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We give an operator theoretical treatment of initial value
problems for semi-linear parabolic partial differential equations :
existence of solutions, uniqueness and regularity. We make use of
the theory of fractional powers of operators, the theory of semi-
groups of operators and L^-estimates for elliptic boundary value
problems.

§ 0. Introduction

The purpose of this paper is to derive some results on the
initial value problems for semi-linear parabolic partial differential
equations. The equation is as follows :

— = -A(x ; D}u + F(t, x, u) (t, *)e(0, T] xG ,
dt

u\t=Q = u0.

Here G is a bounded domain in Euclidean ^-space En, A is an
elliptic partial differential operator on G of order 2m and {Bj}^ is
a system of m differential operators on the boundary of G. A and
{Bj} satisfies some algebraic conditions ((J?) and (C) in § 3). F may
contain the derivatives D%u of u of order less than 2m in its vari-
ables.

If we take some function space (Lp(G}} and realize A(x ; D)
(with the boundary conditions {J3/}) as an unbounded closed operator
A in it, we can rewrite (0. 1) in the following abstract evolution
equation :
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( du
(0.2) dt

= -Au + F(t,u) fe(0, T],

Moreover, if —A generates an analytic semi-group of bounded
operators, we can rewrite (0.2) in the following abstract integral
equation:

(0. 3) «(0 = e"Au0

Under some conditions on F and &0 (see §2), we show that (0.3)
has an unique local (in time) solution (Theorem. 2.1) and that the
solution of (0.3) is a solution of (0.2) and the converse holds
(Theorem. 2.2 and 2. 3). Finally we study the regularity properties
of such a generalized solution of (0.1).

Our treatment of (0.1) was suggested by the recent study of
Kato and Fujita ([7], [8]) on the Navier Stokes initial value problem.
We construct the solution of (0. 3) by the successive approximation.
In this procedure fractional powers A06 of A play an important role.

In Section 1 we summarize well-known results on fractional
powers of closed operators (see [3], [9], [10] and [11])- In Section
2 we consider an abstract evolution equation in a Banach space.
The results obtained in this section are variants of [7] which are
stated in sharper forms in [8]. However we describe full proofs
for the sake of self-containedness. In Section 3 we prove some
a priori estimates for fractional powers of elliptic partial differential
operators (Theorem 3,1, 3.2 and 3. 3). In the proofs we make use
of the general Lp estimates for elliptic boundary value problems
established in [1], [2], [4] and [6]. These a priori estimates are
main tools in this paper and enables us to sudy (0.1) as an abstract
evolution equation in Lp(G). Our main results are Theorem 4.1
(existence of the local solution), Theorem 5.1 (regularity of the
solution in the interior) and Theorem 6.1 (regularity of the solution
up to the boundary).

The author wishes to thank Prof. Yosida for his encouragement.
He also wishes to express his appreciation to Dr. Komatsu, who
suggested this problem, for his helpful suggestions,,



On semi-linear parabolic partial differential equations 69

§ 1. Frational powers of closed operators

Let X be a complex Banach space and A a linear operator from
D(A)dX into X. Let us assume:
(A.I) (i) D(A) is dense in X. A is a closed operator.

(ii) The resolvent set p( — A) of —A contains {X>0}. The
resolvent (Xl+^l)"1 of -A satisfies \\(\I+A)-l\\<M/\ for every A>0.

Note that the assumption (A. 1) implies

\\(\I+A)-*\\<M' for 0<X<1.

Under the assumption (A. 1), we can define the fractional power
A~* of A for 0<a<l by means of the formula

\-(\I+A)-1d\

A° = I.

A~" is a bounded linear operator on X and has an inverse. We
define A* by

A* = (A-*)-1.

For a>0 we define A^ = A~WA^-^ and then A* = (A-)-1- In
this way A* may be defined for any real a. For a>0 A~* is
bounded and A06 is closed. For any real a and /3, we have

A*A*u = A*+*u for u^D(Ai)

where 7^ max (^8, a + j3). In particular, if a</9, we have
D(A*}^D(A*} and || A^||<il ̂ ^11 \\A*u\\ for every us=D(A*).

Let us assume for A instead of (A. 1) :
(A. 2) (i) The condition (A.I) (i) holds.

(ii) p( — A) contains a closed sector 2</2i0= I |arg\| <-7r

(
V ( Z

0<0<-^-). There exists a constant M such that
£ /

\\(\I+Ar\\<M/ X] for

Under the assumption (A.2), —A generates a semi-group e tA

by means of the formula

1 ld\ ,
27T/
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where r is a smooth contour running in 2^/2+0 from ooe~^*/2+^ to
00^/2^ e-tA is analytic in t in 2]0-{Q}0

For any a>0 there exists a constant M^ such that for any ft
with 0</3<a we have

for

2o Abstract evolution equation in a Banach space

We consider in this section the abstract evolution equation

i) 0<t<T,
(2-1) at

u\t=Q = u0

in a complex Banach space X.
We first state the assumptions to be made in the theorems.

(A. 2) —A is independent of t and generates an analytic semi-group
e~tA QJ: i)0unded linear operators on X.
(A. 3) (Assumptions on F) There exists a constant a with 0<a<l
such that:

(i ) F(t, u) is a function from (0, T] x D(A°) into X ;
(ii) \\F(t,u)\\<f(\\A«u\\} for fe(0, T] and uxD(A*);
(iii) \\F(t,u)

for /e(0, T] and u,
(iv) there exists j with 0<7<1 such that

\\F(t, u)-F(t', u)\\<h(\\A*u\\)\t-t'\* for t, t'e(0, T]
and u^D(A*\
where /, g" a^J h are functions defined on [0, oo) which are non-
negative and non-decreasing (and continuous}.

In what follows, we always assume (A. 2) and (A03)0

Now we consider the following abstract integral equation asso-
ciated with (2.1):

(2.2) u(t) =

Definition 201. We call u(t} a strict solution of (2.1) in [0, T] (/"
(i ) u(f) is strongly continuous in [0, T] and strongly conti-

nuously differentiate in (0, T] ;
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(ii) for each f^(0, T] u(t) belongs to D(A) and Au(f) is strongly
continuous in (0, T] ;

(iii) u(t) satisfies (2. 1).

Definition 20 20 We call u(t] a mild solution of (2.2) in [0, T] if
( i ) u(f) is strongly continuous in [0, T] ;
(ii) for each £eE(0, T] u(f) belongs to D(A*} and A*u(t) is

strongly bounded and continuous in (0, T] ;
(iii) u(t) satisfies (2. 2).

