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Abstract

A partial classification into unitary equivalence classes of complete

Boolean algebras of type I factors is given. Any complete atomic Boolean

algebra of type I factors is unitarily equivalent to a discrete tensor product

of type I factors. We establish a one-to-one correspondence between the

unitary equivalence classes of complete nonatomic Boolean algebras of type

I factors satisfying a certain condition, and the unitary equivalence classes

of complete nonatomic Boolean algebras of projections. A continuous

tensor product of Hilbert spaces is defined which is a generalization of the

discrete infinite incomplete tensor product space defined by von Neumann.

On a separable Hilbert space, any complete nonatomic Boolean algebra of

type I factors satisfying the previously mentioned condition is unitarily

equivalent to a continuous tensor product of type I factors. An application

to the representations of the canonical commutation relations of quantum

field theory is made.

L Introduction

In this paper we give a partial classification (up to unitary equivalence)

of complete Boolean algebras of type I factors. We also give an appli-

cation of these results to the group integral for irreducible representations of

the canonical commutation relations (hereafter referred to as CCRs). The

mathematical motivation for this problem is provided by the work of
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Murray and von Neumannl:) on direct factorizations (finite type I factoriza-

tions in our terminology), and by von Neumann's construction of an

incomplete tensor product of Hilbert spaces (hereafter referred to as an

ITPS).2) Further motivation is provided by recent work in mathematical

physics where lattices of von Neumann algebras have been studied.3)'4:>

We begin with an outline of the general mathematical problem (even

though our results are only a first step towards the understanding of such

structures). We give a few definitions from lattice theory. A lattice E is a

partially ordered set any two of whose elements have a greatest lower bound

x/\y and least upper bound x V y. A lattice is said to be complete if every

subset has a greatest lower bound and least upper bound. We consider

lattices E which contain (necessarily unique) elements 0 and 1 satisfying

0<#<1 for all x^E. Any x^=0 such that x>y implies y = 0 is called an

atom. An atomic lattice is one in which every x=^0 includes at least

one atom. An involution is a map x — > xf satisfying

(i) x = x'' = (xy

(ii) (xAy)' = tfMy' and (xVy)' = x' /\yf

A complemented lattice is a lattice in which every element x has a comple-

ment y such that x/\y = Q, xVy = I. An orthocomplementation is an

involution x — > x' where xf is a complement of x.

We now give some examples. Let H be a Hilbert space, B(H) the

set of all bounded linear operators on H. If Ac_l$(H) we define its

commutor

A' = {0'eB(tf): QQf = Q'Q for all Q^A}

1) FJ. Murray and J. von Neumann, Ann. Math. 37, 116 (1936).
2) J. von Neumann, Compositio Math. 6, 1 (1938).
3) For a detailed account of the role of von Neumann algebras of local observables in

relativistic quantum field theory see for example R. Haag, Proceedings of the Midwest
Conference on Theoretical Physics, Minneapolis, 1961; R. Haag and B. Schroer, J.
Math. Phys. 3, 248 (1962); H. Araki, ETH lecture notes (Zurich, 1961/62), and to
be published by W. Benjamin, New York; R. Haag and D. Kastler, J. Math. Phys.
5, 848 (1964).

4) For a detailed account of the lattice of von Neumann algebras associated with the
quantum theory of a free Bose field see H. Araki, J. Math. Phys. 4, 1343 (1963).
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Clearly AdA" = (A')'. The set A is called self-adjoint if T^A implies
T*eA The set A is called a von Neumann algebra if it is self-adjoint
and A = A". Given an arbitrary self-adjoint set S'cB(H), S" is the von

Neumann algebra generated by the set S. The set of all von Neumann
algebras RdE(H) forms an involutive lattice where the lattice operations

are defined by

(1-1)

(1.2)

where f!, U denotes the set theoretical intersection and union respectively,

and the involution is given by R -» R' This lattice has a maximal element

E(H) and a minimal element B(//)x = {al} (the set of all multiples of
the identity operator). The usual notation for lattices would suggest that
we denote these von Neumann algebras by 1 and 0 respectively. How-
ever, the standard notation is to write 1 for {al}. Hence we shall use 1

and J$(H) for the minimal and maximal elements of this lattice. A von
Neumann algebra satisfying

R/\R'=l (1.3)

or equivalently

R\/R' = B(#) (1.4)

is called a factor. The set of all factors is not a lattice since in general if
R19 R2 are factors then R1\/R2 and Rl/\Rz are not factors. However, if

E is any lattice of factors then the map R -> R/ is an orthocomplementation
in E.

A representation of an orthocomplemented lattice E by von Neumann
algebras is the structure consisting of a Hilbert space H and a map x —> R(#)
from E into the lattice of von Neumann algebras on H such that

R(*VJ>) = R(*)VRbO (1-5)

R(*A;y) = R(*)AROO (1.6)

R(*0 - R(*)' (1.7)

The Fock representation of the CCRs over a real Hilbert space K provides
an example of such a representation. To every subspace (closed linear
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subset) W of the real Hilbert space K there corresponds a von Neumann

algebra RF(W) on a complex Hilbert space (the Fock space HF(K )). A

detailed investigation of this example has been given by Araki,4) who proved

that the map W— >RF(PF) gives an isomorphism of the involutive lattice of

subspaces of K with the involutive lattice of von Neumann algebras RF(PF).

It should be noted that the duality theorem, Eq. (1.7), is the most difficult

property to prove in this isomorphism.

A distributive lattice E is one that satisfies

,- Q,
(1. o)

x/\(y\/z} = (x

for all x, y, z^E. A Boolean algebra is a complemented distributive

lattice. The distributive property implies that any x has a unique comple-

ment x'. Thus a Boolean algebra is a special case of an orthocomplemented

lattice. We now give an example of an atomic Boolean algebra of factors.

Definition LI: Let H be a Hilbert space and R a von Neumann

algebra in E(H). We say that {R^^A w a factorization of R if each R* is

a factor and

R.<zRP', a *£ (1.9)

\/R* = R (1.10)
&GA

If R=E(H) we just say that {R^a^A ™ a factorization. If A is a finite

(countable] set, we say that {R^} ^^A is a finite (countable) factorization. If

each RX is a type I factor, we say that {Ra}a^A i* a type I factorization.

Given a factorization {R^^A* and a subset /c A, letJc = A—J
and define

Since R(A) = R(H) and R(/)'DR(/C) we have

R(/)VR(/)' = B(#) (1. 12)

5) This follows from lemma 5.4.1 of FJ. Murray and J. von Neumann (reference 1).
This lemma is stated only for separable H, but can easily be generalized to the
nonseparable case.
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and R(J) is a factor. We say the factorization is coupled if R(/)'
= R(/C) for all/cA In a coupled factorization, the R(/) form a com-
plete atomic Boolean algebra of factors which is a representation of the
complete atomic Boolean algebra of all subsets /cA This representation
is faithful if R^l for all a<= A.

If {RC^OXEA ig a finite type I factorization, then all R(/) are type I
factors and the factorization is coupled.5) Thus we have a finite atomic
Boolean algebra of type I factors. A complete classification (up to unitary
equivalence) of such structures was given by Murray and von Neumann.6:>

As mentioned above, lattices of von Neumann algebras occur in recent
work in mathematical physics. In the local observables formulation of
relativistic quantum field theory,3^ one associates a von Neumann algebra
R(jB) with every open set B in space-time. A detailed investigation of this
lattice for the free scalar field has been given by Araki.4) For this case it
is known that R(5) is a factor of type III,*, for a certain class of regions
B.7) It is also known that for a general class of theories, R(B) is not a
factor of type I for a certain class of ^B.8^9^10^

Similarly, in the formulation of quantum statistical mechanics in an
infinite volume one has a representation B -» R(.B) of the lattice of all regions
B of 3-dimensional space by von Neumann algebras R(B). If one takes
R(B) to be the von Neumann algebra generated by the field operators
(/>(#), x^B where tj>(x) satisfies CCRs for Bose systems and CARs (cano-
nical anticommutation relations) for Fermi systems, then R(J3) is expected
to be a factor of type I for any bounded jB.n) An explicit construction of

6) Lemma 5.4.1 of reference 1 states that any such factorization is a tenslor product
factorization. That is H = ®Hi) and Ri = E(H ',•)&((§) 1 /) where !_,- denotes the ring of

multiples of the identity operator in Hj. The unitary invariants are thus the dimen-
sions of the spaces HJ.

7) H. Araki, Prog. Theor. Phys. 32, 956 (1964).
8) H. Araki, J. Math. Phys. 5, 1 (1964).
9) R.V. Kadison, J. Math. Phys. 4, 1511 (1963).

10) R.F. Streater, J. Math. Phys. 5, 581 (1964).
11) Since one is describing a system with a finite particle density, one requires that

the particle number operator N(B} should exist for any bounded region B. Thus
the representation of the CCRs or CARs restricted to a bounded region B must have
a total number operator. It was shown by L. Garding and A. S. Wightman, Proc.
Nat. Acad. Sci. 40, 617, 622 (1954) that any representation of the CCRs or CARs
with a total number operator must be a discrete direct sum of copies of the (irredu-
cible) Fock representation. This implies that R(J3) is a factor of type I.
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the representations of the CCRs describing the infinite free Bose gas has

been given by Araki and Woods.12) The representations of the CARs for

the infinite free Fermi gas have been obtained by Araki and Wyss,13) and

for the BCS model at zero temperature by Haag,14)and also by Ezawa and

by Emch and Guenin.15) While a detailed analysis of the lattice B->R(B)

has not been given, in each of these cases some R(B) are not type I. In

particular, for the infinite free Bose gas at finite temperatures, the von

Neumann algebra R(B) where B is the entire 3-dimensional Euclidean space

R3 is either a factor of type III^, or a direct integral of such factors.

For such applications to mathematical physics, it would be useful

to have a classification of such lattices. In view of the fact that a complete

classification theory of non-type I factors does not yet exist, this is a

formidable problem. However, our partial classification of complete

Boolean algebras of type I factors can be considered as a first step towards

the understanding of such structures.

We now give a brief outline of the contents of our paper. In Sec. 2

we discuss finite type I factorizations. In Sec. 3 we discuss the ITPS

H= ®H# defined by von Neumann. For each aGEA, let RM = B(H)(g)

( ® la/)- Then {R}M^A is a type I factorization and all R(/)= V^* are

type I factors. Thus we have a complete atomic Boolean algebra of type

I factors. In Sec. 4 we prove the converse result that any complete atomic

Boolean algebra of type I factors is a tensor product factorization (TPF).

In Sec. 5 we define an exponential Hilbert space e^ such that any complete

Boolean algebra ^3 of projections on K gives a complete Boolean algebra e^

of type I factors on e^. We define a continuous tensor product of Hilbert

spaces (CTPS), which is a generalization of the infinite discrete incomplete

tensor product space (ITPS) defined by von Neumann.2) In Sec. 6 we

prove that any nonatomic complete Boolean algebra of type I factors (H, 31)

12) H. Araki and E.J. Woods, J. Math. Phys. 4, 637 (1963).
13) H. Araki and W. Wyss, Helv. Phys. Acta 37, 136 (1964).
14) R. Haag, Nuovo Cimento 25, 287 (1962).
15) H. Ezawa, J. Math. Phys. 6, 380 (1965); G. Emch and M. Guenin, J. Math. Phys.

(to appear).
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satisfying a certain condition is unitarily equivalent to the structure (e*, e$)

where ^3 is a nonatomic complete Boolean algebra of projections on the
Hilbert space K. Also (H, 5R) determines (K, *p) up to unitary equi-

valence. If K is separable, then ^ gives a direct integral decomposition

of K^ and 3t is a continuous tensor product factorization. We also deter-
mine all factorizable vectors and all factorizable bounded linear operators
(relative to e^). In Sec. 7 we establish necessary and sufficient conditions

that the group integral for irreducible representations of the CCRs intro-
duced by Klauder and McKenna173 >18) exists, and that it is independent of

the order of integration. In Sec. 8 we generalize the construction of an

exponential space to entire function spaces. In Sec. 9 we give a discussion
of our results.

We shall use the following notation. In denotes the set of integers
(1, 2 , • • - , n), 1^ the set of all positive integers, and let /£ = /«, — /„. If S

is a subset of the complex numbers, then S^ denotes its closure in the

usual topology. If S is a subset of a Hilbert space, then S^w\ S^ denote

the weak and strong closures of S respectively. If E is a lattice with a

minimal element 0, a partition of z^E is a set of elements za such that

#aA#0 = 0 if a 3= ft, and yaza = z. A partition B={za} is a subpartition

of B'= {zfi if there exists v(a) for each a such that #* < #CCQ>) • We then
write

2. Finite Type I Factorizations

Let {Rj} i<=In be a finite type I factorization (see definition 1.1). It
was shown by Murray and von Neumann that any finite type I factori-
zation is unitarily equivalent to the tensor product factorization6^

H = ® Ht (2. 1)

Rf = B(£T,.)(g)( ® ly) (2 .2)

16) See, for example, J. Dixmier, Les Algebres d'Operateurs dans VEspace Hilbertien,
(Gauthier- Villars, Paris, 1957), Chap. II, Sec. 6.

17) J.R. Klauder and J. McKenna, J. Math. Phys. 6, 68 (1965).
18) J.R. Klauder, J. McKenna, and EJ. Woods, J. Math. Phys. 7, 822 (1966).
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It follows that the set of all

(2.3)

gives a finite atomic Boolean algebra of type I factors (see Eq. (1. 11) et

seq.). In this section we give the relevant properties of such structures.

For "^^H1^H2 we define a standard diagonal expansion of M?. We

define factorizable vectors for arbitrary type I factorizations {R^^A- F°r

finite type I factorizations {Ri}i<=in we define a quantity d(^r;J?1 ,..., R)

which is a measure of how close M? is to being a product vector. Lemmas

2. 1-2. 5 give some basic properties of d(W;J?1 ,-•-, Rn). Lemma 2.6

proves the equivalence of factorizable vectors and product vectors for finite

type I factorizations. The key lemma of this section is lemma 2. 7 which

relates a finite type I factorization {Rf} {<=In into n factors with the factori-

zations R(/), R(/c) into two factors. It will be used in lemmas 4. 5 and 4. 8.

Let V<=H. Then (¥, Q^)> Qi^Ri is a normal state on R{.

Hence there is a nonnegative trace class operator Dz-(W)eB(#z-) such that193

Tr D,(M/)0, =- (<p jQ{ <g)( <g, 1 ) xp) , Q{ e B(ff ,) (2. 4)
>=*=*

In particular Tr D,-(T) = ||^i|2. Eq. (2.4) defines D,(^) uniquely as a

normal state over Riy and therefore the eigenvalues of D^M?) and their

multiplicities are unitary invariants for (Ri9 M?).

We now consider the case n = 2. Let ^lf- be an orthonormal basis of

H1 such that

= *{¥,,, ^-^0, 2,-x;<oo. (2.5)

Then we can expand M? as

^ = 2^,®^2!- (2. 6)

For any 0 in B(/fj), we have

(^, QV) = S,./^ , 02,) ($« , Qhj) = 2,X'M* , 6^1*) • (2- 7)

By taking Q, such that

19) See J. Dixmier (reference 16), Theorem 1.4.1, p. 54.
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(&*,0Ay) = S«A, (2-8)

we have

(&„ &,) = S,,\;. . (2. 9)

Hence

&, = (Xj)-*<fc, (X,*0) (2. 10)

is orthonormal and

^ = SAO^A,®^ (2. ii)
Thus we make the following

Definition 2. 1: By « standard diagonal expansion of tpE^H^Hz (or

relative to R1 and R2) we mean a choice of orthonormal bases ^li

such that

(2. 12)

where X^Xg^ ...... ^0.2o:> (//" the number of basis vectors can not be taken

equal, we allow ^r
lf- = 0 or ^2i = Q when \i = 0 for the sake of notational

convenience.)

Let P1S be the projection operator onto M?lz-. Then Dx(^) has the

spectral decomposition

D1W = 2XfP l l (2.13)

We have

Trace D3(^)2 = 2 ^t = ^? S X^X./Xj
< X? 2 Xf = X? Trace D^) (2. 14)

with equality holding if and only if X,- = 0, i=$=l (i. e. if D^M?) is a one-

dimensional projection operator). We now give some definitions.

