On some integral formulae containing
Bessel functions

By

Akio ORIHARA

So called Sounine’s integral formula can be interpreted as
follows [1]. Let G, be n-dimensional Euclidean motion group and
T, be an irreducible unitary representaion of class 1. The group
G, contains the subgroup which is isomorphic to G, ,. Being re-
stricted to G, ,, T, is decomposed into irreducible representations
of G,_,. Using this decomposition, we can express the zonal spherical
function of G, by that of G,_,. This expression is nothing but
Sonnine’s first integral formula. Sonnine’s second integral formula
can be proved in the same way.

On the other hand, the motion group of #-dimensional Lova-
chvsky space G (the Lorentz group) contains, as a subgroup, G,_,.
As in the previous case, restricting the irreducible representation of
G to G,_, and decomposing it into irreducible faciors, we can obtain
an integral formula (6) involving Legendre and Bessel functions.
In this sense, we may call the formula (6) an analogue to Sonnine’s
formula.

If we consider imaginary Lovachevsky space, we obtain analo-
gous formula (7). (8).

§1. Let G be the (#+2)-dimensional Lorentz group, that is,
the connected component of the orthogonal group of the quadratic
form —xi+xi+---x2,,.

We put,
K= (k=/1 0
{ (0 k) keSO(n+ 1)}
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A= (a,= /cht 0 cht¢
0 E, O teR
{ \sh# O sht
1+§ Xy Xy —£
N.=|x= x, . L
: E, D5 %ER, E= -2 x
X, —X, 2 =
E xl * X 1_5
I=m, 3 Ya 7
N_=|y=
y'l 1 n
: E, ;s ER, 7 = ——Z_]J’%
Y In 2 =
=M =Y =Y. 1—7m
Then, G=N_AK (Iwasawa decomposition)
Further,
1 0
M= {m = m ; meso(n)
0 1

is the normalizer of N_in K and M_N=N_M (semi-direct product)
is isomorphic to G,. We denote the Lie algebras corresponding to
these subgroups by the letters, n_, a, f, m, respectively.

The homogeneous space X=G/K is (n+1)-dimensional Lova-
chevsky space. It is homeomorphic to N_A, so we can adopt the
canonical coordinate of A and N_ as a global coordinate in X.

At first, we compute the invariant metric on X (which is unique
up to a constant factor) in terms of this coordinate,

Lemma. The invariant metric on X is given by

ds* = dit+e* > da? (1)
E=1

By the definition of the invariant metric, we must determine
the positive definite quadratic form on the tangent space at x(x= X)
oY), such that

PY) = 9..(gY)
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where we denote the transformation x—g-x and its differential by
the same letter.

For this, it is sufficient to construct the quadratic form on b,
@(Y), invariant by Adk (p is the orthogonal complement of ¥ with
respect to Kkilling form, which can be identified with the tangent
space at the origine o).

Then, ¢ (Y)=¢(g™'Y), where g-o=x. The right hand side is
independent of the choise of g.

In our case

p— 0 vy Yuu

y eR
. 0 Ve

Vu+1
n+l

It is easy to see that @(Y)=>)y? (up to a constant factor)
E=1

Now, a+n_==qg/f=p (as vector spaces)
By this isomorphism, ¢(Y") can be regarded as a quadratic form
on a+n_. That is,

; v 0  y- .

or = y y
: 0 tleat+n.
Y Y

i =y =y, 0O
p(Y) = 1+ 31 3%

We identify all tangent space of X with a+n_. Then the differ-
ential of the transformation x —gx is the linear transformation on
a-+n_ which is given by the Jacobian matrix.

a(y't’)

J, =Y

)

where (3, #) is the coordinate of gx.

In particular, for g=y@a,, ¢'=t+4,, y=y,+e 'y

and Je= ot )
et

y=t=0
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Consequently, the form at x,=(y,, ¢,) is given by

@ Y) = t2+¢% i}lyi, which proves (1)
pr=
Corollary. Let A be the Laplace-Beltrami operator on X. Then
0? 0 ». 0
A=2gnlqen, A =32
6t2+n6t+e . . Z;ayi (2)

§2. Irreducible unitary representations of class 1 of G are
usually constructed in the function space on a maximal compact
subgroup ([ 2], [3]). But for our purpose, the following realization
is more convenient.