On the existence and uniqueness of the strict solution of (2. 1)
and the mild solution of (2. 2), we can prove the following :

Theorem 2. L For every uQ^D(A0!') there exists a mild solution
u(t} of (2.2) in [0, T0] (for some T0 with 0<T0<T), T0 depending
only on \\A*uQ\\. The mild solution of (2.2) is unique where it exists,

Theorem 2» 2, Any mild solution u(t) of (2. 2) in [0, T] with
is a strict solution of (2. 1) in [0, T].

Theorem 20 3, Any strict solution u(f) of (2. 1) in [0, T] such
that A*u(f) is strongly bounded and continuous in (0, T] is a mild
solution of (2.2) in [0, T]. In particular, the strict solution of (2.1)
is unique under the condition that A*u(t) is strongly bounded and
continuous.

In this section we only use the strong topology of X. So, in
what follows, we often write "bounded" for "strongly bouuded"
and "continuous" for "strongly continuous" etc.

We also use the following notation : For a bounded and conti-
nuous function w(f) from (0, T] into X, we put

\\w\\t = sup || M>) || .
0<s< f

Now we described two lemmas which we need in the proof of
Theorem 2. 1. The proofs are very easy and omitted.

Lemma 2, 1. (i) // A*u(t) is bounded and continuous, so is
F(t, u(t}} where it is defined,

(ii) // A*u(f) is bounded and Holder continuous, so is F(t, «(0)-
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Lemma 2. 2. Let w(f) be a bounded and continuous function from
(0, T] into X. Put

(2. 3) 0(0 = {* e-«-s^Aw(s}ds 0<t< T .
Jo

Then, for any a with 0<a<l,
( i) v(t)^D(A*) (0<£<T).

(ii) A«v(t)={tA*e-«-s>Aw(s}ds and
Jo

\\A"v(t')\\<Mai(
t(t-sYa\\w(s)\\ds, hence

Jo

^ - , .
1 — a

(iii) A"(t) is continuous in [0, T] ,
where Ma is a constant in § 1.

Now we prove Theorem 2. 1. We first put

f «„(/) = e~tAua ,
(2.4) .,

I «*(0 = e-tAu, + \ e-«-»AF(s,uk^(s)}ds, *= 1,2, •-.
Jo

Because of the assumption (A. 3) and Lemma 2. 1 and 2. 2, each
«*(*) is defined for fe(0, T] and A*uh(f) is continuous in [0, T].
Next we put

ak(t}= \\A«uk\\t for * = 0,1,2,- .

Then, ak(f) is a continuous and non-decreasing function of t.
Applying (A. 2) (ii) and Lemma 2. 2 to (2. 3), we obtain

1(0) (*= 1,2, .-),

where fl0 = M0 | |^XII (>^o(0).
Hence there exists T0>0 dependent only on a0 (when Mtf, a and /
are given) such that

sup ak( T0) =

Now we put

WO = M-(«*rl-iOII* for * = 0,1, - .

Using (A. 3) (iii), we get
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Hence we have

b^t) < Kktk^) ILB (1 - a, /(I - a) + 1) x 2a
j-O

= 2aT(l) (Kf -T(l - a))*/!W - a) + 1) ,

where K=M*g(2a).
Hence we have

f] \\A(uk+1-uk)\\TQ =

In other words, {A*uk(f)} converges uniformly on [0, T0], and since
A~" is a bounded operator, {uk(f)} converges uniformly on [0, T0],
Hence there exists a function u(t) from [0, T0] into D(Aal) such that

s—limuk(t) = u(t) and

s-limA*uk(t) = A*u(t)

uniformly on [0, T0]. Obviously u(t) and A"u(t) are continuous on
[0, T0] and \\A*u\\TQ<a. Applying (A. 3) (iii), we can see that
F(s,uk(s)) converges to F(s, u(s)) uniformly in se[0, T0]. Hence,
passing to the limit in (2.4), we obtain

u(t) = e~tAuQ+ [ e~a-s>AF(s, u(s))ds , 0<^< T0.
Jo

Hence u(t) is a mild solution of (2. 2) in [0, T0].
Uniqueness: Let u(t) and v(t) be mild solutions of (2. 2) in [0, TJ
(0< T!< T) such that u(Q) = v(0) = u0^ D(A*). This implies that A*u(t)
and A*v(f) is continuous in [0, TJ. We put

= 11 A*(u—v)\\t and

Then, by (A. 3) (iii)

-> 0 as

Hence we have



74 Kiyoshi Asano

*(/) = 0 for Q<t<Ti.

Thus the proof of Theorem 2. 1 is completed.
To prove Theorem 2.2, we also need some lemmas.

Lemma 2» 30 Let v(f) and w(f) be as in Lemma 2, 2a Then for
any /3 with 0</3<1 A^v(f) is (uniformly) Holder continuous with
Holder exponent (I — j3).

Proofs Let A>0. Then by Lemma 2.2.

= 7x4-7,.

Obviously we have

5 t+

t

On the other hand, since

78 - T A* -(e-«-3+v>Aw(s))dr ds ,
o or

we have

Changing the order of integration, we obtain

±-
/3

Thus the proof is completed.

Lemma 2e 4, Lrf y(f ) a^ J zc;(f ) be as in Lemma 2. 2. Let w(f) be
Holder continuous (with exponent yj. Then :
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(i) v(t)^D(A) for /e(0,T],

Av(t) = [' Ae~u-s>Aw(s)ds for fe(0, T],
Jo

and Av(f) is continuous in (0, T].
(ii) v(f) is (strongly) continuously differentiate in (0, T], and

for Q<t<Teat

Proof : Let £0>0 be fixed. Let 0<£<£0<£<T. First we put

v9(t) =

Then we have

ve(t)t=D(A) for ^e[f0, T] and

Moreover. Avs(t) = Ae~*Av(t— 6) is continuous in [f0, T], Next,
calculating formally, we have

Now

Hence for each fe[£0, T] /^f) exists and

^0 as £ ~ > 0 .