Definition 2.2: Let H = ® H{ ' A vector W<=H is called a product
1=1

vector if

20) The standard diagonal expansion of ^ for the case where Hl and H2 are finite di-
mensional was given by J. von Neumann (reference 2), Sec. 7.3.
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(2.15)

Definition 2. 3: Let {Rc&}a,^A be a type I factorization (A is arbitrary).

We say that a vector M* is factorizable if for all Qa^Ra and all integers n we

have

, n Q.pf) = (¥, vrn n (v, Qaiv) (2. 16)
1=1

Definition 2. 4: Let {Ri}i<=In be a finite type I factorization. For

any ^^H we define

dCViR, ,-, Rn) = sup (¥, n P,V) (2. 17)
Pi '=1

where P{ runs over all minimal projections in R^

Clearly M? is a product vector if and only if there exist minimal pro-

jections P^Rf for each / such that P£^f = ̂ f. It is also obvious that Eq,

(2. 17) is equivalent to

, ,».,/?„) = sup | (¥, ® <D,))|2 (2. 18)
*»• *=1

where <l>z- runs over all unit vectors in H £ .

Lemma 2. 1 : There exist ®<&i and minimal projections Pz- which give

the suprema in Eqs. (2. 17) and (2.18).

Proof: Since the unit sphere in Hilbert space is weakly sequentially

compact, there exist weakly convergent sequences <E>C/0 = ® <3>c/0 such that

lim !(¥, 3>cto)|2 = €!(¥;/?, ,-, /?,) (2. 19)

Let <l> = weak lim <3>c*5, then

= d(^;121,...,/Zli) (2.20)

21) The quantity d(^;-Ri, J?2) was used by H. Araki, J. Math. Phys. 4, 1343 (1963),
Theorem 5, to give a condition that a certain factor R obtained by a tensor product
construction is type I. The same quantity (but in a different notation and for a
restricted case) was used by J. von Neumann (reference 2), Sec. 7.3, and D. Bures,
Compositio Math. 15, 169 (1963) for a similar purpose.
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We now show that O is a product vector. Since the unit sphere in Hilbert

space is weakly sequentially compact, there exists a subsequence of <3>ife)

with a weak limit Oj .

This subsequence has a subsubsequence such that <E>2fe) nas a weak limit
n

<3>2, etc. It follows that <£> is a product vector ®<£,.. Also, from Eq.
1=1

(2. 20) we must have | |<E> , j | = 1. Q.E.D.

Lemma 2. 2: Let ^e^®^. Let \1 be the leading term in the

standard diagonal expansion of "*¥, and D^cJ)) the nonnegative trace class

operator defined by Eq. (2. 4). Then

(!(¥;/?!, R2) = Xf> Tr D^y/Tr &>(¥) (2. 21)

Proof; Choose orthonormal bases W l f j, ^2i for //:, H2 respectively

which give the standard diagonal expansion of M? (Eq. (2. 12)). Let

= l (2-22)

^1 (2.23)

be any two unit vectors in Hl , H2 respectively. Then

| (^ ^®02) | 2 = |2 X,a,ft 1 2^(S X? a, ! 2) (21 A 2) (2. 24)

Since X^X^-'-^O and 2 la« 2=rS I A I 2 = 1 > tnis nas its maximum
value X? when <E>1 = Mir

11, ^>2 = '5r
21. The inequality in Eq. (2. 21) follows

from Eq. (2. 14). Q.E.D.

Lemma 2. 3: Le£ {^i},-e/w ^ a finite type I factorization. For any

n we have

?, . . . /?„)= sup (V, n P,¥) (2. 25)
fiti*j i*J

where P{ runs over all minimal projections in Pi3 i^j.

Proof: It suffices to show that for any minimal Pi9 i^=j there is

some minimal P such thaty

(2.26)
i*j !=*=;'

Choose orthonormal bases for each Hf such that for 1*4=7', P,- is the minimal

projection associated with M?z-0. Then
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n P,¥ = s cvs%® { ® ¥„} (2. 27)
i=t=J !=!=/

is a product vector. The minimal projection associated with the vector

2 CV^/* is the desired Py. Q.E.D.

Lemma 2. 4 : L^ {-Rf-} /e/,, ^ a finite type I factorization. Let

(2.28)

Proof: By Eq. (2. 18) it suffices to consider

(2.29)

since ||®*f|| = l. Q.E.D.

Lemma 2. 5: G^m ^efl'1®Jff2, ||̂ || = 1. L^

i / (nan-nan) (2. 30)
where Q13 Q2 run over all operators in Rly R2 respectively. If p<4/25 we

have

Proofs Let

¥ = 2 V^,®^, (2.32)

be a standard diagonal expansion of ^. By lemma 2. 2 we have

d(^r;/?1, l?2) = Xi. Let Pljr, P2Z- be the minimal projections corresponding

to ^f, ^g,- respectively. Then we have

P> l(^, PnP21W)-(^, PU¥X*, Pa^)| = |\!-X}[ (2. 33)

which implies either

Xf^[l + (l-4Pn (2.34)

or

^<[l-(l-4pn (2.35)



Complete Boolean Algebras of Tyye I Factors 169

Assume Eq. (2. 35) is true. We hav £] ^f^ 1 and \t<\^. For p<4/25

we have

"
(l-4p)1/2]<l (2.36)

It follows that we can choose n so that

~ and E^?>V^ (2.37)

Let & = (2
i=l i>»

p (2- 38)
a contradiction. Q.E.D.

Lemma 2, 61 Let {Ra}a^A be a type I factorization. A vector

is factor iz able if and only if there exist minimal projections P^R^for each

a^A such that P^ = M*. If the set A is finite, then M* is factorizable if and

only if it is a product vector.

Proof: We can assume ||̂ || = 1. We first show that the existence

of minimal P^ with Pc6^f = ^f implies that M* is factorizable. Thus let

al ,•", oin be given. Then we have

(2.39)
1=1

Rai = {B(Hai}®( ® 1 .)} ®1 (2. 40)

But n Pai^f is a product vector with respect to this decomposition. It

follows that

(¥, n g^) = n (v, Qaiv) (2. 41)

for all Qa^R^. Thus ^ is factorizable.

We now prove the converse. For each a^A we have

H =
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For all Qp^Rp and all n we have

(v, Qa n QJS) = (<r, QJSKS, n a,,*) (2. 42)
- -

Since the union of R f t , /34=a is irreducible on H'a, any jg' e 1 <g)B(jyi) can

be approximated weakly by operators of the form

EC/ {a,}) 110., (2-43)
j=l i=l

It follows that

OP, e.e'*) = (^ e.w>, ex^) (2. 44)
for all Q^Rfi, Q'^R^. It now follows from the preceding lemma that M?

is a product vector with respect to the decomposition Ha = Ha®H^ . Thus

there exists a minimal projection P^^R^ such that Pc6ty = *P.
n

If the set ̂ 4 is finite, then we can tacke A = In and we have H = ® Hi .

Clearly ¥= H P^ is a product vector. Q.E.D.
1=1

Lemma 2. 7: Zrf {^z-}ze/w be a finite type I factorization., For any

unit vector ^^H let

?1, -,Rn) (2.45)

rf2 = inf d(¥ ;/?(/), /?(/c)) (2.46)

where J runs over all subsets of In . Then there exist positive numbers B and S

such that

l-d2<£ (2.47)

implies

(l-d^l-KW-dJ (2.48)

Proofs Our proof consists of three parts. In the first part we obtain

a subset / satisfying a certain condition (Eq. (2. 57)). Choose a product

vector ®3?i^H such that

| OP, ®*,) !» = </, (2.49)

For eachj'e/w let Aj be an index set containing 0 such that the cardinal

of AJ is dimHj. Let ^/jfe, k^Aj be an orthonormal basis for /fy such



Complete Boolean Algebras of Type I Factors 171

that M?y0 = <I>y. Let a denote the sequence (a± , • • • , an), a^A^ a = 0

denotes the sequence with all aj = 0. The vecotrs

¥(a) = ® VJaJ (2. 50)
y=i

form an orthonormal basis for H. We now expand

) (2.51)
Then

^= |C(0) | 2 and 1-^ = 2 |C(«)|2 (2.52)

We note that if C(a}^0 then at least two ay=f=0, otherwise one could con-

struct a vector ®%z- with |(% ®X1)|2>rf1. Let/. /c be some partition

of In . This induces a splitting of the sequence a which we write

A(/) = {«:«(7)^0, a(/c) = 0} (2. 53)

A(/, /c) = {«:«(/) 4=0, a(/c)^0} (2. 54)

C(/)= 2 |C(«)|2 (2.55)

C(/,/c)= I] |C(a)|2 (2.56)
"

We will prove that there exists a / such that

(2.57)

Let N(a) be the number of ay4=0. Let

k(/)= 2 |C(«)|2/N(a) (2.58)

(2.59)

(2.60)

(2.61)if e ^ ;

k,-C/,/)= 2 |C(«)i2/N(a), i=l,2 (2.62)
aeA,(y,/)

Choose some/ for which k(/) is maximal. For anyj'e/, let/'=/— {;'}.
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Since N(a) = 1 implies C(a) = 0, we have

k(/')-kC/)>k20-, 7)-U/, /) (2- 63)

We obtain the same equation for j^Jc by a similar argument with

J' = J\J{j}. Thus k(/) maximal implies that k2(;, J)<kt(j,J). Now

C(/,/c) = 2A(y,/)>2y k.0',/) = C(/) + C(/c) (2. 64)

Since

CC/) + C(/') + C(/,/c) = l-^ (2. 65)

we have

C(/)+CCn<y(l-4) (2.66)

This completes the first part of the proof.

We now prove that there exist positive numbers 8l and S such that

l-^i<fi implies l-d^<§(l-d2] (2.67)

Write H = H(J) ® H(/c). We have

¥(*) = W(a(/))®^(a(/c)) (2. 68)

To simplify notation, let a(J)->0, a(Jc}-^j. Then Eq. (2. 51) becomes

V = Y>CMJ}®^(n (2.69)

The quantity

rf = d(*P;R(.7), R(JC)) (2.70)

is the largest eigenvalue of D = CC* where C is the coefficient matrix in

Eq. (2. 69). Since

l-d2>l-d>— (l-d2)>l-(l-Trace D2) (2.71)
^ ^

it suffices to find £1? S such that l — d1<£l implies

l-TrD2>2(l-^)/S (2.72)

We write C = A + B where
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Note that B?Q = 5OV = 0. This gives W = Wa-\-Vb where

(2. 74)

We define the unit vector

Let P be the one-dimensional projection onto W'(J), and let ^fl = ||MirJ|2.
Then we have AA* = daP and we get

D = daP+K (2.76)

where K = CJ9* + BA*. Thus

Tr D2 = dl + 2da TrPK+TrK2 (2. 77)

We have
da = ||^J|2 = 2|A^|2 (2.78)

Using Eqs. (2. 66) and (2. 73) we get

*!-r — ~ V A — "ij-r^ **\) /VA""i) (2.79)

Thus

This gives

(2- 81)

Then (1 — d^<8^ for any £j<— gives

= 2

(2. 82)

We now introduce the quantities

(2. 83)

(2. 84)

(2.85)

We have
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2'3 = 22ic»|' = i-rf1-c(7)£i-«*1 (2.86)^ 74=0

Since A^ = C^Coy/C00 we get

S «S = E E l^vl 2 = [C(/) + ̂ 1][C(/c)]/J1 (2. 87)

It follows from Eq. (2. 66) that

2«3<:y(1--rfl) (2-88)

Since B^ = C^~A^ we have

|Swl'<;2(|Cw |« + 4»|«) (2.89)

Since BpQ=BGy = Q it follows that

1 (2. 90)

M>o (2.91)
Thus

2^<2(l-rfO (2.92)

We have

Tt PK = (V(J), KV(J)) (2.93)

Noting that 5PO = 5OP = 0 we find

Then (1 — dl)<8l for any fx< — gives
LJ

< 2 E IQ0cPvcP'ol + 2 2P i3'=j=o ^4=0 ^/

<(l-J1){C(7)CC(7)+^1]}
1/2(v/2~+l) (2. 94)

Thus

|TrPJK|<(l-rf1Xv /2+l){C(7)/[C(7) + rf1]}
1/2 (2.95)

It remains to estimate | Tr K2 \ . We have
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K2 = CB*CB* + CB*BA*+BA*CB*+BA*BA* (2. 96)

By a similar calculation to Eq. (2. 94) we find

+ 12 2 bpfipfbprap \

Then Eqs. (2. 77), (2. 82), (2. 95), (2. 97) give

Tr fl2 < d,+(1 - rf,) f(rf,) (2.98)

where

(2. 99)

for d,> ~ . From Eqs. (2. 71-72) we have

(2-100)

Thus we can choose any £,< — such thatJ 2
f(l-ei)<l (2.101)

(which is not satisfied for any £1 > — anyway). Then Eq. (2. 67) is satisfied
^ ^ /

with

f(l-^)] (2.102)

In particular ^=1/10, S-20 satisfy Eq. (2. 67).

The third and final part of our proof is to show that Eq. (2. 67) can

be replaced by the condition

l-<*2^£i/(l+S) implies l-d^S^-dJ (2.103)

The proof is by induction on n. For n = 2, we have d1 = d2 and the result

holds trivially. Now assume the result for n— 1, and consider the factori-

zation Ri , - • • _ , Rn~2, Rn-i \/Rn into n—l factors. Let rf/, J/ denote the

quantities dl9 d2 for this factorization. Let P^Rj, i^In_2 be minimal

projections such that

(V,P1-Pn.&) = d! (2.104)
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By assumption we have 1 — d/<S(l — d2'). Since dj>d2 we get

l-rf/^SCl-^^S/Cl+S) (2. 105)

Let Pn_1^Rn_l be a minimal projection such that

(¥, P.-^terf, (2. 106)

Then I^.^-^H2^!-^ and

IIP. - ^,-#V,*-*)HI£l-«*, (2- 107)

If follows that

i-(¥, P, - P
^ (2. 108)

It now follows from Lemma 2. 3 that \ — dl<Bl. Eq. (2. 67) then gives

l-d,<§(l-d2} (2.109)

It follows that the positive numbers £=£1/(l+S) and S have the desired

property. Q.E.D.

Apart from the condition that Eq. (2. 101) be satisfied, there is a

good deal of freedom in the choice of 6 , S in lemma 2. 7. The choice

^ = 1/10, S = 20, and 6=1/210 is one possibility. One can obtain a smaller

S by choosing a smaller 61 .

3. Discrete Tensor Products

In this section we discuss the relevant properties of the incomplete

tensor product space (hereafter referred to as ITPS) defined by von

Neumann.50 We assume the reader to have some familiarity with the pro-

perties of an ITPS. We define an ITPS and discuss product vectors.

Lemma 3. 1 gives an asymptotic property of vectors in an ITPS. We

discuss the associative law, and use it to show that any ITPS gives a

complete atomic Boolean algebra of type I factors. Lemma 3. 2 proves that

a vector in an ITPS is factorizable if and only if it is a product vector.

Lemma 3. 3 proves that a weak limit of product vectors is a product vector.

Let {Ha}afEA be a set of Hilbert spaces, and let ̂ ^H^ be a set of unit

vectors. The ITPS
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H = &w*->Ha (3. 1)

containing the product vector $ = (g)^ may be defined as follows. Let W^

be an orthonormal basis for H^ such that

vv° = </>« (3. 2)
Then an orthonormal basis for the ITPS H is given by the product vectors

® v% (3. 3)
where /3 runs over all sequences /8a, a^A such that 13^ = 0 a.a.22) The

ITPS H depends on the reference vector (g)<£rt (unless the set A is finite).

If there is no danger of ambiguity we may write

H=®Ha> (3.4)

without explicitly including the reference vector. Note that the product

vectors form a total set for H. For a subset / c A, we write H(/) = (g) Ha.
05SJ"

We now discuss briefly the basic properties of product vectors, ®Xat

where

(3. 5)

Two such product vectors are said to be equivalent, 0%^®^ if and
only if

2 I(X.,^.)-1|<oo (3.6)
«e-4

This is equivalent to requiring that

n(%«, <&.) (3.7)
ae^l

converge.235 Furthermore (X^, ̂ a>)=j=0 for all a implies that

(3.8)

22) $05 — 0 a.a. means fla=Q except for a finite number of a. The a.a. reads "almost
always".

