On nonlinear difference equations

By
L. J. Griuv™* and W. A. Harris, Jr.**

Introduction.

We consider a system of nonlinear difference equations of the
form

0.1 y(x+1) =Flx, (2,

where x is a complex variable, ¥ an #-dimensional vector, and }"\ an
n-dimensional vector.

Each component of the z-dimensional vector }"\is assumed to be
holomorphic in a region R=S,x U, where

So:larg(x—a) |<%+Po
Us: || y]|<<0o,
for some positive constants @, d,, p», where the norm of a vector # is
given by Hull=]§nl}|ui|-
Let

0.2 Flx ) =fo(®) + B(®)y+ 33 Fa(x)yp
|p|>2

P
be the expansion of f in powers of ¥, -:-, ¥., where p is a set of non-
N N\
negative integers py, -+, Pn, B(x) an # X n matrix, f, and fp #-dimensional
vectors, and
yp: yhyi’z... ﬁ"’
(0. 3) { g

[pl=pDit ot + P
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AN N
We shall suppose that fu, fp», B are holomorphic in S, and have the
asymptotic expansions

fitm=5
0. 4) B(x)= EOB,,x"’
Fo®)=5Fux

as x approaches infinity through the sector S..

In order to construct solutions of (0.1) it is important to
obtain their first approximation; in general this is difficult. However,
if a solution y(x) has a limit 3y, as % approaches infinity and
j’\(m,yo) is defined, then y, must satisfy the equation yo=?(<><>,y,,).
On the other hand, if there exists a ¥, which satisfies this equation,
y0=?(oo, %), then, under suitable stability conditions, it may be
expected that every solution in a neighborhood of 3y, will approach
Yo as x approaches infinity. The purpose of this paper is to show
how, under suitable hypotheses, to construct the general solution of

the system (0.1) in a region of the form
(0.5) L<<arg(x—b)<<l,.
We shall assume with no loss of generality that y,=0, and hence

0.6) 0=f00<:f(°°,0>)-
The following theorem is a special case of a result of W. A.

Harris, Jr. and Y. Sibuya [8] and is the first step in the construction
of the general solution:

Theorem 1. Let the vector function /f(x, y) be holomorphic in
R1=Sl>< Ul;

7

Sitlarg(xe P —ay) | < 5

U: | yll<<o

+P1,

for positive constants a,, 61, p. Suppose ? has the representation
(0.2) in powers of y, where ﬁ, fo, B have asymptotic expansions
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(0.4) as x approaches infinity through the sector S, Suppose
that B, and B,—1 are nonsingular. Further assume J/’;,:O, and
also that if A, i=1,---,n, arve the eigenvalues of B, then 0+ arg
(—logA). Then if the positive constants a, and o;* are sufficiently
large, there exists a solution

0.7 y=¢(x)

of (0.1) such that ¢(x) is analytic and admits the asymptotic
expansion

0.8 () =g

as x tends to infinity in the domain,
Sy |larg(xe ?—a,) I<—727—+p,,.

Since this theorem will be used frequently in the course of this
paper, we shall discuss it at greater length in the next section,
with special attention to the region of validity.

By a transformation of the form

0.9) y(x) =2z(x) +¢(x),
the system (0.1) is reduced to the form
(0. 10) 2(x+1) =f(x, 2(x)),

where the right member satisfies conditions similar to those satisfied

N A
by f and the expansion of f in powers of z is given by

(0.11) Flx,2) =Ax)z+f(x,2)=A (x)z+| ;2 I (%) 20
D

and further

0.12) A(x) =B(x) +0(x™).

Next we shall prove that A(x) may be assumed to have a
convenient form:

Theorem 2. Let the elements of the nXn matrix A(x) be
holomorphic in a sector S,
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Ss: larg(xe™—as) | <%+p3, a0, =0,

and let A possess the asymptotic expanion
A(x)%i/lkx“k
k=0

as x approaches infinity through the sector Ss. Suppose that
m, 4 ave the distinct eigenvalues of A,, that none of these is
zero, and that 0+arg(—log(w/p;)), i#j. Suppose further that A,
has the block-diagonal (Jordan) form A,=diag(Al,---,AY), where
Al=;[;+ N,, with I; the m;-dimensional identity matrix and N; a
nilpotent matrix. Then there exists a matrix T (x) with components
holomorphic in some sector,

S.:|arg(xe®—a,) | <% + o4,

0. Sufficiently small, 0<o,<lps, a,>as, such that the transformation
0.13) y@)=T(x)z(x)

transforms the linear difference equation

(0. 14) yx+D=Ax)z(x)

into the equation

(0. 15) z2(x+1)=B(x)z(x)

where B(x)=diag(B,(x), -+, B,(x)) is a block-diagonal matrix, the
elements of B(x) are holomorphic in S, and B(x) has the
asymptotic expansion

(0. 16) B(x) g"‘z_ka—k

as x approaches infinity through the sector S.; further B,=A,.

Theorem 1 is used to prove Theorem 2, and the form of S, will
be specified in the next section by the remarks on Theorem 1. On

the basis of Theorem 2, we can assume without loss of generality
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that the matrix A(x) has the block-diagonal form of B(x).
Let
0.17) z=P(x,u)
be a transformation of the vector z such that P(x,u#) can be repre-

sented by a uniformly convergent series of the form

(0.18) P(x,u)=u+ > Py(x)u®
Ip|>2

R . N\ 2\ Py
in a region R,=S,Xx U, given by
A
Sit|arg(xe "~ a,) | <5+
P N
Us: ||u]|<<o,
for @,>0, p.>0, with /34>O sufficiently small, with coefficients Pp(x)

holomorphic for x&S,, and admitting asymptotic expansions

Pp(x) E% Pspx—

N
as x approaches infinity through S,.

We are now in a position to prove our main theorem.

Theorem 3. Suppose that the matrix A, has eigenvalues
satisfying

(0.19) 0<<|2;1<1,

and that 6 satisfies the conditions
. ' T
ii) o0#arg(—logajp) if Ajy#1,

for j=1,-,n, |p|>=2, where

A;

0. = "7

©.20) = e

wztk ’p:(pl) Tt pﬂ)'

Let

r

Si:iarg(xe—a5) | < z

=+ 55)
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where a;>0 and 0<55<55+]ﬂl<%. Consider the system

(0.21) z(x+1)=Ax)z(x)+f(x, 2(x))
=Ax)z(x) + I glzgp(x) [z(x)]%,

where f(x,z) is holomorphic for xe@, llz]] sufficiently small, A(x)
=diag(A'(x), -, A"(x)) is a block-diagonal matrix of the form of
B(x) in Theorem 2, and A(x) and fo(x) are holomorphic and
admit the asymptotic expansions

A=At A" fO=fut Sz

as x tends to wnfinity through the sector :9\5
There exists a transformation of the form (0.18) by which
the system (0.21) is transformed into a system of the form

0. 22) u(x+1) =A@ ulx)+g(x,u(x))=Ax)ulx)
+lp|_222gp<x) [u(x)]®

where the coefficients gp(x) have j'th component
(0.23) gin(x) =0
if p#1.

