On a singular point of Briot-Bouquet
type of a system of two ordinary
nonlinear differential equations,

By

Masahiro IwaNO

1. Statement of the problem.

The singular point of Briot-Bouquet type of an ordinary
nonlinear differential equation

w1 % —f(x ), £0,00=0, 20,

where f(x,) is a holomorphic function of (x, ) in a neighbor-
hood of (0,0), has been studied by diverse authors since Ch.
Briot and J.-C. Bouquet, and the most complete results were
obtained by M. Hukuhara [17], [2], [3], [4], [5] and [6]. One
of the most remarkable results occurs in the study of the case
when o=0 and )= f,(0, 0) vanishes, and this played an important
role in the theory of T. Kimura [1], which comes in close
contact with work of J. Malmquist [1].

The singular points x=0 of a system of ordinary nonlinear
differential equations of the form

dyj _fjcx yl,""yn> <j=1:25"';n>3

(where f;(x,y) are holomorphic functions of (x,y) in a neigh-
borhood of (0,0) and vanish there), are usually said to be of Briot-
Bouquet type. Recently, a classical result concerning the expan-

Received April 23, 1966.

Communicated by M. Hukuhara.

Sponsored in part by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No.: DA-11-022-ORD-2059, and in part by the Japan Gakujutsu
Shinkokai Foundation.
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sions of particular solutions in uniformly convergent power
series of certain functions has been extended by the author (M.
Iwano [3]). However, it has not yet been studied when the
eigenvalues of the matrix F formed by {9f;/9y,(0,0)} are all zero.
In this paper, we shall study the case that F is the zero maitrix
for a system of fwo differential equations.

Let there be given a system of two ordinary nonlinear dif-
ferential equations of the form

¢B) s —fx 5,0, 1% g, 9,2,

where we suppose that
1) both f(x,,2) and g(x,y,z) are functions holomorphic and
bounded in («x,y,2) in

(1.2) x| <a, ly|<b, |z] <&

and vanishing at x=y=2=0;
2) the functions f(0, y,z) and g(0, y,z) have uniformly conver-
gent expansions of the form

fQ0, 9, 2)=y""z"(a+ 2P a,y*z") ,
g0, y,2) =y"z"(B+ 2By , ©

and m and »# are nonnegative integers not simultaneously zero;

(1.3)

3) «a and B are nonzero complex constants such that

a B
(1.4) Rem>0, Rem>0.

What we intend here is the construction of a solution depend-
ing on two arbitrary constants.

In the case when f(x, y,2) and g(x, ¥, z) contain respectively
the terms y™'z” and y™z"' as a factor, M. Hukuhara [7] con-
structed a formal solution of (1.1) depending on two arbitrary
parameters without the condition 3), but its analytical meaning

1) XMdy, - ggyiF1--- yshs denotes the summation for all the arrangements (ki, -+, ks)
of s nonnegative integers . ..., ks such that kj+---+ks=N.
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was not given there.

The author wishes to express his cordial thanks to Profes-
sors Wolfgang Wasow and Tosiya Saito for their kind guidance
and valuable advice.

Part I. Preliminaries.
Chapter I. Formal transformation.

2. Result concerning a formal reduction.

Since the second members of the differential equations (1.1)
are holomorphic functions of (x, y,z) in the domain (1.2), they
can be expanded in powers of x,y,z as follows:

@D [=2%Y"2 5,  &=2%"Y2gm
with
.fo,ic+m+1,l+n =0, 8o, krmlens1 = Bicl s
ﬁ),m+1,n=a s go,m,n+1=18 .

Moreover, we can suppose without loss of generality that
S100=0, Z10=0.

Indeed, if it is not true, it is sufficient to make a linear transfor-
mation of the form
Y=Y+ %xfi00, Z2=7Z+ %G -
According to our usual method, we try to transform the second
members of (1.1) into as simple a form as possible.
The aim of this chapter is to establish the following:

Theorem 1. CASE A («a : B8+ a rational number). There exists
a formal transformation
y~u+ D \?PPxlutvt, Py, =0,
{ 2~ +2PQuax U, Que=0,

which transforms formally the system (1.1) into a system

(2.2)

xu/=um+lvn a_l__a/umvn , 2
(2.3) { ( )

xv" =u™"(B+ B umv") .

2) The symbol’ denotes the derivative with the obvious exception o', g’.
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Case B (a:B=a positive rational number). In this case,
there exist positive integers w, v and a complex constant vy such
that

I

tIZb

2.4) % -y (s and v are mutually prime).

Then there exists a formal transformation of the type (2.2) which
reduces formally (1.1) to
X = pu™ " (y w0 35 (W) )
2.39 "
x0 = ou™"* (y + u™" ; (W), ,

where the summation is to be taken over all integers h such
that —m/v=h<n/u and m+vh and n— uh are nonnegative integers
not simultaneously zero.

Remark. In the case when «:8 is negative rational, the
inequalities (1.4) are not satisfied. Therefore we omit this

case.
3. Formal transformation of the first kind.

To prove Theorem 1, we consider a formal transformation
of the form

(3 1) {y=yN+2(N) ngcvz)xjy}zcvzgv 9 ®
. Z=zy+ X Gx YR .

Let

(3.2) (Xyn=2] frx’ ¥zl

1 X2y =21 X’ YNz 5
be the system derived from (1.1) by the transformation (3.1).
The inverse transformation of (3.1) can be written as

3.3) { In=Y— 2w D5 YR [%, ¥, 2 Lanr, P

An=2— D (Y[ %, ¥, 2oy -

3) >law denotes the summation to be taken over all the arrangements (j, &, I) of
nonnegative integers j, k, I such that j+k+I=N.

4) The symbol [x, y, z]x represents the formal power series of x, v, z lacking the
terms of degree less than M.
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Differentiating (3.3) term by term, we have the following
relations

4 /7
XYy =%y — [Zm p%(]‘ + k% + lﬁ}) xlyeg
d
‘]’xﬁtx, Y, Zlewaa |

(3. 4) e
xz}v=x2,—|:2(zv) Q%Vz)<]'+k—'; +l——zz >x’y’czl

+ xjdx—[x, 2 ZJZN-IJ ,

where the terms xy and xz’ must be replaced by the first and
the second expressions of (2.1) respectively.
Observing that we have

Sm=0, &m=0 (J+R+I£D),
we can derive easily the following relations
f=fm, W =8m (G+E+I<N)
and
S = =I5 g =8m—Iq5 (j+k+I=N).
Hence we can determine the values of the coefficients p$ and

g5’ so that 4 and g§y are reduced to 0 for j+4%+/=N except
for j=0. For j=0, we put

p5’=0, g5’ =0 (7=0).
Then it is easy to see that the expressions appearing in the

brackets denoted by [[ ] in the right-hand members of (3.4)
contain x as a factor. From this it immediately follows that

S5 =fous g5 = 8ot -
Thus, applying successively transformations of the form

Y=y 2=2;;
Y=Y+ D PRX Y52, Z1=23+ Dl (X’ Y525

....................................
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Yna=Yn+ 2w D55 . Zyaa=2ax+ 2w @V ;

we obtain the following :
Lemma 1.1. Let there be given the following system

(1.1 xY' =21 fra’y2, %2 =21 gmx’'y7
with

S=8m=0 for j+Rk+I<1.
Then there exists a formal transformation of the form

Y~n+ 2P Py,

-5 2~C+23P qux’n"t’,

D= =0,
such that the system (1.1) is formally reduced to
(3.6) xn' =23 fans 2 =21 gunt’
with

Ja=Sfou > =8k -
4. Formal transformation of the second kind.

We see by Lemma 1.1 that the power series appearing in
the right-hand members of (3.5) coincide with the expressions
(1.3). Hence, the system (3.6) is written as

x’)7,=’)7m+1§n(a+ 2(1) akzﬂk§l> ,
%8 =" (B+ 22 Bunt’)

where the power series appearing in the right-hand members

)

are clearly uniformly convergent in a neighborhood of (0, 0).
Now we consider a further transformation of the form

{ n=uy(14+ 2w p5°us vy ,
E=vy(1+ 2y g uivly) .

Then it is easily found that the transformed equations have

4.2)

also the same form as (4.1) as follows:
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(4.3) { xuy=uyoy(a+ 3P ag uivy)

2y =ujvy T (B+ 20D B ukvy) .

The inverse transformation of (4.2) can be written as

{ Uy= 7)<1 Z(N) p(mﬂkgz'}‘[% g]zzv) ’
=81 =2 g8+, T law) -

Differentiation yields equalities of the form

4.4

sty = = Do 9] et DL 12 e

+x71x—{7l'|:77’ §lnt
=%~ T 7 B4 4+ DA [y

- x%{é'-[n, o}

and we have, by (4. 1),

Ky =n""" (o4 23D o) — ™" ey P {(B+Da
+118+ ["7s §]1} ﬂk§l+7lm+1§n[7l> Z::IZN >
=" (B+ 2P BT — "™ Dy g {Ra+ (U +1)B
+ [, L} + 9" [, Elow -

Substituting the expressions (4.2) for » and ¢ into the equations
above, we can easily derive the following relations

a%])=akz s B%V)=Bkl (k+l<N)
and
{a%’ =ay+ {(m—k)a—1I8} pi° +nagi”,

(4.5)
( BE=Bu+mapy’+ {—ka+ (n—DB}g",

(kB+I=N).

A simple calculation shows wus that the determinant of the
matrix formed by the coefficients of p{° and ¢§° in (4.5) is
given by

(4.6) ACE, l)=1 (m—Rk)a—IB na

—ka+(n—0DB
=(ka+IB)(k—m)a+{I-n)B].
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Hence we can determine the values of the coefficients pg°
and g3’ so that o> and B’ become zero for k+1=N if A(k,1)+0.

To discuss the case when A(% [)=0, we distinguish the
following two cases:

Case A. «a: B +a rational number,
Case B. «a: B =a positive rational number.

I. Case A. Since 2+/=1, we see that the equation A(k,{)=0
holds if and only if 2—m=0 and /—#=0. This means that we
have A(%,0)=0 for (&, [)=(m,n) only.

II. Case B. In this case, there exist positive integers u, v and
a complex constant v such that

£=%=ry (w and v are mutually prime).
b

Hence, the equation A(k,/)=0 will be reduced to
u(k—m)+v(l—n)=0,
i.e.
wlk—m)=v(n—-10).

Since x and v are supposed to be mutually prime, there
exists an integer % such that we have

k—m=yh, n—1=uh

for every (%,7). Noticing that %2 and / are nonnegative integers
not simultaneously zero and u, v are positive integers, we see
that # must satisfy the inequalities

_ﬂéhéﬁ or _r

v o t

IN

h™
Ty

From this it follows at once that the arrangements (k,1) for
which A(k,1)=0 are finite in number, and for such arrangements
(k,I) we can determine the values of the coefficients p{” and
g so that the values of «f” and B (given by (4.5)) satisfy
the relations
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> )
Al B (o).
f v

Thus, applying successively transformations of the form

n=u, §=vl s
uy=u,(1+ 20 pFuivs) , 0, =0,(1+ X ¢ uivy) ;

....................................

, ;
Uy =uy(1+ D pVuiVY) , vy =y + 20w ¢ w508) 5

we can obtain the following :

Lemma 1.2. We can determine the values of coefficients py
and qgu of a formal transformation

{ n~u(1+23P puuv’),
E~v(1+ 21 guu™?) ,

so that the system (4.1) is formally reduced to a system of the
Sform (2.3):

“mn

xu =u™v"(a+ B'u™v") ,
xvl — umvn+1(6 + Blumvn) ,

or to a system of the form (2.3"):

{ xu’ = pu™ 0"y + u™0" D (W), ,
20" =™ (y+ 0™ 3 (60,
according as we have Case A or Case B.

In the latter case, the index h rumns over all the integers
satisfying the inequalities

—m/v=h=n/p

such that m+vh and n—ph are nonnegative integers not simulta-
neously zero.

By Lemma 1.1 and Lemma 1.2 we see that, applying suc-
cessively two transformations of the forms (3.5) and (4.7),
the system (1.1) is formally transformed into a system of the
form (2.3) or (2.3") according as we have Case A or Case B.
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Thus Theorem 1 has been proved.

Chapter II. General solution of the reduced system.

5. Results concerning integration of the reduced system.

The quantities «, 8 and ma+#nB are supposed to be all non-
zero. To simplify the description, we shall assume that «', &
and ma' +mB’ are also different from zero. We have already
proved that the given system (1.1) can be formally reduced to
one of the following forms:

(2.3 { xw =um(a+aum”)
' w0 =B+ B U

2.3) { xu' = pu™ 0" (y +um" 3 v (wv ™)
) 20 = vt (y + u™" 3 v, (W) .

As can be easily verified, direct solution of these reduced
systems by quadratures is generally impossible. However, if
we introduce an auxiliary independent variable

G.D w=u"v",

we can obtain a parametric representation of the general solu-
tion of the reduced system.

The aim of this chapter is to prove the following three
theorems:

Theorem 2.1. If we introduce an auxiliary independent va-
riable w by the relation (5.1), the reduced system will be reduced
to a system of the form

W dx =x[ 1 ]
dw ma+nB+ (ma +nB)w |’
- du _ a+a'w ] — g, M7
-2 Y aw _u[ma—l—nﬁ—l—(ma’-l—nﬁ’)w_ , (w=u")
dv =v[ B+ Bw T
dw mo+nB+ (ma’ +nB)w 1’

or
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2 dX _ [ 1 ]
Waw = (mp+nm)(y+yw) 1’
’ ) du _ o ] — g mn
(5.2h W —u[ s | (w=u™v"™)
w dv =v[ v ]
dw mu+ny 1’

v =21 qar (W™,
according as we have Case A or Case B.

The general solution of the reduced system (2.3) or (2.3")
can be expressed as

- __ma+nB  \ETEE <_ _1__>
5 ¥ CI<1+<ma'+”,3')w> Texp (ma+nBw )’
OB\ w— Crut((ma+nB) + (ma +nfg Yw) —n QA —2)
v=C;™wB((ma+nB) + (ma’ +np)w)m(AB —A'B) |
or
- Y\ s <_#_1_w

, X C1<1+ '}',w >'Y( #TY) XD fy(m/r{—nu)w) s
(5.3) -~
v=C;"wB,

according as we have Case A or Case B. Here we adopted the
following notations for simplicity

D) P oo
5.0 T ma+nB’ ma +nB "’
' _ B B — B
ma+nB’ ma +np'’
or
(5.4) /(SRS | S—
M+ 1y myu+ny

according as we have Case A or Case B.

Remark. Let x=X*(w), u=U*(w), v=V*(w) be the holo-
morphic solution of the system (5.2) or (6.2") (where the ex-
pression w should be replaced by X ,u*™ * "+ qw) satis-

h=0
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fying the initial condition: x=wx%,, #=#°, v=2° at w=wu’. Then,
as can be easily verified from a direct calculation, these functions
can be a solution of the reduced system (2.3) or (2.3") if and
only if the relation U*(w)™V*(w)"=w holds. However, this
identity is equivalent to (#°)™(v°)"=w’. Indeed, a simple calcu-
lation shows us that U*(w)™V*(w)"—w is the solution of a
linear differential equation of the form w-gz)—=y.

If we want to express # and v as functions of x, we must
eliminate w from the relations (56.3) or (5.3). To do this, it
is convenient to use a certain transcendental function introduced
by M. Hukuhara [1], and the result can be stated as follows:

Theorem 2.2. Let Y=9(X) be defined implicitly by

(5.5) X=Y-log (Y+1)
end consider the branch of H(X) such that H(X)—X—-log X
vanishes at X=co. Then the general solution of the reduced

system (2.3) or ( 2.3") can be written as

_Cn(ma+n8"\ ¥ 0y 91
u=G < ma+nB > DX+CD

X [L+H(X+ 1) =o' —uD),

.6 ma' +nB' |~
— (e T ns 0y~
v=Cs <ma—|—n6) oX+ED
X [1+9(X+ )71 )mQUB —AD) |
2
or

X
i

j (—“f—'Cﬁ)‘%cmce)—m,
’ Y
(5.6 e
(v 0y — B
{v (vcz ) D(X+CH-B,
X= ———Vz(m/“”,+””> log x ,
Y

according as we have Case A or Case B.
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The nature of the function x=Zx(w) defined by the first
relation of (5.3) or (5.3") and of its inverse function is clarified
by the Theorem below :

Theorem 2.3. We denote by D and D* the following angular
regions in the complex w-plane

(5.7 D={w:0_+25,< argw=0,—25,, 0<|w|<c},

(5.8) D¥*={w:0_.—z+ 8= argw=0,+7—06,, 0<|w|<c},

where

6.9 0.= —arg (ma+np) i%
or

3.9 0.=—arg yi%

according as we have Case A or Case B, &, being an arbitrarily
fixed sufficiently small positive constant.

Let x, and w® be arbitrary points in the complex x-plane and
in the domain D* respectively. We choose a value of the inte-
gration constant C, so that the first relation of (5.3) (or (5.3))
holds at x=x, and w=w". Then, if w tends to 0 along a curve
I'y, (contained in D*) which starts from w=uw" and approaches
w=0 from the interior of the sector D, the point x=x(w), where
x(w) is defined by the first relation of (5.3) (or (5.3")), describes
a spiral-shaped curve I',, turning around the origin in the complex
x-plane and approaches x=0. The converse is also true.

6. Proof of Theorem 2. 1.

First we consider Case A. Differentiating both sides of the
relation (5.1) and substituting the expressions of the right-
hand members of (2.3) for %’ and v’ appearing in the resulting
relation, it is found that

6.D x%zi=wz(ma+nﬁ’+ (ma’ +nBHw) .



30 Masahiro Iwano

From this follows immediately the first equation of (5.2).
On the other hand, by (5.1), (2.3) is reduced to

(6.2) xu' =uw(a+o'w), xv' =vw(B+LBw) .

From this, we obtain the last two equations of (56.2) with the
help of (6.1).

In Case B, it is easily verified that the reduced system
(2.3) admits an integral of the form

(6.3) Co=uv".
Hence, the reduced system (2.3") can be written as

xu’ = pr™ 0" (y + ' umo")

(6.4)
0 = vu™™ oy + o umv")
where
(6.5) v =217 Cs =21 ya(u v )"
This system has the same form as (2.3) if we put
a=qu, =y,
(6.6) Vi a, //J'}:
B=qv, B'=wy.

