Some extensions of Cartan-Behnke-Stein's theorem

By

Joji Kajiwara

Introduction

Oka [15] proved that any domain of holomorphy in C^n is a Cousin-I domain, that is, a domain in which any additive Cousin's distribution has a solution. Conversely Cartan [5] had stated that any Cousin-I domain in C^2 is a domain of holomorphy and Behnke-Stein [2] gave its proof. From Cartan [6] $C^3 - \{(0, 0, 0)\}$ is a Cousin-I domain which is not a domain of holomorphy and from Thullen [18] $C^2 - \{(0,0)\}$ is not a domain of holomorphy but a Cousin-II domain, that is, a domain in which any multiple Cousin's distribution has a solution. These two facts suggest that Cartan-Behnke-Stein's theorem can not be generalized for Cousin-I domain in $C^n(n \ge 3)$ and for Cousin-II domain in The main purpose of the present paper is $C^n(n \geq 2)$ directly. to extend Cartan-Behnke-Stein's theorem in the following form:

Let *L* be an abelian complex Lie group and \mathfrak{A}_L be the sheaf of all germs of holomorphic mappings in *L*. A domain (D, φ) over C^2 with $H^1(D, \mathfrak{A}_L) = 0$ is a domain of holomorphy. If *D* is a domain in C^n with continuous boundary such that $H^1(D \cap P, \mathfrak{A}_L)$ = 0 for any simply connected and relatively compact polycylinder *P* in C^n, D is a domain of holomorphy. Moreover these two results hold also for $L = \operatorname{GL}(p, C)$.

Received April 28, 1966.

Communicated by S. Nakano.

Dedicated to Professor Wasao Sibagaki on his sixtieth birthday

§ 1. Relation between domains of holomorphy and domains D with ${}^{*}H^{1}(D, \mathfrak{A}_{L}) = 0.$

Lemma. 1. Let \mathfrak{F} be a sheaf of groups over a topological space X and \mathfrak{U} be an open covering of X. Then the canonical mapping $\mathrm{H}^{1}(\mathfrak{U},\mathfrak{F}) \to \mathrm{H}^{1}(X,\mathfrak{F})$ is injective.

Proof. Suppose we have two cocycles $\{f_{ij}\}, \{g_{ij}\} \in Z^1(\mathfrak{U}, \mathfrak{F})$ and suppose that there exist an open covering $\mathfrak{B} = \{V_k; k \in K\}$, a cocycle $\{f_k\} \in \mathbb{C}^0(\mathfrak{B}, \mathfrak{F})$ and a mapping $\rho: K \to I$ satisfying the following conditions:

- (1) $V_k \subset U_{\rho(k)}$, for any $k \in K$.
- (2) $f_k^{-1} f_{\rho(kl)} f_l = g_{\rho(kl)}$ in any $V_k \bigcap V_l \neq \phi$ where $\rho(kl) = \rho(k)\rho(l)$.
- (3) ρ is surjective.

For any $i \in I$ we shall consider a fixed $k \in K$ with $\rho(k) = i$. For any $x \in U_i$ there exists $l \in K$ such that $x \in V_i \in \mathfrak{V}$. We put $\rho(l) = j$. If we put

$$F_i(x) = f_{ij}(x) f_i(x) (g_{ij}(x))^{-1}$$

in $U_i \cap V_i$, $\{F_i\} \in \mathbb{C}^0(\mathfrak{U}, \mathfrak{F})$ is well-defined and satisfies

$$F_i^{-1}f_{ij}F_j = g_{ij}$$

in $U_i \cap U_j \neq \phi$.

Lemma 2. Let L be an abelian complex Lie group and L_e be the connected component of L containing the neutral element e. Then for a connected complex manifold D the canonical mapping $H^1(D, \mathfrak{A}_{L_e}) \rightarrow H^1(D, \mathfrak{A}_L)$ is injective.

Proof. Let $\mathfrak{U} = \{U_i; i \in I\}$ be an open covering of D such that each $U_i \in \mathfrak{U}$ is connected. Suppose that a cocycle $\{f_{ij}\} \in Z^1(\mathfrak{U}, \mathfrak{A}_{L_{\varepsilon}})$ is a coboundary of $\{f_i\} \in C^0(\mathfrak{U}, \mathfrak{A}_L)$.

We take a fixed $i_0 \in I$ and a fixed $x_0 \in U_{i_0}$. If we put

$$g_i(x) = f_i(x)(f_{i_0}(x_0))^{-1}$$

in U_i , $\{f_{ij}\} \in Z^1(\mathfrak{U}, \mathfrak{A}_{L_\ell})$ is a coboundary of $\{g_i\} \in \mathbb{C}^0(\mathfrak{U}, \mathfrak{A}_{L_\ell})$.

If there exists a local biholomorphic mapping φ of a complex manifold D in a complex manifold M, (D, φ) is called an *open*

134

set over M. Moreover, if D is a connected complex manifold, (D, φ) is called a *domain over* M. Let (D_1, φ_1) and (D_2, φ_2) be open sets over M. A holomorphic mapping λ of D_1 in D_2 is called a mapping of (D_1, φ_1) in (D_2, φ_2) if $\varphi_1 = \varphi_2 \circ \lambda$. A complex manifold with vanishing fundamental group is called simply connected. Let (D, φ) be a domain over M and \mathfrak{F} be a family of holomorphic functions on D. A triple $(\lambda, \tilde{D}, \tilde{\varphi})$, or shortly a pair $(\tilde{D}, \tilde{\varphi})$, is called an envelope of holomorphy of (D, φ) with respect to \mathfrak{F} if the following conditions are satisfied:

(1) λ is a mapping of (D, φ) in $(\tilde{D}, \tilde{\varphi})$.

(2) For any $f \in \mathfrak{F}$ there exists a holomorphic function \tilde{f} on \tilde{D} with $f = \tilde{f} \circ \lambda$. (In this case \tilde{f} is called an *analytic continuation of f to* $(\lambda, \tilde{D}, \tilde{\varphi})$).

(3) For any (λ', D', φ') satisfying (1) and (2) (such is called an *analytic completion of* (D, φ) with respect to \mathfrak{F}) there exists a mapping ψ of (D', φ') in $(\tilde{D}, \tilde{\varphi})$ such that $(\psi, \tilde{D}, \tilde{\varphi})$ is an analytic completion of (D', φ') with respect to the family of all analytic continuations of functions of \mathfrak{F} .

Cartan [7] proved the unique existence of such envelope of holomorphy. Especially if \mathfrak{F} consists of only one holomorphic function f on D, the envelope of holomorphy of (D, φ) with respect to \mathfrak{F} is called a *domain of holomorphy of f*. A domain over M which is a domain of holomorphy of a holomorphic function on a domain over M is called shortly a *domain of holomorphy*. Moreover if \mathfrak{F} is the family of all holomorphic functions on D, the envelope of holomorphy of (D, φ) with respect to \mathfrak{F} is called shortly the *envelope of holomorphy of* (D, φ) .

Let (D, φ) be a domain over M. A triple (D', φ', λ) is called a *covering domain of* (D, φ) if the following condition is satisfied:

 λ is a mapping of (D', φ') on (D, φ) and for any point x of D there exists a neighbourhood U of x such that λ maps each connected component of $\lambda^{-1}(U)$ biholomorphically onto U.

Sometimes we also say that (D', λ) is a covering domain of D. A covering domain $(D^{\sharp}, \varphi^{\sharp}, \lambda)$ of (D, φ) satisfying the following condition is called a *universal covering domain of* (D, φ) :

For any covering domain (D', φ', λ') of (D, φ) there exists a mapping μ such that $(D^{\sharp}, \varphi^{\sharp}, \mu)$ is a covering domain of (D', φ') .

The universal covering domain of a domain over M exists uniquely and a covering domain (D', φ', λ) of (D, φ) is a universal covering domain of (D, φ) if and only if D' is simply connected.

Now let (D, φ) be a domain over M and $(D^{\sharp}, \varphi^{\sharp}, \lambda)$ be its universal covering domain. λ induces canonically a mapping $\lambda^*: \mathrm{H}^1(D, \mathfrak{A}_{\mathbf{L}}) \to \mathrm{H}^1(D^{\sharp}, \mathfrak{A}_{\mathbf{L}})$ for a complex Lie group L.

$$H^{1}(D, \mathfrak{A}_{L}) = \lambda^{*}(H^{1}(D, \mathfrak{A}_{L}))$$

is a subgroup of $H^1(D^*, \mathfrak{A}_L)$ if L is abelian. For $\alpha \in H^1(D, \mathfrak{A}_L)$ we put

$$^{*}\alpha = \lambda^{*}(\alpha) \in \mathrm{H}^{1}(D^{*}, \mathfrak{A}_{L})$$

and use these notations frequently hereafter.

