On the discrete eigenvalues of the
many-particle system

By

Jun UcHivama*

§1. Introduction

Let us consider a system in a static magnetic field which
consists of N electrons and M infinitely heavy nuclei. Then
the Schriédinger operator in the nonrelativistic quantum me-
chanics becomes,
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Recently Jt¢rgens [17] has shown that the essential spectrum
of H is [u, o), where <0, and Zislin [2] has shown that the
operator of the form
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where (a@,,) is a constant positive matrix and >} &,;>>" ¢, for
J=1 n=1
h#k

each &, has a countably infinite number of discrete eigenvalues.

Making use of Zislin’s method, we get the same result for
a many-particle system which composes a positive ion, a neutral
atom or a neutral molecule in a static magnetic field. At the
same time, it will be seen how the decreasing orders at infinity
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of the attractive potentials and the vector potentials influence
the number of the discrete eigenvalues. Our result is a kind
of extension of the well-known fact that the operator in LZ(R?®)

(1.3) —A+c(x),

where ¢c(x)< _4_i—6|ri|2 for |r|= R, and it converges uniformly

to zero when |r| tends to infinity, has countably infinite discrete

eigenvalues.

§ 2. Statement of the theorem

We denote by R™ the m-dimensional Euclidean space, by R:V
the 3-dimensional Euclidean space with variables r,=(Xg_s, %ap-1,
xy) and by REY the (3N-3)-dimensional Euclidean space with
variables ry, -+, Fe_1, Fis1, ***5 Fy-

Let us consider the Schriédinger operator of the form

@D H=33(in0 b))+ + 2 Pl
10T\ OXap_, [ et

k<

For each term of this operator, we assume that
(c-1) b, q, and Py, are real-valued functions,

(©2) (), @(r) and 222 (r,) belong to Li.(RE,
3k~v
(c-3) there exist some B(0<B<K2), 7<0<ry<%>, B’ (max

(By)<B'<3), €,>0, d, >0, €>0, R,(0< R,<1) and sufficiently large
R,>0, R,>0 such that

2.2) (o= -5 for [r =R, "

(2.3 b, ()| <-OBSE for |rg =R,
k

< dknR'lg’_ﬁRiz_‘g/

= el

_ duRE

== ]rk——-rhlﬁ

for |r,—ry|<R,,

(2.4) 0L P (s, 1) for RZélrk_rhléRly
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dkh

= Troril for |r,—r,|=R,. 7
k h

8b3k—y
2.5) q,(r,) and Cr

|r;] tends to infinity. And for convenience, put P,,= P, for 2> 5.

(r,) converge uniformly to zero, when

(c4) c,c>§1]d,m.
k2h
Under these assumptions we can prove the following theorems.

Theorem 1. The Schridinger operator H of the form (2.1)
has the following properties;

1) the essential spectrum of H is [u, o), where p=0 for
N=1 or <0 for N=2.

ii) there exist a countably infinite number of discrete eigen-
values and they have the only limit point at u.

Theorem 2. When the conditions (2.2) and (2.3) are satisfied
only in a cone C, whose vertex is the origin of RY, then the
statement of Theorem 1 is still true. In this case, however, we
still assume that outside of the cone by,_,(r,) converges uniformly
to zero, when |r,| tends to infinity.”

Theorem 3. If the condition (c-3) is satisfied by B=2, we
have the same assertion as that of Theorem 1 by replacing the
condition (c-4) by the following one

, d 1

(c4") ¢ ; drcn>z .

nek

Remark 1. The condition (2.4) is satisfied if one takes P,
to be the following:

Py (ry, ) =f(ry—r) ,
where
D fr)z0 rekr®)

2 1 2 B
1) We write |rk‘=<2x§k—u>z and lr’“_r"l:<2 (x3k_v—x3,,_y)2>2.
= y=0

2) This supplementary condition is imposed so that Lemma 2 may hold.
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i) f(r)=o(|r—|}_5:) in the neighborhood of the origin,

iii) f(r) is bounded except for the neighborhood of the
origin of R3,

V) f= Idl for |r|=R,.

§3. Some lemmas

In the first place let us introduce the spaces of functions,
Ci(R™ and %, (R™). The former is the space of all C* func-
tions with compact support, and the latter the completion of
the space Cy(R™) with the norm

”f”2,L2(Rm) ( ‘_ +1i1 H 29]; ‘\

1
11 )

L2(R™)

Under the conditions (c-1)~(c-3) the following two lemmas
hold. (see Jorgens [17]).*

Lemma 1. If the domain of H is D}.(R*), then H is a lower-
bounded selfadjoint operator in L*(R*¥).

