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Let us consider a differential equation of second order

(o. i) 4^-?(*M*)+x<*) = ° > (o<*<oo) .
ax*

Here q(x) is a real- valued function which is locally summable in (0, oo).

In the case where #=0 is a regular point of the equation, M. Matsuda

has proved that any pseudo-spectral measure in the limit point case at

x— oo is the Weyl spectral measure (Matsuda [6]).

In this paper we try to extend this result to the case where x = 0 may

be a singular point of the equation.

We take a linearly independent system of solutions (^(tf, /), <pz(x, 0)

of the equation (0. 1) which satisfies

for £=1,2 where rjf(l) and £,•(/) are entire functions of / which satisfy

^(OWO^^iCOWO^l f°r every complex number /.

M. H. Stone, E. C. Titchmarsh and K. Kodaira proved that there exists

a spertral measure matrisx P(\) = (pij.(\))i y=1 2 which satisfies the following

three conditions (Kodaira [3], [4]):

(A) P(X) is a positive semi-definite measure matrix on (— oo, oo).

(B) Denote by L2(— oo, oo ; dP(\)) the Hilbert space with the norm

v =

where p(\) is a vector- valued function on (—00, oo)
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v(\) is the transpose of v(\), and a means the conjugate complex number

of a. Then the generalized Fourier transformation

from L2(0, oo ; dx) into L2( — 00,00; dP(\)) is isometric.
(C) f?P transforms L2(0, oo ; rftf) onto L2(— 00,00; dP(\)).

In Theorem 1 we shall prove that if both #=0 and x=oo belong to

the limit point case, then the measure matrix which satisfies (A), (B) and
(C) is unique.

We shall prove in Theorem 2 that if both #=0 and #=oo belong to

the limit point case, then any measure matrix which satisfies (A) and (B)

satisfies (C).
Aknowledgements. I took up this problem, suggested by Mr. M.

Matsuda and had a lot of useful discussions with him in the course of

writing this paper. I would like to express my gratitude.

§ 1 The measure matrix in the eigenfunction expansion
for singular differential equations.

Let us consider a differential equation of the second order

(1. 1) - -S(*X*) + *X*) = 0 ,ax

where q(x) is a locally summable function in (0, oo). We assume that

#=0 is a singular point of the equation. Moreover we assume that the

equation (1. 1) is of the limit point type both at 0 and at oo.

Let (<PI(XJ /), <p2(
x9 0) be a linearly independent system of solutions

of (1. 1) which satisfies

^•(1,0 = ^(0, ^(1,0 = WOox

for z"=l, 2, where rjt(l) and fz-(/) are entire functions of / such that
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for every complex number /. Then for (9^ cp2) there exists a matrix func-

tion on (— oo, oo)

which satisfies the following three conditions (A), (B) and (C) (Kodaira [3]):

(A) Each Piy(X) is a function of bounded variation on every finite

interval in (—00, oo), and P(X) is a positive semi-definite measure on

(— oo, oo ). Namely for every finite interval A and for every pair of con-

tinuous functions

^ (v°w\vM = U(x))
we have the inequality

\ e0(xXP(x)50(x) = s t tf(x)0SOOrfp,X*)£0,
J A *,/=l,2 J A

where f;0(X) is the transpose of z;0(X).

(B) The generalized Fourier transformation from L2(0, oo ; dx) into

L2(-oo, oo;

\<p2(x, /)

is isometric. Here the element of L2(—oo, oo; dP(\)) is a pair of mea-

surable functions

such that

(C) 2> transforms L2(0, oo; dx) onto L2( —oo, oo; dP(\)).

We shall prove the following two theorems.

Theorem 1. Let the equation (I. 1) be of the limit point type both

at 0 and at oo. Then the measure matrix which satisfies (A), (B) and (C)

is uniquely determined by y(x, I).
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Theorem 2. Let the equation (1.1) be of the* limit point type both

at 0 and at oo. Then if a measure matrix satisfies (A) and (B) with respect

to y(x, I), then it satisfies (C).

To prove Theorem 1 and Theorem 2 we prepare the following lemma.