Therefore, by the same reasoning as before, the reduced system
(2.3) is transformed into a system of the form (5.2") by intro-
ducing a new variable w by (5.1).

Thus the first part of Theorem 2.1 has been proved.

The remaining part of Theorem 2.1 can be easily proved
by integrating the differential equations (5.2) (and (5.2")) by
quadratures, and noticing that #™"=w.

7. Proof of Theorem 2. 2.
Following M. Hukuhara [1], we put

_ _ ma' +nB
x—Cexp< (ma+nB)ZX>’
(7.1
ma+nB

- (md +nB)Y
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Then, as will be easily seen, the first equation of (5.2) (or the
equation (6.1)) is transformed into an equation of the form
dy _ 1
(7.2) W_1+?'
M. Hukuhara [1] has shown that the general solution of
this equation can be written as

(7.3) Y=9(X+CY .

We consider the branch of $(X) defined in Theorem 2.2
Therefore, the general solution of (6.1) is given by
2 -1

It is to be noticed that the first equation of (5.2) is equiva-
lent to the equation (6. 1) and, consequently, the inverse function
of X(w) defined by the first relation of (5.3) coincides with the
expression (7.4) if the arbitrary constant C! is suitably chosen.

Substituting (7. 4) for w into the last two relations of (5. 3),
we obtain the relations of the form (5.6) (which is the general
solution of the reduced system (2. 3)).

In Case B, we put

’

(7.5) x=cexp<—mx),

=0

w JY

Then it is easy to see that the first equation of (5.2) is reduced

to an equation of the same form as (7.2). Hence, an inverse

function of x(w) defined by the first relation of (5.3") can be

written as

7.6 SRS S

.6 vO(X+CH

<X= —————(Yz(mf”,"" n) log x>
Y

for a suitably chosen constant C}. If we put this expression
into the last two equations of (5.3), we obtain the equations
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(5.6"). This proves Theorem 2. 2.

8. Proof of Theorem 2. 3.

By the definition of the quantities 6, and §. we have the
inequalities

8.1) Re(ma—_:nm—w>0, em
for

(8.2) 0_<argw<40,

and the inequalities

(8.3) Re mgo, e mgo
for

(8.4) 0_.—n<argw=<60_. or 6.Zargw<l,+n.

Clearly the domain D (given by (5.7)) is contained in the
sector (8.2). Hence, as w tends to 0 in the sector D, the
function %(w) defined by the first relation of (5.3) (or 5.3"))
vanishes exponentially. From this we can obtain Theorem 2.3
since we have

log x(w) =log |x(w)|+iarg Z(w)
1

R CTETOT +o(1), Case A,
— 'y(m/b—v'l*‘ Y +o(1), Case B.

Chapter III. Estimation of the growth of the general
solution of the reduced system near the origin.
9. Properties of the solution of the reduced system (2. 3) and (2. 3").

Let u=U(x, x,, #°, v*) and v=V(x, %, #°,v°) be the holo-

morphic solution of the reudced system (2.3) or (2.3) satisfying
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the initial condition
w=U(%,, %y, u°, 0°), "=V (%, %y, u° 0°) .
Let ©® be an angular region
0.1 O_<argw<0,, 0<|w|<d(argw,c,),

where d(p, c,) is a positive valued continuous function of both
variables which will be defined later, and ©_ and 6, are given by

9.2 { O_= —x—min(arg a, arg ) + 46, ,
’ 0, =r—max(arg a, arg B) — 43, ,

or

(9.2 {@_=~n——argy+380,

O,=m—arg y—36,,

according as we have Case A or Case B, §, being an arbitrarily
fixed sufficiently small positive constant.

Since the inequalities (1.4) are supposed to be satisfied, we
can assume without loss of generality that

(9.3) larg ﬂ]g%—%o, larg %]g%_%ﬂ

for the same &, as before (see (5.4)).
Then we can assert that the angular region

O_<argw<0O,
contains the sector
0_+28,<arg w0, — 23, (see (5.7))
with
9.4 0= —arg(ma+np) i—g— for Case A
or
(9.4) .= —arg ryil;— for Case B

Indeed, for Case A, a direct calculation shows that
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@+-—(9+—250)=%—max(arg A arg B)—28,=8, (by (9.3))

and
(0_+28)—6_=3,.

For Case B, from (9.2") and (9.4, we have
@+—(0+—250)=(0_+230)_@_=%_30,

The central angle of the angular domain ® is almost equal to

2z —max(arg «, arg 8) + min(arg «, arg 8)
(9.5) 6,= for Case A,
2w for Case B.

The aim of this chapter is to prove the following:

Theorem 3. There exists a spiral-shaped path ['x,, winding
around the origin of the complex x-plane, which starts from x=x,
and approaches x=0, such that, when x moves on this path, the
value of (x, U(x, %y, u°, v°), V(x, x,, u’, 0°)) always remains in a
domain of the form

(9.6) lx|<a,, |U|<b, |V|<b,, U"V"eD

if ( %, u° v") satisfies the same condition.

Of course, the quantity 8, appearing in (9.2) and (9.2") may
depend on the choice of the values of 4, 6, and max d(p, cy).

In the case when one of the quantities m and #z is zero,
as will be seen from the proof of Theorem 3, we have the
following :

Theorem 3. In the case when n is zero, the conclusion of
Theorem 3 is still valid if we replace the domain (9.6) by

9.7 x|<a,, [|VI<b,, UmeD,
where D is an angular region of the form

(9.8 O_<argw<0,, 0<|w|<d(argw,c,)
with
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9.9 O,.=t+nx—arg BF45, .
In the case when m is zero, the domain (9.7) must be replaced
by
(9.10) x| <a,, |U|<b, V"eD,
where the angles ©. must be given by

9.1D O,=+n—arg aF45, .

10. Determination of the path [y, .

We consider only the case when m and # are both positive.
In the case when one of them is zero, the discussion can be
carried out in quite a similar way. Instead of defining the
path I'y, directly, we construct a path [’;k)o contained in .

1°. Determination of the domain 9.

Let A(p) be a piecewise continuous function defined in the
interval

6_=p=06,
and satisfying an inequality
(10. 1) SH=A(p)<m—26,.
Then the function d(e, ¢,) is defined to be

(10.2)  d(p, co)=coexp S cot A(p)dp (6.<6,<6.),

where ¢, is supposed to be sufficiently small.
Thus the angular region D is the set of points w=pe”
satisfying the inequalities

4
0.5 { 0< p< ¢y XD goo cot A(p)dy,

0_<p<0O,,

where c,e® is evidently a boundary point of ®©. The detailed
definition of A(p) will be given by the formula (12.24).
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2°. Determination of an auxiliary path 7"}, .

We put
(10.4) w’= @ )" ()",
where (x,,#° v°) is an arbitrarily chosen point in the domain
(9.6).

Let (r,6) and (p, @) be the polar coordinates of the point
w® and the variable point w on the path I'},, and let 6. be the
angles given by (9.4) or (9.4").

Then the path I}, will be defined as follows:

(i) The case when 60,—28,<¢. The path I'¥, consists of
a curvilinear part I7:

(10. 5) p=7exp S¢ cot A(@)dp,  0,—28,<p=0
‘]
and of a rectilinear part I :

8o
cot Alpddep, @=0,—25,.

0+—2
[}

(10.6)  0<p=<rexp S

(ii) The case when 6_+2§,<6<60,—28,. The path I7,
consists of only a rectilinear part I :
(10.7) 0<p<sr, p=0.

(iii) The case when 6<6_+28,. The path I'}, consists of

a curvilinear part [7:
(10. 8) p=7rexp S“’ cot A(p)dp,  O=p=0_+25,
]

and of a rectilinear part I"":
0-+230

(10.9) O<p§rexpg cot A(p)dp,  p=0_+25.

]
3°. Determination of a path /[, .
We denote by [y, 2 curve in the complex x-plane obtained

by mapping the curve I}, by the first relation of (5.3) or (5.3"),
where the integration constant C, must be determined so that
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w=w" is mapped into x=x,.

Clearly, the path I}, defined in 2° is contained in the
domain ® and, moreover, this path belongs to classes of the
paths appearing in Theorem 2. 3 in 5. Hence Iy, describes
a spiral-shaped path, turning around the origin in the complex
x-plane, which starts from x=x, and approaches x=0.

We shall show that this curve will serve as a required path
Ix,.

11. Fundamental lemmas.

As we have already seen in Theorem 2.3 in 5, the correspon-
dence between the points on these two curves is one to one.
Hence, the solution (U, V) and the variable point x on [’y can
be regarded as functions of w on I';,. We denote them by
(U(w), V(w)) and %(w). It is clear that

UEw) , %, 0, ) =Uw), V(EwW), % ,u, °)=V(w).

An explicit representation of these three functions is given by
the formula (56.3) or (5.3") if the aribtrary constants C, and C,
are suitably chosen. Moreover, as we have already seen in the
remark following Theorem 2.1 in 5, the condition (10. 4)
implies that
U™V (w)"=w .

Hence we have U™V"=w identically for xel'x, (where U, V and
w must be considered as functions of x.)

This proves the following :

Lemma 3.1. The value of the function U™V"™ remains in the
domain © when x moves on the path I'x,.

In order to obtain Theorem 3, it is sufficient to prove the
following :

Lemma 3.2. Let s be the length of the curve I, measured
Jrom the origin to the point w. Then a function A(p), satisfying
the conditions already given can be so chosen that, on the path
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1"*

»o» We have inequalities of the form

d|%| sind  |%]
(L1 ds g2|mac+n,8l o*

d|U| - |a|sing, |0

’

(11.2) ds ~ 2|\ma+nB| p ’
dlV|- |Blsing |V
(11.3) ds = 2lma+nB| p ’
or
, dlx] o sin &, |%|
(1. 13 ds =2 |Gmptmy p*
’ d|U| - wsin, |U]
(L.2% ds = mu+ny p
(11 3/) d'f/'l > l)Sin 80 |T7| ,

ds — mp+my p

according as we have Case A or Case B.
Indeed, these inequalities show us that, when w moves from
the origin to the point w° along the path I'},, the functions %,

U and V are all monotonically increasing. From this it follows
at once that

Fl<inl, |Tslel, VS]]

Therefore, we see by combining this with Lemma 3.1 that,
when x moves on the path I'x,, (x, U, V) always remains in the
domain (9. 6).

12. Verificiaton of Lemma 3. 2, Case A.

It should be noticed that (p,p) and (7,68) are respectively
the polar coordinates of the variable point w on the path F;O
and of the point w°.

From the differential equations (5.2) we see that the deri-
vatives of |%|, |U| and |V| with respect to s are given by

) ore{ ) ne( 5 5)
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_ 1 1 dw
_Re<ma+nﬁ’+(ma’+nﬂ’)w w® ds )

azz b ere( LA
Re( +n3f2%) "+nB)Hw ;) fz’?)

Gy LATne(1 4T de)
=Re<ma+n,8€-27€z,a "+nBw ;) flf)

I. The rectilinear part I

In this case we have s=p=|w| and p=argw. Moreover, ¢
satisfies the inequalities

9—+280§¢§9+_ 250 s

where 0, and 6_ are given by (9.4). It follows immediately
that

(2.4 |¢+arg(m(x+n6)]§%—230
and

= dw _ i,
(12.5) LX —er.

Hence (12.1), (12.2) and (12.3) respectively imply that:

G20 A Ll ),
1) A (14 )i )
(12.8) ”}[I dCIZl =% Re<%€_—nﬁ<1+ gw><1+%i—zg—,w>_l>.

Since |w| is supposed to be sufficiently small, it does not
lose any generality to assume that:
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ma’ +npB’
ma+nS

ma’'+nB | \|
arg<1+%ma+n,8 w>| <&,

<1+ ‘;‘; 4)) <1+ ”&‘ii;’gwr% >%,

-] (14 )

e

arg<1+ g w> <1+%¢Z§—,w>—l

From (12.9) and (12.4) we can easily derive the inequality
(11.1). Noticing that the inequalities (9.3) are satisfied, we
see that the inequalities (11.2) and (11.3) are an immediate
consequence of (12.7), (12.10) and (12.8), (12.11) respectively.
Thus Lemma 3.2 has been established on the rectilinear part
r.

1+ w’<2,

(12.9)

(12.10)
<&,

1
>§,

(12.11)

<39, .

II. The curvilinear part /.

In this case, p is a function of ¢ given by (10.5) or (10.8)
according as 6,—28,<0 or 0<0_.+28,. Hence we have

dw _ .
%—w(cot A(p)+1)

and

Y
A=+ Gn Acp) 2P

according as 0,—28,<0 or 0<0_.+25,. From this it follows
immediately that

dw — i AP+
(12.12) ds +e

according as 4, —26,<6 or <0_+28,.
(i) Case when g, —25,<4.



On a singular point of Brioi-Bouquet type 41

Identities (12.1), (12.2) and (12.3) respectively imply that:

S d]E] 1 (e““‘”)“”i ( ma’ +nB \7*
1%l ds o° Re mao+nf 1+ ma+nf w) >

Ld|Ul _1 <ae*‘<*"” ( a ma’ +nB \7?
Ul ds P Re ma+nB 1+ a w><1+ mo+np w) >’
Fadl V] _ 1 Be* e < B ma +nB \*
VI ds P Re(ma+n3 1+ B w)<1+ mao+n w) )

By virtue of the inequalities (12.9), (12.10) and (12.11)
we see that the inequalities (11.1), (11.2) and (11.3) follow
respectively from the inequalities:

(12.13) - T +3=A(p)—p-arg(ma+nB) £8=7 —5,,

S

(12.14) —%+&§A@O+Mgﬁi%§§

_80’
(12.15)  — T +8=A(p)+arg DH= 7 —4,
for 0,-28,<¢p=0,.

Therefore, observing that §,<A(p)<=—38,, we see that the
condition which A(@) must satisfy is written as

(12.16) max {max(<p+arg(ma+n,8), —arg AU, —arg 913)

~ 2128, 8} AP
gmin{min<¢+arg(ma+nﬁ), —arg A, —arg §B>
+%—%MTJJ.

However, the inequalities (9.3) imply that

max{——min(arg A, arg B) —%-1—280 , 80} =&,
min{—max(arg A, arg B) 4—-723—280 R 71-—80}

= —max(arg A, arg B) +%—280 ,
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and the definition of 4, and 6. yields

—arg(ma+nB) i% =0..

Hence, the inequality (12.16) from which the symbol < A(p)
was removed can be written in the form
(12.17) max(p—0,+25 , 80)§min<¢—ﬁ_—280 ,

—max(arg U, arg 53)-!—%—250) .

This is equivalent to

(12.17.1) P—0,+28,<p—0_—25,;
(12.17.2)  ¢—0,+28,<—max(arg ¥, arg B) +—’2’——230 ;
(12.17.3) S=<p—0_—28,;

(12.17.4) 8, < —max(arg U, arg B) +-2”_~230 )

The inequality (12.17.1) is automatically satisfied since
0_<6, and &, is supposed to be suffiiciently small. The inequality
(12.17.4) is an immediate consequence of (9.3). Therefore, it
is found that the inequality (12.17) is satisfied for

(12.18) 0_+350§¢§9++125—max<arg A, arg B) —48, .

However, the last expression of the inequality is equal to the

quantity 0, (see (9.2)) and the interval (12.18) contains
9+_280§¢§@+ .

Consequently, the inequality (12.16) is certainly satisfied in
the interval in question if we put, for example,

(12.19) A(p)=max(p—0,+25,,8) for pd6,—25,6.].

Remark. If =0 (or m=0), the condition (12.14) (or
(12.15)) is unnecessary.
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(ii) Case when 0<6_+428,.

By the same reasoning as before we can prove that the
inequalities (11.1), (11.2) and (11. 3) are simultaneously satisfied
if the function A(p) satisfies an inequality of the form

(12.20) max {max <qJ+ arg(ma+mnB), —arg A, —arg 53)
+ %4‘280 ’ 80} §A<(P>
<min {min(gv +arg(ma+npB), —arg A, —arg Sb)

+§2’£—250,7z—30} .

Since, by (9.3), we have

—min(arg U, arg B) 4——72r——i—280>80 ,
—max(arg 2, arg B) +%75—280§n—80 ,

the inequality (12.20) from which <A(¢p) was removed will be

reduced to

(12. 21) max<<p——0+ +7+28,, —min(arg %, arg B) +%+230>
<min(p—0_+7—28,,7—35,) .

By the same method as in the proof of the inequality (12.17),

we can easily verify that this imequality holds in the interval

(12.22) 9_—%— min(arg U, arg B) +48,<p=<0, — 385, .

The first expression is equal to the quantity ©_, and this
interval contains the interval [O_, 6_+268,] (See 9).
If we put, for example,

(12.23)  A(p)=min(p—0_+7+28,7—8) for 6,0 +25],

the inequality (12.20) is certainly satisfied in the interval in
question.
Thus we have proved that, fo obtain Lemma 3.2 for Case A,
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it is sufficient to put

(12 24) max (‘P - 6+ + 280:80> fOT ¢5[0+ - 280 ’ @+] ’
AP ={ 5 for pd0_+28,0,~257,

min(p—0_+7z—28,, w—8,) for e O_,0_+28],
with

0.=—arg(ma-+nB) i% ,

O_= —z—min(arg «, arg B) + 45, ,

O,=n—max(arg «, arg B) — 46, .

