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Abstract

A partial classification into unitary equivalence classes of complete
Boolean algebras of type I factors is given. Any complete atomic Boolean
algebra of type I factors is unitarily equivalent to a discrete tensor product
of type I factors. We establish a one-to-one correspondence between the
unitary equivalence classes of complete nonatomic Boolean algebras of type
I factors satisfying a certain condition, and the unitary equivalence classes
of complete nonatomic Boolean algebras of projections. A continuous
tensor product of Hilbert spaces is defined which is a generalization of the
discrete infinite incomplete tensor product space defined by von Neumann.
On a separable Hilbert space, any complete nonatomic Boolean algebra of
type I factors satisfying the previously mentioned condition is unitarily
equivalent to a continuous tensor product of type I factors. An application
to the representations of the canonical commutation relations of quantum

field theory is made.

1. Introduction

In this paper we give a partial classification (up to unitary equivalence)
of complete Boolean algebras of type I factors. We also give an appli-
cation of these results to the group integral for irreducible representations of
the canonical commutation relations (hereafter referred to as CCRs). The

mathematical motivation for this problem is provided by the work of
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Murray and von Neumann® on direct factorizations (finite type I factoriza-
tions in our terminology), and by von Neumann’s construction of an
incomplete tensor product of Hilbert spaces (hereafter referred to as an
ITPS).» Further motivation is provided by recent work in mathematical
physics where lattices of von Neumann algebras have been studied.”*

We begin with an outline of the general mathematical problem (even
though our results are only a first step towards the understanding of such
structures). We give a few definitions from lattice theory. A lattice E is a
partially ordered set any two of whose elements have a greatest lower bound
x/\ 7y and least upper bound x\/y. A lattice is said to be complete if every
subset has a greatest lower bound and least upper bound. We consider
lattices £ which contain (necessarily unique) elements 0 and 1 satisfying
0<x<1 for all x€E. Any x=0 such that x>y implies y=0 is called an
atom. An atomic lattice is one in which every x==0 includes at least

one atom. An involution is a map x—x’ satisfying

(i) x=2a"= ()
(i) (xAy) =«'Vy and (xVy) =Ny
A complemented lattice is a lattice in which every element x has a comple-
ment y such that xAy=0, x*\Vy=1. An orthocomplementation is an
involution x— %’ where «’ is a complement of x.
We now give some examples. Let H be a Hilbert space, B(H) the
set of all bounded linear operators on H. If ACB(H) we define its

commutor

A’ = {Q'eB(H): QQ' = Q'Q for all Q= 4}

1) F.J. Murray and J. von Neumann, Ann. Math. 37, 116 (1936).

2) J. von Neumann, Compositio Math. 6, 1 (1938).

3) For a detailed account of the role of von Neumann algebras of local observables in
relativistic quantum field theory see for example R. Haag, Proceedings of the Midwest
Conference on Theoretical Physics, Minneapolis, 1961; R. Haag and B. Schroer, J.
Math. Phys. 3, 248 (1962); H. Araki, ETH lecture notes (Zurich, 1961/62), and to
be published by W. Benjamin, New York; R. Haag and D. Kastler, J. Math. Phys.
5, 848 (1964).

4) For a detailed account of the lattice of von Neumann algebras associated with the
quantum theory of a free Bose field see H. Araki, J. Math. Phys. 4, 1343 (1963).
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Clearly AcA”=(A’)Y. The set A is called self-adjoint if T4 implies
T*A. The set A is called a von Neumann algebra if it is self-adjoint
and A=A4". Given an arbitrary self-adjoint set S CB(H), S” is the von
Neumann algebra generated by the set S. The set of all von Neumann
algebras RC B(H) forms an involutive lattice where the lattice operations

are defined by
R AR, =R NR, (1. 1)
R\ VR, = {R,UR}” (1.2)

where N, U denotes the set theoretical intersection and union respectively,
and the involution is given by R— R’ This lattice has a maximal element
B(H) and a minimal element B(H) = {al} (the set of all multiples of
the identity operator). The usual notation for lattices would suggest that

we denote these von Neumann algebras by 1 and 0 respectively. How-
ever, the standard notation is to write 1 for {@l}. Hence we shall use 1

and B(H) for the minimal and maximal elements of this lattice. A von

Neumann algebra satisfying

RAR =1 (1.3)
or equivalently

RVR = B(H) (1.4)

is called a factor. The set of all factors is not a lattice since in general if
R,, R, are factors then R,V R, and R,AR, are not factors. However, if
E is any lattice of factors then the map R— R’ is an orthocomplementation
in E.

A representation of an orthocomplemented lattice E by von Neumann
algebras is the structure consisting of a Hilbert space H and a map x— R(x)

from E into the lattice of von Neumann algebras on H such that

R(xVy) = R(x) VR(y) (1.5)
R(xAy) = R(x)AR(y) (1.6)
R(x') = R(xY (1.7)

The Fock representation of the CCRs over a real Hilbert space K provides

an example of such a representation. To every subspace (closed linear
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subset) W of the real Hilbert space K there corresponds a von Neumann
algebra R(W) on a complex Hilbert space (the Fock space Hi(K)). A
detailed investigation of this example has been given by Araki,” who proved
that the map W— Ry(W) gives an isomorphism of the involutive lattice of
subspaces of K with the involutive lattice of von Neumann algebras Rg(WW).
It should be noted that the duality theorem, Eq. (1. 7), is the most difficult
property to prove in this isomorphism.

A distributive lattice E is one that satisfies
xV(yAz) = (xVY)N\(xVz)
xA(yVz) = (xAY)V(xAZ)

for all v, y, 2€E. A Boolean algebra is a complemented distributive

(1.8)

lattice. 'The distributive property implies that any x has a unique comple-
ment #’. Thus a Boolean algebra is a special case of an orthocomplemented

lattice. We now give an example of an atomic Boolean algebra of factors.

Definition 1. 1: Let H be a Hilbert space and R a von Neumann
algebra in B(H). We say that {R,} .4 15 a factorization of R if each R, is

a factor and

R,CR/, a=xg (1.9)
\/R, =R (1. 10)
as4

If R=B(H) we just say that {R,},ca is a factorization. If A is a finite
(countable) set, we say that {R,},ca 15 a finite (countable) factorization. If
each R, is a type I factor, we say that {R,},c4 is a type I factorization.

Given a factorization {R,},c., and a subset JCA4, let J°=A4—]
and define

R(J)=VR., Rig)=1 (1. 11)
Since R(4)=B(H) and R(J)YDR(J) we have
R(JIVR({JY = B(H) (1.12)

5) 'This follows from lemma 5.4.1 of F.J. Murray and J. von Neumann (reference 1).
This lemma is stated only for separable H, but can easily be generalized to the
nonseparable case.
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and R(J) is a factor. We say the factorization is coupled if R(J)
=R(J°) for all Jc 4. In a coupled factorization, the R(J) form a com-
plete atomic Boolean algebra of factors which is a representation of the
complete atomic Boolean algebra of all subsets J—A4. This representation
is faithful if R, =1 for all a= 4.

If {R,}sca 1s a finite type I factorization, then all R(J) are type I
factors and the factorization is coupled.® Thus we have a finite atomic
Boolean algebra of type I factors. A complete classification (up to unitary
equivalence) of such structures was given by Murray and von Neumann.®

As mentioned above, lattices of von Neumann algebras occur in recent
work in mathematical physics. In the local observables formulation of
relativistic quantum field theory,” one associates a von Neumann algebra
R(B) with every open set B in space-time. A detailed investigation of this
lattice for the free scalar field has been given by Araki.® For this case it
is known that R(B) is a factor of type III,, for a certain class of regions
B.”> 1t is also known that for a general class of theories, R(B) is not a
factor of type I for a certain class of B.»"*®

Similarly, in the formulation of quantum statistical mechanics in an
infinite volume one has a representation B— R(B) of the lattice of all regions
B of 3-dimensional space by von Neumann algebras R(B). If one takes
R(B) to be the von Neumann algebra generated by the field operators
J(x), x= B where J(x) satisfies CCRs for Bose systems and CARs (cano-
nical anticommutation relations) for Fermi systems, then R(B) is expected
to be a factor of type I for any bounded B.*> An explicit construction of

6) Lemma 5.4.1 of reference 1 states that any such factorization is a tenslor product
factorization. Thatis H=QH;, and R;=B(H ,-)®('®.l]~) where 1; denotes the ring of
iFi

multiples of the identity operator in H;. 'The unitary invariants are thus the dimen-
sions of the spaces H ;.

7) H. Araki, Prog. Theor. Phys. 32, 956 (1964).
8) H. Araki, J. Math. Phys. 5, 1 (1964).
9) R.V. Kadison, J. Math. Phys. 4, 1511 (1963).

10) R.F. Streater, J. Math. Phys. 5, 581 (1964).

11) Since one is describing a system with a finite particle density, one requires that
the particle number operator N(B) should exist for any bounded region B. Thus
the representation of the CCRs or CARs restricted to a bounded region B must have
a total number operator. It was shown by L. Garding and A. S. Wightman, Proc.
Nat. Acad. Sci. 40, 617, 622 (1954) that any representation of the CCRs or CARs
with a total number operator must be a discrete direct sum of copies of the (irredu-
cible) Fock representation. This implies that R(B) is a factor of type I.



162 Huzihiro Araki and E.J. Woods

the representations of the CCRs describing the infinite free Bose gas has
been given by Araki and Woods.” The representations of the CARs for
the infinite free Fermi gas have been obtained by Araki and Wyss,™ and
for the BCS model at zero temperature by Haag,"and also by Ezawa and
by Emch and Guenin."™ While a detailed analysis of the lattice B— R(B)
has not been given, in each of these cases some R(B) are not type 1. In
particular, for the infinite free Bose gas at finite temperatures, the von
Neumann algebra R(B) where B is the entire 3-dimensional Euclidean space
R? is either a factor of type III.., or a direct integral of such factors.

For such applications to mathematical physics, it would be useful
to have a classification of such lattices. In view of the fact that a complete
classification theory of non-type I factors does not yet exist, this is a
formidable problem. However, our partial classification of complete
Boolean algebras of type I factors can be considered as a first step towards
the understanding of such structures.

We now give a brief outline of the contents of our paper. In Sec. 2

we discuss finite type I factorizations. In Sec. 3 we discuss the I'TPS
H= ® H, defined by von Neumann. For each a4, let R,=B(H)Q
acd

(® 1,). Then {R},ca is a type I factorization and all R(J)= \/ R, are
a’Fa acsT

type I factors. Thus we have a complete atomic Boolean algebra of type
I factors. In Sec.4 we prove the converse result that any complete atomic
Boolean algebra of type I factors is a tensor product factorization (TPF).
In Sec. 5 we define an exponential Hilbert space e such that any complete
Boolean algebra 3 of projections on K gives a complete Boolean algebra e®
of type I factors on eX. We define a continuous tensor product of Hilbert
spaces (CTPS), which is a generalization of the infinite discrete incomplete
tensor product space (I'TPS) defined by von Neumann.® In Sec. 6 we

prove that any nonatomic complete Boolean algebra of type I factors (H, R)

12) H. Araki and E.J. Woods, J. Math. Phys. 4, 637 (1963).

13) H. Araki and W. Wyss, Helv. Phys. Acta 37, 136 (1964).

14) R. Haag, Nuovo Cimento 25, 287 (1962).

15) H. Ezawa, J. Math. Phys. 6, 380 (1965); G. Emch and M. Guenin, J. Math. Phys.

(to appear).
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satisfying a certain condition is unitarily equivalent to the structure (eX, e®)
where P is a nonatomic complete Boolean algebra of projections on the
Hilbert space K. Also (H, R) determines (K, %) up to unitary equi-
valence. If K is separable, then 3 gives a direct integral decomposition
of K,* and R is a continuous tensor product factorization. We also deter-
mine all factorizable vectors and all factorizable bounded linear operators
(relative to €®). In Sec. 7 we establish necessary and sufficient conditions
that the group integral for irreducible representations of the CCRs intro-
duced by Klauder and McKenna™"*® exists, and that it is independent of
the order of integration. In Sec. 8 we generalize the construction of an
exponential space to entire function spaces. In Sec. 9 we give a discussion
of our results.

We shall use the following notation. [, denotes the set of integers
(1,2,---,m), 1., the set of all positive integers, and let I5=1,—1,. If S
is a subset of the complex numbers, then S denotes its closure in the
usual topology. If S is a subset of a Hilbert space, then S®, S denote
the weak and strong closures of S respectively. If E is a lattice with a
minimal element 0, a partition of 2<E is a set of elements 2, such that
2, AN2g=0 if a0, and V,2,==z. A partition B={z,} is a subpartition
of B’= {2} if there exists v(a) for each a such that z,<2’,,. We then
write B< B’.

2. Finite Type I Factorizations

Let {R;};c;, be a finite type I factorization (see definition 1.1). It
was shown by Murray and von Neumann that any finite type I factori-

zation is unitarily equivalent to the tensor product factorization®

H=QH, 2.1)
R, = BH)®( ®1,) 2.2)

16) See, for example, J. Dixmier, Les Algebres d’Operateurs dans I’Espace Hilbertien,
(Gauthier- Villars, Paris, 1957), Chap. II, Sec. 6.

17) J.R. Klauder and J. McKenna, J. Math. Phys. 6, 68 (1965).

18) J.R. Klauder, J. McKenna, and E.J. Woods, J. Math. Phys. 7, 822 (1966).



164 Huzihiro Araki and E.J. Woods

It follows that the set of all
R(])=¥Ri, Jc4 (2.3)

gives a finite atomic Boolean algebra of type I factors (see Eq. (1. 11) et
seq.). In this section we give the relevant properties of such structures.
For WeH, ®QH, we define a standard diagonal expansion of ¥. We
define factorizable vectors for arbitrary type I factorizations {R,}4cq. For
finite type I factorizations {R;},c;, we define a quantity d(¥;R,,..., R)
which is a measure of how close W is to being a product vector. Lemmas
2. 1-2. 5 give some basic properties of d(¥;R,,---,R,). Lemma 2.6
proves the equivalence of factorizable vectors and product vectors for finite
type I factorizations. The key lemma of this section is lemma 2.7 which
relates a finite type I factorization {R;},c,, into z factors with the factori-
zations R(J), R(J°) into two factors. It will be used in lemmas 4.5 and 4. 8.
Let WeH. Then (¥, O;,¥), O,=R; is a normal state on R;.

Hence there is a nonnegative trace class operator D,(W) & B(H;) such that™
Tr D(¥)Q; = (¥ ,0,;&( ? 1)w), 0,eB(H,) (2.4)
I

In particular Tr Dy(T)=||¥|’ Eq. (2.4) defines D,(¥) uniquely as a
normal state over R;, and therefore the eigenvalues of D,('¥) and their
multiplicities are unitary invariants for (R;, ¥).

We now consider the case #=2. Let ¥,; be an orthonormal basis of
H, such that

D(¥)¢; = Ny, Mz0, Zi<oo. (2.5)
Then we can expand W as

¥ = 3, R, (2.6)
For any Q in B(H,), we have

(¥, Q) = 3; d2is 25) (dus, Ody) = ZAAri> Qi) - (2.7)
By taking O, such that

19) See J. Dixmier (reference 16), Theorem 1.4.1, p. 54.
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(¢ris Ody;) = 844,85, » (2.98)
we have

(Pais $2;) = OijNi- (2.9)
Hence

G = Ny (\i0) (2.10)

is orthonormal and

¥ = Ei(x:‘)-{-l/z‘pli@‘/}zi (2 11)
Thus we make the following
Definition 2. 1: By a standard diagonal expansion of Y= H, QH, (or
relative to R, and R,) we mean a choice of orthonormal bases ¥,;€H,, V,,=H,
such that
\If = Ei)\'iwli®\llzi (2 12)

where N =N, = - =02 (If the number of basis vectors can not be taken

equal, we allow ¥,;=0 or W,;=0 when N;=0 for the sake of notational
convenience.)

Let P,; be the projection operator onto W,;. Then D,(¥) has the
spectral decomposition

D(¥) = SI\ZP,, (2.13)
We have
Trace D(¥Y = 3IAf = A I NI /N)
< AZSIAZ = A? Trace D(W) (2.14)
= fllwr

with equality holding if and only if A;=0, 71 (i.e. if D,(¥) is a one-

dimensional projection operator). We now give some definitions.

Definition 2.2: Let H= @ H ;. A vector YeH is called a product

i=1

vector if

20) The standard diagonal expansion of ¥ for the case where H; and H, are finite di-
mensional was given by J. von Neumann (reference 2), Sec. 7.3.
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¥ =Qo, V,eH, (2. 15)

Definition 2. 3: Let {R,},c 4 be atype I factorization (A is arbitrary).
We say that a vector ¥ is factorizable if for all Q,=R, and all integers n we

have

(,110,%) = (¥, V)" 11(¥, 0.,%) (2. 16)

Definition 2. 4: Let {R;};c;, be a finite type I factorization. For
any ¥ € H we define

d(¥;R, -, R,) = sup (¥, [1 P,¥) (2.17)
P; i=1

where P; runs over all minimal projections in R,

Clearly ¥ is a product vector if and only if there exist minimal pro-
jections P, &R, for each 7 such that P,¥=¥. It is also obvious that Eq,
(2. 17) is equivalent to

d(\II;Rl E R} Rn) = S;}_P I(\P: §®z))|2 (2 18)

where ®; runs over all unit vectors in H;.

