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Introduction.

We consider a system of nonlinear difference equations of the

form

(0.1) y(x + l~)=f(x,y(x-)-),
x\

where x is a complex variable, y an ^-dimensional vector, and / an

n-dimensional vector.
/^

Each component of the ^-dimensional vector / is assumed to be

holomorphic in a region R = SQX C70, where

for some positive constants a, dQy pQy where the norm of a vector u is
n

given by W = S|w,-|.

Let

(0.2)

be the expansion of / in powers of yly -',yn, where p is a set of non-

negative integers plf - - •, pn, B (#) an n X n matrix, /0 and /p ^-dimensional

vectors, and

(0.3)
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We shall suppose that f0, fy, B are holomorphic in SQ and have the
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We shall suppose that
asymptotic expansions

(0.4)

as x approaches infinity through the sector 50.
In order to construct solutions of (0. 1) it is important to

obtain their first approximation ; in general this is difficult. However,
if a solution y(x) has a limit yQ as x approaches infinity and
XX XX

/(°°, 3>o) is defined, then yQ must satisfy the equation J^/C00,^)-
On the other hand, if there exists a yQ which satisfies this equation,

XX

yQ =/(°°, yo), then, under suitable stability conditions, it may be
expected that every solution in a neighborhood of yQ will approach
yQ as x approaches infinity. The purpose of this paper is to show
how, under suitable hypotheses, to construct the general solution of
the system (0. 1) in a region of the form

(0.5) /!<arg (#-

We shall assume with no loss of generality that yQ = Of and hence

(0.6) 0=/M(=/(oo,0)).

The following theorem is a special case of a result of W. A.
Harris, Jr. and Y. Sibuya [8] and is the first step in the construction
of the general solution:

XX

Theorem 1. Let the vector function f(x, y} be holomorphic in

U1:\\y\\<81

x\

for positive constants aif di, plf Suppose f has the representation
XX XX

(0. 2) in powers of y, where f0, fy, B have asymptotic expansions
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(0. 4) as x approaches infinity through the sector Si. Suppose
x\

that BQ and B0 — I are nonsingular. Further assume /oo=0, and
also that if Ai9 i = l,---,n, are the eigenvalues of BQ, then 0^arg
( — log^-)- Then if the positive constants a>2 and p^1 are sufficiently
large, there exists a solution

(0.7) y=*W

of (0. 1) such that <£(#) is analytic and admits the asymptotic
expansion

(0.8) ^OO^SAJr"i/=i

as x tends to infinity in the domain,

S2: | arg (#^ -tf2)l<-| + p2.

Since this theorem will be used frequently in the course of this
paper, we shall discuss it at greater length in the next section,
with special attention to the region of validity.

By a transformation of the form

(0.9) X*)=z(*)+0(*),

the system (0. 1) is reduced to the form

(0.10) *(* + !)=/(*, *(*)),

where the right member satisfies conditions similar to those satisfied
x\ -^

by / and the expansion of / in powers of z is given by

(0. 11) /(*, *) =A(x)z+f(x, z)=A(x)z+

and further

(0.12) ^(^)

Next we shall prove that A(x) may be assumed to have a
convenient form:

Theorem 2» Let the elements of the nxn matrix A(x) be
holomorphic in a sector Ss,
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S3: arg(*0-f'-08) !<-£- + pa, 0B>0, p3>0,
Zi

and let A possess the asymptotic expanion

as x approaches infinity through the sector S3. Suppose that
vi, -•,& are the distinct eigenvalues of A0y that none of these is

zero, and that 0=£arg( — log (/£,-//*/)), i^j. Suppose further that AQ

has the block-diagonal (Jordan) form AQ = diag(Ai,>-,A?), where
A^jujlj + Nj, with Ij the mrdimensional identity matrix and Nj a

nilpotent matrix. Then there exists a matrix TOO with components
holomorphic in some sector,

S4: largC^-^-flO |<-| + ̂

p4 sufficiently small, 0<p4-<p3, a4>a3, such that the transformation

(0.13) y 00 = r(*)* (*)

transforms the linear difference equation

(0.14) x* + i)=-AOO*00

mfo ^^ equation

(0. 15) 2 ( jc + 1) - B 00 2 ( jc)

where B(x)=diag(B1(x'), ••- ,f i r(^)) /5 a block-diagonal matrix, the
elements of B(x~) are holomorphic in S4, and B(x) has the
asymptotic expansion

(0.16) 5(*)=i]5*r-*
* = 0

as x approaches infinity through the sector 54; further BQ=AQ.

Theorem 1 is used to prove Theorem 29 and the form of 54 will
be specified in the next section by the remarks on Theorem L On
the basis of Theorem 29 we can assume without loss of generality
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that the matrix A(x") has the block-diagonal form of J3(#).
Let

(0.17) z = P(x,u')

be a transformation of the vector z such that P(x, u) can be repre-
sented by a uniformly convergent series of the form

(0.18)

in a region J?4=S4X C74 given by

Ut:\\u\\<
^ ^ x\

for 24>0, p4>0, with 54>0 sufficiently small, with coefficients
/\

holomorphic for x^S4, and admitting asymptotic expansions

x

as ^ approaches infinity through 54.
We are now in a position to prove our main theorem.