Assuming without loss of generality the ordering

1>|/11|: Hzi == “ml
>va+1i [ HmZI>"'
>I/Imk+1} == Mmm)>0 (Mpsa=mn),

using (0.23) and the block-diagonal form of A, we can show that the
jth component of the vector g(x,u) satisfies

0 (j=1, -, my)
.24 &%, %)= { > gw(@wr  (j>ma),

Ajp=
and that g;(x,u) is a polynomial in %y, -**, #m, for j=m,+1, -, M,
7>>1. Thus the general solution of (0.21) can be obtained by solving

linear difference equations recursively.



On nonlinear difference equations 217

In particular, if the /s are all distinct, the system (0.21)
becomes scalar equations and the system can be solved recursively.
If, in addition, Ap#1 for all indices j and p, the system (0.22) has
diagonal homogeneous form

(0. 25) u;(x+1) =a;()u;(x).

After obtaining the general solution of the system (0.22), we
can construct the general solution of (0.10) by substituting the
solution of (0.22) into the transformation (0.17). In doing so it is
necessary to estimate the magnitude of the solution of the system
(0.22).

If the reduced system (0.22) is normal in an extended sense (we
shall give a precise definition of this concept in Section 7) we shall
find a region of the type

ozl<arg(x - Zi) <ay

in which the solution is uniformly bounded and approaches zero as x
tends to infinity in this region. Choosing 0 consistent with Theorems
1-3, the general solution of the original system (0.1) is given in this
region by

(0.26) y(®) =¢(x) + P(x, Ulx, C(x)),

where U(x,C(x)) is the general solution of the reduced equation
(0.22) and C(x) is an arkbitrary bounded periodic vector with period
one. Thus we have attained our main objective.

The scalar case, #=1, has been treated by J. Horn [9! under
the assumption that /f\(x, ¥) is holomorphic for |x|>R,, |y|<6, using
Laplace transform techniques. The single n’th order equation

y(x+n)=f(x,y(x), y(x+1), -, y(x+n—1))

has been treated by W. J. Trjitzinsky [13] under various hypotheses
including f(x,0,---,0) =0, i.e., the existence of a particular solution
#(x)=0. He constructed formal series equivalent to our series
P(x, U(x, C(x))) which he proved asymptotic to actual solutions in
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an upper half-plane, while we have established the convergence of
this series. General results of essentially the same nature as ours
have been obtained by W. A. Harris, Jr. and Y. Sibuya [7] in half-
planes of the form |Im x|>a& under the conditions

|l # 1451 3D, | 4] 1, and T3] |4

for all 4. Our results for nonlinear difference equations parallel similar
results in the theory of ordinary differential equations for systems of
the form

W _pry,  flee,0=0
for which the corresponding linear system

ay _
dr (x,0)y

has an irregular singular point at infinity and the eigenvalues of
fy(eo, 0) have negative real parts; these results are due to M.
Hukuhara [10], M. Iwano [11], J. Malmquist [12], and W. ].
Trjitzinsky [14].

The authors gratefully acknowledge several stimulating discus-
sions with Professor Y. Sibuya during the preparation of this paper
and are indebted to him for the simple proof presented for Lemma 3.

1. Preliminaries.

a) Removal of Nonhomogeneous Term. First we obtain a
holomorphic solution

1.1 y=¢(x>“:“§1x"=¢”
of (0.1) in a region
Sz: iarg(xe_'e— a2> I <—*g—+p2, az>a0, 0<Pz<ﬁa

by use of Theorem 1. Let
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1.2) y(x)=2z(x) +¢(x).

Then y(x+1) =f(x, y(x)) becomes

(1. 3) 2(x+1) +¢(x+1) =F(x, 2(x) +¢(x))
and, since ¢(x) is a solution, (1.3) becomes

2@ D) =Bz + 2 A0 [2(0) +6()]?

— 3 K@ s,
[p|=>2
which can be written as
(1.4) zx+1D)=Ax)z(x)+f(x,z(x)) =A(x)z(x)
+ 23 fo(x) [z2(x)]P
Ip|>2

where the series is convergent for x<S,, ||z]|<0. for some 68,0, 4,
sufficiently small, and where the coefficients A(x) and fp(x) are
holomorphic for x<S,, and have asymptotic expansions

A(x)zzm] Ax—
(1.5) =0
fP(@ESE:Ofpsx_’

as x tends to infinity through the sector S,. Equate the linear terms
in (1.3) and (1.4), and using the fact that ¢(x)=0(x"") we obtain
1.6) Ao=By(=f,(e,0)).

b) Remarks on Theorem 1. The region of validity of solutions
obtained in Theorem 1 is the sector S, of the form

1.7 larg(xe™?—a) [<%+p,

where 6 and p may be described as follows: In the complex -plane,
draw all the points

—logd;=—logl|A:;| —¢ arga,,

¢=1,--,n. Then draw rays through each of these points extending
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from the origin to infinity. These rays will divide the plane into a
countable number of sectors, >;, >, ---. The conculsion of Theorem
1 holds for all choices of 6 and p, p>>0, such that the sector

0—op<largl<6-+p

is contained in some sector >),.

Exactly one of the sectors >);, call it >)°, will have one of the
following properties:

i) The positive real axis will be interior to >°

ii) The positive real axis will be the lower boundary of >,
i.e., > will be a sector of the form 0<argf<¢, for some &, >0. It
is clear that case ii) will hold if, and only if, at least one of the
eigenvalues A; satisfies 0<<4,<<1. See Fiqure 1.

We shall apply Theorem 1 again in the proofs of Theorem 2 and
Theorem 3. In the proof of Theorem 2, the numbers p;/u; assume
the roles of the 4; in determining sectors of validity; we obtain in
this case the sectors >3, >V, ---. Choose >)"° from this set in the
same way as »>° was choosen. In Theorem 3, we shall apply
Theorem 1 a finite number, N,, of times; in these cases, the numbers
Ajn, || <INV, determine the sectors >3, >3, -~ Choose a > from
these in the manner in which > was chosen. We now take the
intersection of the three sectors >\°, >V >V’°, and call it >). It is
clear that > will also have property i) or property ii). We will
restrict # and p so that the sector

0—p<largl<l-+p

lies in >, in the final step of constructing the general solution of the
original equation (0.1) in the form (0. 26).

We note that if J/’\(x, y) is analytic in a full neighborhood of
x=oco, || sufficiently small, the solutions of (0.1) obtained in
Theorem 1 will exist with asymptotic representations in sectors co-
vering a full neighborhood of infinity. Similarly, the results of
Theorem 2 will hold in sectors covering a full neighborhood of
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Case i) 8 = 0.

Case ii) o # 0. Figure 1.
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infinity. However, the restrictions in Theorem 3, |8| +p<%, restrict the

validity to sectors which cover a region of the form |arg(x—a)|<l=,
but this is to be expected due to the form of our stability hypothesis,

0<<|a|<1.
2. Proof of Theorem 2.

By hypothesis, the matrix A(x) has the asymptotic representation
2D Ax)=>Ax™,
s=0

where A, has block diagonal (Jordan) form, A,=diag(43, ---, AY) and

with no loss of generality

(2.2) A= B, =17
O ':ui’ 7
with J; arbitrarily small.
Let

I T(x)=I+Q(x)
(2.3) A(x) = Ao+ A(x)
l B(x) =Ao—|—§(x).
We wish to show that the equation
2.4 T (x+1D)A(x) T(x)=B(x)
has a solution of the desired form.

