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§ 1. Introduction

Let us consider a system in a static magnetic field which
consists of N electrons and M infinitely heavy nuclei. Then
the Schrcdinger operator in the nonrelativistic quantum me-
chanics becomes,

N f 2 ,2 / O 0 \Z M
(1.1) /T'—VUVi ft \4 ° -L. ek Afv ^ 1 _ V

k = l U = 0 ZjC6fc \ C7^3fc_y C / J = l

A^
XH ^k^h
*—L l^i *. I '

Recently Jcrgens Ql] has shown that the essential spectrum
of JY is [JL6, oo )5 where //,<0, and Zislin £2] has shown that the
operator of the form

N
V

where (am~) is a constant positive matrix and 2 £fcj >$]£*& ^or

each k, has a countably infinite number of discrete eigenvalues.
Making use of Zislin's method, we get the same result for

a many-particle system which composes a positive ion, a neutral
atom or a neutral molecule in a static magnetic field. At the
same time, it will be seen how the decreasing orders at infinity
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of the attractive potentials and the vector potentials influence
the number of the discrete eigenvalues. Our result is a kind
of extension of the well-known fact that the operator in L2(R3)

(1.3) -A + c(*),

where c(#)^— —A——• IM 3 for |r ^R0 and it converges uniformlyr
to zero when r| tends to infinity, has countably infinite discrete
eigenvalues.

§ 2. Statement of the theorem

We denote by Rm the /^-dimensional Euclidean space, by R^¥

the 3-dimensional Euclidean space with variables r f c=(^3fc_2J #3*-i>
#3fc) and by J?J£ the (37V-3)-dimensional Euclidean space with
variables r l 5 • • - , r f c_ l 5 rfc+1, • • - , r^.

Let us consider the Schrcdinger operator of the form

( 2 . - —

For each term of this operator, we assume that
(c-1) bSJc-v, qk and Pkh are real-valued functions,

(c-2) ^-,(r,), ft(rt) and ^-(rt) belong to

(c-3) there exist some /3(0</8<2), 7 o < 7 < - , /3'(max\ ^ /
3), cfc>0, rf^>0, £>0, ^?2(0<^2<1) and sufficiently large

1?0>0, ^?i>0 such that

(2.2) ft(rt)^_^*_ for

(2.3) I *»-,(»*) | ̂

(2. 4)
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for rk-rh

/-N /

(2.5) gfc(rfc) and 3*~" (rfc) converge uniformly to zero, when
<3#3fc_v

|rfc| tends to infinity. And for convenience, put Pk7l = Pm for

(c-4)

Under these assumptions we can prove the following theorems.
Theorem 1. The Schrcdinger operator H of the form (2. 1)

has the following properties ;
i) the essential spectrum of H is [jt, oo), where /* = 0 for

N=l or p,<$ for N^2.
ii) there exist a countably infinite number of discrete eigen-

values and they have the only limit point at p.
Theorem 2. When the conditions (2. 2) and (2. 3) are satisfied

only in a cone Ck whose vertex is the origin of ~RIN, then the
statement of Theorem 1 is still true. In this case, however, we
still assume that outside of the cone £3fc_y(>fc) converges uniformly
to zero, when rk\ tends to infinity.^

Theorem 3. If the condition (c-3) is satisfied by /3 = 2, we
have the same assertion as that of Theorem 1 by replacing the
condition (c-4) by the following one

Remark 1. The condition (2. 4) is satisfied if one takes Pkh

to be the following :

where

1) We write rk\ = (s *§*._„)- and \r*-rh\ =( £ (*3/c-»-*3>i-v)2V .
Wo / \ v = o /

2) This supplementary condition is imposed so that Lemma 2 may hold.
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ii) /(r)=O( . i 1 5 _ £ ) in the neighborhood of the origin,

iii) /(r) is bounded except for the neighborhood of the

origin of RB,

iv) /(r)^-fe for

§ 3. Some lemmas

In the first place let us introduce the spaces of functions,
Qr(R7*) and ®2

L2(R™). The former is the space of all C°° func-
tions with compact support, and the latter the completion of

the space QrCR771) with the norm

ii ^ii _ / yi ^_J , _i_ yi 11 UJ -LH/II2 \2 ^

Under the conditions (c-1) —(c-3) the following two lemmas

hold, (see Jorgens [T]).4)

Lemma 1. If the domain of H is ^(R3^), then H is a lower-

bounded self adjoint operator in L2(R3^).