13. Verification of Lemma 3.2 for Case B.

In the differential equations (5.2"), the following facts
should be noticed :

(i) —* —and Y  are real positive numbers;
my+ ny mup+ ny

(ii) the expression = is sufficiently small in absolute
value provided that |U| and |V| are sufficiently small.
The assertion (ii) can be easily verified in the following

way : Since we have
7/=;<ﬁ’vv—#>h"¥h
and the condition v,9=0 implies that m+vkz and z—pk are non-
negative integers not simultaneously zero, we have
(13 1) f’\/,w — 2 'Yh(ﬁv f]’-—u)h[j’mf[nz__ E ,Yhﬁmwn‘[}n—y.h. ,
if we notice that w=U™V" From these relations we have (ii).
By virtue of (ii), we can suppose without loss of generality
that we have inequalities
(13.2) 1+ 7w 2, |arg(1+7 w)| <8
I Y I Y
for an arbitrarily fixed sufficiently small positive constant §,.
We can now prove Lemma 3.2 without any essential modi-
fication of the proof for Case A.
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Indeed, on the rectilinear part I/, we can prove by means
of (13.2) that the inequalities (11.1"), (11.2") and (11.3") are
satisfied. On the curvilinear part I”, we can easily verify that
the conditions which the function A(p) must satisfy are written
as

(13.3)  max(p—0.+25,06)=A(p)

émin<¢—9_—280,%—80> for 0,—28,<p=6,

and

(13. D maX<¢—0++7t+280,%—I—S(,)gA((p)
=min(@—0_+n—28,~—38,) for @—§¢§0-+2803

where 0, and 0_ are given by (9.4"), and that the inequalities
(13.3) and (13.4) (from which the symbol <A(p) was removed)
are satisfied in the intervals

[0.+35,0,] and  [6_,0,—38]

respectively, where O, and O_ are given by (9.2).

Clearly, these two intervals contain respectively the inter-
vals [0,—26,,60,] and [6_,0_+25,] in question (See 9). Hence,
if we define the function A(¢), for example, by a formula of
the same form as (12.24) (where 60, must be replaced by

—arg 'y-_t% respectively), the inequalities (13.3) and (13.4) are
certainly satisfied in the intervals in question and, consequently,
the inequalities (11.1"), (11.2") and (11.3") are simultaneously
satisfied on the curvilinear part. This proves Lemma 3.2 for

Case B.

Part II. The formal solutions.

This part will be devoted to the construction of formal
solutions of diverse types.
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Chapter IV. Determination of formal solutions
of the system (1.1).

14. Formal solutions of diverse types.

Let A(p), 6_ and 6, be the same as those that appeared in
the preceding chapter. In the case when = and 7z are both
positive, @, are given by (9.2) or (9.2") according as we have
Case A or Case B. While, in the case when one of m and # is
zero, they are given by (9.9) or (8.11) according as we have
n=0 or m=0.

We put

(14. 1) d(p, ¢) = ¢ exp S" cot A(g)dg, 6.<p=<6,,
6o

where 6, is contained in the interval [6_,60,] and ¢ is a suffi-
ciently small positive constant, and define an angular region

D(c) by
(14.2) D(e)={w; O_<argw<0O,, 0<|w|<d(argw,c)}.

Let (U, V)=(U(x, %, u°, v°), V(x, x,, #°, v°)) be the holo-
morphic solution of the reduced system (2.3) or (2.3") (accord-
ing as we have Case A or Case B) such that (u,v)=(%’ ") at
x=2x,, where x,, #° v° are arbitrarily chosen such that

(14.3) [%o| <@, |u°|<by, [v°|<b,, ©u™V"=D(c,) .
If =0, (14.3) must be replaced by

(14.39 %] <ay, [0°]<bs, w"<=D(c,).

If m=0, (14.3) must be replaced by

(14.3" (%] <ay, |u°]|<by, v"ED(cy) .

Remark. The point («°, v°) satisfying the last three inequali-
ties of (14.3) is located on the product space of the Riemann
surfaces of log # and log v.

By virtue of Theorem 1 in 2, if we replace (%, v) by (U, V) we
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have immediately the following:
Theorem 4.1. The differential equations (1.1) admit formal
solution that are triple power series of x, U, V:

M Iy~U+2P Pyux’UrVE, 2~V +2® Qux’UV?,
where
(14- 4) Pooz=0, Q0k0=07 (l:k=1, 2;) .

To investigate the analytical meaning of this formal expres-
sion, we formally rewrite it in a form of double or single power
series. First we rearrange it in a double power series form, in
three different ways, as follows:

(L 1 y~U+ 3 PR(x)UV?,
' 2~V 4+ QP UV,
where
(14.5) PP~ Par’ . QP(0)~ 3] Q.
y~UQ+Z PRV + 31 PPNV,
(II, 2) 1:0 Jj=1,1=0
~VA+ZQPWIVH+ 3 PNV,
1=0 21,120
where
A4.6)  PP)~Z Putt™, QP(1)~3] Quutt,
14.7) PG~ Pttt QP()~3 Qe .
U+ PEVIUD + 3 PR(VIFU,
(II. 3) 7;=0 Jj21,k20
2~V(A+X2QP(V)HU +; 12 OQS-?B(V)x’U’“ ,
k=0 21,k2
where
14.8) PP~ Puat’, QPOI~Z Qo

(14.9) PRI~ Poat', QFWI~2] Quut’-
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It is evident that these expressions are also formal solu-
tions. In order to give them an analytical meaning, it is first
necessary that the coefficients of these double power series
(which are also the formal power series of a single variable)
must admit some analytical interpretation.

Concerning this, we have following three theorems.

Theorem 4. 2.1. If we formally rewrite the formal solution
(D in the form (11.1), the coefficients (PP (%), Q¥ (x)) are func-
tions holomorphic and bounded in x for

(14. 10) |%| <as,

so0 that the formal series (14.5) are uniformly convergeni tlhere.
Consequently, the formal equality ~ can be replaced by the lrue
equality = in (14.5).

Theorem 4.2.2. Let us formally rewrite the formal solution
(D in the form (11.2). Then, in the case when n>0, the
coefficients (PP(u), Q®(u)) and (PP(w),Q%(w)) are all holo-
morphic and bounded functions of u for

(14.11) 2] < &y

and, consequently, the formal power series (14.6) and (14.7) are
uniformly convergent there.

In the case when n=0, (PP(u), QP (w)) for j=1 are functions
holomorphic and bounded in u for

37

(14.11" |marg u+arg (x|<—2—, 0<|u| < by

and admit asymptotic expansions of the form (14.7) as w tends
to 0 in the domain (14.11").

Theorem 4. 2.3. If we formally rearrange the formal solution
(D in the form (11.3), the coefficients (PP ), QP (v)) and
(PR(), Q¥ ()) are functions holomorphic and bounded in v for

(14.12) lv] <b;

and, consequently, the formal power series (14.8) and (14.9) are
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uniformly convergent there.
In the case when m=0, (P%), QL)) for j=1 are func-
tions holomorphic and bounded in v for

(14.12) |nargv+arg3l<§2’£, 0<|v|<b;

and admitting asymptotic developements of the form (14.9) as v
tends to 0 in the domain (14.127).

Next we consider the rearrangement of (I) in a single
power series form. This can also be done by rearranging the
double power series expressions (II.1), (II.2) and (II.3) in a

suitable way, and they are written, in three different ways, as
follows :

y~U(L+PECU, V) + X PO(U, V)
J=1

(II. D ~
2~V(A+QU, V))+ f& QP (U, V),
P
where
P (u, v)~ Pogu* vt
(14. 13) k21,120

QP(u, )~ 31 Quuatv',

(14.14) PP (u, v)~2 P, QP (u, v)~3) Quuv’ .
*. Kl

[

(I1L. 2) y~31PP(x, DIV, e~ 31QP(x, DV,

where, by (II. 2),

P, u)~ S+ uPP(w) + 3] PP(10) %,
(14. 15) 7
QP(x, u)~8,; + Q% (1) + 2] QP (u)x? .
J—1
(T11. 3) Y~ PO (x, VIU*, 2~3 QP (x, VIU*,
A=0 k=0

where, by (II. 3),
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PO (%, 0)~8+ POy(0) + 2 PO ()%,
(14. 16) J’;
QP (%. 1) ~ 80+ vQP (V) + 31 QL ()% .
J-1

Here §,; is the Kronecker’s notation. Evidently these formal
expressions (III. 1), (IIL. 2) and (III. 3) are also formal solutions.

As regards the analytical meaning of the coefficients of
these formal solutions, we obtain the following three theorems:

Theorem 4.3.1. If we rewrite the formal solution (1) in the
Jorm (I11. 1), the coefficients (P°(U, V), Q¥ (U, V)) (j=0,1,--+) can
be uniquely determimed as solutions of certain non-linear diffe-
rential equations (for j=0) or of certain linear differential
equations (for j=1) such that:

The coefficients (PP(u, v), QP (u,v)) are functions holomorph-
ic and bounded in (u,v) for

(14.17) lu] <&y, |v]<by

and, consequently, the formal power series (14.13) are uniformly
convergent there.

The coefficients P\°(u,v) and QP (u,v) (j=1) are functions
holomorphic and bounded in (u,v) for
(14.18) lu|<by, |v|<by,  u™"ED(cy)
admitting asymptotic expansions of the form (14.14) as u and v
tend to 0 in the domain (14.18).

Remark. In the case when m=0, the functions P$°(u,v) and
Qr(u,v) are developable in uniformly convergent power series
of u in
(14.19) lu| <by, v*ED(cy)
such that the coefficients are functions asymptotically developable
in powers of v for

(14. 20) o<lol'<ci, |nargo+arg <.

By the inequalities (9.3), we see that the domain D(c;)
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appearing in (14.19) is contained in the domain (14.20) for a
suitably chosen positive constant c,.

In the case when n=0, the functions P(u,v) and Q°(u,v)
are developable in uniformly convergent power series of v in

o[ <&y, u™=D(co)

whose coefficients are junctions admitting asymptotic expansions
in powers of u for

0<|u|™<c,, |margu-+arg a[<—§—7r .
By virtue of (9.3), the domain D(c,) is contained in the
domain above if we choose suitably the positive constant c,.
Theorem 4.3.2. If we rewrite the formal solution (11.2) in
the form (1II.2), the coefficients (P®(x,u), Q>(x,u)) (I=0,1,---)
are functions holomorphic and bounded in (x,u) for

x| <a,, |u|<by

s0 that they can be developed lhere in uniformly convergent power
series of x and u. Therefore, the formal series (14.15) are
naturally uniformly convergent.

In the case when n=0, P>(x,u) and Q*(x,u) are func-
tions holomorphic and bounded in (x,u) for

(14. 2D |x|<a,. |margu+arg ai<§275. 0<|u|<b,
and developable in the uniformly convvergent power series (14.15)
there whose coefficients are the same functions as those appearing
in Theorem 4.2.2.

Theorem 4.3.3. If we rewrite the formal solution (11.3) in
the form (I1L. 3), the coefficients (P*(x,v), QF(x,v)) (=0,1,---)
are funciions holomorphic and bounded in (x,v) for

xl<a,, |v1<éb,

and admitting uniformly convergent expansions of the form
(14.16) (whose coefficients are also developable in uniformly
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convergent power series of v).
In the case when m=0, they are holomorphic and bounded
in (x,v) for

(14.22) |x| < aq, |nargv+arg[3|< , 0<|v|<by

and developable there in uniformly convergemt power series of
the form (14.16) (whose coefficients are functions asymptotically
developable in powers of v in the domain (14.12")).

Section 1. Proof of Theorem 4.2.1.

15. Preliminaries.

To determine the coefficients (P (%), @=(%x)),” we shall look
for the differential equations which must be satisfied by these
functions.

For convenience we rewrite the differential equations (1.1)
at this point:

(15.1) 2y =f(x,9,2), x2=g(x,9,2),°

where f(x,y,2) and g(x,y,z2) are functions holomorphic and
bounded in (x, y,z) for

(15.2) x| <a, |y|<b, |z]<b.

Differentiating both sides of (II.1) with respect to x, it is
easily found that

’ xU xV’ 1 &
(15.3)  £(% 9, 2)~xl’ + zIxP”Jr(k U +15 )Pt UV,
(15.0) g% 5, D~aV'+ 2 {aQu+ (B2 +15) )@l Ueve,

where xU’, xV' must be replaced by the expressions of the
right-hand members of the reduced system (2.3) or (2.3) ac-

5) To simplify the description, we write hereafter Py(x) instead of P{(x).
6) The symbol’ denotes the derivative with the obvious exception «’ and g’.
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cording as we have Case A or Case B.
Hence we must discuss Case A and Case B separately.

16. Determination of the functions P,(x) and @,(x) for Case A.

Inserting (2.3) into (15.3) and (15.4), we obtain
16.1)  f(x, 9, 2)~U™V"(a+’UmV") + 2 {xPy

+UV (ka+ 1B+ (k' +IBHYU™V™) Py} UV
and
(16.2) g%, 3, 2)~U"V™(B+LUV™) + X {xQx

+ UV ka+ IR+ (kR +IBYU™V™Qu UV,

If we substitute the formal series (II.1) for y and z appear-
ing in the left-hand members of the relations above, (16.1) and
(16.2) can be regarded as formal identities between formal
power series with respect to U and V whose coefficients are
functions of x. Comparing the coefficients of the terms U*V*

in such formal identities, we can derive the following differen-
tial equations:

(16- 3) xP(;o=f<x: Poo: Qoo); th'm:g(x, Poo: Qoo)
and
xPiy= -5 f (% Pu(%), Qu(%))- P
D Poo(), Quo(5)) +Qut Ru(®)
(16. 4. kD 5
xQ:’\l=‘§§‘g(x, Py (%), Qo (%)) Py
-2 g (%, Poo(3), Quo(3))+Qu+ S,
where
Ru=—((k—m)a+{I—n)B) Py m-n(x)
— ((k—2m)a’ + (I —2n)B") Py _zm, 1-2n(%X)
(16.5. &I +Pu(f; Por (%), Qe (%)),
Su=—((k—m)a+{—n)B)Qk-mi-n(¥)
— ((B—2m)a’ + (I —2n)B) Qr-2m, 1-2a(%X)
+ka<g : Pk’l’<x>a Qk’l(x>) 3 fOI' (k: l) 7& (0’ O) .
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Here 33,(f; pi: »q.) are linear forms of

el .
‘W’f(xaPoo<x>a Qoo(x>>, (k ) l >< (k; l) 37)
whose coefficients are polynomials of (p,.,qwe) for (&,1)7
(k,D),” and L, (g; pir>qur) have the same properties as ;.
Moreover, these differential equations admit a formal solu-

tion of the form
(16. 6. 1) Pm{g Py’ Qu"’éijuxj-

A singularity x=0 of the system (16.3) has a character
similar to a regular singular point for the linear system. In
such a case, we know that the formal soluiion (16.6.00) has a
positive radius of convergence and represents a solution of (16.3)
(See, for example, M. Hukuhara [8]). Suppose now that the
functions (Pu(x), @.(x)) have been already determined for
(B, DX (K,L) in such a way that they are holomorphic and
bounded for |x|<a@, and satisfy the differential equations
(16.4. kI). Then, since one of m and » is supposed to be
positive, the expressions Rg;(x) and Sgz(x) are known functions
defined in |x|<a,. Hence, the system (16.4. KL) is a linear
system with a regular singularity at x=0. Therefore, the
formal solution (16.6. KL) is uniformly convergent for |x!<a, so
that it represents a solution of (16.4.KL). We denote it by
(Prs(%), Quu(x)).

Thus the functions (Py(x), Qu(x)) are all holomorphic and
bounded in |x|<ay.

17. Determination of the functions P,(x) and @,(x) for Case B.

In this case, since the reduced system is given by (2.3,
we can easily verify that the differential equations which the
functions Py(x) and @Q.(x) must satisfy are given by the same

7) If #<k and I'’<l or k’<<k and I’<!, we say that the arrangement (%’. I’) precedes
the arrangement (%, ) and write (&, 1")<(%, I).
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form as (16.3) and (16.4. &) if we replace the functions R,(x)
and Su(x) by:

Ru(-x) = - ((k_ m)')’/l"" (l_ n)’YUDPlc—ml—n(x>
— 2 ((B—2m—vh)ypp+ ([ — 21+ ph)y,y)

_"m,S n 5”
v 4

X Pi_ymen, 1mantan(X) + P (f 5 P (%), Qen (X)),

Sul(x) = —((B—m)yp+ ([ — 1)) Qp—mi_n(¥)
= 20 ((B=Z2m—h)yap+ (I —2n+ ph)ysy)

“Pen<?
v “
X Qp—2m—sny 1-am+un (%) + Q0 (& ; P (%), Qe (X)) .

Here we must notice that there exists a formal solution of
the form (16.6.%/) and one of the quantities m+v2(=0) and
n—ph(=0) is positive. Hence, we can conclude that this formal
solution is wuniformly convergent for |x|<a, and represents

a solution of the corresponding differential equations.
Thus we have proved Theorem 4. 2. 1.

Section II. Proof of Theorems 4.2.2 and 4.2.3.

18. Preliminaries.

Since the discussion of Theorem 4.2.3 can be carried out in
quite a similar way, we shall prove Theorem 4.2.2 only.
We notice that the system (1.1) can be written as
A8.1)  xy'=fo(», 2)+fi(x, ¥.2), %2 =gy, 2)+g.(x.3.2)
with
So(», 2)=y""2"f*(3,2), &(¥,2)=y"2""'g*(y,2) .
(18.2) 1 f*(0,0)=«, g%(0,0)=8,
l\f1<05.ys Z)EO’ 8'1(0, .y’ Z)EO,

where f*(»,2), £*(»,2), fi(x,9,2) and g,(x,y,z) are functions
holomorphic and bounded in (x, y,z) for

x| <a, |y|<b, |z|<b.
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Now we determine differential equations which must be
satisfied by the functions (P,(#), @,(x)) and (Px(n), @:(un))
(JzD.

Termwise differentiation of the formal series (II.2) will
yield :

(18.3) xy’~xU’(1+:ZDPl(U)Vl)+ i 5P (U2l

{aw
S I REIAVEND RS Heopltoy

+(5+ 15 ) Pacn e,
A8.4)  2~aV' (143 QYD +V H (LU -2U

+QUU 1)V 3 L0,

Jz1,120
+ (712 )Qun v,

where (xU’, xV’) must be replaced by the expressions of the
right-hand members of the reduced system (2.3) or (2.3)
according as we have Case A or Case B.

19. Differential equations which determine (P,(u), @,(#)) and
(Pu(u), Qu(u)) (j=1) for Case A.
From (18.1) we see that (18.3) and (18.4) are reduced to
(19. D iz (v, 2) +f1(x, 3, D)~ UV (a+ U™ V™)
+ygmyn Z{U(oH—a U””V")dU )

+(a+IB+ (& +18") U””V")P,} |4
+ 2Xl‘,m{U’”“V"(ac+oc U””V”)
+(J+HIU™VHB+BU™V™) Py} fo’

and
(19.2) yreigt (v, 2) g%, y, D)~UV™(B+BU™V™)
UmVn+1 2{U(a+a UmVn)dU .
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+{+DB+RUV™HR}V?
m+1 n 4 m n i R
+Jg12’lgo{U Vila+d U™V )dU i

+(GHIUV(B+BUV™))Qal ¥ V.
If we substitute the formal solution (II.2) for (y,z) ap-
pearing in the left-hand members of the equations above, then

we obtain formal identities between the formal power series of
x and V whose coefficients are functions of U.