Theorem 3. Suppose that the matrix AQ has eigenvalues
satisfying

(0.19) 0<U,|<1,

and that 0 satisfies the conditions

ii) 0=£arg( — log4;ip) if

(0.20)

: I arg (^g-1* - 28) |
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where 25>0 and 0<p5<p5+|^]<-^-. Consider the system

(0.21) z(x + l)=A(x)z(x)+f(x, £(#))

where f(x,z) is holomorphic for x^S5, \\z\\ sufficiently small, A(x)

= diagC4100* • • - , -4rOO) is a block-diagonal matrix of the form of
.BOO in Theorem 2, and -400 and /pOO ^^ holomorphic and
admit the asymptotic expansions

00 00

A (iu>~\ -̂-̂  /I i \ ^ A <y—k f^( v^\'~~~~' /U -U \ 1 /Vii /v*~*xl v ̂ vy =xj.n ~i~ x1 i ̂ ~Lk-^ yrV.'^'y _/ pn I / jy pfe^v
£=1 6=0

x\
as jsc fewrfs ̂  infinity through the sector S5.

There exists a transformation of the form (0.18) by which
the system (0. 21) is transformed into a system of the form

(0. 22)

where the coefficients gpOO ^^^^ /^ component

(0.23)

Assuming without loss of generality the ordering

using (0. 23) and the block-diagonal form of A, we can show that the
component of the vector g"(tf, w) satisfies

o o'=i,
(0.24)

and that gj(x,u) is a polynomial in uly"-yumr for y = wr + l, °-,mr+is
r]>l. Thus the general solution of (0. 21) can be obtained by solving
linear difference equations recursively.
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In particular, if the /l/s are all distinct, the system (0. 21)

becomes scalar equations and the system can be solved recursively.

If, in addition, ^yp^l for all indices j and p, the system (0.22) has

diagonal homogeneous form

(0. 25) w, (* + !)= 0u 00 w,00-

After obtaining the general solution of the system (0. 22) , we

can construct the general solution of (0. 10) by substituting the

solution of (0.22) into the transformation (0.17). In doing so it is

necessary to estimate the magnitude of the solution of the system

(0.22).

If the reduced system (0. 22) is normal in an extended sense (we

shall give a precise definition of this concept in Section 7) we shall

find a region of the type

in which the solution is uniformly bounded and approaches zero as x

tends to infinity in this region. Choosing 0 consistent with Theorems

1-3, the general solution of the original system (0. 1) is given in this

region by

(0.26) X*)=000+P(*, t/(*,C(*)),

where U(x, C(#)) is the general solution of the reduced equation

(0. 22) and COO is an arbitrary bounded periodic vector with period

one. Thus we have attained our main objective.

The scalar case, n = l, has been treated by J. Horn [9] under
xX

the assumption that f(jx, y) is holomorphic for I % I ^>R0, \ y \ <.dQ using

Laplace transform techniques. The single n'th order equation

has been treated by W. J. Trjitzinsky [13] under various hypotheses

including /(#, 0, • • • , 0) =0, i.e., the existence of a particular solution

0(:0=0. He constructed formal series equivalent to our series

P(x, U(x, C(#))) which he proved asymptotic to actual solutions in
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an upper half-plane, while we have established the convergence of
this series. General results of essentially the same nature as ours
have been obtained by W. A. Harris, Jr. and Y. Sibuya [7] in half-
planes of the form ] Im x \ >a under the conditions

Ui |=£l , and h U,|*'=£M,|
j = l

for all fa. Our results for nonlinear difference equations parallel similar
results in the theory of ordinary differential equations for systems of
the form

for which the corresponding linear system

-£-«*.<»,
has an irregular singular point at infinity and the eigenvalues of
/X00; 0) have negative real parts; these results are due to M.
Hukuhara [10], M. Iwano [11], J. Malmquist [12], and W. J.
Trjitzinsky [14].

The authors gratefully acknowledge several stimulating discus-
sions with Professor Y. Sibuya during the preparation of this paper
and are indebted to him for the simple proof presented for Lemma 3.

1. Preliminaries,,

a) Removal of Nonhomogeneous Term. First we obtain a
holomorphic solution

(1.1)

of (0. 1) in a region

S2: \

by use of Theorem 1. Let
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(1.2) X*) =*(*)+*(*)-

Then X* + !)=/(#, X*)) becomes

(1.3) *(* + !) + *(* + !) =/(*,*(*)+«(*))

and, since 000 is a solution, (1. 3) becomes

(*) [*(*) +0 (*)]P

which can be written as

(1. 4) *(#4-i) =400*00 +/(*, *00) =400*00

where the series is convergent for x<E:S2, Ii^ll<C^2 for some d2>0, dz

sufficiently small, and where the coefficients A(x) and /p(^) are

holomorphic for x^Sz> and have asymptotic expansions

(1. 5)

as x tends to infinity through the sector S2. Equate the linear terms

in (1.3) and (1.4), and using the fact that 0(^)=0(^"1) we obtain

(1.6) A = fio(=/,(~,0)).

b) Remarks on Theorem 1. The region of validity of solutions

obtained in Theorem 1 is the sector S2 of the form

(1.7)

where 0 and p may be described as follows: In the complex

draw all the points

— logUil —i arg^-,

i = l,'~,n. Then draw rays through each of these points extending
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from the origin to infinity. These rays will divide the plane into a
countable number of sectors, Si, Sa, • • • • The conculsion of Theorem
1 holds for all choices of 0 and p, p>0, such that the sector

is contained in some sector Sy-

Exactly one of the sectors S/, call it X!0, will have one of the
following properties:

i ) The positive real axis will be interior to S°-

ii) The positive real axis will be the lower boundary of S0,
i. e., S° will be a sector of the form 0<argC<Co for some Co>0. It
is clear that case ii) will hold if, and only if, at least one of the
eigenvalues h satisfies 0<C*,<1. See Fiqure 1.