Lemma 2. The essential spectrum of H is [j*, °o]5 where

_ JO, when JV=1,
v.o. -U p~~ \ .

[ mm ml
i^i^

when

(3.2) frco=
 a

Let us prove the following lemma.
Lemma 3. Let N^2. If ^eL2(R^), ^eCo-(R^) «»d 0<7<3
given, so we have

3) We write /(^W^ = (/f^)L«(B««) and

4) As for — -- - Jorgens has assumed that ^L>— - — =0 in distribution sense in
oXyt—v j, = 0 CX^TC— v

place of the conditions (C-2) and (2-5). But following his proof, we can easily
get the same results as his under our conditions.
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-W^\dx^ const. , O'^O-

where I is a real parameter and const, is some constant inde-
pendent of 1. 5)

PROOF. Putting dri = dxu_z d#8«-i dx^ and

we have

max

Now we shall prove a lemma which is an extension of
Lemma 7. 1 of Zislin Q2]. It plays an important role in showing
the existence of the discrete eigenvalues of H.

Lemma 4. Let N^2. For any functions 0?s
Co-CRf) and for 0<7<3, w;

PROOF. We put 7 = 3-3£(0<£<l), choose M lagre enough

to satisfy sM^<l-S and M^-i-, and then put 0 = eM~*.
Zj

Let /j '^CS-O'CS-Sf-fl)-1 and /> = (3-£>(2£ + 6>)-\ Then j5?

and pr satisfy the equality -4- + — r = l and the inequalities,
P P

/(3-3£-60<3, 2p0<3.

Thus by virtue of Lemma 3 and the inequalities a -\-ba

5) Hereafter we write simply I /(V)d# in place of \ 3^f(x^)dx, and denote by (/,^

the integral | 9NfW~g(x)dx, finally [|/|| = (/,/)i.

6) In the case 7 = !, Zislin [2] has shown this result.
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we have

(3.3)
\lrj-rt\

s-Ss |rs|
3-3;

1
1 |/r,-r4|

2-2'

<const
\lrj-rt\ \rt\

< const
c 1 1 1

^const

1

^const \<Pg\'dx)>

^const

Now for any ?;>0, there exist positive constants N^ and
such that

\<pg\*dx<*f, where r=(2 Ir^)
Ny * = 1

and for all r^N^ and for any /, satisfing |/|</,,

hold. Then the right member of the inequality (3. 3) is esti-

mated as follows,

7) In the sequel, const, signifies some constant independent of a parameter /.
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(right member)^const

97 ,

which proves the assertion.

§ 4. Proof of the theorems
n

At first we can assume y>-^- in the condition (2.4), for £
Zj

o
is smaller than 2 and 7 can be chosen as close to -^- as we

LJ
require. Now we divide the proof of Theorem 1. in several
steps.

l-s£ step. We shall show that the lower limit of the spec-
trum is a discrete eigenvalue in the case 7V=1. For this purpose
we have only to show (Hep, <p)<0 for some function cpeSl^R3),
since the essential spectrum of H is Q), oo).

Now there exists some function with the properties;

(4.1) gi(*i,*a,*8)eC0(R8), 11̂ 11̂  = 1,

(4.2) £i(*i,*2,#8)=0 for |r| =

T p i- rf ( f\r\ -—. 1 ̂  rf ( 1 f\r 7/y- 1' /y "N /"j ^> 7 \ H^ f'lnP'n TXrP Vi a\7"P
-I->C L o Z v.-^'y — ^ o l x l > 2 5 " "^3 J x - " -^ J J H1C11 W C lid V C

lL2rR3) = l. Thus

(4.3) dx

^ const (/2 + /1+»+ s + ̂ +2£) - const.