23) If Za, are complex numbers, then IJza converges if and only if 2! 1 ~~z I < °°. If H%a,
converges and za^Q for all a, then /Ts^^O. Cf. J. von Neumann (reference 2),
lemma 2.4.1.
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If ®%a>^®(£a>, we may define it as a vector in the ITPS H determined

by the reference vector ®<£a as follows. We have

X. = Sfl.C-08.WL' (3.9)

For any finite subset J<zA let

(3.10)

where

Eq. (3. 6) now implies that

lim%(/) = n { U *(/')}Cs) (3. 12)

exists (where J/ is finite, and { }Cs:) denotes the strong closure of the set

{ }). We shall have occasion to make use of such limits in the following.

Conversely, if % is a product vector ®%06^H, then

n(X*,<^) = (%,<£) (3.13)

and.

Lemma 3. 1 : Let W be a vector in the ITPS H = ®^^H0& . Given
<*(=A

£ >0, there exists a finite J d A and ^ f j ^ H ( J ) such that

(3.14)

Proofs Choose basis vectors M?(/3) as in Eqs. (3. 1-3). Then we can

expand

Choose a finite subset B of the ft so that

\C(/3)\2<82 (3.16)

Let Jc = {a: /3* = 0 for all /3 eB}. Then / is a finite set and

2 C(£)¥(/3) = W7®{ ® 0J (3. 17)

Q.E.D.
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It follows from this lemma that we can write

W = Hm ¥7® { ® <j)a} (3. 18)

(see Eq. (3. 12)).

We now consider the associative law.24) Let Kp, (3^B be a partition
of the index set A. We construct a unitary mapping between the ITPS

H = ®^®v«Ha (3. 19)

and the ITPS

®c®*r*3»H(Jfir/s) (3.20)

where

and

= ® <£* (3. 22)

For any product vector (gX^e/f, let

%(^) = ® X. (3. 23)
*e*3

Then the mapping

(g) %« -> ® %(^) (3. 24)
ose^ pe.B

is one-to-one and isometric between total sets. Hence it can be extended
to the desired unitary mapping. In practice we shall write

H = ®ffl(Kft) (3. 25)

without explicitly writing the unitary operator. The preceding results are

all given in the basic paper of von Neumann.2)

We now show that any ITPS gives a complete atomic Boolean algebra

of type I factors. For each a^A let

R* = E(HU}®( ® lp) (3.26)
0^=0!

Clearly

(3.27)

24) ]. von Neumann (reference 2), Sec. 4.2.
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It was shown by von Neumann that25)

V»*a = B(#) (3.28)

Thus {Ra}c6tEA is a type I factorization (see definition 1. 1). For any JdA,

the associative law gives

H = (®Ha)®( ®HJ (3.29)
cue/ tfe/c

Thus25'

(3.30)
OiGEj

is a type I factor, and we have a complete atomic Boolean algebra of type

I factors.

We now generalize lemma 2. 6.

Lemma 3. 2i Let H = ® <«*«>#„ be an ITPS, and let {R^^A be
ot^A

the associated type I factorization. Then *P^H is factorizable if and only

if it is a product vector.

Proof: Clearly any product vector is factorizable. It remains only

to prove the converse. By lemma 2. 6 there exist minimal projections

a for all a<=A such that PaW = W. We can assume ||¥|| = 1. For

any finite/c^, let P(J) = II P* . Then P(J)V = V, and for any Q^R(J)
OiGE7

we have

P(J}Q-v = (v, Qv)v (3. 31)
Since the set of all such QW is dense, it follows that

P = limP(J) (3.32)

exists and is the one-dimensional projection operator onto. W. Now

choose ^efl* such that P^^ifc,, ||¥J| = 1, (^, ^)>0. Since

^) (3.33)

it follows that, g)^^®^, hence ®^eJEf. Since P®^ = ®^, we

have ¥ = 0®^, |C|=1. Q.E.D.

25) J. von Neumann (reference 2), Theorem IX.
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Lemma 3. 3: Let H = ®&**>Ha be an ITPS. If
<*<=A

<I> = weak lim <£cn) (3. 34)

where each <!>CK:) is a product vector, then & is a product vector.

Proof: <I>CM) is a product vector in a finite tensor product

where {af} is any finite subset of A.

The proof of Lemma 2. 1 shows that the limit <3> is also a product vector,

in this finite tensor product. Hence <3> is factorizable in H=®H06. By

Lemma 3. 2, it is a product vector.

4. Complete Atomic Boolean Algebras of Type I Factors

In this section we consider type I factorizations {Ra}aeA (see definition

1.1). If J is a finite subset of A, then R(/) =\/ R^is also a type I factor.26'
O&EEJ"

Thus we have an atomic Boolean algebra of type I factors. But if the

factorization is obtained from an ITPS

H=®^Ha (4.1)

by

(where !# denotes the minimal von Neumann algebra of all multiples of

the identity operator on H^) then R( J) is type I for any/c^4, and we have

a complete atomic Boolean algebra of type I factors (see Eqs. (3. 26-30)).

We shall call any type I factorization Ra a tensor product factorization

(hereafter referred to as TPF) if it is unitarily equivalent to ^obtained by

Eq. (4. 2). The main result of this section is that if 3^ is any complete

atomic Boolean algebra of type I factors with atoms {Ra}aeA9 then R^ is

a TPF (Theorem 4. 1).

26) F.J. Murray and J. von Neumann (reference 1), lemma 5.4.1.
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We begin with a discussion of what we call a partial tensor product
factorization (hereafter referred to as a PTPF). Then we give an example

of a countable type I factorization which gives a complete atomic Boolean
algebra (R(/)} where R(/) is type I if either / or Jc is finite, and is type

II otherwise. Lemmas 4. 1-2 are useful technical lemmas. Lemmas 4. 3-4
give some rather obvious conditions that a type I factorization is a TPF.

Lemma 4. 5 gives a necessary and sufficient condition that a PTPF is a

TPF. Lemmas 4. 6-7 give further conditions that a type I factorization

is a TPF. The key to proving our main result is the condition given by
Eq. (4. 64). Lemma 4. 8 proves that a type I factorization is a TPF if
this condition holds. However the real motivation for this condition is in

the proof of lemma 4.13, where we construct an R(/) which is not type I
under the assumption that this condition does not hold. Lemma 4. 9 gives
a condition that a countable type I factorization is a TPF. Lemmas 4. 10-

1 1 give sufficient conditions that a countable type I factorization is a PTPF.

Lemma 4. 12 is a cluster property used in the proof of lemma 4. 13.

Lemmas 4. 8 and 4. 13 prove our main result, which is stated as Theorem
4. 1. Lemma 4. 9 is the only lemma which is unnecessary for the proof

of Theorem 4. 1 as given here.
We begin with a discussion of what we call partial tensor products.

Let H&, a^A be given, and consider a partition of the index set A into

finite subsets Kp, /3^B. Let

. (4. 3)
e p

If a^Kp, let
( ® I*/) (4.4)

Choose some reference vector ^ in each H(Kp) and construct the ITPS

H = ® H(Ay (4. 5)

If a^Kp, let

R* = R«®( ® V) (4.6)

Clearly {JRoJojeA is a type I factorization. We shall call any type I factoriza-
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tion Ra a partial tensor product factorization (hereafter referred to as

PTPF) if it is unitarily equivalent to Ra obtained by Eq. (4.6).

We consider the following type I factorization, which is based on an

example given by von Neumann.27' Let Hniy i^\,rl,n^.IOQ be two-

dimensional Hilbert spaces. Let Rni = B(Hni), and choose a unit reference

vector Wn in each Hnl®Hn2 such that

(4.7)

Let

(4.8)
n=i

be the ITPS containing the unit product vector. *¥=®mn. Let

R0 = (/?n®ln)®[ <g> (I.,®!,,)] (4. 9)
n>l

® (Iwl®lm2)] (4.10)

If either / or Jc is finite then R(/) is type I. If both / and Jc are

infinite, then both /, /c contain infinitely many n such that either n + l

^JC,J or n—l^Jc,J respectively. It follows from von Neumann's

results that R(/) is type II for this case. Thus we have a complete atomic

Boolean algebra (R(/)} of type II and type I factors. Since the only type

I factors are for finite or cofmite /, it does not contain any infinite com-

plete Boolean subalgebra of type I factors, which implies that Rn is not

a PTPF.28'

Lemma 4. li Given a Hilbert space Hy a vector W^H, a projection

P and a subset SdH. Then

( i ) OF, ®}>Sfor all <j>E^S implies OP, <£)>S for all 3>eSCw).

( ii ) (^, O) - 0 for all^^S implies (^, <1>) = 0 for all <I> e S Cw).

(iii) P<I> = 0 for all^^S implies PO - 0 for all^^S Cw).

(iv) PO = ® for all<&<=S implies P® = ® for all^^S Cw).

27) J. von Neumann (reference 2), Sec. 7.3.
28) J.R. Klauder (private communication) has shown that by a suitable choice of basis

for the space of test functions, the representation of the CCRs for a relativistic free
scalar field gives a type I factorization which is not a PTPF.
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Proof: We prove (i). Since

(4.11)

satisfies

(V, <£)>0 (4. 12)

we may take 5 = 0. Let t&^S^ and assume

(V, <D) = £<0 (4.13)

Then the weak neighborhood

AT(d>;% 8/2) = {X:|(¥, <D-%)|<£/2} (4. 14)

is disjoint from 5, which contradicts <&eSCw).

Clearly (i) implies (ii), and (iii) is equivalent to (iv) (let P-»l — P).

(iv) is equivalent to P% = 0 implies (%, <I>) = 0 which follows from (ii).

Q.E.D.

Lemma 4. 2: Ltf H=Hl®H2, R^

Let Pcn^^R13 n^I^be minimal projections with

weaklimPw = \P (4. 15)

and let Q™^R2 be such that \\Q^\\^l and

weak lim P^Qwy = ® (4. 16)

Then

® = weak lim \PQ™V (4. 17)

Proof: Let Oiw), Ox be unit vectors in H^ such that

(4. 19)

(4.20)

We prove that

x/AT^! - weak lim <£?» (4. 21)
«->oo

From Eq. (4. 15) we have (4. 22)
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lim | (^ , <£iM>) | 2 = lira (^ , P"1 )̂ = X (4. 23)

hence

lim (O^ <I>n - \/X~ (4. 23)
«->oo

For (X,, ^>J = 0 we have

lim | (X, *<»>) | 2 - lim (X, P^%) = 0 (4. 24)
«->oo M->-oo

which proves Eq. (4. 21). Let

* = 2 W,®¥2, (4. 25)

be the standard diagonal espansion of *& given by Eq. (2. 9). Then

(4. 26)

j-) (4. 27)

where

3>r = S XfW, ̂ i*)^ (4. 28)

*i°°} - 2 X.VATCd)^ ^,)^2Z- (4. 29)

From the equivalence of weak and a weak topology for a norm bounded

set, it follows that

li^r-Oril2 = 2 XfC^,-, P^XO -> 0 (4. 30)

where PCM}/ is the projection on the space spanned by the vector Oj_w)

— \/\ <&! times the norm squared of this vector and tends to zero weakly.

Eq. (4. 21), (4. 30) and \\Q^\\^l implies (4. 17).

Lemma 4. 3: Let {R^^^A be a type I factorization. If there exists

a factorizable vector <£ (see Eq. (2. 16) then R* is a TPF.

Proof: We can assume ||<E>|| = 1. For each a^A we have

H = ,
(4.31)V ;

By lemma 2. 6 there exists a minimal Pa&Ra such that

* = P«3> (4. 32)

It follows that
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(4. 33)

where we can take 110011 = 1. Now consider the ITPS

® «**->#„ (4.34)

By a slight abouse of notation, we shall let Qa denote the corresponding

operators inR^, B^^) andB(®/fa)). For any Q^^R^ and all n, consider

the map

(4.35)

This mapping is one-to-one and isometric between total sets. Therefore

it can be extended by linearity and continuity to a unitary operator U from

H onto (&HM. By construction

UR.U-1 = B(ffB)®( ® I./) (4.36)
"'**

Q.E.D.

Lemma 4. 4: Let {Ra} aeA be a type I factorization. If there exists a

vector M*, ««rf a minimal projection Pa in each Ra such that

(4.37)

/or all finite Jc: A, then Ra is a TPF.

Proof: For any finite / let P(/) = II Ptf, ̂ (/) = P(/) ¥, and
o5e.J

(4-38)

where J^ is finite. Since the unit sphere in Hilbert space is weakly compact,

the set S = f] S(/)Cw) is nonempty. Let 0> e S. By Eq. (4. 37) and lemma

4. 1 we have

(¥, 0)>^ (4. 39)

thus O^O. Ifae/, then Pjff(J) = *ff(J) and lemma 4. 1 gives

P^ - O (4. 40)

It follows from lemma 2. 6 that O is factorizable. Thus Ra is a TPF by

lemma 4. 3. Q.E.D.
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Lemma 4. 5: Let {R^^A be a PTPF. If all R(J) are type Iy then

Ra is a TPF,

Proof: We have

H = ®<®*f*>H(Kp) (4. 41)

For any JdA let

(4.42)

(4. 43)

where either/^ or /£ may be empty. We have

where the factor space is one-dimensional if the set is empty. Thus

H = ®C®V {H(/p)®H(/£)} (4. 45)

and the factor

(4. 46)

is now in the standard form considered by Araki,29) who proved that R(/)

is type I if and only if

oo (4. 47)

Thus all R(/) type I implies that

2 {1 - inf d(*p ; R(/p), R(/£))} < - (4. 48)
PGB Jp

It follows from lemma 2. 7 that

Se {l-d^-R^ aeXp)}<oo (4.49)

which implies that23)

Hpd^;^, ae^)=l=0 (4.50)

Hence there exist minimal projections P^^R^ such that <!>= ®^>^ satisfies

the conditions of lemma 4. 4. Q.E.D.

29) H. Araki, J. Math. Phys. 4, 1343 (1963), Theorem 5 (especially Eq. (10.38)).
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Lemma 4. 6: Let {R£}iGIoo be a countable type I factorization. If

there exists a vector W, and minimal projections Pf^Rj3j^In for each n

such that

lim(^nPf^)>0 (4.51)
«->oo y=i

then Ri is a TPF.

Proo: Let P(ra)= IlP^. Then by weak sequential compactness
y=i

there exists a subsequence nk such that

weak lim P(nk) ̂  = <£ (4. 52)
k->°°

Then

(¥, *) = lim (¥, P(n,)¥)>0 (4. 53)
*•»•»

Now for each j and n > / we have

(¥, P(n)^) = (Pf ^, P(n)PJ*^)

< HPf^H2 = (^, Pf>Y) (4. 54)

Thus

Hm OP, P5«^)>0 (4.55)

Since Pjw) is a minimal projection, we may use the weak sequential com-

pactness in Hj. Thus there is a subsequence of nk such that P^

converges weakly. Choose a subsequence of this subsequence such that

Pf^ converges weakly, and repeat this process for each j. Let Nk be the

diagonal subsequence, then by (4. 52)

weak lim P(Nk)W = <& (4. 56)

and by construction

weak lim P jw - X -P . (4. 57)
/&->°°

where Py is a minimal projection in RJ9 and 0<Xy<l. It follows from

lemma 4. 2 that

= weak lim X -P .{ n P(,w} W (4. 58)
°° y y
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which implies that

<I> - P/B (4. 59)

for any/. It now follows from lemma 4. 4 that Rf is a TPF. Q.E.D.

Lemma 4. 7: Let {R^^A be a type I factorization such that all R(J)

are type I. If there exists a vector M* such that

inf d(V;Rai ,..., Ran , ]*({«, ,..., «„}<)) = £>0 (4. 60)

where inf is taken over all n, a ±--, anJ then Rm is a TPF.