Lemma 3. Let L be a p-dimensional abelian complex Lie group, (D, φ) be a domain over C^n with $^*H^1(D, \mathfrak{A}_L) = 0$ and $(D^*, \varphi^*, \lambda)$ be the universal covering domain of (D, φ) . Then for any (n-1)-dimensional analytic plane H and for any holomorphic function u on $\varphi^{-1}(H)$, there exists a holomorphic function F on D^* such that $F = u \circ \lambda$ in $\varphi^{*-1}(H) = \lambda^{-1}(\varphi^{-1}(H))$.

Proof. From Lemma 2 we may assume that L is connected. As well known, there exists a homomorphism χ of the additive group C^p on L such that (C^p, χ) is a covering domain of L. In this case the kernel N of χ is a discrete subgroup of C^p isomorphic with the fundamental group of L. There exists a holomorphic function u' on a neighbouhood V of $\varphi^{-1}(H)$ such that u'=u in $\varphi^{-1}(H)$. If we put $W=D-\varphi^{-1}(H)$, $\{V, W\}$ is an open covering of D. We consider

$$\chi\left(\frac{u'}{z_1\circ\varphi}, 0, \cdots, 0\right) \in H^0(V \cap W, \mathfrak{A}_L).$$

As $^{*}\mathrm{H}^{1}(D, \mathfrak{A}_{L}) = 0$, from Lemma 1 there exist $A \in \mathrm{H}^{0}(\lambda^{-1}(V), \mathfrak{A}_{L})$ and $B \in \mathrm{H}^{0}(\lambda^{-1}(W), \mathfrak{A}_{L})$ such that

$$\chi\left(\frac{\boldsymbol{u}'\circ\lambda}{\boldsymbol{z}_{1}\circ\boldsymbol{\varphi}^{\sharp}},\,0,\,\cdots,\,0\right) = AB^{-1}$$

in $\lambda^{-1}(V \cap W)$. Since (C^p, χ) is a covering domain of L, there exist, respectively, vector-valued holomorphic functions $a = (a_1, a_2, \dots, a_p)$ and $b = (b_1, b_2, \dots, b_r)$ on a simply connected subdomain of $\lambda^{-1}(V \cap W)$ with $A = \chi(a)$ and $B = \chi(b)$. Since χ is a homomorphism, for a suitable choice of a and b there holds

$$(z_1 \circ \varphi^{\sharp})a = (u' \circ \lambda, 0, \cdots, 0) + (z_1 \circ \varphi^{\sharp})b$$

Moreover a and b can be analytically continued along any curve in $\lambda^{-1}(V)$ and $\lambda^{-1}(W)$ respectively. If we denote their analytic continuations by the same symbols a and b, for any simply connected subdomain E of $\lambda^{-1}(V \cap W)$ there exists a constant $c(E) \in N$ such that

$$(z_1 \circ \varphi^{\sharp})a = (u' \circ \varphi^{\sharp}, 0, \dots, 0) + (z_1 \circ \varphi^{\sharp})b + (z_1 \circ \varphi^{\sharp})c(E)$$

in E. This means that $(z_1 \circ \varphi^{\sharp})a_1$ can be analytically continued along any curve in D^{\sharp} . Since D^{\sharp} is simply connected, from the principle of monodromy this gives a holomorphic function F on D^{\sharp} . Again from the above equation we have

$$F = u \circ \lambda$$

in $\varphi^{\#-1}(H)$.

Proposition 1. Let (D, φ) be a domain over C^2 . If $^*\mathrm{H}^1(D, \mathfrak{A}_L) = 0$ for an abelian complex Lie group L, (D, φ) is a domain of holomorphy.

Proof. The set *E* of all points of ∂D which is a boundary point of $\varphi^{-1}(H)$ for some analytic plane *H* is dense in ∂D . Since $\varphi^{-1}(H)$ is holomorphically convex from Behnke-Stein [3], there exists a holomorphic function *u* on $\varphi^{-1}(H)$ which is unbounded at x for any boundary point x of $\varphi^{-1}(H)$. From Lemma 3 there exists a holomorphic function F on D which is unbounded at boundary points of ∂D^* over x. Since E is dense in ∂D , each boundary point of D^* has the frontier property in the sense of Bochner-Martin [4]. There exists a holomorphic function G on D^* which is unbounded at each point of ∂D^* . Since (D^*, φ^*) is a covering domain of the domain (D', φ') of holomorphy of G, (D', φ') is a covering domain of (D, φ) . Making use of Oka [16] or Stein [17] we can prove that a domain over C^n is a domain of holomorphy if and only if its covering domain is a domain of holomorphy. Hence (D, φ) is a domain of holomorphy.

Corollary to Proposition 1. Let L be a p-dimensional connected abelian complex Lie group, $\pi(L)$ be its fundamental group and (D, φ) be a domain over C^2 . Then $H^1(D, \mathfrak{A}_L) = 0$ if and only if (D, φ) is a domain of holomorphy with $H^2(D, \pi(L)) = 0$.

Proof. If $H^1(D, \mathfrak{A}_L) = 0$, (D, φ) is a domain of holomorphy from Proposition 1. Since $H^1(D, \mathfrak{O}^p) = H^2(D, \mathfrak{O}^p) = 0$ in the canonical exact sequence

$$\mathrm{H}^{1}(D, \mathbb{O}^{p}) \to \mathrm{H}^{1}(D, \mathfrak{A}_{L}) \to \mathrm{H}^{2}(D, \pi(L)) \to \mathrm{H}^{2}(D, \mathbb{O}_{p})$$

where $\mathfrak{O}^{p} = \mathfrak{A}_{c^{p}}$, we have $\mathrm{H}^{2}(D, \pi(L)) = 0$. Conversely if (D, φ) is a domain of holomorphy with $\mathrm{H}^{2}(D, \pi(L)) = 0$, we have $\mathrm{H}^{1}(D, \mathfrak{A}_{L}) = 0$ from the above exact sequence.

Making use of Lemma 3 we can prove the following proposition by induction with respect to n similarly to Prosition 1.

Proposition 2. A domain (D, φ) over C^n which satisfies ${}^{*}H^1(\varphi^{-1}(H), \mathfrak{A}_L) = 0$ for any analytic plane H represented by $H = \{z; z_{q_1} = a_1, z_{q_2} = a_2, \dots, z_{q_{n-m}} = a_{n-m}\}$ $(2 \le m \le n)$ is a domain of holomorphy.

$\S 2$. Approximation of holomorphic functions

A collection $\mathfrak{S} = \{(D_n, \varphi_n); \tau_m^n\}$ is called a monotonously increasing sequence of domains over a complex manifold M if the

following conditions are satisfied:

(1) Each (D_n, φ_n) is a domain over M.

(2) Each $\tau_m^n(n \le m)$ is a mapping of (D_n, φ_n) in (D_m, φ_m) with $\tau_l^n = \tau_l^m \circ \tau_m^n$ for $n \le m \le l$.

A triple (τ_n, D, φ) , or shortly a pair (D, φ) , is called a *limit* of \mathfrak{S} if the following conditions are satisfied:

(1) (D, φ) is a domain over M.

(2) Each τ_n is a mapping of (D_n, φ_n) in (D, φ) with $\tau_n = \tau_m \circ \tau_m^n$ for $n \leq m$.

(3) If (τ'_n, D', φ') satisfies (1) and (2), there exists a mapping ψ of (D, φ) in (D', φ') with $\tau'_n = \psi \circ \tau_n$ for any n.

As we stated in [11] the limit of \mathfrak{S} exists uniquely and has the following property:

Lemma 4. Let (τ_n, D, φ) be the limit of a monotonously increasing sequence $\{(D_n, \varphi_n); \tau_m^n\}$ of domains over a complex manifold M. Then for any compact set K in D there exist an integer m and a compact set K' in D_m such that τ_m maps K' biholomorphically on K.

Let τ be a mapping of a domain (D_1, φ_1) over a Stein manifold S in a domain (D_2, φ_2) over S, $(\lambda_1, \tilde{D}_1, \tilde{\varphi}_1)$ and $(\lambda_2, \tilde{D}_2, \tilde{\varphi}_2)$ be, respectively, the envelopes of holomorphy of (D_1, φ_1) and (D_2, φ_2) . As we remarked in [11], there exists a mapping $\tilde{\tau}$ of $(\tilde{D}_1, \tilde{\varphi}_1)$ in $(\tilde{D}_2, \tilde{\varphi}_2)$ with $\tilde{\tau} \circ \lambda_1 = \lambda_2 \circ \tilde{\tau}$. $\tilde{\tau}$ is called an *analytic* continuation of τ to $(\lambda, \tilde{D}_1, \tilde{\tau}_1)$.