We shall apply Theorem 1 again in the proofs of Theorem 2 and
Theorem 3- In the proof of Theorem 29 the numbers &/& assume
the roles of the k in determining sectors of validity; we obtain in
this case the sectors Si, SL "•• Choose S'° from this set in the
same way as S° was choosen. In Theorem 39 we shall apply
Theorem 1 a finite number, NQ, of times; in these cases, the numbers

^|^i<^o determine the sectors S", Si',"-. Choose a S"° from
these in the manner in which 5]° was chosen. We now take the
intersection of the three sectors S°, S'°, S"°, and call it S- It is
clear that S will also have property i) or property ii). We will
restrict 0 and p so that the sector

lies in S, in the final step of constructing the general solution of the
original equation (0. 1) in the form (0. 26) .

/\
We note that if f(x, y} is analytic in a full neighborhood of

x = °°, ]\\y[\ sufficiently small, the solutions of (0=1) obtained in
Theorem 1 will exist with asymptotic representations in sectors co-
vering a full neighborhood of infinity. Similarly, the results of
Theorem 2 will hold in sectors covering a full neighborhood of
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Case ii) 6 ^ 0B Figure 1.
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infinity. However, the restrictions in Theorem 3, |0| +p<-^-, restrict the
£

validity to sectors which cover a region of the form |arg(# — a} \<n,

but this is to be expected due to the form of our stability hypothesis,

2. Proof of Theorem 2.

By hypothesis, the matrix A(x) has the asymptotic representation

(2.1)
where AQ has block diagonal (Jordan) form, -40 = diag(-4J, "-,-4?) and

with no loss of generality

(2.2) A] =

sn o

0 ' U,;

with djk arbitrarily small.

Let

(2.3)

We wish to show that the equation

(2.4) T^OC+D
has a solution of the desired form.

Write (2. 4) in the form

(2. 5) 4(*) T(*)

and substitute the representations for T, 4 and B given by (2. 3)

to obtain

(2. 6)

-5(jc) - 4000500,

where JQ(*) - 00^
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Let A, B, Q have the partitioning

A =

induced by the partitioning of A0. If there is a solution of the
desired form then,

'̂ 11 - A»
I
X\ x\

:An - Arr

, B=
Bl1. 0

•

0 - Dnrrj
, G= L ?12 '" Qlr

•
,Grt b ,

and the equation for determining Q becomes

(2. 7) AQuA«, = AMu - Qu

If Q is determined in this manner, then 5 and T are also determined.
Equation (2. 7) is a system of nonlinear difference equations of the
form

(2.8) ^(^)=^(^,^^)=^o*W + C*(^)3; + A*(^^^)

where the components of the vector h*(x,y,Ay) are polynomials in
y and Ay with coefficients that are OC^r1)- Hence, for \x\ sufficiently

large, #eS3, i.e., in some sector

for ae>a3, we may rewrite the system (2. 8) in the form

(2.9) 4y

where <^0(#) and C(#) are holomorphic for ^^5*6, j j ^ K sufficiently
small, and these functions have appropriate asymptotic representations
and

(2. 10) C(*) =

It is easy to show that the eigenvalues of
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are &/ &, i,j = l,--,r. Thus the problem of block-diagonalization
has been reduced to that of finding a solution of a system of nonlinear
difference equations of a form to which Theorem 1 is applicable.
Applying Theorem 1 we obtain a solution Q(#) of equation (2. 7)

/x

in a sector S4cS6,

arg (xe~* - a*) \ <-- + P4,

Hence the transformation T(#) is analytic in S4 and admits the

asymptotic expansion

To complete the proof, it remains only to note that for a± sufficiently
large T(#) is nonsingular. Hence under the transformation

the linear difference equation

becomes

3. A Lemma on Linear Nonhomogeneoes Systems.

Lemma 1- Consider the linear nonhomo geneous system

(3. 1)

where the mxm matrices A(x), B(x} and the m-vectcr /(jc) are
holomorphic for x in the sector

-^? andadmit asymp-£1 £ /L
totic expansions
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500=2.8,*-'
» = 0

(3.2)

as x approaches infinity through the sector SB. Suppose further

that BQ is nonsingular and that the eigenvalues of BolA0 have
absolute value less than 1. Then there exists a unique bounded

holomorphic solution y of (3. 1) in some sector

SQ : \ arg (xe~ie - 08) | <-£- + p.
Zj

for some a^>.a$, and possessing there the asymptotic expansion

as x approaches infinity through the sector S6. Further, there

exists a constant C depending only upon the matrices B(x) and

A(x), such that for

(3.3) b

Proof: Since BQ is nonsingular, for %^S5, \x\ sufficiently large,

x) will exist. Write (3. 1) as

(3.4)

Since by hypothesis the eigenvalues of B^Ao have modulus less than
1, there exists a nonsingular constant matrix P such that

(3.5) \\P-*B^A*P\\<1.

[If j|5o"M0j!<l, we choose P=L\ Since (3.5) holds, for \x\ suffici-
ently large,

(3. 6) \\P-^B~

In fact, there will be a sector S6 as above where (3. 6) will hold.
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Define

and let y = Pz. Then (3.4) becomes

(3.7) z(x)=R(

Let

L = sup||/00||,
*€S6

and

•M KL
J.VJL .