Lemma 1. Let P{\) be a measure matrix which only satisfies (A)

and (B) with respect to y(x, I) and put

(1. 2) EP(x, y\ A) = ( y(x, \)dP(\)y(y, \) .
JA

Then

(i) EP(x,y\ A) is a symmetric kernel of Carleman type such that

(1.3) f (E&, y ; A))2<fc 5S ( y(y, \)dP(\)y(yt X) ,
Jo JA

and

(1. 4) (".EX*, j: A)/00<fy = ( 9>/(XXP(X)iK*. X)
Jo JA

Ao/J /or every f(x) in L2(0, oo ; dx).

(ii) L^^ ^p(A) be a linear transformation defined by

(i. 5)

/or f(x) in L2(0, oo; rf^). Then EP(A) is a bounded symmetric operator on

L2(0J oo ; dx) and we have

\\EP( A)| |^1, lim EP( A) = identity,
A-K-00,00)

(1. 6)

/or g^er^ pair off(x), u(x) in L2(0, oo ; dx).

(iii) For y fixed — p^ J-^? — ' belongs L2(0, oo ; dx) and we have
dy

(L7)V ; 83; / - JA Qy Qy

In the case where # = 0 is a regular point, we have a corresponding

fact as follows:
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Lemma 2. Let p(X) be a speudo-spectral measure^ for the equation

u(x) = 0 , (0:g*< oo) ,
dx2

with respect to the solution <p(x, /) and put

(1. 8) Ep(x, y; A) = ( <p(x, \)<p(y, \)dp(\) ,
J A

where A is a finite interval and x, J^O. Then

(i) Ep(x,y, A) is a bounded symmetric kernel of Carleman type such

that

(1. 9) {"(£„(*, r, A))2^ ^ (
Jo J

(1. 10)

hold for f(x) in L2(0,, oo; rf#).

(ii) Le^ £"P(A) 6^ a linear transformation defined by

/or /(#) m L2(0, oo ; dx). Then £P(A) is a bounded symmetric operator on

L2(0, oo ; dx) and we have

\\EP( A)| |^1, lim Ep( A) = identity,

(i. ii) <^P(A)/, uy = \
J A

/or e^rj _pflz> of f(x), u(x) in L2(0, oo; &).

(iii) For y fixed, — p^ ' ^ * — ^ belongs to L2(0,, oo ; dx) and we have
dy

We only prove Lemma 2, because the proof of Lemma 1 is similar.

Proof of (i). Consider a linear functional on L2(0_, oo ; dx)

(1) Matsuda [6].
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(1.1 3) 7,o.A(/) = ( <p(x0, X)ffP/(xXp(X)
J A

for x0 and A fixed. Then we have

(1. 14) | J*O,A(/) I ̂  R <pz(x<» ^)rfp(X)!1/2R | ffp/CX) 12rfp(X) T

This shows that !XQ A is a bounded linear functional. And hence by

Riesz theorem we can find a function eXQ A(#) in L2(0, oo ; tffe) such that

(1. 15) 7,0>A(/) =

On the other hand we have

(1. 16) /,o>A(/0) = £(*„, *;

for /0(a;) in L2(0, oo ; J^) which has a compact carrier. It follows from

(1. 15) and (1. 16) that

E(x0, x; A) = e*0>A(*) ,

and hence E(x, y; A) is a kernel of Carleman type and we have (1. 10) by

(1. 15) and (1. 16). (1. 9) follows from (1. 14).

Proof of (ii). Putting /A(#) = £P(A) f(x), we have

(l. 17)

^ 11/11 INI
for u(x) in L2(0, °o ; dx) which has a compact carrier. For a positive ./V

and a finite interval A, let us define UN A(#) by
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Then UN A(#) belongs to L2(0, oo ; dx) and so (1. 17) implies

S N rp-w i1/2
o I/A(*)|^^[)O IA(*)I^J 11/11,

namely

O N ~\l/z

o IA(*)l'<fc] =* 11/11-

Since N is arbitrary, (1. 18) implies

Proof of (iii). Consider a linear functional on L2(0, oo; dx)

for #0 and A fixed. Then we have

(i. 19) |*,0

as in the proof of (i). By the method used in the proof of (i), we can

show that 9gpfor» A) belongs to L2(0, oo ; dx) and that (1. 12) holds.