We have the following Lemma as we remarked in [11].

Lemma 5. Let (τ_n, D, φ) be a limit of a monotonously increasing sequence $\{(D_n, \varphi_n); \tau_n^n\}$ of domains over a Stein manifold $S, (\lambda_n, \tilde{D}_n, \tilde{\varphi}_n)$ and $(\lambda, \tilde{D}, \tilde{\varphi})$ be, respectively, the envelopes of holomorphy of (D_n, φ_n) and $(D, \varphi), \tilde{\tau}_m^n$ and $\tilde{\tau}_n$ be, respectively, the analytic continuations of τ_m^n and τ_n to $(\lambda_n, \tilde{D}_n, \tilde{\varphi}_n)$. Then $\{(\tilde{D}_n, \tilde{\varphi}_n); \tilde{\tau}_m^n\}$ is a monotonously increasing sequence of domains over S and $(\tilde{\tau}_n, \tilde{D}, \tilde{\varphi})$ is its limit.

Let τ be a mapping of a domain (D_1, φ_1) over a complex

manifold M in a domain (D_2, φ_2) over M, $(D_1^{\sharp}, \varphi_1^{\sharp}, \lambda_1)$ and $(D_2^{\sharp}, \varphi_2^{\sharp}, \lambda_2)$ be, respectively, the universal covering domains of (D_1, φ_1) and (D_2, φ_2) . Then there exists a mapping τ^{\sharp} of $(D_1^{\sharp}, \varphi_1^{\sharp})$ in $(D_2^{\sharp}, \varphi_2^{\sharp})$ with $\tau \circ \lambda_1 = \lambda_2 \circ \tau^{\sharp}$. τ^{\sharp} is called a mapping of $(D_1^{\sharp}, \varphi_1^{\sharp})$ in $(D_2^{\sharp}, \varphi_2^{\sharp})$ associated to the mapping τ . We have the following Lemma.

Lemma 6. Let (τ_n, D, φ) be the limit of a monotonously increasing sequence $\{(D_n, \varphi_n); \tau_m^n\}$ of domains over a complex mainfold M, $(D_n^*, \varphi_n^*, \lambda_n)$ and $(D^*, \varphi^*, \lambda)$ be, respectively, the universal covering domains of (D_n, φ_n) and (D, φ) , τ_m^{n*} and τ_n^* be, respectively, the mappings of (D_n^*, φ_n^*) in (D_m^*, φ_m^*) and (D^*, φ^*) associated to the mappings τ_m^n and τ_n . Then $\{(D_n^*, \varphi_n^*); \tau_m^{n*}\}$ is a monotonously increasing sequence of domains over M and $(\tau_n^*, D^*, \varphi^*)$ is its limit.

Under these preperations we shall give the following Lemma.

Lemma 7. Let $\{(D_n, \varphi_n), \tau_n^n\}$ be a monotonously increasing sequence of domains over a Stein manifold S and (τ_n, D_n, φ_n) be its limit. Let $\{K_n\}$ be a sequence of compact subsets of D such that $K_n \subset K_{n+1}$ and $D = \bigcup_{n=1}^{\infty} K_n$. Then there exists a subsequence $\{\nu_n\}$ of $\{1, 2, 3, \cdots\}$ with the following properties:

(1) There exists a compact subset K'_n of D_{ν_n} such that the restriction $\tau_{\nu_n}|K'_n$ of τ_{ν_n} to K_n is a biholomorphic mapping of K'_n onto K_n .

(2) For any $f_n \in H_0(D_{\nu_n}, \mathfrak{O})$ and $\varepsilon_n > 0$ there exists $F_n \in H^0$ (D, \mathfrak{O}) such that $|F_n \circ \tau_{\nu_n} - f_n| < \varepsilon_n$ in K'_{ν_n} .

Proof. Let $(\lambda_n, D_n, \varphi_n)$ and (λ, D, φ) be, respectively, the envelopes of holomorphy of (D_n, φ_n) and (D, φ) , $\tilde{\tau}_m^n$ and $\tilde{\tau}_n$ be, respectively, the analytic continuations of τ_m^n and τ_n to $(\lambda_n, \tilde{D}_n, \tilde{\varphi}_n)$ and $(\lambda, \tilde{D}, \tilde{\varphi})$. From Lemma 5 $\{(\tilde{D}_n, \tilde{\varphi}_n); \tau_m^n\}$ is the limit of a monotonously increasing sequence of domains over S and $(\tilde{\tau}_n, \tilde{D}, \tilde{\varphi})$ is its limit. Since \tilde{D} is holomorphically convex, there exists a sequence of analytic polycylinders P_n in \tilde{D} such that

$$\lambda(K_n) \subset P_n \subset P_{n+1}$$

for any $n \ge 1$. Since (τ_n, D, φ) and $(\tilde{\tau}_n, \tilde{D}, \tilde{\varphi})$ are, respectively, limits of $\{(D_n, \varphi_n); \tau_n^n\}$ and $\{(\tilde{D}_n, \tilde{\varphi}_n); \tilde{\tau}_n^n\}$, from Lemma 4 there exists a subsequence $\{\nu_n\}$ of $\{1, 2, 3, \cdots\}$ such that τ_{ν_n} and $\tilde{\tau}_{\nu_n}$ map, respectively, a compact subset K'_n of D_{ν_n} and an open subset P'_n of \tilde{D}_{ν_n} onto K_n and P_n and that

$$au_{{}^{
u_{n+1}}}^{{}^{
u_n}}(P_n^{'})\!\subset\!P_{n+1}^{'}, \lambda_{{}^{
u_n}}(K_n^{'})\!\subset\!P_n^{'}\,.$$

Now let f_n be any holomorphic function on D_{ν_n} . Since $(\lambda_{\nu_n}, \tilde{D}_{\nu_n}, \tilde{\varphi}_{\nu_n})$ is the envelope of holomorphy of $(D_{\nu_n}, \varphi_{\nu_n})$, there exists $\tilde{f}_n \in \mathrm{H}^0(\tilde{D}_{\nu_n}, \mathfrak{O})$ such that $\tilde{f}_n \circ \lambda_{\nu_n} = f_n$.

Then

$$\widetilde{f}_n \circ (\widetilde{\tau}_{\nu_n} | P'_n)^{-1} \in \mathrm{H}^0(P_n, \mathbb{O})$$
 .

Since P_n is holomorphically convex with respect to D, there exists $\tilde{F}_n \in \mathrm{H}^0(\tilde{D}, \mathfrak{O})$ such that

$$|F_n - f_n \circ (\tilde{\tau}_{\nu_n} | P'_n)^{-1}| < \varepsilon_n$$

in K_n . Then $F_n = \tilde{F}_n \circ \lambda$ satisfies

 $|F_n \circ \tau_{\nu_n} - f_n| \! < \! \mathcal{E}_n$

in K'_n .

§3. Limit of cohomology groups

Let (τ_n, D, φ) be a limit of a monotonously increasing sequence $\{(D_n, \varphi_n); \tau_m^n\}$ of domains over a complex manifold Mand \mathfrak{A}_L be the sheaf of all germs of holomorphic mappings in a complex Lie group L. τ_m^n induces canonically the mapping $\pi_n^m: \mathrm{H}^1(D_m, \mathfrak{A}_L) \to \mathrm{H}^1(D_n, \mathfrak{A}_L)$ for $n \leq m$ such that $\pi_n^l = \pi_n^m \circ \pi_m^l$ for $n \leq m \leq l$. Hence $\{\mathrm{H}^1(D_n, \mathfrak{A}_L); \pi_n^m\}$ forms an inverse system over a directed set $\{1, 2, 3, \cdots\}$. Its inverse limit is denoted by lim $\mathrm{H}^1(D_n, \mathfrak{A}_L)$. The canonical mappings π_n ; lim $\mathrm{H}^1(D_n, \mathfrak{A}_L) \to$ $\mathrm{H}^1(D_n, \mathfrak{A}_L)$ and $\pi: \mathrm{H}^1(D, \mathfrak{A}_L) \to \mathrm{lim} \mathrm{H}^1(D_n, \mathfrak{A}_L)$ are also considered. If an element α of $\mathrm{H}^1(D, \mathfrak{A}_L)$ is the canonical image of an element of $B^1(\mathfrak{U},\mathfrak{A}_L)$ for an open covering \mathfrak{U} of D, we say that $\alpha=0$. We say that $H^1(D, \mathfrak{A}_L) = 0$ if $\alpha = 0$ for any $\alpha \in H^1(D, \mathfrak{A}_L)$. If $\alpha \in \lim H^1(D_n, \mathfrak{A}_L)$ satisfies $\pi_n(\alpha) = 0$ for any $n \ge 1$, we say that $\alpha = 0.$ If $\pi(\alpha) = 0$ implies $\alpha = 0$ for $\alpha \in H^1(D, \mathfrak{A}_L)$, we say that π is *quasi-injective*. If L is abelian and π is quasi-injective, π is Let L be a complex Lie group and L_a be the coninjective. nected component of L containing a. For a, $b \in L$ the mapping τ defined by $\tau(x) = ba^{-1}x$ for $x \in L$ maps L_a biholomorphically onto L_b . Hence, if (C^p, χ) is a covering domain of L_e , (C^p, χ_a) is a covering domain of L_a for any $a \in L$, where e is the neutral element of L and $\chi_a(z) = a\chi(z)$ for $z \in C^p$. If L is a p-dimensional abelian or soluble complex Lie group, (C^{p}, χ) is a covering domain of L_e for suitable χ .