1 — r

Let £$ be the family of all m-dimensional vector functions q> (x) holo-
morphic for x^S6, such that ||0>(#)||<CM. Define the mapping T as
follows: for z^$, let

A solution of (3. 7) is equivalent to a fixed point of the mapping T.

g is closed, compact, and convex with respect to the topology of

uniform convergence on each compact subset of the region 58. Since
the mapping is continuous, we need only show that £^g implies

T[*]e. Since

|| T[z] (*)

(^) | M+sup \\\P~*

there is a fixed point of the mapping T which is the desired solution.

To prove uniqueness, suppose y(x) and z(x) are two bounded

solutions of (3. 7) . Subtraction yields

=# 0

Hence assuming
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<r sup IK*)-
x€S6

which is a contradiction, since r<l. Thus the uniqueness follows.
Since B^A* — I is nonsingular, there exists a unique formal solu-

tion SjJfJir1'. The proof that this is the asymptotic representation of
1 = 0

the solution y that we have constructed follows as in Harris and

Sibuya [5].
•fC\\ on |i p-iji

Since y = Pz, setting c= {{ ^ L , yields (3.3), and the

lemma is proved.
If [|J3i"1^40||<Cl, aQ will be any number not less than a5 such that

\\B~1(x^)A(x')\\<r<.l in S6. In this case the constant C will depend

only on sup ]( 5 ~2 (#)!!• If H50~M.o|I;>l, a corresponding result holds*es6

with Ufi-'OO^OOII replaced by \\P^B'\%)A^Pl, with the P
chosen above, and the constant C will depend upon HP"1)) • ||P|| and
supil^OOIJ. We note that if B~\x~) exists and \\B~\x) A(x)\\<r<l
x€Se

in the region S5, we may choose S6 = S5. Hence we have proved

Lemma 2. Let B"1^ exist and p-1(^)^4(^)H<r<l in S5. Then

the solution y(x^) obtained in Lemma 1 exists and the estimate

(3. 3) is valid for

4. Formal Transformation: Preliminaries*,

a) A Preliminary Estimate. Consider the expression

(4.1)

where Pp is an ^-dimensional vector defined as in (0.18), A(x) is
an nxn matrix assumed to have all the properties, including the

block-diagonal form, of B(x) in Theorem 2, with eigenvalues ^, • • • , Jn,

0<|/lz- <Cl. We can write (4. 1) in the form

(4. 2)
M=k

where rp = r^(^) is an ^-dimensional vector. We want an estimate
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of the magnitude of the r>. Write

Then

(4. 3) || S rqM"||< S

If ||.4||<tf and ||«H<^ for some positive numbers a, d, we obtain

S

Notice that each component of the vector S rq^q is a polynomial in
|q |=£

the Ui,'~,un and as such is a multiple power series. Consider the

multiple power series S^yq^q, and suppose |S^/q^q!<^ for
Then |ayq|^A»-UI. By (4.3) we can take M= S

l v l =
and hence

Notice that for | q | = k, the number of terms in the sum is no greater

than (&+l)w. Hence we have

(4.4) S ||rq||<(& + l)w-^M S ||Pq(^ + l)||}.
i q | = ^ |p|=*

Define a linear ordering of the £=(&, •••,^») as follows: {/=(#,

-,^)<^=(A-,/«) if l ^KI^ I or if I f r ' H I ^ I and the first
nonzero element of £2— J>' is positive. Order the £'s for \$\ =k in in-
creasing order and call them J)1, •••,}/*. Write (-4M)^= S ^q^q- Then

=

Equate coefficients of u% to obtain

(4.5)

Each q will be a ^)l" for some i\ thus we have rp1, • • - , W** Write
these as a single column vector
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Similarly define the column vector

(4.6)

Then (4. 5) becomes

(4.7)

where C(&) is an n-rkxn-rk matrix. We shall first estimate the
norm of C(&), and later be more specific about its structure. Observe
that, from (4. 4) ,

Thus, since
||C(ft)|! = sup||C(*)t;]|,

It; 1=1
(4.8)

since the vector P was arbitrary. We summarize this in the following
lemma :

Lemma 3. Let the p for \$\=k be given the linear ordering

specified above, so that £1<£2<---<£r*. Then the coefficient ry of

u& in the expansion

is given by the n^ — l^+lst through n-jth components of the n-rk

vector C(&)P(&, x + Ti), where P(&5# + 1) is given by (4.6), and, if

6 is an upper bound for |!^4(A:)jI, we have the estimate (4.8).

b) Further Remarks on C(&). In the preceding section we

used none of the hypotheses on the form of A to obtain Lemma 3*

We shall now employ them to discuss the structure of C(&) more
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explicitly. First of all, it is clear that the elements of C(k) are

polynomials in the elements of A. Hence C(k} = C(k,x) is holomor-

phic in the same region as A(x), and has the asymptotic expansion

as x approaches infinity through the sector S6. Further, it is clear

that the coefficient of i&j in the expansion

is given by the corresponding components (as in Lemma 3) of

C°(k)P(k, # + 1). By hypothesis,

'^i 0i 0 }

A0=
 2' /. .

0

and hence

AQu= i

and therefore

= UN?- ••^•]MV + polynomial in ^ for q<p?

according to the linear ordering defined above. Define

Then we can write

(4. 10 ) (AQu) P = AW + ty

where ^(u^) is the polynomial in the u's as above. Hence the

coefficient of Pp in (4. 9) is given by (4. 10), or, equating coefficients

of u*',
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' +

Hence C! has the block triangular (actually triangular) form

p1/ cy - avi

(4.12)

0 'AST"!,

where the components indicated are scalars times identity matrices,
and hence Cl is triangular and has eigenvalues A$, \$\=k. We
remark that if AQ is diagonal, then C° will be diagonal also.