Proof: We first prove that the number of a^A such that

d(^;^,^)<l-S, 8>0 (4.61)

is finite. Suppose there exists a countably infinite set of aiy i^I^

satisfying Eq. (4. 61). Consider the countable type I factorization

{R({a/, z'e/^}0), R*z-> I'e/co}. It follows from Eq. (4. 60) and lemma 4. 6

that this factorization is a TPF. Using lemmas 2. 4 and 3.1, this implies

that
?,,, *:,) = ! (4.62)

which contradicts Eq. (4. 61). It follows by a standard argument that

the subset

AQ = {atEAid&iR., R'J*l} (4. 63)

is countable. If a^Ac
Q, there is a minimal projection P^^R^ such that

P^ = W, hence {Ra}aeA% is a TPF by lemma 4. 4. It follows from Eq.

(4. 60) and lemma 4. 6 that {RJ*^ is a TPF. Hence {RJ^A is a TPF.

Q.E.D.

Lemma 4. 8: Let {R^^A be a type I factorization such that all R(J)

are type I. If there exists some unit vector M? such that

) = l (4.64)

where J, K are finite subsets, then Ra is a TPF.

Proof: Choose £' such that £'<£ and S-f7<l where £, S are given

by lemma 2.7. Choose a finite K' such that
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1- inf d(vp;R(/), #(/<))<£' (4. 65)
JCKC

For any finite J= {a± , - • • > #M} C.KC it follows from lemma 2. 7 that

1-dOP;*^, -,*,„, R(yc))^S-£ /<l (4.66)

By lemma 4. 7 this implies that Ra is a TPF. Q.E.D.

Lemma 4. 9: LeZ {P,-} z-e/oo 6e a countable type I factorization. If

there exists a vector "^f such that

E{l-d(^;R(/B),R(^))}<oo (4.67)
«=1

then Ri is a TPF.

Proof.- Let

6^1-d(^;R(/J,R(^)) (4.68)

By lemma 2. 3 there exist minimal projections Pn^R(In), P£eR(/J;) such

that

(V, PnV) = (W, P^) = 1 -8 n (4. 69)

which is equivalent to

i|(l-Pw)W = ||(1-PO^!I2 = f» (4. 70)

Consider the minimal projection

p// = p pf /4 7j\
^ 7Z ^ M-l-t 71 V' ' A/

in P^. We have

PXV-V = PM_1(P^-^)-(l-PK_1)W (4. 72)

hence

= f« + fi.-i (4.73)

which is equivalent to

It follows from lemma 2. 3 that there exists a minimal projection
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such that

i!0^-^H2<£w + £w_1 (4.74)

Choose n such that

2(^+^-i)<l/2 (4.75)

Let

¥1 = (UQj)V (4. 76)
j = H

then

«+m+y + £»+m+y-I) (4-77)

Thus W™n converges strongly to a vector Wn and ||^M— ̂ ||2< 2 (£n+ .
y=o

4-£,l+y_1). Hence ^4=0 implies M?n=|=0 for large n. For j>n we have

Qj^n = Wn (4. 78)

Since one can always find minimal projections Q^Rj,j^In_l such that

OP", UO'3V*)>Q (4.79)
^•=1^

the conditions of lemma 4. 4 are satisfied and Rn is a TPF. Q.E.D.

Lemma 4. 10: Le£ {Rn}n^Ioo be a countable type I factorization.

Let Jn be any increasing sequence of finite subsets such that U« % /» = /«x,.

Then the following conditions are equivalent

( i ) there exists some unit vector SP" such that

limd(vp;R(/B), R(/S)) = 1 (4-80)

( ii ) there exist minimal projections Pn e /?(/£) «/cA ^/zaf Pw -> 1 strongly.

(m) all unit vectors M? satisfy Eq. (4. 80).

o/ f Aw^ conditions implies that Rn is a PTPF.

Proof: We first show that (ii) implies (iii). For any unit vector M?

we have
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lim d(¥ ; R(/B), R(/<))> lim (¥, P.V) = 1 (4. 81)

Clearly (iii) implies (i). It remains to prove that (i) implies (ii). For each

n we have

H = H(/.)®H(/S) (4. 82)

Let

¥ = 2 x^a?0®/??1' (4. 83)
i=l

be the standard diagonal expansionf of *P given by Eq. (2. 12). It follows

from lemma 2. 2 and Eq. (4. 80) that Xiw)-^l as «-» oo. Let PM be the

minimal projection associated with the vector /3iw)eH(/J;), then Pn^f->^

strongly. We now prove that P^<I>-»<I> strongly for all <E>e#.

First, let U be a unitary operator in R(/w). Then, for O=C/^r,

||P^-0||2 = liPjP-^H' -> 0 (4. 84)

Since the union of R(/w) is irreducible, the vectors of the form <I> = U*P are

dense in the Hilbert space. Since |LPB|| = 1, (Pn— 1 )O-» 0 for a dense set

of <I> implies the same for all O.

Finally we show that (i) implies that Rn is a PTPF. We can choose a

subsequence nk such that

S {1 - d(<r ; R(y.4), R(/S*))} < - (4. 85)

The result then follows from lemma 4.9. Q.E.D.

Lemma 4. 11 : Let {R{} ,-e/oo 6e a countable type I factorization. Let d

be a density matrix (nonnegative trace class operator with'Tr d=l). Let

] n be any increasing sequence of finite subsets such that U«/« = /oo- If for

each n there exist density matrices dn<^R(Jn), <^eR(/£) such that for all

fiJlCill 116.11 (4- 86)

where lim £„ = (),• then R, is a PTPF.

Proof: Let *P be an eigen vector of d belonging to the eigenvalue X =1=0,
= 1, and let P be the associated one-dimensional projection. Since
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the union of R(/«) is irreducible, it follows from von Neumann's density
theorem30) that its unit sphere is dense in the unit sphere of B(£f) in the

strongest operator topology.313 It follows that, given 8 >0, there exists a

sufficiently large integer n and an operator Pn^R(Jn), \\Pn\\<l such that

<£ (4. 87)

where 1 1 T \ |HS is the Hilbert-Schmidt norm defined by

\\T\\HS = [TrT*Ty*> \\T\\ (4.88)

For any Q^E(H) consider

Tr (PdP-PndP*)Q = \(V, g^)-Tr (PndP*Q) (4. 89)

We have

PdP-PndP* = (P-PH)dP + Pad(P-P*) (4. 90)

Since

|Tr,Sr|<i|5i|HS!|r||HS (4.91)

we have

| Tr (PdP- PndP*)Q | < | |(P- PBK/2| |HS||rf *PQ\ |HS

+ ! e^1/2ilHs!l^1/2(^-^,f)!lHs (4. 92)
Now

||rf^P0||&s = Tr Q*PdPQ = \(V, QQ*V) (4. 93)

which gives

ll<Z1/2^0llHs<V /2IIPII (4. 94)

We have

QPKd>» = QPd* + Q(Pn-P)d* (4. 95)

Since

\\P\\us = ll^1/2!lHs - 1 (4.96)

it follows from Eqs. (4. 95), (4. 94) and (4. 87) that

30) See J. Dixmier (reference 15), Sec. 1.3.
31) The strongest topology is defined by the semi-norms T-» [SI! Txi \ |2]1/2 where {xj} is

any sequence of vectors such that 21 I*; I !2<°°. An equivalent definition is to use
the semi-norms T-^[Tr dT*T]1/2 where d is any nonnegative trace class operator.
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(4.97)

Eqs. (4. 92), (4. 94), (4. 97) and (4. 87) now give

|Tr (PdP-PndP*}Q\<e(2\v*+8)\\Q\\ (4- 98)

which implies

|\(<P, £>M>)-Tr (PndP*Q)\ <£(2V+SW\\ (*• 99)

for any Q eB(tf). Now let 0 = £0, where 0t e R(Jn), Q2e R(/<)- Then

Tr (PndP*Q&) = Tr C^QA) ft] (4- 100)

and it follows from Eqs. (4. 86) and (4. 99) that

l(¥, e.e.^-TrtoOTrWg^KfUQJ! H&l l (4. 101)

where

JB = \~lPndP* (4. 102)

£' = [£K + £(2x1/2 + £)]/X (4. 103)

By letting Q2=l we get

|(^, Ql^-Tr(3nQ1}\<£'\\Ql\\ (4. 104)

By letting Q1 = 1 we get

|(¥, 0^-Tr(J.)Tr (rfig^Kflian (4. 105)

By letting Q, = 02 = 1 we get \ 1 - Tr dn \ < £', hence

|(^, Q2-V)-Tr (d'nQ2) <2£'\\Q2\\ (4. 106)

Eqs. (4. 101), (4. 104), (4. 106) now give

I OP, Q£2V)-CV, Q&Xv, Q^}\<^'\m\ lift! (4.107)
Since £ was arbitrary, and lim £K = 0, it follows from lemma 2. 5 that

l2imd(^;R(/wXR(/a)^l (4.108)

and lemma 4. 10 implies that #, is a PTPF. Q.E.D.

Lemma 4.12: L^ {J?*}*^ ^ ^ type I factorization. Given any

unit vector M?, any finite subset JdA, and any £>0, rterg ̂ jfc a finite

such that for all Q^tyJ), Q2^R(KC) we
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Q&&)-(v, giW^)! <eil0ill lie.ll (4- 109)
Proof: Since J is finite, R( J) is type I and

# = H(/)<g>H(/c) (4.110)

Let

= 2 X*a*

be the standard diagonal expansion of M? (see Eq. (2. 12)). For any
c we have

XK«,, &«,•) (4- H2)

For any £'>0 we can choose w such that

2 X?<£' (4. 114)
,- = ii + l

Then

\\Q,\\ (4.115)

For each it=In let U{ be the partial isometry on H(/c) defined by

U& = (&„$)&, (4.116)

Then

C/,/3y = SlJ/3i (4. 117)

t/*/3y = SiyA (4. 118)

Since the union of ~R(K—J) over all finite KlDj is irreducible in R(/c),

it follows from the density theorems of von Neumann and Kaplanski333

32) Lemma 4.12 is a cluster property similar to lemma 6 of H. Araki, Prog. Theo. Phys.
32, 956 (1964). It should be noted that lemma 4.12 is a special case applying to
type I factorizations, and the uniformity in Q1? Q2 does not follow from lemma 6 of
this reference.

33) See J. Dixmier (reference 15), Sec. 1.3. We use the fact that if W, S3 are ^-algebras,
5lcS3 and 91 is strongly dense in S3 then the unit sphere of hermitean elements of W is
strongly dense in the unit sphere of hermitean elements of S3.
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that there exists a finite K ID / and operators V^R(K— /), ||F,-||<1, i
such that

F,)AH<S (4.119)

?- F*)/3y||<S (4.120)

for all i, /e/B where

S = £'l\(n) (4. 121)

where

X(fi) = sup {1, 2 X,-X,} (4. 122)
'•,/=!

i*y

It follows that

(4. 123)
We have, for g2eR(.S:c),

I (A,e A')- MA, 02/301
< I (A, ftCFf^-S^A)! +25| 1̂ 1! (4- 124)

Since

VfVjfr = S,-,A + (F* - t/*)/3y+ F*(F,- £/,)& (4. 125)

we get

| (A, a/3y)-5,,(A, 0^)1 <48|iai| (4. 126)

for all i^In. Thus we find,

'||01!l Hfti (4. 127)

Using Eqs. (4. Ill) and (4. 114) we have

< ! S ^[(A, e^J-CA, &£,)][ +2f||0I|| (4. 128)
i=l

Since 2 \?<1, it follows from Eq. (4. 126) that
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|(¥, &¥)-(&, 02A)! <(4S + 2e')lig2|l (4. 129)

Using Eq. (4. 126) again, we have

(4.130)

for all ?e/K. It follows that

(4-131)
Using Eqs. (4. 115), (4. 127) and (4. 131) we get

KM?, e.e^)-(^ Q&W, a^Kfconaii 110.11 (4. 132)
where

f(O= 15£' + 2(£')V2 (4.133)

for all j^eR^), j22eR(^c). Since 67 was arbitrary, we can choose 8' so

that £(£')<£• Q.E.D.

Lemma 4. 13: Let {R^^^A be a type I factorization. If there exists

a unit vector M* such that

sup inf <!(¥ ; R(/), R(/c)) = 1 - 8 , S >0 (4. 134)
K JCKC

where K, J are finite subsets, then there is some infinite subset J d A such

that R(J) is not type I.

Proof: We assume that all R(/) are type I and derive a contradiction.

We construct a countable family of mutually disjoint finite sets/^,

such that for any gxe V R(/)> Q2^ V R(A) we have
A=l *=»+!

0,11 (4. 135)

where lim £„ = 0, and

d(tp;R(./4),R(/;))< 1-8/2 (4.136)

for all /z>l. Choose a finite /a such that

(4.137)
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Let £M>0 be any sequence satisfying lim£w = 0. By lemma 4. 12 there

exists a finite K^Jl such that Eq. (4. 135) is satisfied for n = l by any

Q2^R(Kl). Let J'2 be any finite subset of Kl such that Eq. (4. 136) is

satisfied. Let K2I^K1\JJ2 be any finite subset such that Eq. (4. 135) is

satisfied for n = 2 by all & e R^ U /2)> ft^R^)- Repetition of this

process gives the desired sequence.

Let/— \Jjk. By assumption R(/) is type I and we have

H = H(/)®H(/C) (4. 138)

R(/) = B(H(/))®1 (4. 139)

The unit vector ^f^H defines a density matrix d on H(/) by Eq. (2. 4).

It follows from Eq. (4. 135) and lemma 4. 11 that the countable type I

factorization {R(J M)} keleo is a PTPF (take dk = d'k = d in lemma 4. 11). By

assumption all V R(/&) are type I, and lemma 4. 5 implies that R(y/,) is a

TPF on the space H(/). Thus (R(/c), R(/A)} is a TPF on the space H.

This implies that

) = 1 (4.140)

which contradicts Eq. (4. 136). Q.E.D.

Lemmas 4. 8 and 4. 13 imply that a type I factorization is a TPF if

and only if all R(/) are type I. This is our main result, which we sum-

marize as

Theorem 4. 1 : Let 3t be a complete atomic Boolean algebra of Type /

factors with atoms {^0,}^^^ on ^e Hilbert space H. Then thdre exist Hilbert

spaces Ha, a&A such that H is unitarily equivalent to the ITPS ®H(A
a^A

and Ra is unitarily equivalent to

1.'}
0/4:0}

t is determined up to unitary equivalence by the dimension function dim H^ .

5. Complete Boolean Algebras of Type I Factors and Continuous

Tensor Product Spaces

In this section we discuss complete Boolean algebras of type I factors,
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and introduce a continuous tensor product of Hilbert spaces (CTPS) which

is a generalization of the discrete ITPS defined by von Neumann.2)

Given a Hilbert space K, we define an "exponential" Hilbert space eK

with the property that any discrete direct sum decomposition of K gives

a discrete tensor product decomposition of e^ (Theorem 5.1). We then

show that any complete Boolean algebra ?$ of projection operators on K

defines a complete Boolean algebra e^ of type I factors on QK (Theorem

5.2). This result for nonatomic ^3 suggests the definition of a CTPS as
the exponential of a direct integral space. These CTPS obey an associative
rule which demonstrates explicitly the relation with the discrete ITPS of
von Neumann. We define factorizable vedtors and operators relative to a
complete Boolean algebra of type I factors. For the structure (eK, e^)
where ^ is a complete nonatomic Boolean algebra of projections we give
some (possibly unbounded) factorizable linear operators on e^ (Theorem
5.3).

Exponential Hilbert Space

Let K be a Hilbert space. We construct an exponential space e^ as
follows. Let (®K)n denote the n-fold tensor product of K with itself,

and (®^)s the subspace of (®K)n spanned by the vectors (®cj))n, $^K.3^
(®K)° = (®K)l is the one-dimansional Hilbert space of complex numbers.

Define35'

eK= @(®K% (5.1)
n = 0

We note that e^ is always infinite dimensional (unless dim^^O). We
consider vectors in e^ of the form

34) One usually defines (§§K)™ as the subspace of (®K)n spanned by all symmetrized
product vectors. However our definition is more convenient for our present purposes.
Since the symmetrized product of 0 1 - - - 0 M can be obtained as 2C^ffi)(®2 £i^i)"

i

where the sum is over all e f-=±l , the two definitions are equivalent.
35) This space is well known to physicists as the Hilbert space on which the Fock

representation36^ of the CCRs over the space K is defined. However Eqs. (5.2),
(5.3) and lemma 5.1 are perhaps not so familiar.