Lemma 8. Let (C^p, χ) be a covering manifold of L_e for a complex Lie group L, $\{(D_n, \varphi_n); \tau_m^n\}$ be a monotonously increasing sequence of simply connected domains over a Stein manifold S and (τ_n, D, φ) be its limit. Then the canonical mapping $H^1(D, \mathfrak{A}_L) \rightarrow \lim H^1(D_n, \mathfrak{A}_L)$ is quasi-injective.

Proof. In this proof we shall denote a point of C^n by a gothic type as a and the inverse element of an element a of the group L by a^{-1} . If we put

$$\chi_a(z) = a \chi(z)$$

for $z \in C^p$, (C^p, χ_a) is a covering domain of L_a for $a \in L$. Let $\{K_n\}$ be a sequence of compact subsets of D such that K_n is contained in the open kernel of K_{n+1} and $D = \bigcup_{n=1}^{\infty} K_n$. If we apply Lemma 7 to this $\{K_n\}$, we obtain a subsequence $\{\nu_n\}$ of $\{1, 2, 3, \cdots\}$ and a sequence $\{K'_n\}$ satisfying the conditions (1) and (2) in Lemma 7. Without loss of generality we may suppose that $\nu_n = n$.

There exists $e \in C^p$ with $\chi(e) = e$ for the neutral element e of L. We consider the Euclidean distance in C^p . Let W' be an open sphere with centre e and semiradius r such that χ

maps W' biholomorphically onto an after neighbourhood W' of e. We put

dist(a, b) = dist((
$$\chi | W'$$
)⁻¹a, ($\chi | W'$)⁻¹b) ||a|| = dist(e, a),
 $W = \left\{ z ; dist(e, z) < \frac{r}{2} \right\}, W = \chi(W)$

where $a, b \in W'$ and $\chi | W'$ is the restriction of χ to W'. For any $\varepsilon > 0$ there exists $\delta(\varepsilon) > 0$ satisfying the following condition:

 $0 < \delta(\varepsilon) < \varepsilon$. If $a, b \in W$ satisfy $||b|| < \delta(\varepsilon)$, $ab \in W'$ and $dist(a, ab) < \varepsilon$.

From Lemma 1 it suffices to prove that $f_{ij} \in B^1(\mathfrak{U}, \mathfrak{A}_L)$ for an open covering $\mathfrak{U} = \{U_i; i \in I\}$ of D if $\{f_{ij}\circ\tau_n\} \in B^1(\tau_n^{-1}(\mathfrak{U}), \mathfrak{A}_L)$ for $n \ge 1$. The condition means that $\{f_{ij}\circ\tau_n\}$ satisfies

$$f_{ij} \circ \tau_n = h^n (h_j^n)^{-1}$$

in $\tau_n^{-1}(U_i) \cap \tau_n^{-1}(U_j)$ for a suitable $\{h^n\} \in \mathbb{C}^0(\tau_n^{-1}(U), \mathfrak{A}_L)$, where $\{\tau_n^{-1}(\mathfrak{U}) = \tau_n^{-1}(U_i); i \in I\}$ an open covering of D_n . If we put

$$f^1 = (h^1)^{-1}(h^2 \circ \tau_2^1)$$

in $\tau_1^{-1}(U_i)$, $f^1 \in \mathrm{H}^0(D_1, \mathfrak{A}_L)$ is well-defined. Since D_1 is connected, $f^1(D_1) \subset L_{a_1}$ for some $a_1 \in L$. We put $\chi_1 = \chi_{a_1}$. Since D_1 is simply connected and (C^p, χ_1) is a universal covering domain of L_{a_1} , from the principle of monodromy there exists $F^1 \in \mathrm{H}^0(D_1, \mathfrak{O}^p)$ such that $f^1 = \chi_1 \circ F^1$. From Lemma 7 there exists $H^1 \in$ $\mathrm{H}^0(D, \mathfrak{O}^p)$ such that the image of K'_1 by the mapping $f^1(\chi_1 \circ H^1 \circ \tau_1)^{-1}$ is contained in W and

$$||f^1(\chi_1 \circ H^1 \circ \tau_1)^{-1}|| < \delta(r2^{-3})$$

in K'_1 . If we put

$$\{g_i^1\} = \{h_i^1\} \in \mathbb{C}^0(\tau_2^{-1}(\mathfrak{U}), \mathfrak{A}_L)$$

and

$$g_{\iota}^{2} = h_{\iota}^{2} (\chi_{1} \circ H^{1} \circ \tau_{2})^{-1}$$

in $\tau_2^{-1}(U_i)$, the coboundary of $\{g_i^2\} \in \mathbb{C}^0(\tau_2^{-1}(\mathfrak{U}), \mathfrak{A}_L)$ is $\{f_{ij}\circ\tau_2\}$. If we put

Joji Kajiwara

 $g^{\scriptscriptstyle 1,2} \!=\! (g^{\scriptscriptstyle 1}_{\scriptscriptstyle \imath})^{\scriptscriptstyle -1} (g^{\scriptscriptstyle 2}_{\scriptscriptstyle \imath} \circ \tau^{\scriptscriptstyle 1}_{\scriptscriptstyle 2})$

in $\tau_1^{-1}(U_i), g^{1,2} \in \mathrm{H}^0(D_1, \mathfrak{A}_L)$ is well-defined, the image of K'_1 by the mapping $g^{1,2}$ is contained in W and

$$||g^{1,2}|| < \delta(r2^{-3})$$

in K_1 . Suppose that there exist $\{g_i^1\} \in C^0(\tau_1^{-1}(\mathfrak{U}), \mathfrak{A}_L), \{g_i^2\} \in C^0(\tau_2^{-1}(\mathfrak{U}), \mathfrak{A}_L), \dots$ and $\{g_i^m\} \in C^0(\tau_m^{-1}(\mathfrak{U}), \mathfrak{A}_L)$ satisfying the following conditions:

The coboundary of {gⁿ_i} is {f_{ij}∘τ_n} for n with 1≤n≤m.
 If we put

$$g^{n,l} = (g^n_i)^{-1} (g^l_i \circ \tau^n_l)$$

in $\tau_n^{-1}(U_i)$ for any $1 \leq n < l \leq m$, $g^{n,l} \in H^0(D_n, \mathfrak{A}_L)$ is well-defined, the image of K'_n by the mapping $g^{n,n+1}$ is contained in W and

$$||g^{n,n+1}|| < \delta(r2^{-n-2})$$

in K'_n .