5. Formal Transformation.

Consider the system

(0. 13) z (x + 1) = A (#) z (*) +/(*, z

OOP

under a formal transformation of the form

(0.18)

Formally,

(5.1)

S

which can be written in the form

(5. 2) wOr-i-1) = -400^
+ S
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We shall determine the transformation (0. 18) in such a way that

the resulting equation (5. 2) will have a form as simple as possible ;

we shall show that in this case g(x,u(x)) will be a polynomial in

the «'s. Substitute (5.2) into (5. 1) to obtain, suppressing the

argument of u (which is now always #)>

(5.3)

Notice that

(5.4) {A(x)u+ S gq(x')iffl}v = [A(x~)u]P-f- terms in ua for ]^ |> |p j .

Since the P and g are to be chosen so that (5. 3) is a formal iden-

tity, we may equate the coefficients of u$ to obtain, for \p\=k,

(5. 5)

where rp is defined by (4.2), and /tyOO = A a )(40 — A O O , where

and

It is clear that /zp(#) is a polynomial in the components of the P^,

ft, and g£ for | C | < A = l t ) | . Order the p for | ^ | = & in increasing

order as in Lemma S9 and write all the equations (5. 5) for | \> | = k

as a single vector equation as in Lemma 3e Then (5. 5) becomes

(5. 6) G(k, x) + C(k, x}P(k, x + l)=A(k, x)P(k,

where C(k, x) is the matrix defined in Lemma 39

^
G(k, x) =

t) is as in Lemma 39 and ^4(fe, #) is a block-diagonal n-rkxn-rk

matrix of the form
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0 AW)

Notice that \_A(k, tf)]"1 has the same form as A(k, x); in fact,

[A(k,x}}-l = A-\k,x}. Further,

(5.7) \\A~\k, x)\\ = \\A-lW\\.

We also observe that because of the hypotheses on A(x), A~l(k,oc)

will have an asymptotic representation in S6 of the form

as x approaches infinity through the sector S6, where Avl(k} is the

block-diagonal matrix diagCAiT1, • • • , A^}.

The eigenvalues of A^(K) are thus the numbers/!/1, j = l, ••• ,«,

while Co(fe) has eigenvalues ^ and is hence nonsingular. Further

since C0(&) is upper triangular, C^(K) will be triangular also, and

further, C^(k, x} will exist in some sector

S7(k): | arg (*£-"

e, ^ = 2, • • • , A^o, and there possess an asymptotic expansion

Hence we can write (5. 6) in the form

(5. 8) P(k, * + l) = C-1(k) x)A(k,

+~C~l(k, x^ [H(k, x) - G(k,

where the elements of H(k, x) are polynomials in the elements of

P(j, x) for j<k. We shall determine the vectors P(k, x) and G(k, x)

recursively by equation (5. 8) . The solvability of the difference equa-

tion (5. 8) depends on the eigenvalues of the matrix

which are Aj$, j = l,-~,n, \$\=k.
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If ^yp^l, j = l,--,n, \$\=k, we may choose and G(k,x}=Q and
apply Theorem 1 to the difference equation (5. 8) to determine

If Aj$ = 1 for some j,$,j = l,m~,n, \$\=k, we choose the cor-
responding components of P(k, #) equal to zero and those of G(k, #)
equal to those of H(k, x) . In this manner we obtain a system of
difference equations of lower order similar to (5, 8) whose eigenvalues
differ from 1 which we solve as in the preceding case. Each time
we use Theorem 1, P(k,x) will be determined in a sector S8(&)c
S8(&-l)c«"CS8(2)cS8.

Since Up!-*00 as |p -»oo, G(k, #)=0 for k sufficiently large.
Let N0—l be the smallest positive integer k such that if /fyp^l,
l/ l /p ;>!, /=!, • • - ,# , | t > [ =&. We apply Theorem 1 as above to obtain
P(k, #) and G(k, x) for k<NQ. These solutions will be valid in the
sector Ss(JVo) of the form

From this point onward we shall apply Lemma 1 to solve the
system (5. 8) , (deleting if necessary the components corresponding to
^•p = l) as above. Hence, there exists a solution to the system (5.6)
for P(k,x}9 k>N0 in a sector

for some constants 09(A) and
It is important to show that there is a single region of this form

in which all the P(k, #) exist. This will be the case if we can show
that \\A~\k, x)'C(k,x) ||<r<l, ^e59(^), k>N2. Let N2 be the smallest
positive integer greater than JV0 such that

BNln<sN*-l<I, where

for AreSgW) and using Lemma 3 the
hypothesis of Lemma 2 are satisfied and P(k,x} may be determined
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in the uniform region S9(Af2) which we write as

Further, there exists a constant depending only on A(x) (with 0<C

such that

6. Convergence.

a) Preliminary Transformation. We have shown that all the

-Pp(tf) can be determined as holomorphic functions for %<^S. It

remains to be shown that the series 2] P$(x^)uV converges for
xx M^2

#eSCc$, ||M || sufficiently small.

Choose N so large that i) N>N2 and ii) 2C*^<1, where *<!

is an upper bound for |j^4(^)|| in eS. Let us first make the polynomial

transformation 2"^;

(6.1) "

Then the system

(0.21)

+
!

becomes

(6.2) M(* + !)+ S1

|p |=2

2]
l=2

{«(*)
| q l = 2

where the Pp(jc) have been determined in the preceding section.