Lemma 2.1: There exist QP,; and minimal projections P; which give
the suprema in Egs. (2. 17) and (2.18).

Proof: Since the unit sphere in Hilbert space is weakly sequentially

compact, there exist weakly convergent sequences @ = Q®“® such that

hm |(\I’1 @(k))lZ = d(T;R1 3% R,,) (2. 19)
E>oo

Let & =weak lim &%, then

(¥, @)|* = d (¥;R,,-, R,) (2. 20)

21) The quantity d(¥; R;, R,;) was used by H. Araki, J. Math. Phys. 4, 1343 (1963),
Theorem 5, to give a condition that a certain factor R obtained by a tensor product
construction is type I. The same quantity (but in a different notation and for a
restricted case) was used by J. von Neumann (reference 2), Sec. 7.3, and D. Bures,
Compositio Math. 15, 169 (1963) for a similar purpose.
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We now show that @ is a product vector. Since the unit sphere in Hilbert
space is weakly sequentially compact, there exists a subsequence of ®{¥
with a weak limit ®,.

This subsequence has a subsubsequence such that ®§" has a weak limit
@,, etc. It follows that @ is a product vector @ @;. Also, from Eq.
(2. 20) we must have ||®;ii=1. Q.E.D. -

Lemma 2.2: Let YeH,QH,. Let \, be the leading term in the

standard diagonal expansion of ¥, and D, (®) the nonnegative trace class
operator defined by Eq. (2.4). Then

d(¥;R,, R,) = > Tr D(W)/Tr D,(W) (2. 21)

Proof: Choose orthonormal bases W¥,;, ¥,; for H,, H, respectively
which give the standard diagonal expansion of ¥ (Eq. (2. 12)). Let

®, =>aVv,;, Dia;i*=1 (2.22)
@2228,-‘1’2,-, Zlﬂilzzl (223)

be any two unit vectors in H,, H, respectively. Then

(P, &,QD,)|* = | 22 Na,B8:°= M e 1?) X 18:1%) (2. 24)

Since A, >n,>--->0 and XY |e;|?°=>8;|?=1, this has its maximum
value A} when &, =¥, ®,=¥,. The inequality in Eq. (2.21) follows
from Eq. (2. 14). Q.E.D.

Lemma 2.3: Let {R;},c;, be a finite type I factorization. For any
jel, we have

d(¥;R, --- R,) = sup (¥, II P,¥) (2. 25)

Piiki i¥i
where P; runs over all minimal projections in P;, i=j.
Proof: It suffices to show that for any minimal P;, i<j there is
some minimal P; such that
P].(EjP,-‘I’) = il;IjP,-‘If (2. 26)

Choose orthonormal bases for each H; such that for <17, P; is the minimal

projection associated with W;,. Then
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NP = 3 C,%,,0{ ® ¥} (2.27)
iFj

i
is a product vector. The minimal projection associated with the vector
20, s the desired P;. Q.E.D.

Lemma 2.4: Let {R;},,, be a finite type I factorization. Let
D, YeH, |- Y||<& Then

[d(W5 R, oo, R)— (D3R, o, R) | ([ +[[D]))eE (2.28)
Proof: By Eq. (2. 18) it suffices to consider

(P, @P)|*— (2, ,) 1%
= {[(¥, ®2,)+ (2, ®P,)|} {l(¥, @D,)| — (D, ®D,)I[}
< (el +lelhe (2.29)

since ||Q®;||=1. Q.E.D.
Lemma 2.5: Given VeH,QH,, ||V||=1. Let
p= Sug) I(‘P: Ql’QZ\I’.)—(\I’)QIT)(\If’ Qz\]:,)| /(HQlH' ||Qz”) (2 30)

where Q,, Q, run over all operators in R,, R, respectively. If p<4/25 we

have
1= d(W; R, R)< L [1-(1—4p)"] 2.31)

Proof: Let
\I’ = Z K;\PI;®\I’Z; (2 32)
be a standard diagonal expansion of ¥. By lemma 2.2 we have
d(¥;R,, R,)=2}. Let P, P,; be the minimal projections corresponding
to ¥,;, ¥,; respectively. Then we have
pZ I(\I,’ P11P21\I,)—(\If’ PIIT)(T’ lely)| = I)'%_)’%[ (2' 33)

which implies either
2 1 _ 1/2
7»127[1‘9“(1 4p)*] (2.34)

or

M=o [1—(1—49)"] (2.35)
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Assume Eq. (2. 35) is true. We hav 3I1A#=1 and A;<\,. For p<4/25

we have
_ _ 1
Ve Ve 5 TI—(1-4p)7]<1 (2.36)
It follows that we can choose # so that

SIAi>Vp  and SIA>Ve (2.37)

Let 0,=(21P,)®L, 0,=1Q(X P,;). Then
i=1 i>n

P> l(\If, Qle\P)_(‘y’ qu’)(\y7 QZ\I,)| >p (2 38)
a contradiction. Q.E.D.

Lemma 2.6: Let {R,},c, be atype I factorization. A vector YEH
is factorizable if and only if there exist mimimal projections P,ER,, for each
ac A such that P,¥ =Y. If the set A is finite, then V is factorizable if and

only if it is a product vector.

Proof: We can assume ||[¥||=1. We first show that the existence
of minimal P, with P,¥=W¥ implies that ¥ is factorizable. Thus let

o, a, be given. Then we have

H = (® H,)®H’ (2.39)
Ry; = {BH)®( ®1,)} &1 (2. 40)

But ITP,;¥ is a product vector with respect to this decomposition. It
i=1

follows that
(¥, 11 0,,%) = T1(¥, 0,,7) (2.41)

for all Q,;€R,;. Thus W is factorizable.

We now prove the converse. For each a =4 we have
H = H,QH,
R, = B(H)®1
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For all Qg R, and all # we have
(¥, Qu1100%) = (¥, Q¥XY, [10,,9) (2. 42)

Since the union of Rg, 8=« is irreducible on H}, any Q0’1 Q®B(H) can

be approximated weakly by operators of the form

21C({eh) 1 Oy (2.43)
It follows that

(\F’ QwQ/T) = (‘I,) Q,,,\I’)(\I’, Ql‘y) (2 44)

for all Q,€R,, O’€R,. Itnow follows from the preceding lemma that ¥
is a product vector with respect to the decomposition H,=H,QH/. Thus
there exists a minimal projection P, R, such that P, ¥ =V,

If the set 4 is finite, then we can tacke 4=1, and we have H= é H;.
Clearly \If=i1=£ll P;¥ is a product vector. Q.E.D. :
Lemma 2.7: Let {R}.c;, be a finite type I factorization., For any
unit vector W< H let
d, = d(¥;R,,--,R,) (2. 45)
d, = inf d(Z;R(J), R(J®)) (2. 46)
where | runs over all subsets of I,,. Then there exist positive numbers & and &

such that

1-d,<¢ (2. 47)
implies

(1—d,<)1—d,<5(1—d,) (2.48)

Proof: Our proof consists of three parts. In the first part we obtain
a subset [ satisfying a certain condition (Eq. (2.57)). Choose a product
vector @P;=H such that

](\Ps ®(Di)|2 = dl (2 49)

For each j&1I, let 4; be an index set containing 0 such that the cardinal
of 4;is dim H;. Let ¥;,, k€A, be an orthonormal basis for H, such
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that ¥,,=®;. Let a denote the sequence (a,,, at,), a;E4;.

denotes the sequence with all a;=0. The vecotrs
\II(OZ) = j@ \I,J'mj

form an orthonormal basis for H. We now expand
¥ =31, Ca)¥(a)
Then
4, = |C0)]* and 1-d, = 37| C(a)]"
ax

171

a=0

(2. 50)

(2.51)

(2.52)

We note that if C(cr)==0 then at least two «;=0, otherwise one could con-
struct a vector @X; with (¥, ®X,)|*>d,. Let J. J° be some partition

of I,. This induces a splitting of the sequence a which we write

a={a(]), a(J)}. Let
A(J) = {a:a(J)#0, a(J°) = 0}
AL T = {a:a(J)#0, a(J )0}
)= 23 [Ca)*
asA(])
CLJT)= 23 [Ca)l?
aeA(J.J")

We will prove that there exists a J such that

C<J>+C<J°>s—§-<1 —d)

Let N(«) be the number of a;=+0. Let
k()= > [Ca)|*/N(e)
acA(],J")

AG) = {aia,+0)
Al T) = AGYNAU, J)

o ADNAUY i jeJe
A) = .

G =Ly i re
KGD= 3 (C@N@,  i=1,2

(7>,

(2.53)
(2. 54)
(2. 55)

(2. 56)

(2. 57)

(2.58)

(2.59)
(2. 60)

(2. 61)

(2. 62)

Choose some J for which k(J) is maximal. For anyj&], let J'=]— {j}.
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Since N(a)=1 implies C(ex)=0, we have
k(J =)=k )~k J) (2. 63)

We obtain the same equation for j& J° by a similar argument with
J'=JU{j}. Thus k(J) maximal implies that k,(j, J)<k,(j, J). Now

C(LJ) = Zk(, =2, k0, J) = C(J)+CU") (2. 64)

Since

CN+CUTN+C, T) = 1-4, (2. 65)
we have

1

C()+C(J) <5 (1= 4 (2. 66)

This completes the first part of the proof.
We now prove that there exist positive numbers &, and 8 such that

1—d, <&, implies 1—d,<8(1—d,) (2. 67)

Write H=H(J)®QH(J°). We have

Y(a) = ¥(a(])@¥(a(J)) (2. 68)
To simplify notation, let a(J)— B3, a(J)—<. Then Eq. (2.51) becomes

¥ =3 Coy¥s(J)QYJ") (2. 69)
The quantity

d = d(¥;R(J), R(J) (2.70)

is the largest eigenvalue of D=CC* where C is the coeflicient matrix in

Eq. (2. 69). Since

l—dzzl—dz%(l—d2)> L 1 _Trace D?) 2.71)

—2
it suffices to find &,, 8 such that 1 —d,<¢&, implies
1-Tr D*>2(1-4d,)/8 (2.72)
We write C =4 + B where
Agy = Cp,Cy[Cyy (2.73)
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Note that Bg,=B,,=0. This gives ¥=¥,+ ¥, where

v, = [Eﬁcﬁo\yﬁ(] )] ®[zvcovwv(] c)]/ Coo (2' 74)
We define the unit vector
Y'(J) = 2Ce¥o(J)/[d,+C(J)1" (2.75)

Let P be the one-dimensional projection onto W/(J), and let d,=||'¥,|/°.
Then we have AA*=d, P and we get

D=d,P+K (2.76)
where K=CB*+BA* 'Thus

TrD? = d?+2d, Tr PK 4+'Tr K*? (2.77)
We have

d, = [[,]I" = 23 | Ag® (2.78)

Using Egs. (2. 66) and (2. 73) we get
d, = d,+C(J)+C(J)+C()C(J*)/d,

< dy o (1= d)+(1—dy /(16) 2.79)
Thus
d,,gé—(l +dy)+(1—d,}/(16d,) (2. 80)
This gives

di<d,+(1—-d\}/4+(1—-d\J(1+d,)/(16d,)+(1—d,)/(16d,}" (2.81)

Then (1—d,)<¢, for any 8,<% gives

d:<d,+(1—d,y/2 (2. 82)
We now introduce the quantities
ag =3 |dg|* (2. 83)
Y0
bj =5 1By’ (2. 84)
G =3 ICnl’ (2.85)
7F0

We have
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Nei =53 |Cul* = 1-d—C)< 14,
Since Agy=C4g,C,,y/C,, we get
2ag =312 [4ey|* = [C())+4ILC(T)]/d,

It follows from Eq. (2. 66) that
Sap< o (1-d)

Since Bgy=Cgy— Ap, we have
| Bey|*<2(| Cpy|*+ | Agy*)
Since Bg,= B,y =0 it follows that
205<23 33 (1C 1"+ [ 4 1%)
B0 Y0
<2[1-d,—C(J)—C(J)1+2C(J)C(J ) /d,

Then (1—d,)<¢, for any 81<-;— gives

(N +CJ)—-C(J)C(J°) /4, =0
Thus
2 05<2(1-4d))
We have
Tr PK = (¥'(J), K¥'(]))
Noting that Bg,=B,=0 we find
[d.+C(J)]ITr PK | = ‘B BZ_Y C_Bo(CMEB’v+BBvAB’v) Cyryl
< Zﬁ: 52 | CoocpberCry | + BZ >3 | Cobpag Cr|
+0

+0 g’

<A-d){CLCT)+d /2 +1)
Thus
|'Tr PK | <(1-d,)(vV2 +1){C(J)/[C(J)+d.]}”

It remains to estimate |Tr K?|. We have

@.

.

@.

(2.

.

Q.

.

.

@.

86)

87)

88)

89)

90)

91)

92)

93)

94)

. 95)
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K? = CB*CB*+CB*BA*+ BA*CB* + BA*BA* (2. 96)
By a similar calculation to Eq. (2. 94) we find

ITr K2 < | DD ,2 cpbpreprbp| +21 33 D7 cgbirag|
B/+0 B B/%0

B0
+1 23 3 beagbgag|
B0 B’=0
<(1-d)y(2+2v2 +1) (2.97)
Then Egs. (2. 77), (2. 82), (2. 95), (2. 97) give
Tr D*<d,+(1—d,){(d,) (2.98)

where
f(d,) = (7T+4V2)1—d)/2+2(1+V2)(1—d) /(1 +d)]*  (2.99)
for dIZ—;—. From Egs. (2. 71-72) we have

1=d,> 2 (1-d)[1-£d)] (2. 100)

Thus we can choose any 813—12— such that

f(1—¢,)<1 (2. 101)
(which is not satisfied for any &, >% anyway>. Then Eq. (2. 67) is satisfied
with

5>2/[1—-f(1—¢)] (2. 102)
In particular & =1/10, § =20 satisfy Eq. (2. 67).

The third and final part of our proof is to show that Eq. (2. 67) can

be replaced by the condition

1-d,<¢,/(14+8) implies 1—d,<8(1—d,) (2.103)

The proof is by induction on n. For n=2, we have d,=d, and the result
holds trivially. Now assume the result for n—1, and consider the factori-
zation R,,--,R,_,, R, VR, into n—1 factors. Let d/, d, denote the
quantities d,, d, for this factorization. Let P;=R;,i€I, , be minimal

projections such that

(@, P, P, ) = d/ (2. 104)
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By assumption we have 1—d/<8(1—d,’). Since d,’>d, we get

1-d/<8(1—-d,)<&3/(1+8) (2. 105)
Let P,_,=R,_, be a minimal projection such that

(v, P, 9)>d, (2. 106)
Then ||P,_,¥—¥|’<1—d, and

[|P, -+ P,_(P,..¥—W)|*’<1—d, (2.107)
If follows that

1_(\1’7 P, Pn—l\P)S(l—dz)+(1—dl,)
<&/(1+8)+&3/(14+8) =¢& (2. 108)
It now follows from Lemma 2. 3 that 1—d,<¢&,. Eq. (2. 67) then gives
1-d,<6(1—4d,) (2. 109)
It follows that the positive numbers £€=¢&,/(1+38) and § have the desired
property. Q.E.D.
Apart from the condition that Eq. (2.101) be satisfied, there is a
good deal of freedom in the choice of & § in lemma 2.7. The choice
&,=1/10, §=20, and £=1/210 is one possibility. One can obtain a smaller

3 by choosing a smaller &,.

3. Discrete Tensor Products

In this section we discuss the relevant properties of the incomplete
tensor product space (hereafter referred to as ITPS) defined by von
Neumann.” We assume the reader to have some familiarity with the pro-
perties of an ITPS. We define an ITPS and discuss product vectors.
Lemma 3.1 gives an asymptotic property of vectors in an I'TPS. We
discuss the associative law, and use it to show that any ITPS gives a
complete atomic Boolean algebra of type I factors. Lemma 3. 2 proves that
a vector in an ITPS is factorizable if and only if it is a product vector.
Lemma 3. 3 proves that a weak limit of product vectors is a product vector.

Let {H,} ,c4 be a set of Hilbert spaces, and let ¢,=H,, be a set of unit
vectors. The I'TPS
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H = Q@H, (3.1)

ac4

containing the product vector ¢ = Q¢,, may be defined as follows. Let ¥§”
be an orthonormal basis for H, such that

vy = P (3 2)

Then an orthonormal basis for the ITPS H is given by the product vectors
U(B) = @ Vi (3.3)

where @ runs over all sequences 8,, «=4 such that 8,=0 a.a® The
ITPS H depends on the reference vector @d, (unless the set A4 is finite).