Since W= {z000 ; f^[£0> ^}] is compact in X, and {/— e~*A} is a
sequence of equi-continuous (uniformly bounded) operators on X,
/iOO converges to 0 (as £->0) uniformly in £e[£0, T]. On the other
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hand, the Holder continuity of w(f) :

\\w(t)-w(s)\\<K\t-s\^ for t,st=[£0, T],

implies that I2(t) really exists for £e[£0, T] and

, for £e[£0, T]8
Ti

Hence /2(f) also converges to 0 as £-»0 uniformly in £e[£0, T].
Thus there exists

Ae-«-a:>Aw(s)ds = s-lim
J 0 s->0

f f -e
Since the convergence is uniform in ^e[£0, T] and I Ae~<it~s^Aw(s)ds

ft Jo

= AVs(t) is continuous in [£0, T], \ ^ a s:>Aw(s}ds is also continuous
Jo

in [£0, T]. While 5— lim vE(t) = v(t) and ^4 is a closed operator in X,
we have

for * e £ , T and

Since we can take £0>0 arbitrarily small, the proof of (i) is com-
pleted.

Now we will show (ii). Let fe(0, T] be fixed and let h>0.
Then we have

Ct
v(t+K)-v(t) =

Jt

o

+ (*-**-/) »(f)

= Jj + I 2 + /a o

It follows easily that
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-f /
A

-(I-e-hA}A^w(f) - w(t) ,
A

- ,

as A->0. Hence we have

v® (t) for fe=(0, T] .
A-> + 0

Since the right hand side is continuous in fe(0, T], rfp/rfj exists
and is equal to d+v/dt. Thus we have completed the proof.

The proof of Theorem 2. 2 : Let u(t) be a mild solution of (2. 2)
in [0, T]. Then it follows that A*u(t) is bounded and continuous
in (0, T], which implies that F(tj u(t)) is bounded and continuous
in (0, T] (Lemma 2. 1). Therefore A*u(f) is Holder continuous in
(0, T] (Lemma 2.3), and so is w(f) = F(t, «(/)) (Lemma 2.1). Hence
by Lemma 2. 4

for fe(0, T], and

-^-MF(5> U(s))ds

for fe(0, T] .

The continuity of du/dt in (0, T] follows from the continuity of
Au(f) and F(t, u(f)\ and the proof is completed.

The proof of Theorem 2.3: Let t>s>0. Then we have

ds ids

Since the right hand side is continuous in (0, T], we can integrate
both sides on [£, f] (Q<G<t<T). Thus we have

Letting £->0, we have arrived at the desired relation. The con-
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vergence of the right hand side follows from the boundedness and
continuity of F(t, «(/)) in (0, T].

Now we will describe some lemmas which are used later and
concern certain property of v(f) and w(f) in (2. 3) :

(2. 3) v(i) = (ie-^s^Aw(s}ds (0<t< T) .

Lemma 2.5. Let w(f)^D(A^} and A^w(f) be bounded and con-
tinuous in (0, T]. Then, for any a with 0<a<l, v(f)^D(A^ for

, T] and

Moreover A*+f*v(f) is Holder continuous in [0, T] with exponent (1 — a).
The proof is quite similar to the proof of Lemma 2. 3. Let

w(f) be bounded and (not necessarily uniformly) Holder continuous
(exponent TI) in (0, T]. Then by Lemma 2.3 it follows that v(f)^
D(A) for fe(0, T] and

o
Av(f) =

Let £>0 be fixed. Then we have (as in the proof of Lemma 2.4)

(2. 4) Av(t) = Ae-*Av(t

- T Ae-«->A{w(t)-w(s)} ds
Jf -8

= 70(0 + /1(0-/2(0-/8(0 for ts=[s, T] .

We have the following

Lemma 2. 6. Let w(t} be bounded and (not necessarily uuiformly)
7j- Holder continuous in (0, T]. Let £>0 be fixed. Then

(i) AkI0(t} and AkI2(f) are Holder continuous in [£, T] with
exponent ry1 for any k>0.

(ii) A*2l3(t) is Holder continuous in (8, T] with exponent 7l — j2

for 0<72<7i-

Proof : The proof of (i) is obvious and we have only to prove
(ii). It is clear that I3(t)^D(A**) for fe[£, T] and
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1+^e-«-s>A{w(f)-w(s)}ds (£<t<T).

Let 6/2>h>0. Then

rt+h
= \ y!1+v^-«+A-SM{

J<

/-A

The Holder continuity of w(f) :

(2.5) \\w(t)-w(s)\\^K\t-s\^ for f, se[£', T] (0<£'<£/2) ,

implies

f+* 1
\\L\\<M1+,2K\ (t+h-sY^^ds = Ml+,2K _!— Fi-?2

J* 71-72

and

2Jf-— A*-*2 (for *e[e, T]) .
7i~72

Now we have

/3 - A^e~HA f

Obviously (2. 5) implies

II/^I^M^/Z-MI + MO)^! = ATA'i-'* for fe[£, T] .

Now let ?6E [£+£', T]. Then (2.5) implies
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2 K h ^ 2 i f
72

= M1Klog—h if 72 = 0.
h

Thus the proof is completed.

Remark : We can also show that if w(f) is ov-Holder continuous,
so are Av(f) and dv/dt,

Lemma 2. 1, Let w(t) be continuovs in [0, T] and (strongly)
continuously differentiate in (0, T] and w'(t) be bounded. Then

(2. 6) Av(f) = w(f)-e~tAw(G)- P e-«-s>Aw'(s)ds for f e[0, T] .
Jo

§ 3. A priori estimatescl)

Let G be a bounded domain in Euclidean ;^-space En. We de-
note by 9G the boundary of G, by G the closure of G. We denote
by # = (#!, • • • , xn) the generic point in En. We use the notation

denoting by

0*= D?i- DS"

a general derivative. Here ^ is the ^-tuple of non-negative integers
[JL = (JLLI, •-, fjin) whose length /^H ----- h^M is denoted by \p .

We consider complex valued functions u(x) defined in G (or G).
Let O'(G) be the class of functions which are j-times continuously
differentiate in G. For ^eO'(G) we introduce the norm :

\*\\i.Lp= (v

We denote by HJ>Lp(G) the function space obtained by completion
of &'(G) with the norm || \\JiLp. We denote by C^(G) the subclass

(1) In the statement of assumptions and a few results we follow [1].
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of functions in Cj(G} whose j-ih derivatives are uniformly Holder
continuous with exponent /3. For u<^Cj+j*(G) we introduce the norm :

where

Let A(x ; Z?) be an elliptic linear partial differential operator in
G (with variable complex coefficients) of even order 2m. Thus the
characteristic polynomial associated with the principal part A0 of A
satisfies

for each x^G and each real vector |?=(£i, ••-,?„) =1=0. For ^ = 2C1)

we put always on A0 the following assumption :
(R) : For every pair of linearly independent real vectors %, ^ and

x^G the polynomial in t, A0(x ; ?+ft?), has exactly m roots with
positive imaginary parts.