Write (2.4) in the form

(2.5) AXNT(x)=T(x+1)B(x)

and substitute the representations for 7, A and B given by (2.3)

to obtain

(2.6)  4Q(x)Av=AR(x) —Q(x) Ar+ A(2)Q(x) —Q(x) B(x)
+A(x) ~B(x) — Q) B(x),

where 4Q(x)=Q(x+1) —Q(x).
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AN

Let A, B, @ have the partitioning

211 o 21r E\n_ 0 0 le o er
A — s s B — . , Q — 6:221 0 - ,
fa\rl tee 271 O . Bn‘ er -0

induced by the partitioning of A, If there is a solution of the
desired form then,

l/i’:-,- =>] 1/4\th;.;' + 2:‘:

h#j
and the equation for determining € becomes
2.7 4QsA5= 40— QA+ 5 A0,
k5
— (4Q:;+Q:;) (A5 +l§ AuQsy) + Asj.

If @ is determined in this manner, then B and 7 are also determined.

Equation (2.7) is a system of nonlinear difference equations of the
form

(2.8) Ay(x)=o(x,y, 4y) =05 (x) + C*(2)y+h*(x, y, 49)

where the components of the vector A*(x,y, 4y) are polynomials in
y and 4y with coefficients that are O(x™). Hence, for | x| sufficiently
large, x=S,, i.e., in some sector

3'\8: larg(xe™*®— @) }<% =+ 03

for @:>a;, we may rewrite the system (2.8) in the form
(2.9) 4y=go(x) +C(x)y+h(x,y)

where ¢,(x) and C(x) are holomorphic for xS, |[y| sufficiently
small, and these functions have appropriate asymptotic representations
and

(2.10) Cx)=C*(x)+0(x™).

It is easy to show that the eigenvalues of I+ C,(Co=1imC(x))
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are w/uj, i, j=1,-+,7. Thus the problem of block-diagonalization
has been reduced to that of finding a solution of a system of nonlinear
difference equations of a form to which Theorem 1 is applicable.
Applying Theorem 1 we obtain a solution @(x) of equation (2.7)
in a sector S4C§6,

84: [ arg(xe"”’— a4) I <%“|— 045 Zlﬁ<a4, 56>p4>0-
Hence the transformation 7°(x) is analytic in S, and admits the
asymptotic expansion
T(x)=I+>x*T,.
k=1

To complete the proof, it remains only to note that for a, sufficiently

large T(x) is nonsingular. Hence under the transformation
() =T(x)z(x),

the linear difference equation
y(x+1)=A®)y(*x)

becomes
z(x+1)=B(x)z(x).

3. A Lemma on Linear Nonhomogeneous Systems.

Lemma 1. Consider the linear nonhomogeneous system
@1 Ax)y(x+1)=B(x)y(x) +f(x),

where the mXm matrices A(x), B(x) and the m-vecter f(x) are
holomorphic for x in the sector

T

Sp:|arg(xe?—a,) | < 5

+p5

for some a0, 0<p5<%, —%<0—p5<0+p5<—%, and admit asymp-

totic expansions



On nonlinear difference equations 225

A(x)%%fl;x"‘
(3.2) B (x)%%Bix“
=3

as x approaches infinity thvough the sector Ss. Suppose further
that B, is nonsingular and that the eigenvalues of B;'A, have
absolute value less than 1. Then there exists a unique bounded
holomorphic solution y of (3.1) in some sector

Se:jarg(xe—as) | <%+p5

for some a.>as, and possessing there the asymptotic expansion
Y@=y

as x approaches infinity through the sector S.. Further, there
exists a constant C depending only upon the matrices B(x) and
A(x), such that for xS,

3.3 ly(x) !!Scflelspllf(x) .

Proof: Since B, is nonsingular, for x€S;, | x| sufficiently large,
B(x) will exist. Write (3.1) as
(3.4) Bl (x)Ax)y(x+1)=y(x)+B(x)f(x).

Since by hypothesis the eigenvalues of B;'A, have modulus less than
1, there exists a nonsingular constant matrix P such that

(3.5) [PBi*A.P|<1.

[If |Bs*A.l<<1, we choose P=1.] Since (3.5) holds, for |x| suffici-
ently large, x<S;,

(3.6) [PB(x)A(x)Pl|l<r<1.

In fact, there will be a sector S; as above where (3.6) will hold.
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Define
R(x)=P'B*(x)A(x)P,

and let y=Pz. Then (3.4) becomes
3.7 2(x)=R(x)z(x+1)—P'B7*(x)f(%x).
Let

L=supllf (®)l,

K=sup| P7B(®),

and

- KL

S 1-r

Let & be the familyd of all m-dimensional vector functions ¢(x) holo-
morphic for xS, such that [¢(x)[|<<M. Define the mapping T as
follows: for z€%, let

T[z] (x)=R(x)z(x+1)—P7'B7(x)f(x).

A solution of (3.7) is equivalent to a fixed point of the mapping 7.
% is closed, compact, and convex with respect to the topology of
uniform convergence on each compact subset of the region S, Since
the mapping is continuous, we need only show that z&€{ implies
T[z] €g. Since

[Tzl D[<[Rx)z(x+1)[[+][P B () f(x) |
<IR@)[[M-+sup[|PB@)|[ £
<rM+KL=M,

there is a fixed point of the mapping 7" which is the desired solution.

To prove uniqueness, suppose ¥(x) and z(x) are two bounded

solutions of (3.7). Subtraction yields
y(®) —z(x)=R(x) [y(x+1) —z(x+D].

Hence assuming supl[y(x) —z(x)|#0,
2€Sg



On nonlinear difference equations 227

§16185>Ily(x) —z(%x) iléggsg (IR (liy(x+1) —z(x+1) [}
<r gtglsplly(x) —z(x) ],

which is a contradiction, since »<C1. Thus the uniqueness follows.

Since B;'A,—I is nonsingular, there exists a unique formal solu-
tion io y:x7*. The proof that this is the asymptotic representation of
the s‘o_lution y that we have constructed follows as in Harris and
Sibuya [5].

Since y=Pz, setting C=

1l P
_K_”fh_“_fi“_’ yields (3.3), and the

lemma is proved.

If ||B3*Ao||<1, @s will be any number not less than @; such that
IB*(x)A(x){|<<r<<1 in S,;. In this case the constant C will depend
only on Elelsp”B‘l(x) II. If [[Bi*4q|>=1, a corresponding result holds
with HB‘I(Gx)A(x) | replaced by [|P*B'(x)A(x)P|, with the P
chosen above, and the constant C will depend upon [[P7*||-||P| and
fgp![B"l(x) . We note that if B™*(x) exists and [[B7*(x)A(x) |[<r<<1
inG the region S;, we may choose S¢=3S;. Hence we have proved
Lemma 2. Let B7(x) exist and |B(x)A(x)||[<r<<1l in Ss. Then
the solution y(x) obtained in Lemma 1 exists and the estimate
(3.3) is valid for x&S;.