Proof of Theorem 1. Let FX(X) and F2(X) satisfy (A), (B) and (C).

We shall denote by .2L the space of all functions u(x) in L2(0, oo ; dx) that

satisfy the following conditions:

i) «(*)€= La(0, oo-dx).

ii) w(#) is differentiable in the open interval (0, oo).

iii) — is absolutely continuous in every closed subinterval [a, b]
dx

(0<a<b<oo) in (0, oo).
iv) u(x) has a compact carrier in (0, oo).

, oo; dx).
ct x

Define an operator L^ which transforms u(x) e 3)^ to

^
dx2

By the assumption of Theorem 1, if we denote the closure of LTO by L, L is
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a self-adjoint operator. Let / be a complex number with Iml^=0 and Lt

be the resolvent (/ — L)"1. We have for u(x) in 3)^

Therefore we obtain

for w(#) in .2L and /(^c) in L2(0, oo; (fo). Since the family of functions

{(/ — L)u(x)lu(x)^S)OQ} is dense in 1 (̂0, oo; dx)9 we have

(..a,,
for every pair off(x) and A(^) in L2(0, oo; rftf).

Let JEPl(A) and £p2(A) be the operators in Lemma 1 with respect to

FX(A) and P2(A). Then making use of the inversion formula for Stieltjes

transformationc2:> we have from (1. 20)

(1. 21) <^(A)/, hy = <£,f(A)/, K>

for every finite interval A in (— oo, QO). From (1. 21) and (1. 5) we get

(1. 22) EPi(x, y, A) = £,,(*, y; A),

namely

(1. 23) f y(x, \)dP1C\)y(y, X) = ( y(x, \)dPz(\)y(y, X).
J A J A

Let y0(^ /) be a system of solutions

such that

(1.24)

l/o(X9 0 — x rnw /\
\X9 l)

(1) This formula is due to M. Matsuda.
(2) Neumark [7], Anhang.
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Then there exists a matrix

o/IN * / 7 N » ' >
P(l) 0(1) /

such that

(1.25) il(x,l)

Define two density matrices dP{^(\) and dP^(\) by

(1. 26) rfPi°>(X) = JLftXPA(XXA(X) , *= 1, 2 .

Then the measure matrices Pi0)(X) (*=1, 2) will satisfy (A), (B) and (C)

with respect to j/Q(x, X).

To prove P1(A) = P2(A) it is sufficient to prove Pi0)(A)-P|0)(A).
From (1. 2), (1. 25) and (1. 26) we obtain for k=l, 2

EP/g(x, y; A) = \ yfa \}dP«\\)yQ(y, X) ,
J A

and hence (1. 22) implies

(1. 27) ( &(*, xyPi0>(XW% X) = ( yc(^, \}dP$\\)y0(y, X) .
J A

We differentiate (1. 27) with respect to jc or y to obtain

(1. 28) ( 8ftfo X)^Pi0)(X)y0(y, X) - ( tto&^dPFMyJiy, X) .
JA 9* JA 9a;

and

/I 29) ( Q^oC^' x^p^°((\)8y°^' x^ — f Q^oC^. x)tfp^Yx)8y°^'
JA 9* x 9y JA Qx z dy

Set

( 0 ) / A \ =

Then putting x = y=l in (1. 27), (1. 28) and (1. 29) we have

respectively, which completes the proof.

Proof of Theorem 2. Let P(X) be a measure matrix which satisfies

(A) and (B). Then we have
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(i. 30)

and £*p(A) becomes a resolution of the identitycl).

Let tjQ(x, X) be a system of solutions which satisfies the initial con-
ditions (1.24). Putting

for A(l) satisfying (1. 25), we have a resolution of the identity J?po(A).

Defining n0(#, A) by

$
we shall prove

(1. 32) P0(A n A,) =

for every pair of intervals A and Ax.
Since £p0(A) is a resolution of the identity, we have

(1. 33) o^1 *'' A)£po(^ ^5 AJ& = £PO(*, j; A n AJ .