Lemma 2. The essential spectrum of H is [u, oo, where

j 0, when N=1,
@1 p=

lllz-tin lnf {(H(i)§0> QJ)L (Rs V) QDL_— ©L2 R(L)) ”¢”L2(R3N 1} 3

when N=2,

N 2 a 2 N
3.2 Ho=2{2(ig0—+bu-() +a@df+ 3 Pulrr).
vat 0 kv K<k ti

Let us prove the following lemma.
Lemma 3. Let N=2. If p=L*(R%), gCy(R¥™) and 0<y<3
are given, soO we have

_ 1
3) We write J f(x)g(x)dx:(f,g)u(am; and || f||racrmy=Cf, F ) acgm> -

b char—y e e .

4) As for — ]orgens has assumed that 2%— =0 in distribution sense in
y=0 CHBE—

place of the condmons (C-2) and (2-5). But following his proof, we can easily

get the same results as his under our conditions.
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S _Negl® gr<const., (.

where [ is a real parameter and const. is some comnstant inde-
pendent of 1.®
Proor. Putting dr,=dxs_, d%xs_: dxs; and

di\'i=dr1"’dr¢_1 drt+1' "drN,

we have
A28 ax—{ plaz, | B
S]lr,——ri]f BR?{%@I iry—ri=a [ry—rf
2
+f lplas | _1gF gy
Rgg]q)] ’ try—ril =1 | — 1] ’

égé%-r?éa@lgv- Il gy + 1l
Now we shall prove a lemma which is an extension of
Lemma 7.1 of Zislin [2]. It plays an important role in showing
the existence of the discrete eigenvalues of H.
Lemma 4. Let N=2. For any functions p=L*(RYY), g
Cy(R¥™) and for 0<y<3, we have

; lpgl* g, logl” 1, e N i)
lim e | PEdx  (j=1,, N3 i),

Proor. We put y=3-36(0<&<1), choose M lagre enough
to satisfy eM*<1-—¢ and M;%, and then put 6=¢&M™.

Let p'=(B—-8):(3—-36—0)" and p=(3-¢&)-(26+6)*. Then p
and p’ satisfy the equality L+ 1

p
Pp'(3—=38—0)<3, 2p0<3.
Thus by virtue of Lemma 3 and the inequalities a +&°
<const (@+b)*<const (¢°+b)(a>0); |a*—b|<|a—b|"(0<aL]).

=1 and the inequalities,

5) Hereafter we write simply 5 f(x)dx in place of 5 5 f(x)dx, and denote by (f, g)
R Bl

the integral gRslVf(x)rx)dx, finally || fl|=(/, f)%:-

6) In the case y=1, Zislin [2] has shown this result.
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we have
@ e e i
égl ]lr,—lrt]l‘s - ]rilll*i t { |lrj—1ri]2-25
Ilrj—lrill"‘ ) Irilll‘s + Irtllz_z:_}]gvglzdx
éconstg ]lr;1~"il - |:¢1 !1_5{ ]Zr,l—ril
1 ez
1 | |lpgltdx
éconstg Ih‘;%—"il - |,£! ‘0{ |erl—ri)
1m0 22
e e o VI
éconst(ﬂ _Ilrjl—rz| _T;I;rlpﬂlg)g]de);.
» 3-8 1
(1 |zrjl—r¢| + ;rl,l ) pglds)”
éconst(gl lh';l—rzl — [Tlil |N|¢g]2dx>% .
() [zrj_liﬁo]fa-as_wdxﬁ ,,,Jff.]i-h dx)
éconSt(glllle—_rﬂ_ I’iltl imlg)glzdx)%_n

Now for any >0, there exist positive constants N, and /,
such that

N
S lpg|?dx<»*, where r=(Z‘,|r,€[2)“1f,
7‘;N7] k=1
and for all »<N, and for any /, satisfing |/|</,,

Hrd = irs—ri] |7'=|rs | <y

hold. Then the right member of the inequality (3.3) is esti-
mated as follows,

7) In the sequel, const. signifies some constant independent of a parameter I.
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(right member)”éconst{g %’p | r‘ll,,lﬁ lpg|*dx
TENy i
lpg!? pgl* 4
+S,2Nv |lr,—rtl”dx+g van | |P "}
< _ logl® 5
=conSt{n<gr<Nn ]lr,——r Izpﬂ S <N )
+<STZN |lrlj P&l Imdx §<g ]ngIde 2

+ <S1'21v,] {¢(|g;1‘m dx) <Srg1v,, lngIde)E}

=consty,

which proves the assertion.