1°. The differential equations satisfied by P,(#) and Q,(u)
(I=0,1,--9).

Equating the coefficients of the terms U™"'V™ and U™V 7"+
in the first and the second of these formal identities and replac-
ing U by u, we are able to find the differential equations which
must be satisfied by P,(#) and @,(x). After a simple calcula-
tion we see that these differential equations are given as
follows :

Case when 7 >0.

(19.3) {OWP6=(1+Po>’”“<1+Qo>"f*(u+uPo,0)—a—apo,
: auQy=(1+P)"(1+Qy)" g*(u+uP,,0)—B—pQ,,
and
(19.4.1) {auPl':(C“@"“‘15>Pz+cm<u>Qz+Rz<u>,
B au@i = Cy(u) P+ (Cou(u0) — (L+DB)Q: + S, ()
where

Culiy=| S5 (32 (u, 00)

— —_ )
Y=1+Po(u), z=1+Qo(u)

- _ )
y=1+Po(u), 2=1+Qo(u)

Cou (1) = % (3mzig* (U, 0))

— —_ ’
y=1+Po(w), z=1+30(u)

]
Cat) = | Z-Cym 2y, 0)) |
|
]

Ca(w) = | (52" g™ (up, )

[ R(u)=—a'umPi_,(u)— (o' + (I —n)Bdu"P,_,(u)

— _ b
y=1+Po(u), z=1+Qo(u)
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(19.5) J ‘—a/um"sn,z'i’sﬁz(fo ; Pr(u), Qz<u>> s
' l Si(w) = — dumQ;_ () — (I — n+1)BUQ, (%)
—B'u™8,,+:,(g0; P, (), @, (n)) .

Here 6,,=0+#n), =1(U=n);L¥(fo; pr»q) is a linear form of
the functions

[ ez |

oy* 97" U=14PoCud, 7=1+QoCu)

G+RE+IUZ; G R, 1D+(0,1,0), #(0,0,1)), whose coefficients are
polynomials of p, and ¢ (1=!'</), where the f;(y) are the
coefficients of z* in the uniformly convergent expansion of the
function f*(y,z) in power series of z.  The expression ,(g,;
P, q ) has the same properties as $(fo; £:,9. ) (where m+1
and # must be replaced by m and nz+1 respectively).

Case when 7=0.

In this case, as can be easily seen from the above discussion,
the differential equations (19.3) and (19.4./) must be replaced
by

u(a+adu™)Py= 1+ P)™(1+Q)"f*(u+uP,,0)
(19. 6) —(a+a'u™)— (a+ad'u™P,,
ula+a'u™)Qy=1+PO"(1+ Q" Hg*(u+uP,,0)
- (B+Bu™)—(B+Bu™)Q,,
u(a+a'u™)P=(Cy(u) —a—I8—(a'+18)u™) P,
+Cp(u) - Q@+,
(19.7.00 u(a+ o u™Q; =Cy (1) P+ (Coy(u) —B— IR
=B +IBDu™) Qi+,

where 3, and {, are the same functions as before.

2° The differential equations satisfied by P;(x) and Q,(u).

Next, comparing the coefficients of the terms x’V* in the
formal identities mentioned above, we can find the differential
equations which the functions P;(#) and @;(#) must satisfy.
A simple calculation shows us that these equations are reduced



On a singular point of Briot-Bouquet type 59
to algebraic equations written as follows :
Case when z>0.

i (—Jj+ceu(u))Py+co(u)Qy=Ry(u)

(19.8.50) Cor() P+ (—J+ o)) Q.= S;, () ,

where
cn(u)==?%;J$(u4—u}%(u),0),
() =2 fuu+ uPo(1), 0)
)= ot uPs(), 0),

o) = 2 gou+uPo(10),0)

Ry(uw)=au™'P,_.(u)+ o' u*" P, _,,(2)
+ (U =n)Bu"Py_n(u) + (I —2n) 80" Pj_3,(1t)
+ B (f 5 uly (1), @ (1), Py (), Q5. (1)) ,
Sy(w) =™ Q5 () + U™ Q50 (%)
+ (U= nm)Bu"Q () + (I —2n)B U Q j1_sn ()
+Q5u(g; ulP; (u), Q (u), Pyy (), Q5. (%)) .

Here 9,,(f;up: , s Py »qs0) 1s a linear form of

(19.9)

ox’ oy* 0z
JHE+U<i+1,

l G, e, 1N+00,1,0),+(00,0,1),
U<, D,

whose coefficients are polynomials of up, (1</'<D), q, (0ZI'<I-1),
P and q;, ((G, 1)<, D) and the expression £,,(g;up;,q: ,
Pir»q;:) has the same properties as ¥%; (Of course, f= fo+ fi,
g&=go+ 81)-

Case when #=0.

J—JQCT:L—~](OJ&+%E%(%),O),

(19.9)

In this case, the functions P; and @j; to be determined
appear in the expressions of R;(#) and S;(#). Hence, (19.8.jl)
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must be replaced by the following differential equations:
J " (a+adu™)Py=(—j+cu(u)—IBu™— [B'u"™) Py

+ Clz(”)'Qﬂ—g‘sz s
.10. 7
(19 ! ]D 1umﬂ(a‘l'a,”m)Q;'z:Cm(”)'sz

+ (= j+cu(u) —IBu™—IB'u"™) - Q;—Qy .
20. Determination of the functioms (P,(u#), Q,(%)) and (Pj;(u),
Qu(un)) for Case A and n>0.
1°. The functions P,(#) and Q,(%).

We observe that the differential equations (19.3) and (19.4./)
admit a formal solution of the form

(20.1) P0~§ Pogott*", QONgOQmu’“
and

(20.2.D) P~ 33 Py, Qi 3] Quusat
respectively.

Since the differential equations (19.3) have a singularity
similar to a regular singularity at #=0, it is known that #tke
Jormal solution of the form (20.1) is uniformly convergent for
|| <b, and represents a holomorphic solution. We write such a
solution by P,(#) and Q,(#).

Suppose now that the functions P,(#) and ©,(#) have been
already determined as solutions of the differential equations
(19.4.7) for /<L in such a way that they are holomorphic and
bounded for |#|<&, and, moreover, admit uniformly convergent
expansions of the form (20.2.7). Then the expressions R,(#)
and S;(#) are known functions. Hence the differential equations
(19.4. L) become a linear system with a regular singular point
at #=0, and they admit a formal solution of the form (20.2.L).
Consequently, such a formal soluiion is uniformly convergent
for |u|<b, and represents a holomorphic and bounded soluiion
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of the system (19.4.L). We denote it by (Pn(u), &z(%)).
2°. The functions P;(#) and Q;(u).

We notice that the equations (19.8.j]) are algebraic equa-
tions and they admit a formal solution of the form

(20.3. 70 Pﬂfvg P, Qﬂ’vgo Qi .
Moreover, since #>0, we have evidently

cu(u) =cp(u) = ¢ (u) = ce(u) =0.

Consequently, the matrix formed by the coefficients of Pj; and
Q@ in (19.8.50) is written as —j-1, and therefore is non-singular,
where 1, is the 2-by-2 unit-matrix.

Suppose now that the functions P;(#) and ©;(#) have been
already determined for (7,0)<(j,L) in such a way that they
are holomorphic and bounded for |#| <, and satisfy the algebraic
equations (19.8.j/). Then it is clear that the convergent ex-
pansions of such functions coincide with (20.3.70), and the
expressions R;,(#) and S;.(#) are known functions. From this
we see that the functions P;,(u) and Q;.(u) can be uniquely
determined by the algebraic equations (19.8. JL). Clearly, these
functions are holomorphic and bounded for |u#|<&, and their

convergent expansions coincide with the formal series (20. 3. JL).

21. Determination of (P,(#), @,(»)) and (Pn(u), &@;(u)) for Case
A and n=0.

In this case, the differential equations which determine the
functions P,(#) and §,(#) are given by (19.6) and those which
determine the functions P,(#) and Q,(#) (I=1) are given by
(19.7.1). Moreover, these differential equations admit a formal
solution of the form (20.1) and (20.2.7) respectively. Hence,
by the same method as before, we can determine the functions
P,(u) and Q,(u) (I=0) with the desired properties.

But, the determination of the funclions Pn(u) and Qi(u)
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differs from that for the case when n>0.

Indeed, the differential equations which determine these
functions are given by (19.10.j/) and its singularity #=0 is
similar to an irregular singularity for the linear system. Con-
sequently, though the system (19. 10. j/) admits a formal solution
of the form (20.3.j0), it is generally divergent. On the other
hand, it is easy to see that the matrix formed by the coefficients
of the linear terms of Pj; and &j; is reduced to a diagonal
matrix —j-1, at #=0, where 1, denotes the 2-dimensional unit-
matrix. And, it is to be noticed that if u is in a domain

(14. 11) marg u+argal <5, 0<|u|<b;,

we have the inequality

’arg<—S: (a+a’i¢m)um+l du> | <§2£,

Hence, by virtue of a theorem due to M. Iwano [37], which is
essentially due to M. Hukuhara [9], we are led to the following
conclusion :

Suppose that the expressions ¥, and <, are functions
holomorphic and bounded for (14.11") and, moreover, asymptoti-
cally developable in powers of u. Then, the differential equations
(19.10. JL) admit a solution (P;.(u), Q;.(#)), where P;.(u) and
Q,.(n) are functions holomorphic and bounded for (14.11") and
asymptotically developable in the form (20.3. JL) as u tends to
0 in the domain (14.11").

Thus, Theorem 4.2.2 has been completely established for
Case A.

22. Determination of the functions (P,(%), @,(»)) and (Pj(u),
Qu(w)) for Case B.

In this case, concerning the quantities «, appearing in the
reduced system (2.3"), we notice that the condition ,#0 implies
that m+vh and n—ph are both nonnegative integers not simul-
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taneously zero. And, the quantity #—pk may vanish, if at all,
for only one value of %, say 4, and, consequently, the quantity
m~+vh, is positive.

By applying the reasoning similar to that used to derive
the differential equations (19.3) and (19.4./), we can prove the
following proposition :

The differential equations which determine the functions
P,(u) and Q(u) ({=0,1,---) are given by
py()uPo= 1+ P)™ ' (1+ Q)" f*(u+uP,,0)

22.1 — py(u) — py(u) P,
pry(u)u@o= (14 Po)"(1+Q,)"'g*(u+ub,,0)
—vy(u) — vy (U)& »
py(uP,=(Cu(u) — (p+0)y(u)) - P,
+Co(u) - @+ Ry (n)

22.2.1
¢ ) :U")’(u)qu = Czl(“) P+ (C22<M>
— v +)y(u)) - Qi+ S(u) ,
where
v (@) = + et " (n—vhy,=0),
R(u)=— 21 yutd™ " {putt Py (0t)

h# no
+ (/‘J"‘ VU_ n +/1'h>>Pz—n+uh<u>} — KYn AR U
Sy(u) = ~;L‘ Vatt™ " {ptt Qs (00)
Fo({+1=pn+h)Q ni ()} — vy, ™ + 2, .

Here h' is an integer, if it exists, such that n—vh'=1, and %, and
L, are the same functions as those that appeared in the formulae
(19.5). Moreover. these systems admit a formal solution of the
form (20.1) and (20.2.1) respectively.

Hence these systems have the same characters as the sys-
tems (19.3) and (19.4.7) respectively, which have been already
studied in 20.

Furthermore we can verify that the differential equations
which are to be satisfied by the functions P;(u) and Q;(u) are
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written in the same form as (19.8.j0), where the expressions
R,(u) and S;(u) must be replaced by

Ry(u) = pat™ oy (@) Plue(08) + (U= 1)yt () Py (tt)
+ n;: v pu P, l—2n+ph<u)

+v({=2n+ph) P, \_snim()} + By,

Su(u) = pu™ oy () Q1-n(8) + (I — n)u™y(U) Qs_n(1)
+ h§07nuzm+vh {1p2Q;, s m(26)

+v({—2n+ph)@Q,, z—2n+#h<”>} +Qy.

Here Yy, and L5 are the same functions as those that appeared
in (19.9). Moreover, this system admits a formal solution of the
Sform (20. 3. jI).

Hence, it follows immediately that, iz the case when n>0,
those differential equations are reduced to algebraic equations
with respect to Py(u) and Q;(u). But, in the case when n=0,
those systems are reduced to linear differential equations of the
following form with an irregular singular point at u=0:

{ :“"Y<u>um+1P;z= (=j+culn)— hu™y(u)) P+ ci5(0) - @y + Ry,
pry () U™ Q= €y () s Py + (— 7+ Co0(2) — bott™y(00)) + Q5.+ Sy

where

{ Ru= = 31 o ™ (a Py () + 50+ ph) P (0} =B
Sp=— h:é‘o')’h'u27n+”h {24 () +v(U+ ph)Q sy ()} —Qyr

and, moreover, this system admits a formal solution of the form
(20.3. 7D).

Therefore, applying the same reasoning as in Case A, we
can give the analytical meaning stated in the Theorem to such
a formal solution.

Thus Theorem 4.2.2 has been proved for Case B also.
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Section III. Proof of Theorem 4. 3.1.

23. Preliminaries.

The system (1.1) can be written as

(23.1) 5y = 51110, )%, 37 =3 (3 D,

Sy, 2)=y"2"f*(3,2), f*(0,0)=c,
&o(¥, 2)=y"z""g*(y,2), g%(0,0)=8.
Here the power series in the right-hand members are uni-

formly convergent in a neighborhood of (0,0,0) and, moreover,

f*(3,2), (¥, 2), f3(y,2) and g;(y,z) are functions holomorphic
and bounded in (y,z) at (0, 0).

Let us seek differential equations which must be satisfied
by P;(u,v) and Q;(u,v) (7=0,1,--).

By differentiating both sides of the formal solution (IIIL. 1)
term by term, we obtain formally

(23.2) 1y’ ~xU(1+Py(U, V) + U.x@%%zl
<y de(U, V) -
+§{]P,<U, V)+x_%___}x1,
(23.3) w2 ~xV'(A+Q(U, V) + V.xd;%%fcﬂ
X

+2{jQ,(U, V)+x£’Qz<f—’Vl}xf

with identities

£dPs _ OPs(U. V) rp . OPs(U, V) .y
(23. 4 dx oU oV ’
' 495 _ QU V) 1. 9Q,U, V)  _1r

l “dx su Uy AT

where U’ and xV’ must be replaced by the expressions in the

right-hand members of (2.3) or (2.3) according as we have
Case A or Case B.
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By virtue of (23.4), the expressions x-dP;(U, V)/dx and
x.d@Q;(U, V)/dx are regarded as functions of U and V only.

Substituting the formal solution (III.1) for y and z appear-
ing in the expressions of the right-hand members of (xy’, xz'),
the equations (23.2) and (23.3) will be reduced to formal iden-
tities between formal power series of x whose coefficients are
formal power series of U and V. Hence, comparing the coeffi-
cients of the terms x’ (=0,1,---) of these formal identities, we
can find differential equations which must be satisfied by the
functions P;(U, V) and Q;(U, V) (7=0,1,---).

Since the discussion for Case B can be carried out in quite
a similar way, we discuss the Case A only.

24. Differential equations satisfied by P; and @);.

A simple calculation shows us that these differential equa-
tions are given by

£Py= UV (14 P)™ (14 Qu)"f*(U+ Py), V(1 + Q)

24.1 —U"V*"(a+2U™VHA+P,),
T xQu= UYL+ PO™(1+ Q)™ g* (U(L+Py), V(1+Qy))
—_— U?nVn(B_I_B/UmVn)(l_i_QO) ,
o2y [FE= (3 CulU V) Pyt CulU, V)@t R(U, V),
T 5Q)=Coy (U, V) o Pyt (— j+Con(U, V))-Q,+S5(U, V) .
Here
Cos(t, v) zgy—focuwacu, ), v+ 0Qu(u, 1)) ,
CuaCat, 0) =2 folu+uPo(at, v), v+0Qu(w, 0,
(24.3)
Cou(u,v)= aaygo(u—i-uPo(u, v), v+vQ(u,v)),
Coaltt. 0= o+ UPo(t, 1), v+ 0Qu(2, )

and R;(u,v) is a linear form of the functions
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&+l
gﬁ fs (u+uPy(u, v), v+0Q(u, v))

G+rR+I<]; (L, 1D=+=00,1,0), =0,01); 0=5'<7)

whose coefficients are polynomials in P;(u,v) and Q; (%, v)
(1£7'<j), and the expression S;(z,v) has the same properties
as R;(u,v).

Moreover, these differential equations possess a formal
solution of the form

(24. 4) Pokazl} PLU*V?Y, QON}LEI LUV
(Poi=Papns Q= Qunirs)

and

(24.5. 1) P31 Pl Q3 QuU*V'.

25. Determination of the functions P,(#,v) and Q,(x,v).

1°. We consider the differential equations (24.1). These
equations can be written in the form

xP/=UmVnF<U, V, P’ Q) s xQ,= UmVnG(U, Va P’ Q) >

where F(u,v, p,q) and G(u,v, p,q) are functions holomorphic
and bounded in (%, v, p,q) for

lu|<b, |v|<b, |pl<d, |ql<d.

Moreover, there exists a formal solution of the form

P=f(UV), Q=gUV).
where f(U,V) and g(U, V) are power series of U and V given
by (24.4).
The formal series (III.1) are a formal solution of (1.1)
provided that (U, V) is a solution of (2.3). Now, we choose

arbitrarily the initial values (u,,v,) of the solution (U, V) in
such a way that

lu®| <b, |v°|<b
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and define the solution (f], f/') of (2.3) such that U=u" and
V=0 at X=2%,.

Then, we have at once

Assertion 1. If f(U,V) and g(U, V) are a formal solution of
(24.1), then (f(U, V), g(U, V) is a formal solution of the diffe-
rential equations

(25.1) xP'=U"V*F(U,V,P,Q), xQ=U"V"G(U,V,P,Q).