36) V. Fock, Z. Physik 75, 622 (1932); J.M. Cook, Trans. Am. Math. Soc. 74, 222 (1953).
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(5. 2)

We have

(e*, e*) = e<*-*> (5. 3)

We shall denote the vector e° by H. Note that ( ®K)$ is a one-dimensional

space spanned by the vector O.

Lemma 5. 1 : The vectors e^ are a total set in eK.

Proof: It suffices to show that the linear space spanned by the

vectors e* contains all (®(J>)n for each n. The proof is by induction. For

n = Q, e° = n spans (®K)l- Now assume that each (<giK")|, j = l, • • • , n—l

is spanned by the vectors e*. Consider the vector

*.(x) = ̂ - 2 (j!)-1/2(®^y (5. 4)
We have

lim xj(\)l\n = (nl)-v\®<j>y (5. 5)

Q.E.D.

Theorem 5. 1: Let K=®K06 be a discrete direct sum decomposition

of K. Let ®ZK« be the ITPS relative to the product vector e° = O=

The mapping

e* -> ®e^*

defined on total sets gives a unitary operator from eK onto ®e^ .

Proof: For any V<=K we have ¥=0^, ^e^ and 2 II

oo. Conversely, for any ̂ e^ such that 2 ||^J|2< oo we have

These vectors form a total set in ®eK<». The mapping

* -» **

is isometric and one to one between total sets. Hence it can be extended by

linearity and continuity to a unitary operator from eK onto (ge^*. Q.E.D.
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Complete Boolean Algebras of Projections

The set of all projection operators on a Hilbert space K can be given

the structure of an orthocomplemented lattice as follows. If S is any

subset of K, let

S^ = {<j><=K: (0,X) = 0 for all X<=S} (5. 6)

Let P(ra) denote the projection onto the closed linear subspace m. We

define the lattice operations by

PK)VP(O = P(KUO^) (5. 7)

P(iff1)AP(i»2) = P(w1ni»i2) (5-8)

where U, fl denote set theoretical union and intersection respectively.

The orthocomplementation is defined by

P(ifiy - P(m^ = 1 -P(w) (5. 9)

A sublattice ^3 is a Boolean algebra if and only if all Pe^5 commute. If

K is separable, any complete Boolean algebra ^5 of projections can be

characterized up to unitary equivalence as follows.37:> There is a measure

space Z, a positive measure //, on Z, and a measurable field of Hilbert spaces

K(#) such that K is a direct integral

K = J9K(*)dX*) (5- 10)

Let E be the complete Boolean algebra of all measurable subsets of the

space Z, where the lattice operations V, A are given by set theoretical

union and intersection respectively, and Xf is the complement of the set X.

For any X^E, let P(X) be the projection onto all $^K such that <£(*) = 0,

z^ X' . Then X-*P(X) is a representation of E by projection operators,

and *P is the complete Boolean algebra of all P(X). The unitary invariants

of ^3 are the equivalence class of the measure ^&, and the (equivalence class

of) dimension function dim K(#).

37) See, for example, J. Dixmier (reference 15), Chap. II; G.W. Mackey, Notes on
Group Representations (Department of Mathematics, University of Chicago, 1955),
Chapter II.
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Complete Boolean Algebras of Type I Factors

We now show that any complete Boolean algebra ^3 of projection

operators on a Hilbert space K gives a complete Boolean algebra e$ of

type I factors on the Hilbert space e^. Let Pe@, then

K = PK@(\-P)K (5.11)

and by Theorem 5. 1 we have

e* - ep/<r®ecl-p^ (5. 12)

We define the type I factor R(P) = ep by

ep = B(ep*)®l (5. 13)

If P 4=0, ep is type !„. Clearly

eF' = ea-« = (epy (5. 14)

From Theorem 5. 1 one can easily prove that for any Px, P2e^J we have

epiyep2 = e
piVP2 (5. 15)

epiAep2 = epiAP2. (5. 16)

Thus the type I factors ep, Pe^P form a Boolean algebra which we denote

by e*. It remains to show that e^ is complete. Let P^ be any set of

projections in $p. We can take the P# to be well-ordered. Then Q& —

PO,— V-P*7 ig a partition of VP&, and we have the direct sum decomposi-
0/<05

tion

By theorem 5. 1 we have

e/r = ecl-VP*)/r(g)(®eG*K)

It follows from von Neumann's results (see Eq. (3.30)) that

ev^*

Eq. (5. 14) then gives

eAFo}

Thus e^ is a complete Boolean algebra of type I factors. By construction
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it is clear that unitary equivalence of (K, ?$) and (K1 ', 9$') implies unitary

equivalence of (e*, e^) and (e^7, e^7). We summarize these results as

Theorem 5,2: Let K be a Hilbert space, ?$ a complete Boolean

algebra of projection operators on K. For each Pe^3 we have QK=ZPK®

&l-p^K and the equation

ep =

defines a complete Boolean algebra e^ of type I factors on eK. If (K, ^3) and

(K' ', *p') are unitarily equivalent, then (eK, e$) and (QK', e^7) are unitarily

equivalent.

Since ep is always type IM if P 4=0, not all complete Boolean algebras of

type I factors can be obtained in this way. Let SR be a complete atomic

Boolean algebra of type I factors with atoms {Rc^a,^A where each R^ is

type !«. Let {Ka}aeA be Hilbert spaces with dim 1^4=0, and let K =

&K0. Let PQJ be the projection on Kaj ^3 the atomic Boolean algebra of

projections generated by the Prt. Then 91 = e^. But the equivalence class

of ^p depends on dim Ka, a^A which is not determined by 9t. However,

we shall prove in Sec. 6 that if 5R is any complete nonatomic Boolean

algebra of type I factors satisfying a certain condition, then there is a com-

plete nonatomic Boolean algebra ^p = log$R of projections such that 9t = e$,

and 9t determines *p up to unitary equivalence.

Continuous Tensor Product Spaces

The preceding discussion of Boolean algebras of projections and type

I factors suggests that we consider spaces e^ where K is a direct integral.

We now show how this leads to a definition of a continuous tensor product

space (CTPS).

To further motivate our definition, letH=®Hz- be the ITPS of the

Hilbert spaces Hf relative to some unit product vector £L Then we can

write

fl - ®flf., lla-ll = 1 (5.17)

Now let <]> be any product vector with (H, <3>) = 1. Note that these vectors
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form a total set in H. We can write

where (n,-, 3>f) = 1 (5. 18)

Then

<D = 4>,-n, (5. 19)

is orthogonal to flz-. Thus we have

<E> = ®[IX- + <1><] (5. 20)

and

We complete our motivation by noting that continuous infinite products of

this form have the following simple property. Let f(x) be any integrable

function on [0, 1]. Divide the interval into n subsets Rj with Lebesgue

measure Ay Let Xj^R/9 then

.n [1 + f(*,)Ay] = exp {g log [1 + f(*,)A,]} (5. 22)

Since

log (1 + *) = x-—*?+ — (5. 23)

we have

lim n [1 +f(#y)Ay] = exp j Tf^dtf] (5. 24)
A/-X)

These considerations suggest the following definition of a CTPS.

Let Z be SL measure space, and //, a non-atomic positive measure on

Z (we want At({#}) = 0 so that only the leading term in Eq. (5.23) contri-

butes). Let #->H(#), z^Z be a field of complex Hilbert spaces on Z such

that the function dim H(#) is measurable. Choose some fixed vector field

O(#)eH(#) with ||n(#)i| = l. We shall refer to £l(z) as the reference pro-

duct vector. Let K(#) be the subspace of H(#) orthogonal to fl(-S'), and let

K= K(a)dfi(z) (5.25)

be the direct integral of the K(#).37) We now define the continuous

tensor product of the H(#), relative to the reference vector n(.s), as the
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exponential space e^. Thus

® H(*) = e* (5. 26)
C^r.W

In the following we shall use whichever of these notations seems more

appropriate. We shall not explicityly indicate the dependence on O(#)

unless necessary.

We now extend the definition of a product vector as follows.

Definition 5.1: Let K be a Hilbert space, ^5 a complete nonatomic

Boolean algebra of projections on K. A vector WeeK is called a product

vector (relative to e$) if it is of the form Ce* where $^K and C is a complex

number.

For product vectors in a CTPS we can use the following symbolic

notation, which is the analog of Eqs. (5.17-20) for the ITPS of von Neu-

mann. Given <Q(#) we consider vector fields <&(#) such that (n(#), <£(#))

= 1. Then <E>'(#) = <!>(#) — £l(z) is in the subspace K(#) orthogonal to £l(z).

Conversely any <!>'(#) e K(#) gives such a <£(#). This suggests the notation

1/2] (5. 27)

for product vectors of the form e*, <£(#) = \3>'(

It follows from Theorem 5.1 that these CTPS obey a restricted asso-

ciative law, analogous to that for the ITPS of von Neumann. Let Z{ be a

partition of the Boolean algebra of all measurable subsets of the space Z,

such that fj,(Zi)>0. Let

H(Zf.) = ® H(«) (5. 28)
C^.f*)

be the CTPS of the H(#) over the measure space (Z,-, //) with respect to the

reference vector £l(z), and let

n, - ® n(«) (5.29)
C^f-»M-)

Let

fl- = ®cw,3H(Zrf) (5. 30)

be the ITPS of the H(Z,). Then £T and ® H(^) are isomorphic under
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the mapping

(5. 31)

Generalized Tensor Products

We now consider the general case where the measure //, may have a

discrete part. The measure may then be decomposed into a continuous

non-atomic measure JULC and a discrete measure //,d

P = /^c + ^d (5- 32)

Let Zd={ziy -'} be the set of atoms of the measure //,d. Let n(#y),

be some sequence of unit vedtors and let

H(*y) (5. 33)

be the ITPS relative to the product vector ®n(#y). For the continuous

part fjic, letHc be the CTPS defined above. Thus the general definition

of

H= ® H(*) (5. 34)
C^.M-)

is given by

(5. 35)

Factorizable Vectors and Operators

In Sec. 2 we defined factorizable vectors for atomic Boolean algebras

of type I factors (definition 2. 3). We now extend this definition to the

general case.

Definition 5.2s Let H be a Hilbert space and let 5R be a Boolean

algebra of type I factors on H. A vector "SPe/f is called factorizable

(relative to 3t) if for all QjEiRt we have

(v, ri Q&) = (v, vy-' n (*, Q{v) (5. 36)

for all finite partitions {Rl}. An operator Q^E(H) is called factorizable

if for all finite partitions JR,-e$R, i^.In °f^(H) we have
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Q=UQi} Q&R, (5.37)
i=l

If 91 is a complete Boolean algebra of type I factors, and {R^} is any
partition of B(H), then the R^ are the atoms of a complete atomic Boolean

algebra of type I factors. By theorem 4. 1 we have H= ®H#. It follows

from lemma 3.2 that the preceding definition of a factorizable vector M* is
equivalent to requiring that

¥ = ®V* (5. 38)

for all partitions {Ra} . It is this form of the definition that we shall use in
the following.

We now consider the structure (e^, e$) where ^3 is a complete nonato-
mic Boolean algebra of projections. Clearly any product vector Ce*, <j>^K
(see definition 5.1) is factorizable. It is a rather obvious conjecture that
the only factorizable vectors are product vectors. To prove this we must be
able to reconstruct (K9 *p) from (e*, e^). This is done is Sec. 6.

We now define some factorizable operators for the structure (eK, e$).

These operators are to be considered as unbounded operators defined on

the dense subspace H0 of finite linear combinations of product vectors

(unless stated otherwise). For any Q^E(K) we define a linear operator

S(0 on H, by

S(g)e* = e«* (5. 39)

or equivalently

(5.40)

(see Eq. (5.1)). *S(0) is the one-dimensional projection operator onto the

vector n = e°, and S(l) is the identity operator on QK. If ||Q||< 1 then S(0)

is bounded. If ||Q|| >1 then S(0) is unbounded. Let

§1- {Pe^}/x (5.41)

We now show that S(Q) is factorizable if Q^W.

Thus let Pa^^ be any finite partition of the identity, then

K = ®Ka , (5. 42)
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Q = ®Qa (5.43)

where Ka=PaK, and Qa=PaQ.

By lemma 5 . 1 we have

e* = ®e^» (5. 44)

It follows from the mapping given in lemma 5. 1 that

S(0= 08(0.) (5.45)

which proves that S(£)), Q^W is factorizable. If ^ is separable then we
have the direct integral decomposition3^

K= K(*)dX*) (5.46)

and £)e§T means Q is decomposable385, that is

(5.47)

For any ^P^K we define a linear operator T(M?) on ^/0 by

= e^'^e* (5. 48)

where O = e°. It follows from Eq. (5.3) that on H0 the adjoint is given by

T(^)*e* - e*+* (5. 49)

Under the decompositions given by Eqs. (5.44) and (5.46) we have W =

0^* and
T(*) = ®T(^) (5. 50)

It follows that any operator of the form

T(<F, Q, X) = T(^)»S(Q)T(X) (5. 51)

where, *P, X^K, Q^W is factorizable. On product vectors e* we have

TOP, Q, X)e* = ec5£'«e°*+v (5. 52)

Using the symbolic notation

e* = ® {iX*) + */(*)d/t(*)1*} (5.53)

38) See J. Dixmier (reference 15), p. 159.
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introduced in Eq. (5.27) we can write

1/l (5. 54)

where ^(#)£1(#)* is the operator from the one- dimensional subspace of H(#)

spanned by £l(z) to its orthogonal complement K(#), defined by

[#*)«(*)*]«(*) = #*) (5. 55)
and £!(#) ^>(#)* is the adjoint operator

[*!(*)#*)*] #*) = (#*), #*))iX*) (5- 56)

The computation of the norm of T(M?, £), %) is most conveniently

done by using the annihilation and creation operators for the Schrodinger

representation of the commutation relations. Since these operators are not

used eleswhere in this paper, this calculation is given in appendix 1. We

now summarize the above as

Theorem 5. 3: Let K be a Hilbert space, ^3 a complete Boolean al-

gebra of projections on K. Let H0 be the dense subspace of eK of finite linear

combination of product vectors e*. Let 31= {Pe^3}". The equation

TOP, Q, X)e* = etx'*>e°*+li (5. 57)

where ^f3X^K and Q EE §T defines a linear factorizable operator on H0. If

1 1 Q\ | > 1 then T(W, Q, X) is unbounded. If \\Q\\ < I then

, Q, XW = (exp ||^||2)(exP ||(l-g^)-1/2(X + 0^)il2) (5. 58)

if X + Q*V is in the domain of (l-Q*Q)~l/2> otherwise T(^3 Q,X} is un-

bounded.

6. Nonatomic Complete Boolean Algebras of Type I Factors

In this section we consider the problem of showing that any nonatomic

complete Boolean algebra of type I factors (H, 31) is of the form (e^, e$)

where *P is a nonatomic complete Boolean algebra of projections on the

Hilbert space K.

Let {%#} be a partition of z in the lattice 3t We shall denote such a
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partition by B = {%#}. If E1 = {z^} is a subpartition (that is for each tf,

z^ is a partition of z^), we write B'<B. The main tool of our argument

is to note that any partition B = {%#} gives a complete atomic Boolean

algebra of type I factors, and Theorem 4.1 implies that we can write H(#)

as an ITPS (g^H^) where #= V^*-

We begin by discussing the condition that the factorizable vectors form

a total set (Lemmas 6.1-3). In the following lemmas we assume this con-

dition, and construct (e*, e$). Lemma 6.4 proves that no two factorizable

vectors are orthogonal, which allows us to restrict our attention to certain

factorizable vectors which we prove to be of the form ef,f^K, by explicitly

constructing K as a Hilbert space. We then define the lattice ^3 = log $t in

K. We summarize the results in Theorem 6.1. Finally we prove that

any factorizable vector and any factorizable bounded linear operator can

always be written in the way indicated at the end of Sec. 5 (Theorem 6.2).