According to the decomposition.

G = N.MAN_ (Gauss decomposition. see Kejobeuxo Tpysr,
Mock, Marem, o-Ba. 12 (1963))

, for g&G and xN_, xg is uniquely expressed in the form
xg = ymax' (if xg is a “regular” element).
We denote x/, @ by xz, a/(x, g) respectively. Then we have

5 &L 12194 3 518+ 5 28l 21°—1)
Az, g)

Lemma. (x5), =
where
x 1 2 3
e = A &) = 5 (Bu— w1+ 1)+ 2 2AZ50— L)

1
+§(gn+1,o—gn+1, n+1)( | xl 2— 1) °

We prove this for n=2m (for n=2m+1, the proof is similar)

put G={§=SgS‘1, geG, S= 1., z-l }

we denote by A4, N+, N_ the subgroups corresponding to A, N., N_.
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Then
_ I e 0
A=1a=| g teR
l 0 et
. 1 0 0
N_=|x= 2,
é’m E R = xk+ix2m—-k+1
Zm " 1<k m
2] 22, 2,2 1
- 1w w, @pw, |w]|*
N+ =1y = w,
0 En W, (Wp= yk+iy2m—k+1
W,y 1<k=m
w,
0 0 1

From the equality Zg=3max’, we thve

e'=the (n+2)th component of (|z|% 2, --* Z,,, 2,, - 2,, 1)&
(12721 2 2n 21, 1) = (2|5 2, 2y 2o+ 2, 1)

But (12/|% 2] 2L, 2521, 1) = A+ |&|% 2x] --- 2%, |x|*—1)S™*
(12]% 2, By B>+ 20, 1) = (1+|x|% 2%, - 2x,, |x|*—1)gS™

Therefore
et = !x|2+ L (goo_go,nﬂ)""’; xk(gko_gkin+1)+ }xlz_l(gn+1,0—gn+1,n+1)
= A(x, g)
xp= | xl2+ 1gok+j2=1 Xi8ik+ lez”l Eunal D%, &)  (I=k=n).
] . o(x - x,) n
It is to be noticed that == —2*/=A(x, g)
8(x .o xn)

and A(x: glgz):A(xél’ gz)A(x’ g)
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Using these, we can construct the unmitary representation (9, U%)
of G in the following way.
O = L(R")
Usf(x)=A(x, g) " #f(x;) (p is a real number parametrizing the

representation.)
In particular.

for g=yeN_, Ugf(x) = f(x+3) (a)
for g=a,€A, UL f(x) = e iPtf (gtx) (b)
for g=meM, U.f(x) = f(xm) (c)

From these, the irreducibility of U2 can be easily seen. For, if U}
is the Fourier transform of U} and A is a bounded operator in
L*R™) which commutes with U] (¢€G), then,

by (a), A is the muliplication operator by a bounded function ¢(x)

by (b), @(x) is independent of |x|

by (c), ¢(x) is constant on sphere. if #=2.

Therefore, U} is irreducible for =2. For n=1 the above con-
sideration is not sufficient for the irreducibility. We must prove
that 9,={f€9, f()=0 x=(} are not invariant subspaces.

If they are K-invariant, the K-invariant vector f, (see below)
is contained in one of them. Then, being an even function, we have
f,=0 which is a contradiction.

Next, we show the existence of K-invariant vector.

If f=€9 is a K-invariant vector,

1 n+1,m+1
F©) = (Tuf)o) = | - Eginn

Tmie f< . >

14 guaan
We put —gs ,i1/1+&ui1nn=%: (Which take arbitrary real value)

_ 1
then f(x) = CW
Conversely it is easy to see that such an f is K-invariant
(it is sufficient to verify this property for g=/1 =b,)
." 0
1

0

(¢ is a constant)

cos @ sin @
—sin @ cos @
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Therefore, U} is of class 1 and the normalized K-invariant vector is

[ () ]1/2 1
D2 )] AT
2

p(g)=(ULf,, f,) is by definition, the zonal spherical function of G.
For g = kak (k, e K)