Let {Bj(x; D); j =!>••• 9m} be a system of m linear differential
operators with coefficients defined on dG whose orders m} are less
than 2m. Denoting the principal part of Bj by B'3, we assume the
following :

(C) At any x^dG we denote by v the normal to dG and by % a
(non-zero) tangential vector to dG. Let f£(|f) (k=l, -~,m) be the roots
of AQ(x ; |? + £z>) with positive imaginary parts. Then the polynomials
in t, {B'^x] % + tv) ; ^ = 1, • • • , m}, are linearly independent modulo

n /-
Finally we assume the following two conditions :

(S) G is of class C2m. The coefficients of A are in C°(G) and the
coefficients of B} (j = l, -~,m) in C2m'mj(dG).

(N) The boundary QG is non-characteristic to each Bj at any point
For j ^ p k we have

Definition 3.1. We call (A, {Bj}y G) a regular system (or a

(1) For ?C>3 the condition (#) always holds,
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regular boundary problem), if it satisfies (R), (C), (S) and (N).
For &>maxmy we introduce a function space Ck(G\ {Bj}) =

{u^Ck(G}\ Bju=0 on QG (j = l, — ,w)}. We denote by Hk+l>Lp(G;
{Bj}) the closure of Cfe+1(G; {By}) in Hk+liLp(G}. The following im-
portant lemma is due to Agmon-Douglis-Nirenberg ([2]).

Lemma 3. 1. (Agmon-Douglis-Nirenberg)
Let l<p<ooa Then for each u^H2m>Lp(G; {Bj})

(3.1) \\u\\2m,Lp<C(\\Au\\Lp+\\u\\Lp) .

where C is a constant depending on (A, {B}} , G) and p, but not on u.
Lemma 3. 1 is valid without the assumption (N). But in the

following we always assume that (A, {Bj},G) is regular.
Now we define a linear (unbounded) operator Ap in Lp(G) as

follows :
(i) D(Ap) = H2^Lp(G;{Bj});
(ii) For u^D(Ap] , Apu = A(x ; D)u .

The operator Ap is clearly closed and D(Ap)
a = Lp(G). We call Ap

the realization of (A, {B3}, G) in L (G). In what follows we always
assume that l<p<°°.

For the realization Ap which satisfies (A. 1) (ii), we can define
fractional powers A% of Ap and the following a priori estimates hold :

Theorem 3. 1. Let Ap satisfy (A. 1) (ii), that is, p(~Ap)
and

(3.2) \\(\I+Apr
i\\<M(\ + iri for X>0.

Then:
(i) For any j and a with 0<j/2m<a<l, we have D(A%)d

Hj,Lp(G) and there exists G(j, a)>0 such that

(3.3) \\u\\JtLp<C(j9d)\\Alu\\Lp for every u<=D(A$.

(ii) For every j, $ and a with ( / + /?+ — ) 2m<a<l, we have
\ P II

D(A"p)c:Ci+f*(G; (Bk}mk<j) and there exists C'(j, /8, a)>0 such that

(3.4) \u\j+,<C'(j,&a)\\Alu\\Lp for every ut=D(A% .

To prove Theorem 3. 1, we first prove the following :
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Lemma 3. 20 Let Ap be as in Theorem 3. 1. Then :
(i) For an integer j with 0<j<2m, there exists C>0 such that

for u^D(Ap) and X>0.

(ii) For j and /3 with Q<j + fl + — <2m, there exists C'>0 such

that

(3.6) My

for u^D(Ap) and X>0. Here 8 is a sufficiently small positive number

which can be taken equal to zero if
P

Proof i By the inequality of Sobolev, we have

(3.7) ll^l!y,^<CJ^ii^lNiir/2

By (3. 1) and (3. 2), it follows that

(3.8) \\u\\2m>Lp<C(\\Apu\\Lp+\\u\\Lp)

<C(l + M}\\(\I+Ap}u\\Lp for u

Thus (3. 5) follows from (3. 2), (3. 7) and (3. 8).
If we use instead of (3. 7) the interpolation theorem :

and a well-known inequality of Sobolev :

(3.10) \u\2m^n/p

then we can obtain (3. 6) with the aid of (3. 2) and (3. 8).
Rewriting Lemma 3. 2, we obtain the following :

Lemma 3.2'* Let A, j, /3 and a be as in Lemma 3.2. Then:p

(i) For every

(3.50 H(X/+^)-^lk^<C(X + lX/— \\u L p

(1) We often denote by C any constant independent of u. The content C in (3. 5)
is not the same constant in (3.1),



84 Kiyoshi Asano

(ii) For every

(3. 60 |(\/+^)-^|y+,<C'(\^^ (X>0) .

Proof of Theorem 3. 1 : To prove (i) it is sufficient to show

(3.11) \\A;«v\\JjLp<C(j,a)\\v\\Lp for every v<=Lp(G) .

By the definition of A~" (for 0<a<l) we have

7T o

Thus (3.50 implies

7T o

7T

= CO', a) | ML,

The proof of (ii) is quite similar. (Let £>0 be so small that

^— (j+0 + — }<a holds.)
2m— f\ />/

Now concerning the smoothness assumption of (A {5/},G), we
make the following :

Definition 3. 2. A is said to have the smoothness of order &(>0)
on a subdomain G0 of G, // all the coefficients of A belong to C*(G0).

Definition 3. 3- (A, {5 ,-} , G) is said to have the smoothness of
order k, if G is of class C2m+k, the coefficients of A are in Ck(G) and
the coefficients of {Bj} in C2m+k.

Let us consider the regular elliptic boundary problem :

12) I A(x\D)u(x)=f(x) in G
{ Bj(x;D)u(x) = Q on 9G O' = l, -,»).

Concerning the regularity property of the solution u of (3. 12), we
have the following important theorem due to Agmon-Douglis-Niren-
berg [2] (see also Browder [4], [5] and [6]).