We generalize definition 2.4 as follows

Definition 6.11 Let (H, 31) be a complete nonatomic Boolean algebra

of type I factors. Let B= {za}> s^^SR be a partition of B(H). For any

W^H we define

d(V;B) = sup (xp,
*-*

(¥, IUVP) = inf
n, {<*.} i=i

where P# runs over all minimal projections in za.

Our construction is based on the assumption that the factorizable

vectors form a total set. In Lemma 6.3 we show that this is equivalent

to requiring that

d(¥; Sft) = inf d(¥; 5)>0 (6. 1)
B

where B runs over all finite partitions of E(H) in the lattice SR. At the

moment we are unable to prove that this condition must hold for any

complete nonatomic Boolean algebra of type I factors. The following

lemma is intended to make this additional assumption appear reasonable.

Lemma 6.1: Let (H, 91) be a complete nonatomic Boolean algebra of
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type I factors. Let B= {#,-}, #f-eSt be a countable partition of E(H). By

Theorem 4. 1

H = ®<®VH(*<)

Let ®^^H. Then ^ (1 -8,-)< °o for 8f- = inf d(¥f-; 5,). /w particular,Bi
S{ can be 0 on/y /or a finite number of i.

Proof: Let £f- be any sequence such that

0<£Z-<1— 8,-, £z->0 unless 5 f -= l , and

2 £»< °°- Then there exist finite partitions fi,-= {#,-} of ^f- such that

Let JS= {«fy} be the joint partition of E(H). Then by Theorem 4.1 we

have

H = ®UH(*,V) = ®t{®jH(ztJ)}

Since the product vectors form a total set in H we must have

where Ptj runs over all minimal projections in %{j. Thus

Hence

which implies that233

2*{1 -

Since 2£*<°° we Set

which implies that at most a finite number of 8Z- = 0. Q.E.D.

Lemma 6. 2 : Let S be a subset of the unit sphere in Hilbert space, Scv°

its weak closure. Any <E> EE ASCW) w ^A^ K;^«^ ZzmzY o/ (2 sequence of vectors in S.

Proof: Let <E> e 5(W), then 0 e {5 — <!>} (W). Hence we may assume

<j> = 0 without loss of generality. Let ^ GE 5. Because 0 e *Sfcw), there exists
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a <I>2eS such that |(<I>i, O2)|<2-2 where *f = 4>1/||*1||. Similarly, we

obtain a sequence <3>weS such that (O^, <I>J| <2~n/n — 1 for all m<w,

where, by Schmidt orthogonalization,

*„ = 2 CBra1>; (6. 2)
?«=!

and <£^ is orthonormal. Now | C^ 1 2< 2, and ^ \Cnm\ 2< 2~ n. It follows
m<«

that <1>W->0 weakly. Q.E.D.

Lemma 6. 3 : // inf d(¥ ; B) > 0 /or all ̂  <E #, where B is finite, then
B

the factorizable vectors are a total set in H.

Proof: Let ty^H. We prove that there exists a factorizable vector

<3> such that (<I>, ̂ )^0. For each finite partition B= {zt} of B(H) choose

a minimal projection Pf-(B)e#f- such that

) (6-3)

where P(JB) = HIP,(J5). Let S(fi)= { U P(#W, 5= R S(5)CW3. Since the
J5'<JS 5

intersection over any finite number of B's is non-empty, and the unit

sphere in Hilbert space is weakly compact, the set S is non-empty. Let

, then

(6. 4)

To prove that <3> is factorizable consider a partition 5 = {#z-} . Since <I> e

S(5)cw:>, it follows from lemma 6. 2 that there exists a sequence of partitions

Bn<B such that

3> - weak lim P(Bn)^ (6. 5)

Each P(Bn)^ is a product vector in (g)H(#,-). It now follows from lemma

3.3 that <l> is a product vector ® <!>(#,•). Since 5 was arbitrary, ^> is

factorizable. Q.E.D.

Lemma 6. 4: If Oj, <l>2 are factorizable vectors, then (&lf <|>2)4:0.

Proof: Let | I^J | = 1 1*2| 1 = 1 . For any partition 5 - {#,-} of E(H) we

have
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1 , J = 1, 2 (6. 6)

where the unit rays e'*&j(z) depend only on z, not on the partition B.

Assume there is some x such that

(*,(*), <«*)) * 0 . (6. 7)

Then x>y implies that (^(y), 3>2(y))=t=0. Let ^eSR be any well ordered

set satisfying xa>x, x*>xj for, a>a! and (O^), ^C**))^. Let

y=yxc6, and consider the partition of y into the disjoint union of y06 = xa,—

( V xaf). Then the y^ give a complete atomic Boolean algebra of type I
oj'<a>

factors, and by Theorem 4. 1 we have

(6. 8)

Since <!>! , <E>2 are factorizable we have

*XjO = ®*/y-) , ; = 1, 2 (6. 9)

Since (^(yj, *a(y.))*0, we have (^(y), O2(y))4:0 (see Eq. (3.8)). It

now follows from Zorn's lemma that x is contained in some maximal x0

such that3;>^0 implies (O^y), O2(y)) = 0. If there is no x satisfying Eq.

(6.7)let*0 = l.

In either case y>x0 implies

which implies,

(*i(y-^oX ^2(y-^o)) = o (6. ii)
Since 5R is nonatomic, we can construct a countably infinite partition {y,-}

of y — #o- By Theorem 4.1 we have

H(y-#0) - ®H(y,) (6. 12)

^•(y-^o) = ®*Xy,0 (6. 13)
But

= 0 (6. 14)

for all i which is not possible in an ITPS for <3>y(y — ̂ 0)=}=0 (see Eq. (3.6)).

Thus we must have x0 = E(H) and (<£„ O2)^0. Q.E.D.
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Let <I> be a factorizable vector, and P(O) be the projection operator on

the one-dimensional subspace spanned by <I>. For any partition B we

have

,) (6.15)

where P(<3> ; #,-) is a minimal projection in zt . If ^ is any other factori-

zable vector we have

,)} (6-16)
For #<ESR let

d(*, ¥; x) = l-Tr{P(d>; x)P(V, x)} (6. 17)

Lemma 6. 5 : Let &, W be factorizable vectors, B = {za} a partition.

For any £>Q, there exists a subpartition B' = {2̂ } such that

d(*,^;^p)<£ (6.18)

and

*2»t*(3>,v\*.tf<e (6.19)

If B is a finite partition, then Bf can also be chosen finite.

Proof: Let & be the smaller of £ and -£/log {Tr [P(O)P(^)]} . Let

#0 be the union of all x with

(6.20)

Since fR is nonatomic, if zQ^}$(H) we can construct a countably infinite

partition {y^} of z'0 with d(<£, W',y ,)>£'. Writing H(ar{) as an ITPS

®H(jz) we see that (O, W) = 0 which is not possible by lemma 6.4.

Hence *0 = B(fl).

Let #<„ be a well ordering of all x satisfying Eq. (6. 20). Then ya = xlt —

V %<*' is a partition of B(/f). Since y<x implies d(<3>, ^f;.y)<d(O, ̂ ;^),
05/<0!

each JQS satisfies Eq. (6.20). Since

lUl-d(«D, ^; ja)J = Tr [P(*)PWJ>0 (6. 21)

it follows that

oo (6.22)
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Hence there exists a finite set J of y^ such that y= Vjjs, y^J satisfies

d(<E>, W;y)<£'. Then # t fAy, ^A^p, y^J is a partition of each #rt.
Let J3' = {#rtp} be the corresponding subpartition of 5. By construction,

Eq. (6.18) is satisfied.
If Uj(l—aj) = A where 0<<Zy<l, then the power series expansion of

log(l— x) gives the inequality

l°g^ (6.23)

Thus Eq. (6. 16) implies that

Sd(<D, ¥; *„,)< -log {Tr [P(*)P(^)]} (6. 24)

Eq. (6.20) now implies

(6.25)
Q.E.D.

Lemma 6.6: 7/ l+S = n(l+S_ /) rofere Sy>0 «wrf S<1

Proof: We have

.

Noting that 2§y<S, it follows from this equation that

If 8< 1 then e& — S - 1< S2 and this gives the desired result. Q.E.D.

We now proceed to construct the linear space K from the factorizable

vectors. The following is motivated by Eqs. (5.17-20). Choose some
fixed unit factorizable vector O, and fix £l(x), |jn(ff)|| = l, for each #e$R.
Then for any finite partition B we have

n = C(5)<g),fl(#.-) where C(S)| = 1 (6. 26)

Let ^F be any factorizable vector with (O, "SF) = 1, and choose ^(^c) for each

ac so that

(fl(*), V(*)) - 1 . (6. 27)
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Let

¥'(*) = ¥(*)-«(*) (6.28)
Then

, fl(*)) = 0 (6. 29)

Let K be the collection of all factorizable vectors W^H with (O, M*) = l.

We shall denote the elements of K by log *P\ The following lemma will

allow us to define a linear structure in K.

Lemma 6.7: Let log W1? log M?2eX^ o^rf to C3, C2 &? complex

numbers. For any finite partition B = {zf} define

(6. 30)

Then

V = strong lim V(B) = n { U ^CB')}CS) (6. 31)
/3* B B'<B

(where B, Bf are finite partitions) exists and is unique, and is a factorizable

vector with («,¥=!.

Proof: For any B, W(B) is a product vector with (O, W(B)) = 1. If

^ is any limit vector it obviously satisfies (H, *P) = 1, and it follows from

lemma 3.3 that M? is factorizable. To prove the existence and uniqueness,

we show that for any 8 >0 there exists some finite partition B such that

B'<B implies

£ (6.32)

By lemma 6.5 we can choose a finite partition B ={%{} such that

£ and ^i\\V'k(ztW<£, k = l,2 (6.33)

Let B'={ziJ} where « f -=Vy^y, be a subpartition of £. If £<1, it

follows from lemma 6. 6 that

A = 1, 2 (6. 34)

Now

^ J(*i) = Xw + Vu , k = l,2 (6. 35)

where \A(\ =1, and
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¥« = A{ i 2. ¥j(*,yi)® ¥;(*„,) ® T ® nfoy)] + ' ' ' (6- 36a)
Ji<y2 'Vi''2

+ ...

X*i = ^<2/ ¥j(*,y) ® [ ® "(*••/)] (6- 36b)yv
In evaluating #f- component of ^(.B'), we encounter an expression of

the same form as the right hand sides of (6. 35) and (6. 36) where M*J(#),-y

is to be replaced by C^^-^ + C^^v). We write ¥*,- and XAf- in this

case as ^3Z- and X3Z-. Then we can write

2,) , (6. 37)

(6- 38)

where first two terms in parentheses are orthogonal to the rest. If we write

), then

(6. 39)

and a similar evaluation for *P(B'). Obviously, we may omit | i% 3 / i i 2 on the

right hand side of (6.39). From equations (6.36) and (6.34), we have

) i i 4 (6-
n=2

for small 8 . We then have

(6.41)

A similar estimate holds for Szll^s/ll2- Furthermore

^2||«ic,i« (6.42)

is bounded uniformly in B.

Therefore

||̂ (5')-^(S)| |2 = 0(£) (6.43)

Q.E.D.
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Lemma 6.8: Let logM^, logM^eX, and let M? be the unique limit

vector of the preceding lemma. The equation

log V = C, log ^ + C2 log ^2 (6. 44)

defines a linear structure in the space K.

Proof: From the proof of the preceding lemma it is clear that38*0

limE.-II^^O-C^C^-C^^,)!!2 = 0 (6. 45)
2H

The linear structure follows from this easily. For example, if log Wa =

^(C.logV) and log^ = (CA)log^, then 2, ||^i(^)"^(^)||2->0

follows from (6.45) and inequality ||a + /5||2^ 2||a||2+ 2||/3||2. It then

follows that Wa = Wb.

Lemma 6. 9: The equation

(log tp, , log tp.) = lim [2 (<?{(*,), \PS(*,))] (6. 46)

(where B= {z^} is a finite partition and limf(S) means f| { M f(5/)}
5t 5 5XJ3

{ } " is the closure of the set {}) defines an inner product on the space Ksuch that

(*&!, ¥2) - gClogTi.logT^ (6. 47)

7£ /j complete with respect to this inner product.

Proof: As in lemma 6. 7 choose a finite partition B = {z}} so that

Then similar arguments give

Y2) = log {II,

(6. 49)

This proves the existence and uniqueness of (log '^1 , log ̂ 2) and also

proves Eq. (6.47). To prove linearity, we use similar arguments to get

38a) Use the inequality | |®(^ + ̂ -)-®(^ + ̂ /)! I2^S,- \Xt~Xi' I2 if *,-, *,-'



Complete Boolean Algebras of Type I Factors 219

yOi'K*,), ¥$(*,)) +0(£)v'

= Ct (log M>3 , log ¥0 + C2(log M/3 , log ¥2) + 0(£)"2 (6.50)

To prove positive definiteness we note that by lemma 6.7 we can always

write

2 C, log ¥, = log ¥ .
,-=1

Thus it suffices to show that

(log¥, log^)>0 (6.51)

Now (O, ¥) = ! and 11^11 = 1 implies ||¥||>1. Using Eq. (6.47) we have

(log ¥, log ^) = log (^, ^)>0 (6. 52)

Furthermore log (M*, ^F) = 0 implies ||M/|| = 1, hence ^ = n. Since logfl is

clearly 0 in the linear structure given by Eq. (6.44), log(M?, ^) = 0 im-

plies log^ = 0. This completes the proof of the positive definiteness.

It remains only to prove that K is complete. Let log ̂ n be a

Cauchy sequence. Given £>0, choose N such that n,m>N implies

||log^-log^Jj2<6 (6.53)

Hence ||^J|2 = exp ||log^w||2 is bounded and

O!i^JI8 (6-54)

Due to (fl, ̂ w) = (n, ^r
m) = l, we also have

OV2ll^«ll (6-55)

Thus ^n is Cauchy. Clearly ^ = Vim^n satisfies (fl, '5r) = l, and ^ is

factorizable by lemma 3.3. By arguments similar to the above one can

show that log ̂  = Km log ̂ w. Q.E.D.

It follows from the preceding lemmas that the mapping eloglr— >M* is

one to one and isomorphic between total sets in e^ and H, Hence it can
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be extended by linearity and continuity to a unitary mapping of e^ onto H,

We now construct the lattice *p = log 9t. For each z^$t, let

P(*) = log* (6.56)

be the projection onto the subspace spanned by all log M? where

IX*7). Clearly

log (*i A *2) = log z1 A log zz (6. 57)

and
log (*i V*2) = lo§ #1 Vlog *2 (6. 58)

and

This gives the desired nonatomic Boolean algebra of projections ?$ = log 91.

If H is separable, then K = log H is separable and *P gives a direct integral

decomposition of K. Then 3ft is a continuous tensor product factorization.

It remains to show that a different choice of O leads to a unitarily

equivalent (K, *p). Thus let f^, O2 be two unit factorizable vectors, and

(K19 Spj, (Ar2, *P2) the associated structures. For any factorizable M*, let

*P* be the multiple of M> satisfying (^fe, nA) = l, A = l, 2. In particular

fli=ft! and n| = n2. By an elementary calculation we have

(log ¥», log ¥») - (log ̂ i-log OL log ̂ J-log flj) (6. 59)

for any factorizable M*a> Wb^H. Thus

log ^F1 - log 0£ -^ log ^2 (6. 60)

gives a unitary mapping U of J?^ onto J^2 . By the definition of P(#) =

log z we have

PA(*) log ̂ * = log [¥*(*)®n»(a/)] (6. 61)

where (^*(«), fl A(x)) = 1,^ = 1,2. Hence

- {log [nj(ar)®fl1(a')] -log f l l } (6. 62)

Under the unitary operator U defined by Eq. (6. 60) this vector is mapped

into
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)]- k>g [nl

= [log ̂ 2(*)eiog nf(*')] - [o©iog nK*')]
= log ̂ 2(*)©0 = log [¥20)<g) n2(V)]

= P2(*) log ̂ 2 (6. 63)

Thus UP1U~1 = P2, which proves the unitary equivalence of (Klt Spj) and

(K,, %).