4. Tormal Transformation: Preliminaries.
a) A Preliminary Estimate. Consider the expression
(4.1) | IZ ]Pp(x+1) [A(x)ul»
pl=r
where Py is an n-dimensional vector defined as in (0.18), A(x) is
an 7 X#n matrix assumed to have all the properties, including the

block-diagonal form, of B(x) in Theorem 2, with eigenvalues 24, -+, 4.,
0<<|4|<<l. We can write (4.1) in the form

(4. 2) >3 rpuP
Ipl=%

where rp=7p(x) is an #z-dimensional vector. We want an estimate
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of the magnitude of the 7p. Write

>0 rqui= > Pp(x+1) (Au)».
la] =k o] =%

Then
4.3) [ X2 rual|< 3 [[Po(x+1) (Au)?|< 33 [[Po(x+ 1D ||| Aull*
lal =% lpl=F [pl=k
SIPIZ:kHPp(xH)H [ All*|[ee]f*.

If ||A]|<<¢ and [#]<<é for some positive numbers o, §, we obtain

I 3 rell<< 33 [[Pp(x+1)[|a""
laj=2 IpT=%

Notice that each component of the vector >} yqu9 is a polynomial in
lal=%
the #,, -+, #, and as such is a multiple power series. Consider the

multiple power series >)ajqu9, and suppose |>eajqud| <M for |u|<o.
Then |ajq|<<Mo—ldl. By (4.3) we can take M=I 1 | Pp(x+1) l6**,
p[=k

and hence
lral<m > [[Pp(x+1)]6"
lpl=F

Notice that for |q]=F%, the number of terms in the sum is no greater
than (k+1)". Hence we have

(4.4 2 rll<(B+D"ne*{ 3 [Pa(x+1DI}.
lal=% Ipl=%

Define a linear ordering of the b= (ps, -+, p») as follows: p'= (1,
e, P)<P'=(P, o, PO Af [PI<<[PY| or if [p'|=|[p’| and the first
nonzero element of p*—p’ is positive. Order the p’s for |[p!=~F in in-

creasing order and call them ', ---, p*. Write (Au)le > cpqud. Then
ql=1p|

> Pp(x+1)(Au)p= > Pp(x+1) > cpud= > rqud.
Ipl=*% Ipl=F lal=1p] lal=%

Equate coefficients of #9 to obtain
(4.5) [p[Zka<x+1>6pq=' IZkaqu(x+1) =74.
= Ip|=

Each q will be a p* for some #; thus we have 7y, -+, 797:. Write
these as a single column vector
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Ty ]
Tp7e

Similarly define the column vector

I—':

Pp(x+1)
(4.6) Pk, x+1)= : .
Py (x+1)
Then (4.5) becomes
4.7 C(R)P(k,x+1)=r

where C(k) is an #n-7,X#n-7, matrix. We shall first estimate the

norm of C(k), and later be more specific about its structure. Observe
that, from (4.4),

Iril= 3 llnll<(z+Dmn-¢" 3 |Pp(x+ 1)
lal=# Is[=k

=+ ns*||P(k, x+1)].
Thus, since
ICR i les'illlﬂl C(R)vll,
(4. 8)
1C(R) < (k+1)" nd*,

since the vector P was arbitrary. We summarize this in the following
lemma:

Lemma 3. Lef the b for |p|=*k be given the linear ordering
specified above, so that p'<p*<<---<<p*. Then the coefficient 1pi of
u¥ in the expansion

21 PylA(x)ul®
[p|=F

is given by the n(j—1) +1st through n-jth components of the n-7.
vector C(k)P(k, x+1), where P(k,x-+1) is given by (4.6), and, if
o 1S an upper bound for |A(x)|, we have the estimate (4.8).

b) Further Remarks on C(k). In the preceding section we
used none of the hypotheses on the form of A to obtain Lemma 3.

We shall now employ them to discuss the structure of C(k) more
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explicitly. First of all, it is clear that the elements of C(%) are
polynomials in the elements of A. Hence C(%k)=C(k, x) is holomor-
phic in the same region as A(x), and has the asymptotic expansion

Clk, H)=Ck) +3C.() 2™,

as x approaches infinity through the sector Se. Further, it is clear
that the coefficient of #% in the expansion

(4.9) [ IZ ka(x+ 1) (Aou)®
p|=

is given by the corresponding components (as in Lemma 3) of
C'(E) P(k, x+1). By hypothesis,

11 51 0
Az Oy
A= o
61»—1
0 " i

and hence
A= (Aathy+ 0124, Aty +0atts, -, Aalt)”,
and therefore

(Aou)p: (/11141‘!‘61742) h (12742“‘62743) 22... (/In%-n)p",
= [A8282+- 2 up + polynomial in ud for q<<p, (|q|=[p|),

according to the linear ordering defined above. Define
A=y, =+, Aa)7.

Then we can write

(4. 10) (Awu)p=avup+PB(us), g<<p

where B(u?) is the polynomial in the #’s as above. Hence the
coefficient of Pyp in (4.9) is given by (4. 10), or, equating coefficients
of u¥,
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_ __ [ Py
(4.11) C(BPx+1)=C|

P.p"’k
AP Pp 4 ChPye+ -+ CY,, Py
— APszz—i—ng p3+'-'+Cg,,,Pp7‘k
/'Ipr” Pp”'k
Hence C) has the block triangular (actually triangular) form
wI CLI - G, T
Al

(4.12) Ci= ’

0 ]

where the components indicated are scalars times identity matrices,
and hence C} is triangular and has eigenvalues 4%, |p|=k We
remark that if A, is diagonal, then C} will be diagonal also.

5. Formal Transformation.
Consider the system

(0.13) z(x+1D)=Ax)z(x)+f(x,z2(x))=A(x)z(x)

+ >3 fe(x) [2(x)]*®
[p|=>2
under a formal transformation of the form
(0.18) z(x)=u(x) —l—I |22}2Pp(x) [u(x)]».
p
Formally,

(5.1) u(x+1)+1 éZPp(erl) [u(x+1D)P=Ax)ux)
pi
+ > A(x) Pp(x) [u(x)]?
[p|=>2
+ 20 fr@) {u(x)+ > Po(x) [u(x)]a}»,
[p|>2 lq|>2
which can be written in the form

(5.2) u(x+1)=A@u(x)+g(x, u(x))=Ax)u(x)
+Ip1222gp(x) [u(x)]>.
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We shall determine the transformation (0.18) in such a way that
the resulting equation (5.2) will have a form as simple as possible;
we shall show that in this case g(x,#(x)) will be a polynomial in
the #’s. Substitute (5.2) into (5.1) to obtain, suppressing the
argument of # (which is now always x),

(5.3) 2 gr(ur+ X Py(x+ 1D {Axu+ > ga(x)ur
lp|>2 Ip]>2 lq]=>2
= > A Py(x)ur+ > fo(x) {u+ > Pe(x)us}b.
[p|>2 Ip|>2 lq]>2

Notice that

(5.4 {A(x>%+l Efq(x)uq}*’: [A(x)u]®+terms in #* for |a|>|p|.
a

Since the P and g are to be chosen so that (5.3) is a formal iden-
tity, we may equate the coefficients of #®? to obtain, for |p|=4&,

(5.5) go(x) +rp=A(x) Pp(x) + hp(x),
where 7p is defined by (4.2), and hp(x)=h§f’(x)—hg’(x), where

3 by (Dur= > Pp(x+ 1D {(A®@u+ > ga()uD?— (A(x)u)¥}
Ip|>2 [p|>2 lq] =2
and

> b (Bur= > fo(x) {u+ > Po(x)ud}».