Notice that 2N is an analytic transformation in S, \\u\\ sufficiently

small, and hence (6.2) can be solved for w(^H-l) in some sector

of the form



236 L. J. Grimm and W. A. Harris, Jr.

to yield

(6. 3)

101=2

where g(x,y) and h(x,y) are analytic for #e<5i, |b|l<5 for some
5>0. Indeed, the g$(x) are .the functions defined in the previous
section as components of the vector G(lk,x) as we see from (5.5),
since specifying the Pp for |p|=2, •• • , (N—V) determines each g%

uniquely for |p| =2, • • - , -̂1.
Now make the transformation 'Vxi

(6.4) u(x)=R(x,

Under this transformation (6. 3) becomes

(6.5)

S

Since the formal transformation £T reduced the original equation to
the form

(0.22) «(jc + l)=i4(jr)«(ji:)+^(j»:,«(^)),

it is clear that the transformation VN can be chosen so that (6. 5)
becomes

(6.6) w(
| P l=2

In particular, the Qp's may be chosen so that
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(6. 7) l

Suppress the argument of w and rearrange to obtain

(6.8) S Qp(^ + l)(^(^)u;)P-^U)( S QpW^)
IPI^^V |p|^JV

, R(x,

After substituting the representation for R(x,w) given in (6.4), we
obtain the following formal representations:

We notice in particular that the system of equations for the Qp

obtained by equating coefficients of w% is precisely the same as the

system for the Pp except that the nonhomogenous term is different.

Since [ p | ̂ >N>N2, the ©p's can be determined in a uniform region

(6. 9) S2: |arg(*^"-« \<-±- + P'
£

and will have asymptotic expansions as x approaches infinity through
<52 . Further, by Lemma 2, we have the fundamental estimate
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(6.10) S3 HCP(*)|I<CSUP S ||Wq(*)-jrq(*)+/q(*)

and hence the convergence of the series for Q implies the convergence

of the series for P.

b) Majorant Functions. The following operations will be

convenient: Let <p(x,w)= S <P$(x}w* be an ^-vector function. Then
\$\>m

the yth component of </> will be given by

Define

and

Also define

when the ^-vector S is given by v=(v,'~,vY. Then

Hence we have, from
^-i

(x,w)= S g$(x)w*, denned the functions

(6. 11)

l P l - 2

= S ll^WF^ and
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and from
R(xyw^=w-\- 2 Q$(x}w$, defined the functions

(6. 12) R?(X,W)=WJ + S |QX*) «#, and

R(x,W^=W1+'-'+Wn

Define (^, v) =1?(^, 5) with # as above. Then

Then the vector

(6. 13)

has i'ih component

Then

(6. 14)

By definition

i. e., the coefficients of zk in the multiple power series for gf are
positive and not less than the absolute values of the corresponding
coefficients of the series for gj. Similarly, for all j,

*(x, z) for ail ;,

Thus

m,(x, w)=g>(x, R(x,

where R(x,w) = (R, • • • , i?)r. Since all terms of gf are positive,
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Sum over j to obtain

(6.15) m(x, «0<£(*, ?(*, «>))=£(*,

Let Wi = v, i = l,---,n. Then (6.15) becomes

»K#, *0<K*. p(x, e;))=i]Wa
05 = 2

where

Let Ma00= S IIwjpOOH. Then

(6.16) Ma(x*)<n

In a similar way define h ( x , p ( x , v ) * ) . Then if /(#,«;) is defined

by
I \^X j 1A))=^ S ' /P\^/t^^ ==fl\Xy J\.\Xy 1A}) ) j

I p I "^>jV"

and Z,a(^) by

it follows similarly that

(6.17)

where S/a(#>assA(#,
C6 = N

Notice that, because of the form of R(x,w}, Jha(x)=
| P = «

for oj = 2, • • • , JV—1, and that mN(x)=0. Hence S maWv" is a
Q5 = JV + 1

majorant for m(x, v} —g(x, v), since g(x9 v) is a polynomial of degree
at most N— 1 in v, and the terms in m of degree less than N+1 are
independent of the Qp, and are hence equal to the corresponding '̂s.

Recall that

R(x, M;)=
and that
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Since ||.4(#)ll<rf for x^S2, the i'th component of Aw + g(xf uf), call
it [Aw+g(x, wOL, satisfies

[Aw + g(x,w)]i^r(Wi+---+wn)+g(x, w),
and hence

Sum on / from 1 to n to obtain

||5p(jc
^v

where ?(^, 7?)=0(^, ?), with y= ($, • • - , ^)T. Set w=(y,'-,vY to
obtain

Write

Note also that

Qf (x + 1, Aw^Qf (x + 1, ^vh

Now define the majorant functions G(0 and /f(0 by

f 1

(6. 18)

We notice that G(0 is analytic because it is just a polynomial, and
XX x"s

that #(£) can be assumed to be analytic, since by construction h(x, f)

is analytic in t.

c) Majorant Equation. Consider the following functional equa-
tion:

(6.19) S =

£=£(««;).
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We shall show that (6. 19) has a unique formal solution of the form

(6.20) f

Then define gk and hk by

(6. 21)

Substitute (6. 20) into (6. 19) to obtain the formal equation

Since this is to be a formal identity in v, equate coefficients of
vk to obtain

(6. 22) f 4»* = C [ Gkn
k + nkRk (O - Gkn

k + nkSk (f a) + tf VA + nk Tk (f a) ] ,

where j??*, S*, and Tfe are defined by

S n* Ttv" =
& = AT * = JV w = 2 fe = JV

Notice that Rk, Sk, and Tfe are all polynomials in the £a (<#<&) with

positive coefficients. Hence we can solve (6. 22) to obtain the
coefficients gk of the formal solution of (6. 19) :

