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Introduction

Oka [15] proved that any domain of holomorphy in C” is a
Cousin-I domain, that is, a domain in which any additive Cousin’s
distribution has a solution. Conversely Cartan [5] had stated
that any Cousin-I domain in C? is a domain of holomorphy and
Behnke-Stein [27] gave its proof. From Cartan [6] C*— {(0,0,0)}
is a Cousin-I domain which is not a domain of holomorphy and
from Thullen [18] C*—{(0,0)} is not a domain of holomorphy
but a Cousin-II domain, that is, a domain in which any multiple
Cousin’s distribution has a solution. These two facts suggest
that Cartan-Behnke-Stein’s theorem can not be generalized for
Cousin-I domain in C*(#=3) and for Cousin-II domain in
Cr(n=2) directly. The main purpose of the present paper is
to extend Cartan-Behnke-Stein’s theorem in the following form:

Let L be an abelian complex Lie group and 2, be the sheaf
of all germs of holomorphic mappings in L. A domain (D, @)
over C?* with H*(D, %;)=0 is a domain of holomorphy. If D is
a domain in C® with continuous boundary such that H*(DNP, 2A,)
=0 for any simply connected and relatively compact polycylinder
P in C* D is a domain of holomorphy. Moreover these two
results hold also for L=GL(p, O).
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§1. Relation between domains of holomorphy and domains D with
FHY(D, U,) =0.

Lemma. 1. Let § be a sheaf of groups over a topological
space X and U be an open covering of X. Then the canonical
mapping H'(U, F)—-H'(X, F) is injective.

Proof. Suppose we have two cocycles {f;}, {gu}eZ2*(0, F)
and suppose that there exist an open covering B¥={V,; ke K},
a cocycle {f,}€C(8,¥) and a mapping p: K—I satisfying the
following conditions :

1) V,cU,g, for any k=K.

@ fifowwfi=8wwn in any Vi\V,#¢ where p(kl)=p(k)p(D).

(3) p is surjective.

For any il we shall consider a fixed 2= K with p(2)=i. For
any x< U, there exists /e K such that x€ V,€8B. We put p(/)=j.
If we put
Fy(%) = fu;(x0) fu(%) (&as(2))7
in UGNV, {F}C, ) is well-defined and satisfies
F7 fiFy=gi
in UNU;#¢.

Lemma 2. Let L be an abelian complex Lie group and L,
be the connected component of L containing the neutral element
e. Then for a commected complex manifold D the canonical
mapping H'(D, U;,)—-H(D, A,) is injective.

Proof. Let U= {U,;i=1I} be an open covering of D such that
each U, is connected. Suppose that a cocycle {f;} =Z2*'(0, A,)

is a coboundary of {f;}=C°(U, AL).
We take a fixed 4,7 and a fixed x,€U,,. If we put

8:(x) = fi(2) (fir (%))

in U, {fs}€2*(0,A;,) is a coboundary of {g;} =C'(U, A,).
If there exists a local biholomorphic mapping ¢ of a complex
manifold D in a complex manifold M, (D, ) is called an open
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set over M. Moreover, if D is a connected complex manifold,
(D, ) is called a domain over M. Let (D.,p;) and (D,,p,) be
open sets over M. A holomorphic mapping X of D; in D, is
called a mapping of (D1, p,) in (Ds, @.) if ¢,=@,0or. A complex
manifold with vanishing fundamental group is called simply
connected. Let (D, @) be a domain over M and § be a family
of holomorphic functions on D. A triple (), D, @), or shortly
a pair (D, @), is called an envelope of holomorphy of (D, ) with
respect to § if the following conditions are satisfied :

(1) A is a mapping of (D, ) in (ﬁ, @)

(2) For any fe§ there exists a holomorphic function f
on D with f=fox. (In this case f is called an analytic continu-
ation of f to (\, D, §)).

(3) For any (\, D', 9") satisfying (1) and (2) (such is called
an analytic completion of (D, p) with respect to ) there exists a
mapping ¢ of (D', ¢") in (D, ») such that 4, D, ) is an analytic
completion of (D', ") with respect to the family of all analytic
continuations of functions of .

Cartan [7] proved the unique existence of such envelope of
holomorphy. Especially if ¥ consists of only one holomorphic
function f on D, the envelope of holomorphy of (D,¢) with
respect to ¥ is called a domain of holomorphy of f. A domain
over M which is a domain of holomorphy of a holomorphic
function on a domain over M is called shortly a domain of
holomorphy. Moreover if ¥ is the family of all holomorphic
functions on D, the envelope of holomorphy of (D,®) with
respect to § is called shortly the emvelope of holomorphy of
D, ).