§4. Proof of the theorems
At first we can assume ry> b in the condition (2.4), for 8

is smaller than 2 and ¢ can be chosen as close to % as we

require. Now we divide the proof of Theorem 1. in several
steps.

1-st step. We shall show that the lower limit of the spec-
trum is a discrete eigenvalue in the case N=1. For this purpose
we have only to show (Hgp, ) <0 for some function peDi.(R?),
since the essential spectrum of H is [0, o).

Now there exists some function with the properties;

4.D g1(%xy, %5, %) €C, (RY), HgIHL‘Z\R?)=1’
4.2) g:1(%1, %2, %) =0 for [r|=vx 4 x4+ 2 =R, .

Let gz(x)=lifg1(lx1,lx2,lxs) (1=/>0), then we have
l|gillisrs,=1.  Thus

dx

43 (Hggd=| lgrad gi|P+23) | 6.2

S bilg.|*dx+ (q.8:, &)

1+ + €

<const(l®+[ *  +[**)—const?. ®

8) lgradf|=<§ of 2)_‘7.

= ox
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Therefore there exists some [,(1=/,>0) such that (Hg,.
g:,) <0, which shows the assertion.

2-nd step. Let us show that the assertion in the 1-st step
is also true in the case N=2. First ws assume that there
exists at least one discrete eigenvalue for the system composed
of N—1 particles. Then by virtue of Lemma 2 there exists an
operator Hg, in L*(RY,) such that

(4 4) /"=1nf {(H(iu)¢7 g))Lg(R?Z\;)): ¢E@i2<R?1}\;)>! ”(p”Lz(R?l\;)) =1} .
By assumption, p is a discrete eigenvalue of Hg,. Thus
there exists some function ¢, such that

(4.5) P E Dt (R, =1 and Hypo=ppo -

[0l ,LZ(R?i\;))

Putting Y, =¢,(¥;,)g:(rs,), we have Jn,e Di(R*Y), |Wr||=1 and

(4.6) CHre, ) = (Happogs, pog) + E((’ axi-v

2
+ bsi_\—u(rig)> Po&1s ¢ogz> + (4:,.9081> Po&1)

N
+/§1 (P; P08 Po&1)

k#*1g

17—5»-*— €

<p+const (/*+/ 4 172

2 N
e | JEL ar 43 (Pupigi o)
RN |74 k-1

k#1g

On the other hand, we have the following inequality

4.7 Po(ry, r) =Gy duR

[ro—ral” =~ fro—r”

Therefore taking account of Lemma 4, for any >0, there exists
some /;(1=7,>0) such that

2
(4.8) (P&, Po&i) =const /# +dtarclﬁ<8 3 l!flllﬁ ar,, +77)
R}V 1T

for any [/ ({;=1>0).

Choosing >0 in such a way that
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N N 2
7]2 diukg_l_<cts - Z diulc) g 'lg]%‘drin 5

k=1 2 k=1 JR3v ])‘iol
k#1ig A+19 19

we have

(4.9)  (Hin, ) =p-+const(B+1" 21 41 4 )

_L< _5 3 |&:|* )
2 cio ’{g diok:>l SR?N lr¢0|ﬂ drm'

Consequently we have (Hyr,, ) <w for some 7, ({,=7,>0).

3-rd step. In the case N=2, taking account of Lemma 2
and the 1-st step of this proof, we have u<0.

4-th step. We shall show that there exist a countably
infinite number of discrete eigenvalues. Let N=2. On account
of the first and second steps, there exists some function ¢,
satisfying (4.5). We put ¢l=¢0(;¢o)gl(ria) as before. Now we
assume that there exist s discrete eigenvalues of H. Let the
discrete eigenvalues be {\,},.1,.,s, and the eigenfunctions

{#p} o1, .,s, Where they form an orthonormal system. Putting

(4.10) V=t 2 BPu,,  where B®=— (v, ),

we have

(A1) (0, u)=0 (p=1,-5) and |lp)P=1- X |8"*<1.

