
On a singular point of Briot-Bouquet
type of a system of two ordinary
nonlinear differential equations.

By

Masahiro IWANO

1. Statement of the problem.

The singular point of Briot-Bouquet type of an ordinary
nonlinear differential equation

O, /(0,0)=0, cr^O,

where /(#, j) is a holomorphic function of (#, j) in a neighbor-
hood of (0,0), has been studied by diverse authors since Ch.
Briot and J.-C. Bouquet, and the most complete results were
obtained by M. Hukuhara [T], [2], [3], [<], [5] and [6]. One
of the most remarkable results occurs in the study of the case
when o- = 0 and X = /^(0, 0) vanishes, and this played an important
role in the theory of T. Kimura [T], which comes in close
contact with work of J. Malmquist [T].

The singular points # = 0 of a system of ordinary nonlinear
differential equations of the form

,-,yn) (/ = 1,2, • . • ,» ) ,

(where fj(x, j>) are holomorphic functions of (#, j) in a neigh-
borhood of (0, 0) and vanish there), are usually said to be of Briot-
Bouquet type. Recently, a classical result concerning the expan-
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sions of particular solutions in uniformly convergent power
series of certain functions has been extended by the author (M.
Iwano [3]) . However, it has not yet been studied when the
eigenvalues of the matrix F formed by {dfj/^y^O,^} are all zero.
In this paper, we shall study the case that F is the zero matrix
for a system of two differential equations.

Let there be given a system of two ordinary nonlinear dif-
ferential equations of the form

=
where we suppose that
1) both /(#, y, 2) and g(x, y, z) are functions holomorphic and
bounded in (#, j, z) in

(1.2) \*\<a, \y\<b, \z\<b

and vanishing at x = y = z = Q ;
2) the functions /(O, y, z) and g-(0, y, z) have uniformly conver-
gent expansions of the form

( /(O, y, z^ = ym+l

, y, z) = ̂ "2"

and ^ and w are nonnegative integers not simultaneously zero ;
3) a and /3 are nonzero complex constants such that

(1.4) Re^ — ̂ -75 >0, Re - £— 5>0.ma + n/3 ma + n/3

What we intend here is the construction of a solution depend-
ing on two arbitrary constants.

In the case when /(#, y, 2) and #(# , J, z) contain respectively
the terms ym+1z" and JOT^+I as a factor, M. Hukuhara [7~] con-
structed a formal solution of (1. 1) depending on two arbitrary
parameters without the condition 3), but its analytical meaning

l) S^^fcj • • • k s y i k i - - - y s k s denotes the summation for all the arrangements (fei, •
of s nonnegative integers &i, ...,ks such that ki-\ \-
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was not given there.
The author wishes to express his cordial thanks to Profes-

sors Wolfgang Wasow and Tosiya Saito for their kind guidance

and valuable advice.

Part I, Preliminaries*
Chapter I. Formal transformation.

2. Result concerning a formal reduction

Since the second members of the differential equations (1.1)
are holomorphic functions of (#, y, 2) in the domain (1. 2), they
can be expanded in powers of x, y, z as follows :

(2. 1) /= S* W/j« , g =

with

Jo,fc+M+l,l+n = &kl t

Moreover, we can suppose without loss of generality that

/100 = 0, #100 = 0.

Indeed, if it is not true, it is sufficient to make a linear transfor-
mation of the form

y = Y+ xfwo , z = Z + xgwo .

According to our usual method, we try to transform the second
members of (1. 1) into as simple a form as possible.

The aim of this chapter is to establish the following :

Theorem 1. CASE A (a : (3^ a rational number}. There exists

a formal transformation

which transforms formally the system (1.1) into a system

(2.3)

2) The symbol' denotes the derivative with the obvious exception a'', j8".



20 Masahiro Iwano

CASE B (a : /8 = 0 positive rational number}. In this case,
there exist positive integers ^ v and a complex constant 7 such
that

(2.4) — = JrL = ry (^, and v are mutually prime}.

Then there exists a formal transformation of the type (2. 2) which
reduces formally (1.1) to

(2.3')

h

where the summation is to be taken over all integers h such
that — m/v^h<n/p, and m + vh and n-ph are nonnegative integers
not simultaneously zero.

Remark, In the case when a : /3 is negative rational, the
inequalities (1.4) are not satisfied. Therefore we omit this
case.

3. Formal transformation of the first kind.

To prove Theorem 1, we consider a formal transformation
of the form

/,, «, i VI J^N^^j *,k ~l 3)
,0 ^ . J ~ J N ' Zj QV) PjKl •* JN&N 3
(3.1) + ^^ fc^

Let
( /r-,' _ VI /C^)-

(3.2) (xyN-^fju.

be the system derived from (1. 1) by the transformation (3.1).
The inverse transformation of (3. 1) can be written as

1 + [>, ;;,

3) Xov) denotes the summation to be taken over all the arrangements (y, k, V) of
nonnegative integers j, k, I such that j + k + l = N.

4) The symbol [x, y, z\u represents the formal power series of x, y, z lacking the
terms of degree less than M.
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Differentiating (3.3) term by term, we have the following

relations

(3.4)

( ' ' f\/y /it . ry i\j' , .__ I ^A> y N — "^ y \ £L

z -xz'-\^>ZN-XZ [2

M

+ x- ]. , , 2JV-1J ,

where the terms #y and ^z' must be replaced by the first and
the second expressions of (2. 1) respectively.

Observing that we have

we can derive easily the following relations

and

/%?=/**-&£> , g f f i - g j H - J f f i (7 + * + /-

Hence we can determine the values of the coefficients /^ and

^ so that /5SD and ̂ } are reduced to 0 for j + k + Z=N except

for 7 = 0. For 7 = 0, we put

^ = 0, q%? = 0 (7 = 0).

Then it is easy to see that the expressions appearing in the

brackets denoted by Q ] in the right-hand members of (3. 4)
contain x as a factor. From this it immediately follows that

/C-flO _ f o-OO _ ff
J OKI —JQkli &QU ~&Qkl-

Thus, applying successively transformations of the form

zl = zz
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we obtain the following:

Lemma 1. L Let there be given the following system

a i *s T1/_yi f r^v**?1 r?'— Y1 xr rjvk?1
• L) &y —2-iJjM-X' y 4 , jig — /j gjfciJi y 4

with

f = P° =0 for i ~

Then there exists a formal transformation of the form

(3.5)

system (1. 1) is formally reduced to

(3. 6) *,/ = 2 f^t\ x? = 2 8*f?

with

Jkl ==JQM 9 Ski = §QJcl •

40 Formal transformation of the second kind.

We see by Lemma 1. 1 that the power series appearing in
the right-hand members of (3. 5) coincide with the expressions
(1. 3). Hence, the system (3. 6) is written as

n

where the power series appearing in the right-hand members
are clearly uniformly convergent in a neighborhood of (0, 0).

Now we consider a further transformation of the form

Then it is easily found that the transformed equations have
also the same form as (4. 1) as follows :
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(4.3)

The inverse transformation of (4. 2) can be written as

(4.4) ^ = r a - 2c»> ^f v
Differentiation yields equalities of the form

XU'N -Xrf-

and we have, by (4. 1),

Substituting the expressions (4. 2) for rj and f into the equations
above, we can easily derive the following relations

and

5 + ;<

A simple calculation shows us that the determinant of the
matrix formed by the coefficients of pffl and q$ } in (4. 5) is
given by

na
(4.6)
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Hence we can determine the values of the coefficients
and gg° so that o£(° and /8g° become zero for k + Z=N if A(

To discuss the case when A(&, /) = 0, we distinguish the
following two cases :

Case A. a : /3 ̂  a rational number,
Case B. a : /3 = a positive rational number.

I. Case A. Since k + l^l, we see that the equation A(&, /) = 0
holds if and only if k — m = 0 and l — n = 0. This means that we
have A(&, /)=0 for (£, /) = (w, w) only.
II. Case B. In this case, there exist positive integers p, v and
a complex constant 7 such that

-^ = -2- = fy (^ and y are mutually prime).

Hence, the equation A(&, /)=0 will be reduced to

^(^ - m) + y (/ - n) = 0 ,

i. e.

Since //, and y are supposed to be mutually prime, there
exists an integer h such that we have

k — m = vh, n — l = ph

for every (k, /). Noticing that £ and / are nonnegative integers
not simultaneously zero and p, v are positive integers, we see
that h must satisfy the inequalities

-^h or -
V fj, fJ, V

From this it follows at once that the arrangements (k, /) for
which A(£, /)=0 #r£ finite in number, and for such arrangements
(&, /) we can determine the values of the coefficients pffl and
<?£f} so that the values of aj^° and j8j$° (given by (4. 5)) satisfy
the relations
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Thus, applying successively transformations of the form

we can obtain the following :

Lemma 1. 2. We can determine the values of coefficients pk(

and qu of a formal transformation

(4.7)

50 /^(7^ ^^ system (4. 1) fs formally reduced to a system of the
form (2. 3) :

or £o ^r system of the form (2. 3') :

2

according as we have Case A or C#s£ B.

In £/ze /af^r cas^, if/z^ mJe% A rzms oz;er <?// //ze integers
satisfying the inequalities

such that m + vh and n — ph are nonnegative integers not simulta-

neously zero.

By Lemma 1. 1 and Lemma 1. 2 we see that, applying suc-

cessively two transformations of the forms (3. 5) and (4. 7),
the system (1. 1) is formally transformed into a system of the
form (2. 3) or (2. 3') according as we have Case A or Case B.
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Thus Theorem 1 has been proved.

Chapter II. General solution of the reduced system.

50 Results concerning integration of the reduced system,,

The quantities a, /3 and ma + nff are supposed to be all non-
zero. To simplify the description, we shall assume that ar, /3f

and mar-\-mft are also different from zero. We have already
proved that the given system (1. 1) can be formally reduced to
one of the following forms:

(2.3)

(2. 3')
xur = u™+ V( + tfV 2

As can be easily verified, direct solution of these reduced
systems by quadratures is generally impossible. However, if
we introduce an auxiliary independent variable

(5.1) «;-«-»»,

we can obtain a parametric representation of the general solu-
tion of the reduced system.

The aim of this chapter is to prove the following three
theorems :

Theorem 201. // we introduce an auxiliary independent va-
riable w by the relation (5.1), the reduced system will be reduced
to a system of the form

rlr f 1
V2 UJi

 = %\ L

dw L ma + n/3 + (ma!

(5.2)
aw

-[dw

or

»-==-«! . « + <*». ^ I. Lw = >dw
dv

w-
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_j i i;

(5.20v J

MT

-
dw

1
J'

W^--Vdw

according as we have Case A or Case B.

77z0 general solution of the reduced system (2. 3) or (2. 3')

can be expressed as

or

- r M -L 7
' = Ui 1 + T7^

according as we have Case A or C#s0 B. Here we adopted the
following notations for simplicity

5j= CL w/ a''

(5.4)
 wa + ^'

or

(5. 40
mfjb + nv m/A + nv

according as we have Case A or Case B.

Remark. Let x = X*(w}, u=U*(w}, v=*V*(uT) be the holo-
morphic solution of the system (5. 2) or (5. 2') (where the ex-

pression ry'w should be replaced by 2] ryhu
vh+mv~*h+njr^w} satis-
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f ying the initial condition : x = XQ , u = UQ, v = v° at w = w°. Then,
as can be easily verified from a direct calculation, these functions
can be a solution of the reduced system (2. 3) or (2. 37) if and
only if the relation U*(iv^mV*(w}n = w holds. However, this
identity is equivalent to (^°)77i(f0)w = ̂ 0. Indeed, a simple calcu-
lation shows us that U* (w*)mV* (w*)n — w is the solution of a

linear differential equation of the form w^— = y .
dw

If we want to express u and v as functions of x, we must
eliminate w from the relations (5. 3) or (5. 3')- To do this, it
is convenient to use a certain transcendental function introduced
by M. Hukuhara pL], and the result can be stated as follows :

Theorem 2.2. Let F=£>(X) be defined implicitly by

(5.5) X=r-log(F+l)

and consider the branch of £>CX") such that §CX") — X— logX
vanishes at X=oo . Then the general solution of the reduced
system (2. 3) or ( 2. 3') can be written as

(5.6)

ma + n/3 /

fcCX+C?)

*
log *'

or

(5. 6')

7

according as we have Case A or C#s£ B.
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The nature of the function x = x(w) defined by the first
relation of (5. 3) or (5. 3') and of its inverse function is clarified
by the Theorem below:

Theorem 2. 3* We denote by D and D* the following angular
regions in the complex w-plane

(5.7) D={w:0_ + 280< argw^0+-2S0 , 0<\w\<c] ,

(5.8) D*={w:0,-7t + 80^ arg w^0+ + 7r-S0 , 0<M<c} ,

where

(5. 9) 0±=-arg (ma + ra/8)±-|-
^6

or

(5.9') 0±=_arg7±-|.

according as we have Case A or Case B, S0 being an arbitrarily
fixed sufficiently small positive constant.

Let XQ rarf w° be arbitrary points in the complex x-plane and
in the domain D* respectively. We choose a value of the inte-
gration constant Cl so that the first relation of (5. 3) (or (5. 3'))
holds at x = xQ and W = WQ . Then, if w tends to 0 along a curve
r*0 (contained in D*) which starts from IV = WQ and approaches
w = 0 from the interior of the sector D, the point x = x(w}, where
x(w} is defined by the first relation of (5. 3) (or (5. 3')), describes
a spiral-shaped curve Fxn turning around the origin in the complex
x-plane and approaches x = 0. The converse is also true.

6. Proof of Theorem 201.

First we consider Case A. Differentiating both sides of the
relation (5.1) and substituting the expressions of the right-
hand members of (2. 3) for u' and vr appearing in the resulting
relation, it is found that

(6.1) x-c =
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From this follows immediately the first equation of (5. 2).
On the other hand, by (5. 1), (2. 3) is reduced to

From this, we obtain the last two equations of (5. 2) with the
help of (6.1).

In Case B, it is easily verified that the reduced system
(2. 30 admits an integral of the form

(6.3) C2 = ^-A.

Hence, the reduced system (2. 30 can be written as

(6.4) (xu=i*T+-
( XV = vUmVri

where

This system has the same form as (2. 3) if we put

Therefore, by the same reasoning as before, the reduced system
(2. 30 is transformed into a system of the form (5. 20 by intro-
ducing a new variable w by (5. 1) .

Thus the first part of Theorem 2. 1 has been proved.
The remaining part of Theorem 2. 1 can be easily proved

by integrating the differential equations (5. 2) (and (5. 20 ) by
quadratures, and noticing that umvn = w .