[p|=>2 [p|=>2 lqi=>2
It is clear that 4p(x) is a polynomial in the components of the £,
fe, and g¢ for |¢|<<k=|p|. Order the p for |p|=~k in increasing
order as in Lemma 3, and write all the equations (5.5) for |p|=%&
as a single vector equation as in Lemma 3. Then (5.5) becomes
(5.6) Gk x)+C(k,x)P(k,x+1)=A(k, x)P(k, x)+H(k, x),
where C(k, x) is the matrix defined in Lemma 3,
by () )

ge' (%) )
. hp,,,k.<x) £l

G(k, x)= , H(k x)=

gy (%) J

P(k,x) is as in Lemma 3, and A(k, x) is a block-diagonal #-7, X #n-7,
matrix of the form
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A(x)
Ak, %)= A(x)
0 A
Notice that [A(k, x)]™' has the same form as A(k, x); fn fact,
[A(k, x)]*=A"(k, x). Further,
G A7 (R, ) [ = A7 ().

We also observe that because of the hypotheses on A(x), A7'(k, x)
will have an asymptotic representation in S, of the form

A7k, D=4 () + B AU x,

as x approaches infinity through the sector S, where A;*(k) is the
block-diagonal matrix diag(A4:?, -+, 4i%).

The eigenvalues of A;'(k) are thus the numbers i;%, j=1, ---, n,
while C,(k) has eigenvalues 4 and is hence nonsingular. Further
since Cy(k) is upper triangular, C;'(k) will be triangular also, and
further, C;'(k, x) will exist in some sector

Si(k) : |arg (xe™*—ar(k)) | <—5-+s,

a,(R)>as, k=2, -, N,, and there possess an asymptotic expansion
C(k, )=C(k) + 2 C. (k) 5~

Hence we can write (5.6) in the form

(5. 8) Pk, x+1)=C(k, x)A(k, x) P(k, x)

+C7(k, 2) [H(k, ) — G(k, x)]
where the elements of H(k,x) are polynomials in the elements of
P(j, x) for j<<k. We shall determine the vectors P(k, x) and G(%, x)
recursively by equation (5.8). The solvability of the difference equa-

tion (5.8) depends on the eigenvalues of the matrix C(k)A,(k)
which are Ajp, 7=1, -, n, |p|=kF.



234 L. J. Grimm and W. A. Harris, Jr.

If 2jp#1, j=1,-,n, |p|=Fk, we may choose and G(k, ) =0 and
apply Theorem 1 to the difference equation (5.8) to determine
Pk, x).

If 2jp=1 for some j,p,j=1, .-, n, |p| =4k, we choose the cor-
responding components of P(k, x) equal to zero and those of G(k, x)
equal to those of H(k, x). In this manner we obtain a system of
difference equations of lower order similar to (5.8) whose eigenvalues
differ from 1 which we solve as in the preceding case. Each time
we use Theorem 1, P(k, x) will be determined in a sector Ss(k)C
Ss(k—1) C--- CSs(2) CSs.

Since [Ajp|—o as [p|—oo, G(k, x)=0 for k sufficiently large.
Let N,—1 be the smallest positive integer £ such that if Zjp+#1,
[Ap]>1,j=1,--,m, |p|=k. We apply Theorem 1 as above to obtain
P(k,x) and G(k, x) for k<<N,. These solutions will be valid in the
sector Ss(NV;) of the form

Ss(Vo) : | arg (xe™ —as (Vo) | )<%+08(No>-

From this point onward we shall apply Lemma 1 to solve the
system (5. 8), (deleting if necessary the components corresponding to
2jp=1) as above. Hence, there exists a solution to the system (5. 6)
for P(k,x), k=N, in a sector

Se(k):larg(xe®—ay(k)) |<~%—|—pg

for some constants a,(k) and p,>>0.

It is important to show that there is a single region of this form
in which all the P(k, x) exist. This will be the case if we can show
that |A~(k, x) C(k, x) |<r<<1, x=S,(k), k=>N,. Let N, be the smallest
positive integer greater than NV, such that

BNne"'<C1, where

A(x) |[<<e<<l, [A7(x)||<<B for x=S,(N,) and using Lemma 3 the
hypothesis of Lemma 2 are satisfied and P(k, x) may be determined
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in the uniform region S¢(/N,) which we write as

S:larg(xe?—b) | <%+p.

Further, there exists a constant depending only on A(x) (with 0<C
|4:]<<1) such that

23 [ Py(x)|<Csup > ||hp—gyl.
[p|=k ze$ |pl=*k

6. Convergence.

a) Preliminary Transformation. We have shown that all the
Pyp(x) can be determined as holomorphic functions for x&S. It

remains to be shown that the series >, Pyp(x)u? converges for
~ [p|=>2
x=ScS, ||u|| sufficiently small.

Choose N so large that i) N>N, and ii) 2C+"<<1, where ¢<<1
is an upper bound for [|[A(x)|| in S. Let us first make the polynomial
transformation 9 y;

6. 1) 2(x) =u(x) +[pllvz:2Pp(x> [ ()],
Then the system
(0.21) zx+D)=Ax)z&x) +f(x,z(x))=A(x)z(x)
+ 3 fe(x) [z(x)]P
[p|>2
becomes

(6.2 w1+ ']§2Pp<x+1)[u(x+1)]v=A(x>u(x)
pl=
HA@) 3 Po() [w()?

LS A )+ 3 Pe(x) ()19,
[p|>2 lql =2

where the Pp(x) have been determined in the preceding section.
Notice that 9y is an analytic transformation in S, |#] sufficiently
small, and hence (6.2) can be solved for #(x+1) in some sector
S;CS of the form
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Sit larg(xe*—by) l<%+p’ (6:>>b)

to yield
(6.3) u(x+1D) =A@ u(x) +g(x, u(x)) +h(x, u(x))

— AW + 3 go(0) [P+ S hp(x) [w(x)]%,
[p|=2 [p| >N

where g(x,y) and k(x,y) are analytic for xES;, [y||<<é for some
6>0. Indeed, the gp(x) are the functions defined in the previous
section as components of the vector G(k, x) as we see from (5.5),
since specifying the Pp for [p|=2, -, (N—1) determines each gp
uniquely for |p|=2, -, N—1.

Now make the transformation Uy:

(6.4) u(x)=R(x, w(x))=w(x) +Q(x, w)=w(x)
+ 3 Qp(x) [w(x)]>.
[pI=N
Under this transformation (6.3) becomes
(6.5) w(x+1) —l—, E Qp(x+1) w(x+1)]p=Ax)w(x)
+A(x) Z Qp(x) [w(x)]®
+ Z gp(x) (W(x)+ 2 Qq(xM(x)q}P

+ pszp(x)(w(x)+ Z Qq(x)w(x)q)P
o]

Since the formal transformation 4 reduced the original equation to

the form

(0. 22) u(x+1D)=AxX)u(x)+g(x, u(x)),

it is clear that the transformation Uy can be chosen so that (6.5)
becomes

(6. 6) w(x+1) = A(x)w(x) +iprz;fzgp(x) [w(x)]P.

