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So called Sounine's integral formula can be Interpreted as
follows [1]= Let Gn be ^-dimensional Euclidean motion group and
Tg be an irreducible unitary representaion of class 1. The group
Gn contains the subgroup which Is isomorphic to Gn_1. Being re-
stricted to Gn_x , Tg is decomposed into irreducible representations
of Gn_10 Using this decomposition, we can express the zonal spherical
function of Gn by that of Gw_1 0 This expression is nothing but
Sonnine's first integral formula. Sonnine's second integral formula
can be proved in the same way-

On the other hand, the motion group of ^-dimensional Lova-
chvsky space G (the Lorentz group) contains, as a subgroup, Gn_la

As in the previous case, restricting the irreducible representation of
G to Gn_1 and decomposing it into irreducible factors, we can obtain
an integral formula (6) involving Legendre and Bessel functions,,
In this sense, we may call the formula (6) an analogue to Sonnine's
formula.

if we consider Imaginary Lovachevsky space, we obtain analo-
gous formula (7). (8).

§1. Let G be the (^ + 2)-dimensional Lorentz group, that is,
the connected component of the orthogonal group of the quadratic
form — xl + xl-\—x%+1.
We put,

= tk = /i ox
vo *;
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A = (at = /cht 0 cht'

Then, G = N^AK (Iwasawa decomposition)
Further,

fl (K
m ; m^so(n)

\0 I/

is the normalizer of Af_ in ^C and M_N=N_M (semi-direct product)
is isomorphic to GM. We denote the Lie algebras corresponding to
these subgroups by the letters, r t_, a, I, m, respectively.

The homogeneous space X=G/K is (w + l)-dimensional Lova-
chevsky space. It is homeomorphic to N-A, so we can adopt the
canonical coordinate of A and N- as a global coordinate in X.

At first, we compute the invariant metric on X (which is unique
up to a constant factor) in terms of this coordinate,

Lemma. The invariant metric on X is given by

ds2 = dt2jre2t S dx\ (1)

By the definition of the invariant metric, we must determine
the positive definite quadratic form on the tangent space at x(x^ X)
cpx(Y], such that
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where we denote the transformation x^g*x and its differential by
the same letter.

For this, it is sufficient to construct the quadratic form on p,
<p(Y), invariant by Adk (p is the orthogonal complement of I with
respect to killing form, which can be identified with the tangent
space at the origine o}.

Then, <px(Y) = cp(g~lY\ where g-o=x. The right hand side is
independent of the choise of g.
In our case

o ,...

It is easy to see that <p(Y) = J£y* (up to a constant factor)
*=i

Now, a + n _ ^ g / f ^ p (as vector spaces)
By this isomorphism, <p( Y) can be regarded as a quadratic form

on cn-n_. That is,

/O y-yn t\
for Y-l,

; 0 •
yn y

\t -y--yn O/

We identify all tangent space of X with a+n_ . Then the differ-
ential of the transformation x-^gx is the linear transformation on
a+n_ which is given by the Jacobian matrix.

" d ( y , t )

where (/, t') is the coordinate of gx.
In particular, for g=yQato, t' =

and Jg =
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Consequently, the form at xQ = (yQ9 £0) is given by

<px( F) - t2+e2t° 2] y\, which proves (1)

Corollary,, Let A £0 the Laplace-Beltrami operator on X. Then

§ 20 Irreducible unitary representations of class 1 of G are
usually constructed in the function space on a maximal compact
subgroup ([2], [3])0 But for our purpose, the following realization
is more convenient.