7. Proof of Theorem 2. 2.

Following M. Hukuhara [1], we put

ma + np
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Then, as will be easily seen, the first equation of (5. 2) (or the
equation (6. 1)) is transformed into an equation of the form

(7-2)

M. Hukuhara Q] has shown that the general solution of
this equation can be written as

(7.3) Y

We consider the branch of §(X) defined in Theorem 2. 2.
Therefore, the general solution of (6. 1) is given by

It is to be noticed that the first equation of (5. 2) is equiva-
lent to the equation (6.1) and, consequently, the inverse function
of x(w^ defined by the first relation of (5. 3) coincides with the
expression (7. 4) if the arbitrary constant Cl is suitably chosen.

Substituting (7. 4) for w into the last two relations of (5. 3),
we obtain the relations of the form (5. 6) (which is the general
solution of the reduced system (2. 3)).

In Case B, we put

srj r~N f~\ I 7 ~V \ 7

\ 72(m//,-{-to) / ' 7'Y *

Then it is easy to see that the first equation of (5. 2) is reduced
to an equation of the same form as (7. 2). Hence, an inverse
function of x(w} defined by the first relation of (5. 3') can be
written as

(7.6) «, = .

7

for a suitably chosen constant C?. If we put this expression
into the last two equations of (5. 3')5 we obtain the equations
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(5. 6'). This proves Theorem 2. 2.

8. Proof of Theorem 2.3.

By the definition of the quantities 9+ and 0_ we have the
inequalities

(8.1) R

for

(8.2)

and the inequalities

(8.3) R , ~7 - — ̂ -
ftjw j^m/j, -\-nvjw

for

(8.4) 0_-7r<argw^0_ or

Clearly the domain D (given by (5. 7) ) is contained in the
sector (8. 2). Hence, as w tends to 0 in the sector D, the
function x(w} defined by the first relation of (5. 3) (or 5. 3') )
vanishes exponentially. From this we can obtain Theorem 2. 3
since we have

logi(w;)=]

Case A,

Case B.

Chapter III. Estimation of the growth of the general
solution of the reduced system near the origin.

9o Properties of the solution of the reduced system (2. 3) and (2. 3')-

Let u = £/(#, #0, ^°5 0°) and v = V(x, XQ , «°, v°) be the holo-
morphic solution of the reudced system (2. 3) or (2. 3') satisfying
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the initial condition

Let ® be an angular region

(9.1) 0_<argw<0+, 0< M<rf(arg w, c0) ,

where rf(<p, c0) is a positive valued continuous function of both

variables which will be defined later, and 9_ and 0+ are given by

?_ = - TT - min(arg a, arg /3) + 4S0 ,
(9. 2) 1 ^+ = 7r-max(arg a, arg/3)-4S0,

or

(9.2') (*_ —,r-arg

according as we have Case A or Case B, 50 being an arbitrarily

fixed sufficiently small positive constant.

Since the inequalities (1. 4) are supposed to be satisfied, we
can assume without loss of generality that

(9. 3) |arg 2l|^—-3S0, |arg SB|^—-3S0

for the same S0 as before (see (5. 4)).

Then we can assert that the angular region

6L<arg w<0+

contains the sector

0_ + 2$Q^2iTgw^0+ — 2B0 (see (5.7))

with

(9.4) 0±=—aTg(ma + np*)±^- for Case A

or

(9.40 6L=-arg7±-^ for Case B

Indeed, for Case A, a direct calculation shows that
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<9+-(0+-2S0) = ̂ — max (arg 31, arg SB) -2a^ «„ (by (9.3))
£i

and

For Case B, from (9.20 and (9.4'), we have

The central angle of the angular domain ® is almost equal to

rt — max(arg a, arg /3) + min(arg a, arg /8)
(9.5) for Case A,

2it for Case B.

The aim of this chapter is to prove the following:
Theorem 3. There exists a spiral-shaped path F%Q, winding

around the origin of the complex x-plane, which starts from x = x0

and approaches x = 0, such that, when x moves on this path, the
value of (x,U(x,xQ,u°,v°'), V(x, x0, u°, 0°)) always remains in a
domain of the form

(9.6) \x\<a0, \U\<60, \V\<6*9 UmVn^<&

if ( ^o3 ̂ °j 0°) satisfies the same condition.
Of course, the quantity 80 appearing in (9. 2) and (9. 2') may

depend on the choice of the values of a0,bQ and max rf(^, c0).<p
In the case when one of the quantities m and n is zero,

as will be seen from the proof of Theorem 3, we have the
following :

Theorem 3'. In the case when n is zero, the conclusion of
Theorem 3 is still valid if we replace the domain (9. 6) by

(9.7) \x\<a*9 \V\<609 C/^EE®,

where ® is an angular region of the form

(9. 8) 6L<arg w<©+ , 0< \w\ <rf(arg w, c0)

with
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(9.9) 0±=±7r-arg/3+4S0 .

In the case when m is zero, the domain (9. 7) must be replaced
by

(9.10) \x\<a0, \U\<609 y-e®,

where the angles 6± must be given by

(9. 11) &±= ±7r-arg a+4c>0 .

10. Determination of the path FXQ •

We consider only the case when m and n are both positive.
In the case when one of them is zero, the discussion can be
carried out in quite a similar way. Instead of defining the
path FXo directly, we construct a path jP*o contained in ®.

1°. Determination of the domain ®.

Let A((p) be a piecewise continuous function defined in the
interval

and satisfying an inequality

Then the function d(cp, c0) is defined to be

(10. 2) d($>, c0) = CQ exp r cot A(<p)d<p

where CQ is supposed to be sufficiently small.
Thus the angular region ® is the set of points w = pei(

satisfying the inequalities

where cQew° is evidently a boundary point of 3). The detailed
definition of A(<p) will be given by the formula (12. 24).
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2°, Determination of an auxiliary path F*0 .

We put

(10.4) wQ = (u^m(v°Y ,

where (#0 , «°, 0°) is an arbitrarily chosen point in the domain
(9. 6).

Let (r, 6Q and (p, ̂ ?) be the polar coordinates of the point
WQ and the variable point w on the path F^0 , and let 6± be the
angles given by (9. 4) or (9. 4').

Then the path F*0 will be defined as follows :
(i) The case when 0+-2&Q<0 . The path F*0 consists of

a curvilinear part F' :

(10.5) p = r exp( cot
Je

and of a rectilinear part F" :

r0+-28o
(10.6) 0<p^rexp\ cot

(ii) The case when 6L + 260^6^0+-2S0 . The path F*0

consists of only a rectilinear part Pn :

(10.7) 0<p^r, £> = £.

(iii) The case when 0<6L + 2S0. The path F*0 consists of
a curvilinear part Ff :

(10. 8) p = r exp cot
J 0

and of a rectilinear part F" :

f0-+28o

(10.9) 0<p^rexp\ cot A(<p)d<p ,
Je

3°» Determination of a path F^0 .

We denote by F*0 a curve in the complex #-plane obtained
by mapping the curve F*0 by the first relation of (5. 3) or (5. 3'),
where the integration constant d must be determined so that
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W = WQ is mapped into x = %Q .
Clearly, the path F*0 defined in 2° is contained in the

domain ® and, moreover, this path belongs to classes of the
paths appearing in Theorem 2. 3 in 5. Hence FXo describes
a spiral-shaped path? turning around the origin in the complex
#-plane, which starts from # = #0 and approaches x = 0.

We shall show that this curve will serve as a required path

11. Fundamental lemmas,,

As we have already seen in Theorem 2. 3 in 5, the correspon-
dence between the points on these two curves is one to one.

Hence, the solution (C7, V) and the variable point x on FXo can
be regarded as functions of w on F*0 . We denote them by

), F(z0)) and x(w^. It is clear that

An explicit representation of these three functions is given by
the formula (5. 3) or (5. 3') if the aribtrary constants Ci and C2

are suitably chosen. Moreover, as we have already seen in the
remark following Theorem 2. 1 in 5, the condition (10. 4)
implies that

Hence we have UmVn = w identically for %e FXQ (where [7, V and
w must be considered as functions of x.}

This proves the following :
Lemma 3. 1. The value of the function UmVn remains in the

domain S when x moves on the path FXQ .
In order to obtain Theorem 3, it is sufficient to prove the

following :
Lemma 3. 2, Let s be the length of the curve T*0 measured

from the origin to the point w. Then a function A (9?), satisfying
the conditions already given can be so chosen that, on the path
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(11

have inequalities of the form

J|£| sin 80 \x\
ds 2\ma+n@\ p

dl 2~) d\U\^ [g| sin 80 \U\
-^ ds ~ 2\ma + nft\ p

m ^ d\V\^ |/3|sing0 \V\
^±±. O^ ^ = Ol-«-^ i —/Ol

or

rf|i| > sin SQ<ILI ') *
(11.2') -rf-L?l

^5 ^/z. + nv p

(1L30 4^1^ vsin60 JFL
as nifj, + nv p

according as we have Case A or Case B.
Indeed, these inequalities show us that, when w moves from

the origin to the point w° along the path F^Q , the functions x,

U and V are all monotonically increasing. From this it follows
at once that

Therefore, we see by combining this with Lemma 3. 1 that,

when x moves on the path FXQ , (#, U, V) always remains in the
domain (9. 6).

12. Verificiaton of Lemma 3* 2, Case A.

It should be noticed that (p, «p) and (r, <9) are respectively
the polar coordinates of the variable point w on the path T*o

and of the point w°.
From the differential equations (5. 2) we see that the deri-

vatives of \x\, \U\ and \V\ with respect to s are given by

(12 n 1 d^ -Ref1 d^}-Re(1 d* dw \UZ'i; \x\~di~ Ke\Jds) KeU dw ds)
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1 1 dw\
\ma + n/3+(ma' + nl3'*)w wz ds I '

1 J\TT\

(12.2) -
\U\ "*

= Re(

ds \ j f j dw ds

a + a!w 1 dw
w ds r

= j>e/ p + P'w 1 dw \
\ma-{-n[3Jr (ma!-{-nft'^w w ds / '

I. The rectilinear part T".

In this case we have s = p=\tv\ and ^? = arg^. Moreover,
satisfies the inequalities

where 9+ and 9_ are given by (9.4). It follows immediately
that

(12. 4) |<p + arg(7wa + «/8)|^— — 280

and

(12.5) dW-^e* .

Hence (12.1), (12.2) and (12.3) respectively imply that:

(12.6) ^r^P1^1 rfs

(12. 7)
\U\ s p ma + n a

(12.8) 4-
ma + n/3

Since |w| is supposed to be sufficiently small, it does not
lose any generality to assume that :
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l+ma' + nff

a A ma + n/3

(12. 9)
/ _ m.rt1 -+- nw

-W

(12.10)

-W
I \ H I \ mn -4- nH

(12. 11)
/,, M' \ /. n?.rt -+• nn

-W

a

From (12. 9) and (12. 4) we can easily derive the inequality
(11.1). Noticing that the inequalities (9.3) are satisfied, we
see that the inequalities (11.2) and (11.3) are an immediate

consequence of (12. 7), (12.10) and (12. 8), (12.11) respectively.

Thus Lemma 3.2 has been established on the rectilinear part
F".

II. The curvilinear part F'.

In this case, p is a function of cp given by (10. 5) or (10. 8)
according as 6+ — 2S0<0 or 0<0_ + 2S0. Hence we have

dw

and

ds=±-^
sm

according as 0+-2S0<0 or <9<<9_ + 2<$0. From this it follows
immediately that

(12. 12) -- = ± eds

according as 0+-2SQ<0 or

(i) Case when 0+-2SQ<0.
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Identities (12.1), (12.2) and (12.3) respectively imply that:

_ _ _ _
ds pz \

v -1

-w^

_
ds P \ ma + n/3\ a

-1

•w*

ma-i-n/3

By virtue of the inequalities (12. 9), (12. 10) and (12. 11)
we see that the inequalities (11.1), (11.2) and (11.3) follow
respectively from the inequalities :

(12.13) -^ + S0^
£i

(12.14) -|- + ^

(12.15) -- + 80^

for 9+-2^<cp<9+.

Therefore, observing that S0^^.(^)^7r — S0 , we see that the
condition which A(<p) must satisfy is written as

(12.16) maxmaxf^ + arg(Ma + ^/3), — arg §1, —

, — arg!

However, the inequalities (9. 3) imply that

max] — min(arg 31, arg SB)— —

f
'

— max (arg 21, arg 33) + -^- — 2S0, TT —80

= - max(arg SI, arg §8) + ~- - 280 ,
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and the definition of 0+ and 9, yields

Hence, the inequality (12. 16) from which the symbol ^
was removed can be written in the form

(12. 17)

-max(arg SI, arg

This is equivalent to

(12. 17. 1) <p

(12. 17. 2) cp-0+ + 2S0^ -max(arg §1, arg S3) +^
£A

(12.17.3) S0^<p-0_-280;

(12. 17. 4) §0^ -max(arg 21, arg §8) + -— 2S0 .

The inequality (12. 17. 1) is automatically satisfied since

9-<0+ and S0 is supposed to be sufficiently small. The inequality
(12. 17. 4) is an immediate consequence of (9. 3). Therefore, it
is found that the inequality (12. 17) is satisfied for

(12. 18) (9_ + 3S0^^^6^+ + ---max(arg SI, arg S3)-

However, the last expression of the inequality is equal to the
quantity 0+ (see (9. 2)) and the interval (12. 18) contains

Consequently, the inequality (12. 16) is certainly satisfied in
the interval in question if we put, for example,

(12. 19) AOp) = maxOp-0+ + 2S0 , S0) for

Remark- If n = 0 (or w = 0), the condition (12.14) (or
(12. 15)) is unnecessary.
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(ii) Case when 0<0_ + 2S0.
By the same reasoning as before we can prove that the

inequalities (11. 1), (11. 2) and (11. 3) are simultaneously satisfied
if the function A(<p) satisfies an inequality of the form

(12.20) maxmaxf^ + arg(ma + ^/3), — arg 21, —

T), -arg 21,-arg'

-o- — 2S0 , 7T — 60 [ .

Since, by (9. 3), we have

-min(arg §1, arg §8) +^-
Zi

-max(arg 31, arg 58)+

the inequality (12. 20) from which ^A(<p) was removed will be
reduced to

(12.21) m a x - 6 > + + 7r+2S0, -min(arg 31, arg
\

^min(^> — 9_-{-7t — 2S0 , it — S0) .

By the same method as in the proof of the inequality (12. 17),

we can easily verify that this inequality holds in the interval

(12. 22) 6L-^--min(arg 21, arg S

The first expression is equal to the quantity 0_, and this

interval contains the interval [J9_,0_ + 2S0] (See 9).

If we put, for example,

(12.23) A(^) = min(^-6L + 7r + 2S0,7r-S0) for HJ9- , ̂ - + 280] ,

the inequality (12. 20) is certainly satisfied in the interval in
question.