If we put

$$f^m = (g^m_i)^{-1}(h^{m+1} \circ \tau^m_{m+1})$$

in $\tau_m^{-1}(U_i)$, $f^m \in \mathrm{H}^0(D_m, \mathfrak{A}_L)$ is well-defined. Since D_m is connected, there exists $a_m \in L$ such that $f^m(D_m) \subset L_{a_m}$. We put $\chi_m = \chi_{a_m}$. Since D_m is simply connected and (C^p, χ_m) is a covering domain of L_{a_m} , there exists $F^m \in \mathrm{H}^0(D_m, \mathfrak{O}^p)$ such that $f^m = \chi_m \circ F^m$. From the condition (2) of Lemma 7 F_m can be uniformly approximated in K'_m by functions in $\mathrm{H}^0(D, \mathfrak{O}^p)$ so that the image of K'_m by the mapping $f^m(\chi_m \circ H^m \circ \tau_m)^{-1}$ is contained in W and

$$||f^m(\chi_m \circ H^m \circ \tau_m)^{-1}|| < \delta(r2^{-m-2})$$

in K'_m . If we put

$$g_i^{m+1} = h_i^{m+1} (\chi_m \circ H^m \circ \tau_{m+1})^{-1}$$

in $\tau_{m+1}^{-1}(U_i)$, the coboundary of $\{g_i^{m+1}\} \in C^0(\tau_{m+1}^{-1}(\mathfrak{U}), \mathfrak{A}_L)$ is $\{f_{ij} \circ \tau_{m+1}\} \in Z^1(\tau_{m+1}^{-1}(\mathfrak{U}), \mathfrak{A}_L)$. If we put

$$g^{m,m+1} = (g^m_i)^{-1} (g^{m+1}_{\imath \imath} \circ au^m_{m+1})$$

144

in $\tau_m^{-1}(U_i)$, $g^{m,m+1} \in H^0(D_m, \mathfrak{A}_L)$ is well-defined and the image of K'_m by the mapping $g^{m,m+1}$ is contained in W and

 $||g^{m,m+1}|| < \delta(r2^{-m-2})$

in K'_m . In this way we can construct $\{g_i^m\} \in \mathbb{C}^0(\tau_m^{-1}(\mathfrak{U}), \mathfrak{A}_L)$ satisfying the above conditions (1) and (2) inductively for $m = 1, 2, 3, \cdots$.

The image of K'_n by the mapping $g^{n,m}$ is contained in W,

 $||g^{n,m}|| < r2^{-n-1}$

in K'_n for $1 \leq n \leq m$ and

$$dist(g^{n,m}, g^{n,m+1}) < r2^{-m-2}$$

in K'_n for $n \leq m$. Therefore the subsequence $\{(\chi | W)^{-1} g^{n,m}; m = n, n+1, \cdots\}$ of $\mathrm{H}^0(D_n, \mathbb{O}^p)$ tends uniformly to $G^n \in \mathrm{H}^0(\tau_n^{n-1}(K'_{n-1}), \mathbb{O}^p)$ in $\tau_n^{n-1}(K'_{n-1})$ for $n = 2, 3, 4, \cdots$. Since

 $dist(e, G^n) < r2^{-n}$

in $\tau_n^{n-1}(K_{n-1})$ for $n=2, 3, 4, \dots, \{g^{n,m}; m=n, n+1, \dots\}$ tends uniformly to

$$g^n = \chi \circ G^n \in \mathrm{H}^0(\tau_n^{n-1}(K'_{n-1}), \mathfrak{A}_L)$$

in $\tau_n^{n-1}(K'_{n-1})$. If we put

$$f_i = (g_i^n g^n) \circ (\tau_n | K'_n)^{-1}$$

in K_{n-1} for n with $U_i \subset K_{n-1}$, $\{f_i\} \in \mathbb{C}^0(\mathfrak{U}, \mathfrak{A}_L)$ is well-defined and its coboundary is the original cocycle $\{f_{ij}\} \in Z^1(\mathfrak{U}, \mathfrak{A}_L)$.

The above proof of Lemma 8 gives the following Corollary.

Corollary to Lemma 8. Let (D, φ) be a limit of a monotonously increasing sequence $\{(D_n, \varphi_n)\}$ of domains over a Stein manifold. Then the canonical homomorphism $H^1(D, \mathbb{O}^p) \rightarrow$ $\lim H^1(D_n, \mathbb{O}^p)$ is injective for $p \ge 1$.

Let (τ_n, D, φ) be a limit of a monotonously increasing sequence $\{(D_n, \varphi_n), \tau_m^n\}$ of domains over M. Let $\tau_n^{\sharp}: (D_n^{\sharp}, \varphi_n^{\sharp}) \rightarrow (D^{\sharp}, \varphi^{\sharp})$ and $\tau_m^{n\sharp}: (D_n^{\sharp}, \varphi_n^{\sharp}) \rightarrow (D_m^{\sharp}, \varphi_m^{\sharp})$ be, respectively, the mappings associated to τ_n and τ_m^n for $1 \leq n \leq m$. Then $(\tau_n^{\sharp}, D^{\sharp}, \varphi^{\sharp})$ is a limit of a monotonously increasing sequence $\{(D_n^{\sharp}, \varphi_n^{\sharp}), \tau_m^{n\sharp}\}$ of domains over M. $\tau_n \circ \lambda_n$'s induce a canonical mapping $\pi^{\sharp} : \mathrm{H}^1(D, \mathfrak{A}_L) \to$ $\lim \mathrm{H}^1(D_n^{\sharp}, \mathfrak{A}_L)$. Under these notations we have the following Lemma.

Lemma 9. Let $(C^{\mathfrak{p}}, \chi)$ be a covering domain of a connected component of a complex Lie group L, $\{(D_n, \varphi_n), \tau_m^n\}$ be a monotonously increasing sequence of domains over a Stein manifold S and (τ_n, D, φ) be its limit. For any $\alpha \in \mathrm{H}^1(D, \mathfrak{A}_L)$ with $*\pi(\alpha) = 0$, we have $*\alpha = 0$.

Proof. From Lemma 4 it suffices to prove that any $\{f_{ij}\} \in Z^1(\mathfrak{U}, \mathfrak{A}_L)$ for an open covering \mathfrak{U} of D with $\{f_{ij}\circ\tau_n\circ\lambda_n\}\in B^1(\lambda_n^{-1}\tau_n^{-1}(\mathfrak{U})), \mathfrak{A}_L)$ $(n\geq 1)$ satisfies $\{f_{ij}\circ\lambda\}\in B^1(\lambda^{-1}(\mathfrak{U}), \mathfrak{A}_L)$. Since $\tau_n\circ\lambda_n = \lambda\circ\tau_n^*$ for any n,

$$\{f_{ij} \circ \lambda \circ \tau_n^{\sharp}\} \in \mathbf{B}^1(\tau_n^{\sharp-1}(\lambda^{-1}(\mathfrak{U})), \mathfrak{A}_L)$$

for any *n*. As each D_n^{\sharp} is simply connected, we have

$$\{f_{ij}\circ\lambda\}\in \mathrm{B}^{1}(\lambda^{-1}(\mathfrak{U}),\mathfrak{A}_{L})$$

from Lemma 8.

As a corollary to Lemma 9 we have the following Proposition.

Proposition 3. Let L be an abelian or soluble complex Lie group, $\{(D_n, \varphi_n)\}$ be a monotonously increasing sequence of domains over a Stein manifold and (D, φ) be its limit. If D is simply connected, the canonical mapping $H^1(D, \mathfrak{A}_L) \rightarrow \lim H^1(D_n, \mathfrak{A}_L)$ is quasi-injective.

§4. Cousin-I and Cousin-II distributions

Let *L* be an abelian or soluble complex Lie group and *D* be a domain in a Stein manifold *S*. Let \mathfrak{F} be a subset of $H^1(D, \mathfrak{A}_L)$. For a subdomain *E* of *D* we consider the inclusion mapping $i_E: E \to D$. Let $(E^{\ddagger}, \lambda_E)$ be the universal covering domain of *E*. i_E and $i_E \circ \lambda_E$ induce canonically mappings

 i_{E}^{*} : $\mathrm{H}^{1}(D, \mathfrak{A}_{L}) \to \mathrm{H}^{1}(E, \mathfrak{A}_{L})$ and $\lambda_{E}^{*} \circ i_{E}^{*}$: $\mathrm{H}^{1}(D, \mathfrak{A}_{L}) \to \mathrm{H}^{1}(E^{*}, \mathfrak{A}_{L})$. For $\alpha \in \mathrm{H}^{1}(D, \mathfrak{A}_{L})$ we put $\alpha | E = i_{E}^{*}(\alpha)$ and ${}^{*}(\alpha | E) = \lambda_{E}^{*}(i_{E}^{*}(\alpha))$. We consider the set $E_{\mathfrak{F}}$ of all subdomains E of D such that ${}^{*}(\alpha | E) = 0$ for any $\alpha \in \mathfrak{F}$. Then $(E_{\mathfrak{F}}, \subset)$ forms a partially ordered set. Let $\mathfrak{C} = \{C_{t}; t \in T\}$ be a totally ordered subset of $(E_{\mathfrak{F}}, \subset)$. We put

$$C = \bigcup_{t \in T} C_t .$$

Then C is a subdomain of D. There exists a sequence $\{K_n; n=1, 2, 3, \dots\}$ of compact subsets of C such that

$$K_n \subset K_{n+1}, C = \bigvee_{n=1}^{\infty} K_n.$$

Since \mathbb{C} is an open covering of a compact set K_1 and (\mathbb{C}, \subset) is totally ordered, there exists $C_1 \in \mathbb{C}$ such that $K_1 \subset C_{\mu_1}$. Suppose that there exists $C_{\mu_1}, C_{\mu_2}, \dots, C_{\mu_n} \in \mathbb{C}$ such that

$$C_{\mu_1} \subset C_{\mu_2} \subset \cdots \subset C_{\mu_n}, K_m \subset C_{\mu_m} \ (1 \leq m \leq n).$$