(6. 23) n' 1 r k
I — U 6

Clearly all of the coefficients nk$k are nonnegative, since k^>N and

N was chosen so large that k^>N implies 0<C1 — CV<1. Hence also

f a) + T*(O] -

Therefore (6. 19) has a formal solution (6. 20) with all ?k non-negative.
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We now show that (6. 20) is a majorant for Qy i. e., that

The proof proceeds by induction. First, notice that for k = N,

RN = 0S SN = hN, TN = 0. Since 0^00=0, nNRN^mN. Also nNhN^
00 /^ ^

IN(X^), since ^Hkt
k^>h(%9 £), and the term hN is independent of the

k = N
~ X\

f's, while /jv is independent of p. Since the Q's were determined in

(52j, and <52 is such that for x^S%, (^ + l)ecS2. we have in addition
to (6. 10), the estimate

(6.24)

But since ^rp(^):=0 for l^l^^V, we obtain from (6. 10)

S IIODWII^^sup s

and the same estimate follows for S IIQ^(^ + 1)||, from (6.24). For
M=k

\$\=N, mt(x)=Q, and B*(x)=D)(x}, hence sup S ||C*OOH<
^6cS2 |^ |=7V

C'sup S \\h(%}\\<C suplN(x^<CnNkN<:gNnN. Now suppose as in-
X€<SZ 1?|=JV ^€cS2

duction hypothesis that

sup S HQp(«)||^f*»* for k = N, N+l, -., (w~l).

From the estimate (6. 10) we have

sup
| JJ 1 = W .T6cS2 | P | =

and notice that since

is a vector which is a polynomial in the Qa(tf + l) for

. Thus S ||5,(^)-A(^)iI<(^), where (A:) is obtained
1^] =m
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by subtracting the terms in the components of Qa, \a\=m from

^ ). Recall that

00 N — 1 /N^

If we expand SftG^w + S Gav
ay in powers of #, we obtain

k = N 05 = 2 £ = AT

where #A is a polynomial in f a for a<k. Subtract all the terms in
^ ^

gk from bk to obtain bk, where

XX

We shall now show that the terms in #m(#) independent of Q& for

\a\=m are dominated by the terms in bm independent of f m. Recall

that

Consider Q f ( x + lf a(w^-\ \-w^) Jrg{x,w}}. This is the fth component

of

where |Qp(#4-l)| is the vector ©p(# + l) with all its components

replaced by their absolute values.

Replace Wi by v(i = l, •-,n') to obtain

(6.25) S( S |Qp(# + l) I)(0nv + g(x,v^k.

The sum of the components of this expression is q(x + l,

The expression (6. 25) is majorized by

00 >N.

S c \ ^V. ' '
k = N |p |=y

Sum on / to get

S( S
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However, since by the induction hypothesis,

S II Qp(# +1)11 <£*#*, k = N,

and

the result follows.

Similarly, we can show that nmSv^ln(x') : Recall that nmSm=nmhn

where

(6. 26) Snkhkv
k =

& = #

and

We begin by considering h*(x,P(x,w)}. This is the /th component

of

Replace w by (y,~-vY to get

(6.27) IX S

The sum of the components of (6. 27) is
oo XX

5x2:
But

and thus

(6. 28)

XX XX

and writing this as S/*#*, using the induction hypothesis together
k = N

with (6.26) and (6.28), the result follows. The g's can be treated
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in an essentially similar fashion to yield %mJ?wI>wm(:r)= Thus the
estimate (6. 10) yields for all

S \\QvW \\^C(nnRn+nmSm+nnTn)<nn£n.
\V\=m

Hence for all

Thus Sf*(»fl)* is a majorant for the formal series
* = * I

(&= I - P i ) . It remains to be shown that the series S £*(##)* converges.
fe = JV

d) Convergence of the Majorant, Recall that f = S?*(»0)* is

a formal solution of the functional equation (6.19). Let nv = z and

let G(— ) = G(z). Then (6.19) becomes
\n I

(6.29) f(z)=

We shall prove

Lemma 4. TAg equation (6. 29) /z<zs #^ analytic solution f o/

fAg /orm S ? *£* /<o^ !^| sufficiently small, which is unique in the
k = N

class of analytic functions of this form.

Proof: For z \ <28Iy G, H, G are holomorphic and G(^) =O(z2*)y

G(z)=0(zz\ H(z)=O(zN). Hence for |^ <^ kGO |<*i, ?GO analy-

tic for | z \ <3l9 there exist constants G and H such that

Further, without loss of generality, we may assume that d2 is so

small that for \z <dly \az+G(z}\<r\z\, a<r<l, r< y^*.

Let 2" be the family of functions (p(z) analytic for \z <d such

that \(p^z)\<K\z N, where K is a constant which will be specified
later. For functions <?e£T define the mapping T by
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CO =

Clearly the mapping is well defined if 8<dly K8N<8 and a solution
of (6. 29) is equivalent to a fixed point of the mapping T. 3* is
closed, compact, and convex with respect to the topology of uniform
convergence on each compact subset of the region z\<d. Since the
mapping is continuous, we need only show that it is into. Recalling

that l-2C<r">0, r<jy~2e, choose

2CH

Then, | T[q>] CO \<>[(2CGd + CrN)K+CH] z\N<K\z\N, and there is
a fixed point of the mapping T which is the desired solution. Since
the coefficients of the formal solution are unique, the solution of
equation (6. 29) is unique in this class.