- . I‘(n) e((”/2)+,‘P)t 1
e = el = r () S T+ (2 (T [z
2 n

fo(x) =

dx

= . -
o(g)r(s)e
Q™2 I‘(n) 1 Sl (1 yz)(n/z> 1 p
r <ﬁ) T (._) n/2 2" -1(ch¢+ysh t)cnlzw »aY
2 2

(Here, we put y=1—7%/1+7%)
B B (ﬁl l) -(o (cht+ C(S)lsné? Slf p)PBTe dao

2’2
2(”‘*'1)/21-‘ (n + 1>
(See also [2], [3])

27:‘”/2 1-1(”) i LD+t 7”1 dx
a7z Jo (1+62t72)<"/2)+i1’ (1+7,2)("/2)+§P

BT (ch ) (3)

§3. Let ¢(g) be a spherical function of G. As is known, (g)
is a function on X and satisfies the differential equation

Ap = —{p+2lp (4)

By (2), #(k, t)=g¢( y, Dei<?#>dy  satisfies

2
2

& n—1d P +Z] _
[duz u du kP u ?
(Here, we put u=e¢?)
N T dv, 1 dz) 2 _
put @(n)=u""v(u), then C—Z—é+ [kP—E ) =0
u
Let f(x) be an even integrable functlon on R . Fourier transform

of which does not vanish. We put @(g)=(U.f,, f), then
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<p(xa) = (Ugfox Up—nf) = U;fo*f

and Pk, 1) = Toforf
Therefore
T~ P i<X k> ) k u)
T.f, = ui*+m é dx = L
fom wren | @ [x[ome T Ty

By
satisfies (4). Taking into account the behavior at infinity, we con-
clude T,f,(k, u)=c(|k|)u"*K;,(|k|, ) where c¢(f) is a homogeneous
function of degree v=ip.

dx z"*T'(v)
From S
et~ 5)
2
and lim 2°K,(2) = ;(_'i) ,
we have c(t) = 182"
T <v + %)
Therefore
(<X k> ns v 1
[ Tamymeds = 20 () — s Kk ()
Ry P <V +’Q‘>

As is seen from §2 (a) and (c), if we restrict U to the sub-
group G,=MN_, we obtain the quasi-regular representatiou V, of G,
(the regular representation of R, for #=1). Fourier transform of
which are decomposed as follows.

27"/
Iz
A
(3)
where (VE, D) is the irreducible unitary representation of class 1

of G[1]. This means that to f&@&, there corresponds fr& D, such
that

V,=d, S” VER™4R,  d%=—

1718 = 225" f, >R AR
r(5)”
(Ve e = Vife
(fr»> fr> is the inner product in Dg).
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We denote this correspondence by f=d,,s frR"'dR. Then by (5)
fo= | R R)p R AR
Tufo= | cRWK, @R) g, R™dR

(here, @, is the nhrmalized M-invariant vector in 9, and a=¢f)
Therefore, for g=a;'xa,,

96(8) = (TuTur for Tarf) = (217[—)<T Tofor Turfs)
o 1 27Z”/2 = 2 n)2 R n—1
~ oy @ [ 1R @by Kol @R) K BRIT Expyy > R*dR

As is known [1], <TZep,, ¢0>=2“"”‘T<%)(lx[R)“(”/”j(,,,z)_l(lxIR)

(the zonal spherical function of G,)
On the other hand, @,(g) is given by (5) for g=ka,k’
By an easy computation, from a,xa,,=ka,k, we obtain

r’+a*+ b

ht =
¢ 2ab

(@ = eh, b = e*2)

(compare the (1, 1)-component of the matrices on both sides.)
thus we have proved the following formula

(6) | 1K@ K0 T (us)ds

Py cni - ¥
:ﬁ:r(ﬁwpﬁgwﬂw for n =2,
21/3(ab)n/z 2 2 Sh("#l)/zt

and

Sw 4 ab K;(as)K;,(bs) cos ut dt

= nT(%-{— ip )1" <%— ip)g,B_(l/Z)H-P(cht) form=1.