8) |grad/ |=(S
2\1
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Therefore there exists some /0(1^/0>0) such that
gij<0, which shows the assertion.

2-nd step. Let us show that the assertion in the 1-st step
is also true in the case N^2. First ws assume that there
exists at least one discrete eigenvalue for the system composed
of N— 1 particles. Then by virtue of Lemma 2 there exists an
operator H^ in LZ(R^) such that

(4. 4) ^ = i , sv
^ C^o)^

By assumption, p, is a discrete eigenvalue of H^. Thus
there exists some function <pQ such that

(4.5) ^0e®£2(R^), \\q>0\\ 3V =1 and jffcfo>0>0 = w •
^ K

Putting /tz = ^o(?«o)^rz(^0)'
 we have i^e'SL^R3^), ||̂ ]| = 1 and

2 ^ _ g
w = 0

^/* + const (72 + /IT¥+ ' + /'3+2')

I* 2,/,
' °' fc5f

On the other hand, we have the following inequality

d d R^'~*

Therefore taking account of Lemma 4, for any ?7>0, there exists
some /x(l^/!>()) such that

(4.8) (Ptu*<pogi,<pogi)^const/-8' , ^v \\ I p

for any / (/^

Choosing ?;>0 in such a way that
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N -1 N

A=l ° 2 ° fr = l

we have

(4. 9) (-ff^i, ^0^ + const(/
\gl\

2
 dr

Consequently we have (Htyte, tyi*) < p for some lz (A2^
3-rd step. In the case JV^2, taking account of Lemma 2

and the 1-st step of this proof, we have /C6<0.
4-th step. We shall show that there exist a countably

infinite number of discrete eigenvalues. Let N^2. On account
of the first and second steps, there exists some function cpQ

satisfying (4.5). We put tyi = (po(ria')gl(ri3') as before. Now we
assume that there exist 5 discrete eigenvalues of H. Let the
discrete eigenvalues be {Xp}p=1,.. ,s, and the eigenfunctions
{^iJ jp - i , • - ,«» where they form an orthonormal system. Putting

K

(4.10) vl = ̂  +1] ̂ X,, where $p) = - (^, wp) ,

we have

Taking account of the orthonormal relation of {up}p^l} ff, we
also get

(4.12) (fit;,, ^) = Cfffc, tO -1]
P=-I

On the other hand, we have

(4.13) |\,
2

«p, "
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. up,

AT
1— 'N '
' ' 'fc=l

However we have the following inequalities

(4. 14) Q<PiQk(rio, rfc)

"' U"lok i ^i ft-**-! -"-2 TxrViO'n±s -j —TT ' ——i i ' wiicii u \ ^-t "^ • ̂  \ -—~ 5

-A^L^LL, when 0<7^/3<2.

Then on account of Lemma 3, we have

(4.15) |1

Therefore by means of (4.6), (4.8), (4.12), (4.13) and (4.15),
we have for any /(/i^

(4. 16) (Hv, , »,) ̂ * + const {/2 + /1+*+ 8 + /^2: + V
E + /"+2s + F+ E + r

o

where Jf is a constant independent of /.

Since fc/rO<0 for \rt^R, and ^(r,0)=0 for

according to (2.5) there exists for any ?;'>0 some
such that for any /(

( 4 . 1 7 ) (^^,^)L2R3 +^|]g^|][2R3v^-QJ(l-^)/ - - d r t
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holds. Now let us choose, at first, rf>Q in such a way that

N1

-£-(C*o-
Z *, =

and in the next ?7>0 small enough to satisfy

•7(2 rffcO'*- 2*10*)jb-i JR3N \rto\
p

Then there exists some ^(minC/i, /3)^/4>0) such that

(4.18) (Hvl , t>,)^A* + const {/2 + /^+ * + /'+2: + P'

d oAT ria ^
o o

holds for any /(/4^/>0). Because of 2ry>f3, there exists some

/5(/4^4>0) such that (Hvh9vlt*)<fj,. According to /*<() and

H^ll2^!, we have (flt;l5, ^5)<^^^I!^B||2- Now we put v = vlo\\vlo\\-\

Then z; satisfies the following conditions

(4.19)

and

which proves our assertion.