If there is no danger of ambiguity we may write

H=QH, (3.4)

as4

without explicitly including the reference vector. Note that the product
vectors form a total set for H. For a subset JC 4, we write H(J)= ® H,.
asJ

We now discuss briefly the basic properties of product vectors, ®X,,,
X,=H, where

0< IT [[X,]|< o0 (3.5)

Two such product vectors are said to be equivalent, ®X,~ Q) if and
only if

2 | Xy da) =11 <00 (3. 6)
This is equivalent to requiring that

I (Xy> ¢a) 3.7)

ac4d

converge.” Furthermore (X,, ¢,)=0 for all @ implies that

ml;(xa,,‘p,,,)qzo (3.9)

22) fBu=0 a.a. means B4=0 except for a finite number of . The a.a. reads “almost
always”.

23) If 24 are complex numbers, then [Tz, converges if and only if 331 —2|<oce. If Iz
converges and 2g+0 for all «, then Tz4=+0. Cf. J. von Neumann (reference 2),
lemma 2.4.1.
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If @X,~Q®d¢p,, we may define it as a vector in the I'TPS H determined
by the reference vector ®¢,, as follows. We have

xw = Eﬁmcw(lem) ‘I’;f:) (3 9)
For any finite subset J C 4 let

X(J) = { ® X} @{ ® ¥ir}

=2 CB)¥(B) (3.10)
where
C](IB) = {wgfcw(lew)} {,,,Ecaﬁ“' o} (3 11)
Eq. (3. 6) now implies that
1}1:1 X(J) = Q {I’LDJJX( e (3.12)

exists (where J’ is finite, and { }* denotes the strong closure of the set
{}). We shall have occasion to make use of such limits in the following.

Conversely, if X is a product vector X, H, then

wl;-[A(xm 7¢w) = (X: ¢’) (3 13)

and. QX,~ Q.
Lemma 3.1: Let VU be a vector in the ITPS H= Q®'«H,. Given

asA

&>0, there exists a finite | C A and ¥ ;€ H(J) such that
W=, @{ ® ba}lI<E (3. 14)

Proof: Choose basis vectors ¥(/3) as in Egs. (3. 1-3). Then we can

expand

¥ = Z,C(8)¥(B) 3. 15)
Choose a finite subset B of the 8 so that

Z.|cer<e (3. 16)
Let J°={a:B,=0 for all B&B}. Then ] is a finite set and

E CR)¥(B) = ¥,®{ ® da} (3.17)

Q.E.D.
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It follows from this lemma that we can write
Y =lim¥,Q{ ® ¢a} (3.18)
T4 acsTC

(see Eq. (3. 12)).
We now consider the associative law.? Let Kz, S B be a partition
of the index set 4. We construct a unitary mapping between the I'TPS

H = Ag@b)a H, (3.19)
and the ITPS

ﬂ%)3‘8’4‘“"’1&03H(KB) (3. 20)
where

H(K;) :wg;wm)Hm (3.21)
and

H(Kp) = g}gﬂqu (3.22)
For any product vector X, H, let

X(Kpg) = ;8;5%“ (3.23)
Then the mapping

“gxm —>g§; X(Kg) (3. 24)

is one-to-one and isometric between total sets. Hence it can be extended
to the desired unitary mapping. In practice we shall write

H = ®H(Ks) (3. 25)

without explicitly writing the unitary operator. The preceding results are
all given in the basic paper of von Neumann.”

We now show that any I'TPS gives a complete atomic Boolean algebra
of type I factors. For each a4 let

R, = BUH.)®( ® 15) (3. 26)
Clearly
R,CR;, a+p 3.27)

24) J]. von Neumann (reference 2), Sec. 4.2.
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It was shown by von Neumann that*®
Vs R, = B(H) (3.28)

Thus {R,},c4 is a type I factorization (see definition 1. 1). Forany JCA4,

the associative law gives

H = (d@]Hm)(@(dchw) (3. 29)
Thus®®
R(J) = M\E/,Rm: B(H(J)) (3.30)

is a type I factor, and we have a complete atomic Boolean algebra of type
I factors.
We now generalize lemma 2. 6.

Lemma 3.2: Let H= Q®H, be an ITPS, and let {R,} =4 be

ac4

the associated type I factorization. Then Y& H is factorizable if and only

if it is a product vector.

Proof: Clearly any product vector is factorizable. It remains only
to prove the converse. By lemma 2.6 there exist minimal projections
P,eR, for all a= A4 such that P,¥=T. We can assume ||¥||=1. For
any finite / C 4, let P(]) :aErP'” . Then P(J)¥ =Y, and for any Q= R(J)

we have

P(J)Q¥ = (¥, QV)¥ (3.31)
Since the set of all such QW is dense, it follows that
P = li£n P(]) (3. 32)
T
exists and is the one-dimensional projection operator onto. ¥. Now
choose ¥, H, such that P,W,=,, |[¥,l[=1, (¥,, ¢,)=>0. Since
||P®¢m|| = H(‘I’an qbw) (3 33)

it follows that, @ ¥,~®de,, hence W, H. Since PR¥,=QW¥,, we
have ¥=CQ®V¥,, |C|=1. Q.E.D.

25) J. von Neumann (reference 2), Theorem IX.
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Lemma 3.3: Let H= Q®«H, be an ITPS. If

ac4

® = weak lim ™ (3.34)

n->00
where each ®™ is a product vector, then ® is a product vector.

Proof: &Y is a product vector in a finite tensor product
H=(Q H,)QH' (3. 35)

where {a;} is any finite subset of A.
The proof of Lemma 2. 1 shows that the limit ® is also a product vector,
in this finite tensor product. Hence & is factorizable in H=®H,. By

Lemma 3. 2, it is a product vector.

4. Complete Atomic Boolean Algebras of Type I Factors

In this section we consider type I factorizations {R,} 4= (see definition
1.1). If J is afinite subset of 4, then R(J)= \/ R, is also a type I factor.”®
L1=Ps

Thus we have an atomic Boolean algebra of type I factors. But if the

factorization is obtained from an ITPS

H-g . 1)
by
Rm = B(Hw)®( X lm’) (4 2)
a’+a

(where 1, denotes the minimal von Neumann algebra of all multiples of
the identity operator on H,) then R( J) is type I for any J C 4, and we have
a complete atomic Boolean algebra of type I factors (see Egs. (3.26-30)).
We shall call any type I factorization R, a tensor product factorization
(hereafter referred to as TPF) if it is unitarily equivalent to R,obtained by
Eq. (4.2). The main result of this section is that if R is any complete
atomic Boolean algebra of type I factors with atoms {R,},c4, then R, is
a TPF (Theorem 4. 1).

26) F.J. Murray and J. von Neumann (reference 1), lemma 5.4.1.
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We begin with a discussion of what we call a partial tensor product
factorization (hereafter referred to as a PTPF). Then we give an example
of a countable type I factorization which gives a complete atomic Boolean
algebra {R(J)} where R(J) is type I if either J or J° is finite, and is type
IT otherwise. Lemmas 4. 1-2 are useful technical lemmas. Lemmas 4. 3—4
give some rather obvious conditions that a type I factorization is a TPF.
Lemma 4.5 gives a necessary and sufficient condition that a PTPF is a
TPF. Lemmas 4. 6-7 give further conditions that a type I factorization
is a TPF. The key to proving our main result is the condition given by
Eq. (4. 64). Lemma 4.8 proves that a type I factorization is a TPF if
this condition holds. However the real motivation for this condition is in
the proof of lemma 4.13, where we construct an R(J) which is not type I
under the assumption that this condition does not hold. Lemma 4. 9 gives
a condition that a countable type I factorization is a TPF. Lemmas 4. 10—
11 give sufficient conditions that a countable type I factorization is a PTPF.
Lemma 4. 12 is a cluster property used in the proof of lemma 4. 13.
Lemmas 4. 8 and 4. 13 prove our main result, which is stated as Theorem
4.1. Lemma 4.9 is the only lemma which is unnecessary for the proof
of Theorem 4.1 as given here.

We begin with a discussion of what we call partial tensor products.
Let H,, a=A be given, and consider a partition of the index set 4 into
finite subsets Kg, B=B. Let

H(K;) = @;{ H, (4.3)
acKg
If €K, let
R, = BUH)®( ® 1) (4.4)
a’:KB

Choose some reference vector Wy in each H(Kj,) and construct the I'TPS

H = & H(K;) 4.5)
If acK,, let
R, = R,®( ® 1) (4.6)
B’=B

Clearly {R,}.ca is a type I factorization. We shall call any type I factoriza-
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tion R, a partial tensor product factorization (hereafter referred to as
PTPF) if it is unitarily equivalent to R, obtained by Eq. (4.6).

We consider the following type I factorization, which is based on an
example given by von Neumann Let H,;, i€l,2, nel., be two-
dimensional Hilbert spaces. Let R,;=B(/,;), and choose a unit reference
vector ¥, in each H,,®H,, such that

(¥, Ry, R,) = 1/2 (*+.7)
Let
H= Q(H,®H,) (4.8)

be the I'TPS containing the unit product vector. ¥=QW¥,. Let

R, = (R11®111)®[ g (1n1®1n2)] (4 9)
Rn = (1n1®an)®(Rn+l,1®1n+1,2)®[m¢§+1(1m1®1m2)1 (4' 10)

If either J or J° is finite then R(J) is type I. If both J and J° are
infinite, then both J, /¢ contain infinitely many #z such that either n+1
], ] or n—1&]° J respectively. It follows from von Neumann’s
results that R(J) is type II for this case. Thus we have a complete atomic
Boolean algebra {R(J)} of type II and type I factors. Since the only type
I factors are for finite or cofinite J, it does not contain any infinite com-

plete Boolean subalgebra of type I factors, which implies that R, is not
a PTPF.*»®

Lemma 4.1: Given a Hilbert space H, a vector W< H, a projection
P and a subset SCH. Then

(1) (@, ®)=36 for all p=.S implies (¥, ®)>§ for all D= S™.

(ii) (@, ®)=0 for all =S implies (¥, ®)=0 for all D= S™.

(iii) P®=0  for all =S implies PO=0  for all D& S™.

(iv) PO®=® for all DS implies PO=>  for all D=S™.

27) J. von Neumann (reference 2), Sec. 7. 3.

28) J.R. Klauder (private communication) has shown that by a suitable choice of basis
for the space of test functions, the representation of the CCRs for a relativistic free
scalar field gives a type I factorization which is not a PTPF.
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Proof: We prove (i). Since
PeS—-5v/||P|P 4.11)

satisfies
(¥, ®)>0 (4.12)

we may take §=0. Let ®=S™ and assume
(¥, ) =€<0 (4.13)
Then the weak neighborhood
N(®;¥, €/2) = {(X: (¥, P—-X)|<&/2} (4. 14)
is disjoint from .S, which contradicts ® .S ™.
Clearly (i) implies (ii), and (iii) is equivalent to (iv) (let P—1—P).
(iv) is equivalent to PX=0 implies (X, ®)=0 which follows from (ii).
Q.E.D.
Lemma4.2: Lee H=H Q®H,, R =B,(H)R®1,, R,=1QB(H,).
Let P E€R,, n<€1., be minimal projections with

weak lim P = \P (4. 15)

7300

and let Q> &R, be such that ||Q™||<1 and
weak lim PP Q™Y = @ (4. 16)

nyoo

Then
@ = weak lim APQ™W¥ (4. 17)

n-poo

Proof: Let ®{, ®, be unit vectors in H, such that

POO™ = o (4.18)

Po, = @, (4.19)

(@, @,)>0 (4. 20)
We prove that

VA ®, = weak lim & (4. 21)

n-yo0

From Eq. (4. 15) we have (4. 22)
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lim |(@,, ®{)|* = lim (®,, P™d,) = A (4. 23)

hence
lim (®,, ®) = VA 4. 23)

For (X, ®,)=0 we have
lim |(X, ®)|* = lim (X, P™X) = 0 (4. 24)

which proves Eq. (4. 21). Let

Y =2INY,;Q0, (4. 25)
be the standard diagonal espansion of W given by Eq. (2.9). Then

PmOY = O QOMDE® (4. 26)

APO™Y = /A ®,Q0™DL™ (4.27)
where

D = NP1V, W)W (4.28)

DL = NNV (@, B W, (4.29)

From the equivalence of weak and o weak topology for a norm bounded
set, it follows that

|@§° — @7 |* = I N Wy, PW,;) — 0 (4.30)

where P™’ is the projection on the space spanned by the vector ®§
—+/M\ @, times the norm squared of this vector and tends to zero weakly.

Eq. (4. 21), (4. 30) and ||Q“?{|<1 implies (4. 17).

Lemma 4. 3: Let {R,},ca be a type I factorization. If there exists
a factorizable vector @ (see Eq. (2. 16) then R, is a TPF.

Proof: We can assume ||®||=1. For each a=4 we have

H = H,QH/,
Wi (4. 31)
R, = B(H,)®1
By lemma 2. 6 there exists a minimal P, R, such that
o =P,D (4. 32)

It follows that
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D = D,QD, (4. 33)
where we can take {|®,||=1. Now consider the I'TPS

Q©* I, (4. 34)

ac4

By a slight abouse of notation, we shall let Q,, denote the corresponding
operators in R,, B(H,) andB(®H,). For any Q,=R, and all n, consider
the map

11 0. — 11 0. (@) (4.35)
i=1 i=1
This mapping is one-to-one and isometric between total sets. Therefore

it can be extended by linearity and continuity to a unitary operator U from

H onto ®H,. By construction
UR,U = BUH,)®( ® La) (4. 36)
w':‘:w
Q.E.D.

Lemma 4.4: Let {R,},ca be a type I factorization. If there exists a

vector W, and a minimal projection P, in each R, such that

(¢, I P,W)>¢>0 (4. 37)

for all finite ] C A, then R, is a TPF.
Proof: For any finite J let P(J)=I1 P,, ¥(J)=P(J) ¥, and
o

S(J) = { |, WK} (4.38)

where K is finite. Since the unit sphere in Hilbert space is weakly compact,
the set S= (] S(J)™ is nonempty. Let®&S. ByEq. (4.37)and lemma
J

4.1 we have
(¥, ®)>¢ (4. 39)

thus ®=+0. Ifae], then P,¥(J)=Y(/) and lemma 4. 1 gives
Po=o (4. 40)

It follows from lemma 2. 6 that @ is factorizable. Thus R, is a TPF by
lemma 4. 3. Q.E.D.
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Lemma 4.5: Let {R,},cabea PTPF. If all R(J) are type I, then
R, is a TPF.

Proof: We have

H :B;gl):m’s)H(Kﬁ) (4. 41)
For any Jc A let

Joe=JNKs (4. 42)

Je=J°NKs (4. 43)
where either Jg or J4 may be empty. We have

H(K5) = H(Js)@H(J5) (4.44)
where the factor space is one-dimensional if the set is empty. Thus

H = g% {H(J5)QH(J5)} (4. 43)
and the factor

R =8 {B(H(Js)®@1)} (4. 40)

is now in the standard form considered by Araki,> who proved that R(J)
is type I if and only if

2 1= d(@s; R(Jp), R(JEN} <o (4. 47)
Thus all R(J) type I implies that
2 - i}}sf d(®s; R(Jp), R(J B} < o0 (4. 48)

It follows from lemma 2. 7 that

S {1—d(@g; Ry, @€ Kp)} < o0 (4.49)
which implies that®™

[l d(®p; R, a=Kp)+0 (4. 50)

Hence there exist minimal projections P, R, such that &= Q®; satisfies
the conditions of lemma 4. 4. Q.E.D.

29) H. Araki, J. Math. Phys. 4, 1343 (1963), Theorem 5 (especially Eq. (10.38)).
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Lemma 4.6: Let {R;}.c;_ be a countable type I factorization. If
there exists a vector W, and minimal projections P{"ER;, jE I, for each n
such that

lim (v, 1111P§""1f)>0 (4.51)

then R; is a TPF.
Proo: Let P(n)= ﬁP}’”. Then by weak sequential compactness
j=1

there exists a subsequence 7, such that

weak lim P(n,) ¥ = @ (4.52)
Then

(¥, @) = 11:2 (¥, P(n,)w)>0 (4. 53)

Now for each j and #>j we have

(¥, P(n)¥) = (P, P(n) P W)
< [P = (¥, P{PW) (4. 54)
Thus
lim (¥, P{"w)>0 (4. 55)

Since P§™ is a minimal projection, we may use the weak sequential com-
pactness in H;. Thus there is a subsequence of #z, such that P{
converges weakly. Choose a subsequence of this subsequence such that
P§ converges weakly, and repeat this process for each j. Let N, be the
diagonal subsequence, then by (4. 52)

weak lim P(V,) ¥ = @ (4. 56)
f>oo

and by construction

weak lim PV® = \,P; (4.57)

p>oo

where P;is a minimal projection in R;, and 0<x;<1. It follows from
lemma 4. 2 that

® = weak lim P, { Il P{®} w (4. 58)
k> i%]
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which implies that
®=P,® (4.59)
for any j. It now follows from lemma 4. 4 that R; is a TPF. Q.E.D.
Lemma 4.7: Let {R,},oa be a type I factorization such that all R(J)
are type I. If there exists a vector W such that
inf d(¥;R,, ,+++, Ra, » R({at; 7, @, }°)) = €>0 (4. 60)
where inf is taken over all n, o ,--+, a,,, then R, is a TPF.
Proof: We first prove that the number of =4 such that
d(W; Ry, R<1—8, 8>0 (4. 61)

is finite. Suppose there exists a countably infinite set of «;, €1,
satisfying Eq. (4.61). Consider the countable type I factorization
{R({a;, i€1.}°), R,;, i€1.}. It follows from Eq. (4. 60) and lemma 4. 6
that this factorization is a TPF. Using lemmas 2.4 and 3. 1, this implies

that
lim d(¥; R,;, R;;) = 1 (4. 62)

which contradicts Eq. (4. 61). It follows by a standard argument that
the subset

A4, = {ae4:d(¥;R,, R,)+1} (4. 63)
is countable. If e A, there is a minimal projection P,&R, such that
P,¥=1, hence {R,},ca is a TPF by lemma 4. 4. It follows from Eq.