Let (D,9) be a domain over M. A triple (D, ¢’,)\) is
called a covering domain of (D,p) if the following condition is
satisfied :

) is a mapping of (D', ¢") on (D, ¢) and for any point x of
D there exists a neighbourhood U of x such that \ maps each
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connected component of A*(U) biholomorphically onto U.
Sometimes we also say that (D’,)\) is a covering domain of
D. A covering domain (D% ¢%\) of (D, ) satisfying the fol-
lowing condition is called a universal covering domain of (D, p) :
For any covering domain (D', ¢/,)\") of (D, @) there exists a
mapping p such that (D% ¢% ) is a covering domain of (D', ¢').
The universal covering domain of a domain over M exists
uniquely and a covering domain (D', ¢’,\) of (D,¢) is a uni-
versal covering domain of (D, @) if and only if D’ is simply
connected.
Now let (D, ) be a domain over M and (D% ¢%\) be its
universal covering domain. )\ induces canonically a mapping
Ve HYD, %) —-HY(DH, UL) for a complex Lie group L.

H'(D, %p) =1*(H'(D, UAp))

is a subgroup of H'(D% 2,) if L is abelian. For asH (D, ;)
we put

fa=2*(a) e H'(DH, 2Ay)

and use these notations frequently hereafter.

Lemma 3. Let L be a p-dimensional abelian complex Lie
group, (D, p) be a domain over C* with *H'(D,U;)=0 and (D},
@' \) be the universal covering domain of (D,p). Then for any
(n—1)-dimensional analytic plane H and for any holomorphic
Sfunction u on ¢ *(H), there exists a holomorphic function F on
D# such that F=uox in ¢ '(H)=\"(p '(H)).

Proof. From Lemma 2 we may assume that L is connected.
As well known, there exists a homomorphism X of the additive
group C” on L such that (C? X) is a covering domain of L. In
this case the kernel N of X is a discrete subgroup of C* iso-
morphic with the fundamental group of L. There exists a
holomorphic function #’ on a neighbouhood V of ¢ '(H) such
that #'=u in ¢*(H). If we put W=D—-9¢*(H), {V, W} is an
open covering of D. We consider
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x(zﬁ'q),o, O)EH"(V/’\ W, 9,).

As *H*(D, %) =0, from Lemma 1 there exist AecH'(\*(V), A,
and BeH'"(W*(W), AU,) such that

/
X(22,0, -, 0) = AB~
Z09

in A (VNW). Since (C?,X) is a covering domain of L, there
exist, respectively, vector-valued holomorphic functions a=(a,,
a,, -, a,) and b= (b, b,, -+, b,) on a simply connected subdomain
of M (VNW) with A=X(a) and B=X(d). Since X is a homo-
morphism, for a suitable choice of ¢ and & there holds

(zyopHa=(u'oN, 0, -++,0) + (2,095 .

Moreover ¢ and & can be analytically continued along any curve
in (V) and MY(W) respectively. If we denote their analytic
continuations by the same symbols ¢ and b, for any simply
connected subdomain E of MY (VN\W) there exists a constant
c(E)EN such that

(ziepta=(u' o 0, -+, 0) + (2109 b + (2109 (E)

in E. This means that (z,0¢*)a, can be analytically continued
along any curve in D¥ Since D! is simply connected, from the
principle of monodromy this gives a holomorphic function F on
D*  Again from the above equation we have

F=wuox

in ¢f(H).

Proposition 1. Let (D,p) be a domain over C:  If *H*(D,
U =0 for an abelian complex Lie group L, (D, ) is a domain
of holomorphy.

Proof. The set E of all points of 9D which is a boundary
point of @ *(H) for some analytic plane H is dense in 9D.
Since @ '(H) is holomorphically convex from Behnke-Stein [3],
there exists a holomorphic function # on ¢ *(H) which is un-
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bounded at x for any boundary point x of @ *'(H). From
Lemma 3 there exists a holomorphic function ¥ on D which is
unbounded at boundary points of 9D* over x. Since E is dense
in 9D, each boundary point of D¥ has the frontier property in
the sense of Bochner-Martin [4]. There exists a holomorphic
function G on D% which is unbounded at each point of 9D*
Since (D% ¢*) is a covering domain of the domain (D’,¢") of
holomorphy of G, (D’,¢’) is a covering domain of (D, ).
Making use of Oka [16] or Stein [17] we can prove that a
domain over C" is a domain of holomorphy if and only if its
covering domain is a domain of holomorphy. Hence (D, ¢) is
a domain of holomorphy.

Corollary to Propesition 1. Let L be a p-dimensional connect-
ed abelian complex Lie group, n(L) be its fundamental group
and (D, p) be a domain over C*. Then H'(D, U;)=0 if and only
if (D,p) is a domain of holomorphy with H*(D,=(L))=0.

Proof. If H'(D,¥%,)=0, (D,p) is a domain of holomorphy
from Proposition 1. Since H'(D, ©%)=H?*(D, O?)=0 in the ca-

nonical exact sequence
H'(D, O*)—-H'(D, U,;,)—-H*(D, »(L))—H*(D, O,)

where O?=2,», we have H*(D,»(L))=0. Conversely if (D, ¢)
is a domain of holomorphy with H*(D,=(L))=0, we have
H'(D, %) =0 from the above exact sequence.

Making use of Lemma 3 we can prove the following propo-
sition by induction with respect to # similarly to Prosition 1.

