Carriers of continuous measures in a Hilbertian norm

By

Yasuo Umemura

Summary. From the standpoint of the theory of measures on the dual space of a nuclear space, we discuss the carrier of Wiener measure, regarding it as a measure on (\mathfrak{D}') (=Schwartz's space of distributions). This may be contrasted with the usual treatment which regards it as a measure on the space of paths.

It is shown that for $\alpha > \frac{1}{2}$, integral operator I_{α} is nuclear on $L^2((0, 1))$ ($\equiv H_0$). Using this fact, we see that Wiener measure lies on the space $I_{\beta}(H_0)$ ($\beta < \frac{1}{2}$) which consists of Hölder continuous functions of the β -th order in the sense of L^2 . This result is true for any measure whose characteristic functional is continuous on $L^2((0, 1))$.

§1. Nuclear operators and carriers of measures

Let H_0 be a real Hilbert space with the scalar product $\langle \xi, \eta \rangle_0$, and L be its subspace which is dense and nuclear in H_0 . It means that there exists a complete orthonormal system $\{\xi_k\}$ in H_0 and a sequence of positive numbers $\{a_k\}$ such that $\sum_{k=1}^{\infty} a_k^2 < \infty$ and the norm $||\xi||_1^2 = \sum_{k=1}^{\infty} \frac{\langle \xi, \xi_k \rangle_0^2}{a_k^2}$ is continuous in the proper topology of L. R. A. Minlos proved that for any positive definite and continuous functional $\chi(\xi)$ on H_0 , there exists a measure μ on L^* such that for any $\xi \in L$,

$$\chi(\xi) = \int \exp\left[i\xi(x)\right] d\mu(x),$$
 (1)

 $\chi(\xi)$ is called the characteristic functional of μ .

Received July 23, 1964

Suppose that both L_1 and L_2 are dense and nuclear in H_0 , and that $L_1 \subset L_2$. Then, for given $\chi(\xi)$, we can construct measures μ_1 on L_1^* and μ_2 on L_2^* . Identifying them, we can say that the measure μ_1 on L_1^* has the carrier in L_2^* ($\subset L_1^*$).

Now, let L be a fixed dense and nuclear subspace of H_0 , and $\chi(\xi)$ be a fixed positive definite and continuous functional on H_0 . We shall discuss the carrier of the measure μ which is defined on L^* , corresponding to $\chi(\xi)$.

Consider an operator T which satisfies the following conditions; (1) T is defined and nuclear on H_0 .

(Nuclearity of T is defined by $\sum_{k=1}^{\infty} ||T\xi_k||_0^2 < \infty$, where $\{\xi_k\}$ is a complete orthonormal system of H_0).

- (2) T is one-to-one.
- (3) The image $T(H_0)$ includes L, and $T^{-1}(L)$ is dense in H_0 .
- (4) Tξ_j→0 in the topology of L implies that ||ξ_j||₀→0. In other words, the inverse operator T⁻¹ maps L into H₀ continuously.

Proposition 1. For any operator T which satisfies (1)~(4), the measure μ (which corresponds to the given $\chi(\xi)$) has the carrier in $T^{-1*}(H_0)$, where T^{-1*} means the adjoint operator of T^{-1} . (T^{-1*} maps $H_0^* \simeq H_0$ into L^* continuously).

Proof. For $\xi = T_{\eta} \in T(H_0)$, define the norm $||\xi||_1$ by $||\xi||_1 = ||T^{-1}\xi||_0$. By this norm, $T(H_0)$ becomes a Hilbert space which we denote by H_1 . From the conditions (4) and (1), the topology of H_1 is weaker than that of L, but stronger than that of H_0 . Hence, $H_0 \simeq H_0^* \subset H_1^* \subset L^*$.

From the condition (1), H_1 is nuclear in H_0 , so that the measure μ has the carrier in H_1^* . Thus, only remained to prove is that $H_1^* = T^{-1*}(H_0)$.

If $x = T^{-1*}y \in T^{-1*}(H_0)$. then $(\xi, x) = (\xi, T^{-1*}y) = (T^{-1}\xi, y)$ is continuous on H_1 so that $x \in H_1^*$. Conversely, if $x \in H_1^*$, then the relation $(\xi, x) = (T^{-1}\xi, y)$ determines uniquely $y \in H_0$ and $x = T^{-1*}y \in T^{-1*}(H_0)$. (q.e.d.)

Since μ is completely additive, we get the following corollary.

Corollary. If each of operators T_n $(n = 1, 2, \dots)$ satisfies the

conditions (1)~(4), then the measure μ has the carrier in $\bigcap_{n=1}^{\infty} T_n^{-1*}(H_0)$.