Thus we have proved that, to obtain Lemma 3.2 for Case A,
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it is sufficient to put

(12.24) max((p-0+ + 2S0,So) for yt[_e+ - 2SQ, 8J ,
^ c

~2 f°T

with

&_= -7T- min(arg a, arg /3) + 4S0,

0+ = rf — max (arg a, arg /3) — 4£0 •

13. Verification of Lemma 3.2 for Case B0

In the differential equations (5. 2'), the following facts
should be noticed :

(I) ^ and are real positive numbers;
m/j, + nu iMp + nv

(ii) the expression ry'w is sufficiently small in absolute
value provided that U\ and \V\ are sufficiently small.

The assertion (ii) can be easily verified in the following
way : Since we have

h

and the condition jh=^0 Implies that m + vh and n-ph are non-
negative integers not simultaneously zero, we have

if we notice that w = UmVn. From these relations we have (ii).
By virtue of (Ii), we can suppose without loss of generality

that we have inequalities
/ I ?

(13.2) \-\--3—w fg2, arg(l + -^-^
ry \ ry

for an arbitrarily fixed sufficiently small positive constant S0.
We can now prove Lemma 3. 2 without any essential modi-

fication of the proof for Case A.
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Indeed, on the rectilinear part F", we can prove by means
of (13.2) that the inequalities (11. 1'), (11.20 and (11.3') are
satisfied. On the curvilinear part F', we can easily verify that
the conditions which the function A{<p) must satisfy are written
as

(13.3)

for 0+-

and

(13.4)
\ £t /

2S0,7r-S0) for 8_<<p^9_

where 9+ and 0_ are given by (9. 4'), and that the inequalities
(13.3) and (13.4) (from which the symbol <A(<p) was removed}
are satisfied in the intervals

D9_ + 3S0 , 9 J and 19. , 0+ - 350]

respectively, where ©+ and 6_ are given by (9. 2;).
Clearly, these two intervals contain respectively the inter-

vals C^+-2S0,e+] and [#_ , 0_ + 2S0H in question (See 9). Hence,
if we define the function A (9?), for example, by a formula of
the same form as (12. 24) (where 9+ must be replaced by

— arg7±-^r- respectively), the inequalities (13.3) and (13.4) are
<Li

certainly satisfied in the intervals in question and, consequently,
the inequalities (11. 1'), (11.2') and (11.3') are simultaneously
satisfied on the curvilinear part. This proves Lemma 3. 2 for
Case B.

Part II8 The formal soletionse

This part will be devoted to the construction of formal
solutions of diverse types.
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Chapter IV. Determination of formal solutions
of the system (1.1).

14. Formal solutions of diverse types.

Let A(cp), &_ and 6+ be the same as those that appeared in
the preceding chapter. In the case when m and n are both
positive, Q± are given by (9. 2) or (9. 2') according as we have
Case A or Case B. While, in the case when one of m and n is
zero, they are given by (9. 9) or (9. 11) according as we have

w = 0 or m = 0.
We put

(14. 1) d(cp, c} = c exp r cot A(<p)d<p, 0_^cp^0+,
J6o

where 6Q is contained in the interval \J9_, & J and c is a suffi-
ciently small positive constant, and define an angular region

S)(O by

(14.2) ®(c)={^; 0_<argw<e+, 0< \w\<d(z.rg w, c)} -

Let (C7, F) = ({7(#, #0, w°, ^°), F(^, or0, «°, v°)) be the holo-
morphic solution of the reduced system (2. 3) or (2. 3') (accord-
ing as we have Case A or Case B) such that (u, #) = (w°, z;°) at
A; = ^O, where x0,u°,v° are arbitrarily chosen such that

(14.3) |*0|<*o, |^°i<^o, |V°|<*0,

If » = 0, (14.3) must be replaced by

(14.30 ^o <^o, k°|<*o, ^°ra

If ^ = 0, (14.3) must be replaced by

(14.3/7) l^oK^o, |«°|<6o, ^e®(c0).

Remark. The point (w°, v0) satisfying the last three inequali-
ties of (14. 3) is located on the product space of the Riemann
surfaces of log u and log v.

By virtue of Theorem 1 in 2, if we replace (M, v) by (C73 F) we
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have immediately the following :
Theorem 4. 1. The differential equations (1. 1) admit formal

solution that are triple power series of x, U, V:

(I) y^U+T>™PwX3UkVl, z-V+H™Qjklx
JUkVl,

where

(14.4) Pooz = 0, Q0fe0 = 0, GU = 1,2,...).

To investigate the analytical meaning of this formal expres-
sion, we formally rewrite it in a form of double or single power
series. First we rearrange it in a double power series form, in
three different ways, as follows :

(II. 1)

where

(14.5) P£PO
j j

00

VI PC
• Zj>o^i

V £X2
/ i ^f j7

(II. 2)

where

(14. 6)

(14.7)

xjy ON

where

(14.8)

(14.9)

2

2
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It is evident that these expressions are also formal solu-
tions. In order to give them an analytical meaning, it is first
necessary that the coefficients of these double power series

(which are also the formal power series of a single variable)
must admit some analytical interpretation.

Concerning this, we have following three theorems.
Theorem 4. 2, 1. If ive formally rewrite the formal solution

(I) in the form (II. 1), the coefficients (Pg'C*), Q*?(^)) ore func-
tions holomorphic and bounded in x for

(14.10) x\<a'Q,

so that the formal series (14. 5) are uniformly convergent there.

Consequently, the formal equality — can be replaced by the true
equality = in (14.5).

Theorem 4, 2» 2a Let us formally rewrite the formal solution

(I) in the form (II. 2). Then, in the case when n>0, the

coefficients (PP(^), QF°(*0) and (PCK*0> QS? 00) are all holo-
morphic and bounded functions of u for

(14.11) \u\<b'Q

and, consequently, the formal power series (14. 6) and (14. 7) are

uniformly convergent there,

In the case when n = Q, CP$POO,Qj?00) for j^l are functions
holomorphic and bounded in u for

(14.110 | /wargM + arga|<- Q< u\<d'0

and admit asymptotic expansions of the form (14. 7) as u tends

to 0 in the domain (14.11').
Theorem 40 20 30 // we formally rearrange the formal solution

(I) in the form (II. 3), the coefficients (Pg°00, Qg°00) and

CP^Cp), QjA?00) are functions holomorphic and bounded in v for

(14.12) I* <#;
consequently, the formal power series (14. 8) and (14. 9)
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uniformly convergent there.

In the case when m = Q, (Pj?00> QC£W) for J^ are func-
tions holomorphic and bounded in v for

(14.120 \n arg v + arg /3| <^3 0< \v\ <b'0

and admitting asymptotic developements of the form (14. 9) as v

tends to 0 in the domain (14.12') -
Next we consider the rearrangement of (I) in a single

power series form. This can also be done by rearranging the

double power series expressions (II. 1), (II. 2) and (II. 3) in a
suitable way, and they are written, in three different ways, as
follows :

J=l(III. 1)
\u,

where

2

2
(14.13)

(14.14) P'/'O.zO-gPjBKV, Q?5(«,iO~I]

(III. 2) y~f

where, by (II. 2),

(14. 15)
8a + ea(M) + ] Q

J-l

(III. 3) y~
k=

where, by (II. 3),
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£\aO + 2
(14. 16)

(tO + ]

Here 8AZ is the Kronecker's notation. Evidently these formal
expressions (III. 1), (III. 2) and (III. 3) are also formal solutions.

As regards the analytical meaning of the coefficients of

these formal solutions, we obtain the following three theorems :
Theorem 4. 30 1. // we rewrite the formal solution (I) in the

form (III. 1), the coefficients (Pf(l7, F), Qf (£7, F)) (; = 0, 1,-) can

be uniquely determined as solutions of certain non-linear diffe-

rential equations {for .7 = 0) or of certain linear differential

equations (for j^Y) such that:

The coefficients (P^(u,v^, Qo1}(^, #)) are functions holomorph-
ic and bounded in («, 0) for

(14.17) \u\<6'Q, \v\<6'0

and, consequently, the formal power series (14. 13) are uniformly

convergent there.

The coefficients P^(«, v) and Q^\u,v^) O'^l) are functions
holomorphic and bounded in (u, v~) for

(14.18) u\<b'^ \v <b'^ sWeSKci,)

admitting asymptotic expansions of the form (14. 14) as u and v

tend to 0 in the domain (14. 18).
Remark. In the case when m = Q, the functions P^(u,v^ and

Q^(u, v*) are developable in uniformly convergent power series

of u in

(14.19) \u\<b^ i;»

such that the coefficients are functions asymptotically developable
in powers of v for

(14.20) 9<

By the inequalities (9. 3), we see that the domain
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appearing in (14. 19) is contained in the domain (14. 20) for a

suitably chosen positive constant c'Q.

In the case when n = 0, the functions Pc/}(^, t> ) and Q?(u,v}

are developable in uniformly convergent power series of v in

whose coefficients are functions admitting asymptotic expansions

in powers of u for

o
0< \u m<c'Q, m arg u + arg a\<^-n .

£

By virtue of (9.3), the domain 2)(c0) is contained in the

domain above if we choose suitably the positive constant c'Q.

Theorem 4. 3. 2. If we rewrite the formal solution (II. 2) in

the form (III. 2), the coefficients (P^(x,u), Q?\x,u)) (/ = 0, !,•••)
are functions holomorphic and bounded in (#, u} for

\x\<a'0, \u\<b'Q

so that they can be developed there in uniformly convergent power

series of % and u. Therefore, the formal series (14. 15) are

naturally uniformly convergent.

In the case when n = Q, P^(x,u~) and Q'i2\x,u*) are func-

tions holomorphic and bounded in (#, u*) for

(14.21)

and developable in the uniformly convergent power seines (14. 15)

there whose coefficients are the same functions as those appearing

in Theorem 4. 2. 2.

Theorem 4. 3, 3. If we rewrite the formal solution (II. 3) in

the form (III. 3), the coefficients (PA
3'O,0), Q^O^)) (£ = 0, !,•••)

are functions holomorphic and bounded in (#, #) for

\%\<a'Q, \v\<f>0

and admitting uniformly convergent expansions of the form

(14. 16) (whose coefficients are also developable in uniformly
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convergent power series of #).
In the case when m = Q, they are holomorphic and bounded

in (#, v') for

(14.22) \x\<a'0, |»argt; + a r g / 3 | < - , 0<\v\<d'Q

and developable there in uniformly convergent power series of
the form (14. 16) (whose coefficients are functions asymptotically
developable in powers of v in the domain (14. 120).

Section I. Proof of Theorem 4. 2. 1.

15. Preliminaries,,

To determine the coefficients CPW(#), Q^(^)),5) we shall look
for the differential equations which must be satisfied by these
functions.

For convenience we rewrite the differential equations (1. 1)
at this point :

(15.1) xy' = f(x,y,z), *z' = £-(*,J>,z),6)

where /(#, y, z) and g(x, y, 2) are functions holomorphic and
bounded in (#, y, z) for

(15.2) \x\<a, \y\<b, \z\<b .

Differentiating both sides of (II. 1) with respect to x, it is
easily found that

(15. 3) /(*, y, z)

(15. 4) g(x, y, z

where xU', xVf must be replaced by the expressions of the
right-hand members of the reduced system (2. 3) or (2. 3') ac-

5) To simplify the description, we write hereafter Pfcz(tf) instead of P^(jt).
6) The symbol' denotes the derivative with the obvious exception a' and $'.
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cording as we have Case A or Case B.
Hence we must discuss Case A and Case B separately.

16. Determination of the functions Pfcz(#) and QM(X') for Case A,

Inserting (2.3) into (15.3) and (15.4), we obtain

and

(16.2) &(x y z ) " ^ U m V n + l ( B J r f f U m V n ^ } + 5~]{xQ'-

If we substitute the formal series (II. 1) for y and z appear-
ing in the left-hand members of the relations above, (16. 1) and
(16.2) can be regarded as formal identities between formal
power series with respect to U and V whose coefficients are

functions of x. Comparing the coefficients of the terms UkVl

in such formal identities, we can derive the following differen-
tial equations :

nfi ^ rP' — fCr P O ^ rO' — aCr P O ^^.LU. *J j ^ / X Q O y v ^ J ^ O O ? MJOOy j -^^JOO — &V-^? -^00, MfOOy

and

(16. 4.

where

(16. 5.

for
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Here ^z(/J A'z > ^/zO are linear forms of

whose coefficients are polynomials of (Av» #fc'zO for (&',/') 7)

(£, /),7; and &u(g ; Pk>i- , qw) have the same properties as $&,.
Moreover, these differential equations admit a formal solu-

tion of the form

(16. 6. £/) /V~IJ P*,*' , Q«-fl QJ*XJ .
J = 0 J~ -0

A singularity # = 0 of the system (16.3) has a character
similar to a regular singular point for the linear system. In
such a case, we know that the formal solution (16. 6. 00) has a
positive radius of convergence and represents a solution of (16. 3)
(See, for example, M. Hukuhara pT]). Suppose now that the
functions (Pfcz(#) , QfcZ(#) ) have been already determined for
(k, /)< (K, L) in such a wray that they are holomorphic and
bounded for \x <aQ and satisfy the differential equations
(16. 4. A/). Then, since one of m and n is supposed to be
positive, the expressions RKL(X) and SKL{x} are known functions
defined in |#|<#0. Hence, the system (16. 4. Jf£L) is a linear
system with a regular singularity at x = 0. Therefore, the
formal solution (16. 6. KU) is uniformly convergent for \%\<a'0 so
that it represents a solution of (16. 4. XL). We denote it by

Thus the functions (Pw(#), 6w(#)) are all holomorphic and
bounded in

17. Determination of the functions PfcZ(^) and Q«z(#) foia Case B0

In this case, since the reduced system is given by (2.3'),
we can easily verify that the differential equations which the

functions PftZ(^) and Qkl(x^> must satisfy are given by the same

7) If k'<^k and J'</ or k'<.k and /'<^/, we say that the arrangement (&', /') precedes
the arrangement (&, /) and write (&', J')
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form as (16. 3) and (16. 4. £/) if we replace the functions
and SM00 by :

v /^ (' fr~\ _1_ 5~ l̂ C re • T* ( v\ f^ (w~\*\A <*f/e-2m-Wi, l-1n + lJi\-A'J i ^J-u\.& > * k'l' \.-» J , V\f vi/ \.-*> J J .

Here we must notice that there exists a formal solution of
the form (16. 6. kl} and one of the quantities M + v/z(2^0) and
n — //,/z(^0) is positive. Hence, we can conclude that this formal
solution is uniformly convergent for \x\<a'Q and represents
a solution of the corresponding differential equations.

Thus we have proved Theorem 4. 2. 1.

Section II. Proof of Theorems 4. 2. 2 and 4. 2. 3.