Conversely, if f(ff, V) and g(U, f/) are an actual solution
of (25.1), then the expressions f(U,V) and g(U, V) represent a
solution of (24.1).

Next, we can assert that

Assertion 2. If f(U, V) and g(U, V) are a formal solution of
(25.1), the power series f(u,v) and g(u,v) must be a formal
solution of the partial differential equations

[ u(a—!-a’umv”)—g—g+v(6+ﬁ’umv”)—g%=F(u, v, 6, q),
(25.2)

Y 8q 7 oy Moy 10 aq__
l u(a+au™vm)o - +v(B+Bum) =G, v, p,9) -

Conversely, suppose that p=f(u,v) and q=g(u,v) are the
solution of the partial differemtial equations (25.2). Then, the
expressions f (U, 17) and g(ﬁ’, f/’) are an actual solution of
(25. D).

By substituting (U, V) and g(U, V) for P and @ in (25.1)
and dividing both sides of the resulting equations by U™V”" we
have the relations (25.2), where %, v, p and ¢ must be replaced
by U, V, FCU, V) and g(U, V). However, the initial values u°
and v° of the functions U and V can be chosen independently.
This fact proves the first part of the assertion. The proof of
the remaing part can be carried out by a direct calculation.

Let (ﬁ, 17') be the holomorphic solution of the differential
equations

! 5y mayn / ST
25.3 xi = STAUD ) o =p(£XEE )
( ) w=u ma+nS = mo+nf /)’
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satisfying the initial condition : U=#%" and V=17" at x=x,. Here
(x,, #° 7%) is an arbitrary point in the domain

x| <ao, |%|<by, |9]<b,.

Then, by a direct calculation, we can obtain the following:

Assertion 3. Let f(u,v) and g(u,v) be a formal solution of
(25.2). Then, f(ﬁ', V) and g(f/', 17) are a formal solution of
the ordinary differential equations

x(ma+nB)P =F(U,V,P,Q),
x(ma—l—nB)Q’=G(ﬁ, v, P, Q).
Conversely, if f(ﬁ, f/') and g(U, V) are the solution of (25.4),

then the functions f(u,v) and g(u,v) must be a solution of the
partial differential equations (25.2).

By summerizing the discussion, we have the following:
Lemma. If the formal series

(24. 9 P~3 PLUV?, Q~2 QuU*V?
PN 0

(25. 4)

are a formal solution of (24.1), then the formal series
(25.5) P~ PLUV, Q~ LUV
1 "l

satisfy formally the differential equations (25.4).
If the formal solution (25.5) is uniformly convergent for

(25.6) |U|<e”, |V|<b”

and represents an actual solution of (25.4), them the formal
solution (24.4) also converges for (U,V) in the domain (25.6)
and becomes a solution of (24.1).
2°. We can assert that the formal solution (25.5) is uni-
formly convergent for (25.6) and becomes a solution of (25.4).
Indeed, according to our usual method, we make a transfor-
mation of the form

P=g+P™U, V), Q=t+Q™(U, ),

where
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PPy, v)=u+ > Plu*v', Q¥ (u,v)=v+ 2 Quur’.
E+I<N k+I< N
Then, the system (25.4) can be transformed into

(25.7) oy =0, V0, 0, 28 =60, V,1,0),

where g (%, v, 7, ) and G(«, v, n,§) are functions both holomorphic
and bounded in (%, v,7,¢) for

|| <6:, [v|<bi, In|<di, [¢]<d,
and satisfying there inequality
max {|3], |} = Ayl +[£)) + By(ul™ + [0
and the Lipschitz’s condition
1S, 0,9, 800 — B, 0,70, ED | S Al —ma| + AlG 8| -

Here A is a positive constant independent of N and B, may
depend on V. @ also satisfies the same Lipschitz’s condition as .
Let x,, #° and ?° be arbitrary values such that

%] <a”’, |u|<6”, [0°|<b”

and define the functions U and V as before.

Let Ly, be the segment joining the point x, with the origin
and let s be the length of this segment measured from the
origin to the point x. Then, on the paih Lx, we have the

inequalities
[g’lU;lz_lglsinéo 17l
(25.8) ds = 2lma+nf] |z
alVl - |Blsing, [|V]

l??z 2lma+nB| [x| -

Here &, is the same as before.
In fact, since (ﬁ, IA/) is a solution of the differential equa-
tions (25.3), we have, for example,

Ldlff‘:Re(i’; iZ(Z 916 iz’iasc)_ e<a+a'ﬁm1’?n 1 dx)_

\U| ds - ma+nfB  x ds

On the other hand, we can assume without loss of generality
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that

v

ioc—l—a'U”‘T?"l
I

|| | & )| <
ma+nB larg(l—i- « urv )|=28°

2lma+nB|

for (25.6). Therefore, we obtain the first inequality of (25.8),
if we notice that

1dx_ 1

x ds x|
and the inequalities (9.3) are satisfied

Using these inequalities, we can easily verify the following
proposition (See, for example, Chapter IV in M. Iwano [3]):

The system (25.7) admits one and only ome solution (»,{)
=(Y(U, V), Z(U, V), where Y(u,v) and Z(u,v) are functions
holomorphic and bounded in (u,v) for a domain |u|<by. v|<by
and satisfy there the inequality

max {| Y (u, v) |, | Z(u, )|} < Kn(jui +[v|"),
K,y being a certain positive constant.

From this proposition, we can conclude that the formal
solution (25.5) is uniformly convergent for the domain (25.6)
with 6" =sup b}, and represents an actual solution of (25.3). We
denote by (P,(U, V), Q,(U, V)) such a solution.

By the discussion in 1°, the functions P,(%,v) and Q,(u.v)
thus determined satisfy the conditions in question.

26. Determination of the functions P;(%,v) and Q;(u,v).

We consider the linear differential equations (24.2.7) and
the corresponding formal solutions (24.5. ).

I. The functions P,(%,v) and Q,(u,v).

The differential equations satisfied by P,(U, V) and ,(U, V)
are given by the equations (24.2.1):

¥P'=—P+CpuP+Cu@Q+ Ry, xQ = —-Q+C, P+ Cp@+ S,
Cij——_:CiJ(Ua V>, RIER1<U7 V)a SlEsl(Ua V) .
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The functions U and V are the same as those defined in 14.
As we have just seen, the functions P,(x,v) and Q,(u,v) are
holomorphic and bounded in (%, v) for

(26.1) lu| <&, |v|<& .

Hence, by definition of the functions C;;(u,v), R,(%,v), Si(#%,v),
these functions are also holomorphic and bounded in (u,v) for
the domain (26.1) and we have

(26. 2) C;;(0,0)=0.
Moreover, the equations above admit a formal solution

(24.5.1) P~ PLUV, Q~2 Qi UV,
k,l k,l

We introduce an auxiliary variable w by
(26.3) w=U"V".

As we have already seen in 11, x, U and V are considered as
functions of w. Let %(w), U(w) and V(w) be these functions.
Then, they are the solution of the differential equations

I wX(w) P g,

l wX(w)—Z,—Z)—= ula+ad'w), wX(w)%z7 =v(B+Lw),

X(w)=ma+nB+ (mad +nB)w,

such that x=x,, U=u® and V=1° at w=w’(=u"v"). Here, (x,,
#°, v°) is an arbitrary point in the domain (14.3).
By a direct calculation, we can prove the following :
Lemma. 7The formal series

(26.4) P~ PUVE, Q~ Q,, UV
are a formal solution of the differential equations
wZX(w)%fZ—= — P+Cu(U, VYP+Cyuy(T, HQ

(26.5) +R,(U, V),
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wX@) %~ —Q+Cu(T, TP+ Cu(T, 7)Q
+S,(U, V).
Conversely, let FCU, V) and g(U, V) be the solution of
(26.5). Then, the functions f(U, V) and g(U, V) are a solution
of the equations (24.2.1).

In order to invetigate the analytical meaning of the formal
solution (26.4), we put

P®™(u,v)= 3} Py, QD (u,v)= 2 Quu*
kLIS k1SN

and apply a transformation of the form

(26.6) P=p+P™(U, V), Q=q+Q™ U, V).
Then, the transformed differential equations can be written in
the form
2dp _ 1 7T
F,(U, V)q+R:(U, V),
6.7 + Fu(T, g+ R, V)

s dg _ 1 T Y/
w dw mOL+an+F21<U’ V)p

+Fpu(U, V)g+SHU, V).

Here, the functions F;;(u,v), Rf¥(u,v) and Sf¥(u,v) are holo-
morphic and bounded in (u#,v) for (26.1) and vanish at (0,0).
If we notice that the power series

(26.8) b~ ENPmﬁkT}Z, qNHZ szﬁkfﬂ

E+iz izN

are a formal solution of (26.7), it is not difficult to verify that
inequalities of the form

|Fo(u, v)|< A, max{|Rf(u, v)], [SF(w, v)|} < By(lu|"+|v[™)

are satisfied for (26.1). Here A is a positive constant inde-
pendent of N and By may depend on N.
Put
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1

(26.9)  p=nexp d(w), g=texp d(w),  Aw)=( orae

Then, we have

7 =w [ Fun+ Fi,t+ Rf exp(—4(w))], (, d)

26.10 dw
(26.10) ¢ = w [ Fyn+ Fut + St exp(—4@w))]. \  dw

The function exp(—j4(w)) has the same asymptotic behavior
as the function *(w)’, where j is a positive integer. Hence,
by Lemma 3.2 in 11 we have the inequalities

d —J Re A(w) > J sin &, 1 ket 5.0
dse =2|ma+7’l,3| leze ’ <0> )

and

_d_ TN (7| 5 ,—J Re Aw)
(|04 | Ve o)

- J sin §, 1 TN 7| NN ,—Jj Re ACw)

on the curve I'}, defined in 10, if the point (u°, v°) is contained
in the domain
(26.11) || <by, [v|<by, u™"ED(cy) .

Using these inequalities, we can assert that: The system
(26.10) admits ome and only omne solution n=Yu(U, V), t=
ZN(ff, 17) such that Yy(u,v) and Zy(u,v) are functions holo-
morphic and bounded in (u,v) for a domain |u|<b), |v|<&%,
urvreD(c) and satisfying there the inequalities

max {| Yy(u, v)|, | Zy(u, v) |} S Ky(u|¥+ |v|V)e e |

where w=u™v" and Ky is a certain positive constant.
The proof of this assertion is almost exactly the same as
that of Theorem 4 in 42 in M. Iwano [2], if we notice that we

can assume without loss of generality that
4A|ma+nB|<sin §, .

We omit therefore the proof. (The present case is not convergent!)
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By virtue of this assertion, we see that the differential
equations (26.5) admit a solution P=P,(U,V), Q=Q,(U, V),
where P,(u,v) and @,(u, v) are functions holomorphic and bound-
ed and asymptotically developable in the power series (26.4),
where we replace (U, V) by (u, v), for the domain (26.11) with
by=sup by, c,=supcl. Then, by the lemma, P, (U, V) and
Q.(U, V) are a solution of (24.2.1) with the desired properties.

II. The functions P;(u,v) and Q;(u,v) (7=2).

The method to determine these functions is quite the same
as before. The differential equations (26.5) must be replaced
by

wX @) 2D~ jP+C,P+CQ+ R,
(26.12. /)

WX (@) 92—~ jQ+CuP+CuQ+S),

CM=CU<0’ I}>7 é]=Rj<ﬁ> -[>>7 §J=Sj([7a I7>

Here, the functions R;(#,v) and S;(#,v) admit not convergent
but asymptotic expansions in powers of # and v as (%,v) tends
to 0 in the domain (26.11).

Observe, by the lemma, that this system admits a formal
solution similar to (24.5.7):

(26.13. ) P~ P UV, Q~3Q, UV,
k.l ALl

We make apply succesively transformations similar to (26.6)
and (26.9), where /Z(w) must be replaced by j4(w).

Repeating word by word the discussion in I, we can
determine the functions P;(u,v) and Q;(u,v) in such a way that
the expressions Py(U,V) and Q,U,V) are a solution of the
system (26.12.7) admitting asymptotic expansions of the form
(26.13. 7) for (U, V) in the domain (26.11).

Then, by the Lemma, the functions P;(u,v) and Q;(u,v)
thus determined satisfy the conditions stated in Theorem 4. 3. 1.
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Thus, Theorem 4.3.1 has been completely verified for Case
A.

Remark. As can be easily verified, in the case when m=0
(or #=0), the domain (26.11), where the functions P;(%,v) and
Q;(u,v) (j=1) are defined, contains the point #=0 (or the point
v=0) as an inner point.

We can assert that these functions are developable in uni-
formly convergent power series of u (or v) according as m=0
(or n=0).

We shall give a brief sketch of the proof for j=1 in the
case m=0.

Let (#° v*) be an arbitrary point in the domain (14.3”) and
define the functions U and V as before. We rearrange the
formal power series (26.4) in the form of a single power series
of U as follows:

(26.0)* P~Z (T, @~Za(NT,
where
(26.14.1) HD~T Put®, 0(0)~3 Quat*

Insert the formal solution (26.4)* into (26.5) and observe that

wX(w)- L (T

=w{dpé§_fV) wX(w) +p,<V> wX )4V U U‘l}U‘

=77 S Vs d VD D|T

The resulting equations are formal power series of U whose
coefficients are functions of V. Equating the coefficients of
the terms U* of these equations and replacing 14 by v, we obtain
the linear differential equations satisfied by the functions p,(v)
and ¢, (v). If we pick up their leading terms only, they are
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written in the form

v BBV pi=— Pt
BBV G =~ gt

Therefore, the functions p,(v) and ¢,(v) are uniquely determined
as solutions of these differential equations in such a way that
they admit asymptotic expansions in the form (26.14./) for

|nargv+arg Bl<37”, o< vl .

Then, by the discussion in I, we see that there exists a solution
(Pl(f], f/), Ql(ﬁ, 17)) of (26.5) which admit asymptotic expan-
sions in the form (26.4)* as (U, V) tends to 0 in the domain

|u|<b,, v"=D(c,) .

However, the point #=0 is an inner point of this domain. From
this it follows that the formal solution (26.4)* is uniformly
convergent for (f], f/) in the domain above.

This proves the assertions stated in the Remark following
Theorem 4. 3. 1.

Section IV. Proof of Theorems 4.3.2 and 4.3.3.
27. Preliminaries.

Since the discussion for Theorem 4. 3. 3 can be carried out in
quite a similar way, we discuss the proof of Theorem 4. 3.2 only.
And, we must discuss Case A and Case B separately. But,
since the discussion for Case B is almost similar to that for
Case A, we consider the Case A only.

If we differentiate the formal solution (IIL. 2) term by term,
then we have

[ xy ~ (de‘ +lP,xV,)VZ,

dx Vv

i viaf v

27.1)

Ms IMs

1 xz ~

~
I

0
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where

dpP, _, aPz + 0P L 49 an 1+ 99

Y U Y T gy T U

Thus we have

J £ 3, D~5 (5% v+ g UMY RV
(27.3) -

1 g(x, 3, D)~ 2 (x4 L V(B +EUTHQ) T,

where f(x,%,2) and g(x,v,z) are functions holomorphic and
bounded in (x, y,z) in a neighborhood of (0, 0,0).

Observe that, in the case when n>0, the expression xU
depends on both of U and V, while, in the case when n=0, it
depends on U only.

Substituting the formal series (III.2) for y and z appearing
in the left-hand members of (27.3), we obtain formal identities
between formal power series of ¥V whose coefficients are func-
tions of x and U. Comparing the coefficients of the terms
V?* (I=0) of such formal identities, we can find the relations
which the coefficients Py (x, U) and @,(x,U) must satisfy. A
simple calculation shows us that these relations are given by the
following differential equations :

Case when #>0:

@1 5P p Py, 55— P Q)

and

%200 — Co(, UDP+ Cual, UDQu+ R, U)

an —Cpu(%, U) P+ Cou(x, U@+ Si(x, U)

(27.5.1)

with

Cua(%, 1) =%f(x, Po(%, ), Qu(%, 1)) ,
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Cua(t, 1) =2 f (5, Po,10), Qu(%,10))
Cu(r, 1) =58 (%, Pol(x, 1), Qo(, 1))
Cos(, ) = 5-g (2, Po(, ), Qu(x, 1)),

R(x, ) = —aum O P, (%, 1) = @/ 2 Py (5, 10)

— (U —=n)Bu"P,_n(x, u) — (I —2n)B'u"" P,_sn(%, u)
+R(x, ),

m+1 8

S;(x, u)=—au Qz (% u)—a uzmHAQz (X, U)

- n)Bqul—n<x7 u) — ([ —2n)B'u*" Q) _n(%, u)
+&,(x,u).

Here R,(x, u) (or €,(x,u)) is a linear form of lhe partial deriva-

s S5 Pam ), Qo) (or 0 £(x Pi(r ), @y

(x, u))) for B+1'<l; (B, IN+(1,0),#(0,1), whose coefficients are
polynomials of the functions P,(x,u) and Q,(x,u) for 1<I'<I.
Moreover, as we have already seen, these partial differential

tives

equations admit a formal solution of the form

[ P~8,U+ UP®(U) + 33 PO(U)A,
(27.6.0) 7 (1=0,1,+),

| @~bur @+ £ Q0w
where the coefficients P{®(x), Q% (#), P¥(x) and Q%(u) are
the same functions as those that appeared in Theorem 4.2.2.
Consequently, they are functions holomorphic and bounded in a
circle |u|<b;.

Case when #=0:

In this case, the partial differential equations (27.4) and
(27.5.1) must be replaced by :

(27- 7) xP(’J=f<x;Po;Qo>s xQ6=g<x>Po,Qo>

and
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xP;=(Cy(x, U)—IBU™—IB'U*™) P,+C,(x, U) -0,
1 +R(x, U),
l 2@ =Cy(x, U)« P+ (Copp(x, U) = IBU™ - IB'U™™) - @,
+&(x, U).

(27.8.1)

Moreover, these differential equations admit a formal solution
of the same form as (27.6.7), where the coefficients P%(%#) and
QP(u) must be replaced by functions holomorphic, bounded and
asymptotically developable in powers of « for

27.9) |marg u+arg al<3i, 0< |u|<bs.