§2. Integral operators

We shall apply the result of §1 to the case of $H_0 = L^2((0, 1))$ and $L = \mathfrak{D}(0, 1)$). Namely, we shall discuss the carrier of a measure μ on (\mathfrak{D}') whose characteristic functional is continuous in $L^2((0, 1))$.

At first, define the integral operator I_{α} as follows;

$$I_{\alpha}f(t) = \begin{cases} \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f(s) ds \, . & (\alpha < 0) \\ \frac{d^{m}}{dt^{m}} I_{\alpha+m} f(t) \, . & (\alpha \le 0) \end{cases}$$
(2)

The main properties of this operator are;

- a) For any real α, it is defined as a operator on D((0, 1)), and maps D into L²((0, 1)) continuously.
- b) For any real α , it is defined as a operator on L^2 which maps L^2 into (\mathfrak{D}') continuously.
- c) For $\alpha > \frac{1}{2}$, it maps L^2 into L^2 continuously.
- d) For any α and β , the relation: $I_{\beta}I_{\alpha} = I_{\alpha+\beta}$ holds on \mathfrak{D} . If $\alpha > \frac{1}{2}$, it holds on L^2 also.

Proposition 2. For $\alpha > \frac{1}{2}$, the operator I_{α} satisfies the conditions (1)~(4) of § 1.

Proof. It is easily seen that I_{α} satisfies (2)~(4). (Especially, $I_{\alpha}^{-1}=I_{-\alpha}$). So, we shall only prove the nuclearity of I_{α} .

Let $\{f_n(t)\}\$ be a complete orthonormal system of $L^2((0,1))$. It is sufficient to show that $\sum_n \int_0^1 |I_{\alpha}f_n(t)|^2 dt < \infty$, namely,

$$\sum_{n} \int_{0}^{1} \left[\int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} f_{n}(s) ds \int_{0}^{t} \frac{(t-r)^{\alpha-1}}{\Gamma(\alpha)} \overline{f_{n}(r)} dr \right] dt < \infty$$
(3)

By Fubini's theorem, we can rewrite the left hand side of (3) into the form;

$$\sum_{n}\int_{s=0}^{1}\int_{r=0}^{1}F(s, r)f_{n}(s)\overline{f_{n}(r)}dsdr,$$

Yasuo Umemura

where

$$F(s, r) = rac{1}{\Gamma(lpha)^2} \! \int_{\mathrm{Max}(s, r)}^1 (t\!-\!s)^{lpha-1} (t\!-\!r)^{lpha-1} dt \, .$$

We see that F(s, r) is a continuous function of (s, r) for $\alpha > \frac{1}{2}$. On the other hand, for instance, putting $f_n(s) = \exp(2\pi i n s)$, we have

$$\sum_{n} f_{n}(s) \overline{f_{n}(r)} = \sum_{n} \exp\left(2\pi i n(s-r)\right) \xrightarrow{(n \to \infty)} \delta(s-r)$$

in C' (=the dual of the space of continuous functions).

Hence, the left hand side of (3) is equal with

$$\int_{0}^{1} F(s, s) ds = \frac{1}{\Gamma(\alpha)^{2}} \int_{0}^{1} \left[\int_{s}^{1} (t-s)^{2\alpha-2} dt \right] ds$$
$$= \frac{1}{2\alpha(2\alpha-1)} \frac{1}{\Gamma(\alpha)^{2}} < \infty \qquad (q.e.d.)$$

From Prop. 1 and Prop. 2, we see that the carrier of the measure μ lies in $I^*_{-\alpha}(H_0)$. It is easy to see $I^*_{-\alpha} = PI_{-\alpha}P$, where Pf(t) = f(1-t). However, if at the first step we change the variable t into 1-t, we need not consider the effect of P. Thus, we can say that the carrier of μ lies in $I_{-\alpha}(H_0)$.

Remark that $I_{-\alpha} = \frac{d}{dt} I_{1-\alpha}$, Therefore, putting $\beta = 1 - \alpha$, we get the following result.

Proposition 3. Suppose that the characteristic functional of a measure μ is continuous in $L^2((0, 1))$, then the carrier of μ lies in the whole of derivatives of $I_{\beta}(H_0)$ for any $\beta < \frac{1}{2}$, hence in the whole of derivatives of $\bigcap_n I_{\beta_n}(H_0)$ where $\beta_n \uparrow \frac{1}{2}$.

Here, we consider derivatives in the sense of distributions.