Taking account of the orthonormal relation of {u,},.., ,,, we
also get

(4.12) (Hou, v)) = (B, ) = 2 0l 857
On the other hand, we have
(4.13) o= pl|Bi7| = |(Hutp, ¥r) — (p, Hap )|

| 2/, O 2
= ! (”m {é‘;(l s +b3io—v) %gz‘i'fho%gz})

N |
+k=21 (ups Piuk¢ogl> ’

h¥ig
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2 g < u >
< _ 7 »
=§ \ <uzn Po 8x§ig—u> +{ s > @()bszo— &1
)
+ <b3z,— Up, Pol axgz > + Cbsto—vuxn Pobsiy—.&2) 1
38y

N
+ HQtngZ”L:(R%V) +k=21 ”Piok¢’0gl”

k#1o

Eie
A VARRD R ]!qi,ngLe(R?N)

B¢
<const(ZF+7"=""

+k§ | Piepo&il| -

k+#1g
However we have the following inequalities

(4.14) 0< Py (1y,, Tr)

dto/c_- _‘Z_’Zka'_ﬁRzr—ﬂl 0 _:i
Sl o hen DRy
8 —B—6
éﬂl%, when 0<y<B<2.
- Tk

Then on account of Lemma 3, we have
(4.15) | Piepogil| <const(I7+17) .

Therefore by means of (4.6), (4.8), (4.12), (4.13) and (4.15),
we have for any [([,=/>0)

11+%+ B

(4.16) (Hv,, v,) <p+const{l*+

rLie - Bie
SN GEY RIS AR AR Y DL
+ CQiugZ’ gl)L"’(R%V) +K]

+IPE L

qt.; gll I:z[_lz(R§0V)

+,§N;" dml?< ( Jgj';drh +n> ,

s "Rgov Iria
where K is a constant independent of /.
Since ¢;,(r;,)<0 for |r,|=R, and g;(r,)=0 for ]rhlé%,

according to (2.5) there exists for any % >0 some [,(1=/,>0)
such that for any [(/,=/>0)

2
(A1) (9080 8 aqgary + K00l gy < — 0 (1= n’WSRzN lli llﬁ dr,,
io
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holds. Now let us choose, at first, />0 in such a way that

1 u
Cym §?(Cio _k=21 di) s

k*io

and in the next >0 small enough to satisfy

N N 2
77(2 dtue)él(ciﬂ— Ede g lgll drio .
k=1 4 k=1 . R?o

8
L L N lrii»]
F#io ki

Then there exists some /,(min(/,,/;)=[,>0) such that
(4.18)  (Ho,, v)<p+const {415y oy v
+E+e

T A 0

N 2
"%(Cio—k;ldm)lﬂ S ‘,gll dr,
k1

]
R3N s, |?
Lo

+ (BT

holds for any /({,=/>0). Because of 2y>p, there exists some
Is({;=z1;>0) such that (Hv,,v,)<w  According to <0 and
[lve]i2<1, we have (Huv,, v,) <uZu||v,|>. Now we put v=uv,]v,[|™

Then v satisfies the following conditions

(4 19) EE@L(RSN)! H?)H =19 <5’ up) =0 <P=1; R S)
and (Hv,0)<p,

which proves our assertion.

In the case N=1, we have only to make use of g; and follow
the above method.

PrOOF OF THEOREM 2. In the above reasoning, we have only
to take as g, such a function that its support is contained in

the cone.

Before proving Theorem 3, we shall show the following
lemma.

Lemma 5. For any £>0, there exists some function (%)
eCr(R® (p(x)=x0) such that it is identically zero in the unit
ball having its center at the origin and satisfies the inequality
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S l—¢1<L>|ia’x >(4—8) gm[grad pltdx .

rl?
Proor. Take a real-valued function p(») with the following

properties,

p(r)= , p(r)EC”<%<r<—(23—> .

Now we define ¢,(r)eCy(0<7r< ) and ¢,(x)=C;(R®) as follows,

0, 0<r<D)
p(7), (1<7<2)
=11 (2<r=2n),
9(4—%), (2n<r<3n)
0, (r=3n)
ou= ~Irl=vEirmi

Then we have

|grad ¢,|*= %i" ;‘Z % 573’)2 _ é'n(f’);zé'n(r) 4 Cn(rr)z .

Thus
lPa(* 70 _( Ea(r)? 4, 2y — T e
SRS——rz——dx—gRa—rT—dx—zlgRa]grad pul?dx— 167 S ()P rdr .

On the other hand, we have
e __2' 2 3"1_7’2.7’
Sl é’n(r)zrdr—glp €2 rdr—i—gmp (4 E> o dr
= SZP'(T’)Zrdr-I- Sgp’(éi— r)irdr,
1 2

and

9) Taking account of the well-known inequality

S.Rii I(,](rjg' dx/4 lgrad plrdx (p&Cr(RD),

Lemma 4 shows that in the above estimate the constant 4 is best.
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SRSLP—"ffidx=4n: Smin—(;zdrg% SZn

dr _
. 7—47‘[10gn.