(4. 60) and lemma 4. 6 that {R,},c,, is a TPF. Hence {R,},c4 is 2 TPF.
Q.E.D.

Lemma 4.8: Let {R,} ;e be a type I factorization such that all R(])

are type 1. If there exists some unit vector W such that
sup inf d(¥;R(J), R(J) =1 (4. 64)
K JCKC®

where |, K are finite subsets, then R, is a TPF.

Proof: Choose € such that & <& and §-& <1 where &, 3 are given
by lemma 2. 7. Choose a finite K’ such that
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l—Jinlgcd(\P;R( I R(JNH<¢E (4. 65)

For any finite J={a,,--*, a,} CK° it follows from lemma 2.7 that
1—d(¥;R,, ,+ Ry, R(J))LS-6'K1 (4. 66)
By lemma 4. 7 this implies that R, is a TPF. Q.E.D.
Lemma 4.9: Let {R;},c;_ be a countable type I factorization. If
there exists a vector U such that

3 {1—d(¥;RA), RUD} < o (4. 67)

then R; is a TPF.
Proof: Let
&, = 1-d(W;R(,), RUS)) (4. 68)

By lemma 2. 3 there exist minimal projections P,&R(7,), P,=R(I;) such
that
(¥, P,¥) = (', PY) =1-¢, (4 69)

which is equivalent to

(1=P,)®|* = [[A-P) Y] = ¢, (4.70)
Consider the minimal projection

P/ =P, P, (+.71)
in R.,. We have

PfY—v =P, (P;9—9Y)—(1-P, )¥ (4.72)
hence

1Py ¥ —W|* = ||P,_ (P —W)I[*+[|P, ¥ — W[

< P ¥— 9| +||P, ¥ — |
=&, +En, 4. 73)

which is equivalent to
1— (¥, Py®)<E,+E,,

It follows from lemma 2.3 that there exists a minimal projection Q,=R,,
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such that

N0, ¥ —WIP<E,+Ep,y 4.74)
Choose 7 such that

2 (€;+€;)<1/2 (4.75)

j=n

Let

n+m

v = (100, (+.76)

then

ko omimij-1

||‘I’7vfr,‘_ ?v’;H—kHZ = H Z( II Ql)(Qn+m+j\F“\I’)H2

j=1 I=n

k
S ,El (8n+m+j+gn+m+j—1) (4 77)

Thus Wp, converges strongly to a vector ¥” and ||W"—W|*< i (Ensj
=0
+&,1,-,)- Hence W30 implies ¥”=0 for large #n. For j># we have
Q;¥" =" (4.78)

Since one can always find minimal projections Qj&€R;, j&1,_, such that
(v, T Q™) >0 (4.79)
j=1
the conditions of lemma 4. 4 are satisfied and R, is a TPF. Q.E.D.

Lemma 4.10: Let {R,},c; be a countable type I factorization.
Let J, be any increasing sequence of finite subsets such that U, J,=I..
Then the following conditions are equivalent

(1) there exists some unit vector ¥ such that
lim d(¥;R(J.), R(J7) = 1 (4. 80)

(ii) there exist minimal projections P,= R(J ;) such that P,— 1 strongly.
(iii)  all unit vectors ¥ satisfy Eq. (4. 80).
Amny of these conditions implies that R, is a PTPF.

Proof: We first show that (ii) implies (iii). For any unit vector ¥
we have
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lim d(¥;R(J,), R(J9)> lim (¥, P,w) = 1 (4. 81)
Clearly (iii) implies (i). It remains to prove that (i) implies (ii). For each
n we have

H = H(J.)®H(J7) (4.82)
Let

¥ = 3 APa R (4. 83)

be the standard diagonal expansionf of ¥ given by Eq. (2.12). It follows
from lemma 2. 2 and Eq. (4. 80) that A{*—1 as n— oo. Let P, be the
minimal projection associated with the vector B{” €H(I7), then P, ¥ —¥
strongly. We now prove that P,®—® strongly for all = H.

First, let U be a unitary operator in R(J,). Then, for ®=UWY,

1P, o—@| = [|P,¥—¥[*—0 (4. 84)

Since the union of R(/,) is irreducible, the vectors of the form ®=UW¥ are
dense in the Hilbert space. Since ||P,||=1, (P,—1)®—0 for a dense set
of @ implies the same for all ®.

Finally we show that (i) implies that R, is a PTPF. We can choose a

subsequence 7, such that
31 {1—d(¥3R(J ), RUED} < o0 (4. 85)

The result then follows from lemma 4.9. Q.E.D.

Lemma 4.11:  Let {R;}.c,_be a countable type I factorization. Let d
be a density matrix (nonnegative trace class operator with Trd=1). Let
J » be any increasing sequence of finite subsets such that U, J,=I.. If for
each n there exist density matrices d,=R(],), dieR(J5) such that for all

0.€R(J.), 0.€R(J5)
| Tr (dQ,0,)—Tr (d,0,) Tr (d70Q,)| < &0l | Q.| (4. 86)
where lim €,,=0; then R, is a PTPF.

Proof: Let W be an eigen vector of d belonging to the eigenvalue A =0,
[|®||=1, and let P be the associated one-dimensional projection. Since
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the union of R(/,) is irreducible, it follows from von Neumann’s density

theorem® that its unit sphere is dense in the unit sphere of B(H) in the

strongest operator topology.®” It follows that, given £€>0, there exists a

sufficiently large integer n and an operator P,ER([,), ||P,l|<1 such that

I(P—P,)d""||gs = ||d"*(P—P¥)|lus<&
where || T'||gs is the Hilbert-Schmidt norm defined by

ITllus = [T T*T T2 T||
For any Q=B(H) consider

Tr (PdP—P,dP})Q = N¥, Q¥)—Tr (P, dP}0)
We have

PdP—P,dP}¥ = (P—P,)dP+ P, d(P—P})

Since
['Tr ST| <[IS!las!I T |us
we have
|'Tr (PdP—P,dP})Q| <||(P—P,)d"|us|ld V*PQl|us
+ QP ,d " |usl|d (P —P¥)llus
Now

[d"2PQ|4s = Tt Q*PdPQ = MW, Q0*W)
which gives

[|d**PQ|las <AY*10|
We have

OP,d"* = QPd"*+ Q(P,—P)d"*
Since

IP|lgs = [1d"*]lgs = 1
it follows from Egs. (4. 95), (4. 94) and (4. 87) that

30) See J. Dixmier (reference 15), Sec. 1.3.

(4.87)

(4. 88)

(4. 89)

(4. 90)

(4.91)

(4.92)

(4.93)

(4. 94)

(4. 95)

(4. 96)

31) The strongest topology is defined by the semi-norms T — [3|]| Tx;| |2]V2 where {x;} is
any sequence of vectors such that 3V|lx;||2<co. An equivalent definition is to use
the semi-norms T—[Tr dT*T]"? where d is any nonnegative trace class operator.
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IOP,d"*||as<[|QII(A*+€) (4.97)
Egs. (4. 92), (4. 94), (4. 97) and (4. 87) now give
| Tr (PdP—P,dP¥)Q| <&@\ +¢€)/|0l] (4. 98)

which implies

IM®, Q9)—Tr (P,dP¥Q)| <&(2a+€)l|Q|l (4.99)
forany Q=B(H). Nowlet 0=0,0, where Q,€R(/J,), O,=R(J;). Then
Tr (P,dP30Q,Q,) = Tr [d(P¥Q.P,)Q.] (4. 100)

and it follows from Eqgs. (4. 86) and (4. 99) that
(¥, 0,0,%)—Tr (d,0,) Tr (d;0,)| <€IO.N 10,1 (4. 101)

where

d, = \"'P,dP} (4.102)

& = [e,+e@n"+ )]/ (4. 103)
By letting O,=1 we get

(%, 0,9)—Tr (d,0)| <€ IQ] (4. 104)
By letting O, =1 we get

(¥, ;% —Tr (d,) Tr (d:0,)| < €110, (4. 105)
By letting Q,=0Q,=1 we get |1—-Trd,| <&, hence

(¥, 0,%)—Tr (d;0,)| <2¢']|Q,] (4. 106)

Egs. (4. 101), (4. 104), (4. 106) now give
(¥, 0.0,%)—(¥, O, WY, Q,9)[<4lQ\ IQ:] (4. 107)

Since & was arbitrary, and lim &, =0, it follows from lemma 2. 5 that

lim d(¥;R(J,), R(J7) = 1 (4. 108)

and lemma 4. 10 implies that R; is a PTPF. Q.E.D.

Lemma 4.12: Let {R,},ca be a type I factorization. Given any
unit vector W, any finite subset | C A, and any € >0, there exists a finite K D |
such that for all Q,€R(J), Q,eR(K*) we have®”
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(¥, 0.0,%)—(¥, Q. ¥X¥,0,9)| <l 1]l (4. 109)
Proof: Since J is finite, R(J) is type I and
H = H(J)®QH(J°) (4. 110)
Let
¥ = 31 e ®6; (4. 111)

be the standard diagonal expansion of ¥ (see Eq. (2.12)). For any
0,€R(J]), 0,€R(J*) we have

(¥, 0,%) = 23 Ai(a;, Q1) (4.112)
(¥, 0.0,%) = 2 ar (o, Q.0,;)B:, O.6;) (4. 113)
For any & >0 we can choose z such that
IR (4. 114)
Then
(¥, 0.0,%)— (¥, Q,¥)¥, Q,%)|
<1 3 Qa)(B: , Qi) —8:,(Y, Q]|
+L&+ 21O 1.1 (4. 115)
For each 11, let U, be the partial isometry on H(J°) defined by
Uip = (81, $)B: (4. 116)
Then
U:B; = 8,;8: (4. 117)
U¥B; = 8,,8 (4. 118)

Since the union of R(K—J) over all finite KD J is irreducible in R(J*),

it follows from the density theorems of von Neumann and Kaplanski*®

32) Lemma4.12 is a cluster property similar to lemma 6 of H. Araki, Prog. Theo. Phys.
32, 956 (1964). It should be noted that lemma 4.12 is a special case applying to
type 1 factorizations, and the uniformity ir Q;, O, does not follow from lemma 6 of
this reference.

33) See J. Dixmier (reference 15), Sec. I.3. We use the fact that if %, B are *-algebras,
AW and N is strongly dense in B then the unit sphere of hermitean elements of U is
strongly dense in the unit sphere of hermitean elements of B.
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that there exists a finite K D J and operators V;eR(K— J), ||[V,|[<]1, i1,

such that
U=V )Bill<s
WUF-VEHBI<S
for all 7, j1I, where
o =¢&/\n)
where
An) = sup {l,igv‘;,lh,-)»j}
i
It follows that
1B:—ViBill = (U~ V,)BilI<S
We have, for Q,eR(K°),

|(Bi: Qzlej)_aij(ﬁl»' Q2Bl)l
< |(181: Qz[V;ij—St‘j]ﬁl)! +28”an

Since

ViV 8, = 8:,8+(VE—=UHB;+VEV ;= U8,

we get

](181': Qsz)—Sij(Bll Qzﬁl)] <48HQz||
for all i€l,. Thus we find,

| S (e, QX8 0.8))]

<M)Q4[14311Q:
<4&|Q:!] 1l Q.

Using Eqgs. (4. 111) and (4. 114) we have

|(\If: Qz‘y)_(ﬂn 9251)[
< MLB:, Q) — (81, QY]] +26110

Since 3)AZ<1, it follows from Eq. (4. 126) that
i=1

(4.
4.

(4.

4.

(4.

(4.

(4.

(4.

(4.

(4.

119)
120)

121)

122)

123)

124)

125)

126)

127)

128)
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(¥, Q,%)— (B, Q:8)) <(48+2€)[|Q,ll (4. 129)
Using Eq. (4. 126) again, we have

(P, 0,9)—(8,, 0:8,)| <(88+2&|Q,l|
<10¢')|0, (4. 130)

for allzel,. It follows that

| 33 MKa, Qa(B;, Q) — (¥, Q)]
<101, 11Q.ll (4.131)
Using Egs. (4. 115), (4. 127) and (4. 131) we get
(¥, 0.0.9)—(¥, Q.9)X¥, 0.9)| <KENQ:I QI (4.132)

where
f(e") = 15¢’ +2(&")" (4. 133)

for all Q,eR(J), O.=R(K®). Since & was arbitrary, we can choose & so
that f(¢’)<e. Q.E.D.

Lemma 4.13: Let {R,}uca be a type I factorization. If there exists
a unit vector U such that

sup inf d(¥;R(J), R(J)) = 1-3, >0 (4. 134)
K JCKC
where K, ] are finite subsets, then there is some infinite subset | C A such
that R(J) is not type 1.

Proof: We assume that all R(J) are type I and derive a contradiction.

We construct a countable family of mutually disjoint finite sets J,, k1.,

such that for any Q,e \n/ R()), 0.= \7 R(J,) we have
E=1 k=n+1

(¥, 0.0.9)— (¥, Q,¥XNY, Q;¥)| <&,IQ]] | Q] (4. 135)

where lim €,=0, and

d(¥;R(J), R(JEN<1-3/2 (4. 136)
for all £>1. Choose a finite J, such that

d(w;(J.), R(JD)<1-8/2 (4.137)
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Let €,>0 be any sequence satisfying lim &,=0. By lemma 4.12 there
exists a finite K,D J, such that Eq. (4. 135) is satisfied for n=1 by any
0,=R(K7). Let J§ be any finite subset of K§ such that Eq. (4. 136) is
satisfied. Let K,DK,U J, be any finite subset such that Eq. (4. 135) is
satisfied for =2 by all Q,eR(K,U J,), 0,=R(K3). Repetition of this
process gives the desired sequence.
Let J=UJ,. By assumption R(J) is type I and we have

H = H(J)®H(J) (4. 138)

R(J) = BH()®L (4. 139)
The unit vector ¥ € H defines a density matrix d on H(J) by Eq. (2. 4).
It follows from Eq. (4.135) and lemma 4. 11 that the countable type I
factorization {R(J,)} e, is a PTPF (take d,=d}=d in lemma 4. 11). By
assumption all \/ R(J,) are type I, and lemma 4.5 implies that R(J,) is a
TPF on the space H(J). Thus {R(J), R(J,)} is a TPF on the space H.
This implies that

lim d(Z5R(J,), RS = 1 (4. 140)

which contradicts Eq. (4. 136). Q.E.D.

Lemmas 4. 8 and 4. 13 imply that a type I factorization is a TPF if
and only if all R(J) are type I. This is our main result, which we sum-
marize as

Theorem 4.1: Let R be a complete atomic Boolean algebra of Type I
factors with atoms {R,},c4 on the Hilbert space H. Then thare exist Hilbert
spaces H,, a= A such that H is unitarily equivalent to the ITPS ®Q H,

aEA

and R, is unitarily equivalent to

B(H,)® {w&@wlm’}

R is determined up to unitary equivalence by the dimension function dim H,,.

5. Complete Boolean Algebras of Type I Factors and Continuous

Tensor Product Spaces

In this section we discuss complete Boolean algebras of type I factors,
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and introduce a continuous tensor product of Hilbert spaces (C'TPS) which
is a generalization of the discrete ITPS defined by von Neumann.”
Given a Hilbert space K, we define an “exponential” Hilbert space e¥
with the property that any discrete direct sum decomposition of K gives
a discrete tensor product decomposition of e (Theorem 5.1). We then
show that any complete Boolean algebra %3 of projection operators on K
defines a complete Boolean algebra e® of type I factors on e¥ (Theorem
5.2). This result for nonatomic 3 suggests the definition of a CTPS as
the exponential of a direct integral space. 'These CTPS obey an associative
rule which demonstrates explicitly the relation with the discrete ITPS of
von Neumann. We define factorizable vedtors and operators relative to a
complete Boolean algebra of type I factors. For the structure (e¥, e%)
where 9B is a complete nonatomic Boolean algebra of projections we give

some (possibly unbounded) factorizable linear operators on eX (Theorem

5.3).

Exponential Hilbert Space

Let K be a Hilbert space. We construct an exponential space eX as
follows. Let (®K)" denote the n-fold tensor product of K with itself,
and (®K)s the subspace of (®K)” spanned by the vectors (R)”, p= K.*»
(®K)"=(®K)3 is the one-dimansional Hilbert space of complex numbers.
Define®

o = & (@K ex)

We note that e¥ is always infinite dimensional (unless dim K=0). We

consider vectors in eX of the form

34) One usually defines (QK)% as the subspace of (XK)” spanned by all symmetrized
product vectors. However our definition is more convenient for our present purposes.
Since the symmetrized product of ¢+ ¢, can be obtained as (e, )(RD ¢;6,)"

i

where the sum is over all ¢;==+1, the two definitions are equivalent.