Lemma 3. 3a Let (Ay {B3} , G) be regular and have the smoothness
of order k. Then, if u^D(Ap] and f^HkjLp(G} satisfy (3.12), u
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belongs to H2m+kjLp(G) and the following estimate holds:

(3.13) \\u\\2m+kjLp<C(\\f\\kiLp+\\u\\Lp).

where C is a constant independent of u and f.
An easy consequence of Theorem 3.1 and Lemma 3.3 is the follow-
ing:

Theorem 3. 2. Let (A, {Bj}, G) be regular and have the smooth-

ness of order k. Let A. satisfy (A, 1) (ii). Then, for 0< — <a
2m

D(Al+c*)c:H2m+kL (G) and the followingestimate holds:

(3.14) \\u\\2m+k,Lp<C\\Al+«u\\Lp for

Now let us study some properties of Ap in the special case
where {#/}J*=i is the Dirichlet boundary condition, that is, B3(x\ D)

= ( —) =B](x\ D) 0" = 1, • • • , w) where v is the normal to 3G at x.
\dvfx

In what follows we assume on (A9 {B®}, G) the following :

(A. 4) A(x; D) is defined on some domain G'iDG and if n = 2, A(x; D)
satisfies the condition (R). The coefficients a^(x) of A(x',D} = ^a^(x)D^
are in C2m-^(G'). G is of class C*m.

The boundary value problem (A, (fi°},G) satisfying (A. 4) is
always regular and (A, [B°], G) is also regular where A is the
formal adjoint of A. Suppose that Ap9 the realization of (A9 {B®}, G)
in Lp(G) (K^<oo), satisfies (A.I) (ii). Then, by the argument of
Browder ([4], [5] and [6]), we can easily see that A* = A'P' and

(A'p')* = Ap9 where —+ —= 1 and A^ is the realization of (A, {B°}, G)

in Lpr(G). Moreover A^ satisfies (A. 1) (ii) and A!%' can be defined.
From the definition of A% and A"p'9 it follows that (A*)* = A'%' and

kNow let 0<a< — <1, u^Ck(G] \B]}j<^) and v^D(A^). Then we
2m

have

7t

where

= \
J
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Since u and (\I+Ap')~
lv satisfy some conditions on 9G, we can

integrate by parts &-times in (u, A'p' (\I + A'p'')~
ly and we obtain

|<«, A'i>v>\ <C' \~\-l\\
J 0

Using Lemma 3. 27, we have

(3.15) \<u,Afl>vy\<C\\u\\kiLp\\v\\Lp>

where C is some constant independent of u and v. For any
there exist vi^D(Ap') such that s—\imvi = v and s— lim Arat

nfVi=A'v'V.
(For example, — A^1/z generates an analytic semi-group.) Hence
(3. 15) holds for every u^Ck(G ; {£$}/<*) and v^D(A'^). This shows
that weD((A';/)*) = D(A;) and

\\Alu\\Lp<C\\u\\kiLp.

Summing up the above results, we have the following :

Theorem 3. 3. Let (A, {B°}y G) satisfy (A. 4) and ApJ its realiza-

tion in Lp(G) (l<p<oo), satisfy (A.I) (ii). Then for a<£-<!,A
"2m"

HkjLp(G; {jB*}j<k)c:D(A%) and the following estimate holds:

(3.16) \\A£u\\Lp<C \u\\ktLp for u^Hk,Lp(G ; {BfiJ<k) .

Theorem 3. 37. Let (A, [B]}, G) satisfy (A. 4) and have the smooth-
ness of order k. Let Ap, its realization in Lp(G) (!<^<oo), satisfy

(A. 1) (ii). Then for a<l + - and <p^C«(G\ <?*H2m+k L.(G)c:D(A«)
2m ' p

and

(3.160 \\A«(<pu)\\Lp<C\\<pu\\2m+k,Lp for u^H2m+k>Lp(G) .

Finally we state Agmon's theorem ([!]) which ensures the
existence of a resolvent ray of the operator Ap having the same
estimate as (A. 1) (ii) along the ray.

Lemma 3* 4. (Agmon [1]) Let Ap be the realization of a regular
system (A, {Bj},G) in Lp(G) (Kp<oo) which satisfies the following:

(A. 5) (i) c-i ,I AQ(x ; f ) i

for all real vector ^^0 and
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(ii) At any point #e9G let v be the normal vector and g^O any
tangential vector to 9G. Denote by f £(£ ; x) the m roots with positive
imaginary parts of the polynomial in t

X (arg x = 0) .

polynomials (in t) Bf
3(x;% + tv) C/ = l, • • • , w) <zr0 linearly

m

independent modulo the polonomial H (£•—£*(£ ; X)) /or fl«y X

exists N>0 such that L0 A r={X; argX = <
and

\\(\I-Apr\\<MI\\\ forp

§ 4. Existence of the local solution of semi-linear parabolic
equations

Let G be a bounded domain in En and let (A, {Bj} , G) be a
regular elliptic boundary value problem. We consider the following
initial value problem of a semi-linear parabolic partial differential
equation :

(4.1)

— = -A(x-,D)u

Bj(x;D)u = 0

We use the notation

CK= {u^C; \u\<K]

C]t = CK X • • • X CK (r-times) .

We assume on F the following :

(A. 6) (i) F=F(/, x9 u, "-yU^y • • • ) ( | ^ | < 2 m — 1) w « complex-valued
continnous function defined on (0, T]xGxC r , where r is the number
of n-tuple fju with j^| <2m—\.

(ii) TA^r^ exist non-negative and non-decreasing functions /, g
and h defined on [0, oo) and a constant j with 0<7<1 such that
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\F(t,x,u)\<f(K) for (/,*)e(0, T]xG and

\F(t,x,u)-F(t,x,v)\<g(K) r |ffc-tv for (t, *)e(0, T]xG

\F(t,x,u)-F(t'9x,u)\^h(K)\t-t'\1' for t, f€E(0, T]

(A. 6) implies that if u = C»"-l(G), then F(f, *, D

Now we show the existence of the unique local solution of (4. 1),
by applying the argument of §2 and 3.
First we suppose that (A, {B/}, G) satisfies (A. 5) for any <9e