Since \mathbb{C} is an open covering of a compact set K_{n+1} and (\mathbb{C}, \subset) is totally ordered, there exists $C'_{\mu_{n+1}} \in \mathbb{C}$ such that $K_{n+1} \subset C'_{\mu_{n+1}}$. Then we have

$$C_{\mu_{n+1}} = C_{\mu_n} \bigcup C'_{\mu_{n+1}} \in \mathbb{S}$$

and

$$C_{\mu_n} \subset C_{\mu_{n+1}}, K_{n+1} \subset C_{\mu_{n+1}}.$$

Thus we have proved the existence of $\{C_{\mu_n}; n=1, 2, 3, \cdots\} \subset \mathbb{C}$ such that

$$C_{\mu_1} \subset C_{\mu_2} \subset \cdots \subset C_{\mu_n} \subset \cdots, C = \bigcup_{n=1}^{\infty} C_{\mu_n}$$

Since ${}^*(\alpha|C_{\mu_n})=0$ for any n and any $\alpha \in \mathfrak{F}$, we have ${}^*(\alpha|C)=0$ for any $\alpha \in \mathfrak{F}$ from Lemma 9. Therefore $C \in E\mathfrak{F}$ and C is an upper bound of \mathfrak{C} . From Zorn's Lemma there exists a maximal element $D\mathfrak{F}$ of $(E\mathfrak{F}, \subset)$ which is an upper bound of \mathfrak{C} .

Joji Kajiwara

A collection $\mathbb{C} = \{(m_i, U_i); i \in I\}$ of pairs of an open subset U_i of D and a meromorphic function m_i in U_i is called a *Cousin-II distribution in* D if the following conditions are satisfied:

(1) $\mathfrak{U} = \{U_i; i \in I\}$ is an open covering of D.

(2) $\rho(\mathfrak{C}) = \{m_i m_j^{-1}\} \in \mathbb{Z}^1(\mathfrak{U}, \mathfrak{O}^*) \text{ where } \mathfrak{O}^* = \mathfrak{A}_{\mathrm{GL}(1, \mathcal{O})}.$

Let *E* be a subdomain of *D* and (E^{\sharp}, λ) be the universal covering domain of *E*. A meromorphic function *M* in E^{\sharp} is called a *multiform solution* of \mathbb{C} in *E* if

$$(m_i \circ \lambda) M^{-1} \in \mathrm{H}^0(\lambda^{-1}(U_i), \mathbb{O}^*)$$

for any $i \in I$. C has a multiform solution in E if and only if ${}^{*}(\rho(\mathbb{C})|E)=0$. ρ gives a homomorphism of the multiplicative group of all Cousin-II distributions in D into $H^{1}(D, \mathbb{O}^{*})$. Let \mathfrak{F} be a set of Cousin-II distributions in D. Let $D_{\mathfrak{F}}$ be the set of all subdomain E of D in which any distribution in \mathfrak{F} has a multiform solution. Then we have $(D_{\mathfrak{F}}, \subset) = (E_{\rho(\mathfrak{F})}, \subset)$. Hence we have the following Proposition.

Proposition 4. Let \mathfrak{F} be a set of Cousin-II distributions in a domain D in a Stein manifold, $D_{\mathfrak{F}}$ be the set of all subdomains E of D in which any distribution in \mathfrak{F} has a multiform solution and \mathfrak{C} be a totally ordered subset of $(D_{\mathfrak{F}}, \subset)$. Then there exists a maximal element of $(D_{\mathfrak{F}}, \subset)$ which is an upper bound of \mathfrak{C} .

Making use of Corollary of Lemma 8 we can also prove the following Proposition similarly.

Proposition 5. Let \mathfrak{F} be a set of Cousin-I distributions in a domain D in a Stein manifold, $D_{\mathfrak{F}}$ be the set of all subdomains E of D in which any distribution of \mathfrak{F} has a solution and \mathfrak{C} be a totally ordered subset of $(D_{\mathfrak{F}}, \subset)$. Then there exists a maximal element of $(D_{\mathfrak{F}}, \subset)$ which is an upper bound of \mathfrak{C} .

§ 5. Intersection of Cousin's domains

In this paragraph we denote by L a fixed, but arbitrary, abelian complex Lie group exclusively. A direct product P of n simply connected domains in a complex plane is called *simply*

148

connected polycylinder in C^n . Of course we have $H^1(P, \mathfrak{A}_L) = 0$. In this paragraph we shall investigate intersections of domains D with $H^1(D, \mathfrak{A}_L) = 0$ and extend Cartan-Behnke-Stein's theorem.

An open set G in C^n with $H^1(G \cap P, \mathfrak{A}_L) = 0$ for any relatively compact and simply connected polycylinder P in C^n is called *L*-regular.

A domain G in C^n is said to be *exhausted by L-regular* domains G_p if G_p 's are *L*-regular domains in C^n such that

$$G_p \subseteq G_{p+1}(p=1,2,3,\cdots) \text{ and } G = \bigcup_{p=1}^{\infty} G_p.$$

Lemma 10. Let G be a domain in Cⁿ exhausted by L-regular domains G_p . Then $^{*}H^{1}(G, \mathfrak{A}_{L}) = 0$. Moreover for any integers $1 \leq m < n, \ 1 = s_1 < s_2 < \cdots < s_{n-m} \leq n$ and for any complex numbers $c_j(j = s_1, s_2, \cdots s_{n-m})$ the intersection $G \cap H$ of G and $H = \{z = z_1, z_2, \cdots, z_n\}$; $z_j = c_j(j = s_1, s_2, \cdots, s_{n-m})\}$ satisfies $^{*}H^{1}(G \cap H, \mathfrak{A}_{L}) = 0$.

Proof. Since G_p is a relatively compact *L*-regular domain, we have $H^1(G_p, \mathfrak{A}_L) = 0$ for any *p*. From Lemma 9 we have ${}^{*}H^1(G, \mathfrak{A}_L) = 0$.

Next we shall prove ${}^{*}\mathrm{H}^{1}(G \cap H, \mathfrak{A}_{L}) = 0$. We may assume that

$$H = \{(z, w) = (z_1, z_2, \dots, z_m, w_1, w_2, \dots, w_{n-m}); w_j = 0 (j = 1, 2, \dots, n-m) \}.$$

There exist $\varepsilon_p > 0$ and $a_p > 0$ such that

$$\begin{split} E_p = G_p \bigcap \left\{ (z, w); |z_j| < a_p, |w_k| < \varepsilon_p (j = 1, 2, \cdots, m; k = 1, 2, \cdots, n - m) \right\} \\ \subset \left\{ (z, w); |z_j| < a_p, |w_k| < \varepsilon_p, (z, 0) \in G \bigcap H, \\ (j = 1, 2, \cdots, m; k = 1, 2, \cdots, n - m) \right\}, \\ a_p < a_{p+1} (p \ge 1) \text{ and } a_p \to \infty (p \to \infty), \\ \varepsilon_p > \varepsilon_{p+1} (p \ge 1) \text{ and } \varepsilon_p \to 0 (p \to \infty). \end{split}$$

Since G_p is L-regular, we have $H^1(E_p, \mathfrak{A}_L) = 0$ for any p. We put

$$H_{p} = G_{p} \cap H \cap \{(z, 0); |z_{j}| < a_{p} \ (j = 1, 2, \dots, m)\}.$$