35) This space is well known to physicists as the Hilbert space on which the Fock
representation®> of the CCRs over the space K is defined. However Egs. (5.2),
(5.3) and lemma 5.1 are perhaps not so familiar.

36) V. Fock, Z. Physik 75, 622 (1932); J.M. Cook, Trans. Am. Math. Soc. 74, 222 (1953).
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et = ,?E, n) "(R¢)*, K (5.2)
We have

(e, e¥) = e¥ (5.3)
We shall denote the vector e® by Q. Note that (®K)g is a one-dimensional
space spanned by the vector Q.

Lemma 5.1: The vectors e® are a total set in eX.

Proof: It suffices to show that the linear space spanned by the
vectors e? contains all (®¢)” for each n. The proof is by induction. For
n=0, =0 spans (®K)3. Now assume that each (QK)¢, j=1, --,n—1

is spanned by the vectors e?. Consider the vector

x(N) = 4= 3 (1) @ngY (5.4)
We have
lim 2,V = (1) (@) (5.5)
Q.E.D.
Theorem 5.1: Let K=®K, be a discrete direct sum decomposition
of K. Let Qe¥a be the ITPS relative to the product vector €=Q= QRQ,.
The mapping

ed — ®e¢m
defined on total sets gives a unitary operator from e¥ onto QeXa.

Proof: For any YK we have Y=V, ¥,K, and || ¥, |[°=
[|®¥][°*< oo. Conversely, for any ¥, K, such that 31 ||¥,|[°< oo we have

Re¥e~ QQ,. These vectors form a total set in ®eXs. The mapping

e® > ® et
@

is isometric and one to one between total sets. Hence it can be extended by

linearity and continuity to a unitary operator from e* onto ®e*s. Q.E.D.
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Complete Boolean Algebras of Projections

The set of all projection operators on a Hilbert space K can be given
the structure of an orthocomplemented lattice as follows. If S is any
subset of K, let

St = {pcK: (¢pX) =0 forall XeS} (5. 6)

Let P(m) denote the projection onto the closed linear subspace m. We

define the lattice operations by

P(m1) VP(mz) = P((m1 U mz)J—_L) (5 7)
P(m1)/\P(mz) = P(m1 n mz) (5 8)

where U, N denote set theoretical union and intersection respectively.

The orthocomplementation is defined by
P(mYy = P(mt) = 1—P(m) (5.9)

A sublattice 9 is a Boolean algebra if and only if all P8 commute. If
K is separable, any complete Boolean algebra 3 of projections can be
characterized up to unitary equivalence as follows.*” 'There is a measure
space Z, a positive measure g on Z, and a measurable field of Hilbert spaces
K(2) such that K is a direct integral

K = SGBK(z)dp,(z) (5. 10)

Let E be the complete Boolean algebra of all measurable subsets of the
space Z, where the lattice operations V, A are given by set theoretical
union and intersection respectively, and X" is the complement of the set X.
For any X E, let P(X) be the projection onto all ¢ =K such that ¢(2)=0,
zeX’. Then X—P(X) is a representation of E by projection operators,
and 9B is the complete Boolean algebra of all P(X). The unitary invariants
of B are the equivalence class of the measure u, and the (equivalence class
of) dimension function dim K(2).

37) See, for example, J. Dixmier (reference 15), Chap. 1I; G.W. Mackey, Notes on
Group Representations (Department of Mathematics, University of Chicago, 1955),
Chapter II.
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Complete Boolean Algebras of Type I Factors

We now show that any complete Boolean algebra 3 of projection
operators on a Hilbert space K gives a complete Boolean algebra e® of
type I factors on the Hilbert space eX. Let P, then

K = PK®(1-P)K (5.11)
and by Theorem 5.1 we have

el = ePKRe K (5.12)
We define the type I factor R(P)=e? by

ef = B(efF)®1 (5.13)
If P=0, e is type I... Clearly

el = P = (ePY (5.14)
From Theorem 5.1 one can easily prove that for any P,, P, we have

efr\/efz = ef1VP, (5. 15)

ePipefz = ePi\Pz, (5. 16)

Thus the type I factors e?, P& form a Boolean algebra which we denote
by €®. It remains to show that e® is complete. Let P, be any set of
projections in 2. We can take the P, to be well-ordered. Then Q,=

P,— V P, is a partition of \/P,, and we have the direct sum decomposi-
tion o
K = (1-VP,)KD(DQ.K)
By theorem 5.1 we have
X = eI VPRKR (QeQak)
It follows from von Neumann’s results (see Eq. (3.30)) that
eVPa — \/e% — \/ePa
Eq. (5.14) then gives
¢NPa = A\ cPe

Thus e® is a complete Boolean algebra of type I factors. By construction
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it is clear that unitary equivalence of (K, ) and (K’, ") implies unitary

equivalence of (X, e®) and (eX’, e®'). We summarize these results as

Theorem 5.2: Let K be a Hilbert space, S a complete Boolean
algebra of projection operators on K. For each P we have eX=ePXQ

e K and the equation

e — B(eP)®1

defines a complete Boolean algebra e® of type I factors on e¥. If (K, B) and
(K’, W) are unitarily equivalent, then (X, €®) and (e¥', e®') are unitarily

equivalent.

Since ef is always type I.. if P =0, not all complete Boolean algebras of
type I factors can be obtained in this way. Let R be a complete atomic
Boolean algebra of type I factors with atoms {R,},c4 where each R, is
type I.. Let {K,},ca be Hilbert spaces with dim K,=0, and let K=
®K,. Let P, be the projection on K,, 3 the atomic Boolean algebra of
projections generated by the P,. Then R=e®. But the equivalence class
of B depends on dim K,,, « €A which is not determined by . However,
we shall prove in Sec. 6 that if R is any complete nonatomic Boolean
algebra of type I factors satisfying a certain condition, then there is a com-
plete nonatomic Boolean algebra B=1log R of projections such that f=e¥%,

and R determines PR up to unitary equivalence.

Continuous Tensor Product Spaces

The preceding discussion of Boolean algebras of projections and type
I factors suggests that we consider spaces eX where K is a direct integral.
We now show how this leads to a definition of a continuous tensor product
space (CTPS).

To further motivate our definition, let H= QH; be the I'TPS of the
Hilbert spaces H; relative to some unit product vector Q. Then we can

write
O = KQ;, HQxH =1 (5- 17)

Now let @ be any product vector with (Q, @)=1. Note that these vectors
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form a total set in H. We can write

D = RP, where (Q;, ®,) =1 (5. 18)
Then
@ == @i—ﬂi (5. 19)

is orthogonal to Q;. Thus we have

® = Q[Q;+ D] (5. 20)
and
|D|[* = TI[1+||@j|[] = eZlosarioe (5.21)

We complete our motivation by noting that continuous infinite products of
this form have the following simple property. Let f(x) be any integrable
function on [0, 1]. Divide the interval into # subsets R; with Lebesgue

measure A;. Let x.=R,, then
J J 7

T[14+6(x)A,] = exp {3 log [1-+£(x,)a,1} (5.22)
Since

log (1+x) = x—-;—xz—i---- (5. 23)
we have

fim 13 [1+£(x,)A,] = exp { S:f(x) dx} (5. 24)

These considerations suggest the following definition of a CTPS.

Let Z be a measure space, and p a non-atomic positive measure on
Z (we want u({z})=0 so that only the leading term in Eq. (5.23) contri-
butes). Let 2—H(z), 2=Z be a field of complex Hilbert spaces on Z such
that the function dim H(z) is measurable. Choose some fixed vector field
Q(z)eH(z) with ||Q(z)]|=1. We shall refer to Q(z) as the reference pro-
duct vector. Let K(2) be the subspace of H(z) orthogonal to (), and let

K= SeK(z)d,u(z) (5. 25)

be the direct integral of the K(z).*” We now define the continuous

tensor product of the H(z), relative to the reference vector €(z), as the
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exponential space eX. Thus

® H(z) = e¥ (5. 26)

(Z, >

In the following we shall use whichever of these notations seems more
appropriate. We shall not explicityly indicate the dependence on Q(2)
unless necessary.

We now extend the definition of a product vector as follows.

Definition 5.1: Let K be a Hilbert space, B a complete nonatomic
Boolean algebra of projections on K. A vector WeeX is called a product
vector (relative to €®) if it is of the form Ce® where = K and C is a complex
number.

For product vectors in a CTPS we can use the following symbolic
notation, which is the analog of Egs. (5.17-20) for the I'TPS of von Neu-
mann. Given ((2) we consider vector fields ®(z) such that (Q(z), ®(z))
=1. Then @'(z)=®(z)—Q(z) is in the subspace K(z) orthogonal to (z).
Conversely any @’(z) = K(2) gives such a ®(z). This suggests the notation

B [O2) +P()du(=)"] (5. 27)

for product vectors of the form e®, &(z)= SCID’ (2)du(2)".
It follows from Theorem 5.1 that these CTPS obey a restricted asso-
ciative law, analogous to that for the ITPS of von Neumann. Let Z; be a

partition of the Boolean algebra of all measurable subsets of the space Z,
such that u(Z;)>0. Let

H(Z) = ® H() (5. 28)
Zpkd
be the CTPS of the H(z) over the measure space (Z;, ) with respect to the
reference vector (), and let

Q; = ® A=) (5.29)
)
Let
H = Q©®H(Z)) (5. 30)

be the ITPS of the H(Z,). Then H and ® H(z) are isomorphic under
)
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the mapping
cz@t) {Q(z)+ D' (2)du(2)"?} — @ {<§p.)[ﬂ(z) +@(2)du()]} (5. 31)

Generalized Tensor Products

We now consider the general case where the measure p may have a
discrete part. The measure may then be decomposed into a continuous

non-atomic measure p, and a discrete measure u,

b= petpg (5.32)

Let Z,={z,, -} be the set of atoms of the measure p,. Let Q(z;),
z;&7Z, be some sequence of unit vedtors and let
H, = @ H(z)) (5. 33)
zj'EZd
be the ITPS relative to the product vector ®€(z;). For the continuous
part u., let H, be the CTPS defined above. Thus the general definition
of

H = ® H(2) (5.34)
(Z, )
is given by
H=HQ®H, (5. 35)

Factorizable Vectors and Operators

In Sec. 2 we defined factorizable vectors for atomic Boolean algebras
of type I factors (definition 2.3). We now extend this definition to the

general case.

Definition 5.2: Let H be a Hilbert space and let R be a Boolean
algebra of type I factors on H. A vector W&H is called factorizable
(relative to R) if for all Q;=R; we have

(¥, 11 0,%) = (¥, ¥)~" I (¥, 0.%) (5. 36)

for all finite partitions {R;}. An operator Q=B(H) is called factorizable
if for all finite partitions R;eR, i1, of B(H) we have
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Q=10 QR (5.37)

If R is a complete Boolean algebra of type I factors, and {R,} is any
partition of B(H), then the R, are the atoms of a complete atomic Boolean
algebra of type I factors. By theorem 4.1 we have H=QH,. It follows
from lemma 3.2 that the preceding definition of a factorizable vector ¥ is
equivalent to requiring that

T = QW, (5.38)

for all partitions {R,}. It is this form of the definition that we shall use in
the following.

We now consider the structure (e¥, e®) where 3 is a complete nonato-
mic Boolean algebra of projections. Clearly any product vector Ce?, p= K
(see definition 5.1) is factorizable. It is a rather obvious conjecture that
the only factorizable vectors are product vectors. To prove this we must be
able to reconstruct (K, ) from (e¥, e®). This is done is Sec. 6.

We now define some factorizable operators for the structure (eX, e®).
These operators are to be considered as unbounded operators defined on
the dense subspace H, of finite linear combinations of product vectors
(unless stated otherwise). For any Q<=B(K) we define a linear operator

S(Q) on H, by

S(Q)et = e (5. 39)
or equivalently
S(0) = & (®Q)" (5. 40)

(see Eq. (5.1)). S(0) is the one-dimensional projection operator onto the
vector Q =e¢’, and S(1) is the identity operator on eX. If [|Q]|<1 then S(Q)
is bounded. If [|Q[|>1 then S(Q) is unbounded. Let

A = {Pep}” (5. 41)

We now show that S(Q) is factorizable if Q= V'.
Thus let P,&%B be any finite partition of the identity, then

K = ®K,, (5. 42)



208 Huzihiro Arvaki and E.J. Woods

0 = ®Q0. (5.43)

where K,=P,K, and Q,=P,0.
By lemma 5.1 we have

e = el (5. 44)
It follows from the mapping given in lemma 5.1 that

S(Q) = ®5(Qa) (5. 45)
which proves that S(Q), Q= is factorizable. If K is separable then we

have the direct integral decomposition®”
K= S“’K(z)d (%) (5. 46)
and QW means Q is decomposable®®, that is

0 = ["a@due) (5.47)

For any W= K we define a linear operator T(¥) on H, by
T(P)e? = eFdet (5.48)
where Q=e¢°. It follows from Eq. (5.3) that on H, the adjoint is given by
T(W)*eb = et (5.49)

Under the decompositions given by Egs. (5.44) and (5.46) we have W=
PY, and
T(®) = QT(¥,) (5.50)

It follows that any operator of the form
T(w, 0, %) = T(Z)*S(Q)T(X) (5.51)
where, ¥, XK, Q=9 is factorizable. On product vectors e* we have
T(¥, O, X)e? = e*Pe*¥ (5.52)
Using the symbolic notation

¢ = ® {0=)+®()du(e)"} (5. 53)

38) See J. Dixmier (reference 15), p. 159.
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introduced in Eq. (5.27) we can write
T, 0,%) = @ [1+R)AH") du(e)"][1+Q(=)]
[1+(Q(2)X(2)*) d u(2)"] (5. 54)

where (2)Q(2)* is the operator from the one-dimensional subspace of H(z)

spanned by Q(z) to its orthogonal complement K(z), defined by

[(2) Q=)*] () = $(2) (5. 55)
and Q(2) ¢(2)* is the adjoint operator
[Q(=2) p(2)*] b(=) = ($(2), H(2)) Q=) (5. 56)

The computation of the norm of T(¥, Q,X) is most conveniently
done by using the annihilation and creation operators for the Schrodinger
representation of the commutation relations. Since these operators are not
used eleswhere in this paper, this calculation is given in appendix 1. We

now summarize the above as

Theorem 5.3: Let K be a Hilbert space, B a complete Boolean al-
gebra of projections on K. Let H be the dense subspace of ¥ of finite linear
combination of product vectors e®. Let W={P=P}". The equation

T(¥, 0, X)eb = ¢ e+¥ (5.57)

where ¥, XE K and Q' defines a linear factorizable operator on H,. If
O >1 then T(¥, Q, X) is unbounded. If ||Q||<1 then

IT(w, Q, X)II* = (exp [[2]I")(exp [I(1 - Q*Q) V(X +O*¥)|") (5. 58)

if X+O*W is in the domain of (1—Q*Q) ™, otherwise T(¥, Q,X) is un-
bounded.

6. Nonatomic Complete Boolean Algebras of Type I Factors

In this section we consider the problem of showing that any nonatomic
complete Boolean algebra of type I factors (H, R) is of the form (eX, e®)
where 9 is a nonatomic complete Boolean algebra of projections on the

Hilbert space K.
Let {z,} be a partition of 2z in the lattice R. We shall denote such a
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partition by B= {z,}. If B'={z,g} is a subpartition (that is for each «,
Zqp 1s a partition of z,), we write B’<B. The main tool of our argument
is to note that any partition B={z,} gives a complete atomic Boolean
algebra of type I factors, and Theorem 4.1 implies that we can write H(z)
as an I'TPS ®,H(z,) where 2=V z,.

We begin by discussing the condition that the factorizable vectors form
a total set (Lemmas 6.1-3). In the following lemmas we assume this con-
dition, and construct (eX, e®). Lemma 6.4 proves that no two factorizable
vectors are orthogonal, which allows us to restrict our attention to certain
factorizable vectors which we prove to be of the form ef, f € K, by explicitly
constructing K as a Hilbert space. We then define the lattice f=I1og R in
K. We summarize the results in Theorem 6.1. Finally we prove that
any factorizable vector and any factorizable bounded linear operator can
always be written in the way indicated at the end of Sec. 5 (Theorem 6. 2).

We generalize definition 2.4 as follows

Definition 6. 1: Let (H, R) be a complete nonatomic Boolean algebra
of type I factors. Let B={z,}, 2,ER be a partition of B(H). For any
Y & H we define

d(¥; B) = sup (¥, I1,P, V)
P,

[

(v, 11,P,¥) = inf (¥, 11 P,¥)
n, (mi} i=1

where P, runs over all minimal projections in z, .
Our construction is based on the assumption that the factorizable
vectors form a total set. In Lemma 6.3 we show that this is equivalent

to requiring that
d(¥; R) = inf d(¥; B)>0 6.1)
B
where B runs over all finite partitions of B(H) in the lattice R. At the
moment we are unable to prove that this condition must hold for any

complete nonatomic Boolean algebra of type I factors. The following

lemma is intended to make this additional assumption appear reasonable.