§3. Hölder continuity

Proposition 4. Even for $0 < \beta \leq \frac{1}{2}$, I_{β} is a continuous operator from $L^2 = H_0$ into itself, though $I_{\beta}f(t)$ can be defined only for almost all t.

Proof. If $0 < \beta \le \frac{1}{2}$ and $f(t) \in H_0 = L^2$, $I_\beta f(t)$ can not be defined in the pointwise way, but it can be defined for almost all t, because

the function $\frac{(t-s)^{\beta-1}}{\Gamma(\beta)}f(s)$ $(t \ge s)$ is integrable with respect to two variables (s, t). Moreover for any $g(t) \in H_0$, we have

$$\int_{0}^{1} |g(t)| \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} |f(s)| \, ds \, dt \leq \frac{1}{\Gamma(\beta)} \iint_{s+t \leq 1} |g(t+s)| \, |f(s)| \, t^{\beta-1} dt \, ds$$

$$\leq \frac{1}{\Gamma(\beta)} ||g||_{0} ||f||_{0} \frac{1}{\beta} \, . \tag{4}$$

Hence, $||I_{\beta}f(t)||_{\mathfrak{o}} \leq \frac{1}{\beta\Gamma(\beta)}||f||_{\mathfrak{o}}.$

In general, for $g(t) \in L^2((0, 1))$, the shift operator $\tau_h g(t) = g(t+h)$ has no meaning, since g(t+h) belongs to $L^2((-h, 1-h))$, but not to $L^2((0, 1))$. However, if $g(t) \in I_\beta(H_0)$, we can define the shift operator, because the definition (2) of I_α can be applied for t > 1. (For t < 0, we put $I_\alpha f(t) = 0$).

Proposition 5. If $g(t) \in \bigcap_n I_{\beta_n}(H_0)$ where $\beta_n \uparrow \frac{1}{2}$, then for any $\beta < \frac{1}{2}$, g(t) is Hölder continuous in the sense of L^2 . Namely;

$$\frac{\tau_h g(t) - g(t)}{h^{\beta}} \xrightarrow[(h \to 0]{]{}} 0 \text{ in } L^2((0, 1)).$$

Proof. Since $g(t) = I_{B_n} f_n(t)$ where $f_n(t) \in L^2 = H_0$, in a similar way with (4) we have for any $\varphi(t) \in L^2$,

$$\int_{0}^{1} |\varphi(t)| |g(t+h) - g(t)| dt$$

$$\leq \frac{1}{\Gamma(\beta_{n})} ||f_{n}||_{0} ||\varphi||_{0} \int_{-|h|}^{1} |t_{+}^{\beta_{n}-1} - (t+|h|)^{\beta_{n}-1} |dt| \leq \frac{2|h|^{\beta_{n}}}{\beta_{n}\Gamma(\beta_{n})} ||f_{n}||_{0} ||\varphi||_{0} \cdot^{1}$$

Thus, for given $\beta < \frac{1}{2}$, choose $\beta_n > \beta$, then

$$\left\|\frac{\tau_h g(t) - g(t)}{h^{\beta}}\right\|_{\mathbb{Q}} \leq \text{const.} \times |h|^{\beta_{n} - \beta} \xrightarrow{(h \to 0)} 0. \quad (q.e.d.)$$

Since g(t) is defined only for almost all t, the concept of pointwise Hölder continuity loses its meaning. This fault can not be removed as long as we regard g(t) as a distribution. Along this line, we get only the following proposition.

(q.e.d.)

¹⁾ $t^{\beta}_{+} = t^{\beta}$ for t > 0, = 0 for t < 0.

Yasuo Umemura

Proposition 6. If a sequence $\{h_k\}$ satisfies 1) $h_k \to 0$, and 2) $\overline{\lim} \left| \frac{h_{k+1}}{h_k} \right| < 1$, then for any $g(t) \in \bigcap_n I_{\beta_n}(H_0)$ and any $\beta < \frac{1}{2}$, we have $\lim_k \frac{g(t+h_k)-g(t)}{h_k^\beta} = 0$ for almost all t.

REFERENCES

- Prokhorov, Yu. V., "Convergence of random processes and limit theorems in the theory of probability." Theory of Prob. & Appl. 1 (1956) pp. 157-214.
- [2] Minlos, R. A., "Generalized random processes and their extension to measures." (in Russian) Trudy Moskov, Mat. Obvv. 8 (1959) pp. 497-518.
- [3] Kolmogorov, A. N., "A note on the papers of R. A. Minlos and V. Sazonov." Theory of Prob. & Appl. 4 (1959) pp. 221-223.
- [4] Schwartz, L., "Theorie des distributions." Chap. VI. §5 Paris, Hermann (1951).