Proposition 2. A domain (D,p) over C* which satisfies
H'(p'(H), ) =0 for amy analytic plane H represented by
H={z;2,=0:,2,,=03, """, 24, ,=0n_n} C=m=n) is a domain of

holomorphy.

§2. Approximation of holomorphie functions

A collection &= {(D,, @,); n} is called a monotornously in-
creasing sequence of domains over a complex manifold M if the
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following conditions are satisfied :

(1) Each (D,,®,) is a domain over M.

(2) Each Z(n<m) is a mapping of (D,,9,) in (D, @n)
with ?=7"or” for n<m=<l.

A triple (v,, D, @), or shortly a pair (D, ¢), is called a limit
of © if the following conditions are satisfied :

A1) (D, ) is a domain over M.

(2) Each 7, is a mapping of (D,, ¢, in (D, ¢) with
Tp=TmoTn fOr n<m.

3 If (m, D, q") satisfies (1) and (2), there exists a
mapping  of (D, ) in (D', ¢") with v,=or, for any =z.

As we stated in [11] the limit of & exists uniquely and has the
following property :

Lemma 4. Let (v,, D, ) be the limit of a monotonously in-
creasing sequence {(D,,@,);mm} 0f domains over a complex
manifold M. Then for any compact set K in D there exist an
integer m and a compact set K in D,, such that v, maps K
biholomorphically on K.

Let = be a mapping of a domain (D,, ¢,) over a Stein
manifold S in a domain (D,, @) over S, (\, Dy, &,) and O\, Dy, »)
be, respectively, the envelopes of holomorphy of (D,,,) and
(D;, p;). As we remarked in [117], there exists a mapping 7 of
(Dy, &) in (Dy, $,) with Toh,=\po7. 7 is called an analytic
continuation of + to (\, D, T

We have the following Lemma as we remarked in [11].

Lemma 5. Let (r,,D,p) be a limit of a monotonously in-
creasing sequence {(D,, p,); } of domains over a Stein manifold
S, O, Dy, 3) and (A, D, @) be, respectively, the envelopes of holo-
morphy of (D, p,) and (D,p), 7n and 7, be, respectively, the
analytic continuations of i and , to (xn,Dn,gpn). Then {(D,,
@n) 3 T} 1S @ monotonously increasing sequence of domains over
S and (3,, D, ) is its limit.

Let v be a mapping of a domain (D,,p,) over a complex
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manifold M in a domain (D,,@,) over M, (D%, ¢t,\,) and (Dj,
@, \.) be, respectively, the universal covering domains of (D, ¢,)
and (D,, @.). Then there exists a mapping * of (Di, ¢f) in
(D§, %) with 7o, =No7%.  7f is called a mapping of (D%, ¢f) in
(D%, %) associated to the mapping . We have the following
Lemma.

Lemma 6. Let (r,, D, ) be the limit of a monotonously in-
creasing sequence {(D,, ¢,); T} of domains over a complex
mainfold M, (D%, ¢%,\,) and (D} ¢* \) be, respectively, the uni-
versal covering domains of (D,,q,) and (D,p), % and % be,
respectively, the mappings of (Di,¢t) in (Di, of) and (D ¢%)
associated to the mappings % and v, Then {(D%,¢t) ;¥ is a
monotonously increasing sequence of domains over M and (%,
D} o) is its limit.

Under these preperations we shall give the following
Lemma.

Lemma 7. Let {(D,,p,),m} be a monotonously increasing
sequence of domains over a Stein manifold S and (t,, Dy, @,)
be its limit. Let {K,} be a sequence of compact subsets of D
such that K,CK,,, and D=91Kn. Then there exists a subse-
quence {v,} of {1,2,3,--} with the following properties:

(1) There exists a compact subset K, of D,, such that the
restriction ,|K, of t,, to K, is a biholomorphic mapping of K,
onto K,.

2) For any f,cH,(D,,,O) and &,>0 there exists F,=H°
(D, O) such that |For,,— f,|<&, in K,,.

Proof. Let (O,,D,,®, and (A, D,p) be, respectively, the
envelopes of holomorphy of (D,,¢,) and (D, ), 7% and 7, be,
respectively, the analytic continuations of 7% and r, to (x,,,D.,,,
#n) and O\, D, ). From Lemma 5 {(D,,%,);r2} is the limit of
a monotonously increasing sequence of domains over S and (7,,
D,$) is its limit. Since D is holomorphically convex, there
exists a sequence of analytic polycylinders P, in D such that
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AMK,) CPpC Py,

for any #=1. Since (v,,D, ) and (%,,,15, @) are, respectively,
limits of {(D,, ¢,); e} and {(Dn,@);i’};}, from Lemma 4 there
exists a subsequence {v,} of {1,2,3,--:} such that r,, and 7,, map,
respectively, a compact subset K, of D, and an open subset P,
of Dun onto K, and P, and that

T::u(PaDCPw:H; >\wn<KrD CP1;, .

Now let f, be any holomorphic function on D,,. Since
(xun,ﬁm,é),n) is the envelope of holomorphy of (D,,,¢,,), there
exists f,eH(D,,, Q) such that f,on, =f,.