By (iii) of Lemma 1 we can differentiate (1. 33) with respect to x or y to
obtain

n™ r^PoC^A^ ,
(L 34) Jo ~^ - 5^ ^; A,
and

n ^ f"8gp.(^*;A)9g,B(*,y;A
I1' ^^^ Jo 8^ 8^

Setting *=jv=l in (1. 33) and (1. 34) and (1. 35), we have

(1. 36) ("«{»(*, AKV, A,)^ = rf°M 0 A,) , (i,; = 1, 2) ,
Jo

where
, , / ^ X A )

; W(A)

(1) See the proof of Theorem 1 of Matsuda [6].
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Thus the identity (1. 32) is proved.
For y(x, /) and P(A) putting

(1. 37) u(x, A) = ( dP(\}y(x, y}
JA

we have by (1. 36)

(1. 38) P(A n Ax) = (°u(x, AX#, Ajdx .
Jo

Define a transformation £?£ from L2(— oo, oo ; dP(\)) onto L2(0, oo ;

rf#) by

Then 3*^-2^ proves to be the identity operator/15

By (1. 38), we can prove that £FJ is an isometric transformation from
L2(- oo, oo; dP(\)) onto L2(0, oo ; dx) (Kodaira [3] 2, [5]). EFP is

therefore surjective, and the proof is completed.

Remark. If we assume the existence of the measure matrix P*(X)
which satisfies (A), (B) and (C), calculated by Titchmarsh-Kodaira's spectral

formula, the proof of Theorem 2 will be easier (Kodaira [3], [4]).

In fact, let P(X) be a measure matrix satisfying (A) and (B). Then we

have

Using Lemma 1 we have

Ep>(x,y\ A) = BX*,y; A).

We obtain P5k(A)=:::P(A) by the method used in the proof of Theorem 1.
Therefore P(A) satisfies (C).

If the equation (1.1) is of the Unit cirdle type at 0, the situation is
essentially the same as in the case where # = 0 is a regular point.

§ 2. The spectrum in the limit circle case at Infinity 0

In the case where x=0 is a regular point of the equation (1. 1),

(1) See Proposition 1 of Matsuda [6],
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M. Matsuda has proved that the spectrum is unbounded below in the limit

circle case at x= oo (M. Matsuda [6]).

In this section we assume that the equation (1.1) belongs to the limit

circle case at x= oo. Then by setting some boundary conditions at oo and

also at 0 if necessary, we obtain a self-adjoint operator L which is a

symmetric extension of the LM in §1. The spectrum of this operator is

simplea:).

Then we shall prove the following theorem:

Theorem 3. Let the equation (1.1) belong to the limit circle case at

oo. Then the self-adjoint operator L is unbounded below.

In fact, let /!=[!, oo) and /2=(0, 1]. Setting some boundary con-

ditions at x=l, we obtain L± and L2 which are the restricitions of L to Jx

and to 72 respectively. Then L is bounded below if and only if L^ and L2

are both bounded belowr2). L1 is unbounded below by virtue of Theorem

2 of Matsuda [6], and hence L is also unbounded below.

Using WeyPs classification of the limit point case and the limit circle

case, we can see that Theorem 3 is equivalent to the following fact:

Let q(x) be locally summable in (0, oo). Then if L^ in § 1 is bounded

below, L^ is essentially self-adjoint.

Let us make a remark on this fact. In the m- dimensional case, the

following result is known (Wienholtz [8], Kato [2]):

Let LQ be a partial differential operator

L= -

where q(x) has a following property: there exists a constant a(0<a<l)
such that

M(x) =\ \x-y\ "-•<> | q(y) \ *dy , ^m, a) =
j\*-y\*i

is locally bounded. The domain of LQ consists of C°° -functions of com-

pact carrier. Then if L0 is bounded below, LQ is essentially self-adjoint.

By slight modification of their method we can replace the local

(1) Kodaira[3].
(2) Dunford-Schwartz [1]. p. 1455.
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boundedness of M(x) with the local summability of q(x) to prove the fact

we obtained above. However, our method seems to be of some interest

in that we derived this in the scheme of the inverse problem of Gelfand-

Levitan.
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