In particular, the @p’s may be chosen so that



On nonlinear difference equations 237

6.7 S g@ W@ S Qur+ 1D (A®w(x)
Ip|=2 [p|>N
E S g(DwE@DP=A) S Qe(x) [w(x)]?
lq] =2 [p| >N

3 () W) + S Qua(x) [w(x)] NP
[p|=2 lg| >N

+ 3 () @) + 3 Qe(x) [w(x) D).
[p| =N la| =N

Suppress the argument of w and rearrange to obtain
(6.8) > Gp(x+DA@wP—A®) ( 2 @p(x)wh)
[pI=N [pI =N

=g(x, R(x,w)) —g(x,w)+h(x, R(x,w))
—[ 2 @p(x+DAM®w+g(x, w))»
[pI>N

— 3 @(x+1) (A w)?].
[PI>N
After substituting the representation for K(x,w) given in (6.4), we
obtain the following formal representations:
g(x, R(x,w)) = >3 mp(x)wp
Ip|>2
h(x, R(x, w))= > Iy(x)wP
[pI=N
Q(x+1, Aw+g(x,w)) = > Bp(x)w®
[pI=>N
Q(x+1, Aw)= > Dp(x)wwr.
[pI=N
We notice in particular that the system of equations for the @p
obtained by equating coefficiencts of w® is precisely the same as the

system for the Pp except that the nonhomogenous term is different.

Since |p|>N>N,, the @Qy's can be determined in a uniform region
(6.9) Sp:larg(xe i —b,) !<%+p'

and will have asymptotic expansions as ¥ approaches infinity through
S,. Further, by Lemma 2, we have the fundamental estimate
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(6.10) > @) [|[<Csup X |lmq(x) —gq(x) +1a(x)
[pl=% x€S: |q| =%

+By(x) —De(2) |,

and hence the convergence of the series for @ implies the convergence
of the series for P.
b) Majorant Functions. The following operations will be

convenient: Let ¢(x,w)= > ¢p(x)wP be an n-vector function. Then
[pl=m

the jth component of ¢ will be given by

ei(x, w)= 37 gjp(x)we.
[pI=>m

Define
ef (X, w)= 3 |ojp(x) |wP
[p|>m
and
p(x,w)= > [lep(x) lwr= 33 o} (x, w).
Ip|=>m j=1
Also define

o(x,0)=0p(x, D)

when the n-vector ¥ is given by v=(»,---,0)". Then
o(x, ) =23 3 [lep(x) [Dve.
@=2 |pl=a
Hence we have, from

N-1
g(x, w) =| ]Ezgp(x)wp, defined the functions
p =
N-1
g(x, w)= 3 gw(x)u?,
[pl=2
N-1
(6.11) g*(x, w) =|pl2 zigip(x) | we,

g0t w)= 5 [go(x) w¥, and
Ip|=2

D=3 3 ln() Do
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and from
R(x,w)=w+ > @Qp(x)wv, defined the functions
Ip| =N
|| >N
(6.12) RrCr,wy=w,+ 3 1Qis(x) |up, and

R(x,w)=wi+-+w,+ > [|Qp(x) |wP
[p| >N

n

=wy+-t+w,+ > R¥(x,w).

1=1

Define $(x, v) =R(x,7) with ¥ as above. Then

Bl )=t 2 3 Q) Do

Pl=a

Then the vector
(6.13) g(x, R(x, w))=m(x, w) - ‘Z mp(x) wP
p|>2
has #'th component
gi(x, R(x,w)) =m;(x,w) = > mip(x)wb.
[p|>2
Then

(6.14) mi(x, w)= > [mp(x) |uw?.
[p|>2

By definition
gi(x, 2)<Lg¥(x, 2) for all j,

i. e., the coefficients of z* in the multiple power series for g; are
positive and not less than the absolute values of the corresponding
coefficients of the series for g;. Similarly, for all j,
R;(x, 2)<R(x, z).
Thus
m,(x, w)=g(x, R(x, w)<g} (x, R(xw)),

where Igé(x, w)=(R, -+, R)". Since all terms of g} are positive,

my(x, w)<Lgr(x, R(x, w)).
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Sum over j to obtain
(6. 15) (x, w)<g(x, P(x, w))=g(x, P(x, w)).

Let w;=v, i=1,---,n. Then (6.15) becomes

m(x, N<E(x, p(x, v))sw%iiza(x)v“

where
A, ) =33 3 () Do,
Let M, (x)= [E lmp(x))]. Then
[pl=c
(6. 16) M. (%)< (x).

In a similar way define l//z\(x, _z;(x, v)). Then if I(x,w) is defined
by
I(x, w)= 3 (x)w? =h(x, R(x, w)),
[p| =N

and L.(x) by
Lu@= 3 ()],
|=c

it follows similarly that
(6.17) Lo(0)<l.(x),

where %{a(x)v“zﬁ(x, (x, ).

Notice that, because of the form of R(x, w), #i.(x) =‘ > llgn()]l
Pl=a

for =2, ---, N—1, and that zy(x)=0. Hencea {%1 M (X)v* is a
majorant for m(x,v) —g(x, v), since g(x,v) is a polynomial of degree
at most N—1 in v, and the terms in # of degree less than N-+1 are
independent of the @p, and are hence equal to the corresponding g's.

Recall that
R(x,w)=w+Q(x, w),

and that
Q(x+1, Aw+g(x, w))= > Bp(x)wP.
Ip| =N
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Since |A(x)|<<s for xES,, the i'th component of Aw+ g(x, w), call
it [Aw+g(x, w)];, satisfies

[Aw+g(x, w)] Lo (Wi -+ +w.) +g(x, w),
and hence
/\—/
F(x+1, Aw+g(x, w)<QF (x+1, 6(wi+ - +w,) +2(x, w)).
Sum on ¢ from 1 to # to obtain
Q(x+1, Aw+g(x, w))= 3 ||Bp(x) [P
Ip| >N
<é(x+1, 6(W1+"' +w'n) +g(x1 w)):

where §(x,7)=Q(x,7), with 7=(y, -, »)". Set w=(v, -, V)7 to
obtain

3, 2 B0 <aCe1, onv g (x0)).

=N
Write
a(x+1, om0+ g (x, 1)) = Bba(X)0".
Note also that

Fr+1, A)<QF(x+1, o(wit - +wa))
[ —
KQF(x+1, s(w+ - +w,) +g(x, w)).
Now define the majorant functions a(t) and I/I\I ) by

fﬂ%ﬂ<&0=§@ﬁ
(6.18) N N - N
1 h(x, H<H® =3 He'.

We notice that /@(t) is analytic because it is just a polynomial, and
that ?I () can be assumed to be analytic, since by construction it\(x, )
is analytic in £.

¢) Majorant Equation. Consider the following functional equa-
tion:

6.19)  £=C{Gn+8& —Gmw) +How+8&) +Eemv+Gw)},
E=&(nv).