According to the decomposition,,

G = N+MAN, (Gauss decomposition, see 2Kejio6eHKo
MOCK. MaxeM. o-Ba, 12 (1963))

, for g^G and x^N^y xg is uniquely expressed in the form

xg = ymaxf (if xg is a "regular" element),,

We denote xr, a by Xg, at(x, g) respectively. Then we have

Lemma.

where

1
2 n+1'° M+1>n+1

We prove this for n = 2m (for n = 2m + I, the proof is similar)

put
i

i i1-1
-i /\i -i/

we denote by A, N+, ^V_ the subgroups corresponding to A, N+,
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Then

e* 0

EH

0 e-*

X =

y-

/ \

z; En o

\w- •,»••. ^-^ i/
' i i» i» ^i I I \

^
0 £„ WJ

Vo o i /

"T Î*"

\

"is^""

From the equality xg=ymdx', we thve

Z'm-Z'l9 1)-

e* = the (« + 2)th component of ( | ^ i 2 , ^ ••• ̂ w, z
€*(}*}*, *['•

But (|^ 2, sj -
(|^|2, ^-

Therefore
|^.|2_|_ -^ ?Z 1^1 2 _ -£

g — V^oo So, »+!/"•" ij -^k\Sk0 ^ffe;w+i/~r — V^w+i.o

**= y=i

It is to be noticed that 8^ '" x*) = A(x, g)n

Q(x - ^)
and A(o
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Using these, we can construct the unitary representation (£>, Ug)
of G in the following way.

§ = L\Rn)

Ugf(x) = A(xy g)~cn/2^~iPf(Xg) (p is a real number parametrizing the
representation.)
In particular.

for g = y^N_9 U>gf(x) = f(x+y) (a)

for g = at^A, Ugf(x) = e^n/z^tf(etx) (b)

for g=m^M, Up
gf(x) = f(xm) (c)

From these, the irreducibility of Ug can be easily seen. For, if Ug
is the Fourier transform of Ug and A is a bounded operator in
L2(Rn) which commutes with Ue feeG), then,

by (a), A is the muliplication operator by a bounded function <p(x)
by (b), <p(x) is independent of \x\
by ( c)> <p(%) is constant on sphere, if n^2.

Therefore, Ugis irreducible for n^2. For n = I the above con-
sideration is not sufficient for the irreducibility. We must prove

that |^={/e|>> /(#) = 0 ^^0} are n°t invariant subspaces.
If they are .fiT-invariant, the ^f-invariant vector /0 (see below)

is contained in one of them. Then, being an even function, we have
/0=0 which is a contradiction.

Next, we show the existence of jfiT-mvariant vector.
If /e§ is a /f-invariant vector,

2

We put —gk,n+Jl + gn+i,H+i = x* (which take arbitrary real value)

then /(*) = g(1+|jcj.)cw+<p b is a constant)

Conversely it is easy to see that such an / is /^-invariant
(it is sufficient to verify this property for g= /I \=bo)

0
1

cos 9 sin 9

— sin<9 cos 91
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Therefore, U* is of class 1 and the normalized K-invariant vector is

( = r r(«)
» »

n2

<Pi>(g) = (Ugf<l, /„) is by definition, the zonal spherical function of G.

For 5- = katk' (k, V e A")

. v ^ ( 1 + g.*|Jcj«)c-/

\~2~r B"
«-i _

"

r r — V"** 2 "-l

(Here, we put j=l —

nn 1 \ .' o (ch * + cos 5 sh /)
'

i r
i iV'o

' y

(
(See also [2], [3])

§ 3. Let <p(g) be a spherical function of G. As is known, (g)
is a function on X and satisfies the differential equation

By (2), #(£, 0= ^(^ t}ei<y'k>dy satisfies

(Here, we put u = e*}

put £(fl) = «"'XiO, then ^ + — — - |^ |2-- = 0

Let f ( x ) be an even integrable function on Rn. Fourier transform
of which does not vanish. We put <p(g) = (Up

gf0, /), then
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Cp(XO) = (Uaf0, t/-w/) = Uaj

and <p(6, t) = 7V?0-/

Therefore

satisfies (4). Taking into account the behavior at infinity, we con-

clude TafQ(k, u) = c(\k\}un/2Kip(\k\, M] where c(f) is a homogeneous
function of degree v = ip.

From

2

and lim z*Kv(z) = ̂  ,
2->o 21

, , x I#lv9.1-V7rw/2

we have c(t) = -

Therefore

As is seen from §2 (a) and (c), if we restrict Ug to the sub-
group Gn=MN_, we obtain the quasi-regular representation Vg of Gn

(the regular representation of J?1, for »=1). Fourier transform of
which are decomposed as follows.