7. Estimates of Solutions of the Reduced Equation

Consider the reduced equation (0. 22) . This system is equivalent
to r systems of linear equations. Let the distinct eigenvalues & of

AQ satisfy

and let

u=

be the partitioning of u compatible with the jua . Then the first
systems are linear homogeneous systems of the form

(7.1)
where
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with Ni the nilpotent matrix defined in (2.2). The next k2 — ki

systems, corresponding to the indices j = ki+l, ki + 2, •••, kz, are non-
homogeneous systems of the form

(7. 2)

where the components of gj are polynomials in the components of
ul,---,ukl. Hence the general solution of (7.2) can be obtained by
obtaining the general solutions of all of the systems (7. 1) and
utilizing these to evaluate the functions gj. Let gj(x} be the gj

evaluted in this way. The remaining systems for j = kz + l, •- are of
form analogous to that of (7. 2) , and we proceed in the manner
described above to find the general solution of the reduced system

(0.22).
Thus the problem of solving (0. 22) falls naturally into two parts,

the solving of linear homogeneous equations and of linear nonhomo-

geneous of the forms

(7.3) «(# + !) =4 (*)«(#), and

(7. 4) «(* + !) =4(*)M(*) +£(*),

respectively, where

A (#) =jul+ N+ f] A'x-,
s=l

where N has the form of N{ above.
We consider the homogenous case (7. 3) first : A system of the

form (7. 3) is called normal if there exist a formal fundamental
matrix of the form

where R is a constant matrix. Otherwise the system (7. 3) is called
anormal.

If all of the corresponding linear homogeneous systems are normal,
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we may assume that all of the nilpotent matrices N are zero, since
Harris [4] has shown that this may be effected by a linear trans-
formation which is a polynomial in X'1 with determinant not identi-
cally zero. Further, it is known [1], [5] that in the normal case
there exist analytic fundamental matrices which have the formal
fundamental matrices as asymptotic representations in right half-
planes. Hence the behavior of the fundamental matrix as x tends to
infinity is essentially determined by //, but since 0< ju\<.l, JJL* is
bounded in a half-plane which contains a portion of the positive real
axis in its interior. Hence there exists a sector of the form

(7.5) - _|_</1<arg (* - a) </.<-§-,

in which the fundamental matrix exists, is bounded, and approaches
zero uniformly as x tends to infinity through this sector.

Now consider the anormal case. Birkhoff and Trjitzinsky [2]
have shown that in this case there exist sectors of the form (7. 5)
in which there exists a fundamental matrix for (7. 3) which is of the
form

1700 = fixeQ^xR (/+ U&-v* +• • • ) ,

where QOO is a diagonal matrix with elements of the form

P-I j_
qk = dkx

 p H \-VkX
 p.

It is clear that again // is the dominant term. Thus, we may infer,
in case the reduced equation (0.22) is linear, the existence of a
sector of the form (7. 5) in which the solutions of the systems (7. 3)
are bounded and approach zero uniformly as x approaches infinity
in this sector.

Now, we consider the remaining problem, the case when (0. 22) is
nonlinear. Then we have to find particular solutions of the nonhomo-
geneous systems (7. 4). First, we shall make the following definition:
the system (0. 22) will be called normal in the extended sense if

i ) all the systems



250 L. /. Grimm and W. A. Harris, Jr.

are normal;

ii) if ju7*#
for some r/ and integer 0/ for all j\

iii) there exists a formal particular solution of the form

(log #)7^00> where

Hence by the results of Harris and Sibuya [5] there exists an analytic

solution asymptotic to this formal solution in a sector of the form

(7. 5) o This particular solution has the same rate of growth as the
solution of the corresponding homogeneous equation. By induction the

general solution of the reduced equation (0. 22) can be thus con-

structed in a region of the form (7. 5) , if the reduced equation is

normal in the extended sense, and will have properties similar to

those of the general solutions when the reduced equation was linear.
We may summarize our results in the following:

Theorem 40 Let the reduced equation (0. 22) be either linear
or normal in the extended sense. Then the general solution of

(0. 22) can be written in the form

(7.6) M 00 = */(*, COO)

in a sector R of the form

where U(x, COO) is holomorphic in R, tends uniformly to zero

as x approaches infinity through R, and possesses an asymptotic

expansion in this region, and COO is an arbitrary bounded

periodic vector of period 1.

Hence, if 0 is chosen sufficiently small 0;>0, and compatible with

the hypotheses of Theorem 19 2, and 3, (using, for instance, the
sector S defined in Section 1 to choose 0) we can combine Theorems
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1, 29 39 and 4 to obtain in this case the general solution of (0. 1) in
the form

X*)= 000 +/>(*, OX*, COO)).

8. General remarks-

If the eigenvalues /I/ of the matrix A0 satisfy K|^|, similar
results corresponding to Theorem 3 are available in sectors which
cover a region of the form 0<<arg(^4-^)<27r, a>0.

If we assume the existence of a particular solution, or /(#,0) =- 0,
and

then by choosing either Ui=--=up = Q, or uk+i=m-=un = Q, similar
results are available where now COO will be either an n — p or k
dimensional arbitrary periodic vector.

The possibility of obtaining the uniform asymptotic expansion

for the transformation P(x, u) has been demonstrated by Harris and
Sibuya [7] under more restrictive hypothesis including the uniform
asymptotic expansion

We shall treat this question in a subsequent paper.
One would expect that the results embodied in Theorm 4 are

valid without the restriction : normal in the extended sense.
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