242 L. J. Grimm and W. A. Harris, Jr.

We shall show that (6.19) has a unique formal solution of the form

(6. 20) s=k§v$k(nv>"-

Then define z,, and Z,, by

a(nv +&) =§ gt
(6. 21) . -
Hnv+¢) =k_ZNn"hkv”,

Substitute (6.20) into (6.19) to obtain the formal equation
o N-1. oo N-1 A~
et =C [ G, (mv+ D En(mv)™) —> G(nv)*
E=N k=2 m=N k=2
oo A o oa N—-1 A~
+ IZZNH,@(nv + %{-‘m (nv)™)* +;,_21ka (env+ 22 Gav™)*].

Since this is to be a formal identity in v, equate coefficients of

v* to obtain

(6.22) é&m*=C [(/?\mk + 7R, () — @kn" + 755, (E) Fo*nts+nt T (60)],
a<<k, N<k,

where R, S;, and T, are defined by
£ N-1 oo N-1 =
gNnkRkvk = kEZGk (nv+ E_Ngm (mv)™*— kZ—ZGk (mv)*, Si=hy,
oo o N-1 A oo
St Tt =316 (onv + > Gu™)*— S\ &6 ni ot
k=N k=N m=2 k=N
Notice that R,, Si, and 7, are all polynomials in the &,(a<<k) with

positive coefficients. Hence we can solve (6.22) to obtain the
coefficients &, of the formal solution of (6.19):

(6. 23) nksk=1Lf,k [Ru(e) +Si(6) + Tu(ew)].
— 0o

Clearly all of the coefficients 7*¢, are nonnegative, since 2>N and
N was chosen so large that 2>N implies 0<{1—Cs*<<1. Hence also

w6 >n*C [Ru(€a) + Si(6a) + Tu(6)].

Therefore (6.19) has a formal solution (6. 20) with all & non-negative.
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We now show that (6.20) is a majorant for &, i.e., that
n*&, >sup E [@u(x)|[, (B=N).

szP—-

The proof proceeds by induction. First, notice that for k=N,
Ry=0, SN~ﬁN, Ty=0. Since my(x)=0, n”RN>mN Also n”ﬁ,,z
lN(x) since ZH,, ®™h(x,t), and the term hN is independent of the

&s, while Iy is independent of 2‘)\ Since the @'s were determined in
S, and S, is such that for x€S8,, (x+1)=S,, we have in addition
to (6.10), the estimate

(6. 24) Z llQp(x+1)'l<C’sup > lmp(x)

Z€S2 ]P "k

—&o(x) +1p(x) + Byp(x) — Dp(x) ||.
But since gp(x) =0 for |p|>N, we obtain from (6. 10)
Z [@p(x) II<CSUI7 Nllmv(x)ﬂLln(x)Jer(x) Dy(2) |,

pl=

and the same estimate follows for Z l]Qp(x+1)f[, from (6.24). For

ipl=N, my(x)=0, and Bp(x)= Dp(x) hence sup Z llQn(x)Hg

Z€S2

Csup > Hlp(x)!JgC’suplN(x)gC’n”hN<$Nn. Now suppose as in-

z€S2 |p| =N ZES2
duction hypothesis that

sup ZkHQp(x)llgs,,nk for k=N, N+1, -, (m—1).

x€S2 9]

From the estimate (6.10) we have

sup > [|@(2)[|<<Csup Z (e () 1+ s () [|+ 1| Bp(x) — Dy () D)

x€S2 |pl=m €Sy |p|=m

and notice that since
| 12 B —Da@)]uwr= §N0p<x+1>[<z4w+g<x, w))P— (Aw)¥],
pl= b=

By(x) —Dyp(x) is a vector which is a polynomial in the @,(x-+1) for

la|<<|p]. Thus E |B:(%) —D,(x) H<b (x), where b (x) is obtained

—-T’Il
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by subtracting the terms in the components of Q,, |a|=m from
/b\m(x). Recall that

i nk Tw”Ei & (onv —i—NZ_I @av“)” — (onv)*].
k=N k=N a=2

b N-1 ~ o ==
If we expand Zék(am)+2 G.v*)* in powers of v, we obtain Ebkn”v‘

where b,, is a polynomial in &, for «<Ck. Subtract all the terms in

&, from bk to obtain bk, where
i n*Towt= i n"?)/kv”.
k=N k=N

We shall now show that the terms in /Z;,,.(x) independent of @, for
|@| =m are dominated by the terms in l;m independent of &, Recall

that
Eb(x)v" Gd(x+1, snv+2(x, v)).

R
Consider QF (x+1, s(wy+ -+ +w,) +g(x,w)). This is the ith component
of

S 31 Qa1 D) (ot +w) +2 (5, w))',

AT

where |@y(x+1)| is the vector @p(x+1) with all its components
replaced by their absolute values.
Replace w; by v(i=1, -+, n) to obtain

(6. 25) 20, 1@+ D) o +20x, )"

The sum of the components of this expression is §(x+1, onv+2g(x, v)).
The expression (6.25) is majorized by

3¢S 1@ D) m+ G

Sum on ¢ to get

3¢ 2 1@+ DI Gno+ G0
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However, since by the induction hypothesis,
‘ |EkHQp(x+l)ll£5m”, k=N, N+1,-, (m—1),
pl=

and

Dbt =S e (onv-+ G))",

the result follows.
Similarly, we can show that #™S,>>/,.(x): Recall that #"S,=#%"h,
where

(6. 26) kgnkﬁkvk=§1\’f/1\k(nv+ iNEa (nv)*)t,
and
,%vl](x)vkz@(x, p(x,0)).

We begin by considering A7 (x,ﬁ(x, w)). This is the j'th component
of

Ms

Bl
]
2

(3 (o) 1) (PCx, )
|

pl=k

Replace w by (v, ---v)” to get

||Mg

(6.27) HORIODICIEINE

The sum of the components of (6.27) is

3¢ 2 (D (B )=, b, ).

But
plx, 0) = (S [ D,

and thus
(6.28)  h(x (5,0 =21( S IR D 0o+ 3( S Q@ Do)*

and writing this as Zlkv, using the induction hypothesis together
k=N

with (6.26) and (6.28), the result follows. The g's can be treated
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in an essentially similar fashion to yield #™R,>m.,(x). Thus the
estimate (6.10) yields for all xS,

1 1@ () | <<C (™R + ™S+ 0" T) <<

Ip|=m

Hence for all 2>N, xS,
2 (@ () | <mié..
[p|=Fk

Thus > &mv)* is a majorant for the formal series
k=N

> @p(x)0h,
I>N

|p

(k=|p]). It remains to be shown that the series > & (nv)* converges.
k=N

d) Convergence of the Majorant. Recall that E=kZN & (nv)* is

a formal solution of the functional equation (6.19). Let nv=z and

let 6(%) = 75(z). Then (6.19) becomes

6.29) £(2)=C[G(z+£(2)) —G(2) +H(z+£(2)) +£(oz+G(2)].
We shall prove

Lemma 4. The equation (6.29) has an analytic solution & of
the form EN&Z’Z for lz| sufficiently small, which is unique in the
class of analytic functions of this form.

Proof: For |z|<<24,, @, I/—i G are holomorphic and /(\;(z) =0(zY),
@(z)=0(z2), ?I(z)zO(z”). Hence for|z|<6:, |@(2)]<<d:, ¢(2) analy-
tic for |z|<<0;, there exist constants G and H such that

1Gz+9(2))—G(2) | <Glz] |0(2)]
| H(z+0(2)) | <G|z o) | + H|z|".