Then $G \cap H$ is the limit of a monotonously increasing sequence of open sets H_p in H. Let $\mathfrak{B} = \{V_s; s \in S\}$ be an open covering of $G \cap H$. We put $V_s^p = V_s \cap H_p$ for $s \in S$. Then $V_p = \{V_s^p; s \in S\}$ is an open covering of H_p . We put

$$U_{s}^{p} = E_{p} \cap \{(z, w); (z, 0) \in V_{s}\}$$

for $s \in S$. Then $\mathfrak{U}_p = \{ U_s^p ; s \in S \}$ is an open covering of E_p . Let $\{ f_{st}(z) \}$ be an element of $Z^1(\mathfrak{V}, \mathfrak{A}_L)$. We put

$$F_{st}^p(z,w) = f_{st}(z)$$

in $U_s^p \cap U_t^p \neq \phi$. Then $\{F_{st}^p\} \in Z^1(\mathfrak{U}_p, \mathfrak{A}_L) = B^1(\mathfrak{U}_p, \mathfrak{A}_L)$ from Lemma 1. There exists $F_s^p \in H^0(U_s^p, \mathfrak{A}_L)$ for any $s \in S$ such that

$$F_{st}^{p} = F_{s}^{p} (F_{t}^{p})^{-1}$$

in $U_s^p \cap U_t^p \neq \phi$. If we put

$$f_s^p(z) = F_s^p(z,0)$$

in V_s^p for any $s \in S$, then we have

 $f_{st} = f_s^p (f_t^p)^{-1}$

in $V_s^p \cap V_t^p \neq \phi$. Therefore the restriction of $\{f_{st}\}$ in any H_p is a coboundary of $\{f_s^p\} \in \mathbb{C}^0(\mathfrak{B}_p, \mathfrak{A}_L)$ for any p. From Lemma 1 $\{f_{st} \circ \lambda\} \in \mathbb{B}^1(\lambda^{-1}(\mathfrak{B}), \mathfrak{A}_L), (G, \lambda)$ being the universal covering domain of G. Thus we have ${}^*\mathbb{H}^1(G \cap H, \mathfrak{A}_L) = 0$.

From Proposition 2 and Lemma 10 we have

Proposition 6. A domain in C^n exhausted by L-regular domains is a domain of holomorphy.

A boundary point x^0 of an open set G in \mathbb{R}^n is called a *continuous boundary point of* G if there exists a real-valued continuous function g of variables $x_1, x_2, \dots, \hat{x}_j, \dots, x_n$ in a neighbounhood V of x^0 such that

 $\partial G \cap V = \{x = (x_1, x_2, \dots, x_n); x_j = g(x_1, x_2, \dots, \hat{x}_j, \dots, x_n), x \in V\}$

for some j. Moreover if g is continuously differentiable in U,

 x^{0} is called a *smooth boundary point of* G. An open set G in C^{p} is called *pseudoconvex at a boundary point* x^{0} of G if there exists an open neighbourhood U of x^{0} such that $G \cap U$ is an open set of holomorphy.

Proposition 7. An L-regular open set G in C^n is pseudoconvex at a continuous boundary point z^0 of G.

Proof. We put $z^0 = (z_1^0, z_2^0, \dots, z_n^0)$. We may assume that there exists $\varepsilon > 0$ and a real-valued continuous function g of variables $z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n$ in a neighbourhood $V = \{z = (z_1, z_2, \dots, z_n); |z_k - z_k^0| < \varepsilon (k = 1, 2, \dots, n)\}$ such that

$$\partial G \cap V = \{z; x_j = g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}$$

for some j where $z_j = x_j + \sqrt{-1} y_j$. Then three cases (1), (2) and (3) may occur.

(1) $G \cap V = \{z; x_j < g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}.$

For $0 \leq t < 1$ we put

$$V_t = \left\{ z ; |z_k - z_k^0| < \frac{(1-t)\varepsilon}{2} (k=1, 2, ..., m) \right\}.$$

Then we have

$$\left\{z; \left(z_1, z_2, \cdots, z_{j-1}, z_j - \frac{t\varepsilon}{2}, z_{j+1}, \cdots, z_n\right) \in V_t\right\} \subset V$$

for 0 < t < 1. We put

$$E_t = \left\{ z ; x_j < g(z_1, z_2, \cdots, z_{j-1}, y_j, z_{j+1}, \cdots, z_n) - \frac{t\varepsilon}{2}, z \in V_t \right\}.$$

Let P be a relatively compact and simply connected polycylinder in C_n . $E_t \cap P$ is mapped onto

$$\left\{ w ; u_{j} < g(w_{1}, w_{2}, \dots, w_{j-1}, v_{j}, w_{j+1}, \dots, w_{n}), \\ \left(w_{1}, w_{2}, \dots, w_{j-1}, w_{j} - \frac{t\varepsilon}{2}, w_{j+1}, \dots, w_{n} \right) \in V_{t} \cap P \right\}$$

$$= G \cap V \cap \left\{ z ; \left(z_{1}, z_{2}, \dots, z_{j-1}, z_{j} - \frac{t\varepsilon}{2}, z_{j+1}, \dots, z_{n} \right) \in V_{t} \cap P \right\}$$

by a biholomorphic mapping $w = (w_1, w_2, \dots, w_n) = \gamma(z)$ defined by

Joji Kajiwara

 $w_k = z_k (k \neq j), w_j = z_j + t \varepsilon/2.$ Since $\gamma(E_t \cap P)$ is the intersection of G and relatively compact and simply connected polycylinders, we have

$$\mathrm{H}^{1}(E_{t} \cap P, \mathfrak{A}_{L}) = \mathrm{H}^{1}(\gamma(E_{t} \cap P), \mathfrak{A}_{L}) = 0.$$

Therefore E_t is an *L*-regular open set for $0 \le t < 1$. Since E_0 is exhausted by *L*-regular domains $\{E_t; 0 < t < 1\}, E_0 = G \cap V_0$ is a domain of holomorphy from Proposition 1. Hence *G* is pseudo-convex at z^0 .

(2) $G \cap V = \{z; x_j > g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}.$ In this case the situation is quite similar to the case (1). (3) $G \cap V = \{z; x_j \neq g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}.$ Let

$$G_1 = \{z; x_j < g(z_1, z_2, \dots, z_{j-1}, y_j, z_{j+1}, \dots, z_n), z \in V\}$$

and

$$G_{2} = \{z; x_{j} > g(z_{1}, z_{2}, \cdots, z_{j-1}, y_{j}, z_{j+1}, \cdots, z_{n}), z \in V\}.$$

From the cases (1) and (2) G_1 and G_2 are pseudoconvex at z^0 . Hence $G \cap V = G_1 \bigcup G_2$ is pseudoconvex at z^0 .

Theorem 1. Let L be an abelian complex Lie group. An L-regular domain D in C^n with a continuous boundary is a domain of holomorphy.

Proof. From Oka [16] and Proposition 7 D is a domain of holomorphy.

Theorem 2. Let L be an abelian complex Lie group and D be a domain with a smooth boundary in a Stein manifold S. If $H^1(D \cap P, \mathfrak{A}_L) = 0$ for any holomorphically convex subdomain P of S analytically contractible to each point of it, D is holomorphically convex.

Proof. Let x_0 be a boundary point of D. There exists a biholomorphic mapping τ of an open neighbourhood U' of x_0 onto $Z' = \{z ; |z_1| < 2, |z_2| < 2, \dots, |z_n| < 2\}$ and $\tau(x_0) = 0$ where n is the dimension of S. We put

$$Z = \{z ; |z_1| < 1, |z_2| < 1, \dots, |z_n| < 1\}$$

and $U=\tau^{-1}(Z)$. Let Q be any relatively compact and simply connected polycylinder in C^n . Then each connected component of $Q \bigcap Z$ is relatively compact and simply connected polycylinder in C^n . From Riemann's mapping theorem $Q \bigcap Z$ and $\tau^{-1}(Q \bigcap Z)$ are relatively compact Stein manifolds analytically contractible to each point of it. Since

$$\mathrm{H}^{1}(Q \cap \tau(U \cap D), \mathfrak{A}_{L}) = \mathrm{H}^{1}(\tau^{-1}(Q \cap Z) \cap D, \mathfrak{A}_{L}) = 0,$$

 $\tau(U \cap D)$ is *L*-regular and pseudoconvex at its smooth boundary point x_0 from Proposition 7. Therefore *D* is pseudoconvex and is holomorphically convex from Docquier-Grauert [8].

Lemma 11. For any $p \ge 1$ there exists homomorphism α of GL(1, C) in GL(p, C) and β of GL(p, C) in GL(1, C) such that $\beta \circ \alpha$ is the identity of GL(1, C).

Proof. For $a \in GL(1, C)$ we define the *p*-*p* matrix $\alpha(a) = (a_{ij})$ by putting

$$a_{11} = a, a_{ii} = 1$$
 $(i \ge 2), a_{ij} = 0$ $(i \ne j).$

For $a \in GL(p, C)$ we put $\beta(a) = \det(a)$. Then α and β are desired homomorphisms.