Finally, we note that (J£, ?p) obtained from tf = e*', 91 = 6*', n = e°,

returns back to (jf^7, *p'). For, e*, <p^K' is a product vector and (5.3) and

(6.47) shows that K' dK. (5. 12) then shows K = Kf. ^ = ̂  follows from

a similar arguments.

We summarize these results as follows

Theorem 6. 1 : Let 9t be a complete nonatomic Boolean algebra of type

I factors on the Hilbert space H such that inf d(V ; £)>0 for allW<=H where
B

B is a finite partition of E(H) in the lattice St. Then there is a Hilbert space

K and a nonatomic Boolean algebra of projections ^ = log 9t such that (H, SR)

and (e^, e^) are unitarily equivalent. Also (H, Sft) determines (K, ?$) up to

unitary equivalence. If H is separable, then there is a direct integral decom-

position

K =

so that 5R is a continuous tensor product factorization. The unitary invariants

of 3t in the separable case are the equivalence class of the measure //, and the

equivalence class of the dimension function dim K(#) which occur in the direct

integral decomposition of K.

Factorizable Vectors and Operators

We now discuss factorizable vectors and operators for the structure

(e^, e^) where ^3 is a complete nonatomic Boolean algebra of projections.

By the preceding construction, any factorizable vector in H is of the form

Ce^, cj)^K. Since (K, *p) is determined up to unitary equivalence by

(e/c, e^) it follows that the only factorizable vectors are the product vectors
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. We now prove that any factorizable operator TleB(e/c) must
be of the form CT(^, Q, %) (see Theorem 5. 3).

Given (K, *p) let T<=B(eK) be factorizable. Since Tfl is a factorizable

vector, it follows from lemma 6.4 that (O, TO) =1=0. Hence we can assume

that (O, Tn) = l. Now on product vectors e* we have

(6. 64)

Except for the linearity of £), it is trivial to show that T must be of this

form. Namely, since (O, T£l) = l we can define (/>, X^K by

e* - TO (6. 65)

e* - !F*n (6. 66)

Then
TV = T*(-^)rT(-X) (6. 67)

(see Eqs. (5.48-49)) is a factorizable operator satisfying

rn - n (6. 68)
(T0*n = n (6-69)

It follows that T'e^ is of the form eT/C(/0. It remains only to prove that

Q$ = T'(0) (6. 70)

defines a linear operator Q.

To prove the linearity of Q we rederive Eq. (6. 70) using the notation
introduced in Eq. (6. 26) et seq. Thus we write

rn = elo*A* (6. 71)
r*0 = e10**A (6. 72)

If 5= {#,-} is any partition of B(ff) we have T— ®T(^Z-). For each #GE^3

choose T(x) so that

(fl(*), T(*)fl(*)) - 1 (6. 73)

Then

(6. 74)

(6. 75)
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Let P(#) be the projection onto £l(x) and let

(6.76)

Then for any log<&^K we have

T(«) *'(*) = (#'(*), *'(*)) «(*) + Q(«) *'(*) (6- 77)

For any partition B we have

TV** = c(fl)<g>, rr(*,)n(*,)+T(*o*'(*«)] (6- 78)
Using Eqs. (6.74), (6.75), (6.77) and

n,ri + (&'(**), *'(**))] = eaog*'los<!0 (6. 79)

we have

'C*,), *'(*.-))]} (6- 80)

Given any log <l>e^, £ >0 it follows from lemma 6.5 that one can choose

a finite partition B so that

(%(zi\&(gi))\<e (6.81)

It follows that

lim^ll^O-^-Q^O^)!!2 = 0 (6. 82)
£4-

for ¥ = (3T^>) exp - (log %, log <I>). We now have

where Q log <l> = log M* — log ^> and

) l l 2 = 0 . (6. 84)

By lemma 6.7 we have

(6. 85)

Using the continuity of T we find

iim c(5)® {n^o+
B V
__ Clog X , G! log *!+C2 log $2) elog i+CiO log *!+ C2Q log ®
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which proves the linearity of Q. It is clear from Eq. (6.84) that Q^W

where §1= {Pe^3}". We summarize these results as Theorem 6.2.

Theorem 60 2; Let K be a Hilbert space, and let ^ be a complete

nonatomic Boolean algebra of projections on K. A vector M? ee^ is factorizable

if and only if it is a product vector Ce^, <j>^K. 71eB(e/r) is factorizable if

and only if it is of the form CT(^, £), %) where C is a complex number and

, Q, %) is given by Theorem 5.3.

7» Application to the Group Integral for Irreducible

Representation of the CCRs

In this section we give an application to the group integral for irreduci-

ble representations of the CCRs introduced by Klauder and McKenna.17)>18)

We first give a brief definition of a representation of the CCRs over

an inner product space V. Given a representation of the CCRs over V,

we associate a von Neumann algebra R(W) with every linear subset W of

V. We discuss the properties of the map W-+R(W). With any orthogonal

basis {ha}aeA of V, we associate a type I factorization {Ra}aeA °f R(^o)

where F0 is the dense linear subset of all finite linear combinations of the

ha. We define the group integral and discuss its properties for finite-

dimensional V. We then consider the group integral for irreducible re-
presentztions of the CCRs over countably infinite dimensional V. We
establish necessary and sufficient conditions that the group integral exists
and has the desired value (Theorem 7.1). We prove that the group integral
is independent of the order of integration if and only if the representation
is a tensor product representation (Theorem 7. 2).

Representations of the CCRs

For the sake of completeness, we give the definition of a representa-
tion of the CCRs.39) Let V be a real inner product space. A representation

39) For a detailed and rigorous exposition of the representations of the CCRs see L.
Garding and A.S. Wightman, Proc. Nat. Acad. Sci. 40, 617 (1954); I.E. Segal, Trans.
Am. Math. Soc. 88, 12 (1958); J. Lew, thesis, Princeton University (1960); H. Araki,
thesis, Princeton University (1960); H. Araki, J. Math. Phys. 1, 492 (1960).
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of the CCRs over V is the structure consisting of a complex Hilbert space

H, and a map /X£-»U(/, g) from VxV into the set of unitary operators

on H such that

where (f2,gi) is the real inner product of /2 and g1 in F, and such that for

each /, g the operator U(s/, Zg) is weakly continuous in the real parameters

s,t.
For finite-dimensional F, von Neumann proved that there exists a

unique irreducible representation of the CCRs (usually called the Schrod-
inger representation), and that any representation is (unitarily equivalent
to) a discrete direct sum of copies of the Schrodinger representation.4^

For infinite-dimensional V there are many inequivalent irreducible re-
presentations of the CCRs over F.39) A classification of all irreducible
tensor product representations of the CCRs has been given by Klauder,
McKenna and Woods. 18)

A Lattice of von Neumann Algebras

Let/X£-»U(/, g) be a representation of the CCRs over V. For any
linear subset W of V we define the von Neumann algebra

R(^7)= {V(f,g);f,ge=W}" (7.2)

We now discuss the properties of the map PF—»R(W) where W is a
subspace (closed linear subset). The set of all subspaces W of V has a

natural lattice structure given by

W,/\Wt = W.nW, (7.3)

Wl\/Wt = (W,\jWtY
± (7.4)

where, f| , U denotes set theoretical intersection and union respectively,
and

W± = {x£EV: (x,y) = 0 for all y^W} (7. 5)

The map W-^R(W) is a lattice homomorphism if

40) J. von Neumann, Math. Ann. 104, 570 (1931).
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R(W1)AR(W2) = R(W,/\ W2) (7. 6)

RTOVRTO = R(^V^2) (7. 7)

The equation (7. 7) follows from the definition if W^\W2. It also follows

from Eq. (7. 1) that

R(WY'DR(WA-) (7.8)

For irreducible representations, R.(V) = 'B(H) and Eq. (7. 7) gives

R( W) V R( W±) = E(H) (7. 9)

hence R(W) is a factor. Since the restriction of the map /x £->!!(/, g) to

f,g^W gives a representation of the CCRs over W, it follows from von

Neumann's results40) that R(W) is a type I factor for any finite-dimensional

W.
For the Fock representation, Araki has shown that the map W-*RF(W)

gives an isomorphism of these complemented lattices.43 In addition it was

shown that41)

RF(W) = RV(W) (7. 10)

for all linear subsets W ( W= W±A- is the subspace which is the closure

of W). This follows directly from the fact that UF(/, g) is strongly con-

tinuous in / and g with the strong topology of V for / and £.42D In general

U(/, g) is not strongly continuous in the strong topology on V. Clearly

R(W)dR(W) (7.11)

However there are examples where the equality does not hold.

It is also possible that R(V) = E(H) and R(V0)^E(H) for a dense set

VQ in V.

Given a representation of the CCRs over V, let {ha}c6^A be an or-

thogonal basis for V, and let

R, = RTO (7. 12)
where Wa is the one-dimensional space spanned by h^. Then RM is a

type I factor and

41) H. Araki (reference 4), Eq. (3. 5).
42) H. Araki and E.J. Woods (reference 12), lemma 2. 3.
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= 1 , a =(= /3 (7. 13)

VaRa = R(F0) (7. 14)

where F0 is the dense linear subset of all finite linear combinations of

the ha. Thus R^, is a type I factorization of R(F0) (see definition 1. 1).

The Group Integral: Finite Dimensional Case

We now give the definition and basic properties of the group integral

introduced by Klauder and McKenna.17)'18:> We consider first the case

where F is finite dimensional. Let {hn} nELlN be a basis for F. Then for

any f,g^V we can write f=^pnhn1 g = ̂ 2qnhn. For any Ou O2, ¥„

we define the group integral

^2) (7. 15)

where

d^/, ^) = (2w)-^ fi dpKdqn (7. 16)
«=1

and the domain of integration is RNxRN. For the special case ^1 — <3>2 =

^r
1 = "^r

2 = '^, we just write

IW - I(^, ^; ¥, ̂ ) (7. 17)

For irreducible representations of the CCRs over a finite dimensional F,

it has been shown that43)

*,) (7. 18)

We now discuss the group integral for a reducible representation of the

CCRs over a finite dimensional F. By von Neumann's results we can

write

H = H'®H" (7. 19)
and

U(/,*) = UU*)®1 (7.20)

where the U7(/, g) are an irreducible representation of the CCRs on H' '.

43) J.R. Klauder, J. McKenna, and EJ. Woods (reference 18), theorem 4.1.
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Let aiy ft; be orthonormal bases for H', H" respectively. Given M^,

^2, <3>u <I>2e7/, let Ay B, C, D respectively be their coefficient matrices.

That is

^i = S^,-/K,-®/8y (7.21)

etc. Then

| |^J |2 = Trace A* A (7.22)

etc. and

^; 0>2, <P2) = 2 AIJClaDmmB,f

\ <W, £)(U'(/, £K, a,)*(U'(/, £)«WJ ^(A, /8^/e,,, /8,) (7. 23)

Using Eq. (7. 18) for the irreducible Uf we get

!(<&„ ^; ^>2, ̂ F2) - Trace A*BD*C (7. 24)
Now

Tr^[*5D^C| < {Tr (A*B}(A*B}* )1/2{Tr (D*C)(D*C)*}1/2

< {Tr (^*^)2 Tr (fi*fl)« Tr (C*C)2 Tr(D*D)2} 1/4 (7. 25)

Since

Tr (A*A)2 < (Tr A*AJ = \\^^ (7. 26)

etc. we get

I !(*„¥,; 02,^2)i< I I ^ I I I ^ I I I I O J I H O J I (7.27)

Lemma 7. 1: // ||<£

Proof: Write ^F-O + %, and note that !(¥,¥; ^ ^) is a linear

function of each of its four arguments. It follows that I(*P)— I(<J>) is a

sum of 15 terms of the form I(%, <1>; O, O), I(%, %; O, 0>) etc. The desired

result then follows from Eq. (7.27). Q.E.D.

The property which makes the group integral interesting is Eq. (7.18).

Thus the desired value for I(<3>u M^ ; <I>2J, \P2) is

(W19 ^2)(02J OJ - (Trace A*B} (Trace CD^) (7. 28)

But in general

Trace A*BD*C 4= (Trace ^*5)(TraceCB*) (7. 29)
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In particular, if we set A = B = C = D, then we have

Trace (A* A}2 < (Trace A*Af (7. 30)

with equality holding if and only if A* A is a one- dimensional projection
operator, or equivalently, if the vector ^ = ̂ Aijai®(3j is a product

vector (cf. Eqs. (2.12)-(2.14). For these reasons, the group integral for

reducible representations is not so interesting. However it is used to

defined the group integral for irreducible representations of the CCRs over

an infinite-dimensioanl V, and we shall have odcasion to make use of the
above properties.

The Group Integral: Infinite Dimensional Case

We consider a countably infinite dimensional V with an orthogonal

basis {hf}iGloo. Given a representation of the CCRs over V on a complex
Hilbert space //, let

Ri = {U(*A,, *A,); - °°<s, t< oo}" (7. 31)

In the remainder of this section we consider representations such that

Vf-JRI- = B(Jff). Then {Rg}it=Ieo is a type I factorization (see Eq. (7. 12) et

seq.).

We now define the group integral I(OU Mi^; <3>2, M?2). For each N^I^

we have a reducible representation of the CCRs over the finite-dimensional

subspace of V spanned by {hf}iGlN. For any Ow *Ply <&2, ^fz^H, let

Ijv (<!>!, ^iJ O2J, M^) be the group integral defined by Eq. (7. 15) for this re-

ducible representation. Then we define

¥,; *2, ̂ 2) - lim 1^(0^ ^l5 *2J ̂ 2) (7. 32)

It has been shown that for irreducible tensor product representa-

tions, that is representations where H is an ITPS H=®H{ and
»=i

Ri = E(Hi) ® {®1,} (7. 33)
y= t= i

that185

lim ^(O, ^l5 *2, ^2) = (¥lf ^2)(02, O.) (7. 34)
_#•-><*
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We now establish the conditions under which the group integral exists and

has the desired value.

Assume that for some unit vector *Pe/f, we have

| |¥|r=l (7.35)
jy-^oo

For each N we can write

H = HN®H'N (7. 36)

where

R(/*) = A*< (7-37)1=1

is irreducible on HN. Let AN be the coefficient matrix for M? in some

expansion

V = H ANiJaNi®/3N/9 am^HN, /3NJs=H'N (7. 38)

Then Eq. (7. 24) gives

IN (¥) = Trace (A%AN? (7.39)

Thus Eq. (7. 35) implies that

lim Trace (A%ANJ = I (7. 40)

Since Ti A%A = \\W\\2=l, lemma 2.2 gives

d(<P; R(IN), R(IC
N}) > Trace (^*^^)2 (7. 41)

It follows that

) = l (7.42)

By lemma 4. 10 this is a sufficient (but not necessary) condition that Rn

is a partial tensor product factorization.

We now note that Eq. (7. 42) implies Eq. (7. 34) for all O^ W1} <1>2,

M^e/f. By lemma 4. 10 there exist minimal projedtions PN^R(1C
N) such

that PN-^l strongly as N-+OO. The proof of Eq. (7. 34) given by Klauder,

McKenna and Woods18) was based on the existence of such projections.

We summarize these results as
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Theorem 7. 1 : Let V be a countably infinite dimensional inner product

space with an orthogonal basis {A,.},-eJoo. Let U(f,g) be a representation of

the CCRs over V such that \J iRi = B(H] where

R{ = {U(sh? ,*A.); - oo <j, t< 00} "

The following conditions are equivalent.

(1) For some W<=H, lim I^HI
&->

(2) For all «>,, 3>2, ¥u

l i m 1 , t S

(3) TAerg e^w^ a sequence of minimal projections PN^R(I^) such that

PN->1 strongly as N->oo (which implies that R{ is a partial tensor

product factorization).