18. Preliminaries.

Since the discussion of Theorem 4.2.3 can be carried out in
quite a similar way, we shall prove Theorem 4. 2. 2 only.

We notice that the system (1. 1) can be written as

(18.1) xy'=fo(y, z) +/i(#, y* z), ^^^= =^ ro(3 ;5^)"

with

(18. 2) /*(0, 0) = a , £*(0, 0) = 0 ,

where /*(j, 2), £*(>, 2), /iCT, ^, 2) and gi(x,y,z) are functions
holomorphic and bounded in (x, y, 2) for

\y\<b, z\<b.
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Now we determine differential equations which must be
satisfied by the functions (P«(w), QzO)) and (Pn(u), ©*(«))

Termwise differentiation of the formal series (II. 2) will

yield :

(18.3) xyf

(18.4)

where (^C/', ^cF') must be replaced by the expressions of the
right-hand members of the reduced system (2. 3) or (2. 3')
according as we have Case A or Case B.

19. Differential equations which determine (P,(w), QiW) and

>1) for Case A.

From (18. 1) we see that (18. 3) and (18. 4) are reduced to

(19. 1) yn+1z»f*(y, z)+Mx, y, z^-Um+1Vn(a + a'UmVn*)

'mV»^ a

and

(19. 2)

-a
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If we substitute the formal solution (II. 2) for (y, 2) ap-
pearing in the left-hand members of the equations above, then
we obtain formal identities between the formal power series of
oc and V whose coefficients are functions of U.

1°. The differential equations satisfied by PI(U) and Q,(«)

(/=o,i,-).
Equating the coefficients of the terms Um+lVn+l and umVn+1+l

in the first and the second of these formal identities and replac-
ing U by u, we are able to find the differential equations which
must be satisfied by PI(U) and Qz(w). After a simple calcula-
tion we see that these differential equations are given as
follows :

Case when n>Q.

and

Ci9 4 n
auQl = CMPt + (CM(«) - (1 + 0/3)0,

where

l/=l+PoCw), z

_
l/=l+PoCw), z=l
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Here 8B,z = 0(/^»), =!(/ = «) ; ̂ 3Z(/0 ; A'» ?z ) is a linear form of
the functions

=l+Po(w;>, *=l+Qo(w)

/'^/; 0", £', /') ^(0, 1,0), =£(0> 0, 1)), whose coefficients are
polynomials of pv and qr (l^/'</), where the /t*OO are the
coefficients of 2* in the uniformly convergent expansion of the
function /*0>, z) in power series of z. The expression Gz(^0;
jV , ̂ z ) has the same properties as spz(/0 ; A , & ) (where TW + 1
and ?2 must be replaced by m and ^ + 1 respectively).

Case when n = 0.
In this case, as can be easily seen from the above discussion,

the differential equations (19. 3) and (19. 4. /) must be replaced

by

a'um~)P'0 - (1 + P0)
m+1(l + Q0)"/*(« + wP0 , 0)

c iy. u )

where ^ and Cz are the same functions as before.

2° The differential equations satisfied by P#(«) and QJZ(M).

Next, comparing the coefficients of the terms xJVl in the
formal identities mentioned above, we can find the differential
equations which the functions P#(«) and Q}l(u) must satisfy.
A simple calculation shows us that these equations are reduced
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to algebraic equations written as follows :

Case when n>0.

g 7

where

—

(19. 9)

+ SCijte; uPl («), Qz (M), P^ , («), ̂  , («))

Here ^(/; «A ,qi-,Pn ,Qj'i^ is a linear form of

(19.9)
U',k',n* (0,1, 0),^ (0 ,0 ,1) ,

.C/./'XO',/),

whose coefficients are polynomials of M/>Z (l^/'^/)> ^ (O^/'^/— 1),
^r and g,-r ((/,/')< O°> 0) and the expression ^jl(g\upl-,ql ,
Pji-iQji*) has the same properties as ^ (Of course, /=/0+/i,

Case when /z = 0.

In this case, the functions PJZ and QJZ to be determined
appear in the expressions of Rn(u} and Sn(u}. Hence, (19. 8. .//)
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must be replaced by the following differential equations

^ ' '3 }

20« Determination of the functions CPZ(&0, QzOO) and
Q7(*0) for Case A and

1°. The functions P^u) and (

We observe that the differential equations (19.3) and (19.4. /)
admit a formal solution of the form

C?c\ -\\ p ^v* P z/*-1 O ~Y1 O uk
\*j*J • •*-J •*- 0 ,ZL_J OfcO ^ 5 ^^0 /...J ^^Ofcl

and
00 00

x y •*• 1*"**^,^_j •*• QJcl J ^*2'"^~/^™J ^^O&Z+l^

respectively.
Since the differential equations (19.3) have a singularity

similar to a regular singularity at u = 0, It is known that the
formal solution of the form (20.1) is uniformly convergent for
\u <bQ and represents a holomorphic solution. We write such a
solution by PQ(u) and QQ(u).

Suppose now that the functions P^u) and Qz(u) have been
already determined as solutions of the differential equations
(19. 4. /) for 1<L in such a way that they are holomorphic and
bounded for \u <d0 and, moreover, admit uniformly convergent
expansions of the form (20. 2./). Then the expressions R^u)
and SJj(u') are known functions. Hence the differential equations
(19. 4. L) become a linear system with a regular singular point
at u = Q, and they admit a formal solution of the form (20. 2. L).
Consequently, such a formal solution is uniformly convergent
for u <b0 and represents a holomorphic and bounded solution
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of the system (19. 4. L). We denote it by (P^O), QzOO).

2°0 The functions P^u) Qji(u)-

We notice that the equations (19. 8. j7) are algebraic equa-
tions and they admit a formal solution of the form

(20. 3. //) Pji-S PMu\ Q*~2 Q^u* -
fc = 0 A, = 0

Moreover, since 72 >0, we have evidently

c 2 2 ^ =0 .

Consequently, the matrix formed by the coefficients of Pjz and
Qn in (19. 8. j7) is written as — j°!2 and therefore is non-singular,
where 12 is the 2-by-2 unit-matrix.

Suppose now that the functions P^u) and Q^(^) have been
already determined for (y, /)<[(.;', L) in such a way that they
are holomorphic and bounded for \u\<d0 and satisfy the algebraic
equations (19. 8. jl'). Then it is clear that the convergent ex-
pansions of such functions coincide with (20. 3. j7), and the
expressions RJL(u) and SJIt(u) are known functions. From this
we see that the functions PJL(u) and QJL(u) can be uniquely
determined by the algebraic equations (19. 8. /L). Clearly, these
functions are holomorphic and bounded for \u <d0 and their
convergent expansions coincide with the formal series (20. 3. /L).

21. Determination of (Pz(w), QZ(M)) a!lcl (^z(^)> Qjz(*0) f°r Case
A and n = 0.

In this case, the differential equations which determine the
functions P0(&0 and QO(M) are given by (19. 6) and those which
determine the functions Pz(«) and Qz(«) (/^l) are given by
(19. 7. /). Moreover, these differential equations admit a formal
solution of the form (20. 1) and (20. 2. /) respectively. Hence,
by the same method as before, we can determine the functions
PI(U) and Qi(u) (/^O) with the desired properties.

But, the determination of the functions Pji(u) and
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differs from that for the case when n>0.
Indeed, the differential equations which determine these

functions are given by (19. 10. y/) and its singularity u = Q is
similar to an irregular singularity for the linear system. Con-
sequently, though the system (19. 10. jP) admits a formal solution
of the form (20. 3. y/), it is generally divergent. On the other
hand, it is easy to see that the matrix formed by the coefficients
of the linear terms of PJZ and Qjz is reduced to a diagonal
matrix —/°12 at u = 0, where 12 denotes the 2-dimensional unit-
matrix. And, it is to be noticed that if u is in a domain

(14.110 \m arg ^ + arg a\ <~ , 0< \u\<b*,

we have the inequality

s 2 '

Hence, by virtue of a theorem due to M. Iwano Q3], which is
essentially due to M. Hukuhara [TT|, we are led to the following
conclusion :

Suppose that the expressions ^JL and ^JL are functions
holomorphic and bounded for (14. 11') and, moreover, asymptoti-
cally developable in powers of u. Then, the differential equations
(19.10. /L) admit a solution (,PJL(,u), QJLW), where PJXl(u) and
QJL(.U) are functions holomorphic and bounded for (14.11') and
asymptotically developable in the form (20. 3. /L) as u tends to
0 in the domain (14. 11').

Thus, Theorem 4.2.2 has been completely established for
Case A.

22. Determination of the functions (Pz(^), Qz(w)) and (P^(^),
QJZ(M)) for Case B0

In this case, concerning the quantities 7^ appearing in the
reduced system (2.3'), we notice that the condition 7^0 implies
that m + vh and n — ph are both nonnegative integers not simul-
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taneously zero. And, the quantity n — ph may vanish, if at all,
for only one value of h, say h0 and, consequently, the quantity
m + vh0 is positive.

By applying the reasoning similar to that used to derive
the differential equations (19. 3) and (19. 4. /), we can prove the
following proposition :

The differential equations which determine the functions
PI(U) and Qi(u) (/ = 0, !,-••) are given by

(22.1)

(22. 2.

where

- - 2

- 2

z' zs aw integer, if it exists, such that n — M = l, and ^ and
Qz are the same functions as those that appeared in the formulae
(19. 5). Moreover, these systems admit a formal solution of the
form (20. 1) and (20. 2. /) respectively.

Hence these systems have the same characters as the sys-
tems (19. 3) and (19. 4. /) respectively, which have been already
studied in 20.

Furthermore we can verify that the differential equations
which are to be satisfied by the functions P^u) and Q^u) are
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written in the same form as (19. 8. //), where the expressions
and S^O) must be replaced by

+ 2

+

functions as those that appeared
in (19. 9). Moreover, this system admits a formal solution of the
form (20. 3. .//).

Hence, it follows immediately that, in the case when %>0,
those differential equations are reduced to algebraic equations
with respect to P^u) and Q^(u). But, in the case when n = Q,
those systems are reduced to linear differential equations of the
following form with an irregular singular point at u = Q:

^)-/i;^7(^))

where

= - 2

, moreover, this system admits a formal solution of the form
(20. 3. ;7).

Therefore, applying the same reasoning as in Case A, we
can give the analytical meaning stated in the Theorem to such
a formal solution.

Thus Theorem 4. 2. 2 has been proved for Case B also.
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Section III. Proof of Theorem 4. 3. 1.

23e Preliminaries,

The system (1. 1) can be written as

(23. 1)
j=0

My, z)=/*+1^/*6>, *), /*(0, 0)=a ,
£oO>, z) =/v+1£-*0>, *), «r*(o, 0) =/3 .

Here the power series in the right-hand members are uni-
formly convergent in a neighborhood of (0, 0, 0) and, moreover,
f*(y9z*), g*(y,z')9 My,z) and g^O, z) are functions holomorphic
and bounded in 0>, z) at (0,0).

Let us seek differential equations which must be satisfied
by Pj(u,v) and Q3(u,v^ Q' = 0, !,•••)•

By differentiating both sides of the formal solution (III. 1)
term by term, we obtain formally

(23.2) xy'

^

(23.3)

with identities

dx

_^__ __ . ____„

where xllf and xVf must be replaced by the expressions in the
right-hand members of (2. 3) or (2. 3') according as we have
Case A or Case B.
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By virtue of (23.4), the expressions x*dPj(U,V^)/dx and

x*dQj(JJ, V)/dx are regarded as functions of U and V only.

Substituting the formal solution (III. 1) for y and z appear-

ing in the expressions of the right-hand members of (#/, xz'),

the equations (23. 2) and (23. 3) will be reduced to formal iden-

tities between formal power series of x whose coefficients are

formal power series of U and V. Hence, comparing the coeffi-

cients of the terms xj O' = 0, !,•••) of these formal identities, we

can find differential equations which must be satisfied by the

functions P£U, F) and Q^U, F) (/ = (), I,-)-

Since the discussion for Case B can be carried out in quite

a similar way, we discuss the Case A only.

24. Differential equations satisfied by Pj and Qj.

A simple calculation shows us that these differential equa-

tions are given by

(24.1)

• 7, F).

Here

—

(24.3)

and J?J(M, f ) is a linear form of the functions
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i'^j', (/,£', 0=*= (0,1,0), =KO,O,I);
whose coefficients are polynomials in P^ (u, #) and Qj (w, v )
(l^/ <.;')» an<3 the expression S j ( u , v } has the same properties
as l?j(«, tO-

Moreover, these differential equations possess a formal
solution of the form

(24.4) Po-2P^t/fcF<, Qo-2Q^[/fcFz

A., I A., 7

(P/a = Po,fc+l,Z j Qll—Qo,lb,l+l)

and

(24.5.;) /V-UP^V1, Q^SO^^*^1-
fc ,Z *- ,Z

25. Determination of the functions P0(^> #) ^nd Q0(^5 ^) •

1°. We consider the differential equations (24. 1). These
equations can be written in the form

xP'=UmVnF<iU, F, P, Q) , ^Q;= J7771FwG(f7, F, P, Q) ,

where F(u, v, p, q) and G(u, v, p, q) are functions holomorphic
and bounded in (u, v, p, q) for

\u\<b, v <b, \p\<d, \q\<d.

Moreover, there exists a formal solution of the form

P = f(U, F), Q =

where /(f/, F) and ^(C7, F) are power series of U and F given
by (24.4).

The formal series (III. 1) are a formal solution of (1. 1)
provided that (C7, F) is a solution of (2.3). Now, we choose
arbitrarily the initial values (w O J ^o) of the solution (C7, F) in
such a way that
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and define the solution (U, F) of (2.3) such that U=u° and

V=v° at X = XQ.
Then, we have at once

Assertion 1. If f(JJ, F) and g(U, F) are a formal solution of

(24. 1), then (/(t/, F), g(JJ, F)) is a formal solution of the diffe-

rential equations

(25. 1) xP'=U™VnF(U, F, P, Q), xQ' = UmVnG(U, V, P, Q) .

Conversely, if f(U, F) tf^rf 5T(t/, F) <zr£ an actual solution

of (25. 1), then the expressions f(U, F) and g(U, F) represent a
solution of (24. 1).

Next, we can assert that

Assertion 2. If /(E7, F) and g(U, F) #rg # formal solution of

(25. 1), the power series f(u, 0) ar/zrf #(«, 0) ^^5/ 5^ a formal

solution of the partial differential equations

vn) = F(u9 v, p, q) ,
(25.2)

^(a + a/^^) + z;(^+/3VV)-^ = G(^ v, A q) .
{ ou dv

Conversely, suppose that p = f(n,v} and q = g(u,v} are the

solution of the partial differential equations (25. 2). Then, the

expressions f(U, F) and g(U, F) are an actual solution of
(25. 1).