Then

Fuo G| P eH(P,, D).

Since P, is holomorphically convex with respect to D, there
exists F,eH(D, O) such that

|Fn_fn°<'?unlp7’t>-ll<8n
in K,. Then F,=F,o\ satisfies

IFnon _fn] <&,
in K,,.

§3. Limit of cohomology groups

Let (,,D,9) be a limit of a monotonously increasing se-
quence {(D,, @, ;7mr} of domains over a complex manifold M
and A, be the sheaf of all germs of holomorphic mappings in
a complex Lie group L. r2 induces canonically the mapping
aw: H*(D,,, ) —-H(D,,U,) for n<m such that =i==Tox!, for
n<m=<l/. Hence {H'(D,,%,);="} forms an inverse system over
a directed set {1,2,3,---}. Its inverse limit is denoted by lim
H'(D,, 2%,). The canonical mappings =,; lim H'(D,, A;)—
H'(D,,%;) and »:H'(D,A,;)—lim H'(D,, 2A,) are also considered.
If an element « of H*(D, %) is the canonical image of an element
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of B'(,%A,) for an open covering U of D, we say that a=0.
We say that H'(D,%,)=0 if a=0 for any acH(D,%,). If
acslim HY(D,, ;) satisfies =,(a)=0 for any =1, we say that
a=0. If z(a)=0 implies a=0 for ac H'(D, ¥;), we say that =
is quasi-injective. If L is abelian and = is quasi-injective, = is
injective. Let L be a complex Lie group and L, be the con-
nected component of L containing ¢. For a, 6L the mapping
+ defined by r(x)=ba'x for x&L maps L, biholomorphically
onto L,. Hence, if (C? X) is a covering domain of L., (C*X,)
is a covering domain of L, for any a< L, where ¢ is the neutral
element of L and X,(z) =aX(z) for zeC? If L is a p-dimensional
abelian or soluble complex Lie group, (C? X) is a covering
domain of L, for suitable X.

Lemma 8. Let (C?,X) be a covering manifold of L. for a
complex Lie group L, {(D,, p,) ;%) be a monotonously increasing
sequence of simply comnected domains over a Stein manifold S
and (r,,D,p) be its limit. Then the canonical mapping H*(D,U,)
—lim H*(D,, ¥,) is quasi-injective.

Proof. In this proof we shall denote a point of C® by a
gothic type as a and the inverse element of an element a of
the group L by ¢t If we put

Xa<z> =dX<Z>

for zeC? (C* X,) is a covering domain of L, for ecL. Let
{K,} be a sequence of compact subsets of D such that X, is

contained in the open kernel of K,,; and D=C/1K,,. If we apply
Lemma 7 to this {K,}, we obtain a subsequenZe {v.} of {1,2,3,--:}
and a sequence {K,} satisfying the conditions (1) and (2) in
Lemma 7. Without loss of generality we may suppose that
V=1

There exists ee(C? with X(e)=e¢ for the neutral element e
of L. We consider the Euclidean distance in C?. Let W’ be

an open sphere with centre e and semiradius » such that X
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maps W’ biholomorphically onto an after neighbourhood W’ of
e. We put

dist(a, &) =dist((X|W)'a, (X|W)8) || =dist(e, @),
W— {z : dist(e, 2) <§} W=x(W)

where a, 6 W and X|W’ is the restriction of X to W. For any
&€>0 there exists 6(&) >0 satisfying the following condition:
0<8(e)<e. If a, 6 W satisfy ||6]|<8(&), abe W’ and dist(e,
ab) <&
From Lemma 1 it suffices to prove that f,;eB'(U, ;) for
an open covering U={U;;iel} of D if {f,or,} €B'(+;*(1), A,) for
n=1. The condition means that {f;;or,} satisfies

Juota=h"(H;)™"
in 7;*(UYNU;) for a suitable {#"}eC°(+;*(U),A;), where
{r7*(W) =7*(U,) ; i1} an open covering of D,. If we put
Sr=) " (Rom)
in 7*(Uy), f*fel*(D,, ;) is well-defined. Since D, is connected,
f{(D)CL, for some g=L. We put X;=X,. Since D, is
simply connected and (C? X,) is a universal covering domain of
L,, from the principle of monodromy there exists F'e H(D;,
©*) such that f'=X,0F. From Lemma 7 there exists H'e
H°(D, ©%) such that the image of K; by the mapping f'(X;o
H'or))™" is contained in W and
|/ (Xyo HY or )| <8(r27%)
in K;. If we put
{gi} = {1} eC (" (W), Ap)
and
&= B(o Hior)!