In the case N=I, we have only to make use of gl and follow

the above method.

PROOF OF THEOREM 2. In the above reasoning, we have only

to take as g"i such a function that its support is contained in
the cone.

Before proving Theorem 3, we shall show the following
lemma.

Lemma 5. For any £>0, there exists some function <p(#)

eQT(R3) (<£>(#) ^0) such that it is identically zero in the unit

ball having its center at the origin and satisfies the inequality
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PROOF. Take a real-valued function p(r) with the following
properties,

0, -<r^

Now we define £w(r)eQr(0^r<oo) and ^O)eC(T(R3) as follows,

(0 ,

1 0 4 - — , (2n^r^

<pn{x)= /— > where r=|r =V^i2

Then we have

4 r3

Thus

r- jR3 r

On the other hand, we have

and

9) Taking account of the well-known inequality

Jlrf*-4 ! grad ̂  I '^ C^eC»(R
Lemma 4 shows that in the above estimate the constant 4 is best.
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)o r j2 r

Then choosing n0 sufficiently large, we have

which shows that £?Wo(3
;)(EQ0(R3) satisfies the property required.

Now we shall prove Theorem 3.
PROOF. We can choose 4>£>0 small enough to satisfy

Ill

Then we take <p(#)eQ°(R3) satisfying Lemma 5 for £>0 and
put

which satisfies (4.1) and (4.2). Let gi(x*) = l* gi(lxl9 Ix2, lx*) as
before. Now we shall follow the proof of Theorem 1. By
means of Lemma 5, we have the following inequality in place
of (4.3)

(4.30

^ const (/2+3 + /2+20 - ciQ-
4 —

which shows that the assertion of the 1-st step in the proof of
Theorem 1 is also true in this case.

Secondly by virtue of Lemma 5 and (4. 8), we have the
following estimate in place of (4. 6).
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(4.6')

Then choosing ?;>0 in such a way that

Ad- <!'/ Z-J ^1^:= o

we have

(4. 90 Cffift, ^0 ̂  +const (/2+£ + /2+2- + /r

which shows the assertion of the second step in the proof of

Theorem 1 is also true in this case.
Last of all, taking account of Lemma 5, (4.8) and (4.17),

we have the following inequality in place of (4. 16).

(4.160 CHfy, fO ̂  + const {/2+£ + /2+2; + F + (/2 + /2+£ + /2+2£ + I1+s + /O2}

^/,6 + const {/2+£ + /2+2; + r + (/2 + /2+£ + /2+2£ + /1+£ + /O2}
1 a I2
g 1 ^/y-

Then choosing 7/'>Q and 97 >0 to satisfy
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Q-^d^k- - ^-) and
fc=i 4_ £ /
fc=i0

we have

(4. 18') (ffi;, , »,) ̂ /* + const {/*+• + /"** + />' + (/2 + /2+' + f +2' + /l- + /
i /

-f k-4 \

which shows that the same assertion as that of the 4-th step

in the proof of Theorem 1 is true in our case.

Remark 28 In the case when the masses of the particles of

the system are not all the same, applying a suitable linear

transformation such that r'k = - rfc(cofc>0), we see easily that we
&>*;

have only to consider the system under the following assump-

tion. Namely, we replace the conditions (2. 2) and (2. 4) by

the conditions

(C-3')

(2.2') qk(rk-)^—r^-f for

_ for

(2.40 o,^-"^-

for

Then we can get the same results as that of theorem 1. And

in this case replacing (C-4') by the condition

(C-4") ck — 2 dkh > -i- • cofc ,
j-i &7i 4

we can easily obtain the same result as that of Theorem 3.

In conclusion, the writer wishes to express his sincere
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for their enduring encouragements and kind instructions.
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