[<90, 2n — #0], where <90 is some constant with 0<00<-^-. Let A
Zi

be the realization of (A, {Bj}, G) in Lp(G) (n<p<oo). Then, by the
argument of Agmon ([!]) (which was made to prove Lemma 3. 4),
we can easily see that there exists a constant N>Q such that
(Ap+NI) satisfies the condition (A. 2). We rewrite A(x\ D) + N as
A(x;D) and F(t,x,u) + Nu as F(t,x,u). Then Ap satisfies (A. 2)
and F satisfies (A. 6) with trivial modifications of /, g and h. Let

a be fixed with — (2w-l + — )<a<l. Theorem 3. 1. (ii) implies
2m \ p I

D(A;)^C2m-l(G;{Bj}) and

\u\2m_1<C\\A;u\\Lp for «e=Z>(4J),

since p>n. Thus, modifying /, ^and h in (A. 6) once more, we see
that the condition (A. 3) holds in X=Lp(G) for A = Ap and such a,
Now let us consider (4. 1) as an evolution equation in the Banach
space Lp(G) and apply the results of § 2, Theorem 2. 2 and 2. 3.
Then we have the local (strict) solution of (4. 1) in [0, T0] which is
unique under the condition that A%'u(f) is strongly bounded and

continuous in L.(G\ where a' is a constant with — (2m — 1 + — )<p 2m\ p I
a' <\. Thus we have the following:

Theorem 4. 1. Let (A, {/?,}, G) be regular and satisfy (A. 5) for

any 0^[_00,27c-00~] with Q<00<—. Let F satisfy (A. 6). Let n<p<°o
tU

and Ap be the realization of (A, {Bj}, G) in Lp(G). Then for any

™ with ^-
2m

(1) We can assume without any loss of generality that Ap satisfies (A. 2).
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(i) there exists the local (strict) solution u(t} of (4. 1) in [0, T0]
which is in D(Ap) = H2m}Lp(G ; {£,-}) for t e(0, T0] and strongly Holder
continuous in Hzm>Lp(G) with exponent j as a function of £e(0, T].
T0 depends on p, a, f and \\A%uQ\\Lp.

(ii) The (strict} solution u(f) is unique under the condition
that A*'u(t} is strongly bounded and continuous in Lp(G), where

^(2m-I + ̂ }<a'<l.
2m\ pi

Proof : We have only to show that u(f) is strongly y-Holder
continuous in H2WtLp(G). But this follows from the Remark to
Lemma 2. 6 and Lemma 3. 3 (and Lemma 2. 3)C1) applied on the
integral representation of u(f) such as (2. 2). Q.E.D.

We study the regularity property of the (strict) solution u(t)
of (4. 1) in the following sections. But we state here some easy
properties of u(t). The relation D(A"^C2m~\G\ {Bj}} and Theorem
4. 1 (i) imply that

(iii) u(f) satisfies the boundary couditions of (4. 1) in the classical
sense. Moreover if we apply Lemma 5. 1 to u(t\ we see that

(iv) D£u(t, x) are Holder continuous on [0, T0]xG for \fi\

§ 58 Regularity in the interior

We consider in this section the regularity of the strict solution
of (4. 1) with respect to (t, x) e (tl , tz) x G0 . Here G0 is a subdomain
of G such that (30cG. We introduce some function spaces to state
the results. Let 0<y, /5<1 and let />! and &>0 be integers. We
denote by CY^(/, G) the class of functions u(t, x) defined on /xG
for which there exist some constants K± and K2 depending on u
such that

\u(tyx)-u(t\x')\<Kl t-t'\y + K2\x-x' * for (f, x\ (f, xf)^IxG .

Here / is a closed interval. We denote by Ck+iy'2mk+^(I, G) the
class of functions u(t, x} for which D]'D*u(t, x) belong to C7'^/, G)
for k'<k and \iL\<2m(k—k')+j. Now let / be an open interval.

(1) and the argument in § 6.
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We denote by c*+y>2W*+^(7, G) the class of functions defined on
IxG which belong to Ck+y'2mk+^(IQ9 S0) for every 70 and G0 such
that 70c7 and G0cG0 We also denote by H]iLp(I, G) the class of
functions from / into HjtLp(G) which are strongly ^-Holder conti-
nuous, and by H\^k+]tLp(I, G) the class of functions u(f) from / into
Hj LP(G) which are &-times strongly continuously differentiable and

/AY'«(/) belongs to Hlm,k_k'^3-iLp(G) (0<&'<£). We often use the
\aift
above notations in somewhat different form such as Cytf*(I, G) where
/ is an open interval. The following lemmas are easy consequences
of Sobolev's inequality-

Lemma 5.1. Let G be a bounded domain of class C2 in En.
Let n<p<oo and j>l. Then:

(i) // u(t)e=H,.Lp(I, G), u(t, *)e=C>->-"(/, G).
(ii) // u(t)t=H£t+jiLp(I9 G), u(t, x)€=C™'"*w-"'*(I, G).

Lemma 5. 2. Let (A, {B3}> G) be regular and have the smoothness
of order 1. Let n<p<oo. Then, if u(t)t=D(AJ[\HltLp(I,G) and
Apu(t)t=HltLp(I,G), u(t,x) belongs to CWl-"'*(7, g;{£,}). In
particular, for any q with l<#<oo? u(t)^D(Aq)^HlmtLq(I,G).

On the smoothness of F(t, x9 u) of (4.1), we make the following:

Definition 5.1, We say that F(t, x, u) has the smoothness of
order (k+y, 2mkJ

rj
JrS) on (70, G0), if Dk/D^^F(t, x9 u) is continuous

in 70 x G0 x Cr (or more precisely in 70 x G0 x E2r) and belongs to Cy's(I, Cr)
as a function of ft u) uniformly in #eG0 for k'<k and \ p \ <2m(k—k'}
+j. Here IQ is a subinterval of (0, T] and G0 is a subdomain ofG.

Lemma 5, 3a Let F(t, x, u) have the smoothness of order (fe+y,
2mk+j + S') on (70, G0). Let n<p<oo. Then if u(t}^Hk^Tk+D+^1>Lp

(70, G0), Fft u(t)) belongs to Hk
2^l+jiLp(I09 GJ for every subdomain G1

of G0 such that G^G^, (We assume j>l.)
Now we state the regularity property of the strict solution of

(4.1).

Theorem 501. Let (A, {Bj}9 G) and F be as in Theorem 4.1.
Let A be smooth of order 2mk+j on G0 and F be smooth of order

, 2mkJrjJrS) on (70, G0). Then, if u(t] is the strict solution of



On semi-linear parabolic partial differential equations 91

(4.1) (in [0, T]) in some Lp(G) with n<p<oo, there exists 7' with
0<7'<1 such that

(i ) u(t)^H$£ul(-)+jtLp(I\>, GO for any q with l<q<oo and for
every subdomian G1 of G0 such that G^cGo-

(ii) u(t, %}^Ck+l+^'2^k+l^'-\n, G0) for any B with 0<£<1.
(iii) In particular, i//0=(0, T] and G0=G, u(t, x) is the classical

solution of (4. 1).