§4. Instead of K=SO(x-+1), we consider the subgroup
H= {h: <g (1)>EG} which is isomorphic to (z+ 1)-dimensional Lorentz

group.
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The the unitary representation (9, U}) is of “class 1” with respect
to this subgroup. H-invariant vectors are (up to constant factors)
Fol®)=Q0— 27" and fi(x)=(|x|*—1);">*"® = UL f(x) (for &,
see below)

where, by definition, F(x)iz{F @ i F()>0

otherwise
p2(8) = (Ugfy, fo) and  9i®(g) = (Ugfos 11)
are ‘“zonal spherical functious”

1) for g=a, (t>0)

D(g™) = p®(—1) = — g 1
Pp Pe m<1(1—e—2t'xlz)(u/Z)Jﬂ.p (1— |z |23
_ 1 g~ ((M2>+ipdt 7yt y
= Wy . (1 _e_gtrz)(n/z)+,~p (1 _ 7,2)(”/2)—1'9

w_ng“’ (F-p==2 < :1+r2>
2" )i (ch ¢+ ysh )™+ 1—7

— T had Shn_ls -
N 2" <£> so (ch ¢+ ch s sh £)/»+i® ds (y=chys)
2

/2

#(t) = p3(—1)
2) for g=b,

P(@) = p(0) = | {1117 cos 025, sin g} <>+
x<1i
X (1— | x|?)- "ty
an Sin }—(("/2)+ip) dx
R N (S F R

- g{cosﬁ—!-

[#[<1

2% S (cos 0+ z, sin 0)7</P+iP(1+ | z2|2)~Y?dz

Rﬂ
(zk=2xk/l—|x[2, lékén)
_ i . 1 j‘ u;((”/Z)Jr,'P) du
2"sin" "6, J (1+ |u|*—2u, cos 0)

(#, = cos0+,,sinf, u,=2z,sinf 1<k<n—1

#<0

”_(n/Z)IF(l_—ﬁ) .
= 2n Sinn_l 92 S u((”/2)+ip)(u2__2u COSH+1)<”/2)—1du

0
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3) for g=a, (t>0)

D(g) = (1) e Mn+iP 1
P& P—p = _ v e
e e [ (2= 177

2" Jeotnt(y sh £ —ch £)"/D+# r—1

nl2 " 00
72‘ } . ‘ y(cn/z)+,p>(y +2ycht+ 1)(n/2) ‘dy
n—1 Sh t

#2(t) = 0

2

So far as f,, f; do not belong to the Hibert space 9, these integral
are, in general, divergent.

But, for n=1, they converge almost everyhere and can be expressed
by special functions :

(1)(t) —

(1)(9) _

(ch¢+chssh#) ¥ #ds = Qe 10(ch t)

S u=Y2~i#(1 432 — 2y cos 0)’du
0

)—AN]»—AZ‘"’E

1, . _
2 r (7+ tp >P (%_ ZP>P—(1/2)—z'p( —cos 0)
for t< O, 2)(t) _ S —/2)- zp(l_‘_y +2y ch t)dy

1, . 1 .
= (G +in )T (5 —ip B wilch )
The following lemma can be proved easily.

Lemma.

(1) if r<la—b|, a;'za, = hah (h, W € H)
cht = M

2ab
t=0 according as b =a
(2) if la—b|<r<a+b, a;'xa, = hhh'
a+b—r
2ab

and (a=eb=e"r=|x|)

and cosf =

1
(3) if r>a+b, a,,'xa, = héa, ', 8( ."1 )
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and chit = iﬂ,

>0
2ab >

From the above results, we obtain the following.

(7) ab | Julaw) s s(b) cos utdu = L7Q_, , CEO=E
0 T 2ab
for 0<t<|a—b|
P b2
= P_a/z)_;p<~—§a;b—>
for |a—b|<t<a+b
=0 for t>a+b

(8) +ab S Yii(au)Y_;, (bu) cos ut du — Ch:pQ~<1/”+"*’ (%)
for 0<t<|a—b|
r—a’—b
= P_. 1/2)—1£ <#_>
W=\ oab
for |a—b|<t<a+b
P—a—b
= 2%0_ 1/2)—1% <____)
B 2ab
for t>a+b

The proof is the same as in §3. Instead of (5) we use the following.

gite 1 .01 u\”
S az_tz)(1/2)+vdt = "2—71' ! P(E— V><%> J(au)

lt!<“(

e g = (L) (%Y v aw
(E—a)lor 2 2 "\2a

[t|>a
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