Lemma 6.1: Let (H,R) be a complete nonatomic Boolean algebra of
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type I factors. Let B={z;}, 2,=R be a countable partition of B(H). By
Theorem 4.1

H = Q®@*H(z;)
Let @V, €H. Then 3} (1—-38;)< oo for §;=inf d(¥;; B,). In particular,
8; can be 0 only for a ﬁ;u'te number of i. "
Proof: Let &; be any sequence such that
0<g;<1-85;, &>0 wunless §;=1, and
21&:;<oco. Then there exist finite partitions B;= {2;;} of z; such that
d(w;; B))<8;+¢€;

Let B={z,;} be the joint partition of B(H). Then by Theorem 4.1 we
have

H= ®i,jH(2ij) = ®i{®jH(zij)}
Since the product vectors form a total set in A we must have

Sup (‘\I-,J H PZJW)>O
Pij

where P;; runs over all minimal projections in %;;. Thus

d(®¥;; B) = I1,d(¥;; B;)>0
Hence
I1,(8;4+¢€;)>0

which implies that™
2l te} < oo
Since >1€;< o0 we get
2(1-8,)< oo
which implies that at most a finite number of §;=0. Q.E.D.

Lemma 6.2: Let S be a subset of the unit sphere in Hilbert space, S™

its weak closure. Any ®<=S™ is the weak limit of a sequence of vectors in S.

Proof: Let ®=S™, then 0= {S—®}™. Hence we may assume
@ =0 without loss of generality. Let ®,&S. Because 0=S™, there exists
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a ®,=S such that |(®], ®,)| <27* where ®{=,/||D,||. Similarly, we
obtain a sequence ®,.S such that | (D, ®,)| <27"/n—1 for all m<n,

where, by Schmidt orthogonalization,
@, = 3 C,, (6.2)

and @/, is orthonormal. Now |C,,|?<2, and P |Cel?<27%. 1t follows
that ®,—0 weakly. Q.E.D. )

Lemma 6.3: If inf d(W;B)>0 for all Y =H, where B is finite, then
the factorizable vectors ar: a total set in H.

Proof: Let WeH. We prove that there exists a factorizable vector

@ such that (@, ¥)==0. For each finite partition B= {z;} of B(H) choose

a minimal projection P,(B)&z; such that
(¥, P(BY¥) > d(¥; B) (6.3)

where P(B)=II,P/(B). Let S(B)={ |J P(B")¥}, S=[)S(B)™. Since the
B'<B B
intersection over any finite number of B’s is non-empty, and the unit

sphere in Hilbert space is weakly compact, the set S is non-empty. Let
deS, then

(@, ‘P)z% inf d(W; B)>0 6. 4)
B

To prove that @ is factorizable consider a partition B= {z;}. Since ®<
S(B)™, it follows from lemma 6.2 that there exists a sequence of partitions
B,< B such that

D = weak }‘lig P(B,)¥ (6.5)

Each P(B,)¥ is a product vector in @H(z;). It now follows from lemma
3.3 that @ is a product vector ®®(z;). Since B was arbitrary, @ is
factorizable. Q.E.D.

Lemma 6.4: If ®,, D, are factorizable vectors, then (D,, ®,)=+0.
Proof: Let ||®,||=||®,||=1. For any partition B= {z;} of B(H) we

have
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D, = RP[2:), D) =1, Jj=12 (6. 6)
where the unit rays ¢/*®,(z) depend only on z, not on the partition B.
Assume there is some x such that

(Dy(x), Pyx)) *=0. (6.7)

Then x>y implies that (®,(y), ®,(y))+0. Let x,ER be any well ordered
set satisfying x,>x, x,>x, for, a>a’ and (®,(x,), D,(x,))+0. Let
y= \V%,, and consider the partition of y into the disjoint union of y,=x,—
(m,\édxw/). Then the y, give a complete atomic Boolean algebra of type I

factors, and by Theorem 4.1 we have

H(y) = ®H(y.) (6. 8)
Since ®,, ®, are factorizable we have
@,(y) =QP(ys), J=12 (6.9)

Since (@,(7s), Pya)) =0, we have (B,(y), BL»)40 (see Eq. (3.8)). It
now follows from Zorn’s lemma that x is contained in some maximal zx,

such that y >, implies (D,(y), ®,(y))=0. If there is no x satisfying Eq.
(6.7) let x,=1.

In either case y>x, implies
(@,(y), @(y)) =0 (6. 10)
which implies,
(DY —2%), @y —2,)) =0 (6. 11)

Since R is nonatomic, we can construct a countably infinite partition {y;}

of y—x,. By Theorem 4.1 we have

H(y—x,) = ®H(y,) (6.12)
D, (y—2x,) = QD) (6.13)
But

for all  which is not possible in an ITPS for @ (y—x,) %0 (see Eq. (3.6)).
Thus we must have x,=B(H) and (®,, ®,)=0. Q.E.D.
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Let @ be a factorizable vector, and P(®) be the projection operator on
the one-dimensional subspace spanned by ®. For any partition B we

have
P(®) = IL,P(®; 2,) (6. 15)
where P(®; z;) is a minimal projection in z,. If W is any other factori-
zable vector we have
Tr{P(@)P()} = [(®, W)I*/{ll@|*[¥I}
= I, Tr {P(®; 2,) P(¥; 2,)} (6. 16)
For xR let
d(®, ¥;x) = 1-Tr{P(®; x)P(¥; x)} (6. 17)
Lemma 6.5: Let @,V be factorizable vectors, B={2,} a partition.

For any €>0, there exists a subpartition B’ = {z,g} such that

d(P, ¥; 2,5)<E (6. 18)
and

20 s (@, W5 246) <€ (6. 19)
If B is a finite partition, then B’ can also be chosen finite.
Proof: Let & be the smaller of & and —¢&/log {Tr [P(®)P(¥)]}. Let
2, be the union of all x with
d(@, ¥; x)<& (6. 20)
Since R is nonatomic, if 2,=B(H) we can construct a countably infinite
partition {y;} of z; with d(®, ¥;y,)>€&. Writing H(zg) as an ITPS
®H(y,) we see that (®, ¥)=0 which is not possible by lemma 6. 4.
Hence z,=B(H).
Let x, be a well ordering of all x satisfying Eq. (6.20). Then y,=x,—
\V %, is a partition of B(H). Since y<x implies d(®, ¥;y)<d(D, ¥;x),
a’'<a
each y, satisfies Eq. (6.20). Since
M,[1-d(®@, W5 ,)] = Tr [P(@)P(W)] >0 (6.21)
it follows that

2 (@, ¥; y,)< oo (6.22)
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Hence there exists a finite set J of y, such that y=\/yg, yget J satisfies
d(®, ¥;y)<€&. Then 2,Ay, 2,AYys, ye&J is a partition of each z,.
Let B'= {z,s} be the corresponding subpartition of B. By construction,
Eq. (6.18) is satisfied.

If I1,(1—a;)=A where 0<a;<1, then the power series expansion of
log (1—x) gives the inequality

0<>la;< —log 4 (6. 23)
Thus Eq. (6.16) implies that

21d(®, W5 246)< —log {Tr [P(@) P()]} (6.24)
Eq. (6.20) now implies

SVA(D, U; 2,5)°<E (6. 25)
Q.E.D.

Lemma 6.6: If 1+86=I1(143;) where §,>0 and 3<1 then
[6—218;] >8
Proof: We have
148 = 1+; 8,.+j§_ 8j,8,,+
<1+ 8,.+(122‘o‘,.)2/2!+---
Noting that >18;<3, it follows from this equation that
8—218,;< 82! 483! 4.+
If §< 1 then e —8—1< &” and this gives the desired result. Q.E.D.

We now proceed to construct the linear space K from the factorizable
vectors. The following is motivated by Egs. (5.17-20). Choose some
fixed unit factorizable vector Q, and fix Q(x), ||Q(x)||=1, for each x&R.
Then for any finite partition B we have

Q = C(B)R.0Q(z;) where |C(B)|=1 (6. 26)

Let ¥ be any factorizable vector with (Q, ¥)=1, and choose ¥(x) for each
x so that

(Q(x), T(x) = 1. (6. 27)



216 Huzihiro Arvaki and E.J. Woods

Let

V(%) = U(x)—Ox) (6. 28)
Then

(¥'(x), Qx)) =0 (6. 29)

Let K be the collection of all factorizable vectors W eH with (Q, ¥)=1.
We shall denote the elements of K by log . The following lemma will
allow us to define a linear structure in K.

Lemma 6.7: Let log ¥, log ¥,eK and let C,, C, be complex
numbers. For any finite partition B= {z;} define

W(B) = C(B)®,{0(z:) + C¥{(=) + C,4(3,)} (6. 30)

Then
¥ = strong lim ¥(B) = N { U ¥(B)}® (6. 31)
BY B B'<H

(where B, B’ are finite partitions) exists and is unique, and is a factorizable
vector with (Q, ¥)=1.

Proof: For any B, W(B) is a product vector with (Q, ¥(B))=1. If
¥ is any limit vector it obviously satisfies (2, ¥)=1, and it follows from
lemma 3.3 that ¥ is factorizable. To prove the existence and uniqueness,
we show that for any £€>0 there exists some finite partition B such that
B’< B implies

1 w(B)—¥(B)lI*<e (6.32)
By lemma 6.5 we can choose a finite partition B= {2;} such that

Wizl <e and 35, |[Wiz)lI'<e, k=1,2 (6. 33)

Let B/ = {zij} where z;= V ;&;

follows from lemma 6.6 that

be a subpartition of B. If &€<1, it

7

HIW @I =2, Uz I | <IPiI*, kB=1,2  (6.34)
Now
Wi(=:) = Xpit Vi, k=1,2 (6. 35)

where |4;| =1, and
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Wy = Ai{zg. W%, ) QW e(x:;,) O [ ® Qzip)]+ - (6. 36a)
71<ia igdv g
+ ..
Xpi = A;:20,%2:;) Q[ Q Q)] (6. 36b)
J ¢]

In evaluating 2; component of W(B’), we encounter an expression of
the same form as the right hand sides of (6.35) and (6.36) where ¥i(%);;
is to be replaced by C,¥{(z;,)+C,¥3(z;;). We write ¥y; and X,; in this
case as W,; and X,;. Then we can write

T(B) = C(B)@,(Q(Z,)—\—X:“—l- C1\I,1i+ Cz\yzi) > (6 37)

Y(B') = C(B)®Q(2:) + Xy + ) (6. 38)
where first two terms in parentheses are orthogonal to the rest. If we write
X(B)=C(B)®(Q(z;)+X.;), then

W (B)—X(B) < X(B)I* [exp S 1C, Wit CaWuil (L + Xl D} 1]
(6.39)
and a similar evaluation for ¥(B’). Obviously, we may omit |[X,]|* on the
right hand side of (6.39). From equations (6.36) and (6.34), we have

194 < 33 () (Wi )"
<2 (D) s=)IP + T )I)" <T@ (6. 40)
for small &. We then have

SUC W+ C P 2| C P2l P+ 2| o 2Pl
<2e{|C,1*+|C,|%} (6. 41)

A similar estimate holds for 33,l{®,;||>. Furthermore

IXB)II* = TL(1+ 323, CyWi(2:,) + Co¥a(=:)I)
= ([, [[1er ) ea® (6. 42)

is bounded uniformly in B.
Therefore

I®(B")—¥(B)II* = 0(¢) (6. 43)
Q.E.D.
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Lemma 6.8: Letlog¥V,, log V,=K, and let ¥ be the unique limit
vector of the preceding lemma. The equation
log ¥ = C,log ¥,+C,log 7, (6. 44)
defines a linear structure in the space K.
Proof: From the proof of the preceding lemma it is clear that®*®
lim 37, [9/(3,) — C;¥i(2) — C, )" = 0 (6.45)
The linear structure follows from this easily. For example, if log ¥, =
C(C,log ¥) and log ¥, =(C,C,) log ¥, then 3V;||W;(z;)—¥;(z,)|[*—0

follows from (6.45) and inequality |la+@|*<2]la|/*+ 2||8|°. It then
follows that ¥,=¥,.

Lemma 6.9: The equation
(log ¥, log ;) = lim [31 (¥i(2,), ¥a(=;))] (6. 46)
(where B={z,} is a finite partition and lim f(B) means () { U f(B)}~ and
B4 B B’<B
{}~ is the closure of the set {}) defines an inner product on the space K such that
(¥, ¥,) = ¢llos¥rloe¥y (6. 47)
K is complete with respect to this inner product.
Proof: As in lemma 6.7 choose a finite partition B= {2;} so that
2311 + 1wzl <é (6. 48)
Then similar arguments give

log (¥, ¥,) = log {II,; [1+(¥i(z,), ¥1(z,))]}
= 23,;(%1(2,), ¥i(2,))+0(€) (6. 49)
This proves the existence and uniqueness of (log ¥,, log ¥,) and also

proves Eq. (6.47). To prove linearity, we use similar arguments to get

38a) Use the inequality | |@(2;+x:)— Q@i +x)! 1225l lxi—2/ 112 xi0 27 L 2;.
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(log W, C,log ¥, +C,log ¥,)
= 23,(¥i(z;), C\¥1(3))+C,¥3(2,))+0(€)”
= C30;(¥i(2)), Wi(2))+C. 25 ,;(Ti(z,), ¥i(=,))+0(€)"
= Ci(log ¥,, log W)+ Cy(log ¥, log W,)--0(€)** (6. 50)
To prove positive definiteness we note that by lemma 6.7 we can always

write

E"C,-log\lf,- = logWw.

=1

Thus it suffices to show that
(log ¥, log ¥)>0 (6.51)
Now (Q, ¥)=1 and [|Q[|=1 implies {|¥||>1. Using Eq. (6.47) we have
(log ¥, log ¥) = log (¥, ¥)>0 (6. 52)

Furthermore log (¥, ¥)=0 implies ||¥||=1, hence ¥=Q. Since log Q is
clearly 0 in the linear structure given by Eq. (6.44), log (¥, ¥)=0 im-
plies log ¥ =0. This completes the proof of the positive definiteness.

It remains only to prove that K is complete. Let log ¥, be a
Cauchy sequence. Given €>0, choose N such that n, m >N implies

[|llog ¥,—log ¥,|*?<é& (6. 53)
Hence ||V ,j’=exp |{log ¥,||* is bounded and
”\I,n—_(\I,mJ \Pn)\ym/”lymHz”z = (1 —exXp— Hlog \Ifn_log \I,mHZ)!i\PnHZ
<(1—e ),/ (6. 54)
Due to (Q, ¥,)=(Q, ¥,,)=1, we also have
I 1 —(\ym) \I’”)/||\I}‘m”2| = !\ (QJ \Pn—(wm’ \P"”)\Ifm/”\lfmnz)l
<(1—e |||l (6. 55)
Thus ¥, is Cauchy. Clearly ¥=Ilim ¥, satisfies (Q, ¥)=1, and ¥ is

factorizable by lemma 3.3. By arguments similar to the above one can
show that log ¥ =limlog ¥,. Q.E.D.

It follows from the preceding lemmas that the mapping e'#¥—W¥ is

one to one and isomorphic between total sets in e and H. Hence it can
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be extended by linearity and continuity to a unitary mapping of e onto H.
We now construct the lattice P=1logR. For each =R, let

P(z) = log = (6. 56)

be the projection onto the subspace spanned by all log ¥ where ¥(2')=
Q(z’). Clearly

log (2, A\ 2,) = log 2, Alog 2, (6. 57)
and
log (2,V 2,) = log z,Vlog 2, (6. 58)
and
log (+') = (log =Y
This gives the desired nonatomic Boolean algebra of projections 8=log R.
If H is separable, then K =log H is separable and 3 gives a direct integral
decomposition of K. Then R is a continuous tensor product factorization.
It remains to show that a different choice of Q leads to a unitarily
equivalent (K, ®). Thus let Q,, Q, be two unit factorizable vectors, and
(K,, B, (K,, B,) the associated structures. For any factorizable ¥, let
Wk be the multiple of W satisfying (W%, Q,)=1, k=1,2. In particular

1=Q; and O3=Q,. By an elementary calculation we have
(log w2, log ¥3) = (log wi—log Q3, log ¥; —log O3) (6.59)
for any factorizable ¥,, ¥, &H. Thus
log w*—log Q; — log W? (6. 60)

gives a unitary mapping U of K, onto K,. By the definition of P(2)=

log  we have
P,(z) log W* = log [W*(2)@Q,(z")] (6. 61)
where (W¥(z), Q,(2)=1, k=1, 2. Hence
P (z)(log ¥'—log 0}) = {log [¥(2)RQ,(z")] —log Q3}
— {log [QX(x)R0,(x)]—log O3} (6. 62)

Under the unitary operator U defined by Eq. (6.60) this vector is mapped

into
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log [T*(2)®@0Q1(2")] —log [Q3(2)R0Q1(z")]
= [log ¥*(2)Plog Qi(=")] —[0Dlog Oi(2")]
= log ¥(2)D0=log [T*(2)QQ(2)]
= Pz)log ¥ (6. 63)

Thus UP,U'=P,, which proves the unitary equivalence of (K,, %B,) and
(K., B.).