28. Determination of the coefficients P,(x, %) and Q,(x, u) for [/=0.

The formal solution (27.6.7) can be written in the form

(28.1.1) P33 0D, Q3 4us(U)% .

Then, by Theorem 4.2.2, the coefficients p,;(#) and ¢, ;(#) are
functions holomorphic and bounded in a circle |#|<&, or func-
tions holomorphic, bounded and asymptotically developable in
powers of % for an angular region of the form (27.9) according
as we have (>0 or #=0 and j=0) or (=0 and j=1).

The partial differential equations (27.4) and (27.5.]) can be
considered as ordinary differential equations if we regard u as
a parameter. Therefore, they are ordinary differential equations
with a singularity x=0 similar to the regular singular point of
the linear system. It is known that, if its formally holomor-
phic solution exists, it is actually holomorphic. Hence, the for-
mal solution (28.1.1) is uniformly convergent for

(28.2) x| <ay, |U|I<b

and represents a solution of the corresponding differential equa-
tions. We denote by P,(x, U) and @,(x, U) such solutions.
Then, the functions P,(x,u) and @Q,(x,u) are clearly developable
in uniformly convergent power series of x and wu for the case
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when n>0.
In the case when n=0, we can assert that the formal solu-
tion (28.1.1) is uniformly convergent for

(28.3) |x| <@y, ]margU+arga|<37”, 0<|U|< by

and represents a solution of the corresponding differential equa-
tions.

For the proof of this assertion, we have to establish a
lemma similar to the Lemma 3.2 in 11 for solutions of the
differential equation

(28.4) xu' =u"™(a+a'u™) .

We notice that, since #=0, the function U appearing in the
differential equations (27.7) and (27.8.]) and their formal
solutions (28.1.7) is a solution of (28.4).
Let @(c{,) be the set of points w satisfying the inequalities
6_<argw<0,, O<1w|<5’(argw,c{,),

where

@¢= —arg ai%r$280

and the function 3(@, ¢) has the property similar to d(e,c)
appearing in 14. We denote by U= ﬁ(x, %y, #°) the holomorphic
solution of (28.4) satisfying the initial condition U=#" at x=x,.
Here, (x,, %) is an arbitrary point in the domain

(28.5) x| <a;, umeD(c).

This solution can be parametrically represented as follows

U=w%, x=x(w),
where %(w) is the holomorphic solution of

W dx _ X
dw ma+mao'w
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such that x=x, at w=w" (=(«*)™). Moreover, the elimination
of w from these two relations yields U= ﬁ(x, %y, #°) provided
that the point (x,,#°) is in the domain (28.5) (See 11).

The lemma which we intend to establish can be stated as

follows:
Lemma. Let w® be an arbitrary value such that

wed(c,) .
Then, there exists a curve %, which starts from the point w°
and approaches O in the sector |arg w+arg a]é%—%o, such that,

on the curve f?;o, we have the inequality

dlx(w)| - sing, 1 .
ds = 2mla] Jwp P!

Here, s is the length of of the curve [, measured from the origin
to the point w’.

The proof of this lemma can be carried out in quite a
similar way as that for Lemma 3.2 if we replace ©_ and 6, by
6_ and ©, in the formula (12.24).

By virtue of this lemma, the proof of our assertion men-
tioned above is almost exactly the same as that of Theorem
5.3.1 in Chapter V. We therefore omit the proof of the assertion
for n=0.

Remark. For Case B, the expression xU’ depends on both
of U and V even if #=0. Therefore, the differential equations
(27.7) and (27.8.1) must be replaced by partial differential
equations. We have, for example,

J x 200y Uy 4 U™ 200 — £ (2, Po, Q0

5 ou
a m+ m
| 5% 4 w01y, O - g (5, Py, Q)

and there exists a formal solution

Po~20 po.s(UDK, Qo~21 o, ,(UDK .
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Let U= ﬁ(x, %, #°) be the holomorphic solution of the diffe-
rential equation

du

x =
dx "

i“m+1<,y + Vﬂﬁm)

satisfying the initial condition U=u at x=2%,. Then, we can
easily verify that the formal series

Py~ 0, (T, Qo3 g0, s(TD
are a formal solution of the differential equations

dﬁo_ 5 A d o __ P (
x—a‘%’_f<xaP0,Q0>a x dx —g<x’P°’Q0)'

Hence, the proof of the uniform convergence of this formal
solution is the same as that for Case A and #=0.

Part III. The analytical meaning.

This part will be devoted to the investigation of an analy-
tical meaning of formal solutions of diverse types which have
been already studied in Part II.

Chapter V. Convergence or asymptotic development

29. Main Results.

In the preceding chapter we have obtained formal solutions
of the system (1.1) of diverse types, namely (I) (Theorem 4.1),
(II. 1) (Theorem 4.2.1), (II. 2) (Theorem 4. 2. 2), (II. 3) (Theorem
4.2.3), (II1. 1) (Theorem 4.3.1), (III. 2) (Theorem 4. 3. 2), (IIL. 3)
(Theorem 4. 3. 3).

In this chapter, we shall study an analytical meaning of
these formal solutions. Let U and V be the same functions as
those that appeared in 14 in Chapter IV and let D(¢) be the
angular region defined by (14.2).

The results which we intend to establish can be stated as
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follows :

Theorem 5.1. There exists a solution (¥,2)=(0(x, U, V),
U(x,U,V)) of the system (1.1) such that @(x,u,v) and ¥(x, u,v)
are functions holomorphic and bounded in (x,u,v) for

(29. 1 x| <ap, |u|<b;, [v]<b;, wumv"eD(cr)

and, moreover, admitting asymptotic expansions of the form of
D
¢<x) U, 'U) =u+ Z(Z) ijlxjukvl, P001=O )

Jik,l

I
U(x,u,v)=v+2® erczxjukvla Qowo=0,
Jsk,l

as (x,u,v) tends to 0 in the domain (29.1), where a;, b; and c,
are suitably chosen positive comnstants.

In the case when n=0, the domain (29.1) must be replaced
by
(29.2) x| <a;, |v|<b;, u™=Dc,.

In the case when m=0, the domain (29.1) must be replaced
by
(29.3) x| <ay, |u|<b;, v"EDc;.

Remark. The point (#,v) satisfying the inequalities (29.1)
is located on the product space of the Riemann surfaces of log
and logv.

The asymptotic expansion (I') means that, for any positive
integer N, we have an inequality of the form
an |0Cx, u, v) —u— >} Pux’utv!| < Ky(|x]" + [u]¥ + [0]7)

Jth+I<N

for any (x,u,v) in (29.1), K, being a certain positive constant
which may depend on V.

Theerem 5.2.1. The differential equations (1.1) have a solu-
tion (9,2)=@x, U, V), ¥(x,U,V)), where @(x,u,v) and ¥(x,u,
v) are functions holomorphic and bounded in (x,u,v) for (29.1)
and, moreover, asymptotically developable in the form of (I11.1):
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(O(x, u, v)=u+3 PP(x)u ",
kol

(L 1)
1 T (%, u,v)~v+2 QF(x)u ",
A,

uniformly valid for |x|<a,, as w and v tend to 0 in the domain
(29.1), where PP (x) and QFP(x) are holomorphic and bounded
Sunctions of x for |x|<a, (a;=a)).

Remark. The asymptotic development means that, for any
positive integer N, an inequality of the form

ALY (e u,v)—u— 23 PR@)u | < Ky(Jul¥+|v[™)
E+HIKN

is uniformly wvalid for (29.1). Of course, K, depends on N
only.

Theorem 5.2.2. The system (1.1) possesses a solution (y,z)
=(@0(x, U, V), ¥(x,U,V)), where ®(x,u,v) and ¥(x,u,v) are func-
tions holomorphic and bounded in (x,u,v) for (29.1) and admit-
ting asymptotic expansions of the form of (11.2):
O(x,u,v)~u(l+ iio PP (u)vY) +j h OPS‘?(u)va‘ ,

1,1

v
v

(11. 2

U(x,u, szv(1+ﬁ QP (u)vY) + Q7 (u)x’v*,
=0 J 0

21,12

uniformly valid for |u|<b,, as x and v tend to 0 in the domain
(29.1), where the coefficients are the same functions as those
appearing in Theorem 4.2.2..

If n=0, the formal series (I11.2") are wuniformly convergent
in a domain (29.2) so that, if we replace u and v by U and V
respectively, their sum (¢ (x, U, V), ¥ (x, U, V) represents a solution
of the system (1.1).

Remark. This asymptotic expansion means that, if we write
the formal series (II.2") in the form

(1.2.1) O=u+ pu(u)x’v’, ¥T=v+3 q;w)x'v
with

uP®(u) G=0),

2200 =1 po Gz1),
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iy | 9 (=0,
T g G=1),

an inequality of the form

AL2 o u,v)—u— 3 pp(w) v [=Ky([x[¥ +[v][")

is uniformly satisfied for (29.1), where N is any fixed positive
integer and K, is independent of x, # and wv.

Theorem 5.2.3. There exists a solution (y,2)=(@(x,U, V),
U(x,U,V)). Here @(x,u,v) and ¥(x,u,v) are functions holo-
morphic and bounded in (x,u,v) for (29.1) and uniformly asymp-
totically developable in the form of (11.3):

O(x, u, ) ~u(l+> PO+ 3 POw)x'u,
h=0 J 0

[\

1,k

v

(I1. 3) -
Uz u,v)=v(1+3 QL @u)+ 3 QPw)xw,

20

as x and u tend to 0 in the domain (29.1), where the coefficients
are the same as those that appeared in Theorem 4.2.3.

In the case when m=0, these formal series (11.3") are uni-
formly convergent in a domain (29.3) and their sum represents
a solution of the system (1.1) if we substitute U and V for u
and v respectively.

Remark. The meaning of this asymptotic expansion is
similar to that explained in the preceding Remark.

Theorem 5.3.1. There exists a solution (y,z)=(@(x, U, V),
U(x,U, V)) such that ¢@(x,u,v) and ¥(x,u,v) are functions holo-
morphic and bounded in (x,u,v) for (29.1) and admitting uni-
formly convergent expansions of the form of (1II.1):

J O(x,u, v)=u(l+P}(u,v))+ i P (u, v)x7,
(I1L. 1)

1 ¥ (x, u, ) =v(1+QP(u, v)) +J§; Q7 (u, v)x .

Here the coefficients are the same as those appearing in Theorem
4.3. 1.
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This means that the formal solution (I1I1.1) is wuniformly
convergent for (x,U,V) in the domain (29.1) and represents
a solution of the system (1.1).

Theorem 5. 3.2. The system (1.1) possesses a solution (y,z)
=(0x, U, V), U(x, U, V)) such that @(x,u,v) and ¥(x,u,v) are
Sunctions holomorphic and bounded in (x,u,v) for (29.1) and,
moreover, admitting uniformly asymptotic expansions of the form
of (III. 2) :

O(x, u,v) zi P®(x, u)v'.

(II1. 2) e
V(% u,0)=2] Q%(x, u)v*,

=0

as v tends to 0 in the domain (29.1), where the coefficients are
the same as those that appeared in Theorem 4.3.2.

If n=0, the formal series (111.2") are uniformly convergent
for (29.2) and their sum represents a solution of the given system
if we substitute U and V for u and v respectively. This means
that the formal solution (1I1.2) is uniformly convergent and
represents a true solution for (x,U, V) in the domain (29.2).

Remark. This asymptotic expansion means that, for any
positive integer NN, we have an inequality of the form

(111 27) 0%, 1, ) — 3 PP (x, u)v!| < Kylo]”
=0

uniformly in the domain (29.1), K, being a certain positive
constant.

Theorem 5.3.3. There exists a solution (y,2)=0((x,U, V),
Y(x,U,V)) such that ®(x,u,v) and ¥(x, u,v) are functions holo-
morphic, bounded in (x,u,v) for (29.1) and uniformly asympto-
tically developable in the form of (1IL.3):

O(x, u, v) =3 PP (x, v)u .

(II1. 3 .
U(x,u,v)=2 QF(x, v)u*,

A=0
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as u tends to 0 in the domain (29.1), where the coefficients are
the same functions as in Theorem 4.3.3.

If m=0, the formal series (111.3") is uniformly convergent in
a domain (29.3) and their sum represents a true solution of the
system (1.1) if we replace uw and v by U and V respectively.

Remark. This asymptotic expansion has a meaning analo-
gous to that explained in the preceding Remark.

These theorems will be proved by our usual method for
endowing the formal solution with some analytical meaning.
According to the very general character of our method, all
these theorems are proved in quite a similar way. Hence, the
detailed proof will be given for Theorem 5.1 only. For the
remaining theorems, we shall only state the outline of the proof
to avoid the repetition of similar lengthy reasoning.

Section I. Proof of Theorem 5.1.

30. Peliminary transformation.

Put
Py(x,u,v)=u+ Y\ Pux’u’,
(30. 1) JHE+IKN
QN<x7 u, 1)) =0+ 2 mejukvl .
JHe+I<N

Since Pxn(x,u,v) and Qy(x, u, v) are polynomials without con-
stant terms, for any given positive constants & and 6,(<&), we
have the inequalities of the form

(30.2) max {|Py(x, u,v)|, |Qun(x, u,0)|}<b—0b
for
(30' 3) |xl<a0, lu[<b()7 [vl<b07

if @, and b, are suitably chosen. Moreover, we can suppose
without loss of generality that the right-hand members of the
differential equations
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a1 xy' =f(%9,2), x2'=g(% 3,2

are functions holomorphic and bounded in (x, y,z) for
x| <a,, |¥|<bo, |2]<b.

Let us make a transformation

(30.4) y=n+Py(x, U V), z2=0+Qxx U, V),

where (U, V) is a holomorphic solution of the reduced system
(2.3) or (2.3") (according as we have Case A or Case B) defined
in 14. Then the differential equations satisfied by » and ¢ will
take the form

(30 5) xn’=FN(xs U: V’ 75 ;) ’ x§/=GN<x7 U, V5 7, ;) ’

where

F.N(xﬁ u,0,n, §>=f(x 77+PN<x u,v), §+QN(x u,v))

—foPN(x u,v)—xU- aU

—xv aV

G_ch, u, v, n, §>=g(x 77+PN<x u, 1)) §+QN<x u, 'I)))

QN(x u,v)—xU - aUQ

—.’)CV "6—1'/. Q.N‘

Here, xU’ and ¥V’ must be replaced by the expressions appearing
in the right-hand members of the reduced form (2.3) or (2.3")
(according as we are in Case A or Case B).

Hence, we see readily that Fy(x,u,v,7,¢) and Gy(%, u, v, 7, {)
are functions holomorphic and bounded in (%, %, v,7,§) for

<30' 6) ]x|<a(); Iu]<b0: [v]<bO5 [7]]<bl5 |§I<b1'

It is clear that the differential equations (30.5) have a
formal solution of the form

(30- 7) n~ E leczijkVZ &~ Z ijzijle

Jtk+i= J+k+12N
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with
(30- 8) P00l=0) Q0k0=0‘

Noticing this fact and that the functions f(0,y,z) and
g(0,y,2) are of the form

(0,3, 2)=y""2"(a+ 2P auy*z’) ,
gQ0,y,2)=y"z" (B+ 2P Buyz"),

we can easily verify that inequalities of the form

1.3)

(30.9)  [Fy(x,u,v,7, )| <A(%| + |u|™v]|)|7|
+ A x|+ Jue|™ o [*D]E]
+ By {]x]+ x| (e + [0]¥H)
+ u|™ o] (Jue] ¥+ [0| 7D},

(30.9)  |Gu(x, u, v, 7, )| = A(x| + o] v|*) 5]
+ A x|+ x| |v]M[¢]
+ By {] x|+ |x| (|| + [0 [Y)
+ Ju|™v|*** (] ¥+ [0 [YD}
(30 10) iFNCx: u, 1), 7]15 C1>_FN<x’ u7 'U, 7725 CZ)[
§A<le+l“|mlv'n>|7ll—ﬂz]
+ A %]+ [u] ™ o[ D]E = Cul
(30 10/) !GN(x5 u,v, N> §1>_GN<x3 U, v, N2> EZ)I
<A x|+ o™ M o] g — sl
+ A%+ o] [0]") 61— &
are satisfied for (30.6), provided that n and ¢ satisfy the condi-
tions

(30.11) In|=CClxl+[u]), [E]=C(x][+ o)),

where C is a positive constant. Here A is a suitably chosen
positive constant independent of (x,u,v,7,¢, N), while By depends
on N.

Remark. The first two expressions in the right-hand mem-

ber of (30.9) can be obtained from the estimation of y%f(x,y,z)[
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and -a%f(x, v,2)| for (y,2)=(n+Py(x,u,v),{+Qy(x,u,v)) under
the condition (30.11). And, the last one follows from the fact
that, in the z-component of the formal solution (30.7), the terms
independent of x contain U as a factor and that (U, V) is
a solution of ther educed system (2.3) or (2.3).

In the case when #=0 (or m=0), we replace the expressions
|[v|” and |v|** (or |#|™ and |u|™*) by 1.

The condition (30.11) will be naturally satisfied because of
the conditions (30.8).

31. Auxiliary theorem and proof of Theorem 5. 1.

In order to prove Theorem 5.1, it is sufficient to prove the
following auxiliary theorem :

Auxiliary Theorem. The system (30.5) admits one and only
one solution (n,&)=(dx(x, U, V), ¢x(x, U, V)), where ¢y(x,u,v)
and ¢x(x,u,v) are functions holomorphic and bounded in
(x,u,v) for

(29. 1y x| <aly, |u|<bd,, |v|<by, u™"eD(cy)
and satisfying there the inequalities
BLL)  |on(x, u, V)| <Ky {lx]¥+ (2] + ) (e Y+ 0]},
BL1Y  ¢n(x, u, v) | SKy{|x]"+ (x| + o) (u|¥ "+ [p]¥ D} .
Here Ky is a certain positive comstant such that
(31.2) Ky(a) +2a.b,, 1 +2b7 ) <b, .