2

Then choosing #n, sufficiently large, we have

S ano(:C) lzdx

Rs 7
—4{1+16x Sj"“g;0<r>2rdr( Smflip”;"r(—z@l—zdx) } (. lerad pn (ol
=(4-5|_|grad g, l'ax,

which shows that ¢, (x)eCy(R®) satisfies the property required.
Now we shall prove Theorem 3.
PrROOF. We can choose 4>&>0 small enough to satisfy

N 1
Cio— 20— —>0.
k=1 4—¢

k+ig

Then we take @p(x)=Cy(R*) satisfying Lemma 5 for £€>0 and
put

X Xy xa>
bl

_3
& (%, %3, 25) =Ry z-llwllfz%m-?(’zi’ R’ R,

which satisfies (4.1) and (4.2). Let gz(x)=l% g.(Ix,, [%,, [x;) as
before. Now we shall follow the proof of Theorem 1. By
means of Lemma 5, we have the following inequality in place
of (4.3)

(A.3) (Hgi, g)Sconst(P +1) —c " | Lg1§’|2>'idx
R2

+ZZSRs]grad g.%dx

< const (I + [#%) <cz -1 ) & DF 4
" o4—g/ Je rf?
which shows that the assertion of the 1-st step in the proof of
Theorem 1 is also true in this case.
Secondly by virtue of Lemma 5 and (4.8), we have the
following estimate in place of (4.6).
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(4.6 (H«h,%)ém«sonst(l“‘+l“£+lﬂ'>+{S , Jerad gil'dr,
R

Then choosing >0 in such a way that

N 1 N 1 ]g1lz
10 dn= ) (cn = Dduw—— ) e
Koho el d—&/ RN 1T

we have
4.9 (H¥ry, Yr) S p+const (/2 + 125 4+ [7)

et 2

k#ig

which shows the assertion of the second step in the proof of
Theorem 1 is also true in this case.

Last of all, taking account of Lemma 5, (4.8) and (4.17),
we have the following inequality in place of (4.16).

(4.16") (Hvy, v)Sp+const{FF+ + P54 [ + (P4 1P+ 125+ '+ 1))

2 _ . |&:]*
+ {SRM'gmd giltdr, —c,(1— >§R§N Ear,

io

+§d”(3 ng}zdwm)}zz

R‘?N lr“
0

éljl_l_const {ZZ+6 +ZZ+2: +lﬁ' + (lZ +ZZ+5 +12+2£ _I_ll+s _I_lr)'.’.}
— - 3 — 1 2 Igllz
(cio Sid., ) )1 S e

k+1g 4_ 8 R?;v lriu
(18l a4 (S1d)e
+C,;0’I} 2 rio+ Z ok ) 770 -
R 7l e

Then choosing %' >0 and >0 to satisfy
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1
<L
Cil = <Cza kiidz T ) and
N |2
7 2 dtulc (Ctg Z.‘x diuk ‘*1‘~> S *! gi‘z—drto y
”é;%o 4 Ic:# Lu 4-¢ Rifl lri"l

we have
(4.18") (Hv,v)=p+const{l# + 2+ [F + (P4 P+ 2=+ [+ )%

__1_< < _ 1 ZS lg:|?
g\ é‘d“'“ 4—é>l RN lnulzdr“’

which shows that the same assertion as that of the 4-th step
in the proof of Theorem 1 is true in our case.

Remark 2. In the case when the masses of the particles of
the system are not all the same, applying a suitable linear

transformation such that r,=

1 r.(0,>0), we see easily that we
@y

have only to consider the system under the following assump-
tion. Namely, we replace the conditions (2.2) and (2.4) by
the conditions

(C-3
2.29 @ (r) < — 3 for lrlcl =R,,
'C()erl
B —B Rr—p"
édkh}?l—Rz for Ia—)mrlc_whrh]éRza
lwkrk_ whrhlr
8 —p
(2.4 0Z P, (ry, 72 é—@cﬁ—y for R,< Iwkrk“wnrnléRl ,
|wlc7'7c - whrhl
din

for |epr,— oun| 2R,
= k' & hi R = 1
lwlcrlc_whrh.lﬁ

Then we can get the same results as that of theorem 1. And
in this case replacing (C-4") by the condition

<C—4H)

kh
h#k

we can easily obtain the same result as that of Theorem 3.
In conclusion, the writer wishes to express his sincere
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gratitude to Professors S. Mizohata, T. Ikebe and K. Mochizuki
for their enduring encouragements and kind instructions.
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