Proofs The strict solution u(f) is in D(Ap)^Hlm>Lp((Q, T], G).
On account of Lemma 5. 1, it is sufficient to prove (i). Let Gl be
any subdomain of G0 such that G^G^. We can take cp^Co(G) and
a subdomain G2 of G0 such that <p = \ on some neighbourhood of Gl

and supp (<£>)cG2, We put

v(t) = <pu(t) (for fe/0).

We take any closed subinterval I=[t19 t2~] of J0.
Then it follows from (4. 1) that

(5.1)

where

Now let us prove (i) for #=^ by induction, that is, letting the
proposition (i) for q=p be denoted by P(k,j), we will show that
under the assumptions of Theorem 5.1, P(k,j—l) implies P(k9 f)
and P(k—I,2m) implies P(k9 0). First we prove the former. We
may assume that G2 is of class C°°. We consider an elliptic boundary
value problem (A, {Bj}, G2), which is regular and satisfies the same
condition as (A9{Bj}9G). Thus we can consider (5.1) as a para-
bolic equation in G2 associated to (A9 {B®}, G2). By the argument in
§4, we may assume that A, the realization of (A9 {B®}, G2) in L (G2),
satisfies (A. 2). We also have by the assumption of induction that
v(tl)^D(Ak+l) and w(f)^Hk^l"JtLp(I,G2\ We will show that f;(f)e

^** G2). Then, since G1 and / are arbitrary, we have

J = -Au + w(t) for
at

v = 0 outside supp (<p) for fe[^, t2~\ ,
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Since w(f) has a compact support in G2 , it follows from Theorem

3.3', that w(t)^D(Ak+c^/2m+^ for any /3 with 0</3< — and
2m

p(I,G2\ Since t;(
if we multiply both sides of (5. 1) by A*, the reduced equality
corresponds to the case P(0, j— 1). Let us prove that P(0, ./— 1)
implies P(0, j). Then, concerning the original v(t\ we have that ^4.fe+X^)
belongs to H]'/LP(I,G2) and by lemma 3. 3, v(t)^Hk^\^+j}Lp(IyG2\
Thus we may assume k=0. Now using an integral representation
of v(f) (Theorem 2. 3) and multiplying it by A, we have

(5. 2) Av(f) = e^t

The first term of (5. 2) belongs to HjtLp(P, G2) (Lemma 3. 3.). Let
£>0 be sufficiently small. Decomposing the second term of (5.2)
as in (2.4) in [^ + f, 4] = /SJ we have that 70, /j and I2 belong to
H]"Lp(It , G2) (Lemma 2= 6). Since w(t] e D(A^-15^"^) and

for any /? with 0 < / 5 < - - , it follows from Lemma
2m

2.6 that A'-^+tl^DW") and A^^
any 7//x with 0<7///<7//. For such 7/x/ we can take such /3 as

— - T//x < /3 < — . Hence 78 e H^"\I^ , G2) for any 7 w with 0 < 7//x

2w 2m p

<7" (Theorem 3.1, 3.2). Thus Av(t) belongs to H]'^/r\I^G^
which implies v(t)^.Hl'n+]',Lp(Is, G2) (Lemma 3.3). Thus we have
v(t)^m^p'(tt, GJ, that is, P(0, y) for 7"-7'">o, and the former
half of the proof of (i) is nearly completed (since P(0, 0) follows
from Theorem 4. 1). In a similar way, we can prove that P(k—l, 2m)
implies P(k, 0). Now applying Lemma 5.2 to the system (A, {B®}, G2),
we see that v(t)t=D(Aq)™nH£-'''"(IQ, G2) for q with K^<oo0 Thus
repeating the above arguments for q, we complete the proof of (i).

§ 60 Regularity up to the boundary

This section is concerned with the regularity of the strict
solution of (4.1) with respect to (/, x)^(t19 t2)xG. Let u(t) be the

(1) Aq is the realization of (A, {£Q}, G2) in L?(G2).
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strict solution of (4.1) in some L (G) (n<p<oo). First we state a
remark concerning the strong Holder continuity of Au(f)ci:> in Lp(G).
We may assume that A satisfies (A. 2). It follows from Lemma
2.3 that A*u(t) is (1 — a)-Holder continuous. Hence F(t, u(t)) is
70-Holder continuous with 70=min {1 —a, 7}, where a is some con-

/ M \ J

stant such that [2m-l + —)2m<a<l. Hence Au(f) is 70-Holder
V p /1

continuous (Remark to Lemma 2.6) and u(f) is strongly continuously
differentiate. By an interpolation relation

\\A^U\\LP<C\\AU\\IP\\U\\I-P
A ^

we know that A*u(t) is 71-Holder continuous with 7l = arY0
Jrl — a,

Repeating this argument, we know A*u(f) is 7'-H6lder continuous
with 7<7/<l. Hence F(t, u(t)) is 7-Holder continuous and Au(f) is
7-Holder continuous. Thus u(t)^Hl^Lp((Oy T], G).

Suppose that (A, {Bj}, G) has the smoothness of order k and
F(t9 x, u) has the smoothness of order (7, fe + 1) on (/, G), where I
is an open subinterval of (0, T] and k/2m<y<l. Let [t19 ^]c/.
Then, using an integral representation of u(t\ we have

(6.1) u(f) = e~c*"*iM«(f1)+ I e~a's^Aw(s}ds for ife[^,f2],

where w(f) = F(tyu(f)\ Denoting by v(f) the last term of (6.1) we
have

(6. 2) Au(t) = e~«-

Ae-«-^A{w(t)-w(s}} ds
e

for ^e[^ + f,/2], where £>0 is sufficiently small. The first two
terms of the right hand side of (6.2) are in HlmtLp(^t^B9t^ G)
= Hlm>Lp (Lemma 2.6). The fourth term is also in it. The fifth
term is in H]~lj

p(l<j<k)y where j/2m<jj<j (Lemma 2.6 and
Theorem 3.1). Since u(t)^HlmiL , w ( t ) belongs to HltL by the

(1) In this section we denote by A the realigation of (A, {B,-}, G) in L/>CC).
(2) This inequality in due to sobolevskii
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smoothness of F (see Lemma 5.3). Thus Au(t) (and — also)
\ at I

belongs to Hl~Lp. Hence u(t)^Hy
2^ljLp (Lemma 3.3) and obviously

u(t)f=H\+li%p. The same argument shows that u(t)^H\^lp(I9G)
for l<j<k, since [t19 f2]c/ and £>0 are arbitrary.