Finally, we note that (K, P8) obtained from H=eX, R=e¥, Q=¢’,
returns back to (K’, ). For, e?, p= K’ is a product vector and (5.3) and
(6.47) shows that K’'C K. (5.12) then shows K=K’. R=9' follows from

a similar arguments.

We summarize these results as follows

Theorem 6.1: Let R be a complete nonatomic Boolean algebra of type
1 factors on the Hilbert space H such that inf d(W; B)>0 for all ¥ € H where
B

B is a finite partition of B(H) in the lattice R. Then there is a Hilbert space
K and a nonatomic Boolean algebra of projections B=1og R such that (H, R)
and (eX, e®) are unitarily equivalent. Also (H,R) determines (K, ) up to
unitary equivalence. If H is separable, then there is a direct integral decom-

position

K = SGBK(z)d;L(z)

so that R is a continuous tensor product factorization. The unitary invariants
of R in the separable case are the equivalence class of the measure p and the
equivalence class of the dimension function dim K(z) which occur in the direct

integral decomposition of K.

Factorizable Vectors and Operators

We now discuss factorizable vectors and operators for the structure
(e¥, e®) where P is a complete nonatomic Boolean algebra of projections.
By the preceding construction, any factorizable vector in H is of the form
Ce?, =K. Since (K, L) is determined up to unitary equivalence by

(eX, e%) it follows that the only factorizable vectors are the product vectors
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Ce*, =K. We now prove that any factorizable operator T =B(e*) must
be of the form C'T(¢, O, X) (see Theorem 5. 3).

Given (K, ) let T =B(e¥) be factorizable. Since T'Q is a factorizable
vector, it follows from lemma 6.4 that (Q, 7Q)=+0. Hence we can assume

that (Q, 7Q)=1. Now on product vectors e® we have
T(p, O, X)et = e* ety (6. 64)

Except for the linearity of Q, it is trivial to show that 7" must be of this
form. Namely, since (Q, 7Q)=1 we can define ¢, XK by

ev = TO (6. 65)

e* = T*Q (6. 66)
Then

T = T*(—)TT(—X) (6. 67)

(see Eqgs. (5.48-49)) is a factorizable operator satisfying
T =Q (6. 68)
(T*Q = Q (6.69)
It follows that T”e? is of the form e™’”. It remains only to prove that

O¢ = T'(¢) (6. 70)

defines a linear operator Q.
To prove the linearity of Q we rederive Eq. (6.70) using the notation
introduced in Eq. (6.26) et seq. Thus we write

TQ = elog¥ (6. 71)
T*Q) = elog* (6. 72)

If B={z,} is any partition of B(H) we have T'=®T(z;). For each x&P
choose T(x) so that

Qx), T(x)Ux)) = 1 (6.73)

Then
T(x) Q) = Q)+ (x) (6.74)

TH(x) Qx) = Qx)+X/(x) (6. 75)



Complete Boolean Algebras of Type I Factors 223

Let P(x) be the projection onto Q(x) and let

Q(x) = [1-P(x)] T(x) (6. 76)
Then for any log ®=K we have

T() @' (x) = (X'(x), () ) +Qx) () (6.77)
For any partition B we have

Teloss = C(B)®, [T(x,) =)+ (=) /()] (6.78)
Using Egs. (6.74), (6.75), (6.77) and

IL 1+ (X(2,), @/(2,))] = edlos¥ los®> (6. 79)
we have

Telog® _ glogXslog C(B)R® {Q(z,)
+ [¢/(2) + Q) @/ (21 + (X' (2,), ()]} (6. 80)

Given any log ® =K, £>0 it follows from lemma 6.5 that one can choose
a finite partition B so that

[(X(2:), @'(=,))] <& (6. 81)
It follows that
lim 37, [[(2,) — ' (3) ~ Qa) @ (3| I* = 0 (6. 82)

for ¥ =(T®) exp—(log X, log ®). We now have
Telog® _ plogdlog® clog i rQlog @ (6. 83)
where O log ® =log ¥ —log 9Ab and
lim 37, {(e@2 Y (2;) — Q2) (=)l = 0. (6. 84)
By
By lemma 6.7 we have
ecros 217,189,  Tim C(B)@® {(=:)+ CB4(3,) + CPY(=)} (6. 85)
By
Using the continuity of 7" we find
T eC1108 ®1+C,log @, _ pClog %,C;log ®1+C,log &)

lim C(B)® {(=:) + #(3,)+ C.Q(=,) (=) + C,Q(=,) Pi(2,)}

— e(log ;\(, Cqlog @1+C2 log lI>2) elog :\{H—CIQ log &+ C2Q log @2 (6 86)
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which proves the linearity of Q. It is clear from Eq. (6.84) that Q=
where A= {P=P}”’. We summarize these results as Theorem 6. 2.

Theorem 6.2: Let K be a Hilbert space, and let 3 be a complete
nonatomic Boolean algebra of projections on K. A vector ¥ €eX is factorizable
if and only if it is a product vector Ce®, =K. T <B(e¥) is factorizable if
and only if it is of the form C'T(p, Q, X) where C is a complex number and
T(¢, O, X) is given by Theorem 5.3.

7. Application to the Group Integral for Irreducible
Representation of the CCRs

In this section we give an application to the group integral for irreduci-
ble representations of the CCRs introduced by Klauder and McKenna.""*®

We first give a brief definition of a representation of the CCRs over
an inner product space V. Given a representation of the CCRs over V,
we associate a von Neumann algebra R(WW) with every linear subset W of
V. We discuss the properties of the map W—R(W). With any orthogonal
basis {%,}sca of V, we associate a type I factorization {R,},ca of R(V)
where V, is the dense linear subset of all finite linear combinations of the
h,. We define the group integral and discuss its properties for finite-
dimensional V. We then consider the group integral for irreducible re-
presentztions of the CCRs over countably infinite dimensional V. We
establish necessary and sufficient conditions that the group integral exists
and has the desired value (Theorem 7. 1). We prove that the group integral
is independent of the order of integration if and only if the representation

is a tensor product representation (Theorem 7.2).

Representations of the CCRs

For the sake of completeness, we give the definition of a representa-
tion of the CCRs.*® Let V be a real inner product space. A representation

39) For a detailed and rigorous exposition of the representations of the CCRs see L.
Garding and A.S. Wightman, Proc. Nat. Acad. Sci. 40, 617 (1954); 1.E. Segal, Trans.
Am. Math. Soc. 88, 12 (1958); J. Lew, thesis, Princeton University (1960); H. Araki,
thesis, Princeton University (1960); H. Araki, J. Math. Phys. 1, 492 (1960).
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of the CCRs over V is the structure consisting of a complex Hilbert space
H, and a map fxg—U(f, g) from V' x V into the set of unitary operators
on H such that

U(f, 8)U(f 2 &2) = U(fi+1e, 81 +8)7 250 (7.1)

where (f,, g,) is the real inner product of f, and g, in V, and such that for
each f, g the operator U(sf, #g) is weakly continuous in the real parameters
S, L.

For finite-dimensional ¥, von Neumann proved that there exists a
unique irreducible representation of the CCRs (usually called the Schrod-
inger representation), and that any representation is (unitarily equivalent
to) a discrete direct sum of copies of the Schrddinger representation.‘®
For infinite-dimensional V' there are many inequivalent irreducible re-
presentations of the CCRs over V.*® A classification of all irreducible
tensor product representations of the CCRs has been given by Klauder,
McKenna and Woods.™

A Lattice of von Neumann Algebras

Let f x g—U(f, ) be a representation of the CCRs over V. For any

linear subset W of V' we define the von Neumann algebra

R(W) = {U(f, 8); f, 8eW}” (7.2)
We now discuss the properties of the map W—R(WW) where W is a

subspace (closed linear subset). The set of all subspaces W of ¥ has a

natural lattice structure given by
W AW, =W,nNW, (7.3)
WNW, = (W, UW,)+ (7.4)
where, N, U denotes set theoretical intersection and union respectively,

and
Wt = {xeV: (x,y) =0 for all yeW} (7.5)

The map W—R(W) is a lattice homomorphism if

40) J. von Neumann, Math. Ann. 104, 570 (1931).
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R(W)AR(W,) = RIW,AW,) (7. 6)
R(W,)VR(W,) = R(W,v I, (7.7)

The equation (7. 7) follows from the definition if W, | W,. It also follows
from Eq. (7. 1) that

R(WYDR(W+) (7.8)

For irreducible representations, R(V)=B(H) and Eq. (7. 7) gives
R(W)VR(W™) = B(H) (7.9)
hence R(W) is a factor. Since the restriction of the map fx g—U(f, g) to
[, g€ W gives a representation of the CCRs over W, it follows from von

Neumann’s results* that R() is a type I factor for any finite-dimensional
w.

For the Fock representation, Araki has shown that the map W—Ry(W)
gives an isomorphism of these complemented lattices.” In addition it was
shown that*”

Ry(W) = R(W) (7. 10)
for all linear subsets W (W=W"'t is the subspace which is the closure
of W). This follows directly from the fact that Uy(f, g) is strongly con-
tinuous in f and g with the strong topology of V for f and g.* In general
U(f, g) is not strongly continuous in the strong topology on V. Clearly

R(W)cR(W) (7. 11)

However there are examples where the equality does not hold.
It is also possible that R(V)=B(H) and R(V,)=*=B(H) for a dense set
V,in V.

Given a representation of the CCRs over V, let {A,},c. be an or-

thogonal basis for V, and let
R, = R(W,) (7.12)

where W, is the one-dimensional space spanned by 4,. Then R, is a

type I factor and

41) H. Araki (reference 4), Eq. (3.5).
42) H. Araki and E.J. Woods (reference 12), lemma 2. 3.
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R,CR,=1, a8 (7.13)
VaR, = R(V,) (7. 14)

where V, is the dense linear subset of all finite linear combinations of
the A,. Thus R, is a type I factorization of R(V,) (see definition 1. 1).

The Group Integral: Finite Dimensional Case

We now give the definition and basic properties of the group integral
introduced by Klauder and McKenna."”*® We consider first the case
where V' is finite dimensional. Let {4,},<;, be a basis for V. Then for
any f, g€V we can write f=3>"p,h,, g=>"q,h, For any @, @, ¥,
W, H we define the group integral

I(CDIJ V5 D, \Pz) = S dﬂ(f: g)(U(f; g)(I)l, lI’l)*(tj(f: g)cbm \I’z) (7 15)
where

du(f, ) = (22)™ 11 dp,dg, (7. 16)

and the domain of integration is Ryx Ry. For the special case &, =®,=
¥, =¥,=¥, we just write
I(v) = (v, v; ¥, ¥) (7.17)

For irreducible representations of the CCRs over a finite dimensional V,

it has been shown that*®
(o, Y; @, ¥,) = (¥, ,)(D,, P,) (7.18)

We now discuss the group integral for a reducible representation of the
CCRs over a finite dimensional V. By von Neumann’s results we can
write

H=HQH" (7. 19)
and

U(f, ) = U/, 9)®1 (7. 20)

where the U’(f, g) are an irreducible representation of the CCRs on H’.

43) J.R. Klauder, J. McKenna, and E.]J. Woods (reference 18), theorem 4.1.
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Let a;, B; be orthonormal bases for H’, H” respectively. Given ¥,
v, @, ®,H, let A, B, C, D respectively be their coefficient matrices.
That is

v, =21 4;,a,8; (7.21)
etc. Then

||@,||? = Trace A*4 (7.22)

etc. and
I(q)p V5 @, \Ifz) = Z AijcklﬁmmBop
X du(f, &)(U(f, 8)atr, a: Y (U'(f, 8)tms a)(Bis B,) (B B,) (7.23)

Using Eq. (7. 18) for the irreducible U’ we get

I(®, v,; ®, ¥,) = Trace A*BD*C (7. 24)
Now
I'Tr A*BD*C| < {Tr (4*B)(A*B)*)"*{Tr (D*C)(D*C)*} "
< {Tr (4*AY Tr (B*B) Tt (C*CY Tr(D*Dy}* (7. 25)
Since
Tr (A*AY < (Tr A*AY = ||@,* (7. 26)
etc. we get
(D, ¥,; @, T,)| < [T, [|D,]] ]|, (7.27)
Lemma 7.1: If ||®—W||<¢E, then
[ I(@)—I(P) | < ([|@f| +¢&) —||PIf*

Proof: Write ¥ =®+X, and note that (¥, ¥; ¥, ¥) is a linear
function of each of its four arguments. It follows that [(¥)—I(®) is a
sum of 15 terms of the form I(X, @; ®, @), I(X, X; @, ®) etc. The desired
result then follows from Eq. (7.27). Q.E.D.

The property which makes the group integral interesting is Eq. (7.18).
Thus the desired value for I(®,, ¥,; ®,, ¥,) is

(¥, ¥,)(D,, ®,) = (Trace A*B)(Trace CD¥) (7. 28)

But in general

Trace A*BD*C = (Trace A*B)(TraceCD¥) (7. 29)
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In particular, if we set A=B=C=D, then we have
Trace (A*A4) < (Trace A*AY (7. 30)

with equality holding if and only if A*4 is a one-dimensional projection
operator, or equivalently, if the vector ¥ =314, a; ®B3; is a product
vector (cf. Egs. (2.12)-(2.14). For these reasons, the group integral for
reducible representations is not so interesting. However it is used to
defined the group integral for irreducible representations of the CCRs over
an infinite-dimensioanl ¥, and we shall have odcasion to make use of the

above properties.

The Group Integral: Infinite Dimensional Case

We consider a countably infinite dimensional V' with an orthogonal
basis {%;};,c; . Given a representation of the CCRs over V on a complex
Hilbert space H, let

R, = {U(sh;, th;); — co<s, t< o0}’ (7.31)
In the remainder of this section we consider representations such that
V:R;=B(H). Then {R;}..,_ 1is a type I factorization (see Eq. (7. 12) et
seq.).

We now define the group integral I(®,, ¥,; ®,, ¥,). For each NI,
we have a reducible representation of the CCRs over the finite-dimensional
subspace of V spanned by {A;},c;y. For any @, ¥, @, ¥,cH, let
Iy(®,, ¥,; @,, ¥,) be the group integral defined by Eq. (7. 15) for this re-

ducible representation. 'Then we define

I(®, ¥,; @, ¥, =lim (D, ¥,; D, ¥,) (7.32)
N>

It has been shown that for irreducible tensor product representa-

tions, that is representations where H is an I'TPS H= }D;@H,- and
R; = B(H,) ® {®1} (7.33)
J¥F1

that'®
lim IN(q)l: v, @, \pz) = (\I}p \I’z)(qux (I)l) (7 34)

N>
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We now establish the conditions under which the group integral exists and
has the desired value.

Assume that for some unit vector ¥ & H, we have

lim Iy (¥) = ||| = 1 (7. 35)
N>

For each N we can write

H = Hy®H) (7. 36)
where
R(y) = A\ R; (7.37)

is irreducible on H,. Let A, be the coefficient matrix for ¥ in some

expansion

v =3 ANij“Ni@BNj; ayi€EHy, By;EHY (7.38)
Then Eq. (7.24) gives

Iy(®) = Trace (44N Y (7. 39)

Thus Eq. (7. 35) implies that

lim Trace (A%4y) = (7. 40)

N
Since Tr A¥A=||¥[*=1, lemma 2.2 gives

d(W; R(Iy), RUS) = Trace (454, (7. 41)
It follows that

lim d(¥; R(Iy), RUE)) = 1 (7. 42)

By lemma 4. 10 this is a sufficient (but not necessary) condition that R,
is a partial tensor product factorization.

We now note that Eq. (7. 42) implies Eq. (7. 34) for all @, ¥,, ®,,
v,=H. By lemma 4. 10 there exist minimal projedtions Py R(I%) such
that Py— 1 strongly as N—oco. 'The proof of Eq. (7. 34) given by Klauder,
McKenna and Woods'® was based on the existence of such projections.

We summarize these results as
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Theorem 7.1: Let V be a countably infinite dimensional inner product
space with an orthogonal basis {h;};c; . Let U(f,g) be a representation of
the CCRs over V such that \/;R;=B(H) where

R; = {U(sh* th,); — co<s, t< oo}
The following conditions are equivalent.
(1) For some Y€ H, lim I (¥)=||¥|*
N->o0
(2) Forall ®,®, ¥V, V,eH,

lim IN(q)U v,; D, \Pz) = (\Pu \pz)(q)m ®1)

N>
(3) There exists a sequence of minimal projections Py&R(Iy) such that

Py—1 strongly as N— oo (which implies that R; is a partial tensor
product factorization).