in 7;1(Uy), the coboundary of {g2}eC'(r;*(0), A, is {fyors}. If
we put
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gh= (g (glors)
in [ *(UY), g*<H(D,, ;) is well-defined, the image of K; by
the mapping g%? is contained in W and
llg-*| <8(r2%)
in K;. Suppose that there exist {g}eCGi(W), AL, {gie
Co(r'(), Ap),--- and {g™} eC°(r;*(N), A,) satisfying the following
conditions :
(1) The coboundary of {g7} is {fjor.} for » with 1<n=<m.
@) If we put
gm'=(g) (gl
in ;}(U,) for any 1=n</<m, gr'eH(D,, ;) is well-defined,
the image of K, by the mapping g™ is contained in W and
llg™™H| <8(r2—"*)
in K,.
If we put
Sr=EM) (W™ orps)
in 7,;)(U), f~e H'(D,,, ;) is well-defined. Since D,, is connected,
there exists g@,=L such that f™(D,)CL,,. We put X,=X,,.
Since D,, is simply connected and (C?% X,,) is a covering domain
of L,,, there exists F"eH(D,,, O%) such that f®=X,cF™ From
the condition (2) of Lemma 7 F,, can be uniformly approximated
in K, by functions in H°(D, ©?) so that the image of K, by
the mapping f™(X,,oH™or,) ' is contained in W and

|Lf " Ko H™ o) 7| <8(727™%)
in K,. If we put
g;ﬂ+l=hr+l(xm°Hm°Tm+1>—1

in 7,4:(U;), the coboundary of {g7*} €C°(r1. (W), AL) is {fisoTms}
eZ' (w7t (W), A).  If we put

grmt=(gM) (gl otine)
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in }(U), g™™*eH'(D,, ;) is well-defined and the image of
K, by the mapping g™™*! is contained in W and

llgmm | <8(r2™=*)

in K,,. In this way we can construct {g"}eC(;*(]), A,) satis-
fying the above conditions (1) and (2) inductively for m=
1,23, .-

The image of K, by the mapping g™™ is contained in W,

lgm=l|<r2-
in K, for 1<n<m and
dist<gn,m, gn.m+1) < rz—m—z

in K, for n<m. Therefore the subsequence {(X|W)'g™™;
m=n,n+1,---} of H'(D,,O?) tends uniformly to G"eH°(:!
(Kp-1), O in Y (K,_,)) for n=2,3,4,---. Since

dist(e, G™) <r2™

n

in 7 '(K,,) for n=2,3,4,---, {g"™;m=n,n+1,---} tends uni-
formly to

g =XoG"eH°(+27'(K,_,), Az)
in (K,_)). If we put
Si=(g7g™) o (ra| KD

in K,_, for n with U,CcK,_,, {f;}€C, ;) is well-defined and
its coboundary is the original cocycle {f;;} =Z*(U, 2A).

The above proof of Lemma 8 gives the following Corollary.

Corollary to Lemma 8. Let (D,p) be a limit of a monoto-
nously increasing sequence {(D,,p,)} of domains over a Stein
manifold. Then the canonical homomorphism H'(D, OF)—
lim H*(D,,, ©%) is injective for p=1.

Let (v,, D,p) be a limit of a monotonously increasing
sequence {(D,, p,), 7} of domains over M. Let % : (D%, ¢%)—
(D, ¢*) and ¥ : (D%, ¢f)— (DE, %) be, respectively, the mappings
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associated to 7, and 7% for 1<n<m. Then (+, D% ¢*) is a limit
of a monotonously increasing sequence {(D%, ¢t), ¥} of domains
over M. t,0\,s induce a canonical mapping =*:H'(D, ¥z —
lim H*(D%, A,). Under these notations we have the following
Lemma.

Lemma 9. Let (C%X) be a covering domain of a connected
component of a complex Lie group L, {(D,, pn), ™} be a monoto-
nously increasing sequence of domains over a Stein manifold S
and (t,, D, @) be its limit. For any acH'(D,U;) with *z(a)=0,
we have *a=0.

Proof. From Lemma 4 it suffices to prove that any {f;le
Z*(U,A,) for an open covering U of D with {fioron} B3
(W), Ay) (m=1) satisfies {fyoa}eB (T, U,).  Since 7,0N,
=)ort for any #,

{fisorneri} e B (71 (W)), A
for any #. As each Di is simply connected, we have
{fior}eB OV, A

from Lemma 8.

As a corollary to Lemma 9 we have the following Proposi-
tion.

Proposition 3. Letf L be an abelian or soluble complex Lie
group, {(D,, p,)} be a monotonously increasing sequence of do-
mains over a Stein manifold and (D, @) be its limit. If D is
simply conmnected, the canonical mapping H'(D, U;)—1lim H*(D,,
A, is quasi-injective.

§4. Cousin-I and Cousin-II distributions

Let L be an abelian or soluble complex Lie group and D
be a domain in a Stein manifold S. Let § be a subset of
H'(D,%;). For a subdomain E of D we consider the inclusion
mapping iy:E—D. Let (E%1xz) be the universal covering
domain of E. iy and izorp induce canonically mappings
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5 HY(D, U)—-HY(E,U,) and Nioif: H' (D, U)—-H'(E%, A,). For
acsHY(D,¥%,) we put a|lE=ii(a) and ¥ a|E)=2\i(i(a)). We
consider the set Eg of all subdomains E of D such that #(a|E)=0
for any ae@®. Then (Eg, ) forms a partially ordered set.
Let €={C,;t=T} be a totally ordered subset of (Eg, C). We
put

CcC=\¢C,.

teT
Then C is a subdomain of D. There exists a sequence
{K,;n=1,2,3,---} of compact subsets of C such that

l{nC:}§%+la(j==C)J{n-

n=1

Since € is an open covering of a compact set K, and (€, C) is
totally ordered, there exists C,e€ such that K,cC, . Suppose
that there exists C,, C, ,-, C, €€ such that

c,cC,c--cC, ,K,cC, (=m=n).