By substituting /({/, F) and g(U, F) for P and Q in (25. 1)

and dividing both sides of the resulting equations by UmVn, we
have the relations (25. 2), where u, v, p and q must be replaced

by U, F, f(U, F) and g(U, F). However, the initial values u°

and z;° of the functions U and F can be chosen independently.
This fact proves the first part of the assertion. The proof of
the remaing part can be carried out by a direct calculation.

Let (C7, F) be the holomorphic solution of the differential
equations

(25. 3) xu'^ ,
ma + n/3 ) \ ma + n/3
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satisfying the initial condition: U=u* and V=v° at X=XQ. Here
(#o, u*, 9°) is an arbitrary point in the domain

\x\<aQ, \u\<b0, \v\<bQ.

Then, by a direct calculation, we can obtain the following:
Assertion 3. Let f(u, v") and g(u, v) be a formal solution of

(25.2). Then, /(&, F) and g(U,V*) are a formal solution of
the ordinary differential equations

7, F,P,Q),
' ' , F, P, Q) .

Conversely, if f(U, F) and g(U, F) are the solution of (25. 4),
then the functions f(u, v ) and g(u, t>) mws^ 6e a solution of the
partial differential equations (25.2).

By summerizing the discussion, we have the following :
Lemma. If the formal series

(24. 4) P^2 P°klV
kVl , Q~2 QQ

klU
kVl

Jc,l k,l

are a formal solution of (24. 1), then the formal series

(25. 5) P~2] PliUkVl , Q~S Q°zC7fcFz

fc.Z k,l

satisfy formally the differential equations (25. 4).
If the formal solution (25. 5) is uniformly convergent for

(25.6) \U\<b", \V\<b'r

and represents an actual solution of (25. 4), then the formal
solution (24.4) also converges for ([/, F) in the domain (25.6)
and becomes a solution of (24. 1).

2°. We can assert that the formal solution (25. 5) is uni-
formly convergent for (25. 6) and becomes a solution of (25. 4).

Indeed, according to our usual method, we make a transfor-
mation of the form

(27, F), Q = S + Q<*>(U, F),

where
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2 PluV, Q™(u,v) = v+ X]
k-\-KN Tc + K

Then, the system (25. 4) can be transformed into

(25. 7) *V = g(C>, V, 77, f) , *£' = ©(#, F, ^, f) ,

where §(#, 0, 97, O and ®(w, # , 77, f) are functions both holomorphic
and bounded in (u, v, rj, f ) for

\u\<b^ v\<6'l9

and satisfying there inequality

and the Lipschitz's condition

Here A is a positive constant independent of N and BN may
depend on TV. © also satisfies the same Lipschitz's condition as g-

Let #o, u° and #° be arbitrary values such that

*^ '~^.

and define the functions U and V as before.
Let L#0 be the segment joining the point XQ with the origin

and let s be the length of this segment measured from the
origin to the point x. Then, on the path LX(i we have the
inequalities

~> sn
\x\

Here S0 is the same as before.
In fact, since (17, F) is a solution of the differential equa-

tions (25.3), we have, for example,

d\U\ _ R e / % dU 1 dx\RJa + afUmVn 1 dx\
| u | 5 \ij dx x ds \ wa + w£ x ds

On the other hand, we can assume without loss of generality
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that

ai , iarg
ma + n/3 a

for (25. 6). Therefore, we obtain the first inequality of (25. 8),
if we notice that

1 dx _ 1

and the inequalities (9. 3) are satisfied
Using these inequalities, we can easily verify the following

proposition (See, for example, Chapter IV in M. Iwano pT]) :
The system (25. 7) admits one and only one solution (97, f)

= (F(C7, F), Z(t7, F)), w;/z£r£ FO, t; ) rarf Z(«, f) are functions
holomorphic and bounded in (u,v} for a domain \u\<b'N* \v <b"N

and satisfy there the inequality

KN being a certain positive constant.
From this proposition, we can conclude that the formal

solution (25. 5) is uniformly convergent for the domain (25. 6)
with b" = supb"N and represents an actual solution of (25.3). We

denote by CP0(#, Vr), Qo(t^, ^)) such a solution.
By the discussion in 1°, the functions PQ(u, v ) and QQ(u, v*)

thus determined satisfy the conditions in question.

26. Determination of the functions P3(u,v} and Q3(u,v}.

We consider the linear differential equations (24. 2. 7) and
the corresponding formal solutions (24. 5. j).

I. The functions PI(U,V) and QI(M, v).

The differential equations satisfied by P^U, F) and Q^U, V)
are given by the equations (24. 2. 1) :

+ C12Q + R19 xQ'=-Q + C21P +
7, F), R^R^U, F), S^S^U, F) .
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The functions U and V are the same as those defined in 14.
As we have just seen, the functions P§(u, v ) and Q0(z/, 0) are
holomorphic and bounded in (u, 0) for

(26.1) |«|<6', M<6'.

Hence, by definition of the functions CtJ(u,v*)9 R^u.v^), Si(«, 0),
these functions are also holomorphic and bounded in (u, v") for

the domain (26. 1) and we have

(26.2) C,/0,0)=0.

Moreover, the equations above admit a formal solution

(24.5.1) P~E P^U'V' , Q-SQ^y.
M k,l

We introduce an auxiliary variable w by

(26.3) w = UnV».

As we have already seen in 11, x, U and V are considered as

functions of w. Let x(w*), U(w~) and V(w*) be these functions.
Then, they are the solution of the differential equations

- , ---
aw aw

= ma + n/3+ (ma!

such that x = x0, U=u° and V=vQ at w = w°( = uQmv°n'). Here,
if, t>°) is an arbitrary point in the domain (14.3).

By a direct calculation, we can prove the following :

Lemma, The formal series

(26.4) P~2 Pxwt^y', Q-HQ™U«V*

are a formal solution of the differential equations

(26. 5)

= -P+CU(Z7,
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al(tT, F)P+C22((7, F)Q

Conversely, let f(U, F) trad #(£/, F) 6e ^0 solution of
(26. 5). T/zew, £&£ functions f(U, F) a^rf #(£/, F) #re a solution
of the equations (24.2. 1).

In order to invetigate the analytical meaning of the formal
solution (26.4), we put

k+l<N

and apply a transformation of the form

(26.6) P=p + P^(U, F)3 0 = g + QC J V )(^F).

Then, the transformed differential equations can be written in
the form

(26. 7)
_ _ _
dw

+ Fn(U, V)q + S?(U, F) .

Here, the functions Fii(u,v'), R*(u,v~) and S*(u, i>) are holo-
niorphic and bounded in (u, v ) for (26. 1) and vanish at (0, 0).
If we notice that the power series

(26. 8) ~ '' ~^ , ~

are a formal solution of (26. 7), it is not difficult to verify that
inequalities of the form

are satisfied for (26. 1). Here A is a positive constant inde-
pendent of N and BN may depend on TV.

Put
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(26.9) p-qex

Then, we have

(26

The function exp( — /4(w;)) has the same asymptotic behavior
as the function x(wy, where j is a positive integer. Hence,
by Lemma 3. 2 in 11 we have the inequalities

S
ds 2\ma + np\ w\

and

d
ds

— Ol/™^, i ™0\ l* ,« |2 U ^ I ~i~ I

cw ^Ae curve F^ defined in 10, (/" ^^ point (UQ, t;0) z*5 contained
in the domain

(26.11) H <50, M<60 , M"!;11

Using these inequalities, we can assert that : The system
(26.10) admits one and only one solution r)=YN(U,V}> f =
ZN(U,V") such that YN(u,v^) and ZN(u,v*) are functions holo-
morphic and bounded in (u,v^ for a domain \u\<bQ

N,
umvn^X^c°^ and satisfying there the inequalities

where w = umvn and KN is a certain positive constant.
The proof of this assertion is almost exactly the same as

that of Theorem 4 in 42 in M. Iwano pf], if we notice that we
can assume without loss of generality that

We omit therefore the proof. (The present case is not convergent !)
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By virtue of this assertion, we see that the differential
equations (26.5) admit a solution P=P1(C7, F), Q = Q£U, F),
where PI(U, #) and QI(M, #) are functions holomorphic and bound-
ed and asymptotically developable in the power series (26. 4),
where we replace (£7, F) by (u, i;), for the domain (26. 11) with
£o = sup65v, c0 = supc°v . Then, by the lemma, P^U, F) and
Qi(U, F) are a solution of (24.2.1) with the desired properties.

II. The functions P3(u,v} and Qj(u,v) O'^2).

The method to determine these functions is quite the same
as before. The differential equations (26. 5) must be replaced
by

(26. 12. ;)

, F), R, = R£U, F), Sj-SjdU, F) .

Here, the functions Rj(u, 0) and S3(u, v~) admit not convergent
but asymptotic expansions in powers of u and v as (u, v ) tends
to 0 in the domain (26. 11).

Observe, by the lemma, that this system admits a formal
solution similar to (24. 5. 7) :

(26.13.;) P-HP^V1, Q-^QjklU*Vl.
k,l k,l

We make apply succesively transformations similar to (26. 6)
and (26. 9), where A(w} must be replaced by jA(w}.

Repeating word by word the discussion in I, we can
determine the functions P3(u, ^) and Q^u, z;) in such a way that
the expressions P3(U, F) and Q3(U, F) are a solution of the
system (26. 12. 7) admitting asymptotic expansions of the form
(26. 13.;) for (£7, F) in the domain (26. 11).

Then, by the Lemma, the functions Ps(u,v} and Qj(u,v')
thus determined satisfy the conditions stated in Theorem 4. 3. 1.
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Thus, Theorem 4. 3. 1 has been completely verified for Case

A.

Remark. As can be easily verified, in the case when m = 0

(or ?2 = 0), the domain (26.11), where the functions P}(u,v) and

Qj(u> 0) O'^l) are defined, contains the point u = 0 (or the point

# = 0) as an inner point.

We can assert that these functions are developable in uni-

formly convergent power series of u (or 0) according as m = 0

(or ^ = 0).

We shall give a brief sketch of the proof for j = l in the

case m = 0.

Let («°, 0°) be an arbitrary point in the domain (14. 3") and

define the functions U and V as before. We rearrange the

formal power series (26. 4) in the form of a single power series

of U as follows :

(26.4)* P~S
I

where

Insert the formal solution (26.4)* into (26.5) and observe that

ldw ' dw

dV

The resulting equations are formal power series of U whose

coefficients are functions of V. Equating the coefficients of

the terms U1 of these equations and replacing V by v, we obtain

the linear differential equations satisfied by the functions AOO

and qi(v). If we pick up their leading terms only, they are
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written in the form

Therefore, the functions pi(v) and gz(0) are uniquely determined
as solutions of these differential equations in such a way that
they admit asymptotic expansions in the form (26. 14. /) for

, Q<\v\<bf .

Then, by the discussion in I, we see that there exists a solution

(Pi (£7, F), &(?/, F)) of (26. 5) which admit asymptotic expan-
sions in the form (26.4)* as (£7, F) tends to 0 in the domain

\u\<d0, t;we®(c0).

However, the point u = 0 is an inner point of this domain. From

this it follows that the formal solution (26.4)* is uniformly

convergent for (Z7, F) in the domain above.
This proves the assertions stated in the Remark following

Theorem 4. 3. 1.

Section IV. Proof of Theorems 4. 3- 2 and 4. 3. 3.

27. Preliminaries.

Since the discussion for Theorem 4. 3. 3 can be carried out in
quite a similar way, we discuss the proof of Theorem 4. 3. 2 only.
And, we must discuss Case A and Case B separately. But,
since the discussion for Case B is almost similar to that for
Case A, we consider the Case A only.

If we differentiate the formal solution (III. 2) term by term,
then we have

(27.



78 Masahiro Iwano

where

(27 2) ,dx dx dU dx

Thus we have

e, y,
(27. 3)

I t, y, -ax

where /(#, y, 2) and g(x, y, z) are functions holomorphic and
bounded in (x,y,z) in a neighborhood of (0,0,0).

Observe that, in the case when n>0, the expression xUf

depends on both of U and V, while, in the case when n = Q, it
depends on U only.

Substituting the formal series (III. 2) for y and z appearing
in the left-hand members of (27. 3), we obtain formal identities
between formal power series of V whose coefficients are func-
tions of x and U. Comparing the coefficients of the terms
V1 (/^O) of such formal identities, we can find the relations
which the coefficients Pz(#, £7) and Qt(x, J7) must satisfy. A
simple calculation shows us that these relations are given by the
following differential equations :

Case wlien n>0 :

(27. 4)

<rarf

O 71

c, £0 ,
/rr

(27. 5. /)

with
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, u) = _/(#, P0(#, it),

dy

t-^x, u) - (l-2n)/3fuzmPl_2n(x, u)

l_zn(x, u)

fu^Ql^n(%, u)

Here 3JZ(^, «) (or <?z(#, w)) /s ^z linear form of the partial deriva-

tives |. f(x,PQ(x,u), Qo(^w))

/or k' + l'^l; (Jkr, O^ (1,0), ^(0, 1), ^/zose coefficients are

polynomials of the functions Pr(x,u) and Qi>(x,u) for l^/'</.
Moreover, as we have already seen, these partial differential

equations admit a formal solution of the form

(27. 6. /)

where the coefficients Pf\u), Q?\(u), Pf(u) and Q^(«) are
the same functions as those that appeared in Theorem 4. 2. 2.
Consequently, they are functions holomorphic and bounded in a
circle \u\<b'0.

Case when n = 0 :

In this case, //z# partial differential equations (27. 4) and

(27. 5. /) mz£s£ be replaced by :

(27.7)
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(27.8./)

Moreover, these differential equations admit a formal solution

of the same form as (27. 6. /), where the coefficients P$f («) and

Q5?(«) must be replaced by functions holomorphic, bounded and
asymptotically developable in powers of u for

(27.9) |

28. Determination of the coefficients Pt(.x, u~) and Q{(x, u~) for /^>0.

The formal solution (27. 6. /) can be written in the form

(28.1.0 P,~E

Then, by Theorem 4. 2. 2, the coefficients pi,j(u) and qlfj(u) are
functions holomorphic and bounded in a circle |w <#o or func-
tions holomorphic, bounded and asymptotically developable in
powers of u for an angular region of the form (27. 9) according
as we have (n>Q or ^ = 0 and / = 0) or (^ = 0 and y^l).

The partial differential equations (27. 4) and (27. 5. /) can be
considered as ordinary differential equations if we regard u as

a parameter. Therefore, they are ordinary differential equations
with a singularity x = Q similar to the regular singular point of
the linear system. It is known that, if its formally holomor-

phic solution exists, it is actually holomorphic. Hence, the for-

mal solution (28. 1. /) is uniformly convergent for

(28.2) \x <a'0, \U\<b'Q

and represents a solution of the corresponding differential equa-

tions. We denote by Pz(#, C7) and Qz(x, U") such solutions.