We now show that if Eq. (7. 34) holds independent of the order of

integration for some vectors then all R(J) = \/ R; are type I. It then
i€j

follows from Theorem 4. 1 that the representation of the CCRs is a tensor

product representation. By Theorem 7.1 and lemma 4. 10 we can write

H as a partial tensor product

H= é H(J,) (7. 43)
where
H(J\) = @ H, (7. 44)
and for ne J, we have k
R, = {BUH,)®L ® 1,1} @{ @ 1v} (7. 45)
man

For any Jcl. let Ji=]JN ], JV =J°NJe Then J=U,Ji. We
assume R(J) is not type I and get a contradiction. Let &= Qd,,
||®,/|=1, be some unit product vector. If R(J) is not type I, then*”

2 A1=d(@,; R(JR), RUJV} = oo (7. 46)

which implies that®™

T1d(®,; RUJD, RJY) =0 (7.47)
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Consider the irreducible representation of the CCRs over all %,, ne ],
defined on H(J,). Let I,(®,), I:(®,) denote the group integral taken over
all &,, neJ,, Ji respectively. We have

I(@,) =1 (7. 48)
and from Egs. (7. 24) and (7. 41) we have
Li(®,) < d(®s; R(JD, R(JY)) (7.49)

Thus Eq. (7. 47) implies that
1 I(®,) = 0 (7. 50)
=1

We now reorder the %, so that the integral over the first NV degrees of

freedlom —0 as N—oo. Choose j,, so that

1 I(®,) < 2-™ (7. 51)

p=m

and order the degrees of freedom according to the arrangement J{, J5, -,
JinJUs i = S5, J%'5 J 415 ++- etc. Now consider the group integral
taken over the NV degrees of freedom up to and including J4, . Since the
measure d(f, g) is a product measure, and & is a product vector, it follows
from Eq. (7.15) that

im
In(®) = ILIi(D) < 277 (7.52)

which implies lim Iy(®)=0. We now show that for any ¥ =H, we have
limIy(¥)=0. Since ¥ is in the I'TPS containing Qd,, given &>0,
N>

lemma 3.1 implies that there exists a K and ¥x& §>H( J &) such that
=1

H‘I’-—\Ifk®{k=§1®k}|| <é& (7.53)
By lemma 7.1 we have

Tn ()~ Iy(Tx®{ @ @}) < (L+8)'~1 (7. 54)

Now consider the group integral over the N degrees of freedom up to and
including J; where m>K. We have
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In(Zx®{ © @u}) = L I(®,) < 27 (7.55)
Egs. (7. 54) and (7. 55) imply htat

lim Iy(¥) =0 (7.56)

N>oo

It now follows from Eq. (7. 24) and (7. 25) that for any ®,, ®,, ¥,, ¥,€H
we have
lim I(®,, ¥,; @, ¥,) = 0.

N>
We summarize these results as

Theorem 7.2: Let V be a countably infinite dimensional inner product
space with an orthogonal basis {h,},.; . Let U(f,g) be a representation of
the CCRs over V such that \/ ,R,=B(H) where

Rn = {(Shm thn)’ —s, i< OO}U

The conditions of Theorem 7.1 is assumed to hold. If for some nonzero
D, V, D, V,=H we have

lim IN<(I>1: Vv, @, \Ifz) = (‘1’1, ‘Ijz)(q)z: c:[)1)

N>

independent of the ordering of the basis vectors h,, then the representation is

a tensor product representation.

8. Entire Function Spaces

In this section we generalize the exponential space defined in Sec. 5
to an entire function space (Theorem 8.1). We discuss the properties of

these spaces, and give an explicit construction.

Lemma 8. 1: If the matrices A;; and B;; are positive-definite ( positive-
semidefinite), then the matrix C;; = A;,B;; is positive-definite (positive-semi-
definite).

Proof: The matrix C is the restriction of the Kronecker product
AQ®B to the subspace spanned by the “diagonal” basis vectors e;RQe;.
Q.E.D.
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Lemma 8.2: Let A;; be a positive-semidefinite matrix. Let f(z) =
1 a,2", a,>0 be an entire function. Then f,,(A) is a positive-semidefinite
matrix. If a,>0 for all n then f(A;)) is positive-definite unless A;;=A;;=
A;;=A;; for some pair i=j.

Proof: The matrix A%;=1 is positive-semidefinite. By the preced-
ing lemma, the matrix A%, is positive-semidefinite. Thus f(4;;) is the
sum of positive-semidefinite matrices which proves that f(4,;) is positive-
semidefinite.

We now assume a,>0. Suppose >3,f(4;;)x;=0 for x4=0. Let & be
the j for which 4 ;7 18 maximum among those j with x;3=0. Since A%; is
positive-semidefinite we have >3, A%x;=0 for =0, 1, 2, .--. Hence
22 P(4;,)x;=0 for all polynomials P. Let P be a polynomial such that
;ZAM) +0 and P(4;;) =0 for all 4;,#+ 4,,. We then have P(4,,)x,+
S'P(A,,;)x;=0. Since x,=0, there must be some j=k such that A,;=A.

Because A;; is positive-semidefinite, the submatrix
(Akk Akj)
Ay Aj;
is positive-semidefiinte. It follows that A ;,=A¥ =A% = A > 4;;, and

hence we must have 4;;=A4,,. Q.E.D.

Theorem 8.1: Let K be a Hilbert space, and let {(z)=3" a,2", a,=>0
be an entire function. Then there exists a Hilbert space f(K) and a strongly
continuous map f from K into a total set in {(K) such that

(H®), f(¥ > = F((P, ¥)x) 8.1)

If a,>0 for all n, then any finite set of f(®;) is lLnearly independent if
D, ==®; for i=i. If K is separable then f(K) is separable.

Proof: We construct a prehilbert space H, as follows. Let H, be

the linear space of all expressions of the form
é cf(®;), ®,EK 8.2)
i=1

where the ¢; are complex numbers. For any ®;, i=1, ---,n the matrix
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(®;, @,) is positive-semidefinite. By lemma 8.2 the matrix f(P,, ®@,) is

positive-semidefinite and the equation

nsm

@ ICH ZJ df(w;) = 3 cfd (P, V) (8.3)

i j=1

defines an inner product in H,. If 4,>0 for all z then by lemma
8.2 the matrix f((®;, ®,)) is positive-definite unless (®;, ®;)=(P;, ;)=
(®;, D,;)=(®,, ®,), which implies that &,=&,. This proves that any finite
set of f(®;) is linearly independent if ®,==®, for all i4=i. We now define
f(K) as the Hilbert space obtained from H; by the usual construction. It
follows from Eq. (8. 1) that the map ®—f(®P) is strongly continuous. If
K is separable then there is a countable set K, which is dense in K.
Since f is strongly continuous the countable set {f(®); ®=K,} is total in
f(K), hence f(K) is separable. Q.E.D.

We now give a brief discussion of linear operators in f(K). For any

T =B(K) we define a possibly unbounded linear operator on the total set of
all {(®) by

{(TY(®) = K(TD) (8. 4)

which can be extended by linearity to the prehilbert space H, given in the
proof of Theorem 8.1. If T is isometric on K, it follows from Eq. (8.3)
that f('T') is isometric on H, and can therefore be extended by continuity to
an isometric operator on f(K). If ||T]I>1 then f(T) is unbounded unless

f(2) is a polynomial, since
IETEA@)IF/EAD@)I* = EITD|P) /E(N] | ) (8.5)

which — o0 as A— oo if || T'®|| >||P|| unless f(2) is a polynomial. If ||T||<1
then f(T) is bounded, as can be seen most easily by the following explicit
construction of f(K).

Given f(2)=>"4,2">0, 4,>0 and K let

H=©(®K) (8.6)

@, 0

and consider the vectors
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t(¢) = B(a,)"( Rp)" (8.7)

The proof of lemma 5.1 can easily be modified to show that the f(¢) are a
total set in H if a,>0. We have

@), @) = T au(, ¢) = (&, 9)) 8-8)
Thus the mapping from f(K) to H given by

f(p) — (o) (8.9)

is isometric. The operator f(T), T&B(K) defined by Eq. (8.4) is now
given by (possibly a restriction of)

f(T) = &(®T) (8. 10)
It follows that f(7') is bounded if || T]|<1.

9. Discussion of Results

We have obtained a partial classification (up to unitary equivalence) of
complete Boolean algebras R of type I factors. Any such R can be de-
composed into a complete atomic Boolean algebra R, with atoms {R,}sca
and a complete nonatomic Boolean algebra R,. Theorem 4.1 states that
{R,} sca is a tensor product factorization. That is we can write H = QH,,
Ra,zB(Hw)@(w@mlwz) and R, is determined up to unitary equivalence by
dim H,,. Theoq;em 6.1 establishes a one-to-one correspondence between
the unitary equivalence classes of complete nonatomic Boolean algebras of
tyepe I factors satisfying the condition igf d(¥; B)>0 for all ¥H, and

complete nonatomic Boolean algebras of projections. For the general case
the problem of classifying nonatomic Boolean algebras of projections has
not been solved. But on separable Hilbert spaces one can obtain a direct
integral decomposition and thus an explicit set of unitary invariants. We
have also determined all factorizable vectors and all factorizable bounded
linear operators for any complete Boolean algebra of type I factors satisfying
the above condition. An application to the group integral for the re-

presentations of the CCRs has been given.
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These results are only a first step towards the problem of classifying
all Boolean algebras of factors (or equivalently all fatorizations). Since a
complete classification of non-type I factors does not yet exist, the most
that one could hope for at the moment would be a classification of Boolean
albgebras of type I factors. In particular, we hope to be able to eliminate
the assumption iI;f d(¥; B) >0, and thus obtain a complete classification of
all complete Boolean algebras of type I factors.

In a future paper a further application to the determination of all re-
presentations of the CCRs with a translationally invariant state such that all

R(B) are type I where
R(B) = {U(f, g): f and g have support in B}”

and B is any open subset of z-dimensional Euclidean space, will be given.
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Appendix 1: Computation of the Norm of 7'(¢, Q, X)
Given a Hilbert space K, the equation
T(p, O, X)e? = e*9eQs+¥ (A1)

where ¢, XK, Q=B(K) defines a possibly unbounded linear operator on
the dense subspace H, of ¥ of finite linear combinations of product vectors
(see Egs. (5.39-52)). On H, we have

T (Sb: Q: X)* = T(X) Q*; ‘ﬁ) (A 2)

and
T(¢y, 01, X)) T (g, Qny X)) = e.92T(Py+ 0, 0,0,, 05X, +X,) (A3)

which can be easily verified by direct calculation. Thus we have
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II'T(¢, Q, X)II° = IT(¢, Q, X)*T($, Q, X)|
= W T(X +Q%g, 0*0, X+ Q%) (A4)

Thus it suffices to compute the norm of T(¢, O, ) where Q>0.

Lemma Al: If ||Q||>1, then T(p, Q, ¢) is unbounded. If 0<QO<1
then

-1/2

IT(p, O, Pl = ella-@> w12 (A3)

if y is in the domain of (1— Q)7 otherwise T($, Q, ) is unnbounded.

Proof: Let E be one of the spectral projections of O >0. Then
K=K DK, and Q=0,B0, where

K, = EK (A6)
K, =(1—-EX (A7)
0. = EQ (A8)
0. =(1-E)Q (A9)

We have eX=eX1QeXz,, and =y, Py, for any g=K. It follows by direct
calculation from Iq. (A1) that

T(Sb: Qs ‘;b) = T(¢1, QIJ SL'1) & T(szs Qz; &) (A 10)

Thus it suffices to compute ||T(¢P, O, ¢)|| for the cases (i) Q>1, (il) O=1,
(iii) 0<Q< 1 with a discrete spectrum (iv) 0 < Q <1 with a continuous
spectrum.

Case (i). We show that T(¢, O, ¢) is unbounded if Q>1. We have

T(¢, O, p)ert = erchderobrt (All)
and
ller¢]] = eltren® (A12)
Then
(e, T(g, O, p)e™)/[|e™* = exp {2x Re (¢, )+ [N [}(¢, [Q— 1)}
(A13)

which —oco as |A[—00"
Case (i), O=1. If ¢ =0, then there is a =K such that (¢, ¢)>0
and Eq. (A12) is still unbounded as A—co. But T(0, 1,0)=1.
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Case (iii), 0< Q< 1 with discrete spectrum. Let %; be a basis for K
such that
Oh; = é'h;, \; <0 (A14)

(it is more convenient to write the eigenvaluses as i, see Eq. (A22) below.
A;=— oo allowed.) Let K; be the one-dimensional space spanned by 4;.
Then by Theorem 5.1

eX = Qeki (A 15)

is the I'TPS containing the vector

O =QRQ; (A 16)
Let

¢ =2 kih, (A17)
Then we can write

T(g, O, ¢) = QT k;, €', k;) (A 18)
We have

i = D(RK,) (A19)

where (® K,)2 is the one-dimensional space spanned by (®#;)". We

define an operator a¥ by

af(®h;)" = (n+1)*(Qh,)" (A20)
The operators a;, af are the annihilation and creation operators for the
irreducible Schrodinger representation of the commutaion relations for one

degree of freedom. The direct sum decompostion given by Eq. (A19)

diagonalizes the number operator N;=a¥a; as
N, = Gn (a21)
n=0

By direct calculation on the total set of vectors €?#i(); in eX: one can verify
that

T(k;, ', k;) = ekl eriaie; ekia; (A22)
Thus our problem is reduced to comguting the norm of the operator

eka*era™2 ek in the Schrodinger representation of the commutation relations

for one degree of freedom. In appenidx 2 we prove that
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eka* pha*a gkta . olE1Z/(1-€M) aAB*D , A<0 (A 23)
where

b=a—Fk/(1—¢") (A24)
We have

[5, *¥] = +1 (A 25)

and b, b* are also annihilation and creation operators for the Schrédinger
representation. Since b*b is a number operator with eigenvalues 0, 1, 2,---
and A <0 it follows that

le™|l =1,  a<0 (A26)
It now follows from Egs. (A22) and (A 23) that
ITi(k;, €4, k)| = e®e=0 %, <0 (A27)

Eq. (A5) now follows from Egs. (A 14), (A17), (A18), and (A27).
Case (iv), 0<QO<1 with continuous spectrum. Consider the spectral

decompostion

Q0 = So_we* dE() (A28)
Let

E,, = S:::)/”dE(x) (A29)

Q. = 3 e ™"E,, (A30)
Since 0,—0 in norm, we have

lim T(¢, Qn, p)e* = T(p, O, P)e? (A31)
for each ¢. Furthermore, (A5) for the case (i) yields

lim [[T(¢, On, P)I| = exp [I(1—Q)p|I* (A32)

Thus ||T(¢, Qa, ¢)|| is bounded and the convergence in (A 31) for a total
set e? implies

Um T(g, On, ¢) = T(¢, O, ¢) - (A33)

For any unit vector X, we have
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|(X, (g, Q, 9)X)| = lim |(X, T(g, O,, $)X)|
=< lim [I'T(¢, On, ) - (A34)

Hence T(¢, Q, ¢) is bounded and

1T, O, P)II < Lim [[T(, O, P

= ella-@~2y2 (A35)

To prove the converse inequality, consider the spectral resolution

Q= S:kdE’(k) (A 36)
and let

o= [ =pap ) (A37)
Let X =¢e¥a, then

X, T(¢g, O, PIX)/1IX|[*
= exp {(¢, ¢a)+(da, $)+(da, OP)—(dns o)}

= exp { [ RA—Ry + KI-B) "= (1 =Ry T d, )
= e {[“ =Ry dig, B9 (A 38)
It follows that

IT(¢, Q, P)llZelie-@ e (A39)
Egs. (A 35) and (A 39) give the desired result. Q.E.D.

Appendix 2: Derivation of Eq. (A 23)
It is sufficient to prove that Eq. (A23) holds on a total set. We begin

with a heuristic derivation. Consider the following Ansatz.

ek(t)a* et\(t)n*a ek(t)*a — et(a*+w*)(a+m) e(«'(t) (A 40)

where ¢, k(), M(2), ¢(t), o are complex numbers. We differentiate both
sides and use the identities
e~ Bae gt gBata — =Bk (A 41)

e Bag*eBes — g*_ B (A42)
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where B is any complex number. Then we obtain

ek(t)a* e)\(i)a*a ek(t)*a [k/(t) e—)s(t)(a* — k(t)*)
+ N () @* —k(t)¥)a+ K (2)*a]
= €D gHar+aar [ (g% 4 o) g+ o*) +¢/(2)] (A43)
Using Eq. (A40) to eliminate the expoonential operators, and comparing

the coefficients of the operators 1, a, a*, a*a on the left and right hand
sides of Eq. (A43) we find

— K@) k(t) e ™® = |a|*+c/(t) (A 44)
K (Y — N (1) = a* (A 45)
K()e™® = o (A 46)

() =1 (A47)

Using the initial conditions k(0)=x(0)=c(0)=0, we can integrate these
equations to find

AE) =t (A48)
k() = a(ef—1) (A49)
of) = —lal*(e—1) (A 50)

If we now set £=X\ and a=k/(¢e*—1) we obtain Eq. (A23). To actually
prove Eq. (A23) one can verify the above derivation in the opposite direc-
tion, each equation being valid on the one-dimensional subspaces with finite

particle number a*a=0, 1, 2, ---.

Note added in proof: Lemmas 4.4, 4. 6 and a slightly strengthened
version of 4.7 can be proved in one step, with the aid of lemmas 4. 1, 6. 2,
3.3 and 4. 3.



