei Epp=15;  (for 1=i, j=n).
If @(||&||%) is positive definite on L, then
0= 2 ollE:— ;12 = np0)+ 2 ol &:—Ell2)
— ngp(0) + nln—1) p(28)
so that @(2)=—-L_o(0).
n—1

Letting n—oc0, we see that @(2£)=0. Thus, @(f) is a positive
function.

b) Putting AL @(I|E]I) = (&%), we shall show that -(||£[%)
is negative definite on L, namely for any finite set of complex
numbers a,, a,,,a, and for any &, &,,--, £, L, we have;

D a,a;0(1E—E|12)=0. 20)

i,j=1

Since L is infinite dimensional, there exists £, L such that;
<Eo’ gi>H: aaoi (fOf 0§l§n) .

Using this &,, we put;

A a (for 1=k=wn)
Er-nt& —Qpp (for n+1=<k=2nm).

Then, since @(||£||%) is positive definite on L,
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2n -
0= >3 0:B;(m:—n,113)

i, j=1

Il

i,j=1

— 31 a,2;0(1E+E—ElR)+ 3 68,0015~ &)

iJ i, j=1

a:a; (1 E—& 11D~ 3 ;918 —E—E3)

=2 31 @il E—E 1D~ 3 @i pi5—E; )]

i,j=1

2 3 a2, { (15— 5} -
Thus, we have reached ;
PR A (AP (20)
which shows us that +(||£]%) is negative definite on L. (g.e.d.)

§22. O-invariant and ergodic measures

Proposition 22.1. Let ||-||g be a continuous Hilbertian norm on
a nuclear space L, and p be an O-invariant measure on L*.

a) If u is L-quasi-invariant, then

Im(c): finite measure on the interval (0, oo);

vAE®,; W)= | nam). (21)
(0,2
(The Dirac term of (18) drops.)
b) If wu is L-ergodic, then w=p, for some c>0.
c) If p is O-ergodic, then w=u, for some ¢>0 or p=3=.

Proof. a) is evident, for 8(A) is not L-quasi-invariant.

To prove b), we shall show that m(c)=38(c—c,) in (21) for some
¢,>0, where §(c) is the one-dimensional Dirac measure.

We shall prove the contraposition, namely that if we assume

Ve, ; m(c)£d(c—c,),

then u is not L-ergodic.
From the assumption, there exists ¢’>0 such that m((0, ¢'])>0
and m((c’, ))>0. Using this ¢/, we put;
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WA= | pe(A)dme).
,¢")
Evidently ux'<<p. Moreover p’=0, because p/(L*)=m((0, ¢'])>0.
Thus, in order to prove that p is not L-ergodic, we should only
show u<Cu’. For this purpose, we use the function f(x) which we
have defined in Prop. 20.1. As seen there, we have u.(f '(c))=1
(for V¢ >0).
Now, put A=f""((¢, )), then

1 if ¢>c,
ue(A) = {0 if c=c.
Hence, A= | ne(Ayame) = m(, =))>0,
while W(A) = S 1. (A)Ydm(c) = 0.

0,¢”)
This shows us that p<Cp’.
c) 1is proved in a similar way. (q.e.d.)

Corollary. For O-invariant measures (except the Dirac measure),
L-ergodicity is equivalent with O-ergodicity.

As we have shown here, two fundamental questions about
ergodic decomposition of measures are solved for O-invariant mea-
sures (c.f. the beginning of §21).

However, for L-ergodic decomposition of L-quasi-invariant
measures, we have no solution up to the present time.

Even for the rotation of L, if we consider O-quasi-invariant
measures (instead of O-invariant measures), we do not know how
to solve these questions.
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