Then, the functions Pz(#, u) and Qz(#, u) are clearly developable

in uniformly convergent power series of x and u for the case
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when n>0.
In the case when n = Q, we can assert that the formal solu-

tion (28. 1. /) is uniformly convergent for

(28.3) \x\<a'Q, |marg!7+arga]< 0<\U\<b'0

and represents a solution of the corresponding differential equa-
tions.

For the proof of this assertion, we have to establish a
lemma similar to the Lemma 3. 2 in 11 for solutions of the
differential equation

(28. 4) xu = um+l(a + aum^ .

We notice that, since n = Q, the function U appearing in the
differential equations (27. 7) and (27. 8. /) and their formal
solutions (28. 1. /) is a solution of (28. 4).

Let 3)(c0) be the set of points w satisfying the inequalities

9_<argw<6+, 0< w\

where

and the function d(<p, c) has the property similar to d(<p, c)
appearing in 14. We denote by U=U(x,%Q,uQ^ the holomorphic
solution of (28.4) satisfying the initial condition U=u° at % = XQ.
Here, (#0 , &°) is an arbitrary point in the domain

(28.5) \x\<a'0,

This solution can be parametrically represented as follows

where £(«;) is the holomorphic solution of

2 dx _ %
dw ma + mafw
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such that X = XQ at W = WQ ( = (&°)™). Moreover, the elimination
of w from these two relations yields U=U(x,xQ,uQ~) provided
that the point (#O ,M°) is in the domain (28.5) (See 11).

The lemma which we intend to establish can be stated as
follows :

Lemma. Let w° be an arbitrary value such that

Then, there exists a curve r*0, which starts from the point WQ

and approaches 0 in the sector |arg^ + arga ^-^-2S0, such that,
Lt

on the curve /\*0, we have the inequality

Here, s is the length of of the curve F*0 measured from the origin
to the point w°.

The proof of this lemma can be carried out in quite a
similar way as that for Lemma 3. 2 if we replace 6L and 6+ by

<§_ and 0+ in the formula (12. 24).
By virtue of this lemma, the proof of our assertion men-

tioned above is almost exactly the same as that of Theorem
5. 3. 1 in Chapter V. We therefore omit the proof of the assertion
for n = 0.

Remark, For Case B, the expression xUf depends on both
of U and V even if n = 0. Therefore, the differential equations
(27. 7) and (27. 8. /) must be replaced by partial differential
equations. We have, for example,

= /(^ P., Qo) ,

=£(*, P0) Q0)

and there exists a formal solution
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Let U= U(x, XQ , w°) be the holomorphic solution of the diffe-
rential equation

satisfying the initial condition U=u° at X = XQ. Then, we can
easily verify that the formal series

are a formal solution of the differential equations

Hence, the proof of the uniform convergence of this formal
solution is the same as that for Case A and n = Q.

Part III. The analytical meaning.

This part will be devoted to the investigation of an analy-
tical meaning of formal solutions of diverse types which have
been already studied in Part II.

Chapter V. Convergence or asymptotic development

29. Main Results.

In the preceding chapter we have obtained formal solutions
of the system (1. 1) of diverse types, namely (I) (Theorem 4. 1),
(II. 1) (Theorem 4. 2. 1), (II. 2) (Theorem 4. 2. 2), (II. 3) (Theorem
4.2.3), (III. 1) (Theorem 4.3.1), (III. 2) (Theorem 4.3.2), (III. 3)
(Theorem 4.3.3).

In this chapter, we shall study an analytical meaning of
these formal solutions. Let U and V be the same functions as
those that appeared in 14 in Chapter IV and let 3)(c) be the
angular region defined by (14.2).

The results which we intend to establish can be stated as
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follows :
Theorem 5. 1. There exists a solution (y,z*)

W(%, U, F)) of the system (1. 1) such that @(x, u, 0) and W(x, u, v)
are functions holomorphic and bounded in (#, u, v} for

(29.1) \x\<a'Q, \u\<bl, \v\<bl, umvn^<S)(c'd

and, moreover, admitting asymptotic expansions of the form of
(I):

( «P(*, u, iO
CO

I Wx u i

^5 (X ^, v) fe^rfs ^o 0 f'w ttg domain (29.1), where a'^ b"Q and c"Q

are suitably chosen positive constants.
In the case when n = Q, the domain (29.1) must be replaced

by

(29.2) \x\ <a"Q, \v\<b"0, um^^)c"Q.

In the case when m = 09 the domain (29.1) must be replaced
by

(29.3) \x\ <a'0, \u\ <6'Q, vn^^c'^.

Remark, The point (w, t;) satisfying the inequalities (29. 1)
is located on the product space of the Riemann surfaces of log u
and log v.

The asymptotic expansion (F) means that, for any positive
integer N, we have an inequality of the form

(F) |0(*,w,tO-«- H PMXJU*VI\^KN(\X\N+\UN+\V\^
JTk+l<K

for any (#, u, 0) in (29. 1), KN being a certain positive constant
which may depend on N.

Theorem 5. 2. 1. The differential equations (1. 1) have a solu-
tion (.y, O = (#(#, U, F), ¥(x, U, F)), where ®(x, u, v} and W(x, u,
v} are functions holomorphic and bounded in (x, u, v*) for (29. 1)
and, moreover, asymptotically developable in the form of (II. 1) :
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, u, v)
(II. 1')

V (*, M, t»)

uniformly valid for \x\<a"0, as u and v tend to 0 in the domain
(29. 1), where PSX#) flflrf QI?(#) ^^ holomorphic and bounded
functions of x for \x\<a'Q (.a^a"^).

Remark, The asymptotic development means that, for any
positive integer N, an inequality of the form

(II. 1") \0(X,U,V)-U- I] P2W«*^#*(M*+IO
k+Ktf

is uniformly valid for (29. 1). Of course, .K^ depends on N
only.

Theorem 5. 2, 2. Tfe system (1. 1) possesses a solution (j, 2)
= OP(ff, £/", F), F(X C7", F)), ^^r^ (P(^, u, 0) a^rf ?T(^, w, tf) are func-
tions holomorphic and bounded in (^, w, f ) for (29. 1) 0^rf admit-
ting asymptotic expansions of the form of (II. 2) :

(II. 2':
13

uniformly valid for \u\<b"0, as x and v tend to 0 m tt^ domain
(29. 1), where the coefficients are the same functions as those
appearing in Theorem 4. 2. 2. .

If n = Q, the formal series (II. 2') are uniformly convergent
in a domain (29. 2) so /Aaf, if we replace u and v by U and V
respectively, their sum ($(#, C7, F), ^(^, C7", F)) represents a solution
of the system (1. 1).

Remark. This asymptotic expansion means that, if we write
the formal series (II. 2') in the form

(II. 2'. 1) 0-^ + 2 jM>)*V, ^«0 + I3?*(H)*V

with

C/=0),
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, , (Q&O) (7 =
qn(.u) =

' Q

an inequality of the form

(II. 2") |<P(*,K,tO-«- 2
j+KN

is uniformly satisfied for (29. 1), where N is any fixed positive
integer and KN is independent of x, u and v.

Theorem 5, 2B 3. There exists a solution (.y, 2) = ($(#, t/, F),
$"(#, [7, F)). Here $(x,u,v*) and ¥(x,u,v^ are functions holo-
morphic and bounded in (#, u, t>) for (29. 1) and uniformly asymp-
totically developable in the form of (II. 3) :

(II. 3')
2

o 0 /« //z^ domain (29. 1), where the coefficients
are the same as those that appeared in Theorem 4. 2. 3.

In the case when m = Q, these formal series (II. 3') are uni-
formly convergent in a domain (29. 3) and their sum represents
a solution of the system (1. 1) if we substitute U and V for u
and v respectively.

Remark, The meaning of this asymptotic expansion is
similar to that explained in the preceding Remark.

Theorem 5. 3. 1. There exists a solution (j, z) = ($(#, U, F),
W(x9 U, F)) such that $(x, u, 0) and W(x, u, v} are functions holo-
morphic and bounded in (#, u, u) for (29. 1) and admitting uni-
formly convergent expansions of the form of (III. 1) :

(III. I')
, u, v) =

Here the coefficients are the same as those appearing in Theorem
4. 3. 1.
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This means that the formal solution (III. 1) is uniformly

convergent for (#, U, F) in the domain (29. 1) and represents

a solution of the system (1. 1).

Theorem 5. 3. 2. The system (1. 1) possesses a solution (j>, z)

= ($(*, Z7, F), r(#, C7, F)) s&c/z f/wtf 0(*,«,*0 and W(x,u,v) are
functions holomorphic and bounded in (#, u, v~) for (29. 1) and,

moreover, admitting uniformly asymptotic expansions of the form

of (III. 2) :

(III. 2;)

as v tends to 0 in the domain (29.1), where the coefficients are

the same as those that appeared in Theorem 4. 3. 2.

If n = Q, the formal series (III. 20 are uniformly convergent

for (29. 2) and their sum represents a solution of the given system

if we substitute U and V for u and v respectively. This means

that the formal solution (III. 2) is uniformly convergent and

represents a true solution for (#, E7, F) in the domain (29. 2).

Remark. This asymptotic expansion means that, for any

positive integer N, we have an inequality of the form

N-l

CHI 2//>) \0(x u v^ T"1 P^Cx ii}vl\<^.K v\N

z=o '

uniformly in the domain (29. 1), KN being a certain positive

constant.

Theorem 5.3.3. There exists a solution (.y, £) = $((#, t/, F),
¥(x, U, F)) such that 0(x, u, 0) and W(x, u, 0) are functions holo-

morphic, bounded in (#, u, v") for (29.1) and uniformly asympto-

tically developable in the form of (III. 3) :

(III. 30
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as u tends to 0 in the domain (29.1), where the coefficients are
the same functions as in Theorem 4. 3. 3.

If m = Q, the formal series (III. 3') is uniformly convergent in
a domain (29. 3) and their sum represents a true solution of the
system (1.1) if we replace u and v by U and V respectively.

Remark, This asymptotic expansion has a meaning analo-
gous to that explained in the preceding Remark.

These theorems will be proved by our usual method for
endowing the formal solution with some analytical meaning.
According to the very general character of our method, all
these theorems are proved in quite a similar way. Hence, the
detailed proof will be given for Theorem 5.1 only. For the
remaining theorems, we shall only state the outline of the proof
to avoid the repetition of similar lengthy reasoning.

Section I. Proof of Theorem 5.1.

30. Peliminary transf ormation.

Put

2]
(30.1) j+k+l<N

Since P^(#, u, v~) and QN(x, u, v^ are polynomials without con-
stant terms, for any given positive constants b and #i«6), we
have the inequalities of the form

(30.2) max

for

(30.3)

if aQ and d0 are suitably chosen. Moreover, we can suppose
without loss of generality that the right-hand members of the
differential equations
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(1.1) */ = /(*,^,z), xz' = g(*,y,z)

are functions holomorphic and bounded in (#, y, z) for

\x\<a09 \y\<b09 \z\<b*.

Let us make a transformation

(30.4) j> = *7 + P*(*,tf,TO, z = t + av(*,t/,F),

where ([/, F) is a holomorphic solution of the reduced system
(2. 3) or (2. 3') (according as we have Case A or Case B) defined
in 14. Then the differential equations satisfied by rj and % will
take the form

(30. 5) xrf = F^x, U, F, ^ ?) , yg = G*(*, C7, F, ^, f) ,

where

FB(X> U, V, rj, f) ^f&Tj + Pxtx, U, v), £ + Qx(x, U, 0))

— rV. P
dV N'

, u, v, rj, £)=>g(jx, j] + PN(x, u, v~), £ + Qa(.x, u,

Here, ocUr and xV must be replaced by the expressions appearing
in the right-hand members of the reduced form (2. 3) or (2. 3')
(according as we are in Case A or Case B).

Hence, we see readily that FN(x, u, v, 97, 0 and G#(x9 u, v, ?;, §")
are functions holomorphic and bounded in (#, u, v, TJ, £ ) for

(30.6) \x\<a0, \u <h0, \v <bQ, \y\<bl9 \£\<f>1.

It is clear that the differential equations (30. 5) have a
formal solution of the form

(30.7) v- H PjvxWV*, ?~ 2 Qj»x'U*Vl
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with

(30.8) Pooi-0, Qow-0.

Noticing this fact and that the functions /(O, y, z) and
g(Q, y, z) are of the form

I /(O, y, z) = y+VCa + Sa)

U(0, y, 2) = yz-^GS + S«'

we can easily verify that inequalities of the form

(30. 9) \Fs(x, u, v, r,, f) |^4(|*| + \u\m\v

(30.9')

(30. 10) FH(JK, u, v, n , rO - Fs(x, u, v, ?)2 , ?,) |

(30. 10') jGjrC*, «, », >/!, fO -G,(*. U, V, r j 2 ,

satisfied for (30.6), provided that rj and f satisfy the condi-
tions

(30. 11) |?7|^C(|tf| + |w|) , |£|^C(|#| + |#|) ,

where C is a positive constant. Here A is a suitably chosen
positive constant independent of (#, u, v, 97, f, AQ, while BN depends
on N.

Remark. The first two expressions in the right-hand mem-
o

ber of (30. 9) can be obtained from the estimation of



On a singular point of Briot-Bouquet type 91

, y, z) for (y>z = (' + Px(x>u>v*>£ + Qx(x>u>v underand

the condition (30.11). And, the last one follows from the fact
that, in the ^-component of the formal solution (30. 7), the terms
independent of x contain U as a factor and that (C7, F) is
a solution of ther educed system (2.3) or (2.30-

In the case when n = 0 (or m = 0), we replace the expressions

\v n and \v\n~l (or \u m and \u\m~1} by 1.
The condition (30.11) will be naturally satisfied because of

the conditions (30. 8).

31. Auxiliary theorem and proof of Theorem 5. 1.

In order to prove Theorem 5. 1, it is sufficient to prove the
following auxiliary theorem :

Auxiliary Theorem. The system (30. 5) admits one and only

one solution (77, f) = ($>N{x, U, F), (pN(_x, C7, F)), where <f>N(x, u, t>)

and <f'N(x, u, #) are functions holomorphic and bounded in

(#, M, v) for

(29. l)jy \x\<a"N, \u\<b"1,, \v\<b'N,

and satisfying there the inequalities

(31.1) ]<^(#> u, v)\^KN{\x ^ + ( i ^ j +

j,, is a certain positive constant such that

(31. 2) ^(tf 7 + 2a[. b',;-1 + 2b[l )< b, .