-
I

2l

where ( Vg9 &R) is the irreducible unitary representation of class 1

of G [1], This means that to jfe§, there corresponds fR^&R, such
that

r(A
-»- I "7^

W/2 fo

r\n \ Jo

is the inner product in
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We denote this correspondence by f=dn\fRRn~ldR« Then by (5)

/0

(here, ^?0 is the nhrmalized M-invariant vector in $)R and
Therefore, for g=ajl

lxat2

<pP(g~) = (TxTat2f0, Tatlf0) = ——(TxTatf0, Tatf0)ATT

= 79^-¥'/T t(Z,7t) - / W \ J

,21

As is known [1], <T^0, 0>0>=2C"/1D-T

(the zonal spherical function of GB)
On the other hand, <pp(g) is given by (5) for g=katk'.
By an easy computation, from atixatz~katk, we obtain

chf =

(compare the (1, l)-component of the matrices on both sides.)
thus we have proved the following formula

( 6 ) t^Kif(as)Kif(bs)J,nl^(us)ds

_ nV*^ In +ip\r(n _ •
~ 2 ^ / z v^ p / v^"

and

S
oo _

4:\/abKtp(as)KtP(bs) cos
0

for n =

§4. Instead of K= S0(» + l), we consider the subgroup

which is isomorphic to (n + l)-dimensional Lorentz

group.
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The the unitary representation (£>, U£) is of "class 1" with respect
to this subgroup, ^-invariant vectors are (up to constant factors)
/0(jO = (lH*IVcli/m''p) and f1(x) = (\x\2-ir+«n/2^ = Utf0(x} (for £,
see below)

where, by definition,

are "zonal spherical functions"

1) for g=a, (f>0)

pWg-1) = a>plj(-0 = ( e-Kt>ft>+'™ 1— rfw* i v ^ ) J (1_e-2f,,, |2F/2)+,-p(1_U|2F/«-,-P

$ 1 /p-C(M/2)+sP;)£ yw-i

^
,^ _„, 9 \ rM *~" ' -~ ' ' ~' """— ~"

d
c"/23+''p2B Ji (chjf+jshOc" /23+ ' 'p \ I-?"2

= ^-^("_
On-i^f H \ Jo (C

2) for ^r=6e

H
CB/2)4,P) J«

cosg+ **• sin^l ^-
if

= 2«- \ (cos K sin (

= A 1 f U-n^+in

2" sin"'1 <?.J<0(1+ \u\2-2un cos 6»)

B = cos d + zn sin 6 , uk = zk sin (9 1

. _
sin 0
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3) for g=at (f>0)

otf'Ort = a£l( - ft = \ .. *" ' . ' "' . * . . . . rf*

2"
- - r f

if-chOc"/2'+'P

9>«'(0 = 0

So far as /0,/i do not belong to the Hibert space £>, these integral
are, in general, divergent.
But, for n = 1, they converge almost everyhere and can be expressed
by special functions :

o
t+ ch 5 sh 0"CI/23 ' ipds = Qa/2, , ,-P(ch /)

-u cos

for if<0,

The following lemma can be proved easily.

Lemma.

(1) if r<\a-b\, a^xatl = hath' (h,h'<=H)

and ch t = a'+y-y' (a = g*,, & = e'2, r

^ ^ 0 according as b^a

(2) // i a -6]<r<« + fe, a^xatl = hheh'

and

,
(3) i/ r>a+b, a^xatl = h£ath' , £ = | '-.

-I/
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and ch t = **-<?-& ? f > o
2ab

From the above results, we obtain the following

( 7 ) ^ab r/ip(a*)/f-p(foO cos «*<?« = ^eJo TT

for

for |0-6| <

= 0 for t>a+b

cos
TT

for

2ab

for |«-*| <t<a+b

2ab
for t

The proof is the same as in § 30 Instead of (5) we use the following.
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