Indeed,

YN<x7 U: V) =¢N<x: U; V) +PN<x7 U’ V> ’
| Zy(x, U, V) =¢u(x, U, V)+Qx(x, U, V)

represent a solution of the original differential equations (1.1).
We shall show that Yy(x, U, V) and Zy(x,U, V) are independent
of N. In fact, for any N'>N, if (x, U, V) is in the intersection
of the domains (29.1)y and (29.1),,
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{ YN’Cx: U, V) =¢N’<x) U, V) +PN’Cx5 U7 V>—PN<x7 U; V> )
Zyx, U, V)=¢u(x U V)+Qn(x, U, V)—Qx(x U, V)

are also the solution of the system (30.5) satisfying the condi-
tions of the Auxiliary Theorem. Hence, such a solution must
be equal to (¢px(x, U, V), ¢x(x, U, V)). From this it follows that

{ Yy (x,u,0)=Yy(x,u,0)(=0(x,u,v)),
Z (%, 0,0)=Z (%, u,0) (=¥ (x,u,0)),

if (%, #,v) belongs to both (29.1), and (29.1)y.. By the analy-
tical continuation, these identities hold for (x, #,v) in the union
of these two domains. Therefore, the functions @(x,#,v) and
U(x,u,v) are defined in the domain (29.1) with a;=sup ay,
b;=sup by, c,=supcy. This proves Theorem 5. 1.

So, for the proof of Theorem 5.1, we have only to prove
this auxiliary theorem.

Let ¥ be the family of the pairs {py(x,u,v), ¥y(x,u,v)} of
Sunctions py(x,u,v) and yy(x,u,v), which are holomorphic and
bounded in (x,u,v) for

(29. D)y x| <dy, |u|<by, [v|<&y, umreD(cy)
and satisfy there inequalities of the same form as (31.1) and
(31.1") respectively with (31.2).

The domain D(c¢) has been already defined in 14. Let
(31.3) U=U(x, %5, u’,0°), V=V(x, %, u°, v°)

be a solution of the system (2. 3) or (2.3") holomorphic and satis-
fying the initial conditions: U=#° and V=12° at x=%,, and put

Do, 1,0 = | "5, U, V, (5, U, V), (5, U, VY EE
(31. 4) 3
ToaCro, 0, 0) = | G, U, V, (5, U, V), n, U, VYT

Here (%,,#° v°) is an arbitrary point in the domain (29.1), and
the integration is to be carried out along the curve [I',, which
has been already defined in 10.
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Then, the mapping T is defined as follows:

(31 5) {q)N(xs u, ’U), lP\.Z\ICQC: u, ’U>} g {@ch: u, ’I)), 2Flv(x’ u, 1))} .

Since {0,0}¢ ¥, § is mot empty. Moreover, as can be readily
verified, the family & is convex, closed and normal.

On the other hand, owing to Theorem 3 or Theorem 3’ in
9 (according as both of m and z are positive or one of them
is zero), the values of the functions x, U and V remain always
in the domain (29.1)y when x lies on the path I'.,,.

Hence, the integrands of the integrals (31.4) are well defin-
ed when x is on this path except for x=0. Moreover, as we
shall show later, the integrals (31.4) converge uniformly. This
assures us that the mapping £ has a well-defined meaning.

Our proof of the Auxiliary Theorem (and Theorem 5.1) is
based on the existence of a fixed point of this mapping (see,
for example, M. Hukuhara [107]).

Remarks.

1°. Here we have supposed that both of 2 and » are posi-
tive integers. However, in the case when one of them is zero,
the domain (29.1), must be replaced by a domain (29.2), or
(29. 3)y similar to (29.2) or (29.3) according as =0 or m=0.

2°. As can be easily seen from the proof, the constants
ay, by, ¢y, N and K, in the auxiliary theorem must be so chosen
that they satisfy certain inequalities (see (34.5), (34.11), (34.10)
and (34.10")).

3°. To complete the proof of Theorem 5.1, it remains for
us to prove the inequality (I”) (see the remark following
Theorem 5.1). This inequality can be verified as follows:

We take first an integer N’ satisfying the inequalities
remarked above and the inequality N'>N. Then, by the auxi-
liary theorem, we have an inequality of the form

9%, u,v)— 3 Px’utr’|
JHE+IKN?

< Ko (1217 + (2] + LD (el [077)
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The last expression is dominated by
=Ky (2" " ™ 7 o7
provided that
|x] + 2]+ [v]<1.

Therefore
|O(x, u,v)— > Pux’uv|
JHh SN

< 2 }ijxjukvll +KN (lxIN'—l_{_ IuIN'—1+ Ile'—1>

N<jrk=IKN/

S Ky(|x]V + || + [o]™)
for a certain positive constant Ky, if we notice that

P <M|Pj,dxfu’°v‘l =0(|x|*+|u|¥+|v]™) .

NZ )+ b

This proves the inequality (I").

32. Auxiliary lemmas.

Before going into the essential part of the proof, two lem-
mas must be established.

We make the following Assumptions :

i) 9 is a simply connected domain in a complex plane such
that the origin is an inner point.

ii) 9, is a simply connected domain in the product space
of r complex planes.

iii) &, is a simply connected domain in the product space
of » complex planes.

iv) g;(x, 9, vy (7=1,2,--, L) are functions holomorphic
and bounded in (x, y,, -+, yy) for

xE@; (yla"'ny>E®N'

V> hk:(-xy U,y uM) (k=13 27"'vM> and (;[)i(x: ula"'a“M} <l=
1,2,---, N) are functions holomorphic and bounded in (x,«,,---,
u,) for

(D) .’X?E,D, (ul,"', uM)E‘;M'
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vi) U=U(x, %, 04, -+, uy) (k=1,2,---, M) is a solution of
the differential equations

du,

(E) * dx

=N, (X, 0y, o, Unpy) (B=1, -, M)

such that #l=U,(x,, x,,u") (k=1,---, M), where (%x,,%°) is an
arbitrary point in the domain (D).
vii) The integrals

(1) Oy(mo, ud, oy wy) =0y (%o, ©°)
[ e (n UD, s ( UNE

(]=19 Ty L) )
¢i<x9 U>E¢i(x! Ul; ) UM) >

converge uniformly. Here [I',, is a curve in 9 joining the
origin with x, such that (x, U, .-+, Uy) remains in the domain
(D) when x is on this path.

viii) If x, is sufficiently near to x,, the relations

~ fzo -~
GO YERTDEINNY TER pLIN TR LA
Jr.. x Jy X
J%y 0
gj(x7 U) Eg.7<x’ ¢J<x7 U)y"': (bN(xr U)) )

are satisfied. Here the last integration should be taken along
the segment joining x, with x,.

Lemma 5.1.1. 9,(x,U)=0,(x,U,,---,Uy) (G=1,---,L) is a
solution of the differential equations

x ‘(111.27; =g,(x, (]f)l(x, U, -, qu(x’ U)) (=1, L)

such that @;(0, uf, .-, u) =0, where

u:k=11gl Ui<x7 Xo s u?, R ugl) .
2

Lemma 5.1.2. If the integrals (1) converge uniformly with

respect to (4], -, u)) for any fixed x,, then @;(x,u,, -, Uy) are
Sunctions holomorphic and bounded in (x,u,, -, uy) in the domain
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(D).

These lemmas were established by M. Iwano [17] when the
point =0 is on the boundary of ®. Since the discussion goes
essentially the same way for our case, we omit the proof here.

33. Proof of the Auxiliary Theorem.

We shall prove the following four propositions.

Proposition 5.1.1. The mapping T transforms T into itself.

Proposition 5.1.2. T is a continuous mapping of § with
respect to the topology of uniform convergence.

Suppose that these two propositions have been verified.
Then, by combining the fact mentioned in 31, we can conclude,
by means of a fixed point theorem, the existence of a fixed
point of the mapping T, namely the pair {py(x, u,v), 5%, u,v)}
of & such that

{pn(x, 7, 0), Yu(x, 0, 0)} = {On(x, u,v), Tx(x,u,v)}.
Then we can prove the following proposition :

Proposition 5.1.3. The element {py(x, U, V), ¥y(x, U, V)} of
$ corresponding to a fixed point of T is a solutiom of the given
differential equations (30.5).

This means that there exists a solution of the system (30.5)
in the family . We shall denote it by {¢x(x, U, V), ¢x(x,U, V)}.

Then we can prove our final proposition.

Proposition 5.1.4. The solution {px(x, U, V), {x(x, U, V)} of
the differential equations (30.5) such that

[ U V=OCa+ Clal+ DT+ V),
e, U, V) = 0]+ (&) + VD AU+ VYD)

1S unique.
Thus, for the proof of the Auxiliary Theorem, we have only
to prove these four propositions.

34. Proof of Proposition 5.1.1.

For the proof we must show that
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(a) The integrals (31.4) converge;
(b) We have the following inequalities :

D (o, 1%, V)| S Ky {2V + | 2] (o[ Y71+ [0° |7
{ + | (¥ + 0¥ )
l [ (%0, 2%, V)| S Ko {| %0V + 2] (|2 |Y 4 |01
+ 0] (e |7+ 00|75

(©) Oy(x,u,v) and Vy(x,u,v) are functions holomorphic and
bounded in (x,u,v) for (29.1)y.

Replacing |y| and |¢| (in the right-hand members of (30.9)
and (30.9)) by the expressions of the right-hand members of
the inequalities (31.1) and (31.1") respectively, we have the
inequalities

(34.1D |Fy(x, u, v, (%, u, 0), Yy (x, 2, 0)) | <Fu(x, u,v) ,
(34 ll) |GN<x’ u3 'l), (chx) u’ 1))’ l{’N(x’ M, v))l§®N<x’ M, ’l)) bl
where

(34.2)  Fw(x, u,0)={ACIx|+ [u]™|v]"+ || 0|") Ky + By} |x|"
+{ACIx|+ ul + o]+ |u]™ o]+ || v |" D Ky
+ By} 2| (lu] + 0]
+ {2AKy+ By} |u|™ [o]"([ae]™ 7+ 0],

(34.2) ©n(x, u,v)={AQ|x|+|u|["|v|"* + |u|™|v|") Ky+ By} |x|"
+{AQ|x| + [u| + o] + || v |* + |u|"|0]") Ky
+ By} x| (a7 + [o]¥D)
+ {(2AKy+ By} u|™o|"" (u "+ [0]71) .

To prove the proposition, we introduce an auxiliary variably
w defined by

(34.3) w=UmV",

Then, as we have already seen in 11, x, U and V canbe
regarded as functions of w which were written as x(w),
U(w) and V(w) respectively. Moreover, we have identities of
the form
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Fy) dx _ ﬁN 1 dw
(34. 4) SF%{GN;T—SF%{GN ma+nB+ (ma +nBw w?

(see (5.2) in Theorem 2.1 in 5), where I',, and I'}, are the paths
already introduced in 10 and

Fy=Fy( U, V, 5w ¥x), Gu=Gx(Z U, V,3m¥w) ,
¢N=¢N<5€, fja I}D, ‘}N=‘!’N<9~ﬂ fj, ff} .
It is to be noticed that, as x tends to 0 along the path I,
w tends to O algon the path I’} (see Theorem 2.3 in 5) and
that the part of the path I'}, which is sufficiently near to the
origin consists of the segment denoted by I (see (10.6), (10.7)

and (10.9)).
As we have already seen, we have

Uw)=0([w[Re®), V(w)=0(w[Re®),
- w B
ma+nfB’ ma+nQ
on the segment I (see Theorem 2.1 in 5) and the function
x(w) tends exponentially to O along the segment [ (see
Theorem 2.3 in 5 and also 8 and 10). Hence, if N satisfies
the inequalities

NRe2=1, ReU+(N—1)ReB=1,
(34. 5)

(N=1DReA+ReB=1, NReB=1,
we see by (34.2) and (34.2") that the integrals

dw
wZ

[ 8aCx 0, 792 and | ©u(x0,7)
[‘;1:0 w r*
are convergent, which, by (34.1) and (34.1"), proves the conver-
gence of the integrals (31.4).

Thus we have proved (a).

To show that (b) holds, it is sufficient, by (34.1), (34.1")
and (34.4), to prove that:
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2 X (% IT U dw
(34.6) Wgr;ko%lvcx, U, v) } 5
< Ko {|] ¥+ ([%o] + [0 (|| ¥ 4 [0° ¥}
' 2 & v 17 T | dw
<34 6 ) ngio@NCx, U, V) l—ﬁz_

< K {0 (o] + 107D a4 2] 7]

if we notice that, for sufficiently small |w]|,
34.7) ]ma—l—nﬁ—}—(ma’+nB’)w]g»21—|ma+n,8|.

Let s be the length of the arc '}, measured from the origin

to an arbitrary point w on ['},. Then, as we have already
shown, we have

|dw
. ds

(See (12.5) and (12.12) in 12). Hence, the inequalities (34.6)
and (34.6") are equivalent to

‘=1.

2 ‘= ds N 7 FT|N-1 7181
B18) o E o Far e S Enl21 + (x| + DDA+ V1)
and
’ 2 ‘g ds | p ¥ r7|5-1 7| N-1
B4.8) o E o Bt S K (51 (14| VD (T4 7))

respectively. These inequalities can be derived from the ine-
qualities

2%.(%, U, V) d (1ain
34.9 <K, —
@49 et gl U v = ds 1
+ (& +[TDUTPF+ | V]¥-)

and
, 28, (%, U, V) d
(34.9 N <K, %
) ima+ng|| U V= = " ds
+ (x| + VDT + | V7))

{1z]"
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on the curve I'%,, since w=U"V"
By virtue of Lemma 3.2 in 11 and since p=|w|=|U"| V],
we have
A EY+ (3] + DD TP+ 715)
sin §, SN % (| TTIN-1 1 | T &1
= 2lmat nB| [T T LNz +x] ([T + [ V™D
+(N=DIU VP Qal|U+ 181V
+ U™ VI*(N|e| [U]" + (o] + (N=D[BD[V]¥)]
> SIN& AR 14+ (N=1)
2lma+nB|| U™ V|
xmin(lal, |BDIT]" V|5 (|U]¥+ V]
+ N min(|al, |BDU™ V" U™+ |V]¥)]

and similarly,
A {E+ E -+ VDD [ 717-)
> SIN& Nz (1 (V1)
2|\ma+nB||U™| V|
x min(lal, [SDUI"| V]"}E](( U+ V™D
+ N min(lal, [BD|TU™ V] (|U*+|V][¥)].
Therefore, since Jy(x, %, v) and G(x, u,v) are defined by (34.2)
and (34.2") respectively, we see that (34.9) and (34.9) are an
immediate consequence of the inequalities
4AQ|E|+ U™ V" + U™ V"D Ky +4By < Nsin 8- Ky,
AACIE + U+ |V + U™ V" + U™ V"D Ky

(34100 +4B,<sin 8Ky,
8AKy+4By< N min(|al, |8])sin &Ky
and
4AQ|E| + U™ V|™ 4+ |U|™ V") Ky +4Bx < N sin 8Ky,
(34,10 [ 4AQIE|+| U]+ V| + [T V] + | T V] Ky

l +4By<sin 8+ Ky,
8AK,+4By<N min(|al, |8])sin 8Ky
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respectively.
We take first the quantities NNV, 1/ay and 1/b) so large that
the following two inequalities are satisfied :

(8(a@y+by+ (D)™™ A<sin g, ,

(341D 18A<Nmin(la|, |B])sin 8, .

and next K, sufficiently large so that the inequalities (34.10)
and (34.10") are satisfied for the values of x(w), U(w), V(w) in
the domain (29.1)y5. This is evidently possible.

Thus we have proved (b).

In order to prove (¢), we consider the following correspon-
dence :

(1) The reduced system (2.3) or (2.3) to the equations
(E) in 32;

(2) The integrands of (31.4) to the integrands of I in 32;

(B) The pair {Oy(x, u, v), ¥y(x, u,v)} of the functions
Oy(x,u,v) and ¥y(x,u,v) defined by (31.4) to the system
(D, (x, 080, -+, U2g), -+, Pp(%, w4y, -+, us)} of the functions @,(x, u,, -,
u,) defined by the integrals (I); )

(4) The path [, in (31.4) to the path I, in (D).

Then the relation (R) in 32 becomes

(34.12) Sr Fo(x, U, V,pn, ¥y iixﬁ=§r FN%x""SrD,FN%{
) x; )

and

3112) | Gux U Voo % =| 6,2+ (" 6,2%.
. x

E x, o

We suppose that these relations are verified. Then, since
the assertion (b) just established assures us the uniform conver-
gence of the integrals (31.4), we see that (¢) is an immediate
consequence of Lemma 5.1.2 in 32.

Therefore, to obtain (c), it is sufficient to prove that the
relations (34.12) and (34.12") are satisfied.
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Let £(p) and &(p) be the points of intersection of a suffi-
ciently small circle |¥|=p with the paths /', and I's respec-
tively. Then, to obtain (34.12) and (34.12") it is sufficient to
show that

(34.13) Sél(P)FNd—;‘ -0,

)

£'(o) dx

&

as p—0, where the integration should be taken along the arc of
the circle |x|=p.

To prove (34.13), let us introduce again an auxiliary variable
w by the relation (34.3). Then, (34.13) will be reduced to

(34.14) S:lff%dw 0, S:}:T(%Z)D—dw -0,

X(w)=(ma+nB+ (ma’ +nBlw)w”,

where F‘N and GN are the same functions as those appearing
in (34.4), and the integration should be taken along a curve
L(w,,w;) which will be defined as follows:

Let

w'= ()" ()", w® = )" )",

where (#°,v°) and («°, v°) denote the values of (U, V) at x=x,
and x=x, respectively, and we determine the curves /', and I},
in the same way as in 10. The paths /., and I” x, are respectively
the images of the curves I3, and [, by the transformation
defined by the first relation of (5.3) (where C, must be so chosen
that this relation holds for x=x%, and w=w"). Then, the curve
L(w,, w;) must be so chosen that an image of this curve by the
same transformation becomes the arc £(p)& (p).

If p is sufficiently small, the point of the curve L{w,, w;)
is located in the sector

0_+28,<arg w=0,— 25,

in which the function Z(w) tends exponentially to 0 and the
functions ﬁ(w) and f/(w) satisfy the following condition (see



On a singular point of Briot-Bouquet type 103

Theorem 2.1 in 5): U(w)=0(|w|Re%), V(w)=0(|w|Re) .

Since the maximum of |w| for weL(w,, w;,) approaches 0 with
p, we can verify, as in the proof of (a), that the expressions in
the left-hand members of (34.14) and, consequently, those of
(34.13) converge to 0 with p.