Lemma 12. Let L and L' be complex Lie groups with the following properties: There exist homomorphisms α of L in L' and β of L' in L such that $\beta \circ \alpha$ is the identity of L. Then the canonical mapping $H^1(X, \mathfrak{A}_L) \rightarrow H^1(X, \mathfrak{A}_{L'})$ induced by α is injective for any complex space X.

Proof. Suppose that

$$f_{i}^{-1}(\alpha \circ f_{ij})f_{j} = \alpha \circ g_{ij}$$

in $U_i \cap U_j \neq \phi$ for $\{f_{ij}\}, \{g_{ij}\} \in \mathbb{Z}^1(\mathfrak{U}, \mathfrak{A}_L)$ and $\{f_i\} \in \mathbb{C}^0(\mathfrak{U}, \mathfrak{A}_{L'})$ where $\mathfrak{U} = \{U_i; i \in I\}$ is an open covering of X. Then $\{\beta \circ f_i\} \in \mathbb{C}^0(\mathfrak{U}, \mathfrak{A}_L)$ satisfies

$$(\beta \circ f_i)^{-1} f_{ij}(\beta \circ f_j) = g_{ij}$$

in $U_i \cap U_j \neq \phi$.

From Lemmas 11 and 12 we have the following Theorem.

Theorem 3. For any positive integer p Propositions 1, 2, 6 and 7 Theorems 1 and 2 are valid if we replace L by GL(p, C).

§6. The sheaf \mathfrak{M} of all germs of meromorphic functions

In the previous paper [10] we remarked that $H^1(D, \mathfrak{M}) = 0$ for any 1-dimensional Stein manifold D, that is, for any noncompact Riemann surface D where \mathfrak{M} is the sheaf of all germs of meromorphic functions. But we have the following Proposition for a domain in C^n $(n \ge 2)$.

Proposition 8. Let D be a domain in C^n $(n \ge 2)$. Then $H^1(D, \mathfrak{M}) \neq 0$.

Proof. Suppose that $H^1(D, \mathfrak{M}) = 0$. For the sake of brevity of notations any point of C^n is denoted by $x = (z, w, w_3, \dots, w_n)$. Then there exist complex numbers a and b with $0 \neq a \neq b \neq 0$ such that

$$D_1 = D - \{x; z = a\} \cong D, D_2 = D - \{x; z = b\} \cong D.$$

From Lemma 1 we have $H^1(\mathfrak{U},\mathfrak{M})=0$ for the open covering $\mathfrak{U}=\{D_1,D_2\}$ of D. We put

$$m' = \frac{1}{w - \exp((z-a)^{-1}(z-b)^{-1})} \in \mathrm{H}^{0}(D_{1} \cap D_{2}, \mathfrak{M}).$$

There exists $m'_1 \in H^0(D_1, \mathfrak{M})$ and $m'_2 \in H^0(D_2, \mathfrak{M})$ such that

 $m' = m'_1 - m'_2$

in $D_1 \cap D_2$. The pole surfaces A', A'_1 and A'_2 of m', m'_1 and m'_2 are, respectively, analytic sets in $D_1 \cap D_2$, D_1 and D_2 . There holds

$$A' \subset (A_1' \cup A_2') \cap D_1 \cap D_2.$$

Since A' is irreducible at each point of it, we have $A' \subset A_1 \cap D_1$ $\cap D_2$ or $A' \subset A_2 \cap D_1 \cap D_2$. Without loss of generality we may suppose that $A' \subset A'_2 \cap D_1 \cap D_2$. Since $D_1 \subseteq D$, there exists $x^0 =$

154

 $(a, a_2, a_3, \dots, a_n) \in D$ for our a. There exists $\delta > 0$ such that

$$U = \{x = (z, w, w_3, \dots, w_n) ; |z - a| < \delta, |w - a_2| < \delta, |w_3 - a_3| < \delta, \\ \dots, |w_n - a_n| < \delta\} \subset D.$$

There exists an integer $p \ge 0$ such that the germ of the pole surfaces of

$$m_2 = (z-a)^p m'_2 \in \mathrm{H}^0(D_2, \mathfrak{M})$$

at x^0 does not contain that of $\{x; z=a\}$ at x^0 . We put

$$m = (z-a)^{p} m' \in \mathrm{H}^{0}(D_{1} \cap D_{2}, \mathfrak{M}).$$

The pole surfaces of A and A_2 of m and m_2 are, respectively, analytic sets in $D_1 \cap D_2$ and D_2 satisfying

$$A \subset A_2 \cap D_1 \cap D_2$$

Let $x = (a, b_2, b_3, \dots, b_n)$ be any point of $U \cap \{x; z=a\}$ with $b_2 \neq 0$. There exists an integer $q'_0 > 0$ such that

$$\left|\frac{4}{\log b_2 + i(\arg b_2 + 2q\pi)}\right| < |a-b|^2$$

for $q \ge q'_0$. We put $x^q = (a^{(q)}, b_2, \dots, b_n)$ $(q \ge q'_0)$ for

$$a^{(0)} = \frac{a+b+\sqrt{(a-b)^2 + \frac{4}{\log b_2 + i(\arg b_2 + 2q\pi)}}}{2}$$

where the function \sqrt{z} is defined in $\{z; |z-(a-b)^2| < |a-b|^2\}$ so that $\sqrt{(a-b)^2} = a-b$. There exists $q_0(>q_0)$ such that

$$x^q \in U$$

for $q > q'_0$. Then we have

$$x^q \in A(q > q_0), x^q \rightarrow x(q \rightarrow \infty).$$

Since $A \subset A_2$, A_2 is an analytic set in D_2 and D_2 contains $x^{(0)}$ $(q < q_0)$ and x, we have $x \in A_2$. This means that

$$U \cap \{x; z=a\} \subset A_2$$
.

But this contradicts to the fact that the germ of A_2 at x^0 does

Joji Kajiwara

not contain that of $\{x; z=a\}$ at x^0 . Thus we have proved that $H^1(D, \mathfrak{M}) \neq 0$.

REFERENCES

- Behnke, H., Généralisation du théorème de Runge pour les fonctions multiformes des variables complexes. Coll. sur les fonct. des plus. var. Bruxelles (1953).
- [2] Behnke, H., und K. Stein, Analytische Funktionen mehrer Veränderlichen zur vorgegebenen Null- und Pollstellenflächen. Jber. Deut. Math. Verein. 47 (1937), 177–192.
- [3] ———, Entwicklung analytischer Funktionen auf Riemannschen Flächen. Math. Ann. 120 (1948), 430–461.
- [4] Bochner, S., and W. T. Martin, Several complex variables. Princeton Univ. Press (1948).
- [5] Cartan, H., Les problèmes de Poincaré et de Cousin pour les fonctions de plusieurs variables complexes. C. R. Paris 199 (1934), 1284–1287.
- [6] _____, Sur les premières problèmes de Cousin. C. R. Paris 207 (1938), 558-560.
- [7] Cartan, H., et al., Théorie des fonctions de plusieurs variables: Sem. de Cartan, Ecole Norm., Sup. (1951-52).
- [8] Docquier, F., und H. Grauert, Levisches Problem und Rungescher Satz fur Teilgebiete Steinscher Mannigfaltigkeit. Math. Ann. 140 (1960), 94-123.
- [9] Eilenberg, S., and N. Steenrod, Foundations of algebraic topology. Princeton Univ. Press.
- [10] Kajiwara, J., On an application of L. Ehrenpreis's method to ordinary differential equations. Kodai. Math. Sem. Rep. 15 (1963), 94-105.
- [11] _____, On the limit of a monotonous sequence of Cousin's domains. J. Math. Soc. Japan 17 (1965), 36-46.
- [12] _____, Some characterizations of Stein manifold through the notion of locally regular boundary points. Kodai Math. Sem. Rep. 16 (1964), 36-46.
- [13] _____, Note on a Cousin-II domain over C². Ibid. 17 (1965), 44-47.
- [14] ———, Relations between domains of holomorphy and multiple Cousin's problems. Ibid., 261-272.
- [15] Oka, K., Sur les fonctions analytiques de plusieurs variables: II Domaines d'holomorphie. J. Sci. Hiroshima Univ. 7 (1937), 115-130.
- [16] _____, ____: IX Domaines finis sans point critique intérieur. Jap. J. Math.
 23 (1953), 97–155.
- [17] Stein, K., Überlagerungen holomorph-vollständiger komplexer Räume. Arch. Math. 7 (1956), 354-361.
- [18] Thullen, P., Sur les deusième problème de Cousin. C. R. Paris 200 (1935), 720-721.

Mathematical Institute Kyushu University