Indeed,

^C*. U, F) =^(^, ?7, F) + P^x, U, F) ,
I Za(x, U, V~)=^(.x, U, V) + QN(x, U, F)

represent a solution of the original differential equations (1. 1).
We shall show that YN(x, U, F) and ZN(x, U, F) are independent

of N. In fact, for any Nf>N, if (#, U, F) is in the intersection
of the domains (29. 1)^ and (29. 1)^, ,
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rdx, U, F)=c^O, U, F) + P^(*, U, V)-P*(x, U, F) ,
jrdx, U, TO = &*'(*, U, Vl + Q^dx, U, V)-Q*(x, U, F)

are also the solution of the system (30. 5) satisfying the condi-
tions of the Auxiliary Theorem. Hence, such a solution must
be equal to (<f>N(x9 U, F), ^>(tf, U, F)). From this it follows that

jrG*;, w, 0) = ZJSrO*;, M, tOCEE?^*, M, t;)) ,

if (#, M, i;) belongs to both (29. 1)^ and (29. 1)^ . By the analy-
tical continuation, these identities hold for (#, u, v*) in the union
of these two domains. Therefore, the functions @(x, u, v~) and
¥(x,u,v^) are defined in the domain (29.1) with #o = sup^5

#o = sup#^, c'o = $upc"N. This proves Theorem 5.1.
So, for the proof of Theorem 5. 1, we have only to prove

this auxiliary theorem.
Let |? be the family of the pairs {y>N(oc, u, 0), ^${00, u, v~)} of

functions <pN{x, u, #) and ^(#> #> ̂ )? which are holomorphic and
bounded in (#, u, v*) for

(29. !)„ \x\<a"N, \u\<d'N, v\<b°N, u™vn^(c"N^

and satisfy there inequalities of the same form as (31. 1) and
(31. T) respectively with (31.2).

The domain ®(c) has been already defined in 14. Let

(31. 3) U= U(x, x, , u\ v^ , V= F(*5 x, , u\ v^

be a solution of the system (2. 3) or (2. 3') holomorphic and satis-
fying the initial conditions: U=u° and V=v° at # = #03 and put

| (PjyOo, u", v°~) = \ Fs(x, U, V, g)N(x, U,
(31. 4)

T,V,>

Here (#0,^°, #°) is an arbitrary point in the domain (29.1)^ and
the integration is to be carried out along the curve Fxo which
has been already defined in 10.
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Then, the mapping Z is defined as follows:

(31. 5) {<pN(x, u, v), ^(x, u, 0)} 5> [®N(x, u, v), ?P^(*, M, 0)} .

Since {0,0}eg1' S zs ^°^ empty. Moreover, as can be readily
verified, the family % is convex, closed and normal.

On the other hand, owing to Theorem 3 or Theorem 3' in
9 (according as both of m and n are positive or one of them
is zero), the values of the functions x, U and V remain always
in the domain (29.1)^ when x lies on the path FXQ.

Hence, the integrands of the integrals (31. 4) are well defin-
ed when % is on this path except for # = 0. Moreover, as we
shall show later, the integrals (31. 4) converge uniformly. This
assures us that the mapping £ has a well-defined meaning.

Our proof of the Auxiliary Theorem (and Theorem 5.1) is
based on the existence of a fixed point of this mapping (see,
for example, M. Hukuhara QO]).

Remarks,,
1°. Here we have supposed that both of m and n are posi-

tive integers. However, in the case when one of them is zero,
the domain (29. 1)^ must be replaced by a domain (29.2)^ or
(29.3)^ similar to (29.2) or (29.3) according as n = Q or m = 0.

2°8 As can be easily seen from the proof, the constants
a"N, b"N, c"N, N and KN in the auxiliary theorem must be so chosen
that they satisfy certain inequalities (see (34.5), (34.11), (34.10)
and (34.100).

3°a To complete the proof of Theorem 5.1, it remains for
us to prove the inequality (I") (see the remark following
Theorem 5.1). This inequality can be verified as follows:

We take first an integer N' satisfying the inequalities
remarked above and the inequality Nf>N. Then, by the auxi-
liary theorem, we have an inequality of the form
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The last expression is dominated by

provided that

\x\ 4- \u\ + H<1 •

Therefore

\0(x, w, t>) - I] Pjklx
jufcvz\

J + L-il<K

< 2 \PwxWv!\ + KN ^\x\N'-1+ \u

for a certain positive constant KN, if we notice that

This proves the inequality (I").

320 Auxiliary lemmas.

Before going into the essential part of the proof, two lem-
mas must be established.

We make the following Assumptions :
i) S is a simply connected domain in a complex plane such

that the origin is an inner point.
ii) ®r is a simply connected domain in the product space

of r complex planes.
iii) £v is a simply connected domain in the product space

of r complex planes.
iv) gj(x,y1,~',yjff') O' = l, 2, • • • , L) are functions holomorphic

and bounded in (#, .Vi, • • • , jy^) for

Xe^S, 0>i, '"

v) A f c O ^ M i , - - - , ^ ) (£ = 1,2, "-,M) and &(#, MI, • • • , w*) 0" =
1, 2, • • • , j/V) are functions holomorphic and bounded in (#,#! ,••• ,

(D) xe'S,
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vi) Uk = Uk(x,x0,u
Q

1,--,u°M) (£ = 1, 2, • • • , M) is a solution of

the differential equations

(E) *-^-**(*, HI, ••-,«*) (* = !,-, M)

such that Uk=*Uk(x0,x0,u
0^ (& = 1, "-,M), where ( t f 0>&°) is an

arbitrary point in the domain (D).

vii) The integrals

(I) 0/*oX,-, <)=0/*o, «°)

converge uniformly. Here /^ is a curve in ® joining the

origin with XQ such that (#, C/l5 • • • , U^) remains in the domain

(D) when x is on this path.

viii) If x'Q is sufficiently near to x0, the relations

are satisfied. Here the last integration should be taken along

the segment joining x'0 with XQ.

Lemma 5. 1. 1. #/#, U)=0j(x, Ul9 • • - , C/M) O" = 1 , - - - ,L) fs ^

solution of the differential equations

= (; = 1,-,L)
UA

P^(0, u*, • • • , UM~) =0, where

Ui == iim i.-'iv^-^j ^o? ^i? " " " 5 MM) '

Lemma 5.1.2. If the integrals (I) converge uniformly with

functions holomorphic and bounded in (#, ul9 • • • , «*) ^ ^^ domain
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(D).

These lemmas were established by M. Iwano [1] when the

point x = Q is on the boundary of 2). Since the discussion goes

essentially the same way for our case, we omit the proof here.

33. Proof of the Auxiliary Theorem.

We shall prove the following four propositions.
Proposition 50 1. 1. The mapping Z transforms g into itself.

Proposition 5= 1. 2. Z is a continuous mapping of g with

respect to the topology of uniform convergence.

Suppose that these two propositions have been verified.

Then, by combining the fact mentioned in 31, we can conclude,

by means of a fixed point theorem, the existence of a fixed

point of the mapping Z, namely the pair {<pN(x,u,v*),'\lrN(x,u,v')}

of g such that

Then we can prove the following proposition :

Proposition 5e 1. 30 The element {^y(#, U9 F), ^(x, U9 F)} of

g corresponding to a fixed point of Z is a solution of the given

differential equations (30. 5).

This means that there exists a solution of the system (30. 5)

in the family g. We shall denote it by {<k,(#, U9 F), ^yO, J7, F)}.

Then we can prove our final proposition.

Proposition 50 1.4. The solution {$>N(x, U, F), <fN(x9 U9 F)} of

the differential equations (30. 5) such that

/5 unique.

Thus, for the proof of the Auxiliary Theorem, we have only

to prove these four propositions.

34. Proof of Proposition 5. 1 .1.

For the proof we must show that
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(a) The integrals (31. 4) converge ;
(b) We have the following inequalities :

(c) <?#(#» ^, 0) tf/zrf V*/(x, u, 0) are functions holomorphic and
bounded in (#, u, v*) for (29. 1)^ .

Replacing 77) and |f| (in the right-hand members of (30. 9)
and (30. 9;)) by the expressions of the right-hand members of
the inequalities (31. 1) and (31. T) respectively, we have the
inequalities

(34. 1) \FN(x, u, v, <pN(x, u, v), ^O, u, v^\^%N(x, u, v} ,

(34. ir) \GN(x, u, v, <pN(x, u, v), ̂ (^, u, f)) | ̂ ©^(#, M, t;) ,

where

(34.2) %N^u,v^~{A(2\x +\u\m\v\n+\u
+ {A(2\x\ + \u\ + |t; | + \u u

} ]^|TO+1|?;

(34.20 ®^,«,f;) = {A(2|^|+ u\m-l\v\n+l+\um\v\n^KN + BN} x\*
u\+ v\+ u\m-l\v\n

To prove the proposition, we introduce an auxiliary variably
w defined by

(34.3) w = UnV».

Then, as we have already seen in 11, x, U and V canbe
regarded as functions of w which were written as x(w*),
U(w} and V(w*) respectively. Moreover, we have identities of
the form
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dx ( \F*\ 1 dw(34. 4)

(see (5. 2) in Theorem 2. 1 in 5), where FKO and F*o are the paths
already introduced in 10 and

FN = FN(X, U, V, <pN, i/Ttf), GN = GN(X, U, V, <p;v> TJrjy) ,

£* = ?>*(*, U, V), ^ = ̂ (#, U, F) .

It is to be noticed that, as x tends to 0 along the path FXQ,
w tends to 0 algon the path F*0 (see Theorem 2.3 in 5) and
that the part of the path F*0 which is sufficiently near to the
origin consists of the segment denoted by F" (see (10.6), (10.7)
and (10.9)).

As we have already seen, we have

21= *-^, 33 =ma + nft

on the segment F" (see Theorem 2.1 in 5) and the function
x(w^ tends exponentially to 0 along the segment F" (see
Theorem 2. 3 in 5 and also 8 and 10). Hence, if N satisfies
the inequalities

(34.5)

we see by (34. 2) and (34. 2;) that the integrals

convergent, which, by (34.1) and (34.1'), proves the conver-
gence of the integrals (31.4).

Thus we have proved (a).
To show that (b) holds, it is sufficient, by (34. 1), (34. T)

and (34.4), to prove that:
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dw

(34. 60
\-fnm-T-ftp\ j f

<KN{\x0\
N+(\x0\ + \vQ

if we notice that, for sufficiently small \w\,

(34. 7) \ma + n(3 + (ma' + n$r^w\^—\ma + nf3\ .

Let 5 be the length of the arc r*0 measured from the origin

to an arbitrary point w on F*Q. Then, as we have already
shown, we have

dw
ds

= 1.

(See (12.5) and (12. 12) in 12). Hence, the inequalities (34.6)

and (34. 6') are equivalent to

and

(34.80
respectively. These inequalities can be derived from the ine-

qualities

(34. 9) - 2&,(*, U, F)

and

(34. 90
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on the curve F*0, since w = UmVn.

By virtue of Lemma 3.2 in 11 and since p=|
we have

ds u ' M '
^ sin <$o

x min(|a|,

+ -

and similarly,

xmin(|a ,

Therefore, since %N(_x, u, v~) and ®(x, u, w) are defined by (34. 2)
and (34. 2') respectively, we see that (34. 9) and (34. 9') are an
immediate consequence of the inequalities

|*| + \U\m\V\n+ |f/|m+1|F|"-1)

*A(2W + \U\ + \V\ + \Um+\

8AKN + 4Bx<Nmm(\a\, |/3|)sin

and

+ 45, < sin So- A,,
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respectively.
We take first the quantities N, I/a"N and \/b'N so large that

the following two inequalities are satisfied :

8A< Nmm(\a\, |/3|)sin S0 ,

and next KN sufficiently large so that the inequalities (34. 10)
and (34. 10') are satisfied for the values of i(«;), U(w), V(w} in
the domain (29. 1)^. This is evidently possible.

Thus we have proved (b).
In order to prove (c), we consider the following correspon-

dence :
(1) The reduced system (2. 3) or (2. 3') to the equations

(E) in 32;
(2) The integrands of (31. 4) to the integrands of I in 32 ;
(3) The pair {$#(#, u, 0), ¥#(x, u, t;)} of the functions

<Py(X M, 0) and WN(x, u, 0) defined by (31. 4) to the system
{®i(x,ul9 • • - , UM), • • • , ^(a:, «i, •••,«j t f)} of the functions
Mj,) defined by the integrals (I) ;

(4) The path rro in (31. 4) to the path r,,0 in (I).
Then the relation (R) in 32 becomes

(34.12) ( F^x,U,V,<pN,^N^=\ F
X̂,

XQ

and

(34. 120 G»(x, U, V,

We suppose that these relations are verified. Then, since
the assertion (b) just established assures us the uniform conver-
gence of the integrals (31.4), we see that (c) is an immediate
consequence of Lemma 5. 1. 2 in 32.

Therefore, to obtain (c), it is sufficient to prove that the
relations (34. 12) and (34. 12') are satisfied.
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Let f(p) and |'(p) be the points of intersection of a suffi-
ciently small circle \x =p with the paths FXQ and FX'Q respec-
tively. Then, to obtain (34.12) and (34. 127) it is sufficient to
show that

ff'Clo) ft/y

(34.13) ( " ax

X

as p-»0, where the integration should be taken along the arc of
the circle \x =p.

To prove (34. 13), let us introduce again an auxiliary variable
w by the relation (34.3). Then, (34.13) will be reduced to

(34.14) GN >0,

) = (ma + n$ + (ma! -

where FN and GN are the same functions as those appearing
in (34.4), and the integration should be taken along a curve
L(wl9w'1') which will be defined as follows:

Let

where (u°, 0°) and (u°, v° ) denote the values of (U, V) at x = x0

and x = x'Q respectively, and we determine the curves F*0 and r*0,
in the same way as in 10. The paths FXQ and FX'Q are respectively
the images of the curves F*0 and F^0, by the transformation
defined by the first relation of (5. 3) (where C± must be so chosen
that this relation holds for x = x0 and w = w°~). Then, the curve
L(W!, wO must be so chosen that an image of this curve by the

same transformation becomes the arc f(p)f(/o).
If p is sufficiently small, the point of the curve L(wl9 w'i)

is located in the sector

in which the function x(w^ tends exponentially to 0 and the
functions U(w^ and V(w*) satisfy the following condition (see
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Theorem 2.1 in 5) : U(w} =O(|w;|ReSi) , F(«;)=O(MRe») .

Since the maximum of |w; for weL(wl9 w'^) approaches 0 with
p, we can verify, as in the proof of (a), that the expressions in
the left-hand members of (34.14) and, consequently, those of
(34.13) converge to 0 with p.

Thus Proposition 5.1. 1 has been completely proved.