Thus Proposition 5.1.1 has been completely proved.

35. Proof of Propositions 5.1.2, 5.1.3 and 5. 1. 4.

1°. To prove Proposition 5. 1.2, it is sufficient to prove that
if the sequence {py,,(x,u,v), ¥y, (%, u,0)} tends to 0 with respect
to the topology of B, {On,.(x,u,v), ¥y, (x,u,v)} also tends to 0.
Since the topology of ¥ is defined by uniform convergence,
this assertion is almost evident from the proof of the assertion
(b) of Proposition 5. 1. 1.
2°. Proposition 5.1.3 is an immediate consequence of the
assertion that, for any {py(x, u,v), ¥y(x,u,0)}eG, {Ox(x, U, V),
Uy(x,U, V)} is a solution of the differential equations
(a2 =Fy(x, U, V, px(x, U, V), ¥y(x, U, V)),
2 =Gy(x, U, V, ox(x, U, V), Yy(x, U, V)).
However, this assertion can be readily derived from Lemma
5.1.1 in 32.
3°. Suppose that there exist two solutions satisfying the
same conditions. Let {¢p*(x, U, V),¥*(x, U, V)} be the difference

of such two solutions. Then, by virtue of the inequalities
(30.10) and (30.10"), we have

@51 |p*@ U VHI=A|| ((al + UM VIDlg* (s, U, V)
(] + U VD [y (e, U, IR

@515 [p*(x U, V)léAlS:{(lxl + U™ V™D le* (%, U, V)

dx|

+(al + U VDl U, VS
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Put
K~ max {sup | (2, 4, 0|17 + Clx] + )+ 0]¥),

Sup [y (x, 2, 0| (|27 + (|| + [ D (] + 0] )7}

where the point (x, #,v) should run over the domain (29.1),.

To obtain Proposition 5.1.4, it is sufficient to prove that
K*=0.

Suppose that 0< K*< + oo, The definition of K* implies that:
(35.2) |o*(x, U, VH|=K*{|x|¥+ (2| +|UD( U +|V]*D},
(35.2) |[y*(x, U, MHISK*{|x|¥ + (|| + | VDU +|V]"D} .

Now we substitute the expressions appearing in the right-
hand members of (35.2) and (35.2") for ¢* and +* in the right-

hand members of (35.1) and (35.1"). Then, the resulting ine-
qualities can be written as

(e, U 1= | Fue U, 195
(e, U I Bt U, VO EE

Here, %}N(x, u,v) and ®y(x,u,v) are given by the formulae
(34.2) and (34.2") respectively, where we must put Ky=K* and
B,y=0. Observe that, in the inequalities (34.10) and (34.10"),
the equality sign can never be realized. Hence, we can obtain,
by the same calculation as in the proof of the assertion (b) of
Proposition 5.1.1 in 34, the inequalities

p*(x, U, V)| <K*{|2]¥+ (x| + | UD U+ | V]¥D}
W Ce, U, VOI<E* {2+ (x| + [ VD AU+ V]
From this it follows that K*<K*. Hence, we have 0 <K* < + oo,
which is the contradiction. Therefore, K* must be equal to

Zero.
Thus we have proved completely Theorem 5. 1.
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Section II. Proof of Theorem 5. 2. 1.

36. Outline of the proof.
We put
PNCx, U, 'U) =u-+ 2 P%)Cx>ukvl H
EHI<N

Qy(x, u,v)=v+ 3 @FP(x)u’
E+HIKN

(36.1)

and make a transformation of the form

(36.2) y=n+Py(x, U, V), z2=¢+Qx(x,UV).
Let

(36.3) xn =Fy(x, U, V,9,8), x=Gy(x,U, V,5,8)

be the system derived from the system (1.1) by the transfor-
mation (36.2). Clearly, this system admits a formal solution
of the form

(36.4) n~ 23 PROU*VE, ¢~ 3 QPx)U V!
k+l=N A+t N
with
(36.5) P@P0)=0, @%°(0)=0 (kyI=N,N+1, ).

Moreover, we can easily verify that:

1) Fy(x,u,v,7,¢) and Gy(x,u,v,7,5) are functions holomorphic
and bounded in (x,u,v,n,§) for

(36 6) |xl<aﬂ’ |u|<b07 ]'l)|<b0, i7]l<b1y l§|<bla

where a,, b, and b, are suitably chosen positive constants;

2) Fy(x,u,v,7,8) and Gy(x,u,v,7,{) satisfy there the inequali-
ties

(36.7) | Fal < AC] +ul™[0]") nl + AC| %] + ™o} ¢
+ B {[x] (] + |01 + | o] Cae] 4 [p10)) |
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B6.7)  |Gul= A%+ [u|™[0[*) 7] + A(|x] + |0 [E]

+ By {|#] (] + [0]™) + || |0 | (Jue| ¥ + [0 "D}
and, moreover, we have inequalities of the forms (30.10) and
(30.10") provided that 5 and ¢ satisfy the conditions

(36.8) ln| C(lx|+|ul), [E1=C(x]+ 2],

where C is a positive constant.

Remark. The last term appearing in the expression in the
right-hand member of (36.7) or (36.7") can be obtained from
the fact that the differential equations (36.3) possess a formal
solution of the form (36.4) with the initial values (36.5) and
(U, V) is a solution of the reduced system (2.3) or (2.3").

37. Auxiliary theorem.

To obtain Theorem 5.2.1, it is sufficient to prove the
following auxiliary theorem:

Auxiliary Theorem. The differential equations (36.3) admit
a solution (n,8)=(pxy(x, U, V), ¢ox(x, U, V)), where ¢(x,u,v) and
on(x, u,v) are functions holomorphic and bounded in (x,u,v) for
29. Dy x| <ay, |u|<by, |v|<by, u™v"=D(cy)

and satisfying there the inequalities

[l K | el 40172 ] a1+ o] )

37.1

S || < Knd] 2] (o] + [0]¥7) + |o] (2|7 + [0] Y1)}
with

(37.2) 2@, 00 T+ 0N Ky<b, .

Moreover, the solution of (36.3) satisfying the conditions
(37.1) is unique.
Indeed, the functions
Ych, Ua V) =PN<x7 U’ V>+¢N<x5 U} V) )
ZN(xs Uy V) =QN<x: UJ V) +¢N(x: U; V)

represent a solution of the system (1.1). And, by the same
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reasoning as in 31, we see that these functions are independent
of N if N is chosen so large as to satisfy the inequalities (34.5).

Thus Theorem 5.2.1 has been proved.

The auxiliary theorem can be established without any essen-
tial modification of the reasoning given in 31-35. As regards
the family §, for example, it is sufficient to take the pairs
{pn(x, u,v), ¥y(x,u,v)} of functions gy(x,%,v) and Yy(x, %, v)
such that they are holomorphic and bounded in (x,«,v) for

(29. 1),y x|<dy, |ul<b,, [v]<bi, wpreD(c))
and satisfy there the inequalities
| =Ky {|2] (|7 + 1077 + o (e Y+ [0}
[V < K {[2]C(loe]™" + |07 + [o] (Jue| ¥ + 0]}
with (37.2).
Remark. From the form of the formal solution (36.4), it

seems to me that the inequalities (37.1) may be replaced by

{ b = Ko 6] o]+ [0 + [ el Y+ 2] Y)
el K {131l + [0l + [l L=+ o]0

(37.1) {

although I could not prove the existence of such a solution.
However, to obtain Theorem 5. 2.1, it is sufficient to prove the
auxiliary theorem.

Section III. Proof of Theorems 5.2.2 and 5.2.3.

38. Outline of the proof.

Since the proof of Theorem 5.2.3 is essentially similar to
that of Theorem 5. 2.2, we shall expalin the outline of the proof
of Theorem 5.2.2 for the case #>0 only.

As we have already remarked in the Remark following
Theorem 5.2.2, we must rewrite the formal solution (II. 2) in

the form (II.2".1) in 29 (where # and v must be replaced by
Uand V):
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Y~U+2 pa(DXV?, 2~V+20 qu(UDX V.

Theorem 4.2.2 in 14 shows that the functions p,(#) and gu(%)
are holomorphic at #=0 and, especially,

(38.1) do(#)=0,  pu(0)=0 (=0,1,-).

This can be easily verified from the fact that, in the y-component
of the formal solution, the terms independent of x contain U as
a factor.

Let us put

Py(x,u,v)=u+ 2 pa(u)x’v?,

(38.2) Py d s

Qn(x,u,v)=v+ _HZNqﬂ(u)x’vl ;
J+HI<

and make a transformation of the form
(38.3) Y=n+Py(x, U V), z2=(+Qx(x, U, V).
The differential equations (1.1) will be transformed into
(38.4) X =Fy(x, U, V,2,8), x'=Gx(x,U,V,27¢)
which admit a formal solution of the form
(38.5) 7]~j+l2g‘,Npﬂ(U)x’V‘, §~j+lzé‘,]vqﬂ(U)fol
with the condition (38.1).
Keeping this fact in mind, we can easily prove that:

1) Fy(x,u,v,n,¢8) and Gu(x,u,v,7,§) are functions holomorphic
and bounded in (x,u,v,n,¢) for
(38.6)  |x|<ao, |u|<by, |v|<bo, |n|<&;, [¢]<b:;
2) Fy(x,u,v,7,8) and Gy(x,u,v,7,0) satisfy there the inequali-
ties
(38.7)  |Fx|=A(x|+|ul™|v[)|n]| + A(x] + 2| [0]" )]

+ By (2] + [ [0] ¥+ [u| 0] |u][0[*)

(38.7)  |GulSAUx|+|u|™ o™ |g| + A %]+ |2|™v]™)|¢]
+By([x]¥ + %] [0+ [u] " |v[*- [0] )
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and, moreover, we have the inequalities (30.10) and (30.10")
provided that the conditions

(38.8) ln| SCClx| +|u]), [€]=Cx[+[v])

are satisfied, where C is a positive constant.

To obtain Theorem b5.2.2, it is sufficient to prove the fol-
lowing auxiliary theorem:

Auxiliary Theorem. The differential equations (38.4) admit
one and only ome solution (Py(x, U, V), ¢x(x, U, V)) such that
Ox(%, u,v) and $n(x,u,v) are functions holomorphic and bounded
in (x,u,v) for

(29. Dy x| <ay, |u|<by, [v|<by, u™v"=D(cy)
and satisfying there the inequalities

b (X, 2, V)| S Ky (|| + 2] |07+ |u] 0|7,

38.9
G { gax, 0, 0)| = K (|21 + [ ][9] ¥+ [

The proof of this auxiliary theorem can be carried out in
quite a similar way as in 31-35. From this we can obtain the
conclusion of Theorem 5.2.2 for the case when n>0.

39. Remark on the case when 2 =0.

In this case, the conclusion of the auxiliary theorem 1is still
valid if we replace the domain (29.1)y by a domain of the form

(29.2)5 x| <ay, [v|<by, u"eD(cy).
Therefore, we see the existence of a solution (Y(x, U, V),
Z(x, U, V)), where
Y<x> U7 V) =PN<x) U9 V) +¢N<x9 Us V) ’
Z(x, U, V>=QN<x: Ua V>+¢N<x: U’ V)
are asymptotically represented by the formal power series
solution (II.2) in 14 for (x, U, V) in the domain (29.2) with

dy=sup ay, by=sup by, co=supcy. But, in the present case, these
asympiotic expansions are wuniformly convergent for (29.2).
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Indeed, the point x=0, v=0 is an inner point of the domain
(29.2) and, consequently, the functions Y(x,%,v) and Z(x,%,v) are
holomorphic at x=v=0 with respect to two variables x and .

Section IV. Proof of Theorem 5.3.1.

40. Outline of the proof.
We make a transformation of the form
(40' 1) y=77+PN(xa Us V); Z=§+QN<x3 Us V)7
where
Py, w4, 0) =L+ S, 00) + 33 P (s, 03
(40. 2) ;:1
Qn(x, u,v) =v(1+Q§ (%, v)) +2 QS (u, v)x’ .
=
Then, the transformed system can be written as
(40 3) xﬁ, =FN<~/X‘, U’ V7 77: ;) 3 x§,=GN(xa l]; Va 7]: :)

and admits a formal solution of the form
0.0 ~U PPV, ~3 Q8 WU VI,
J= J=
Also, it is found that
1) Fy(x,u,v,9,8) and Gu(x,u,v,9,8) are functions holomorphic
and bounded in (x,u,v,7,§{) for

(40.5) x| <@, |u|<by, |v|<by, umv"=D(co), || <bi, |£]<bs;

2) Fy(x,u,v,9,8) and Gy(x,u,v,7,§) satisfy there the inequali-
ties

(40.6) max (| Fy|, |Gx D A(g] +[¢]) + By|x|”
and
(40.7) ]FN(xy u, v, 1, 81) —Fy(x,u,v,n, Cz)l

éAl"h—"]zl +A|§1—§zl )
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(40 7,) IG.N(x9 u,v, i) El) _G.N<x9 u,v, N2 é‘z)l
éAI’?l_ﬂzl +A|§J _gzl .

In the present case, the inequalities (40.6), (40.7) and
(40.7") are satisfied without any conditions such as (38.8).

Under these conditions we can prove, by the same reasoning
as in 31-35, the following auxiliary theorem :

Auxiliary Theorem. The system (40.3) possesses one and only
one solution {dy(x, U, V), ¢x(x, U, V)} such that ¢y(x, u,v) and
on(x, u,v) are functions holomorphic and bounded in (x,u,v) for

(29. Dy x| <aly, |u|<by, |v|<by, u™"=D(cy)
and, moreover, satisfying there the inequality

(40. 8) max {|¢y(%, u, V)|, ¢n(x, u, )|} <Ky|x|",
(40.9) ayKy<b,.

By virtue of this theorem, we can assert that the functions
Yy(x,u,v) and Zy(x,u,v), where

( YN<x7 uy 'U) =PN<x7 ua U) +¢N<x7 u9 'l)) 3
ZN<x’ u, 'U) =QN(x’ u’ ’l)) +¢N<x3 ua 'I)) ]

are independent of N for any positive integer N and defined in
the domain (29.1) with a,=sup ay, by=supby, c,=supcy. Since
x=0 is an inner point of the domain (29. 1), these functions are
developable there in the uniformly convergent power series
(III.1") in 29. Clearly, (Yx(x,U, V), Zy(x, U, V)) represents
a solution of the system (1.1). This proves Theorem 5. 3. 1.

Section V. Proof of Theorems 5.3.2 and 5. 3. 3.

41. Outline of the proof.

We discuss the proof of Theorem 5.3.2 only, because
Theorem 5. 3.3 can be proved in a similar way. Set
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l Py(x, u,v) =NZ_‘,1P§”(x, u)v',
(41. 1) =
] QN(x: U, Z)) =§) ng)cx, u)l)l .

Let us make a transformation of the form

(41.2) y=n+Py(x, U V), z=(+Qx(x UYV).
We write the transformed system as

(41. 3) ) =Fy(x, U, V,2,8), x8'=Gx(x, U, V,90).

Then we see immediately that this system admits a formal

solution of the form
(41. 4) n~3 PP(x DDV, £~ QP (x, U)V?.
1=N =

Furthermore, we can easily verify that, if >0,
D Fy(x,u,v,7,¢) and Gy(x,u,v,7,8) are functions holo-
morphic and bounded in (x,u,v,n,¢) for

(41.5) x| <ao, |u]<bo, [v][<bo, |n|<bi, [5]<by;
2) they satisfy the inequalities
(41.6) | Fy(x, u, v, 9, | < A(x] + |u|™|v]™) |4
+ A x|+ |a|™v[*)1E]
+By(x]« [0]¥+ [u|"|v|" [u|[0]*)
(41.6)  |Gu(x, u, 0,9, O] A(x]+ |u|™|v|*) |n]
+ A x|+ |u|™v]|M ||
+ By(|x]«|v|Y + |u]|™|v]™ |v]™)
and, moreover, we have the inequalities (30.10) and (30.10")
provided that the conditions
(41.7) In|<C(x|+u]), [§]=Cx|+]|vD)
are satisfied, where C is a positive constant.
By the same reasoning as in 31-35, we can establish the

following Auxiliary Theorem :
Auxiliary Theerem. There exists one and only ome solution



On a singular point of Briot-Bouguet type 113

(0, ©) = (pn(x, U, V), on(x, U, V) such that ox(x,u,v) and $5(x,u,v)
are functions holomorphic and bounded in (x,u,v) for
(29. Dy x| <ay, |u|<by, |v|<by, u™"€D(cy)

and we have

(41.8) |bw (%, 2, V) | < K (2] [0 + || [0] ),
(41.87 |9 (2, 2, 0) | = Kn(|2] 0]+ [2])
with

(41.9) (@O '+ 0Ky <b, .

From this we see the existence of a solution {@(x, U, V),
U(x,U, V)} of the system (1.1), where the functions @(x,u,v)
and ¥ (x, u, v) are asymptotically represented by the formal series
(II1.2) in 29 for the domain (29.1) with a;=sup a}, b;=sup by,
co=sup cy. Especially, in the case when n=0, these asymptotic
expansions are uniformly convergent for

(29.2) X<, |o|<bi, wreD(c).
Thus Theorem 5. 3.2 has been proved.

41. Return to Theorem 5.2.2 for the case n=0.

We can obtain from the conclusion of Theorem 5.3.2 for
the case #=0 the conclusion of Theorem 5. 2. 2 for the case n=0.

Indeed, since the point x=0, v=0 is an inner point of the
domain (29.2), the functions @(x,u,v) and ¥(x,u,v) are holo-
morphic at (0,0) with respect to two variables x and v. Conse-
quently, they are expanded in uniformly convergent power
series of x and v. On the other hand, as can be easily seen
from the determination of the coefficients of the formal solution
(I1. 2) ((II.27)) (which, in the present case, is uniformly con-
vergent), such doulbe power series of x and V coincide formally
with the formal solution (II.2) ((II.2")). It follows then that
the formal solution (II. 2) is uniformly convergent in the domain
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(29.2) (where # and v must be replaced by U and V respecti-
vely).

This proves Theorem 5.2.2 for the case n=0.

Remark. Similarly, we can obtain from the conclusion of
Theorem 5.3.3 for the case m=0 the conclusion of Theorem
5.2.3 for the case m=0.
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