Since € is an open covering of a compact set K,,, and (€, <)
is totally ordered, there exists C,’,Me@ such that K,HICC;M.

Then we have
C‘“’nd = C"nu C;’nde (S/
and

C,cC K,.cC, ..

Ppe1?

Thus we have proved the existence of {C, ;#=1,2,3,.--}cC
such that

c,cC,c--.cC, C-, C=n\=j1C;,n.

Since *(a|C,)=0 for any » and any acg, we have *(a|C)=0
for any aeg from Lemma 9. Therefore CeEg and C is an
upper bound of € From Zorn’s Lemma there exists a maximal
element Dg of (Eg, ©) which is an upper bound of €.



148 Joji Kajiwara

A collection €= {(m,, U,) ;i I} of pairs of an open subset
U, of D and a meromorphic function m, in U, is called a Cousin-
II distribution in D if the following conditions are satisfied :

(1) U={U,;iel} is an open covering of D.

2) p&)={mm;}=Z*(1, O*) where O*=Usq, 0 -
Let E be a subdomain of D and (&% )\) be the universal covering
domain of E. A meromorphic function M in E* is called a
multiform solution of € in E if

(mN)MeH WD), OF)

for any i€1. € has a multiform solution in £ if and only if
Fp(®)|E)=0. p gives a homomorphism of the multiplicative
group of all Cousin-II distributions in D into H!(D, O*). Let
% be a set of Cousin-II distributions in D. Let Dg be the set
of all subdomain £ of D in which any distribution in ¥ has a
multiform solution. Then we have (Dg, C)=(FEy$), ). Hence
we have the following Proposition.

Proposition 4. Let § be a set of Cousin-II distributions in
a domain D in a Stein manifold, Dg be the set of all subdomains
E of D in which any distridution in § has a multiform solution
and € be a totally ordered subset of (Dg, ©). Then there exists
a maximal element of (Dg, C) which is an upper bound of €.

Making use of Corollary of Lemma 8 we can also prove the
following Proposition similarly.

Proposition 5. Let § be a set of Cousin-I distributions in a
domain D in a Stein manifold, Dg be the set of all subdomains
E of D in which any distribution of § has a solution and € be
a totally ordered subset of (Dg, ). Then there exists a maxi-
mal element of (Dg, C) which is an upper bound of €.

§5. Intersection of Cousin’s domains

In this paragraph we denote by L a fixed, but arbitrary,
abelian complex Lie group exclusively. A direct product P of
7 simply connected domains in a complex plane is called simply
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connected polycylinder in C*. Of course we have H'(P, U,)=0.
In this paragraph we shall investigate intersections of domains
D with H'(D, 2;)=0 and extend Cartan-Behnke-Stein’s theorem.

An open set G in C* with H*(GNP, A) =0 for any relatively
compact and simply connected polycylinder P in C* is called
L-regular.

A domain G in C® is said to be exhausted by L-regular
domains G, if G,’s are L-regular domains in C” such that

G,&€G,(p=1,2,3,-+-) and G= OGp .
p=1

Lemma 10. Let G be a domain in C* exhausted by L-regular
domains G,  Then *H'(G,U;)=0. Moreover for any integers
1Ssm<n, 1=5<5<<s,.n<n and for any complex numbers
c;(j=S51, Sz, ***Su_m) the intersection GN\H of G and H={z=z,, z,,
v 20) 3 B3=C3(J =81, Sz, "+, Su_m)} Satisfies HH'(GNH, A,) =0.

Proof. Since G, is a relatively compact L-regular domain,
we have H'(G,,%;)=0 for any p. From Lemma 9 we have
HY(G, A =0.

Next we shall prove *H'(GNH,A,)=0. We may assume
that

H= {CZ: w>=<21, Ray ***y By Wy, Wy, *0y wn—'rrL);wJ
=O<]=17 2, R n_m>} .

There exist &,>0 and @,>0 such that

E,=G,N{(z,w); |2)]<a,, |wi| <&,(j=1,2,--,m; k=1,2,--,n—m)}
CH{G w) ; |25 <ay, [w] <&, (2,0 EGNH,
(=12, m;k=1,2,---,u—m)},
a,<ap,,(p=1) and a,—> oo (p—0),
Ep>Epu(pz1) and &,—0(p—o0).