35. Proof of Propositions 5.1, 2, 5.1. 3 and 5.1. 4.

1°. To prove Proposition 5. 1. 2, it is sufficient to prove that
if the sequence [cpN,i(,x,u,v^, ^,z(#, u, v^)} tends to 0 with respect
to the topology of g, {$N,i(x, u,v), WN}l(.x,u,v}} also tends to 0.

Since the topology of % is defined by uniform convergence,
this assertion is almost evident from the proof of the assertion
(b) of Proposition 5.1.1.

2°. Proposition 5.1.3 is an immediate consequence of the
assertion that, for any {q>N(x,u,v^, ^N^x,u,v^)}e%, {0jv(#, U, F),
WN(x, U, F)} is a solution of the differential equations

rj' = FN(x, U, F, ^O, C75 F), t*(*> U, F)) ,
f' = G*(*, U, V, ^(*, U, F), t*(*> U, F)) .

However, this assertion can be readily derived from Lemma
5.1. 1 in 32.

3°. Suppose that there exist two solutions satisfying the
same conditions. Let {g>*(#, £/, F),i/r*(#, [/, F)} be the difference
of such two solutions. Then, by virtue of the inequalities
(30.10) and (30.10'), we have

(35.1) \<p*(x,U,V)\£

(35. 1')

dx
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Put

where the point (#, z/, t>) should run over the domain (29. 1)^ .

To obtain Proposition 5. 1. 4, sY is sufficient to prove that
K* = 0.

Suppose that 0< K*< + °o. The definition of K* implies that :

(35.2) |^(^

(35.20 i^c^
Now we substitute the expressions appearing in the right-

hand members of (35. 2) and (35. 20 for <p* and ty* in the right-

hand members of (35. 1) and (35. 1'). Then, the resulting ine-

qualities can be written as

Here, 3^ (#, u>t>) an^ ®N(X, ^> #) are given by the formulae
(34.2) and (34.20 respectively, where we must put KN = K* and

BN = Q. Observe that, in the inequalities (34.10) and (34.100,
the equality sign can never be realized. Hence, we can obtain,

by the same calculation as in the proof of the assertion (b) of

Proposition 5. 1. 1 in 34, the inequalities

\<P*(x,U,V)\<K*{\x\«+(i\x -

From this it follows that K*<K*. Hence, we have 0<K*< + 00,

which is the contradiction. Therefore, K* must be equal to

zero.

Thus we have proved completely Theorem 5. 1.
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Section II. Proof of Theorem 5. 2. 1.

36. Outline of the proof,

We put

X]
(36. 1)

and make a transformation of the form

(36.2) y = rj + PN(x, U, F), z = £ + QN(x, U, F) .

Let

(36. 3) xrj' = FN(x, U, F, 77, ?), x? = GN(x, U, F, 77, f)

be the system derived from the system (1.1) by the transfor-
mation (36.2). Clearly, this system admits a formal solution
of the form

(36.4) *i~ 2

with

(36. 5)

Moreover, we can easily verify that:

1) FN(x, u, v, 7], O and GN(x, u, v, TJ, O are functions holomorphic

and bounded in (#, u, v, rj, f) for

(36.6) | # j<<7 0 j \u\<bQ, v\<bQ, 7j\<bl9 \£\<b1,

where a0, b0 and bl are suitably chosen positive constants;

2) FN{x, u, v, T], f) and GN(x, u, v, TJ, f) satisfy there the inequali-

ties

(36. 7)
~ - .«.
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(36.70 |

and, moreover, we have inequalities of the forms (30.10) and
(30.100 provided that rj and % satisfy the conditions

where C is a positive constant.
Remark. The last term appearing in the expression in the

right-hand member of (36.7) or (36.70 can be obtained from
the fact that the differential equations (36. 3) possess a formal
solution of the form (36.4) with the initial values (36.5) and
([/", F) is a solution of the reduced system (2.3) or (2.30-

37. Auxiliary theorem.

To obtain Theorem 5.2. 1, it is sufficient to prove the
following auxiliary theorem :

Auxiliary Theorem. The differential equations (36.3) admit

a solution (?;, f) = (<^(#> U, F), <^(#, U, F)), where $N^x, u, t>) and
<pjy(%, u, t>) are functions holomorphic and bounded in (#, u, #) for

(29.1)^ \x\ <a"N, \u\<b'N, v\<b"N, sWe®^)

and satisfying there the inequalities

(37. 1)

with

(37. 2)

Moreover, the solution of (36.3) satisfying the conditions
(37.1) is unique.

Indeed, the functions

( Yxdx, U, F)=P,v(*, C75 V)+<MX U, F) ,
1 ZN(x, U, F) = Q*(x, U, F) +^(^ [7, F)

represent a solution of the system (1.1). And, by the same
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reasoning as in 31, we see that these functions are independent
of N if N is chosen so large as to satisfy the inequalities (34. 5).

Thus Theorem 5. 2. 1 has been proved.

The auxiliary theorem can be established without any essen-

tial modification of the reasoning given in 31-35. As regards

the family g, for example, it is sufficient to take the pairs

{g>x(x,u9v*), t\lrN(x,u,v')} of functions q>jy(x,u,v*) and ^N(x9u,v^

such that they are holomorphic and bounded in (#, u, v~) for

(29.1), \x\<a'N,

and satisfy there the inequalities

(37.1')

with (37.2).

Remark. From the form of the formal solution (36. 4), it

seems to me that the inequalities (37. 1) may be replaced by

although I could not prove the existence of such a solution.

However, to obtain Theorem 5. 2. 1, it is sufficient to prove the

auxiliary theorem.

Section III. Proof of Theorems 5. 2. 2 and 5. 2. 3.

38. Outline of the proof.

Since the proof of Theorem 5. 2. 3 is essentially similar to

that of Theorem 5. 2. 2, we shall expalin the outline of the proof

of Theorem 5.2.2 for the case n>0 only.

As we have already remarked in the Remark following

Theorem 5. 2. 2, we must rewrite the formal solution (II. 2) in

the form (II. 2'. 1) in 29 (where u and v must be replaced by

U and TO :



108 Masahiro Iwano

Theorem 4. 2. 2 in 14 shows that the functions pm(u) and qQi(u)
are holomorphic at u = 0 and, especially,

(38. 1) gooOO^O, Ai(0) =0 (/ = 0, 1, -..) .

This can be easily verified from the fact that, in the ^-component
of the formal solution, the terms independent of x contain U as
a factor.

Let us put

( /V*, u,v^) = u+ X]
(38.2)

and make a transformation of the form

(38.3) y-n + P*(.x,U,V), z = ̂  + Q^x, U, F) .

The differential equations (1. 1) will be transformed into

(38.4) xn' = F^x,U,V,r,,&, x^ = GN(x,U,V,^O

which admit a formal solution of the form

(38.5) ^ 2 pn(U)x'Vl, ?- S

with the condition (38. 1).
Keeping this fact in mind, we can easily prove that :

1) Fjff(x9 u, v, ?;, f) and GN(x, u, v, <y, f) <^r^ functions holomorphic
and bounded in (x, u, v, 77, f) /or

(38.6) |

2) FN(x, u, v, ?/, f) ^r^J GN(_x, u, v, rj, f) satisfy there the inequali-

ties

(38. 7) |

(38. 70 |
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and, moreover, we have the inequalities (30. 10) and (30. 10')

provided that the conditions

(38.8) \

are satisfied, where C is a positive constant.

To obtain Theorem 5. 2. 2, it is sufficient to prove the fol-
lowing auxiliary theorem :

Auxiliary Theorem. The differential equations (38. 4) admit

one and only one solution (</>*(#, U, F), <f'N(x, U, F)) such that

<fcv(#> u, v) and <IJN(X, u, v) are functions holomorphic and bounded
in (#, u, 0) for

(29.1)* \x\<a'N, \u\<b"N, \v\<b"N, w'VeSXO

and satisfying there the inequalities

(38. 9)
\X\\V\*-1 + \V

The proof of this auxiliary theorem can be carried out in

quite a similar way as in 31-35. From this we can obtain the

conclusion of Theorem 5. 2. 2 for the case when

39. Remark on the case when n = 0.

In this case, the conclusion of the auxiliary theorem is still

valid if we replace the domain (29.1)* by a domain of the form

(29.2)* x <a"N, \v\<6'N, um^3)(c"N^ .

Therefore, we see the existence of a solution (F(#, C7, F),

Z(*, U, F)), where

f Y(x, U, F) = P*(*, U, F) +$N(x, U, F) ,

IZ(*, U, V)=QN(x, U, F)+^(#, U, F)

are asymptotically represented by the formal power series
solution (II. 2) in 14 for (#, U, F) in the domain (29.2) with

al = §wpa"N, #d = sup£^, Co = supc'^ . But, in the present case, these

asymptotic expansions are uniformly convergent for (29.2).
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Indeed, the point x = Q, v = Q is an inner point of the domain
(29.2) and, consequently, the functions Y(x,u,v) and Z(#,«,tO are
holomorphic at x = v = Q with respect to two variables x and v.

Section IV. Proof of Theorem 5. 3. 1.

40. Outline of the proof.

We make a transformation of the form

(40.1) y

where

*x, u, 0 =
;:;

*(*, u, i>) =0(l + Q?X«, *0) + 2 0?X«,j-i

Then, the transformed system can be written as

(40. 3) xr{ = F«(y, C7, V, ̂  ?) , < = G^(^, f7, V, ̂

and admits a formal solution of the form

(40. 4)
J=^ J=^

Also, it is found that

1) Fjy(x, u, v, 97, f ) <7^rf GJV(#, «, z; , 97, f) #r£ functions holomorphic
and bounded in (x, u, v, 77, f) /or

(40.5) ^|<^0 , N <£<>, |^| <*o, ^^^D(Co), h]<^1 ? I fK^ ;

2) FN{x, u, v, 7j, f) ^^rf GN(x, u, v, TJ, f) satisfy there the inequali-
ties

(40. 6)

(40. 7) |/^(a:, «, v, n.SJ-F^x, u, v, m,
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(40. 70 |G*(*, u, v, ̂  , fO-G^C*, u, v, 7/2, fa) |

In the present case, the inequalities (40.6), (40.7) and

(40. 7') are satisfied without any conditions such as (38. 8).
Under these conditions we can prove, by the same reasoning

as in 31-35, the following auxiliary theorem :
Auxiliary Theorem. The system (40. 3) possesses one and only

one solution [$N(x, U, V), <pN(x, U, F)} such that $N(x,u,v) and
<pN(x, u, v ) are functions holomorphic and bounded in (#, u, v~) for

(29.1)^ x <a'N, \u\<b'N, \v <b"N, umvn ^^(c"^

and, moreover, satisfying there the inequality

(40.8) max{|</>,v(#, u, t;)|, $N(x,u,v)\}^,KN\x *,

(40.9) a'$KN<bi.

By virtue of this theorem, we can assert that the functions

YN(x,u,v} and ZN(x,u,v'), where

ar O, U, 0) = PN(X, U,V^)+ (fcyO, U, V} ,

jy(X, U, V ) = QJV(^ M, V

independent of N for any positive integer N and defined in
the domain (29.1) with al = $wpa"N, b"Q = swpb"N, CQ = SU$C"N. Since
^ = 0 is an inner point of the domain (29. 1), these functions are
developable there in the uniformly convergent power series
(III. T) in 29. Clearly, (T^(#, U, F), Z^x, U, F)) represents

a solution of the system (1.1). This proves Theorem 5.3.1.

Section V. Proof of Theorems 5. 3. 2 and 5. 3. 3.

41. Outline of the proof.

We discuss the proof of Theorem 5. 3. 2 only, because
Theorem 5. 3. 3 can be proved in a similar way. Set



112 Masahiro Iwano

x, u, v) = PPX*, «)»' ,
;:•

Let us make a transformation of the form

(41.2) y = r, + Px(x,U,V)9 * = ? + Q*(*,tf,!0.

We write the transformed system as

(41. 3) xj-Fjtdx, U, V, ̂  ?), x? = G»(x, U, V, ̂  ?) .

Then we see immediately that this system admits a formal

solution of the form

(4i. 4) rj^jz P?\X,UWI , r~ii o?>(*, to^z -
z=jy z=^\r

Furthermore, we can easily verify that, if n>0 ,

1) FJV(^, ^, ^, ^7, f ) «^rf GJV(^, ̂ , ^, 97, O are functions holo-
morphic and bounded in (x, u, v, 97, f) /or

(41.5) * <#<,, |«|<60, |v|<60,

2) ^^ satisfy the inequalities

(41. 6) |F^(*, «, v,

+ umv n-uv

(41. 60 \G*(x, u, v, rj, f)|^A(|*| + ^l-^l-
+ |^771|z;|w)
1 • v\N+\u

and, moreover, we have the inequalities (30. 10) and (30. 10')
provided that the conditions

(41.7)

firr^ satisfied, where C is a positive constant.

By the same reasoning as in 31-35, we can establish the
following Auxiliary Theorem :

Auxiliary Theorem. There exists one and only one solution
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(^ f) = (<^(*, U, F), $>ff(#, U, TO)
are functions holomorphic and bounded in (#, ^, t>) /or

(29.1)* |

(41. 80 \fadx, u, v)\^

with

(41.9) (^^-1 + ̂ )^<^1.

From this we see the existence of a solution {@(x, U, V),
$"(#, C7, V)} of the system (1.1), where the functions
and W(x, u, 0) are asymptotically represented by the formal series
(III. 2') in 29 for the domain (29.1) with ^o = sup^, ^ = sup6'^,
cj = supc^. Especially, in the case when n = Q, these asymptotic
expansions are uniformly convergent for

(29.2) \x\<a'Q,

Thus Theorem 5. 3. 2 has been proved.

41. Return to Theorem 5.2.2 for the case n = 0.

We can obtain from the conclusion of Theorem 5. 3. 2 for
the case n = 0 the conclusion of Theorem 5. 2. 2 for the case ^ = 0.

Indeed, since the point # = 0, v = 0 is an inner point of the
domain (29.2), the functions $(#,&,#) and W(%,u,v^> are holo-
morphic at (0, 0) with respect to two variables x and v. Conse-
quently, they are expanded in uniformly convergent power
series of x and v. On the other hand, as can be easily seen
from the determination of the coefficients of the formal solution
(III. 2) ((III. 2')) (which, in the present case, is uniformly con-
vergent), such doulbe power series of x and V coincide formally
with the formal solution (II. 2) ((11.20). It follows then that
the formal solution (II. 2) is uniformly convergent in the domain
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(29. 2) (where u and v must be replaced by U and V respecti-
vely).

This proves Theorem 5.2.2 for the case n = 0.
Remark. Similarly, we can obtain from the conclusion of

Theorem 5.3.3 for the case m = 0 the conclusion of Theorem
5.2.3 for the case m = 0.
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