Now suppose that (A, {Bj}, G) has the smoothness of order 2m
and F(t, x9 u) has that of order (1 + 7, 2m + 1). Then, by the above
arguments, we have u(t)^H\£^!'Lp and w(f)^H\^Lp9 where 7' = 72m-i
and 7"=min(l —7', 7). Hence, by Lemma 2.7, we have

(6. 3) Au(t) = *-«-*

" e-"-nAtDf(s)ds for te(tllta'].

The right hand side of (6.3) is in H\^p. In fact, the first three
terms are obviously in it, and the last term, which we denote by

vtf), is also in it, since vl(t}^D(A) and Av,(t\ ~^Hl"Lp (Lemma

2.4 and 2.6). Thus Au(t}<=Hl^'p. Hence u(t)s=H}£L'p (Lemma
3.3). Since A is a closed operator in Lp(G\ we have u'(f)^D(A)
and Au'(t} = (Au(t}y<=Hl"Lp. Thus, differentiating both sides of (4.1)
by t, we obtain the following strict equation :

(6.4) *£=-A«r+^
at dt

(Since u(t)eH}£Zfi and n<p<°o, DV(f) = D* — = — Z>"w for

\v\<2m-l (Lemma 5.1).) Thus —<^Hl"Lp and
ttf

Let us consider (6. 4) as an evolution equation for unknown u'(f).

Then, we have u'(t}^H\^L., since ^ and |^ U^M are in Hi Loo.
ot

Hence w'(t}^Hl,Lp and v1(t)^Hl
2+JLp in (6.3). Since the first three

terms of the right hand side of (6.3) are in H\*L, Au(t) belongsP,
to Hl*Lp> Hence u(t)<=Hlmli>Lp' Proceeding in the same way, we

have u(t)^Hl£Lp. Finally from (6.4) we have —^HliL. Thus

Now, summing up above arguments in a general form and using
Lemma 5. 1. and 5. 2, we obtain the following :
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Theorem 6.1. Let (A, {B3}9 G) and F be as in Theorem 4.1.
Let (A, {Bj}y G) be smooth of order 2mk+j and F be smooth of order
(& + y, 2mk+j+T) on (/, G), where I is an open subinterval of [0, T~\
and j/2m<fy<l. Then, if u(f) is the strict solution of (4.1) (in
[0, T]) in some Lp(G) with n<p<&o,

(i) u(t)^H%tit3lJtLq(I9G) with l<q<°° and j/2m<7j<7.
(ii) u(tyx)^Ck+1+^j'2m^+l^-s(I9 G) for any £>0.

Remark 1 (existence of the global solution). Let us consider in
what cases the global solution of (4. 1) exists. For this purpose we
return to Section 2 and ask for the conditions under which (2. 2)
has the global solution. First we assume the following conditions :

(1)
( 2 )

f(t,a) =

where S is a positive number and /i, /2 are non-negative, non-
decreasing and continuous in <ze[0, oo),

We assume that we can take T0e(0, T] such that

(3) Me~8To = Ko<l.

Putting

(4) M.-!-Ti- = tf
I — a

and
f*+ro

( 5 ) Ma\ (t+ T0-s)-"f2(s, a)ds = M(t, a) ,
Jt

we assume that there exists «>0 such that

(6) Nf,(a) + M(t,a)<K (*e[0, T-TJ) ,

where

(7) _JL_<!^o.
l-*~ Af

On account of (6) and (7) we have

( 8 ) Ma0+ Nf,(a) a + M(t, a)<a
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and

( 9 ) Me-*T*

where

(10) -

tf 0 1 — K, K

Let us recollect the proof of Theorem 2. 1. We assume that

(11) \\A*u0\\<a0.

Then the arguments in the proof of Theorem 2. 1 shows that

ak(T0)<a (fc = 0,l, • > • ) .

In fact, we have a0(TQ)<Ma0<a, and (2.4) shows that "ak(T0)<a"
implies "ak+1(T0)<a" on account of (8). Hence the mild solution
u(t) of (2. 2) exists in [0, T0] and

\\A*u\\To<a.

Hence on account of (9) we have

\\A«u(T0)\\<a0.

Thus, repeating above arguments, we know that the mild solution
u(f) of (2. 2) exists in [0, T].

The essential assumption in this argument is (6). It is sufficient
for the existence of the global solution of (2.2) that (6) holds for
t = kT0 (k=Q, — ,1, • • • ) and T-T0. It is to be noted that (6) holds
for sufficiently small 0>0, if fl(fy = 0 and /2 = 0.

We state another condition for the mild solution of (2. 2) to
exist in [0, TJ. Put

(40 M.-±-T\- = N,
I — a

and

( 50 M, t± T.-sr*/^, a)ds = M(t, T19a).
Jt

If we assume that there exists a>0 such that

(60 #,/;(*) + — M(0, T1
a
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then we have

( 80 Ma. + N,f1(a)a + M(Q9 7\, d)<a ,

where

(100 - = — = M' .
a, I-K

Hence the mild solution u(f) of (2. 2) exists in [0, TJ for w0 satis-
fying (11).

Let us assume that

i(«) = const. = A .

Then for sufficiently small 7\ and sufficiently large (2 we have

(6")

and hence

(8")

In this case there is no restriction on the upper bound of a0, and
hence the global solution of (2.2) exists for any u0^D(A*).

Remark 2. Tanabe also proved Theorem 3. 1 (independently of
the author) and considered the problem (0. 1). In his work A and
Bj may depend on time t. Therefore his results corresponding to
our Theorem 4. 1 are more general than mine. However the author
does not know the details and can not cite them here.

Our Theorem 6. 1 can not be locallized on a part of G. There-
fore it is not a complete result. If we establish a priori estimates
for the problem (0. 1), more complete results will be obtained.
Recently such a priori estimates has been established by Tanabe
and Kametaka (independently) in L2(G).

To consider the problem (0. 1) in which A and {Bj} depend on
time t, we can make use of the results in [11], [14] and [15].
However Arima succeeded in constructing Green function for the
parabolic boundary problem and obtained the estimates on it in her
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recent paper [17]. If we make use of her results, more complete
results will be obtained on this problem.
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