Since G, is L-regular, we have H'(FE,, A,)=0 for any p. We
put

Hp=Gr)ﬂHﬂ {Cza 0) ’ lzil<ap (.7':15 2: "ty 7”>} .
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Then GNH is the limit of a monotonously increasing sequence of
open sets H, in H. Let BL={V,;s&S} be an open covering of
GNH. We put V2=V ,NH, for s&€S. Then V,={V?%;s=S} is
an open covering of H,. We put

Ui=E,N{(z,w);(z,0cV]}

for s&€8. Then U,={U?;s=S} is an open covering of E, Let
{fw(2)} be an element of Z'(B,A,;). We put

FiQz,w) = fou(2)

in U’NU?x¢. Then {F2}eZ2'(,,A,)=B*1U,,A,;) from Lemma
1. There exists F2eH'(U?,%U,) for any s&S such that

Fi=Fy(F))™
in UiNU%x¢. If we put
fi(x)=F3(z0)

in V2 for any s&S, then we have

Jau=F3(FD7

in ViNV%x¢. Therefore the restriction of {f,;} in any H,is a
coboundary of {f%}eC°(%,, ;) for any p. From Lemma 1
{fuor} eB* (B, AY), (G,)\) being the universal covering do-
main of G. Thus we have *H'(GNH, ;) =0.

From Proposition 2 and Lemma 10 we have

Proposition 6. A domain in C* exhausted by L-regular do-
mains is a domain of holomorphy.

A boundary point x° of an open set G in R" is called a
continuous boundary point of G if there exists a real-valued
continuous function g of variables x, %, -+, X;, -*+, %, in a neigh-
bounhood V of x° such that

aGnV= {x=<x15 Xzs *°y xn) ;xj=g(x1’ Xgs ooty &j’ "t xn>>xEV}

for some j. Moreover if g is continuously differentiable in U,
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x° is called a smooth boundary point of G. An open set G in
C? is called pseudoconvex at a boundary point x° of G if there
exists an open neighbourhood U of x° such that GNU is an
open set of holomorphy.

Proposition 7. An L-regular open set G in C" is pseudoconvex
at a continuous boundary point z° of G.

Proof. We put 2°= (2}, 23, -+, z3). We may assume that there
exists €>0 and a real-valued continuous function g of variables
21,82,y Zj_1s Vis Bie1s 0ty By 10 @ neighbourhood V= {z=(z;,2,, -,
Zn) 3 |2y —22 <&(k=1,2,--,m)} such that

aGﬂV= {Z;x1=g<217 Ray "3 &j_15 V35,8541, "% zn)a ZEV}

for some j where z;,=%;++/—1%;. Then three cases (1), (2)
and (3) may occur.

(1> GﬂV= {Z ’ xj<g<zl, Rgy """y Rj-1, Vi, Bji1s % Zn>’ rEe V}
For 0=t<1 we put

Vim{es l—al < ISP 1,2, mo)

Then we have

. te
{Z: <z15 gy "y zj—l’ ZJ_T, Z]+1; °ty ZH>EVZ}CV

for 0<t<1l. We put
o te
Et={z:3’j<g<zl, Ry "3 R515 Y55 85415 °°% ZnD_T’ZET/t} .

Let P be a relatively compact and simply connected polycylinder
in C,. E,NP is mapped onto

{w;uj<g<w15w2; ey Wy, Uy, Wyyys ooy wn)a
te
Wy, Wy, =+, Wji_1, wj__z—: wj+la e, Wy EVtﬂP
. te
=GN\VN\iz; (21,22, " Z5o1, 21—7, Zj1, 0 2| EV NP

by a biholomorphic mapping w= (w,, w,, -+, w,) =vy(z) defined by
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w,=2,(k+7j), w;=z;+1t&/2. Since y(E,NP) is the intersection of
G and relatively compact and simply connected polycylinders,

we have
H'(ENP, U =H'(@(ENP), U)=0.

Therefore E, is an L-regular open set for 0<t<1. Since E, is
exhausted by L-regular domains {E,;0<t<1}, E,=GN7V, is a
domain of holomorphy from Proposition 1. Hence G is pseudo-
convex at 2°
@) GNV={z; x> 821,22, ", Zj-1, V35 Bys1> *** Zn), RE VY.
In this case the situation is quite similar to the case (1).
@) GNV={z; %,#8(21, 22, **s 251, V5, g5+ Zn), RE V]
Let

G1= {Z;xj<g(21,zz, R Zj—la y./': Rje1s """ Zn); ZEV}
and
GZ= {Z;xj>g<21: gy "y Zj—la yja Zje1s °°°y Z,,,),ZEV} .

From the cases (1) and (2) G, and G, are pseudoconvex at z2°
Hence GNV=G,\JG; is pseudoconvex at 2°.

Theorem 1. Let L be an abelian complex Lie group. An
L-regular domain D in C* with a continuous boundary is a
domain of holomorphy.

Proof. From Oka [16] and Proposition 7 D is a domain of
holomorphy.

Theorem 2. Let L be an abelian complex Lie group and D
be a domain with a smooth boundary in a Stein manifold S. If
H'(DNP,N,)=0 for any holomorphically convex subdomain P of
S analytically contractible to each point of it, D is holomorphi-
cally convex.