Further, without loss of generality, we may assume that d¢; is so
small that for |z]| <0y, |oz+G(2)|<r|z|, o<r<l, r< }/ 2.
Let I be the family of functions ¢(z) analytic for |z|<0 such

that |e(2) |<<K|z|", where K is a constant which will be specified
later. For functions ¢ &9 define the mapping T by
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Tle] (2) =C[G(z+0(2)) — G (2) + H(z +0(2)) +¢(sz+ G(2))].

Clearly the mapping is well defined if 6<(0;, K0Y<(d and a solution
of (6.29) is equivalent to a fixed point of the mapping 7. 9 is
closed, compact, and convex with respect to the topology of uniform
convergence on each compact subset of the region |z|<Cd. Since the
mapping is continuous, we need only show that it is into. Recalling
that 1—2Ce¢">0, r<<7/ 2 ¢, choose
Then, |Tlel (2)|<[(2CG+Cr")K+CH] |z|"<<Kjz|", and there is
a fixed point of the mapping 7 which is the desired solution. Since
the coefficients of the formal solution are unique, the solution of
equation (6.29) is unique in this class.

7. Estimates of Solutions of the Reduced Equation.

Consider the reduced equation (0.22). This system is equivalent
to 7 systems of linear equations. Let the distinct eigenvalues u; of
A, satisfy

1> gl =] == | |
> | g+ 1] = | s, |
> see
>}:ukt+1]:“' :I#k:+1]>OJ (kl+1:r):
and let
1
u=|w
w

be the partitioning of # compatible with the . Then the first &,
systems are linear homogeneous systems of the form

(7.1) wW(x+1)=A,(x)uw'(x), j=1, -, ki,

where
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A () =pl+ Ni+ZlA;ix—s:

with N, the nilpotent matrix defined in (2.2). The next k,—Fk
systems, corresponding to the indices j=/k,+1, k1 +2, -+, by, are non-
homogeneous systems of the form

(7.2) w(x+1)=A;x)u (%) + g/ (x, u*, u’,--- ,u"),

where the components of g’ are polynomials in the components of
u', ---, u". Hence the general solution of (7.2) can be obtained by
obtaining the general solutions of all of the systems (7.1) and
utilizing these to evaluate the functions g’. Let g/(x) be the g’
evaluted in this way. The remaining systems for j=£k,+1, :-- are of
form analogous to that of (7.2), and we proceed in the manner
described above to find the general solution of the reduced system
0.22).

Thus the problem of solving (0. 22) falls naturally into two parts,
the solving of linear homogeneous equations and of linear nonhomo-

geneous of the forms
(7.3) u(x+1)=A(x)u(x), and
(7.4 u(x+1)=Ax)u(x)+g(x),
respectively, where
A@@=pl+ N+ 45,
where N has the form of N; above.
We consider the homogenous case (7.3) first: A system of the

form (7.3) is called normal if there exist a formal fundamental
matrix of the form

U, U, )
~, 5 4R 1 2
Ux)=px <I+ )
where R is a constant matrix. Otherwise the system (7.3) is called
anormal.

If all of the corresponding linear homogeneous systems are normal,
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we may assume that all of the nilpotent matrices N are zero, since
Harris [4] has shown that this may be effected by a linear trans-
formation which is a polynomial in x#~! with determinant not identi-
cally zero. Further, it is known ([1], [5] that in the normal case
there exist analytic fundamental matrices which have the formal
fundamental matrices as asymptotic represeatations in right half-
planes. Hence the behavior of the fundamental matrix as x tends to
infinity is essentially determined by p*, but since 0<|u|<<l, 4 is
bounded in a half-plane which contains a portion of the positive real
axis in its interior. Hence there exists a sector of the form

(7.5) - —g-<ll<arg(x——a) <l,<<

T

5

in which the fundamental matrix exists, is bounded, and approaches
zero uniformly as x tends to infinity through this sector.

Now consider the anormal case. Birkhoff and Trjitzinsky [2]
have shown that in this case there exist sectors of the form (7.5)
in which there exists a fundamental matrix for (7. 3) which is of the
form

U(x) =”‘e"(‘>x’*([+ le—llﬁ+ )’

where @(x) is a diagonal matrix with elements of the form
-1 1

gr=0X 2 + DX,

It is clear that again p* is the dominant term. Thus, we may infer,

in case the reduced equation (0.22) is linear, the existence of a

sector of the form (7.5) in which the solutions of the systems (7. 3)

are bounded and approach zero uniformly as x approaches infinity

in this sector.

Now, we consider the remaining problem, the case when (0. 22) is
nonlinear. Then we have to find particular solutions of the nonhomo-
geneous systems (7.4). First, we shall make the following definition:
the system (0.22) will be called normal in the extended sense if

i) all the systems
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wx+1D)=A4,,(0w(x), j=1,-, 7
are normal;
ii) if uytx(log %) P8 (X)=gn+gnx "+
for some 7; and integer B; for all j;

iii) there exists a formal particular solution of the form ujx”
(log x)"h(x), where

(%) =ho+ hyx ™+ -

Hence by the results of Harris and Sibuya [5] there exists an analytic
solution asymptotic to this formal solution in a sector of the form
(7.5). This particular solution has the same rate of growth as the
solution of the corresponding homogeneous equation. By induction the
general solution of the reduced equation (0.22) can be thus con-
structed in a region of the form (7.5), if the reduced equation is
normal in the extended sense, and will have properties similar to
those of the general solutions when the reduced equation was linear.
We may summarize our results in the following:

Theorem 4. Let the reduced equation (0.22) be either linear
or normal in the extended sense. Then the gemeral solution of
(0. 22) can be written in the form

(7.6) u(x)=U(x, C(x))

in a sector R of the form

——g—<ll<arg(x—@)<lz<%, a=>0,

where U(x, C(x)) is holomorphic in R, tends uniformly to zero
as x approaches infinity through R, and possesses an asymptotic
expansion in this region, and C(x) is an arbitrary bounded
periodic vector of period 1.

Hence, if 6 is chosen sufficiently small 62>0, and compatible with
the hypotheses of Theorem 1, 2, and 3, (using, for instance, the
sector > defined in Section 1 to choose #) we can combine Theorems
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1, 2, 3, and 4 to obtain in this case the general solution of (0.1) in
the form

y(®) =¢(x) +P(x, Ulx, C(x))).

8. General remarks.

If the eigenvalues 1; of the matrix A, satisfy 1<C|Z;|, similar
results corresponding to Theorem 3 are available in sectors which
cover a region of the form O<<arg(x+a)<2z, a>0.

If we assume the existence of a particular solution, or f(x,0)=0,
and

] =4l =1= | == 2> == 1a],
then by choosing either #,=--=wu,=0, or #,='-=u,=0, similar
results are available where now C(x) will be either an #n—p or &
dimensional arbitrary periodic vector.

The possibility of obtaining the uniform asymptotic expansion

P(x, u) zgo x*P.(u)

for the transformation P(x, #) has been demonstrated by Harris and
Sibuya [7] under more restrictive hypothesis including the uniform

asymptotic expansion
fa =% 5"().

We shall treat this question in a subsequent paper.
One would expect that the results embodied in Theorm 4 are
valid without the restriction: normal in the extended sense.
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