We now show that if Eq. (7. 34) holds independent of the order of

integration for some vectors then all R(/) = \/ Rf are type I. It then
iey

follows from Theorem 4. 1 that the representation of the CCRs is a tensor

product representation. By Theorem 7. 1 and lemma 4. 10 we can write

H as a partial tensor product

(7.43)

where

U(Jk)=®Hn (7.44)
»<=7 t

and for n^Jk we have

<8> 1 „]} <8>{ <g> 1,'} (7. 45)
'

For any /c/. let /^/HA, J'k'=JcKjk. Then /= UA / f . We

assume R(/) is not type I and get a contradiction. Let <3> = ®3?k3

\\®k\\ = l, be some unit product vector. If R(/) is not type I, then29)

2* {l-d(*4; R(/i), R(/i')} = oo (7.46)

which implies that23)

R(/0, R(/'/)) = 0 (7.47)
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Consider the irreducible representation of the CCRs over all hn, n^.Jk

defined on H(/fe). Let /fe(<l>/,), !*(<£/.) denote the group integral taken over

all hn, n^Jk, J'k respectively. We have

!*(**) = 1 (7- 48)

and from Eqs. (7. 24) and (7. 41) we have

IK**) < d(d>*; R(/0, BUY)) (7- 49)

Thus Eq. (7. 47) implies that

n IK**) = o (7. so)
k — 1

We now reorder the hn so that the integral over the first N degrees of

freedom -»0 as N->oo. Choose jm so that

5 IJ(*A) < 2-" (7.51)
k=-.m

and order the degrees of freedom according to the arrangement /i,/2, • • • ,

JfrJi'iJii+i* ''••>J32>J">Jh+i> '" etc- Now consider the group integral
taken over the N degrees of freedom up to and including Jjm. Since the

measure d(/, g) is a product measure, and O is a product vector, it follows

from Eq. (7. 15) that

nl{(*jfc)<2- (7.52)

which implies lim IJV(^>) = 0. We now show that for any *P^H, we have

liml^(^) = 0. Since ¥ is in the ITPS containing (g)**, given £>0,
^°° . *
lemma 3. 1 implies that there exists a K and ^P/^ ®H(/^) such that

(7.53)
fe=+

By lemma 7. 1 we have

l (7.54)

Now consider the group integral over the N degrees of freedom up to and

including ]'3m where m>K. We have
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,) < 2- (7. 55)
3m

k=m

Eqs. (7. 54) and (7. 55) imply htat

lim Iw(¥) = 0 (7. 56)

It now follows from Eq. (7. 24) and (7. 25) that for any *u <£2, ^

we have

We summarize these results as

Theorem 7. 2: L^Z V be a countably infinite dimensional inner product

space with an orthogonal basis {hn} w£E/oo. Let U(/,£) 6e a representation of

the CCRs over V such that V „#„ = B(fl) where

Rn = {(sh*,thH); -s,t<oo}»

The conditions of Theorem 7.1 is assumed to hold. If for some nonzero

we have

lim

independent of the ordering of the basis vectors hn , ^Ae/x ^Ag representation is

a tensor product representation.

8. Entire Function Spaces

In this section we generalize the exponential space defined in Sec. 5

to an entire function space (Theorem 8. 1). We discuss the properties of

these spaces, and give an explicit construction.

Lemma 8. 1 : If the matrices Atj and B{j are positive-definite (positive-

semidefinite], then the matrix C{j = A^E^ is positive-definite (positive- semi-

definite}.

Proof: The matrix C is the restriction of the Kronecker product

A®B to the subspace spanned by the "diagonal" basis vectors ey®ey.

Q.E.D.
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Lemma 8. 2i Let Atj be a positive-semidefinite matrix. Let f ( z ) =

^ anz
n, an^Q be an entire function. Then ffj(A) is a positive-semidefinite

matrix. If an>0 for all n then f(AfJ) is positive-definite unless Aij = Aij =

Aji = Ajj for some pair i^pj.

Proof: The matrix A°tj = l is positive-semidefinite. By the preced-

ing lemma, the matrix An
tj is positive-semidefinite. Thus f(Afj) is the

sum of positive-semidefinite matrices which proves that f(A^) is positive-

semidefinite.

We now assume «^>0. Suppose 2yf(^»y)^y=:^ ^or x=^^- Let k be

the j for which AJ5 is maximum among those j with #y4=0. Since A™] is

positive-semidefinite we have 2/^u^j = 0 for n = 0, 1, 2, • • • . Hence

^j^(Aij)xJ = 0 for all polynomials P. Let P be a polynomial such that
j=¥k

P(Akk) 40 and P(A{J) = 0 for all At^Akh. We then have P(Akk)xk +

^P(AkJ)xJ. = 0. Since ^4=0, there must be some j 4= k such that Akj = Akk.

Because A{j is positive-semidefinite, the submatrix

is positive-semidefiinte. It follows that AJk = Afj=Afk = Akk ^ A^, and

hence we must have Ajj = Akk. Q.E.D.

Theorem 8. 1: Let K be a Hilbert space, and let f(#) = 2 an*n> an^$

be an entire function. Then there exists a Hilbert space f(K) and a strongly

continuous map f from K into a total set in f(K) such that

)*) (8- 1)

If an>0 for all n, then any finite set of f (<!>,•) is linearly independent if

<J>f.=^Oy for i^i. If K is separable then f(K) is separable.

Proof: We construct a prehilbert space H0 as follows. Let HQ be

the linear space of all expressions of the form

(8.2)
i=l

where the c{ are complex numbers. For any 3pi} i=l, • • • ,« the matrix
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(<3>z-, <&{) is positive-semidefinite. By lemma 8.2 the matrix £(<!>,•, <3>y) is

positive-semidefinite and the equation

(2 ',/(*,), 2 <W,)) = 2 <W(** *,)) (8. 3)•=i j=i J .-,j=i

defines an inner product in HQ. If an>0 for all ra then by lemma

8.2 the matrix £((<!>,., Oy)) is positive-definite unless (<E>^ <1>Z-) = (<3>z-, <3>y) =

(<J>y, <E>,.) — (<E>y, 3>y), which implies that <!>,• = <3>y. This proves that any finite

set of £(<£,-) is linearly independent if <E>f.=[=<J>y for all z=M. We now define

f(K) as the Hilbert space obtained from HQ by the usual construction. It

follows from Eq. (8. 1) that the map <!>-»£( <3>) is strongly continuous. If

K is separable then there is a countable set KQ which is dense in K.

Since f is strongly continuous the countable set (f(<E>); <&^K0} is total in

f(K), hence f(K) is separable. Q.E.D.

We now give a brief discussion of linear operators in f(K). For any

T^E(K) we define a possibly unbounded linear operator on the total set of

all f(0) by

f(T)f(3>) = f(7\B) (8. 4)

which can be extended by linearity to the prehilbert space H0 given in the

proof of Theorem 8.1. If T is isometric on K, it follows from Eq. (8.3)

that f(T) is isometric on H0 and can therefore be extended by continuity to

an isometric operator on f(^). If | |jT|l>l then f(T) is unbounded unless

f(#) is a polynomial, since

!|f(r)f(xo)|j2/!if(xo)||2 = f(\2|ir*||2)/f(V||*|i2) (8. 5)
which -^oo as\-*ooif ||7\&!|>i|<I>|| unless f(*) is a polynomial. If ||T1|<1

then f(T) is bounded, as can be seen most easily by the following explicit
construction of

Given f ( « = f l ^ " > 0 , an>0 and K let

(8.6)

and consider the vectors
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(8.7)

The proof of lemma 5. 1 can easily be modified to show that the f (<p) are a

total set in H if an>0. We have

(f WO, f M) = 2 «.0k <« = f((& <«) (8- 8)

Thus the mapping from f(^£) to // given by

(8-9)

is isometric. The operator f(T), TeB(^) defined by Eq. (8.4) is now

given by (possibly a restriction of)

f ( T ) = 0«g>7T (8.10)

It follows that f(T) is bounded if |

9. Discussion of Results

We have obtained a partial classification (up to unitary equivalence) of

complete Boolean algebras 3t of type I factors. Any such 3t can be de-

composed into a complete atomic Boolean algebra sjtfl with atoms {Ra}a*=A

and a complete nonatomic Boolean algebra 9tc. Theorem 4. 1 states that

{R&} ojeA is a tensor product factorization. That is we can write H = ®Ha,

Ra = R(Ha)(&( (g) 10/) and 3ta is determined up to unitary equivalence by
a,' 4=o5

dim #,,,. Theorem 6. 1 establishes a one-to-one correspondence between

the unitary equivalence classes of complete nonatomic Boolean algebras of

tyepe I factors satisfying the condition inf d(^;5)>0 for all "*&^H, and
B

complete nonatomic Boolean algebras of projections. For the general case

the problem of classifying nonatomic Boolean algebras of projections has

not been solved. But on separable Hilbert spaces one can obtain a direct

integral decomposition and thus an explicit set of unitary invariants. We

have also determined all factorizable vectors and all factorizable bounded

linear operators for any complete Boolean algebra of type I factors satisfying

the above condition. An application to the group integral for the re-

presentations of the CCRs has been given.
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These results are only a first step towards the problem of classifying

all Boolean algebras of factors (or equivalently all fatorizations). Since a

complete classification of non-type I factors does not yet exist, the most

that one could hope for at the moment would be a classification of Boolean

albgebras of type I factors. In particular, we hope to be able to eliminate
the assumption inf d(M?; 5)>0, and thus obtain a complete classification of

B

all complete Boolean algebras of type I factors.
In a future paper a further application to the determination of all re-

presentations of the CCRs with a translationally invariant state such that all
R(5) are type I where

R(5) = (U(/,£): / and g have support in B}"

and B is any open subset of w-dimensional Euclidean space, will be given.
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Appendix 1: Computation of the Norm of T(<f>? Q, X)

Given a Hilbert space K, the equation

T(^ Q, %)e* = *«-*>e<2*+* (A 1)

where ifj^X^K, Q^E(K) defines a possibly unbounded linear operator on

the dense subspace HQ of e^ of finite linear combinations of product vectors

(see Eqs. (5.39-52)). On HQ we have

T (<p, Q, X)* = T(X, 0*<f l (A 2)

and

T(A, Qv XjTOfc, Q,, %2) = &*&:(& +QJU Q&2, 0|%+%2) (A3)

which can be easily verified by direct calculation. Thus we have
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I TO, Q, %)l l 2 = I TO, 0, %)*T(^ 0,
0*0, x+ 0*^)11 (A 4)

Thus it suffices to compute the norm of T(0, 0, 0) where 0>0.

Lemma A 1 : // | \Q\ \ > 1, *A*» T(0, 0, 0) is unbounded. If 0 < Q < 1

TO, 0,011 = e'"'-Q>-v**"' (A 5)

z/ ^ M t« ^Ae domain of (l—Q)~l!2, otherwise T(<p, Q, <fi) is unnbounded.

Proof: Let E be one of the spectral projections of Q ̂  0. Then

and Q = Q^®QZ where

(A 6)

(A 7)

(A 8)

(A9)
We have eK=eKi®eK2fJ and ^ = ̂ 0^2 f°r anY &^K. It follows by direct

calculation from Eq. (Al) that

g2, ^2) (A 10)

Thus it suffices to compute ||T(0, 0, 0)|| for the cases (i) 0>1, (ii) 0 = 1,

(iii) 0<0<1 with a discrete spectrum (iv) 0 < 0 < 1 with a continuous

spectrum.

Case (i). We show that T(^, 0, ^) is unbounded if 0>1. We have

T(^ 0, ^OeM> = ^•*V^+* (All)
and

||e^||2 = eHM>n2 (A 12)

Then

, 0, ^)e^)/||e^||2 = exp {2x Re (^ ^)+ [X 2(^ [0

(A 13)
which -»oo as |X|-»oo-

Case (ii), 0=1. If ^=t=0, then there is a <t>(=K such that (^,

and Eq. (A 12) is still unbounded as X-^°o. But T(0, 1, 0) = 1.
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Case (iii), 0<£)<1 with discrete spectrum. Let hi be a basis for K

such that

Qh{ = ^hif X, <0 (A 14)

(it is more convenient to write the eigenvaluses as e^*, see Eq. (A 22) below.

\.= — oo allowed.) Let Kf be the one-dimensional space spanned by h{.

Then by Theorem 5.1

is the ITPS containing the vector

n = <g>nz. (A 16)
Let

# = 2*A (A 17)
Then we can write

T(& 0, 0) = ®T,(&,, e\ *,) (A 18)
We have

e*i= ®(<g>tf,): (A 19)
»=0

where (®j£^.)s is the one-dimensional space spanned by (®hi)
n. We

define an operator af by

af(®h{Y = (n + iy/2(®hiy
+1 (A 20)

The operators «,., flf are the annihilation and creation operators for the

irreducible Schrodinger representation of the commutaion relations for one

degree of freedom. The direct sum decompostion given by Eq. (A 19)

diagonalizes the number operator Ni = afai as

#, = e» (A2i)
8=0

By direct calculation on the total set of vectors e^fl,- in e^i one can verify

that

T,(*,, A, k.) = e^eV^e*K- (A 22)

Thus our problem is reduced to comguting the norm of the operator

e&a*eA^*fle&*« jn j-j^ Schrodinger representation of the commutation relations

for one degree of freedom. In appenidx 2 we prove that
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(A 23)

where

b = a-k/(l-e*) (A24)

We have

[A,i*] = +1 (A 25)

and Z>, b* are also annihilation and creation operators for the Schrodinger

representation. Since b*b is a number operator with eigenvalues 0,1, 2, • • •

and X<0 it follows that

11(̂ 11 = 1, X<0 (A 26)

It now follows from Eqs. (A22) and (A23) that

I|T,(*,, e\ *,)|| = *i*,i«/ci-x», X,<0 (A27)

Eq. (AS) now follows from Eqs. (A 14), (A 17), (A 18), and (A27).

Case (iv), 0<<2<1 with continuous spectrum. Consider the spectral

decompostion

Q = (° <*dE(\) (A 28)
J — 00

Let

5 -C»«-l)/M
dE(\) (A 29)

-m/n

QK = ^e-^Enm (A 30)
w=l

Since Qn~^Q in norm, we have

Km T(& 0., ^)e* = T(^, Q, #)e* (A 31)

for each <£. Furthermore, (A 5) for the case (iii) yields

Km ||T(& 0., 0)|| = exp 11(1-0-^11' (A32)

Thus ||T(^, QH9t/>)\\ is bounded and the convergence in (A31) for a total
set e* implies

limT(4,,Qn,ip) = T(</>,Q,4>). (A 33)

For any unit vector %, we have
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, Q, m\= lim | (X, T(& QK ,
)̂11 . (A 34)

Hence T(^ Q, <p) is bounded and

-

= «nci-«»-yi*ii« (A 35)

To prove the converse inequality, consider the spectral resolution

Q = (1kdE'(K) (A 36)
Jo

and let

&=(\l-*)-W(*0 (A37)
Jo

Let X = e*x, then

= exp

= exp

= exp -ft)-'d(^ £'(*)^) (A 38)

It follows that

llTC^ft^ll^^^-^-1'11*"2 (A39)

Eqs. (A 35) and (A 39) give the desired result. Q.E.D.

Appendix 2 s Derivation of Eq. (A 23)

It is sufficient to prove that Eq. (A 23) holds on a total set. We begin

with a heuristic derivation. Consider the following Ansatz.

Cf) (A 40)

where t, k(t), \(t), c(t), a are complex numbers. We differentiate both

sides and use the identities

G-Ba*aa*GBa*a = e~Ba* (A 41)

G-Baa*GBa = a*~B (A 42)
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where B is any complex number. Then we obtain

(A 43)

Using Eq. (A 40) to eliminate the expoonential operators, and comparing

the coefficients of the operators 1, a, a*, a* a on the left and right hand

sides of Eq. (A 43) we find

= \a\* + <f(t) (A 44)

= a* (A 45)

= a (A 46)

V(0 = 1 (A 47)

Using the initial conditions &(0) = X(0) = c(0) = 0, we can integrate these

equations to find

\(0 - « (A 48)

k(t) =o(c*-l) (A 49)

<0 - -|a|2(^-l) (ASO)

If we now set £ = X and a = k/(e^—l) we obtain Eq. (A23). To actually

prove Eq. (A 23) one can verify the above derivation in the opposite direc-

tion, each equation being valid on the one-dimensional subspaces with finite

particle number a*a = Q, 1, 2, ••• .

Note added in proof: Lemmas 4. 4, 4. 6 and a slightly strengthened

version of 4. 7 can be proved in one step, with the aid of lemmas 4. I, 6. 2,

3. 3 and 4. 3.