Proof. Let x, be a boundary point of D. There exists a
biholomorphic mapping + of an open neighbourhood U’ of x,
onto Z'={z;|z|<2, |z, <2, -+, |2,/ <2} and 7(x,)=0 where #n is
the dimension of S. We put
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Z= {Z; IZII<1’ lzz|<1, R lznl<1}

and U=7"'(Z). Let @ be any relatively compact and simply
connected polycylinder in C®. Then each connected component
of @NZ is relatively compact and simply connected polycylinder
in C*. From Riemann’s mapping theorem @QN\Z and *(QNZ)
are relatively compact Stein manifolds analytically contractible
to each point of it. Since

H'@N~(UND), A =H' (= (RNZOND, Uz =0,

+(UND) is L-regular and pseudoconvex at its smooth boundary
point x, from Proposition 7. Therefore D is pseudoconvex and
is holomorphically convex from Docquier-Grauert [87].

Lemma 11. For amny p=1 there exists homomorphism o of
GL(,C) in GL(p,C) and B of GL(p,C) in GL(1,C) such that
Boa is the identity of GL(1,C).

Proof. For a=GL(1, C) we define the p-p matrix a(a)="_a;;)
by putting

a,=a,a;=1 (iz2), a;=0 @&+ 7).

For a=GL(p,C) we put B(ea)=det(e¢). Then a and B are
desired homomorphisms.

Lemma 12. Let L and L' be complex Lie groups with the
following properties: There exist homomorphisms o of L in L'
and B of L' in L such that Boa is the identity of L. Then the
canonical mapping H'(X, A )—-H'(X, A,.) induced by « is injec-
tive for amy complex space X.

Proof. Suppose that

Sl fiz) fi=ctogyy

in UNU;#¢ for {f,}, {gu} €Z*(0, AL) and {f;} €C°(U, A;) where
U={U,;ieI} is an open covering of X. Then {B-f;} €C°(, A,)
satisfies

(B )7 fis(Bo 13) = &is
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in UNU;#¢.
From Lemmas 11 and 12 we have the following Theorem.
Theorem 3. For any positive integer p Propositions 1,2,6
and 7 Theorems 1 and 2 are valid if we replace L by GL(p, C).

§6. The sheaf I of all germs of meromorphic functions

In the previous paper [10] we remarked that H'(D, ) =0
for any l-dimensional Stein manifold D, that is, for any non-
compact Riemann surface D where M is the sheaf of all germs
of meromorphic functions. But we have the following Propo-
sition for a domain in C* (n=2).

Proposition 8. Let D be a domain in C* (n=2). Then
H'(D, M) +0.

Proof. Suppose that H'(D,M)=0. For the sake of brevity
of notations any point of C* is denoted by x=(z.w, w,, -, w,).
Then there exist complex numbers ¢ and & with 0#ae+#06+0
such that

D,=D—{x;z=a}&ED,D,=D—{x;z=0}%D.
From Lemma 1 we have H!(UI,MM)=0 for the open covering

U={D,,D,} of D. We put

' 1 ,
"= w—exp((z—a)*(z—06)™") SH (DD, T .

There exists m;eH(D,, M) and m,=H(D,, M) such that

m' =m;—m,

in DiN\D,. The pole surfaces A’, A; and A; of m/,m; and m,
are, respectively, analytic sets in D,N\D,, D, and D,. There
holds

A'c(AVADND.ND:.

Since A’ is irreducible at each point of it, we have A’c A,N\D,
ND, or A/c A,ND.N\D,. Without loss of generality we may
suppose that A'c A,N\D,N\D,. Since D,&=D, there exists x°=
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(a, as, as, -, a,) €D for our a. There exists §>0 such that

U= {x=<2’wzw3’ ""wn> > ]z—a|<8, lw—02l<85 |w3_a3l<8:
Yy ]wn—anI<B}CD .

There exists an integer p=0 such that the germ of the pole
surfaces of

my,=(z—a)*m,cH°(D,, M)
at x° does not contain that of {x;z=a} at x°. We put
m=(z—a)*m' eH'(D,N\D,, ).
The pole surfaces of A and A, of m and m, are, respectively,
analytic sets in D,;N\D, and D, satisfying
Ac A,N\D,ND:,.

Let x=(a, b,, b,, -+, b,) be any point of UN{x;z=a} with b6,#0.
There exists an integer ¢,>0 such that

| 4 ‘ o
Togtriagnizy | <14

for g=q;,. We put 2’=(a*®, b,, -+, b,) (g=q,) for

4
2

a+b6+4/(a— by +

a® =

where the function 4/ 7z is defined in {z;]|z—(a—8)*<|a—b]|%}
so that v/ (@—b6)?=a—b. There exists ¢,(>¢;) such that

el
for ¢>q;. Then we have
2" € A(g>qo). ¥ —x(q— ) .

Since AcC A,, A; is an analytic set in D, and D, contains x@
(¢<q,) and x, we have xA,. This means that

UN{x;z=a}CA,.

But this contradicts to the fact that the germ of A, at x° does
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not contain that of {x;z=a} at x°. Thus we have proved that
H(D, 2) +0.
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